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ÖZET 

Yüksek Lisans Tezi 

OBSTRÜKTİF UYKU APNELİ HASTALARDA DİKKAT KONTROLÜ VE 

ZİHİNSEL YORGUNLUK İLE 

APNE-HİPOPNE İNDEKSİ ARASINDAKİ İLİŞKİNİN ANALİZİ 

Farhad Nassehi 

TOBB Ekonomi ve Teknoloji Üniversitesi 

Fen Bilimleri Enstitüsü 

Biyomedikal Mühendisliği Anabilim Dalı 

 

Danışman: Prof. Dr. Osman Eroğul 

Tarih: Ağustos 2019 

Obstrüktif uyku apnesi (OUA) en yaygın uykuda solunum bozukluklarından birisidir. 

Gün içi uykululuk hali ve zihinsel yorgunluk OUA hastalarının kliniğe başvuru 

şikayetleri arasında yer almaktadır. OUA hastalarının bilişsel becerilerinin gerilediği 

bilinmektedir. OUA hastalığının teşhisi ve şiddeti gece boyunca süren zahmetli 

polysomnografi (PSG) oturumuyla yapılmaktadır. Bu tezin amacı, dinlenim durumu 

ve dikkat kontrolü görevi sırasında elde edilen Elektroansefalografi (EEG) sinyalleri 

kullanılarak, hastaları Apne – Hipopne İndeksi (AHI) ve Epworth değerlerine göre 

sınıflandırmaktır. Bu doğrultuda 25 katılımcı PSG kaydından sonra, toplam 13 dakika 

süren dinlenim durumu ve dikkat kontrolü oturumlarına katılmış ve kendilerinden 

EEG kayıtları alınmıştır. EEG sinyalleri arasından önemli öznitelikleri seçmek 

amacıyla istatistiksel olarak analiz edilmiştir. Anlamlı farklılıklar gösteren 

öznitelikler Yapay Sinir Ağları (YSA) için girdi olarak kullanılmıştır. YSA 

algoritmalarıyla elde edilen sonuçlar, oturumlar arasında farklılık gösteren EEG 

özniteliklerinin, hastalığın şiddetini ve semptomlarını ortalama %79.98 oranında 

sınıflandırılabileceğini göstermiştir. YSA ile hastalığın şiddetinin tanısında hekimlere 

yardımcı olabilecek bir karar destek sistemi geliştirilmiştir.   

 

Anahtar Kelimeler: Obstrüktif uyku apnesi, Dikkat kontrolü, Elektroansefalografi 

sinyalleri, Yapay sinir ağları, Karar destek sistemi. 
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ABSTRACT 

Master of Science 

ANALYSIS OF RELATION OF ATTENTION CONTROL AND MENTAL 

FATIGUE WITH  

APNEA-HYPOPNEA INDEX IN OBSTRUCTIVE SLEEP APNEA PATIENTS  

Farhad Nassehi 

TOBB University of Economics and Technology 

Institute of Natural and Applied Sciences 

Biomedical Engineering Science Program 

 

Supervisor: Prof. Dr. Osman Eroğul 

Date: August 2019 

Obstructive sleep apnea (OSA) is one of the most widespread breathing-based sleep 

disorders. Daytime sleepiness and mental fatigue are among the common symptoms 

that are reported for OSA patients. Previous studies reported cognitive decline in 

patients with OSA. The diagnosis of OSA is done with laborious overnight 

polysomnography (PSG) recording. The aim of this thesis is to classify OSA patients 

according to their Apnea – Hypopnea Index (AHI) and Epworth scores using 

electroencephalography (EEG) signals that recorded during resting-state and 

selective-attention-test sessions. For this aim, 25 patients participated to resting-state 

and selective-attention-test sessions, which lasted 13 minutes in total, following their 

PSG recordings. Statistical analyses were conducted to detect important features from 

the EEG signals. Statistically significant features were used as input to Artificial 

Neural Networks (ANNs). The results show that the EEG features that differed 

between sessions could classify the disease severity and symptoms with a 79.98% 

success rate on average. A decision support system that may help doctors to diagnose 

the disease severity was developed with ANNs. 

 

Keywords: Obstructive sleep apnea, Attention control, Electroencephalography 

signals, Artificial neural networks, Decision support systems. 
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1. INTRODUCTION 

Sleep is one of the most popular subjects for scientists from various disciplines. 

Medical doctors, biomedical engineers and psychologists are all interested in sleep 

because an understanding of the nature and function of sleep requires an 

interdisciplinary study. Sleep studies became possible with the invention of the 

electroencephalography (EEG) technology. In a pioneering study, Berger recorded 

neuronal activity of brain in sleep [1].  

The most basic definition of the sleep is related with organism’s response to 

environmental stimuli. Sleep can be defined as a reversible, less-than-awake response 

to the environment, which recurs on a daily (circadian) cycle [2]. Almost all animals 

regulate their bio-behavior functions via circadian rhythms. Most of the physiological 

and biochemical events in the human body, including hormone levels, body 

temperature, blood flow, and the sleep, are controlled by circadian rhythms (see figure 

1.2) [3]. In humans, circadian rhythms start to occur in the second or third month after 

the birth [3]. They are sensitive to the light, and they are regulated by the 

suprachiasmatic nucleus (SCN) in the human central nervous system [3]. Figure 1.1 

shows the location of the SCN in the nervous system. At beginning of sleep, neurons 

in the ventrolateral preoptic area (VLPO, seer Figure 1.1) become active and they 

inhibit ascending arousal system, composed of brain stem, posterior hypothalamus and 

basal forebrain. 

1.1 Architecture of Sleep 

Human sleep is a cyclic activity. Ultradian rhythms (which are defined as period 

shorter than a day but longer than an hour [4]) regulates the stages of sleep cyclicity 

[4]. Human sleep has two major stages, rapid eye movement (REM) and non-rapid eye 

movement (NREM). NREM stage is also divided to three substages. 
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Figure 1.1: Location of SCN and VLPO in human brain [4]. 

 

Figure 1.2: Circadian rhythms [5] 
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Transition from the awake state to NREM and REM states is regulated by ultradian 

rhythms that have a period between 90-120 minutes [4]. The diagram that shows the 

transition and duration of sleep stages is known as hypnogram (see Figure 1.3 for an 

example). 

 

Figure 1.3: Example of Hypnogram [6] 

Polysomnography is the gold standard of the measurement of sleep [7]. 

Polysomnography is derived by three words include “polus”, which means many, 

“somnus”, which means sleep, and “graphein”, which means write. A 

polysomnography device records electroencephalography (EEG), electrooculography 

(EOG) and electromyography (EMG) activities at the same time. According to the 

Alan Rechtschaffen and Anthony Kales Manual Sleep Stage Scoring Technique [8], 

these three signals are the essential components of polysomnography that are used to 

classify the sleep stages. A polysomnographic measurement can be extended with 

recording additional bio-signals, like electrocardiography (ECG) and body position, 

oxygen level in the blood, and snoring. These additional signals are important for the 

diagnosis of sleep disorders. Defining sleep stages from PSG recordings is done 

manually by analyzing EEG, EMG and EOG signal’s amplitudes. As a first step, PSG 

signals are divided to smaller parts called epochs. Epoch length is usually 30 seconds. 

