T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

2,3-DİHİDROKSİBENZALDEHİT İÇEREN BAZI YENİ SCHİFF BAZLARININ SENTEZİ, KRİSTALOGRAFİK VE SPEKTROSKOPİK ÖZELLİKLERİNİN İNCELENMESİ

MAHMUT TAŞDOĞAN

YÜKSEK LİSANS TEZİ

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

2,3-DİHİDROKSİBENZALDEHİT İÇEREN BAZI YENİ SCHİFF BAZLARININ SENTEZİ, KRİSTALOGRAFİK VE SPEKTROSKOPİK ÖZELLİKLERİNİN İNCELENMESİ

MAHMUT TAŞDOĞAN

KİMYA ANABİLİM DALI

<u>SAMSUN</u> 2019

Her hakkı saklıdır.

TEZ ONAYI

Mahmut TAŞDOĞAN tarafından hazırlanan "2,3-dihidroksibenzaldehit içeren bazı yeni Schiff bazlarının sentezi, kristalografik ve spektroskopik özelliklerinin incelenmesi" adlı tez çalışması 08/07/2019 tarihinde aşağıdaki jüri tarafından Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı'nda Yüksek Lisans Tezi olarak kabul edilmiştir.

Danışman	Prof. Dr. Erbil AĞAR
	Kimya Anabilim Dalı
İkinci	Dr. Öğr. Üyesi Gonca ÖZDEMİR TARI
Danışman	Ondokuz Mayıs Üniversitesi
	Fizik Anabilim Dalı

Jüri Üyeleri

Başkan	Prof. Dr. Hasan GENÇ Yüzüncü Yıl Üniversitesi Kimya Anabilim Dalı
Üye	Prof. Dr. Hasan KOCAOKUTGEN Ondokuz Mayıs Üniversitesi Kimya Anabilim Dalı
Üye	Prof. Dr. Mustafa MACİT Ondokuz Mayıs Üniversitesi Kimya Anabilim Dalı
Üye	Prof. Dr. Erbil AĞAR Ondokuz Mayıs Üniversitesi Kimya Anabilim Dalı
Üye	Dr. Öğr. Üyesi Gonca ÖZDEMİR TARI Ondokuz Mayıs Üniversitesi Fizik Anabilim Dalı

Yukarıdaki sonucu onaylarım. .../.../2019

Prof. Dr. Bahtiyar ÖZTÜRK Enstitü Müdürü

ETİK BEYAN

Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü tez yazım kurallarına uygun olarak hazırladığım bu tez içindeki bütün bilgilerin doğru ve tam olduğunu, bilgilerin üretilmesi aşamasında bilimsel etiğe uygun davrandığımı, yararlandığım bütün kaynakları atıf yaparak belirttiğimi beyan ederim.

08/07/2019

Mahmut TAŞDOĞAN

ÖZET

Yüksek Lisans Tezi

2,3-dihidroksibenzaldehit içeren bazı yeni schiff bazlarının sentezi, kristalografik ve spektroskopik özelliklerinin incelenmesi

Mahmut TAŞDOĞAN

Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı

Danışman: Prof. Dr.Erbil AĞAR Dr. Öğr. Üyesi Gonca ÖZDEMİR TARI

Bu çalışmada 2,3-dihidroksibenzaldehit; 2-metoksianilin, 4-iyotanilin, 2-brom-3-2-amino-4-metilfenol, 2-fenoksianilin, 3-kloro-4-(4-kloro-fenoksi) metilanilin. anilin, 3-kloro-4-metilanilin, 3.4-dimetoksibenzilamin, N-aminofitalamid ve 2tiyofenmetilamin ile reaksiyona sokularak karşılık gelen azometin bileşikleri elde edildi. Sentezlenen bileşikler, (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen) siklohekza-2,4-dien-1-on, (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol, (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol, (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4-dien-1-on, (Z)-2-hidroksi-6-(((2-fenoksi fenil)amino)metilen)siklohekza-2,4-dien-1-on, (E)-3-(((3-klor-4-(4-klorfenoksi)fenil) imino)metil)benzen-1,2-diol, (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksi siklohekza-2,4-dien-1-on, (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksi siklohekza-2,4-dien-1-on, 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion, (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on Sentezlenen bu azometin bileşiklerinin yapıları IR, ¹H-NMR, ¹³C-NMR, UV-vis spektroskopik teknikleri kullanılarak aydınlatıldı. Uygun çözücülerde tek kristalleri hazırlanan bileşiklerin kristalografik ve moleküler yapıları X-ışınları difraksiyon yöntemiyle de belirlendi.

Temmuz 2019, 115 Sayfa

Anahtar Kelimeler: Schiff bazları; İmin; Azometin; Keto-enol tautomerisi; IR; NMR; UV-vis; X Işınları.

ABSTRACT

Master's Thesis

Synthesis, crystallographic and spectroscopic properties of some new schiff bases containing 2,3-dihydroxybenzaldehyde

Mahmut TAŞDOĞAN

Ondokuz Mayis University Graduate School of Sciences Department of Chemistry

Supervisor: Prof.Dr.Erbil AĞAR Dr.Gonca ÖZDEMİR TARI

2,3-dihydroxybenzaldehyde; 2-methoxyaniline, 4-iodoaniline, 2-bromo-3methylaniline, 2-amino-4-methylphenol, 2-phenoxyaniline, 3-chloro-4-(4-chloro phenoxy)aniline, 3-chloro-4-methylaniline, 3,4-dimethoxybenzylamine was reacted with N-aminophthalamide, 2-thiophenemethylamine to give the corresponding azomethine compounds. The compounds synthesized are (Z)-2-hydroxy-6-(((2methoxyphenyl)amino)methylene)cyclohexane-2,4-dien-1-one, (E)-3-(((4-iodyl phenyl)imino)methyl)benzene-1,2-diol, (E)-3-(((3-brom-4-methylphenyl)imino) methyl)benzene-1,2-diol, (Z)-2-hydroxy-6-(((2-hydroxy-5-methylphenyl)amino) (Z)-2-hydroxy-6-(((2-phenoxyphenyl) methylene)cyclohexane-2,4-dien-1-one, amino)methylene)cyclohexane-2,4-dien-1-one, (E)-3-(((((3-chloro-4-(4-chlor phenoxy)phenyl)imino)methyl)benzene-1,2-diol, (Z)-6-((((3-chloro-4-methylphenyl) (Z)-6-(((3,4-dimethoxyamino)methylene)-2-hydroxycyclohexane-2,4-dien-1-one, benzyl)amino)methylene)-2-hydroxycyclohexane-2,4-dien-1-one, 2-((2,3-dihydroxy benzyl)amino)isoindoline-1,3-dione, (Z)-2-hydroxy-6-(((thiophene-2)-methylmethyl) amino)methylene)cyclohexane-2,4-dien-1-one. The structures of these synthesized azomethine compounds were elucidated using IR, ¹H-NMR, ¹³C-NMR, UV-vis spectroscopic techniques. Crystallographic and molecular structures of the compounds prepared with single crystals in suitable solvents were also determined by X-ray diffraction method.

July 2019, pages 115

Keywords: Schiff bases; Imine; The azomethine; Keto-enol tautomerism; IR; UV-vis; NMR; X Rays.

ÖNSÖZ VE TEŞEKKÜR

Bu Yüksek Lisans Tez çalışması Ondokuz Mayıs Üniversitesi Fen Edebiyat Fakültesi Kimya Bölümü Organik Kimya Ana Bilim Dalı laboratuvarında gerçekleştirildi.

Tez çalışmamın planlanmasında, araştırılmasında, yürütülmesinde ve oluşumunda ilgi ve desteğini esirgemeyen, engin bilgi ve tecrübelerinden yararlandığım, yönlendirme ve bilgilendirmeleriyle çalışmamı bilimsel temeller ışığında şekillendiren saygıdeğer tez danışmanlarım Sayın Prof. Dr. Erbil AĞAR'a ve Dr. Öğretim üyesi Gonca ÖZDEMİR TARI'ya,

Çalışmalarım boyunca laboratuvarını açan, bilgileriyle aydınlatan değerli hocalarım Sayın Prof. Dr. Ayşen AĞAR ve Prof. Dr. Mustafa MACİT'e,

Değerli jüri üyelerim, Sayın Prof. Dr. Hasan GENÇ, Prof. Dr. Mustafa MACİT, Prof. Dr. Hasan KOCAOKUTGEN, Prof. Dr. Erbil AĞAR ve Dr. Öğretim Üyesi Gonca ÖZDEMİR TARI'ya,

Tüm laboratuvar arkadaşlarıma, laboratuvar çalışmalarım ve tezimin yazımı sırasında hep yanımda olan değerli laboratuvar arkadaşım Onur Erman DOĞAN'a,

Canım kızlarım Ece ve Melis TAŞDOĞAN'a,

Eğitimim boyunca her zaman yanımda olan, beni destekleyen, onsuz bir hayat düşünemediğim canımın parçası olan eşim Meral TAŞDOĞAN'a,

Tüm kalbimle teşekkür ederim.

Bu tez çalışması PYO.FEN.1904.18.019 nolu Bilimsel Araştırma Projesi olarak Ondokuz Mayıs Üniversitesi tarafından desteklenmiştir.

Temmuz 2019, Samsun Mahmut TAŞDOĞAN

İÇİNDEKİLER DİZİNİ

ÖZET	i
ABSTRACT	ii
ÖNSÖZ VE TEŞEKKÜR	iii
İÇİNDEKİLER DİZİNİ	iii
SİMGELER VE KISALTMALAR DİZİNİ	vi
SEKİLLER DİZİNİ	vii
, CIZELGELER DIZINI	xii
ı. GİRİS	1
2. TEMEL BİLGİLER	5
2.1. Schiff Bazlarının Yapısı	5
2.2. Schiff Bazlarının Adlandırılması	7
2.3. Schiff Bazlarında pH Önemi	8
2.4. Schiff Bazlarının Sentezi	9
2.4.1. Birincil Aminler ile Aldehit ve Ketonların Tepkimesinden	9
2.4.2. Hidrazin ve Türevlerinin Aldehit ve Ketonlarla Tepkimesinde	en10
2.5. Schiff Bazı Oluşumunun Mekanizması	
2.6. Schiff Bazlarında Tautomerizm	
2.7. Schiff Bazlarında Hidrojen Bağı	
2.8. Schiff Bazlarının Kimyasal Tepkimeleri	
2.8.1. Hidroliz Tepkimeleri	
2.8.2. İndirgenme Tepkimeleri	
2.8.3. Kompleks Olusumu	
2.8.4. Halka Kapanma Tepkimeleri	
2.8.5. Polimerlesme Tepkimeleri	
2.8.6. Zn ve Haloesterlerle Tepkimeleri	
2.8.7. HCN ile Tepkimeleri	
2.8.9. H ₂ S ile Tepkimeleri	
2.8.10. Fosforanlarla Tepkimeleri	
2.8.11. Diazometanla Tepkimeleri	
2.8.12. Alkollerle Tepkimeleri	
2.8.13. Kenetlenme Tepkimeleri	
2.8.14. Siklokatılma Tepkimeleri	
2.8.15. Organometalik Bilesiklerle Tepkimeleri	
2.9. Schiff Bazlarının Spektroskopik Özellikleri	
2.9.1. Schiff Bazlarının IR Spektrumları	
2.9.2.Shiff Bazlarının X-Isını Kırınımı	
2.9.3. Schiff bazlarının NMR spektrumları	
2.9.4. Schiff bazlarının UV spekrumları	
3. MATERYAL VE YÖNTEM	
3.1. KullanılanKimyasallar	
3.2. Kullanılan Cihazlar	
3.3. Schiff Bazı Bilesiklerinin Sentezi	
3.3.1. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1.2	2-diol
Bileşiğinin (I) Sentezi (MT123)	
3.3.2. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol Bilesiğinin ((II) Sentezi
(MT23)	
3.3.3. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol Bil	leşiğinin (III)
Sentezi (MT24)	