Then, each epoch is assigned only one of the sleep stages [8]. 

A normal sleep starts with N1 stage, then continues with N2 and N3 stages (see Figure 

1.3). Then comes the REM stage. On average, 75% of sleep spends in NREM, and 

25% in REM stage. As the sleep continues, duration of REM stage increases while 
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duration of NREM stages decrease [4].  Sleep onset starts with transition from the 

awake state to the N1 stage.  

The summary of differences between awake, REM and NREM stages with respect to 

EEG, EOG and EMG signals is presented in Table 1.1. EEG signals of the wake stage 

have low amplitude and high frequency rate. An epoch is classified as wake when least 

50% of the epoch shows alpha (8-12 Hz) activity. EMG signals have high amplitude, 

because of muscle contractions.  EOG signals also have high amplitude because eyes 

may move (see Figure 1.6 for an example of the PSG recording of the awake stage). 

Table 1.1: Characteristic of physiological in sleep stages. 

Behavior Awake NREM REM 

EEG Low amplitude, fast 

frequency 

High amplitude, 

slow frequency 

Low amplitude, 

fast frequency 

Movement (EMG) Continuous, 

voluntary 

Occasional, 

involuntary 

Muscle paralysis 

Rapid eye 

movement 

Often Rare Often 

 

 

Figure 1.4 : PSG signals of wake stage [9]. 

First substage of NREM sleep is called N1. This stage is also known as light sleep. N1 

is the transition stage from wake to sleep. In this stage EEG signals have low amplitude 

and mixed frequencies. Critically more than 50% of epochs should show theta (4-7 

Hz) activity. This is the shortest stage of sleep (see Figure 1.6 for an example of the 

PSG recording of the N1).  
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Figure 1.5 : PSG signals of N1 [9]. 

In the second stage of NREM sleep (N2), theta (4-7 Hz) activity in EEG signals is 

dominant, like the N1 stage, but spindles and k-complexes are markers of the N2. 

Spindles are oscillations between 10-16 Hz with duration between 0.5-2s [10].  The 

functional role of sleep spindles is not well-known, but some studies show role in 

memory, cortical development, and regulation of arousal [11-14]. K-complexes are 

described as short surface-positive wave that followed by a larger surface-negative 

wave, and then a positive wave. K-complexes are usually followed by spindles [15-

16] (see Figure 1.7 for an example of the PSG recording of the N2 and Figure 1.8 for 

spindles and K-complexes).  

 

Figure 1.6 : PSG signals from N2[9] 

 

Figure 1.7 : Sleep spindles and K-complex 
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The third stage of NREM sleep (N3) is also known as deep sleep. EEG signals of this 

stage characterized by low frequency bandwidths called delta band (0.5-4 Hz). The 

duration of deep sleep is longer at beginning of the sleep while it shortens as the sleep 

progresses [8] (see Figure 1.9 for an example of the PSG recording of the N3).  

 

 

Figure 1.8 : PSG signals of NREM3 [9]. 

In the REM stage, EEG signals are like the wake stage. They have low amplitudes and 

high frequency. As its name implies, EOG signals are the marker of this stage because 

of continuous rapid eye movements. In this stage, brain consumes more energy than 

when it solves a hard math problem in the wake state [4]. Sleepers report dreams more 

often in the REM stage compared to NREM stages. Although REM stage is only a 

small part of the sleep, it is one of the most interesting stage of the sleep because of its 

association with dreams [8]. During REM, heart rate, temperature and respiration rate 

increases and but get irregular (Figure1.11). According to William Dement, the leading 

authority in sleep research and the founder of the Sleep Research Center at Stanford 

University, “NREM sleep as an idling brain in a movable body, in contrast REM sleep 

an active brain in a paralyzed body.” [4]. (see Figure 1.10 for an example of the PSG 

recording of the REM sleep).  

 

Figure 1.9 : PSG signal of REM [9]. 
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Figure 1.10 : Physiological changes in REM stage [4] 

1.2 Obstructive Sleep Apnea 

Sleep apnea is a widespread breathing-based sleep disorder. Apnea can define as the 

pause of breathing for more than 10 seconds as a result of the collapse of the upper 

airway functions during sleep [11]. Hypopnea occurs when maximum amplitude of the 

upper airway signal (airflow) during sleep is down at least for 10 s with 50% decrease 

in oxygen saturation. Arousal, defined as sudden transition between sleep and awake 

stage, is common in sleep apnea.  Therefore, normal sleep architecture is disturbed in 

sleep apnea patients. Sleep apnea is divided to three types; which are central sleep 

apnea (CSA), obstructive sleep apnea (OSA) and mixed type apnea. Distinguishing 

these types is clinically essential because they have different cause, and each require 

different types of treatments. Among all signals that are recorded by PSG, signals from 

the chest and abdominal regions play important role to distinguish these different types 
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of apnea [14] (see Figure 1.11 and Figure 1.13-14 for PSG recording of sleep apnea 

types). CSA is defined as absent of drive to breath in sleep.  OSA is defined as the 

repetitive collapse of the upper airway during sleep. The mixed apnea shows the 

characteristics of both CSA and OSA [15].  

 

Figure 1.11: PSG signal of CSA [15] 

OSA is the most common type of the apnea. The prevalence of OSA rises to 42% for 

individuals over the age of 65 [16]. The OSA and its severity are diagnosed with 

symptoms and apnea hypopnea index (AHI). The Epworth Sleepiness Scale (ESS) is 

the one of the standard measurements of apnea symptoms. This questionnaire consists 

of eight question (see Figure 1.12). Each question is assigned a point between 0 and 3 

based on the severity of the symptom. The maximum score of the scale is 24 [17]. ESS 

measures daytime sleepiness. According to the total test score, patients are classified 

into five groups [18] (see Table 1.2). 

AHI is the total number of hypopnea and apnea in per hour. AHI is determined by an 

overnight polysomnography (PSG) recording [19].  Severity of OSA is diagnosed by 

AHI, sleep efficiency (ratio of total sleep time to total time spent in bed), REM latency 

(duration between N1 and REM stages) [20]. According to AHI, patients are classified 

into three groups [18] (see Table 1.2). 

 

 



9 

 

 

 

Table 1.2 : Definition of Epworth sleepiness scale scores 

Epworth sleepiness scale score range Definition 

0-5 Lower normal daytime sleepiness 

6-10 Higher Normal Daytime Sleepiness 

11-12 Mild Excessive Daytime Sleepiness 

13-15 Moderate Excessive Daytime 

Sleepiness 

16-24 Severe Excessive Daytime Sleepiness 

 

 

 

Figure 1.12 : Epworth Sleepiness Scale in English [18]. 
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Figure 1.13 : PSG signal of OSA [15] 

 

 

Figure 1.14 : PSG signals of Mixed-Type apnea [15] 

 

Table 1.3 : Groups of OSA patients in according to their AHI [21] 

OSA level AHI ranges 

Mild 5-15 

Moderate 15-30 

Severe >30 
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1.2.1 Treatment for OSA 

A treatment is not suggested for patients with mild OSA. For moderate to serve OSA 

patients the most common type treatment is the continuous positive airway pressure 

(CPAP). CPAP opens the upper airway by applying constant air pressure [22]. 

Sometimes medical operations to reduce the obstruction of the pharynx or to reduce 

the tongue volume are suggested for treatment [23]. Diet therapy for obesity has shown 

positive outcomes in the treatment of OSA [24]. 

1.3 OSA and Executive Cognitive Functions  

Cognition is a term that refers to mental processes. Executive functions (EFS) are 

collection of neuropsychological processes that help to person concentrate and pay 

attention to an ongoing behavior or stimuli [25]. EFS are related with frontal lobe of 

the human brain. Attention is defined as the ability to select and concentrate on 

relevant stimuli [26-28].  

Control of attention process is one the most important parts of EFS [29]. Attention 

control tested by selective attention tasks like Simon and Flanker. In selective attention 

tasks, participants are required to focus on one dimension and ignore another 

dimension. In the Flanker task, five consecutive letters are presented on the screen (e.g. 

HHSHH) and participants are required to respond to the central letter (S) while 

ignoring the flanking (Hs) letters. When the central and flanking letters are the same 

(SSSSS), the stimulus is called congruent, and when they are different (SSHSS), it is 

called incongruent stimulus.  In the Simon task, a letter is presented on the left or right 

of the screen, and participants are required to respond with a left or right button press. 

In a congruent stimulus, the stimulus and response are on the same side, and in 

incongruent stimulus, they are on different sides. Reaction time and response accuracy 

in computer-based tasks are used to observe selective attention. A common 

observation is that, when the target and distractor dimension are congruent responses 

are faster and more accrue compare to incongruent. This difference called congruency 

effect. The congruency effect is observed because people should focus their attention 

to the relevant feature while ignoring the irrelevant dimension. The magnitude of 

congruency effect shows how well attention is controlled [29]. 
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OSA is associated with poorer attention, executive functioning and psychomotor speed 

in nondemented person [30 31]. In 25% of patients with OSA have shown 

neurophysiological impairment [32]. Frontal lobe dysfunction has been reported in 

OSA patients [33]. Tulek and colleagues showed that executive dysfunctions in OSA 

depend on attention deficits [29]. Because, attention is the primary process essential to 

more sophisticate cognitive abilities, it is possible that cognitive impairments in OSA, 

mirroring a primary deficit in attention [34].  

There are several studies which showed positive outcomes of OSA treatments for 

cognitive dysfunctions. For instance, a study showed that after 2 months CPAP 

therapy, patient’s memory performance significantly improved [35].  

Considering the positive effects of therapy on for cognitive impairment, it is essential 

to diagnose the severity of OSA as quickly as possible. In this thesis, a decision support 

system was developed to diagnose severity of OSA with a simple EEG-based test. 

EEG is commonly used tool in the measurement of executive functions, specifically 

attention, because of its accessibility. 

 

1.4 EEG Sub-bands and Cognitive Functions  

EEG records electrical activity of the brain. The brain electrical activities are related 

with cognitive abilities such as memory, attention, perception as well as mental fatigue 

[36,37]. EEG signals can be divided in to five sub-bands. Each band is associated with 

some psychological events. Delta waves do not have important reported role in 

cognitive abilities, but they are marker of transition to drowsiness, mental fatigue and 

during sleep. Theta waves are related with hypnagogic imagery, mental tasks, 

arithmetic tasks and low level of alertness [38]. These waves occur in frontal midline. 

Alpha waves occur in wakefulness, appears at eye closed mode and decrease at eye 

open mode, also attenuated during attention. These waves usually observe in relaxing 

mode. Beta activity is observed during reaction time and attention task [38].  
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Table 1.4 : Frequency ranges of EEG [39] 

Name of band Frequency range (Hz) 

δ 0.5-4 

θ 4-7 

α 8-12 

β 12-30 

ɤ >30 

 

 

Figure 1.15 : Electrodes of EEG montage on scalp by the 10/20 systems [40] 

1.5 Aim of Thesis 

Aim of this thesis is to investigate the potential of EEG markers to classify OSA 

patients according to their AHI or ESS scores without using PSG. Decision support 

systems for use of medical doctors are introduced to classify patients as mild vs. 

moderate-severe AHI or normal vs. mild-excessive daytime sleepiness.  

In this purpose, participants with suspected with OSA, attended to two different EEG 

recording sessions after their first overnight PSG recordings. First session was the 

resting state session to record patient’s brain activity without an attention task. The 

duration of the first session was three minutes. The wakeful brain is never idle, but it 
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is always neuro-electrically active [41]. It is well-known that in the resting conditions 

the human brain engages in spontaneous and well-organized activity [42]. The rest 

session was used to measure the baseline of the electrical activity following the 

overnight sleep of patients with OSA.  

To our knowledge this study is the first that investigated the electrical brain activity of 

patients with OSA during resting. We specifically investigated whether the electrical 

activity would change according to the degree of the disease in patients with OSA. It 

might be the case that electrical signals related with cognitive functions, originated 

from medial frontal gyrus, superior frontal gyrus and anterior cingulate cortex, would 

be correlated with the degree of the disease. In this thesis, after the patients woke up, 

their resting state activity were measured long 3 minutes. Immediately following the 

resting state, they participated in the task session. 

In the second task session, they attended to Simon – Flanker task to observe their EEG 

during a selective attention task. The duration of this session was 10 minutes. In both 

Simon and Flanker tasks, participants’ responses are usually faster and more accurate 

when the stimulus is congruent compared to incongruent. In congruent condition, both 

the relevant and the irrelevant dimension of the stimuli may be used to select the 

response. In incongruent trials, on the other hand, participants need to inhibit the 

position information to choose the correct answer. Because of studies are reported 

difficulties in selective attention ability of OSA patients, this thesis is declared that 

OSA patients may be classified more faster and easier than PSG recording by using 

EEG signals that are recorded during resting state and selective attention sessions. 

First, patients were classified into two groups, according to their AHI or ESS by 

certified sleep technician. As the second step, EEG signals of both sessions were 

analyzed to extract features by the author of this thesis. Using statistical models 

differences in EEG features were investigated between sessions, electrodes and 

groups. The statistical analysis is used as a feature selection method. The statistically 

significant features were considered as the best features for a decision support 

machine. Artificial Neural Networks (ANN) method is used to design decision support 

systems, which takes input EEG features to classify patients according to their AHI or 

ESS. 
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2. MATERIALS AND METHODS 

2.1 Participants 

Subjects were among the applicants to the Sleep laboratory of Diskapı Yildirim 

Beyazit Educational and Research Hospital. Participants were invited after physical 

inspection by a chest disease specialist. Patients with AHI < 5, who used drug that may 

affect sleep and cognitive processes and who have a neuropsychiatric disorder were 

excluded from the study. Twenty-eight patients, in the morning of their first overnight 

PSG record, were invited to the study. The experimental protocol was approved by the 

Human Research Ethics Committee of TOBB ETU. 