3.3.4. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dionBileşiğinin (IV)
Sentezi (MT171)
3.3.5. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1-
on Bileşiğinin (V) Sentezi (MT61)54
3.3.6. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1-
on Bileşiğinin (VI) Sentezi (MT17)60
3.3.7. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4-
dien-1-on Bileşiğinin (VII) Sentezi (MT158)67
3.3.8. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4-
dien-1-onBileşiğinin (VIII) Sentezi (MT167)73
3.3.9. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4-
dien-1-on Bileşiğinin (IX) Sentezi (MT33)79
3.3.10. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-
1-on Bileşiğinin (X) Sentezi (MT139)85
4. BULGULARVE TARTIŞMA
4.1. Sentezlenen Bileşiklerin IR Verileri
4.2. Sentezlenen Bileşiklerin UV-vis.Verileri
4.3. Sentezlenen Bileşiklerin ¹ H-NMR Verileri
4.4. Sentezlenen Bileşiklerin ¹³ C-NMR Verileri
4.5.Sentezlenen bileşiklerin X ışını verileri
5. SONUÇ VE ÖNERİLER
KAYNAKLAR
ÖZGEÇMİŞ

SİMGELER VE KISALTMALAR DİZİNİ

SİMGELER VE KISALTMALAR

Α	:	Absorbans
Å	:	Angström
a,b,c,α,β,γ	:	Birim hücre parametreleri
°C	:	Santigrat derece
¹³ C-NMR	:	Karbon-13Nükleer Manyetik Rezonans spektroskopisi
δ _{ppm}	:	Kimyasal kayma değeri
FT-IR	•	Fourier Transform İnfrared Spektroskopisi
¹ H-NMR	:	Proton Nükleer Manyetik Rezonans Spektroskopisi
hkl	. : /	Miller indisleri
IPDS II	:	Görüntü Plakalı Difraksiyon sistemi, Model II
KBr	:	Potasyum bromür
λ	:	Dalga boyu
Μ	:	Molekül ağırlığı
R	:	Güvenilirlik katsayısı
R _w	:	Ağırlıklı güvenirlik katsayısı
ρ	:	Elektron yoğunluğu dağılım fonksiyonu
UV-vis	:	Ultraviyole-Görünür Bölge Spektroskopisi

ŞEKİLLER DİZİNİ

Şekil 2.1. Karbonil bileşikleri birincil amin grupları ile kondenzasyon tepkimeleri 8
Şekil 2.2. Azometin bileşiklerinde pH'ya bağımlılık
Şekil 2.3. Birincil aminden sentezlenen iminler9
Şekil 2.4. Anilinden sentezlenen aniller
Şekil 2.5. Hidrazinden sentezlenen hidrazon ve azinler
Şekil 2.6. Hidroksil aminden sentezlenen oksimler (Oksi-İminler) 10
Şekil 2.7. Aminoasidlerden sentezlenen iminler10
Şekil 2.8. Sübstitüe aromatik aminlerden sentezlenen iminler11
Şekil 2.9. Schiff bazı oluşum mekanizması birinci basamağı11
Şekil 2.10. Schiff bazı oluşum mekanizması ikinci basamağı11
Şekil 2.11. Asit ortamında aminlerin davranışı11
Şekil 2.12. Schiff bazlarının enol-imin ve keto-amin tautomerleri
Şekil 2.13.3-Hidroksi-2-naftaldehit'ten oluşan fenol-imin baskın tautomerik formu 3-hidroksi-2-naftaliden
Şekil 2.14.2-hidroksi-1-naftaldehit'ten oluşan keto-amin baskın tautomerik formu 2- hidroksi-1-naftaliden
Şekil 2.15. Hidrojen bağı yapmış enol-imin ve keto-amin tautomer yapıları14
Şekil 2.16. Schiff bazı hidroliz tepkimesi14
Şekil 2.17. Schiff bazının asidik ortamda hidroliz tepkimesi mekanizması15
Şekil 2.18. Schiff bazının indirgenme tepkimesi15
Şekil 2.19. Schiff bazlarının kompleks oluşturma tepkimeleri 1 ϵ
Şekil 2.20. Schiff bazlarının halka kapanma tepkimeleri 1 ϵ
Şekil 2.21. Poli Schiff bazlarının oluşum tepkimeleri17
Şekil 2.22. Schiff bazların Zn ve haloesterlerle tepkimeleri17
Şekil 2.23. Schiff bazlarına HCN katılma tepkimesi 17
Şekil 2.24. Schiff bazların H ₂ S ile tepkimeleri18
Şekil 2.25. Schiff bazların fosforanlarla tepkimeleri18
Şekil 2.26. Schiff bazların diazometanla tepkimesi19
Şekil 2.27. Schiff bazlarının alkollerle tepkimesi19
Şekil 2.28. Schiff bazlarının kenetlenme tepkimeleri
Şekil 2.29. Diels-Alder tepkimesi
Şekil 2.30. Schiff bazlarının keton ile siklo katılma tepkimeleri
Şekil 2.31. Nitrillerin grignard bileşikleri ile tepkimeleri

Şekil 2.32. Grignard bileşiğinin aril veya alkil grubuyla yer değiştirme tepkimesi21
Şekil 2.33. Aromatik aldehitlerin Grignard bileşikleri ile tepkimeleri
Şekil 2.34. N-kloroiminlere Grignard reaktiflerinin eter ortamında tepkimesi22
Şekil 2.35. Elektromanyetik dalga çeşitleri ve dalga boyları
Şekil 2.36. Fenol-imin ve Keto-amin taotomeri formu
Şekil 3.1. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) sentezi
Şekil 3.2. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) FT-IR spektrumu
Şekil 3.3. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) UV-vis spektrumu
Şekil 3.4. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) ¹ H-NMR spektrumu
Şekil 3.5. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) ¹³ C-NMR spektrumu
Şekil 3.6. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) ortep yapısı
Şekil 3.7. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) birim hücre yapısı
Şekil 3.8. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) sentezi34
Şekil 3.9. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) FT-IR spektrumu
Şekil 3.10.(E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) UV-vis spektrumu
Şekil 3.11.(E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) ¹ H-NMR spektrumu
Şekil 3.12.(E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) ¹³ C-NMR spektrumu
Şekil 3.13.(E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) ortep yapısı
Şekil 3.14.(E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) birim hücre yapısı
Şekil 3.15.(E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) sentezi40
Şekil 3.16.(E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) FT-IR spektrumu
Şekil 3.17.(E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) UV-vis spektrumu
Şekil 3.18.(E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) ¹ H-NMR spektrumu

Şekil 3.19	.(E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiğinin ¹³ C-NMR spektrumu	(III) 42
Şekil 3.20	.(E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiğinin ortep yapısı	(III) 43
Şekil 3.21	.(E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiğinin birim hücre yapısı	(III) 43
Şekil 3.22	.2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin sentezi	(IV) 46
Şekil 3.23	.2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin FT-IR spektrumu	(IV) 47
Şekil 3.24	.2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin UV-vis spektrumu	(IV) 47
Şekil 3.25	.2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin ¹ H-NMR spektrumu	(IV) 48
Şekil 3.26	.2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin ¹³ C-NMR spektrumu	(IV) 48
Şekil 3.27	.2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin ortep yapısı	(IV) 49
Şekil 3.28	.2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin birim hücre yapısı	(IV) 49
Şekil 3.29	.(Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien on bileşiğinin (V) Sentezi	-1- 54
Şekil 3.30	.(Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien on bileşiğinin (V) FT-IR spektrumu	-1- 55
Şekil 3.31	.(Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien on bileşiğinin (V) UV-vis spektrumu	-1- 55
Şekil 3.32	.(Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien on bileşiğinin (V) ¹ H-NMR spektrumu	-1- 56
Şekil 3.33	.(Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien on bileşiğinin (V) ¹³ C-NMR spektrumu	-1- 56
Şekil 3.34	.(Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien on bileşiğinin (V)ortep yapısı	-1- 57
Şekil 3.35	.(Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien on bileşiğinin (V) birim hücre yapısı	-1- 57
Şekil 3.36	.(Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien on bileşiğinin (VI) sentezi	n-1- 61
Şekil 3.37	.(Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien on (VI) FT-IR spektrumu	n-1- 61
Şekil 3.38	.(Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien onbileşiğinin (VI) UV-vis spektrumu	n-1- 62
Şekil 3.39	.(Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien on bileşiğinin (VI) ¹ H-NMR spektrumu	n-1- 62

Şekil 3.40	.(Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1- on bileşiğinin (VI) ¹³ C-NMR spektrumu
Şekil 3.41	.(Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1- on bileşiğinin (VI) ortep yapısı
Şekil 3.42	.(Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1- on bileşiğinin (VI) birim hücre yapısı
Şekil 3.43	.(Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VII) sentezi
Şekil 3.44	.(Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VII) FT-IR spektrumu
Şekil 3.45	.(Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VII) UV-vis spektrumu
Şekil 3.46	.(Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VII) ¹ H-NMR spektrumu
Şekil 3.47	.(Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VII) ¹³ C-NMR spektrumu69
Şekil 3.48	.(Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VII) ortep yapısı
Şekil 3.49	.(Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VII) birim hücre yapısı
Şekil 3.50	.(Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VIII) sentezi
Şekil 3.51	.(Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VIII) FT-IR spektrumu
Şekil 3.52	.(Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VIII) UV-vis spektrumu
Şekil 3.53	.(Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VIII) ¹ H-NMR spektrumu75
Şekil 3.54	.(Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VIII) ¹³ C-NMR spektrumu75
Şekil 3.55	.(Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VIII) ortep yapısı
Şekil 3.56	.(Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VIII) birim hücre yapısı
Şekil 3.57	.(Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on bileşiğinin (IX) sentezi
Şekil 3.58	.(Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on bileşiğinin (IX) FT-IR spektrumu
Şekil 3.59	.(Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on bileşiğinin (IX) UV-vis spektrumu
Şekil 3.60	.(Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on bileşiğinin (IX) ¹ H-NMR spektrumu81

Şekil 3.61.(Z)-2-l	nidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4
dien-1-	-on bileşiğinin (IX) ¹³ C-NMR spektrumu81
Şekil 3.62.(Z)-2-ł	hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4
dien-1-	-on bileşiğinin (IX) ortep yapısı
Şekil 3.63.(Z)-2-ł	hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4
dien-1-	-on bileşiğinin (IX) birim hücre yapısı
Şekil 3.64.(Z)-2-ł	hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-
1-on b	ileşiğinin (X) sentezi
Şekil 3.65.(Z)-2-ł	hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-
1-on b	ileşiğinin (X) FT-IR spektrumu
Şekil 3.66.(Z)-2-ł	hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-
1-on b	ileşiğinin (X) UV-vis spektrumu
Şekil 3.67.(Z)-2-l	hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-
1-on b	ileşiğinin (X) ¹ H-NMR spektrumu
Şekil 3.68.(Z)-2-l	hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-
1-on b	ileşiğinin (X) ¹³ C-NMR spektrumu
Şekil 3.69.(Z)-2-l	hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-
1-on b	ileşiğinin (X) ortep yapısı
Şekil 3.70.(Z)-2-l	hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-
1-on b	ileşiğinin (X) birim hücre yapısı