Data from 3 participants were excluded due to technical errors. All the remaining 25 

participants were men and right- handed. The demographic information is presented 

in Table 2.1. In statistical analyses, subjects were divided in two groups based on two 

criteria. First, they were split according to the AHI, and AHI ≥ 15 was selected as 

criteria. Second, they were split in two groups based on their ESS score, and ESS score 

≥ 11 was selected as criteria There are 15 of patients have AHI equal or more than 15 

and 13 of patients have Epworth score more than 11.   

Table 2.1: Demographic information of subjects. 

        Statistics 

Parameters 

Mean Standard 

deviation 

Maximum Minimum 

Age 51.24 12.85 76 18 

AHI 28.29 25.7974 108.90 7.7 

BMI 31.58 5.7 46.90 23.90 

Education (years) 11.36 3.1475 16 8 

Epworth score 10.56 5.58 21 0 

2.2 Data Acquisition 

PSG is the gold standard of sleep measures. In this thesis, PSG signals of patients were 

recorded overnight at the Sleep laboratory of Diskapı Yildirim Beyazit Educational 
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and Research Hospital by experienced sleep technicians. Participants were instructed 

to not to use drinks, such as caffeine alcohol, that may affect sleep during the night.  

A 44 channels E-series Compumedics PSG system was used. The EEG component 

recorded brain signals, the ECG recorded heart signal, the EMG recorded legs and chin 

movements, EOG recorded eyes movements. There was a pulse oximetry electrode for 

recording the oxygen level of blood (SpO2), microphone for snore, thermistor, strength 

electrodes recorded signal from chest and abdominal to detect apnea types. The 

frequency sampling of ECG, EEG, EOG, thermistor signals was 256 Hz, and 

frequency sampling of other signals was 128 Hz. 

EEG electrodes were positioned on “Fp1, Fp2, F3, F4, P3, P4, C3, C4, O1, O2” sites 

according to the 10-20 system (see Figures 1.17 and 2.2).  “F3, F4, C3, C4, O1 and 

O2” are the standard in PSG recordings. Fp1, Fp2, P3, P4 were added additionally. 

Fp1 and Fp2 were added because frontal lobe is related with EFS. P3 and P4 were 

added because parietal lobe is related with attention. Electrodes were either silver or 

gold. These electrodes were placed on patients’ skull over hair by caladium mix. 

Electrodes were placed carefully by an experienced sleep technician.  

2.3 Epworth Sleepiness Scale (ESS) 

ESS is a questionnaire to measure the tendency to sleep in daytime. Participants were 

divided into two groups based with normal daytime sleepiness (ESS <11) and 

excessive daytime sleepiness (ESS ≥ 11). There were 13 participants with normal and 

12 with excessive daytime sleepiness. In this thesis Turkish version of the 

questionnaire was used (see Figure 2.5). 

2.4 Experimental Procedure 

The experiment consisted of the rest and task sessions. In the rest session, participants 

sit quietly with their eyes closed for 3 minutes to observe the base line of their electrical 

brain activity. In the task session, participants completed a selective attention task.   

 



17 

 

  

Figure 2.1  : Left, caladium mix to reduce impedance of EEG electrodes, right,       

position of electrodes after a placement. 

 

Figure 2.2 : Position of selected electrodes. 

 

 

 

Figure 2.3 : EEG signal of F3 electrode during rest session in MATLAB® 
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Figure 2.4 : EEG signal of F3 electrode during task session in MATLAB® 

 

 

Figure 2.5 : Turkish version of the Epworth sleepiness scale questionnaire [Url-1]. 

2.4.1 The rest session 

During the rest session participants did not do any task. They waited for 3 minutes 

with their eyes closed. In some studies, participants focused on a fixation “+” in center 

of the screen during the resting state [43]. However, in the eyes-open conditions, 

photon may disturb the brain activity in the alpha band. Since we would like to 

investigate the alpha band activity, in addition to, we instructed patients to close their 

eyes.   
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2.4.2 The task session 

In the task session, participants completed the Simon and the Flanker tasks. Both tasks 

are used to observe selective attention processes [61]. In the Simon task, “H” or “S” 

letters appear on the screen. Subjects are instructed to respond identify the letters with 

pressing “1” and “x” keys.  These keys were assigned because in the Simon task the 

stimuli must be in same alignment with the keys. The letters were presented either on 

the left or the right side of the screen. The Simon task consisted of 108 trials plus 12 

practice trials to familiarize the participants to the task. After the Simon task, 

participants rest for a minute, then they completed the Flanker task. 

In the Flanker task, stimuli were a sequence of five letters in a row (“HHHHH”, 

“HHSHH”, “SSSSS”, “SSHSS”) presented at the center of the screen. Participants 

were instructed to respond to the letter in the middle (the target letter) while ignoring 

the letters on the side of it (the flankers). They pressed the same keys to identify the 

letters as in the Simon task. Participants responses are faster and more accurate when 

the letter in the middle is same as the letter on the sides (when they are congruent) 

compared to when they are different (when they are incongruent) [61]. The difference 

between congruent and incongruent conditions is called the Flanker effect. In the 

congruent condition, participants may use the flanking letters as well as the target letter 

to select the respond. In the incongruent condition, participants must inhibit the flanker 

letters to choose the correct answer, which requires higher levels of control. Flanker 

task consists from 108 trials in addition to 12 of trails of practice). Total duration of 

both tasks is about 13 minutes. 

 

2.5 Data Analysis 

All procedures that are explained in this section, were applied on each electrode. 

2.5.1 Preprocessing 

2.5.1.1 Band passing 

The PSG device, used in this thesis, band passed signals between 0.5-35 Hz. Also, the 

device applies a notch filter in 50 Hz. A bandpass filter was used to select 0.5-30 Hz 

signal band because we interested in delta, theta, alpha and beta bands. 



20 

 

2.5.1.2 Smoothing 

The EEG signals that were recorded during both the rest and the task sessions were 

applied a finite impulse response (FIR) filter, called Savitzky Golay (SG) filters. They 

are used widely in the biomedical signal processing [44]. SG filters perform both 

denoising and smoothing of the signal. The SG filter was used because it has advantage 

over the other types of filter for regaining the signal during the denoising processing. 

The SG filter divide signal to small epochs with specific length and fit a polynomial 

with specific order. In this thesis, the length of each is epoch is 61 samples and the 

order of polynomial is 5. These values were selected experimentally to get the best 

result. 

2.5.1.3 Eye movement artifact removing 

In many studies, eye movements are removed because they suppress or disrupt brain 

signals.  To remove EEG signals from these artifacts, least square template matching 

method is used [Url-2]. This method is based on regression. 

In this model, we tried to fit a model that was estimated from two EOG signals, on 

EEG signal. 