ÇİZELGELER DİZİNİ

Çizelge 3.1.	(E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) kristal yapı verileri
Çizelge 3.2.	(E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiği (I) için bağ uzunlukları, bağ açıları ve torsiyon açıları
Çizelge 3.3.	(E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) kristal yapı verileri
Çizelge 3.4.	(E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiği (II) için bağ uzunlukları, bağ açıları ve hidrojen bağları
Çizelge 3.5.	(E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) kristal yapı verileri
Çizelge 3.6.	(E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiği (III) için bağ uzunlukları, bağ açıları ve torsiyon açıları
Çizelge 3.7.	2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin (IV) kristal yapı verileri
Çizelge 3.8.	2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiği (IV) için bağ uzunlukları, bağ açıları ve torsiyon açıları
Çizelge 3.9.	(Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien- 1-on bileşiğinin (V) kristal yapı verileri
Çizelge 3.10	. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien- 1-on bileşiği (V) için bağ uzunlukları, bağ açıları ve torsiyon açıları 59
Çizelge 3.11	.(Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien- 1-on bileşiğinin (VI) kristal yapı verileri
Çizelge 3.12	.(Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien- 1-on bileşiği (VI) için bağ uzunlukları, bağ açıları ve torsiyon açıları 66
Çizelge 3.13	.(Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin(VII) kristal yapı verileri
Çizelge 3.14	.(Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiği (VII) için bağ uzunlukları, bağ açıları ve torsiyon açıları
Çizelge 3.15	.(Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiğinin (VIII) kristal yapı verileri
Çizelge 3.16	.(Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4- dien-1-on bileşiği (VIII) için bağ uzunlukları, bağ açıları ve torsiyon açıları
Çizelge 3.17	.(Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza- 2,4 dien-1-on bileşiğinin (IX) kristal yapı verileri
Çizelge 3.18	.(Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza- 2,4 dien-1-on bileşiği (IX) için bağ uzunlukları, bağ açıları ve torsiyon açıları

Çizelge 3.19.	(Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4- dien-1-on bileşiğinin (X) kristal yapı verileri	89
Çizelge 3.20.	(Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4- dien-1-on bileşiği (X) için bağ uzunlukları, bağ açıları ve torsiy açıları	on 90
Çizelge 3.21.	Sentezlenen Bileşiklerin Formülleri, Adlandırılmaları, Erime Noktala ve Molekül Ağırlıkları.	arı 92

1. GİRİŞ

Genel formulü $R_1CH=NR_2$ şeklinde olan Schiff bazları aldehitlerin veya ketonların birincil aminler ile kondenzasyonları sonucu oluşan imin (>C=N-) grubu taşıyan bileşiklerin genel adıdır (Park vd, 1998). İlk olarak 1864 yılında Nobel ödüllü Alman kimyager Hugo Schiff tarafından sentezlenen Schiff bazları birincil aminlerle aldehitlerin veya ketonların kondenzasyonundan elde edilmiştir (Schiff, 1869). Ligand olarak ise 1930'larda Pfeiffer tarafından kullanılmıştır (Pfeiffer vd, 1933).

Schiff bazları koordinasyon kimyasında ligand olarak geniş bir kullanım alanı bulmuştur (Calligaris vd, 1972). Schiff Bazları biyolojik aktivitelerinden dolayı kimyanın çeşitli alanları ve biyokimya açısından önemlidir. Ayrıca, fotokromizm (ışıma ile etkileşince renk değiştirme) özelliğine sahip olmaları radyasyon şiddeti kontrol etme ve ölçme, görüntü sistemleri ve optik bilgisayarlar gibi değişik alanlarda kullanılmalarını sağlamıştır (Roothaan, 1951), bununla birlikte Schiff Bazı komplekslerinin antikanser aktivite göstermesi nedeniyle tıp dünyasında önemi giderek artmaktadır ve kanserle mücadelede reaktif olarak kullanılması araştırılmaktadır (Scovill vd, 1982).

Schiff bazları ilaç ve medikal alanında kullanılan bileşiklerin önemli bir sınıfını oluşturmaktadır. Antibakteriyel, antifungal ve antitümör aktivite içeren biyolojik uygulamalara sahiptirler. Shahabadi ve arkadaşları tarafından yapılan çalışmada Schiff bazının suda çözünen kobalt (II) kompleksinin DNA ile bağlanma etkileşimleri incelenmiştir (Shahabadi ve ark., 2010).

Schiff bazları (azometin, iminler) ilaç ya da kauçuk katkı maddeleri üretimleri için yaygın olarak kullanılan organik ara ürünlerdir (Machoa, 2004). Aynı zamanda Schiff bazları, boyar maddelerin üretiminde özellikle tekstil endüstrisinde, plastik sanayinde, polimer üretiminde, analitik kimyada, sıvı kristal teknolojisinde, kozmetik ve ilaç üretiminde, korozyonun önlenmesinde ve elektronik endüstrisi gibi birçok alanda da kullanımı bulunmaktadır. Özellikle kemoterapi tedavisinde kullanılan ilaçların üretiminde büyük önem taşımaktadır. Bu nedenle biyolojik ve yapısal önemlerinden dolayı üzerinde çok çalışılan bir bileşik olma özelliği göstermektedir (Birbiçer, 1998; Bal, 2010).

Bu tezde sözü geçen tüm kristal yapılar tek kristal X-ışını yöntemiyle incelendi. Yapı çözümü bilgisayar ortamında WinGX (Farrugia, 1999)paket programında bulunan SHELXT (Sheldrick, 1997)yazılımı ile, yapıların arıtımı ise SHELXL yazılımı ile yapıldı. Elde edilen verilerden görsel sonuçların oluşturulması için ORTEP-3 (Farrugia, 1997) yazılımı kullanıldı.

Schiff bazları, ligantlarının önemli bir sınıfıdır ve günümüze kadar koordinasyon kimyası içerisinde çok geniş bir çalışma alanına sahip olmuştur. Seçilen aldehit, keton ve amin gruplarına göre farklı özellikler gösterirler ve bir çok türü sentezlenebilir. Günümüzde metal kompleksleri bilim dünyasında çok fazla yer almaktadır. Schiff bazlarından elde edilen metal kompleksleri renkli maddeler olduğundan boya endüstrisinde özellikle tekstil boyacılığında pigment olarak kullanılmaktadır. Ayrıca metal kompleksleri kataliz reaksiyonlarında sıkça kullanılırlar (Cozzi, 2004).

Schiff bazı türevlerinin biyolojide, klinik, farmokolojik ve analitik bakımdan çok önemli bileşikler olduğu kaydedilmiştir (Ismail vd, 1997). Schiff Bazı komplekslerinin antikanser aktivitesi göstermesi özelliğinden dolayı tıp dünyasındaki önemi giderek artmaktadır ve kanserle mücadelede reaktif olarak kullanılması araştırılmaktadır (Scovill vd, 1982). Gd elementi ile yapılan Schiff bazı kompleksleri tıpta kullanılan Manyetik Rezonans Görüntüleme (MR) yöntemi için uygun özellikte maddelerdir (Alexander, 1995). Ayrıca polimerik Schiff bazlarının yüksek ısıda kararlı yapıya sahip olması ve iletken özellikte olmaları ile sıvı kristal endüstrisinde yer bulmuştur (Cerrada vd, 1999).

Bunların yanı sıra furfurilamin ve vanilin türevi bileşiklerin önemli biyokimyasal özellikler gösterdikleri bilinmekte ve bu amaçla bu tür bileşiklerin sentezi ve biyolojik aktiviteleri araştırılmaktadır (Higasio ve Shoji, 2001; Juhász vd, 2000; Kumar ve Ramesh, 2004).

Kükürt içeren bileşiklerin antibakteriyel (Altundas vd, 2010), antialerjik (Temple vd, 1979), ve kemoterpetik (Eger vd, 1990) gibi etkiye sahip olduğu bilindiğinden, bu tür ligantların ve komplekslerin sentezi üzerine çalışmaların son yıllarda oldukça yaygın olduğu görülmektedir. Schiff bazları, antimikrobiyel aktivitelerde oldukça etkilidir (Nurşen vd, 2003).

Bu çalışmada 2,3-dihidroksibenzaldehit'in; 2-metoksianilin, 4-iyotanilin, 2brom-3-metilanilin, 2-amino-4-metilfenol, 2-fenoksianilin, 3-kloro-4-(4-kloro fenoksi)anilin, 3-kloro-4-metilanilin, 3,4-dimetoksibenzilamin, *N*-aminofitalamid ve 2-tiyofenmetilamin ile reaksiyonuyla karşılık gelen azometin bileşikleri sentezlenmiş ve bu azometin bileşiklerinin yapıları IR, UV-vis, ¹H-NMR, ¹³C-NMR ve X-Ray spektroskopik teknikleri kullanılarak aydınlatılması amaçlanmıştır. Web of Science ve Scifinder'da yapılan literatür araştırmalarında sentezlediğim tüm bileşiklerin yeni Schiff bazlar olduğu görülmüştür.

2. TEMEL BİLGİLER

2.1. Schiff Bazlarının Yapısı

Schiff bazı ligandları koordinasyon bileşiğinin oluşumu sırasında metal iyonuna bir veya daha çok elektron çifti vermektedir. Schiff bazlarının oldukça kararlı 4, 5 veya 6 halkalı kompleksler oluşturabilmesi için azometin grubuna mümkün olduğu kadar yakın ve yer değiştirebilir hidrojen atomuna sahip ikinci bir fonksiyonel grubun bulunması gereklidir. Bu grup tercihen hidroksil grubudur (Patai, 1970).

Bunun yanı sıra koordinasyon kimyası literatürlerinde de Schiff bazlarına çok sık rastlanır. Yıllardır koordinasyon kimyası sürekli yayınlarının hemen hemen hepsinde bir Schiff bazı çalışması bulunmaktadır. Schiff bazları son derece ilginç bileşikler olup, geometrik izomerlik gösterirler ve kolaylıkla indirgenirler. Ancak buna karşın kolayca yükseltgenemezler ve geometrik yapılarına göre son derece kuvvetli ligandlardır.

İlk olarak 1869 yılında Alman Kimyacı H.Schiff tarafından hazırlandıklarından dolayı hala günümüzde Schiff bazı adıyla anılmaktadırlar (Schiff, 1869). Schiff bazlarının bilimsel alanda ilk kullanılmaları 1932 yılında başlar, ünlü Alman kimyacı P. Pfeifer özellikle 2-hidroksibenzaldehitten hazırladığı Schiff bazları ile çeşitli renklerde onlarca kompleks hazırlayarak Schiff bazlarını koordinasyon kimyası alanına sokar (Pfeiffer vd, 1933). 1932 yılından sonra Schiff bazları anorganik kimyanın daha doğrusu koordinasyon kimyasının vazgeçilmez bir grubu haline gelmiştir. Bugün bilgisayarlı veri tabanı taramalarında Schiff bazı anahtar kelimesi verilirse onbinlerce çalışma karşımıza çıkmaktadır. P. Pfeifer'in çalıştığı yıllardan sonra özellikle II. Dünya Savaşı'ndan sonra Schiff Bazları tabanlı yüzlerce patentli pigment boya ortaya çıkmıştır. Fakat endüstriyel olarak 1950-1980 yılları arasında Schiff bazları çok fazla kullanım alanı bulamamışlar, daha çok bilimsel araştırmalarda kullanılmışlardır.

1980 sonrasında Schiff bazları ve onların kompleksleri tıpta, izleme tekniklerinde, sıvı kristal üretimi, HPLC cihazları gibi ileri teknoloji ürünlerinde boya endüstrisinde, elektronik materyallerde (Oyama vd, 1987), kauçukların vulkanizasyonunda, ilaç sanayinde ve plastik sanayinde oldukça fazla kullanılmakta

ve bu konuda araştırmalar devam etmektedir (Di Bella vd, 2004; Taylor vd, 2004). Schiff bazlarının polimerleştirilmesiyle de bu alan daha da artmaktadır; katı halde pillerde, anyonik polielektrolit olarak hidrometalurjide, katyon değişim reçinelerinde, yanmaz malzemelerde, yapay diş yapımında, metal seçici absorban yapımında (Hanack vd, 1988), nükleer kimyada (su kirliliğinin kontrolünde) da yerlerini almışlardır (Ciardelli vd, 1989). Schiff Bazı komplekslerinin antikanser aktivite göstermesi özelliğinden dolayı tıp dünyasındaki önemleri giderek artmaktadır ve kanserle mücadelede reaktif olarak kullanılmaları üzerinde araştırmalar devam etmektedir (Ghassemzadeh vd, 2008; Scovill vd, 1982; West vd, 1991).

Tiyosemikarbazon ve tiyosemikarbazit'in antibakteriyel, antimolarial (sıtma), antiviral ve antitümör özelliklerinden dolayı fazlaca sentezlenmişlerdir (Beraldo ve Gambino, 2004). 1,2,4-triazoller ve 1,2,4-triazin formuna sahip olan tiosemikarbazitlerden heterosiklikler türetilmiş ve bunların önemli antifungal, antibakteriyel ve böcek öldürücü özelliklerinin olduğu tespit edilmiştir (Küçükgüzel vd, 2001).

Elektron çekici grup (-Cl, -Br gibi) içeren ligandların metal komplekslerinin biyolojik aktivitelerinin fazla olduğu, tüberküloz mikrobu koli basiline karşı oldukça yüksek antimikrobik aktivite gösterdiği (Roothaan, 1951), bütün Cu(II) ve Co(II) komplekslerinin (Cozzi, 2004) özellikle hidroksi gruplu Schiff bazı ve komplekslerinin aktiviteyi daha da arttırdığı bulunmuştur (Sharaby, 2007). Ayrıca bir takım Schiff Bazı kompleksleri değişik uygulama alanları bulmuştur; Örneğin, Cu²⁺ ve Gd²⁺komplekslerinin pozitron-emisyon tomografisi ve görüntülemede kullanıldığı (Blower, 1997; Reichert vd, 1999), platin komplekslerinin anti-tümör aktivite gösterdiği, kobalt komplekslerinin oksijen ayrılması-taşınması tepkimeleri için, oksijen taşıyıcı model olarak kullanıldığı, Mn ve Ru komplekslerinin suyun fotolizini katalizlediği (Salman vd, 1991), demir komplekslerinin oksijenin elektrokimyasal indirgenmesinde katalizör olarak kullanıldığı bilinmektedir (Gaber vd, 1989). Katalizörler doğada, endüstride ve laboratuvarda geniş ölçüde kullanılmaktadır ve kalkınmış ülkelerdeki mamul ürünlerin altıda birinin yapımına katkıda bulunduğu tahmin edilmektedir (Shriver ve Atkins, 1999). Ayrıca kimyasal üretimin yaklaşık %90'ı katalizörlerle yürütülür ve geçiş metalleri kullanılan katalizörlerde ana elementlerdir. Örneğin Ni, yağların hidrojenle doyurulmasında (hidrojenasyon); Pt, Pd ve Rh, otomobillerin katalitik konvertörlerinde; Fe₃O₄, amonyak sentezinde; V_2O_5 , sülfürük asit elde edilmesinde SO_2 'in SO_3 'e çevrilmesinde kullanılır (İlkeler ve Cilt, 2002).

Hidrojenasyon, hidroformilasyon ve karbonilasyon gibi homojen katalitik tepkimelerde metal karbonillerin reaktif özellikleri kanıtlanmıştır. Kompleksin ihtiyaç duyduğu elektronları burada karbonmonoksit karşılamıştır. Diğer taraftan Schiff bazları ve onların komplekslerinin oksijen ile bağlanmalarının geri dönüşümlü olması üzerine olan bir çalışma yapılmıştır. Olefinlerin hidrojenasyon'da katalitik aktiviteleri, amino gruplarının transferi, fotokromik özellikler ve toksik (zehirli) metallerle kompleks oluşturma eğilimleri incelenmiştir. Biyolojik sistemlerin çeşitliliği içindeki ilginç modeller enine boyuna düşünülmüş, metal-protein sistemleri için metal iyonları ve amino asitler arasındaki etkileşim, Schiff bazlarının metal komplekslerine benzetilmiştir (Soliman vd, 2006).

Son yıllarda sıvı kristal teknolojisinde kullanılabilecek pek çok Schiff bazının sentezlenmesi bu maddelerle ilgili çalışmaların önemini daha da arttırmıştır (Cozzi, 2004). Geçiş metalleri ile farklı donör gruplara sahip ligandların meydana getirdikleri komplekslerin biyokimyasal reaksiyon mekanizmaların (Hemoglobin'de oksijen transferi gibi) aydınlatılmasında model bileşik olarak kullanılmasıyla (Di Bella vd, 2004; Taylor vd, 2004) ve özellikle bazı organik maddelerin bozunma, yükseltgenme tepkimelerinde (Chukhadzhyan vd, 1972), bazı alkenlerin dimerleşme ve polimerleşme tepkimelerinde katalizör etkilerinin bulunması (Zvezdina vd, 1980), ağır makine yağlarında inceltici olarak kullanılması farklı araştırma konularının doğmasına sebebiyet vermiştir (Dede vd, 2009). Bu durumda Schiff bazı metal komplekslerinin sentezlenebilirliklerindeki kolaylık, yüksek seçicilik, farklı sübstitüentleri yapılarında bulundurabilmelerinden kaynaklanan yapısal esneklik önemli rol oynamaktadır.

2.2. Schiff Bazlarının Adlandırılması

Genel formulü RR'C=NR" şeklinde olan iminler, >CH=N– (azometin) içerirler. Azometin içeren bileşiklerin birkaç ismi bulunmaktadır. Bunlar; Schiff bazları, aniller, azometin, benzilidenamin ve imindir. Son yıllarda bu bileşikler literatürde iminler ve Schiff bazları kategorisi altında incelenmiştir. Aldiminler, R'nin alkil veya aril, R nin H olduğu bileşikler olarak kabul edilirken, ketiminler hem R'nin hem de R'nin alkil veya aril olduğu bileşikler olarak kabul edilir. Bu isimlendirmeye uygun olarak Schiff bazları, bu iminlerin R'nin sadece aril, R'nin H ve R''nin ya alkil ya da aril grubu olduğu bileşikler olarak sınırlandırılabilir (Layer, 1963). Schiff bazları genellikle türetildikleri aldehit ya da ketonun adına -imin kelimesi eklenerek veya aldimin ve -ketimin son ekleri kullanılarak adlandırılırlar (Forman, 1964).

2.3. Schiff Bazlarında pH Önemi

Karbonil bileşikleri primer amin grupları ile kondenzasyon tepkimeleri verir ve karbonazot çifte bağı oluşur. Bu bağa imin veya azometin bağı adı verilir. Kondenzasyon tepkimelerinin genel şeması aşağıda verilmiştir. Karbonil bileşiği aldehit ise oluşan bağa azometin veya aldimin, keton ise oluşan bağa imin veya ketimin adı verilir (Beyer ve Walter, 1988; Brown vd, 2014).

Şekil 2.1. Karbonil bileşikleri birincil amin grupları ile kondenzasyon tepkimeleri

R ve Z ne kadar elektron çekici ve rezonansa iştirak edebilen gruplar ise azometin bileşiği o kadar kararlıdır. Kondenzasyon tepkimelerinin mekanizması katılma-ayrılma reaksiyonu üzerinden yürür. Bu yüzden azometin bileşiklerinin meydana gelmesinde ortamın pH'ı çok etkilidir. Reaksiyonun pH'a bağımlılığını gösteren mekanizmayı şu şekilde gösterebiliriz.

$$Z \longrightarrow NH_2 + H^+ \longrightarrow Z \longrightarrow NH_3^+$$
 (D)

Şekil 2.2. Azometin bileşiklerinde pH'ya bağımlılık

Görülüyor ki bu tepkimelerde H⁺ önemli bir rol oynamaktadır. Ancak (D) numaralı reaksiyonda da görüldüğü gibi aşırısından kaçmak gerekir.Yukarıda açıklanan karbonil kondenzasyon ürünlerinin bir grubu Schiff bazlarıdır. Her Schiff Bazının kendini meydana getiren amin ve karbonil bileşeninin karakterine bağlı olarak oluştuğu bir optimum pH veya asidite vardır. Bu optimum alandan uzaklaştıkça Schiff bazının hidroliz olup tekrar kendini meydana getiren bileşenlere ayrışma olasılığı da artmaktadır.

Ayrıca kondenzasyon tepkimesi ortamında suyun bulunması (A) da görüldüğü gibi tepkimeyi sola kaydırır bu da istenmeyen bir durumdur. Bu nedenle kondenzasyonlar genellikle suyun azeotrop teşkili ile damıtma yoluyla ortamdan uzaklaştırılabildiği çözücülerde yapılır.

2.4. Schiff Bazlarının Sentezi

Schiff bazlarının sınıflandırılması sentezlendikleri amin bileşiğine göre yapılır.

2.4.1. Birincil Aminler ile Aldehit ve Ketonların Tepkimesinden

Schiff bazları birincil amino grubu içeren bileşiklere aromatik veya alifatik aldehit bileşiklerinin katılarak su (-H₂O) ayrılması sonucu elde edilebilir. Örneğin; aminotiyoller, *o*-aminofenoller, α -aminoasitler ve aminoalkollerle asetilaseton veya salisilaldehit ve benzerlerinin katılması ile elde edilebilir.

Şekil 2.3. Birincil aminden sentezlenen iminler

Şekil 2.4. Anilinden sentezlenen aniller

2.4.2. Hidrazin ve Türevlerinin Aldehit ve Ketonlarla Tepkimesinden

Hidrazin NH₂-NH₂ yapısındadır. Hidrojen atomlarının başka bir grup atom ile yerdeğiştirdiği hidrazin türevleri vardır. N atomu üzerindeki ortaklanmamış bir çift elektron ile alkil karbonu tepkimeye girerek alkil C ile N atomu arasında bir çift bağ oluşturur. Hidrazonların koordinasyon yetenekleri, farmakolojik aktiviteleri, antibakteriyel antifungal özelliklerinden dolayı, yapıları çok iyi bir şekilde araştırılmıştır. 1952 yılında salisilaldehit benzoilhidrazon'un bakteriyostatik özelliklere sahip olduğu gösterilmiş (Offe, 1988), 1982'de salisilaldehit benzoilhidrazon içeren bir dizi üç dişli ONO hidrazonlarının demir şelatlaştırıcı ilaçlar olduğu tahmin edilmiştir (Johnson vd, 1982a). Ayrıca salisilaldehit benzoilhidrazon bileşiğinin çok çeşitli insan ve hayvan hücrelerinin gelişiminde ve DNA sentezinde nadiren kullanılan güçlü bir inhibitör olduğu da belirlenmiştir (Johnson vd, 1982b; Pickart vd, 1983).