 
T -1 Tβ = (X X) X y

 2.1 

 r=y-Xβ  2.2 

Where X is n x 2 matrix, and n is length of EOG signal. 
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Figure 2.6 : Up: raw signal from O2 in rest session of participant. Down: the same    

signal after SG filter. 

 

Figure 2.7 : Up: raw signal from O2 in task session of participant. Down: the same 

signal after SG filter. 
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 Figure 2.8 : EOG Signals of each band in task session. 

2.5.2 Feature extraction 

In this thesis statistical features that were extracted from signal include, mean, standard 

deviation, skewness, kurtosis, Hjorth parameters and zero crossing. due to observe 

behavior of signal during both tasks.  

Mean: One of the common features that is used in signal processing is the mean of 

signal. It defines as summing all point of the signal. Median is defined as middle value 

of series, and mode is defined most repeated value of series [45]. In the normal 

distribution, the mean, median and mode are identical. The equation of mean is 

presented in eq. 2.4, N is length of signal and X(t) demonstrates signal. 

 

N

ii=1

1
μ= X(t )

N
  2.4 

Standard deviation: This feature shows that how data is spread out relative to its mean. 

 

N 2

ii=1

1
σ= (x(t )-μ)

N-1


 2.5 
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Figure 2.9 :  EEG signal of O2 (occipital) electrode after eye movement removing in 

task session. 

Skewness: It measures symmetry of amplitudes of signal over time. The distribution 

is symmetric if it looks the same from the center point both on the left and the right 

[46, Url-3]. In the positively skewed distribution, the tail at the right side of the mean 

is longer than the left. In the negatively skewed distribution, the left tail is longer than 

the right tail. In a positively skewed distribution, the mean and the median of the 

distribution is greater than its mode. [46, Url-3]. 

Formula of skewness is defined as a function mean and standard deviation of the 

distribution 

 
3

i

3

E[x(t )-μ]
s =


  2.7 

Kurtosis: It measures the tailedness in the distribution [65]. 

 

 

4

i

4

E[x(t )-μ]
k=

σ   2.8 



24 

 

 

 

Figure 2.10 : Types of skewness [Url-3]. 

Signal Noise Ratio (SNR): This feature is calculated as ratio of mean on standard 

deviation [Url-2]. 

   𝑆𝑁𝑅 =
𝜇

𝜎
  2.9 

Entropy: Entropy shows uncertainty and chaos of signal [47]. It is a nonlinear feature. 

Entropy is used to predict behavior of signal. In this thesis Shannon entropy (SE) is 

used.  

 
N-1

i 2 i

i=0

SE =- p log p  2.10 

Where Pi is the probability density function of signal. 

Inter Quartile Range (IQR): IQR is defined as difference between value of the 25th 

and 75th quartile of the signal [48]. 

Mean Absolute Deviation (MAD): MAD of signal is absolute distance between each 

point of signal from mean [49]. 

Hjorth Parameters [50] involve 3 different parameters. These are activity, mobility and 

complexity. 

Activity: It is also known as variance or mean power, because it is equal to squared 

standard deviation of the amplitude. 

 Activity=var(x(t))  2.11 
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Mobility: It is defined as the square root of the ratio between activity of first derivative 

of signal and activity of signal. 

 

( )
var( )

Mobility =
var( ( ))

dx t

dt

x t
 2.12 

Complexity: It is defined as the ratio between mobility of first derivative of signal and 

mobility of signal. 

  

dx(t)
Mobility( )

dtComplexity =
Mobility(x(t))

 2.13 

These parameters characterize the EEG pattern in terms of amplitude, time scale and 

complexity [50]. 

Absolute power: It is total power of signal. It is calculated in continuous time by 

equation 2.13 [51]. 

 
T/2

2

T -T/2

1
P= x(t) dt

T
lim

→
  2.14 

 

Relative power: It is ratio of absolute power of each band [52]. 

 

Absolutepowerofδ
RDP=

totalsignalpower  2.19 

 

Absolutepowerofθ
RTP=

totalsignalpower  2.20 

 

Absolutepowerofα
RAP=

totalsignalpower  2.21 

 

Absolutepowerofβ
RBP=

totalsignalpower  2.22 
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Figure 2.11 : Graphical presentation of Hjorth parameters [50]. 

 

Figure 2.12 : Behavior of Hjorth parameter [50]. 

Another family of features that is based on frequency band is cordance. 

Cordance is calculated by equation 2.22 [53]. 

 norm(f) norm(f)Cordance=(A -0.5)+(R -0.5)
 2.23 

Absolute and relative power are normalized by using Z score. Z score is calculated by 

equation 2.23 [53]. 
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measurement-mean

Z=
standarddeviation

 2.24 

Another two features are based on ratio of low frequency on high frequency [52]. 

 
θ+α

Ratio1=
β

 2.25 

 

θ
Ratio2=

α  2.26 

Zero-crossing: Zero-crossing give information about dominant frequency of signal. It 

depends on number of crosses the x-axis [54]. 

2.6 Statistical Analysis for Feature Selection 

Patients were divided into two groups by their AHI and ESS scores. For all the features, 

differences between patient groups and sessions were analyzed with mixed-ANOVA 

models. Mixed-ANOVA models are used to test for differences between two or more 

independent variables. In our mixed-ANOVA model, the repeated measures were 

electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1 vs.O2), and sessions (task vs. rest), 

and between subjects  measures was either AHI ( ≥15 vs. < 15  ) or ESS (≥11 vs. < 

11). The mixed-ANOVA model parameters were calculated with the JASP® software. 

The cut-off for statistical significance (the p-value) was p < 0.05. A statistically 

significant result shows that a difference between two or more variables is not 

observed due to chance. If a significant result was observed with a mixed-ANOVA 

model, t-tests were used to reveal the source of the difference between the conditions. 

The paired samples t-test was used to investigate the difference between repeated 

measures, and the independent samples t-test was used to investigate differences 

between groups.   

2.7 Classification 

The primary aim of the thesis is to classify patients’ AHI and ESS scored based on 

their EEG signals at the resting and task sessions. Multiple-input feed forward 

Artificial Neural Network (ANN) models were used for classification. Units on the 

ANN models implement three aspects of neural function. Each unit receives weighted 
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input from other units, add a bias, converts the sum of inputs and biases with a transfer 

function (TF).  

In this thesis a two-layer feed-forward with sigmoid activation function in hidden layer 

and softmax activation function in output layer was used. Number of neurons in hidden 

layer was selected as 10 (default) and number of inputs are 520 (See Figure 2.13). 

Scaled conjugate gradient backpropagation method was used to update weights in the 

training function.  The backpropagation architecture uses first order gradient descent 

method as learning algorithm. The scaled conjugate gradient is one of the most 

common training algorithms. Scaled conjugate gradient method is used second order 

gradient as a minimization method. This method is the fastest method among the 

training algorithms because of it uses second order gradient. Conjugate gradient 

method proceeds the gradient in a direction that is conjugate to the direction of 

previous step [55].  