Şekil 2.5. Hidrazinden sentezlenen hidrazon ve azinler

Şekil 2.6. Hidroksil aminden sentezlenen oksimler (Oksi-İminler)

Şekil 2.7. Amino asitlerden sentezlenen iminler

Şekil 2.8. Sübstitüe aromatik aminlerden sentezlenen iminler

2.5. Schiff Bazlarının Oluşum Mekanizması

İmin oluşumunun mekanizması, iki basamaklı bir işlemdir. İlk basamak, nükleofilik aminin kısmi pozitif yük taşıyan karbonil karbonuna katılması, sonra azotun bir proton kaybetmesi ve oksijene bir proton bağlanmasıdır (Fessenden vd, 2001).

Şekil 2.9. Schiff bazı oluşum mekanizması birinci basamağı

2. basamakta ise, protonlanmış olan OH grubu su olarak ayrılır.

Şekil 2.10. Schiff bazı oluşum mekanizması ikinci basamağı

İmin oluşumu pH'a bağımlı bir tepkimedir. İlk basamak, protonlanmamış serbest aminin karbonil grubuna katılmasıdır. Şayet çözelti çok asidik olursa, amin derişimi ihmal edilecek kadar azalır. Böyle olduğunda, normalde hızlı olan katılma basamağı yavaşlar ve tepkime dizisinde hız belirleyen basamak haline gelir (Fessenden vd, 2001).

Şekil 2.11. Asit ortamında aminlerin davranışı

Tepkimedeki ikinci basamak, protonlanmış OH grubunun su olarak ayrılmasıdır. İlk basamağın (amin katılması) aksine, asit derişiminin artması ikinci basamağın hızını arttırır. OH kuvvetli bir baz ve zor ayrılabilen bir grup iken, $-OH_2$ zayıf baz ve iyi ayrılabilir grup olup, H_2O şeklinde kolayca ayrılabilir.

Asitliğin yüksek olması, 2. basamağın daha hızlı, fakat 1. basamağın daha yavaş yürümesine neden olur. Buna karşılık asitliğin azalmasıyla, 1. basamak daha hızlı, 2. basamak ise daha yavaş yürür. En uygun pH, bu iki aşırı ucun arasındaki pH'tır (pH=3-4). Uygun pH'ta tepkimenin toplam hızı en yüksek olur. Bu pH'ta aminin bir kısmı protonlanmıştır, ancak nükleofilik katılma tepkimesini başlatabilmek için yeterli miktarda serbest amin de bulunmaktadır. Bu pH'ta yeterli hızda ayrılmanın gerçekleşebilmesi için de istenen asit vardır (Fessenden vd, 2001).

2.6. Schiff Bazlarında Tautomerizm

Schiff bazlarının yapısına etki eden bir faktör de indüktif etkidir. Bu bileşiklerde hem azot hem de karbon atomu sübstitüe olabileceğinden karbonil bileşiklerinde görülmeyen bir tautomeri ortaya çıkmaktadır. Orto hidroksi grup içeren aldehitlerden oluşan Schiff bazlarında fenol-imin, keto-amin olmak üzere iki tip tautomerik form gözlenir. Bu tip tautomerik formun varlığı ¹³C-NMR, ¹H-NMR, UV-vıs. spektroskopik yöntemleri ve X ışınları kristallografisi çalışmaları ile belirlenmiştir (Nazır, 2000; Ünver, 2001).

Schiff bazları genellikle çözelti içerisinde enol-imin tautomerleşmesi yaparlar ve bu moleküller, molekül içi ve moleküller arası hidrojen bağı yaparak tautomer dengeleri gösterirler (Ünver, 2010).

Şekil 2.12. Schiff bazlarının enol-imin ve keto-amin tautomerleri

3-Hidroksi-2-naftaldehit'ten oluşan Schiff bazlarında fenol-imin tautomerik formu baskınken, 2-hidroksi-1-naftaldehit'ten oluşan Schiff bazlarında keto-amin tautomerik formunun baskın olduğu görülmüştür(Costamagna, 1992).

Şekil 2.13. 3-Hidroksi-2-naftaldehit'ten oluşan fenol-imin baskın tautomerik formu 3-hidroksi-2-naftaliden

Şekil 2.14. 2-Hidroksi-1-naftaldehit'ten oluşan keto-amin baskın tautomerik formu 2hidroksi-1-naftaliden

2.7. Schiff Bazlarında Hidrojen Bağı

Schiff bazları ilginç fiziksel ve biyolojik özelliklere sahiptir ve buda proton transfer denge ve molekül içi hidrojen bağı göstermelerine bağlıdır. Hidrojen bağı çeşitleri kullanılan aldehit veya ketona bağlı olup, molekülün stereokimyasına ve imino (N) atomundaki substitüente bağlı değildir. Aromatik halkadaki substitüentler konformasyon ve hidrojen bağ enerjisini etkiler (Gavranić vd, 1996).

Hidrojen bağının varlığı FT-IR, ¹H-NMR gibi spektroskopik analizlerlede kanıtlanmıştır. Örneğin FT-IR spektrumlarında hidrojen bağı yapmamış bileşiklerde 3600 cm⁻¹'de görülen (-OH) gerilme titreşimi, hidrojen bağı oluşturmuş bileşiklerde 2300-3300 cm⁻¹ arasında geniş bir bölgeye yayılmış olarak gözlenir (Freedman, 1961). Kaynaklarda yapılan araştırmalara göre azometin grubu üzerinde yer alan alkil veya aril gruplarının sterik olarak birbirlerini itmesi moleküldeki hidrojen bağının güçlenmesine neden olmaktadır. Bu durum, sterik itme sonucu moleküldeki

şelat halkasının düzlemselliğinin artması ile daha uygun konumda hidrojen bağı oluşmasına imkan tanımasının bir sonucudur (Filarowski vd, 1999).

o-Hidroksi aromatik aldehit, *o*-Hidroksi aminlerden hazırlanan Schiff Bazlarında hidrojen bağının OH...O şeklinde olduğu ve OH gurubu bulundurmayan Schiff Bazları ile aynı veya yakın bazik özelliğe sahip olduğu görülmüştür. OH...N hidrojen bağı oluşturan tek OH grubuna sahip Schiff bazlarında ise, iki OH grubunu bulunduran ve hiç bulundurmayan Schiff bazlarına göre bazlık kuvvetlerinin azaldığı görülmüştür (Salman vd, 1991).

Şekil 2.15. Hidrojen bağı yapmış enol-imin ve keto-amin tautomer yapıları

2.8. Schiff Bazlarının Kimyasal Tepkimeleri

2.8.1. Hidroliz Tepkimeleri

Schiff bazı sentezindeki tepkime basamakları tersinirdir ve Schiff bazlarının hidroliziyle baslangıç maddelerinin (karbonil bileşiği ve aminler) elde edilmesi mümkündür. Hidroliz gerçekleşirken ilk basamakta ara ürün olan karbinolamin oluşur ve ikinci basamakta karbinolamin parçalanarak reaksiyon ürünleri olan aldehit veya keton ile amini meydana getirir. Hidroliz tepkimesinin hızı [H⁺] derişimine bağlıdır ve hidroliz tepkimelerinin genellikle asit katalizörlüğünde gerçekleştiği söylenebilir (Fessenden vd, 2001).

Şekil 2.16. Schiff bazı hidroliz tepkimesi

Şekil 2.17. Schiff bazının asidik ortamda hidroliz tepkimesi mekanizması

2.8.2. İndirgenme Tepkimeleri

İminlerin, Schiff bazlarının, hidrazonların ve diğer C=N bağı içeren maddelerin NaBH₄, Na-EtOH, hidrojen katalizör ve diğer indirgeyici etkenlerle indirgenebildiği çalışmalarıda yapılmıştır (Rylander, 2012).

Şekil 2.18. Schiff bazının indirgenme tepkimesi

2.8.3. Kompleks Oluşumu

Metal komplekslerinin sentezinde üç yöntem kullanılmaktadır. Bunlar sırasıyla; Metal tuzu ile Schiff bazının doğrudan etkileşmesi (March, 1992), Aldehit, amin ve metal tuzunun kalıp olarak kondenzasyonu (Fernández-G vd, 2001), aldehito komplekslerinin aminlerle kondenzasyonudur (Krygowski vd, 1997).

Schiff bazları, karbonil bileşiklerinin oluşturduğu komplekslere benzer kompleks oluşumu gösterirler. Metallerle karakteristik halka oluşumuna sahiptirler. Halka bir ya da iki çift bağ içerir. Örnek olarak salisilaldehit iminlerinin metallerle oluşturduğu kompleks verilebilir.

Şekil 2.19. Schiff bazlarının kompleks oluşturma tepkimeleri

Schiff bazlarının metallerle oluşturduğu kompleks bileşiklerinin çoğu boyarmadde özelliği göstermektedir. Örneğin, 2-piridinkarbaldehit ve 2hidroksianilinden meydana gelen (2-piridilmetilenamino)fenolün Ni⁺² ve Cr⁺³ ile oluşturduğu kompleksler boyar madde özelliği gösteren bileşiklerdir (Grabarić vd, 1993; Papić vd, 1994).

2.8.4. Halka Kapanma Tepkimeleri

Schiff bazları tiyoglikonik asit ve tiyolaktik asitle halka kapanması sonucu tiyazolidinon türevlerini oluşturmaktadır (Aydogan vd, 2001).

Siklohekza-1,4-diendiol radikalik halka kapanması sonucunda yeni bir beşli halka oluşmuştur. Bu bileşik üzerindeki fonksiyonel gruplar değiştirilerek oluşan ürünün verimi arttırılmıştır (Elliott ve El Sayed, 2005).

Şekil 2.20. Schiff bazlarının halka kapanma tepkimeleri

2.8.5. Polimerleşme Tepkimeleri

Aromatik aldehitler, alifatik veya aromatik ketonlar, aminlerle oldukça kararlı azometinleri verirler. Buna karşılık –CH₂CH=N– grubu içeren primer aldehit azometinleri kolaylıkla aldol tipi kondenzasyon tepkimeleri verirler. Bu yüzden bu gibi aldehitlerin aminlerle tepkimelerinde genellikle polimerleşme görülür.

Diaminlerle dialdehitin tepkimeye girmesi sonucunda poli Schiff bazları elde edilebilmektedir (Catanescu vd, 2001).

Şekil 2.21. Poli Schiff bazlarının oluşum tepkimeleri

2.8.6. Zn ve Haloesterlerle Tepkimeleri

Schiff Bazları Zn ve haloesterlerle oda sıcaklığında muamelesi sonucunda β -laktamlar elde edilir (March, 1992).

Şekil 2.22. Schiff bazların Zn ve haloesterlerle tepkimeleri

2.8.7. HCN ile Tepkimeleri

Schiff bazlarına hidrojen siyanür (HCN) katılması tepkimesi hızlı gerçekleşen bir tepkimedir ve amino nitrillerin oluşmasını sağlar (March, 1992).

X=H, R, Ar, OH, NH-Ar

Şekil 2.23. Schiff bazlarına HCN katılma tepkimesi

2.8.9. H₂S ile Tepkimeleri

Schiff bazlarının H₂S ile muamelesi sonucunda geminal ditiyoller elde edilmektedir (March, 1992).

Şekil 2.24. Schiff bazların H₂S ile tepkimeleri

2.8.10. Fosforanlarla Tepkimeleri

Schiff bazları fosforanlarla tepkimesi sonucu alkenleri oluştururlar (March, 1992).

Şekil 2.25. Schiff bazların fosforanlarla tepkimeleri

2.8.11. Diazometanla Tepkimeleri

Schiff bazlarına dioksan-su karışımında (NiO₂) katalizörü yanında diazometan katılırsa karşılık gelan 1,2,3-triazolinler meydana gelir. 1,2,3-triazolin türevleri üçüncül-butilamonyum klorür ve potasyum permanganatın benzen-su karışımında yaklaşık 4 saat geri soğutucu altında kaynatılması halinde 1,2,3-triazollere dönüşür (Erşahin, 2007).

Şekil 2.26. Schiff bazların diazometanla tepkimesi

2.8.12. Alkollerle Tepkimeleri

Schiff bazlarının alkollerle tepkimesi iki basamakta gerçekleşir. İlk basamakta ürün olarak karbonilamin eter oluşmaktadır ve geri dönüşümlüdür. Asit katalizörlüğünde alkolizasyon devam ettirildiğinde geri dönüşümsüz olan ikinci basamakta ürün olarak asetal ve amin tuzu elde edilebilir (Duman, 2007).

Şekil 2.27. Schiff bazlarının alkollerle tepkimesi

2.8.13. Kenetlenme Tepkimeleri

Azo grubunu oluşturmak için yapılan kenetlenme tepkimesine azo kenetlenmesi de denilir. Bu tepkime, aromatik birincil aminden oluşmuş bir diazonyum tuzu ile -OH,
-NH₂, NH(R) gibi bir grup taşıyan aromatik yapıdaki kenetleme bileşeninin karşılıklı etkileşimi sonucu oluşur. Yukarıdaki tanımlamaya göre sentez, diazolandırma ve kenetlenme olmak üzere iki aşamada gerçekleşir.

Schiff bazları diazonyumtetrafloroborat tuzlarıyla tepkimeye girerek karşılık gelen azo-azometin bileşiklerini oluştururlar (Fishwick vd, 1991; Karaer, 1997).

Şekil 2.28. Schiff bazlarının kenetlenme tepkimeleri

2.8.14. Siklokatılma Tepkimeleri

Siklo katılma tepkimeleri polisiklik ve heterosiklik bileşiklerin sentezinde kullanılan önemli bir yöntemdir. Siklo katılma tepkimeleri kimyasal perisiklik tepkimeler olarak da tanımlanabilirler (Noorizadeh ve Maihami, 2006).

Şekil 2.29. Diels-Alder tepkimesi

1,3-dipolar siklo katılma tepkimeleri şeklinde iki ana gruba ayrılmaktadır.Bu tip tepkimelerde 2 π bağı koparken 2 yeni σ bağı oluşur. Tepkimede itici güç, oluşan yeni σ bağlarının, π bağlarına göre daha kararlı olmasıdır. Schiff bazları keton ile siklo katılma tepkimesi sonucunda β -laktamları meydana getirirler (March, 1992).

Şekil 2.30. Schiff bazlarının keton ile siklo katılma tepkimeleri

2.8.15. Organometalik Bileşiklerle Tepkimeleri

Metal-karbon bağı içeren bileşikler organometalik olarak adlandırılırlar. Bu tür bileşikler RM genel yapısı ile gösterilir. Bu tür bileşiklerden en fazla kullanılanları Grignard olarak bilinen R-MgX, organolityum olarak bilinen R-Li ve organoçinko olarak bilinen R-ZnX bileşikleridir (Jenkins, 1992).

Grignard reaktifleri nitrillerle ketiminleri oluşturmak için tepkime verebilirler.

Şekil 2.31. Nitrillerin grignard bileşikleri ile tepkimeleri

C-klor-*N*-benzilideanilinlerdeki klor atomunun Grignard reaktifinin aril veya alkil grubuyla yer değiştirmesi sonucu yüksek verimle iminler elde edilebilmektedir.

Şekil 2.32. Grignard bileşiğinin aril veya alkil grubuyla yer değiştirme tepkimesi

Aromatik aldehitlerin oksimleri ile Grignard reaktiflerinin tepkimesi sonucu ana ürün olarak benzilamin elde edilirken, yan ürün olarak ketiminler elde edilebilmektedir.

Şekil 2.33. Aromatik aldehitlerin Grignard bileşikleri ile tepkimeleri

N-kloroiminlere Grignard reaktiflerinin eter ortamında yavaşca eklenmesi %50 imin ve %20 verimle nitril elde edilmesiyle sonuçlanmaktadır (Duman, 2007).

Şekil 2.34. N-kloroiminlere Grignard reaktiflerinin eter ortamında tepkimesi

2.9. Schiff Bazlarının Spektroskopik Özellikleri

Bu bölümde Schiff bazlarının IR Spektrumları, UV-vis. Spekrumları, NMR spektrumları ve X-Işını kırınımı verilecektir.

Şekil 2.35. Elektromanyetik dalga çeşitleri ve dalga boyları

2.9.1. Schiff Bazlarının IR Spektrumları

Azometin (>C=N-) grubunun soğurması 1689-1571 cm⁻¹ bölgeleri arasında gözlenmektedir. C=N gerilme titreşimi, değişken şiddette olmakla beraber, C=C gerilme titreşimlerinden daha şiddetlidir (Silverstein ve Bassler, 1962). O-hidroksi Schiff bazlarında keto yapısının delokalize π bağı taşıyan karbonil C=O grubundan kaynaklanan keskin soğurmaları 1600 cm⁻¹'den daha büyük değerde gözlenmektedir. 5-nitro-*N*-salisilidenetilamin üzerine yapılan çalışmalarda asetonitril içerisinde alınan spekturumda karbonil frekansının 1680 cm⁻¹ geldiği gösterilmiştir (Majerz vd, 2000). Bu da keto karakterin artmasıyla karbonil frekansının yükseldiğini göstermektedir. IR spektrumlarında azometin grubu dışında moleküle bağlı diğer grupların titreşimlerini de gözlemek mümkündür. Nitro grubunun bağlı olması durunda 1550-1500 cm⁻¹ ve 1360-1290 cm⁻¹ bölgesinde iki kuvvetli soğurma gösterir. Molekül içihidrojen bağlı sistemlerde 3200-2500 cm⁻¹ arasında zayıf ve yayvan bir pik meydanagelirken moleküller arası hidrojen bağlı sistemlerde 3550-3450 cm⁻¹ arasında soğurma gözlenmektedir. Aromatik C-H gerilme titreşimleri 3100-3000 cm ⁻¹ bölgesinde ortaya çıkarken aromatik C=C gerilme titreşimleri 1600-1585 cm⁻¹ ve 1500-1400 cm⁻¹ bölgesinde ve CH₂ için alifatik C-H asimetrik gerilmesi 2926 cm⁻¹ vesimetrik C-H gerilmesi 2853 cm⁻¹, CH₃ için asimetrik C-H gerilmesi 2962 cm⁻¹ vesimetrik C-H gerilmesi 2872 cm⁻¹ gözlenir. Aromatik halkaya klor bağlanmasıylaoluşan C-Cl bağı gerilme titreşimi 1096-1089 cm⁻¹, florun varlığında C-F gerilme titreşimi 1250-1100 cm⁻¹, C-Br gerilme titreşimi 1090-1025 cm⁻¹ ve C-I gerilme titreşimi de 1080-1025 cm⁻¹ aralığında gelmektedir (George ve McIntyre, 1987; Köksal, 1996; Silverstein ve Bassler, 1962).

2.9.2.Shiff Bazlarının X-Işını Kırınımı

Ümit Ceylan ve arkadaşları tarafından yapılan çalışmada 2-Ethyl-N-[(5nitrothiophen-2-yl)methylidene]aniline (C₁₃H₁₂N₂O₂S) Schiff bazının kristal yapı verileri; Kristal Sisteminin Monoclinic, Uzay Grubu *P*21/*c*, *a* = 11.3578 (4) A, *b* = 7.4923 (2) A, *c* = 14.9676 (6) A, Birim Hücre Parametreleri (Å) *β* = 99.589 (3)°, Birim Hücre Hacmi (Å³) *V* = 1255.89 (7), Birim Hücredeki Molekül Sayısı *Z* = 4, *F*(000) = 544, Hesaplanan Yoğunluk (Mg.m⁻³) *D*x = 1.377, Erime noktası= 385–387 K, X-ışını ve Dalga Boyu (Å) Mo *Ka*, λ = 0.71073, Parametre sayısı 18861, θ = 1.8– 28.0°, μ = 0.25 mm−1, *T* = 296 K, Boyut/Renk/Biçim 0.54 × 0.41 × 0.23 mm, Prizma, sarı, Veri Toplama *T*min = 0.866, *T*max = 0.954, Gözlenen yansıma sayısı 12190, Bağımsız yansıma sayısı 2468, *R*int = 0.040, θ max = 26.0°, θ min = 1.8°, h, k, 1 Aralığı *h* = −13→13, *k* = −9→9, *l* = −18→18, Verilerin Arıtılması *R*[*F*2 > 2 σ (*F*2)] = 0.032, *wR*(*F*2) = 0.087, *S* = 1.05, Parametre sayısı 176 ölçülmüştür (Ceylan ve ark., 2016).

Şekil 2.36. 2-Ethyl-N-[(5-nitrothiophen-2-yl)methylidene]aniline (C₁₃H₁₂N₂O₂S) Schiff bazı bileşiği

2.9.3. Schiff bazlarının NMR spektrumları

Yapılan çalışmalarda 2-hidroksi Schiff bazlarında δ =10-16 ppm' de gözlenen ikili yada geniş tekli OH pikleri ile δ =8-9 ppm' de gözlenen ikili H-C=N- piklerinin ketoamin formundan kaynaklandığı bulunmuştur. İkili pikin amin protonu (N-H) ile metin protonunun (=C-H) etkileşmesinden oluşan yarılmadan kaynaklandığı belirtilmiştir. Aşağıda verilen bileşiğin ¹H-NMR spektrumundan DMSO'da ketoamin formunda olduğu bulunmuştur. Bileşikteki serbest NH₂ protonları δ =4.60 ppm' de tekli pik olarak gözlenmiştir. Keto formundan dolayı NH ve =C-H protonları sırasıyla δ =15.64 ve δ =9.56 ppm'de ikili pik olarak gözlenmiştir. Naftil protonları δ =7.87-6.92 ppm' de çoklu pik olarak bulunmuştur. ArCH₃ protonları δ =2.08 ppm ve δ =2.01 ppm' de tekli pik olarak gözlenmiştir (Ünver, 2010).

Şekil 2.37. Fenol-imin ve Keto-amin taotomeri formu

Bileşiklerin ¹³C-NMR spektrumunda keto (C=O) formundaki karbonun kimyasal kayma değerlerinin, imin (CH=N) formundaki karbonun kimyasal kayma değerine göre daha yüksek olduğu bulunmuştur (Ünver, 2010).