Dataset was divided into train, validation and test parts with 50%, %25 and %25 ratio 

randomly. Training part adjusts network according to its error. Validation part is used 

to measure network’s generalization, and to halt training when generalization stops 

improving. Testing part do not have effect on training, this part is used to measure 

performance of the network. ANNs was implemented with MATLAB ® neural pattern 

recognition toolbox. The performance of ANNs are calculated with the confusion 

matrix, which is a tool to show performance of the classification method (Equations 

2.26-28). 

 

                                                                                             2.26 

 

                                                                                               2.27 

 

                                                                               2.28 

sensitivity = 
TP

TP FN+

specificity = 
TN

TN FP+

accuracy = 
TN TP

TN TP FN FP

+

+ + +
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Figure 2.13: Architecture of network in this thesis. 
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3. RESULTS 

3.1 Results from Attention Tasks  

The average error rate (ER) and response times (RT) for correct responses for Simon 

and Flanker tasks were calculated. Separate mixed-ANOVA models with congruency 

(congruent vs. incongruent) x previous congruency (congruent vs. incongruent) x 

patient group (AHI ≥ 15 vs. AHI < 15 or ESS ≥ 11 vs. ESS < 11) were calculated with 

the JASP® software. The cut-off for statistical significance (the p-value) was p < 0.05.  

A statistically significant result shows that a difference between two or more variables 

is not observed due to chance. If a significant result was observed with a mixed-

ANOVA model, t-tests were used to reveal the source of the difference between the 

conditions.   

The significant results in RT and ER from both tasks with AHI in the mixed-ANOVA 

model are shown in Table 3.1. There was a significant main effect of congruency for 

both RT and ER. There was a two-way interaction between congruency and previous 

congruency in RT of the Flanker task.  These results showed that behavioral measures 

were not different among AHI groups. 

Table 3.1 : Results of Mixed ANOVA with AHI as the between subjects factor for RT 

and ER of the Simon and Flanker tasks. 

Main effects 

and 

Interactions 

Dependent 

variables Cong. 

Pre. 

Cong. AHI 

Cong. 

x AHI 

> 15 

Pre. 

Cong 

x 

AHI 

> 15 

Cong. 

x Pre. 

Cong. 

Cong. 

x Pre. 

Cong. 

x AHI 

> 15 

RT of Simon task ** - - - - - * 

RT of Flanker task - * - - - ** - 

ER of Simon task ** - - - - - - 

ER of Flanker task - - - - - - - 

*significant value p < 0.1.  **significant value p < 0.05. - : non significant. cong = 

congruency, pre. cong. = previous congruency 
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The significant results in RT and ER from both tasks with ESS in the mixed-ANOVA 

model are shown in Table 3.2. There was a significant main effect of congruency for 

both RT and ER. There was a two-way interaction between congruency and previous 

congruency in RT of the Flanker task.  These results showed that behavioral measures 

were not different among ESS groups. 

Table 3.2 : Results of Mixed ANOVA with ESS as the between subjects factor for RT 

and ER of the Simon and Flanker tasks. 

Main 

effects and 

Interactions 

 

Parameters Congruency 

Previous 

Cong. ESS 

Cong. 

x 

ESS 

> 11 

Pre. 

Cong 

x 

ESS 

> 11 

Cong. 

x Pre. 

Cong. 

Cong. 

x Pre. 

Cong. 

ESS 

> 11 
RT of Simon task ** - - - - - - 

RT of Flanker task - - - - - ** - 

ER of Simon task ** - - - - - - 

ER of Flanker task - - - - - - - 

*significant value p < 0.1.  **significant value p < 0.05. - : non significant.  cong = 

congruency, pre. cong. = previous congruency 

3.2 Mixed – ANOVA Analysis for Feature Selection 

Then we analyzed variety of features that were extracted from EEG signals during both 

sessions (rest and Simon-Flanker tasks) between two groups. Features that showed a 

significant interaction including sessions were selected as an input for the 

classification algorithm. Significant results with AHI in the mixed-ANOVA model are 

shown in Table 3.3. A significant interaction including sessions with AHI was 

observed in mobility, Ratio1, Ratio2, relative delta power (RDP), skewness, standard 

deviation, absolute theta power (ATP) features. 

Then we analyzed variety of features that were extracted from EEG signals during both 

sessions (rest and Simon-Flanker tasks) between two groups. Features that showed a 

significant interaction including sessions were selected as an input for the 

classification algorithm. The significant interactions with ESS in the mixed-ANOVA 

model are shown in Table 3.4. A significant interaction including sessions with ESS 

was observed in mobility, Ratio1, Ratio2, relative delta power (RDP), skewness, 

standard deviation, absolute theta power (ATP) features and complexity.   
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Table 3.3 : Results of Mixed-ANOVA model with AHI as the between subjects 

factor for EEG features. 

Main effect 

&Interaction 

Features 

Electrodes Session AHI Electrodes 

x AHI 

Session 

x AHI 

Electrodes 

x Session 

Electrodes 

x Session 

x AHI 

Activity - - - - - - - 

Cordance-Alpha - - - - - - - 

Cordance-Beta - ** - - - - - 

Cordance-Delta - ** - - - - - 

Complexity *** - - - - * - 

Cordance-Theta - - - - - - - 

Entropy - ** - - - - - 

Inter range quartile - ** - - - - - 

Kurtosis - ** - - * - - 

Mean - - - - - - - 

Mean absolute 

deviation 

** - - - - - - 

Mobility *** - - - - *** - 

RAP - - - - - - - 

Ratio1 *** - - - ** ** - 

Ratio2 *** - - - - ** - 

RBP - - - - - - - 

RDP *** *** - - - *** - 

RTP - - - - - - - 

Skewness *** - - - - *** * 

SNR - - - - - - - 

Standard deviation ** - - - - *** - 

AAP - - - - - - - 

ABP - - - - - - - 

ADP - ** - - - - - 

ATP - - - - - ** - 

Zero crossing rate *** *** - - - *** - 

*significant value (p<0.1). **significant value (p<0.05). ***significant value 

(p<0.001). - : non significant.  
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Table 3.4 : Results of Mixed-ANOVA test in Epworth criteria between features and              

Electrodes, Session, Epworth and their interactions. 

  Interaction 

 

 

Features 

Electrodes Session ESS Electrodes 

x ESS 

Session 

x ESS 

Electrodes 

x Session 

Electrodes 

x Session x 

ESS 

Activity 
- - - - - - - 

Cordance-

Alpha 

* - - - - - - 

Cordance-

Beta 

- ** - - - - - 

Cordance-

Delta 

- ** - - - - - 

Complexity *** - - - - ** * 

Cordance 

Theta  

- - - - - - - 

Entropy - ** - - - - - 

Inter range 

quartile 

- ** - - - - - 

Kurtosis - ** - - - - - 

Mean - - - - - - - 

Mean 

absolute 

deviation 

** - - - - * - 

Mobility *** - - - - *** - 

RAP - - - - - - - 

Ratio1 *** * * ** - *** ** 

Ratio2 *** - - - - ** - 

RBP - - - - - - - 

RDP *** *** - - - *** - 

RTP - - - - - - - 

Skewness ** - - - - *** - 

SNR - - - - - - - 

Standard 

deviation 

** - - - - *** ** 

AAP * - - - - - - 

ABP - * - - - - - 

ADP - ** - - - * - 

ATP ** - - - - *** - 

Zero 

crossing rate 

*** *** - ** - *** - 

*significant value (p<0.1). **significant value (p<0.05). ***significant value 

(p<0.001), -: non-significant.  
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As a result of statistical analyses, almost the same features were selected for the 

classification algorithm regardless of whether the groups were divided according to 

AHI or ESS. To further select the important electrodes for classification (in other 

words to understand the source of significant interactions involving electrodes) t-tests 

were conducted. 