Asiri ve arkadaşları tarafından yapılan çalışmada, ¹H-NMR spektrumunda Schiff bazlarının 8,69-9,79 ppm'de keskin singlet bir pik olarak azometin (-CH=N-) protonlarının varlığını tespit etmişlerdir. Aromatik halkadan kaynaklanan pikleri ise çoklu pikler halinde 6,37-8,46 ppm'de, ¹³C-NMR spektrumunda ise 111,00-119,94 ppm'de aromatik karbon atomlarını, 125,15-131,21 ppm'de ise azometin karbon atomlarının varlığını belirlemişlerdir (Asiri ve ark., 2013).

Golcu ve arkadaşları tarafından sentezlenen Schiff bazlarına ait elde edilen ¹H-NMR ve ¹³C-NMR verilerinde anilin halkası üzerindeki sübsitüe grupların belirgin bir kimyasal kayma göstermediği belirlenmiştir. Brom (Br) atomu bağlandığı zaman kuvvetli elektron çekici grupların etkisine göre proton sinyallerinin aşağı alana kaydığı tespit edilmiştir. *Orto* konumunda hidroksil grubu bulunan Schiff bazlarında moleküller içi hidrojen bağından dolayı 10,10-12,30 ppm'de hidroksil grubuna ait rezonans piki tespit edilmiştir (Golcu, 2005).

2.9.4. Schiff bazlarının UV spekrumları

Moleküler absorpsiyon spektroskopisinde bir çözeltinin absorbansının (A) veya geçirgenliğinin (T) ölçümü, 160-780 nm dalga boyları arasında ölçülmektedir. Bu absorpsiyon sonucu moleküllerdeki bağ elektronları uyarılır. Bu da; bir moleküldeki fonksiyonel grupların tanınmasında ve fonksiyonel grupları taşıyan bileşiklerin nicel olarak tayininde kullanılmakta ve organik moleküllerde π , σ ve n orbitalleri arasındaki elektron geçişlerinde görülmektedir. Organik moleküllerde dört tür elektronik geçiş görülmektedir. Bunlar, $\sigma \rightarrow \sigma^*$, $n \rightarrow \sigma^*$, $\pi \rightarrow \pi^*$ ve $n \rightarrow \pi^*$ dır. Ligandlarda $n \rightarrow \pi^*$, $\pi \rightarrow \pi^*$ geçişleri meydana gelirken, komplekslerdeki metalde $d \rightarrow d^*$ geçişleri ve ligantdan metale yük transfer geçişleri bulunmaktadır (Bal, 2010).

UV-vis. spektroskopisi de Schiff bazlarının bağ yapısı hakkında genel bir bilgi verebilmektedir. Bütün organik bileşikler 160-400 nm bölgesi mor ötesi, 400-780 nm bölgesinde ise görünür bölge ışımasını soğurmaktadır (Erdik, 2008).

Schiff bazlarındaki azometin grubunun 210-400 nm arasında iki absorpsiyon bandı verdiği görülür. $\pi \rightarrow \pi^*$ geçişine ait absorpsiyon pikleri ultraviyole alanda 200-272 nm aralığında gözlenirken; $n \rightarrow \pi^*$ geçişine ait pikler 280-400 nm aralığında gelmektedir. Mor ötesi bölgede absorpsiyon gösteren bu zayıf kromoforun (-HC=N-) absorpsiyon pikleri, metallerin ve bağlı grupların çeşitliliğine göre yer değiştirebilir. Örneğin fenil gruplarıyla konjugasyon absorpsiyon piklerini daha büyük dalga boyuna kaydırır. Bu yüzden aromatik aldehit ve ketonlardan oluşan türevler genellikle sarıdır (Aksu, 2001).

3. MATERYAL VE YÖNTEM

3.1. KullanılanKimyasallar

2,3-dihidroksibenzaldehit, 2-metoksianilin, 4-iodoanilin, 2-brom-3-metilanilin, 2amino-4-metilfenol, 2-fenoksianilin, 3-kloro-4-(4-klorofenoksi)anilin, 3-kloro-4metilanilin, 3,4-dimetoksibenzilamin, *N*-aminofitalamid, 2-tiyofenmetilamin, etil alkol, kloroform.

3.2. Kullanılan Cihazlar

- Erime noktası tayin cihazı Electrothermal -IA9200sentezlenen maddelerin E.N (mp) tayini için kullanıldı.
- Hassas terazi tüm hassas tartım işlemlerinde kullanıldı.
- Manyetik karıştırıcılı ısıtıcı sentez süreçlerinin gerçekleştirilmesi için kullanıldı.
- STOE IPDS II difraktometresi ve Oxford Difraction SuperNova (single Source at offset) Kristallerin yapılarının çözümlerinde kullanıldı.
- GBC CINTRA 20 UV-vis. spektrometresi,
- Nükleer magnetik rezonans spektrumları (¹H NMR), Bruker Ultra Shield Plus, ultra long hold time Magnet system 500 MHz 54 mm.

3.3. Schiff Bazı Bileşiklerinin Sentezi

3.3.1. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol Bileşiğinin (I) Sentezi (MT123)

50 mL'lik balon içerisinde 2,3-dihidroksibenzaldehit 13,8 mg (0,1 mmol) 10 mL mutlak etil alkolde çözüldü. Daha sonra üzerine 10 mL mutlak etil alkolde 3-kloro-4- (4-klorofenoksi)anilin 25,4 mg (0.1 mmol) çözülerek ilave edildi. Sonra çözelti 14 saat geri soğutucu altında kaynatıldı. Tepkime sonunda etil alkol buharlaştırıldı. Elde edilen (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiği etanol-kloroform (1:1) karışımında yavaş buharlaştırma yöntemiyle oda sıcaklığında kristallendirildi. Elde edilen kristalin yapısı IR, UV-vis, ¹H-NMR,¹³C-NMR ve X-1şını kırınımı metotlarıyla aydınlatıldı. Verim: %58, E.N.: 138-140°C.

Şekil 3.1. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) sentezi

Şekil 3.2. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) FT-IR spektrumu

FT-IR spektrumu (KBr pellet cm⁻¹): 3506 (z, O-H), 3068 (z, aromatik C-H), 1622 (ş, C=N), 1571 (ş, aromatik C=C), 1185 (ş, aromatik C-O), 1092 (o, C-Cl).ş: şiddetli, o: orta şiddetli, z: zayıf, y:yayvan.

Şekil 3.3. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) UV-vis spektrumu

UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 215, 273 nm.

Şekil 3.4. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) ¹H-NMR spektrumu

¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 13,28: (OH₈); 8,59: (H-C=N); 7,44-6,87: (Aromatik H); 5,73: (OH₉).

Şekil 3.5. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) ¹³C-NMR spektrumu

¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 162,98: (C₇); 155,56-118,20: (Aromatik C'lar); 76,98: (kloroform-d).

Şekil 3.6. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) ortep yapısı

Şekil 3.7. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiğinin (I) birim hücre yapısı

Çizelge 3.1.	(E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol
	bileşiğinin (I) kristal yapı verileri

Kristal Özellikleri		
Kimyasal Formül	$C_{19}H_{13}Cl_2NO_3$	
Molekül Ağırlığı (M _r)	374.20	
Kristal Sistemi	Triclinic	
Uzay Grubu	P1	
	a=8.747 (3), b=9.723 (3), c=10.927 (4)	
Birim Hücre Parametreleri (Å)	$\alpha(^{\circ})=90.37(3),\beta(^{\circ})=110.19(3),$	
	γ(°)= 100.35 (3)	
Birim Hücre Hacmi (Å ³)	855.6 (5)	
Birim Hücredeki Molekül Sayısı	2	
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.453	
Çizgisel Soğurma Katsayısı (mm ⁻¹)	0.40	
Boyut/Renk/Biçim	0,30x0,22x0,16/Kırmızı/Şekilsiz	

Veri Toplama

Veriler STOE IPDS-2 kırınımmetre sisteminde ω-taraması yöntemi ile toplandı.

X-ışını ve Dalga Boyu (Å)	MoK _α , λ=0,71073 Å
Monokromatör	Grafit
Veri toplama sıcaklığı	293 K

F ₀₀₀	384
Gözlenen yansıma sayısı	13018
Bağımsız yansıma sayısı	3535
Soğurma düzeltmesi	İntegrasyon
Geçirgenlik Faktörü	T _{min} =0,8772, T _{max} =0,9679
R _{int}	0.045

Verilerin Arıtılması

Kullanılan Programlar	SHELXS97, SHELXL97	
Yapı Çözülmesi	Direkt Metotlar	
Yapı Arıtımı	Tam matris (F ²)'ye göre	
Ağırlık Fonksiyonu	$1/\sigma(F^2)$	
Hidrojen Atomlarının Yerleştirilmesi	Geometrik ve izotropik arıtım	
h, k, l Aralığı	-10 <h<10, -12<k<11,="" -13<l<13<="" td=""></h<10,>	
Parametre Sayısı	231	
$S(F^2)$	0.86	
R	0.043	
wR ₂	0.100	
$\Delta \rho_{\rm max}, \ \Delta \rho_{\rm min} \ ({\rm e}/{\rm \AA}^3)$	0,40, -0,39	

Çizelge 3.2. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol bileşiği (I) için bağ uzunlukları, bağ açıları ve torsiyon açıları

Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı	Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı
Cl1—C1	1.748 (2)	C1—C2	1.364 (3)
Cl2—C12	1.730 (2)	C1—C6	1.369 (3)
O3—C4	1.380 (3)	C2—H2A	0.9300
O3—C7	1.394 (2)	C5—C6	1.376 (3)
O2—C19	1.340 (3)	С5—Н5	0.9300
O2—H2	0.94 (3)	C14—C15	1.401 (3)
N1—C13	1.267 (3)	C14—C13	1.442 (3)
N1—C10	1.424 (3)	С9—С8	1.371 (3)
O1—C18	1.359 (3)	С9—Н9	0.93
O1—H1A	0.8200	C11—C12	1.378 (3)
C4—C3	1.370 (3)	C11—H11	0.93
C4—C5	1.371 (3)	C18—C17	1.363 (3)
C19—C14	1.392 (3)	С6—Н6	0.93
C19—C18	1.399 (3)	C8—H8	0.93
C10-C11	1.378 (3)	C17—C16	1.378 (4)
С10—С9	1.392 (3)	С17—Н17	0.93
С7—С8	1.364 (3)	С13—Н13	0.93