For complexity, the significant difference was observed with P3 and Fp1 (See Table 

3.5 and Figure 3.1). In both electrodes rest was lower than task session. 

Table 3.5: Results of t-test in electrodes between two tasks for complexity. 

Electrodes  Significant  

difference (p <0.05) 

P4 No 

P3 Yes 

Fp2 No 

Fp1 Yes 

F3 No 

F4 No 

C3 No 

C4 No 

O1 No 

O2 No 

 

 

Figure 3.1 : Mean of complexity value for Fp1 and P3. 
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For mobility, the significant difference was observed with Fp2, O1, O2 and P4 (See 

Table 3.6 and Figure 3.2).  

Table 3.6 : Results of t-test in electrodes between two tasks for mobility. 

Electrodes Significant difference 

(p< 0.05) 

P4 Yes 

P3 No 

Fp2 No 

Fp1 Yes 

F3 No 

F4 No 

C3 No 

C4 No 

O1 Yes 

O2 Yes 

 

 

Figure 3.2 : Mean of mobility value for Fp2, O1, O2 and P4. 
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For skewness, the significant difference was observed with C3, F3, Fp1, Fp2, O1(See 

Table 3.7 and Figure 3.3).  

Table 3.7 : Results of t-test in electrodes between two tasks for skewness. 

Electrodes  Significant difference (p< 

0.05) 

P4 No 

P3 No 

Fp2 Yes 

Fp1 Yes 

F3 Yes 

F4 No 

C3 Yes 

C4 No 

O1 Yes 

O2 No 

 

 

Figure 3.3 : Mean of skewness value for  C3, F3, Fp1, Fp2, and O1. 
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For standard deviation, the significant difference was observed with C3, F3, F4, Fp1, 

Fp2 (See Table 3.8 and Figure 3.4).  

Table 3.8 : Results of t-test in electrodes between two tasks for Standard deviation 

Electrodes  Significant difference (p< 

0.05) 

P4 No 

P3 No 

Fp2 Yes 

Fp1 Yes 

F3 Yes 

F4 Yes 

C3 Yes 

C4 No 

O1 No 

O2 No 

 

 

Figure 3.4 : Mean of skewness value for  C3, F3, F4, Fp1, Fp2. 
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For Rato1, the significant difference was observed with F4, O1, O2, P4 (See Table 3.9 

and Figure 3.5).  

Table 3.9 : Results of t-test in electrodes between two tasks for Ratio1. 

Electrodes  Significant difference (p< 

0.05) 

P4 Yes 

P3 No 

Fp2 No 

Fp1 No 

F3 No 

F4 Yes 

C3 No 

C4 No 

O1 Yes 

O2 Yes 

 

 

Figure 3.5 : Mean of Ratio1 value for F4, O1, O2 and P4. 

 

 

 

 

 



40 

 

For Ratio2, the significant difference was not observed (See Table. 3.10). For relative 

delta power (RDP), the significant difference was observed in all electrodes (See Table 

3.11, Figure 3.6). 

Table 3.10 : Results of t-test in electrodes between two tasks for Ratio2 

Electrodes  Significant difference (p< 

0.05) 

P4 No 

P3 No 

Fp2 No 

Fp1 No 

F3 No 

F4 No 

C3 No 

C4 No 

O1 No 

O2 No 

 

 

Table 3.11 : Results of t-test in electrodes between two tasks for RDP. 

Electrodes  Significant difference (p< 

0.05) 

P4 Yes 

P3 Yes 

Fp2 Yes 

Fp1 Yes 

F3 Yes 

F4 Yes 

C3 Yes 

C4 Yes 

O1 Yes 

O2 Yes 
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Figure 3.6 : Mean of RDP for all electrodes. 

For absolute theta power (ATP), the significant difference was observed in Fp1, Fp2, 

F3 and C3. ATP values in rest session are lower than in task session (See Table 3.12, 

Figure 3.7). 

 

Table 3.12 : Results of t-test in electrodes between two tasks for ATP. 

Electrodes  Significant difference (p< 

0.05) 

P4 No 

P3 No 

Fp2 Yes 

Fp1 Yes 

F3 Yes 

F4 No 

C3 Yes 

C4 No 

O1 No 

O2 No 
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Figure 3.7 : Mean of ATP in Fp1, Fp2, F3 and C3. 

For zero crossing, the significant difference was observed in all electrodes (See Table 

3.13, Figure 3.8). 

 

Table 3.13 : Results of t-test in electrodes between two tasks for Zero crossing. 

Electrodes  p-value 

P4 Yes 

P3 Yes 

Fp2 Yes 

Fp1 Yes 

F3 Yes 

F4 Yes 

C3 Yes 

C4 Yes 

O1 Yes 

O2 Yes 

 



43 

 

 

Figure 3.8 : Mean of zero crossing in all electrodes. 

3.3 Classification Results 

The aim of this thesis is to develop a decision support system with ANN algorithms to 

classify OSA patients according their AHI and Epworth scores using EEG signals that 

are recorded during rest and task sessions. We used mixed-ANOVA model results as 

a first step to select important features for classification. The selected features for 

classification according to the AHI criteria were mobility of  Fp2, F4, O1 and O2 

electrodes, skewness of Fp2, Fp1, F3, C2 and O1 electrodes, standard deviation of Fp2, 

Fp1, F3, C3 and C4 electrodes, Ratio1 of  P4, F4, O1 and O2 electrodes, ATP of  P4, 

Fp2, F3 and C7 electrodes and all electrodes of zero crossing and RDP. For ESS 

criteria, complexity of Fp1 and F3 electrodes were added to features that were used in 

AHI criteria. In summarize, the EEG recordings and analyses generated in total of 520 

features, and with statistical analysis the number of features was reduced to 84 for AHI 

and 88 for ESS classifications.  

We compared the performance of the different models with variety of inputs to 

investigate the best performing ANN model. The same ANN architecture was trained 

with five different input types: all EEG features, all attention test features, all EEG + 

attention test results, the selected EEG features and PSG recording features. 
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Table 3.14 shows the statistical result of five iterations using all EEG features to 

classify patients according to their AHI. The average performance was quite high. 

Figure 3.9 shows the confusion matrix of best classifier with using all EEG features 

for AHI. The best performing ANN classified all patients correctly.  

 

Table 3.14 : Statistical result of five iteration using all EEG features in Apnea 

Hypopnea Index (AHI) criteria. 

Average Standard deviation Maximum Minimum 

70.02% 18.25% 100% 50% 

 

Figure 3.9 : The best result of the ANN classification with all EEG signal. 1 = AHI ≥ 

15, 2 = AHI < 15. 

 

Table 3.15 shows the statistical result of five iterations using all EEG features to 

classify patients according to their ESS. Figure 3.10 shows the confusion matrix of 

best classifier with using all EEG features for ESS. The best performing ANN 

classified 83.3% patients correctly.  
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Table 3.15 : Statistical result of five iteration using all EEG features in Epworth 

Sleepiness Score (ESS) criteria. 

Average Standard deviation Maximum Minimum 

70.00% 13.92% 83.3% 50% 

 

 

Figure 3.10 : The best result of the ANN classification with all EEG signal. 1 = ESS 

≥ 11, 2 = ESS < 11. 

 

Table 3.16 shows the statistical result of five iteration using all attention test results as 

features to classify patients according to their AHI. Figure 3.11 shows the confusion 

matrix of best classifier. The best performing ANN classified 83.3% patients correctly. 

 

Table 3.16 : Statistical result of five iteration using all attention test results as features 

in AHI criteria. 

Average Standard deviation Maximum Minimum 

70.02% 7.42% 83.3% 66.7% 
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Figure 3.11 : The best result of the ANN classification with all attention test results.1 

= AHI ≥ 15, 2 = AHI < 15. 

Table 3.17 shows the statistical result of five iteration using all attention test results as 

features to classify patients according to their ESS. Figure 3.12 shows the confusion 

matrix of the best classifier. The best performing ANN classified 66.7% patients 

correctly. 

 

Table 3.17 : Statistical result of five iteration using all attention test results as features 

in ESS criteria. 

Average Standard deviation Maximum Minimum 

50.68% 14.93% 66.6% 50.0% 
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Figure 3.12 : The best result of the ANN classification with all attention test results.1 

= ESS ≥ 11, 2 = ESS < 11. 

Table 3.18 shows the statistical result of five iteration using all EEG features and 

attention test results as features to classify patients according to their AHI Figure 3.13 

shows the confusion matrix of the best classifier. The best performing ANN classified 

83.3% patients correctly. 

 

Table 3.18 : Statistical result of five iteration using all EEG features and attention test 

results as features in AHI criteria. 

Average Standard deviation Maximum Minimum 

66.68% 11.73% 83.3% 50.0% 
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Figure 3.13 : The best result of the ANN classification with all EEG features and 

attention test results.1 = AHI ≥ 15, 2 = AHI < 15. 

Table 3.19 shows the statistical result of five iteration using all EEG features and 

attention test results as features to classify patients according to their ESS Figure 3.14 

shows the confusion matrix of the best classifier. The best performing ANN classified 

83.3% patients correctly. 

 

Table 3.19 : Statistical result of five iteration using all EEG features and attention test 

results as features in ESS criteria. 

Average Standard deviation Maximum Minimum 

73.34% 9.09% 83.3% 66.7% 
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Figure 3.14 : The best result of the ANN classification with all EEG features and 

attention test results.1 = ESS ≥ 11, 2 = ESS < 11. 

Table 3.20 shows the statistical result of five iteration using PSG recording results as 

features to classify patients according to their AHI. Figure 3.15 shows the confusion 

matrix of the best classifier. The best performing ANN classified 88.3% patients 

correctly. 

 

Table 3.20 : Statistical result of five iteration using all PSG results as features in AHI 

criteria. 

Average Standard deviation Maximum Minimum 

66.68% 11.77% 83.3% 50.0% 
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Figure 3.15 : The best result of the ANN classification with all  PSG recording 

results.1 = AHI ≥ 15, 2 = AHI < 15. 

 

Table 3.21 shows the statistical result of five iteration using PSG recording results as 

features to classify patients according to their ESS. Figure 3.16 shows the confusion 

matrix of the best classifier. The best performing ANN classified 66.7% patients 

correctly. 

 

Table 3.21 : Statistical result of five iteration using all PSG results as features in ESS 

criteria. 

Average Standard deviation Maximum Minimum 

66.7% 0.0% 66.7% 66.7% 
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Figure 3.16 : The best result of the ANN classification with all  PSG recording 

results.1 = ESS ≥ 11, 2 = ESS < 11. 

Table 3.22 shows the statistical result of five iteration using selected EEG features to 

classify patients according to their AHI. Figure 3.17 shows the confusion matrix of the 

best classifier. The best performing ANN classified 83.3% patients correctly. 

 

Table 3.22 : Statistical result of five iteration using selected EEG features in AHI 

criteria. 

Average Standard deviation Maximum Minimum 

79.98% 7.42% 83.3% 66.7% 
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Figure 3.17 : The best result of the ANN classification with selected EEG features.  1 

= AHI ≥ 15, 2 = AHI < 15. 

 

Table 3.23 shows the statistical result of five iteration using selected EEG features to 

classify patients according to their ESS. Figure 3.18 shows the confusion matrix of the 

best classifier. The best performing ANN classified 83.3% patients correctly. 

 

 

Table 3.23 : Statistical result of five iteration using selected EEG features in ESS 

criteria. 

Average Standard deviation Maximum Minimum 

70.00% 13.92% 83.3% 50% 
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Figure 3.18 : The best result of the ANN classification with selected EEG features.  1 

= ESS ≥ 11, 2 = ESS < 11. 
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4. DISCUSSION  

In this thesis EEG signals that were collected from patients with OSA following an 

overnight PSG recording was investigated. During the collection of EEG signals, 

participants rested for 3 minutes to observe base of neural activity, and then they 

completed selective attention (Simon-Flanker) tasks to observe brain dynamics while 

executing cognitive functions. To the knowledge of the author of the thesis, there is no 

study in literature that analyzed EEG signals during resting and attention tasks among 

OSA patients.  

The aim of the thesis was to develop a decision support system to classify patients 

according to their AHI and ESS scores. Overnight PSG recording, the gold standard 

of the measurement of disease severity, was laborious and expensive. ESS scores are 

subjective, and they are not reliable. Therefore, a decision support system to classify 

patients according to their AHI and ESS scores may help to medical professional by 

reducing their burden.  

Important features for the classification algorithm were selected after mixed-ANOVA 

models. The performance of the decision support system using the selected features 

was quite good compared to other inputs types performances in AHI criteria. This 

result shows that mixed-ANOVA models could be used as a feature selection method. 

In conclusion, features that were suggested in this thesis and were selected by mixed-

ANOVA models, have quite good classifier ability for classification of OSA patients 

according to their AHI. A decision support system to predict OSA severity might help 

medical doctors during initial screening of patients.  

As futures works, connectivity analysis of EEG signals that were recorded during both 

sessions may be used to increase the classification performance. In addition, ECG and 

respiratory signals that were recorded during both sessions will be investigated to 

predict the severity of OSA.  
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