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C12	1.380 (3)	C15—C16	1.364 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2	1.373 (3)	C15—H15	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—Н3	0.9300	С16—Н16	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—O3—C7	118.29 (16)	C8—C9—C10	120.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С19—О2—Н2	105.8 (19)	С8—С9—Н9	120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—N1—C10	121.89 (19)	С10—С9—Н9	120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18—O1—H1A	109.5	C12—C11—C10	120.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C5	120.4 (2)	C12—C11—H11	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—O3	116.11 (19)	C10—C11—H11	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—O3	123.50 (18)	O1—C18—C17	119 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—C19—C14	122.38 (19)	O1—C18—C19	120.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—C19—C18	118.4 (2)	C17—C18—C19	120.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C19—C18	119.2 (2)	C11—C12—C7	120.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—C9	118.73 (19)	C11—C12—Cl2	120.3 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—N1	116.89 (19)	C7—C12—Cl2	119.55 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—N1	124.3 (2)	C1—C6—C5	119.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C7—C12	119.4 (2)	С1—С6—Н6	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C7—O3	119.6 (2)	С5—С6—Н6	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С12—С7—О3	120.8 (2)	С7—С8—С9	121.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—C2	119.9 (2)	С7—С8—Н8	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3	120.1	С9—С8—Н8	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	120.1	C18—C17—C16	120.9 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—C6	120.7 (2)	С18—С17—Н17	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C1—Cl1	119.87 (16)	С16—С17—Н17	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—Cl1	119.40 (19)	N1—C13—C14	123.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3	119.7 (2)	N1-C13-H13	118.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—H2A	120.2	C14—C13—H13	118.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—H2A	120.2	C16—C15—C14	121.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—C6	119.6 (2)	C16—C15—H15	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—H5	120.2	C14—C15—H15	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—С5—Н5	120.2	C15—C16—C17	119.5 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C14—C15	118.9 (2)	C15—C16—H16	120.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C14—C13	120.8 (2)	C17—C16—H16	120.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—C14—C13	120.3 (2)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—O3—C4—C3	-178.9 (2)	O2—C19—C18—C17	-178.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—O3—C4—C5	0.1 (3)	C14—C19—C18—C17	-0.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—N1—C10—C11	-173.2 (2)	C10—C11—C12—C7	0.6 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—N1—C10—C9	3.3 (3)	C10—C11—C12—Cl2	-177.22 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—O3—C7—C8	97.1 (2)	C8—C7—C12—C11	0.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—O3—C7—C12	-87.5 (3)	O3—C7—C12—C11	-174.6 (2)
O3-C4-C3-C2 $-179.1 (2)$ $O3-C7-C12-C12$ $3.2 (3)$ $C6-C1-C2-C3$ $-1.4 (4)$ $C2-C1-C6-C5$ $1.6 (4)$ $C11-C1-C2-C3$ $177.79 (19)$ $C11-C1-C6-C5$ $-177.60 (19)$ $C4-C3-C2-C1$ $-0.3 (4)$ $C4-C5-C6-C1$ $-0.1 (4)$ $C3-C4-C5-C6$ $-1.6 (4)$ $C12-C7-C8-C9$ $-0.7 (3)$	C5—C4—C3—C2	1.8 (4)	C8—C7—C12—Cl2	178.58 (18)
C6—C1—C2—C3 -1.4 (4)C2—C1—C6—C5 1.6 (4)Cl1—C1—C2—C3177.79 (19)Cl1—C1—C6—C5 -177.60 (19)C4—C3—C2—C1 -0.3 (4)C4—C5—C6—C1 -0.1 (4)C3—C4—C5—C6 -1.6 (4)C12—C7—C8—C9 -0.7 (3)	O3—C4—C3—C2	-179.1 (2)	O3—C7—C12—Cl2	3.2 (3)
Cl1—C1—C2—C3 177.79 (19) Cl1—C1—C6—C5 -177.60 (19) C4—C3—C2—C1 -0.3 (4) C4—C5—C6—C1 -0.1 (4) C3—C4—C5—C6 -1.6 (4) C12—C7—C8—C9 -0.7 (3)	C6—C1—C2—C3	-1.4 (4)	C2—C1—C6—C5	1.6 (4)
C4-C3-C2-C1-0.3 (4) $C4-C5-C6-C1$ -0.1 (4) $C3-C4-C5-C6$ -1.6 (4) $C12-C7-C8-C9$ -0.7 (3)	Cl1—C1—C2—C3	177.79 (19)	Cl1—C1—C6—C5	-177.60 (19)
C3—C4—C5—C6 -1.6 (4) C12—C7—C8—C9 -0.7 (3)	C4—C3—C2—C1	-0.3 (4)	C4—C5—C6—C1	-0.1 (4)
	C3—C4—C5—C6	-1.6 (4)	С12—С7—С8—С9	-0.7 (3)

O3—C4—C5—C6	179.4 (2)	O3—C7—C8—C9	174.7 (2)
O2—C19—C14—C15	179.6 (2)	С10—С9—С8—С7	-0.6 (4)
C18—C19—C14—C15	1.3 (4)	O1—C18—C17—C16	179.8 (3)
O2—C19—C14—C13	2.1 (4)	C19—C18—C17—C16	-1.1 (4)
C18—C19—C14—C13	-176.1 (2)	C10-N1-C13-C14	173.3 (2)
С11—С10—С9—С8	1.9 (3)	C19—C14—C13—N1	-0.4 (4)
N1-C10-C9-C8	-174.5 (2)	C15—C14—C13—N1	-177.8 (3)
C9—C10—C11—C12	-1.9 (3)	C19—C14—C15—C16	-1.4 (5)
N1-C10-C11-C12	174.8 (2)	C13—C14—C15—C16	176.1 (3)
O2—C19—C18—O1	0.6 (3)	C14—C15—C16—C17	0.2 (5)
C14—C19—C18—O1	178.9 (2)	C18—C17—C16—C15	1.1 (5)

3.3.2. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol Bileşiğinin (II) Sentezi (MT23)

50 mL'likbalon içerisinde 2,3-dihidroksibenzaldehit 13,8 mg (0,1 mmol) 10 mL mutlak etil alkolde çözüldü. Daha sonra üzerine 10 mL mutlak etil alkolde 4iyotanilin 21,9 mg (0.1 mmol) çözülerek ilave edildi. Sonra çözelti 14 saat geri soğutucu altında kaynatıldı. Tepkime sonunda etil alkol buharlaştırıldı. Elde edilen (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiği etanol-kloroform (1:1) karışımında yavaş buharlaştırma yöntemiyle oda sıcaklığında kristallendirildi. Elde edilen kristalin yapısı IR, UV-vis, ¹H-NMR,¹³C-NMR ve X-ışını kırınımı metotlarıyla aydınlatıldı. Verim: %60, E.N.: 167-169°C.

Şekil 3.8. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) sentezi

Şekil 3.9. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) FT-IR spektrumu

FT-IR spektrumu (KBr pellet cm⁻¹): 3447 (ş, O-H), 3070 (z, aromatik C-H), 2981 (z, alifatik C-H), 2905 (z, C-N), 1622 (ş, C=N), 1575 (ş, aromatik C=C), 1202 (ş, aromatik C-O), 1033 (o, C-I). ş: şiddetli, o: orta şiddetli, z: zayıf, y:yayvan.

Şekil 3.10. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) UV-vis spektrumu

UV-vis. soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 206, 228, 285, 321nm.

Şekil 3.11. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) ¹H-NMR spektrumu

¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 13,45: (OH₈); 8,58: (H-C=N); 7,75-6,83: (Aromatik H); 5,74: (OH₉).

Şekil 3.12. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) ¹³C-NMR spektrumu

¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 162,77: (C₇); 148,99-118,02: (Aromatik C'lar); 91,66: (C₁₃); 76,99: (kloroform-d).

Şekil 3.13. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) ortep yapısı

Şekil 3.14. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) birim hücre yapısı

Kristal Özalliklari			
	Kristai Užellikieri		
Kimyasal Formül	$C_{13}H_{10}INO_2$		
Molekül Ağırlığı (M _r)	339.12		
Kristal Sistemi	Triclinic		
Uzay Grubu	P1		
Dinim II:: ano Donomostroloni (Å)	a=6.047 (3), b=8.932 (3), c=12.312 (5)		
Birnin Hucre Parametrelen (A)	$\alpha(^{\circ})=86.40(3), \beta(^{\circ})=83.86(4), \gamma(^{\circ})=68.88(3)$		
Birim Hücre Hacmi (Å ³)	616.5 (5)		
Birim Hücredeki Molekül Sayısı	2		
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.827		
Çizgisel Soğurma Katsayısı (mm ⁻¹)	2.59		
Boyut/Renk/Biçim	0,720x0,333x0,09/Kırmızı/Şekilsiz		

Çizelge 3.3. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (II) kristal yapı verileri

Veri Toplama

Veriler STOE IPDS-2 kırınımmetre sisteminde ω-taraması yöntemi ile toplandı

X-ışını ve Dalga Boyu (Å)	MoK _α , λ=0,71073 Å
Monokromatör	Grafit
Veri toplama sıcaklığı	293 K
F ₀₀₀	328
Gözlenen yansıma sayısı	8024
Bağımsız yansıma sayısı	2556
Soğurma düzeltmesi	İntegrasyon
Geçirgenlik Faktörü	T_{min} =0,3918, T_{max} =0,7797
R _{int}	0,094

Verilerin Arıtılması

Kullanılan Programlar	SHELXS97, SHELXL97
Yapı Çözülmesi	Direkt Metotlar
Yapı Arıtımı	Tam matris (F ²)'ye göre
Ağırlık Fonksiyonu	$1/\sigma(F^2)$
Hidrojen Atomlarının Yerleştirilmesi	Geometrik ve izotropik arıtım
h, k, l Aralığı	-7 <h<7, -11<k<11,="" -15<l<15<="" td=""></h<7,>
Parametre Sayısı	156
$S(F^2)$	0,97
R	0,039

wR ₂	0,110
$\Delta \rho_{\rm max}$, $\Delta \rho_{\rm min}$ (e/Å ³)	1,00,-0,76

Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı	Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı
I1—C11	2.090 (4)	C2—C3	1.379 (6)
O1—C1	1.359 (5)	C13—C12	1.385 (6)
O1—H1	0.8200	С13—Н13	0.9300
O2—C2	1.367 (5)	C3—C4	1.396 (6)
O2—H2	0.8200	С3—Н3	0.9300
N1—C7	1.277 (6)	C11—C12	1.376 (7)
N1—C8	1.406 (5)	C11—C10	1.387 (7)
C8—C13	1.386 (6)	C4—C5	1.359 (6)
С8—С9	1.398 (7)	C4—H4	0.9300
C1—C2	1.389 (5)	С5—Н5	0.9300
C1—C6	1.394 (6)	C9—C10	1.368 (6)
С7—С6	1.455 (6)	С9—Н9	0.9300
С7—Н7	0.9300	C10—H10	0.9300
C6—C5	1.407 (6)	С12—Н12	0.9300
C1—O1—H1	109.5	C2—C3—C4	119.7 (4)
С2—О2—Н2	109.5	С2—С3—Н3	120.2
C7—N1—C8	119.7 (4)	С4—С3—Н3	120.2
C13—C8—C9	118.6 (4)	C12—C11—C10	120.1 (4)
C13—C8—N1	122.3 (4)	C12—C11—I1	119.6 (3)
C9—C8—N1	118.9 (4)	C10-C11-I1	120.2 (3)
O1—C1—C2	117.8 (3)	C5—C4—C3	121.0 (4)
O1—C1—C6	122.3 (3)	C5—C4—H4	119.5
C2—C1—C6	119.8 (4)	C3—C4—H4	119.5
N1—C7—C6	121.8 (4)	C4—C5—C6	119.8 (4)
N1—C7—H7	119.1	C4—C5—H5	120.1
С6—С7—Н7	119.1	С6—С5—Н5	120.1
C1—C6—C5	119.5 (4)	С10—С9—С8	120.7 (4)
C1—C6—C7	120.5 (4)	С10—С9—Н9	119.7
C5—C6—C7	120.0 (4)	С8—С9—Н9	119.7
O2—C2—C3	118.6 (4)	C9—C10—C11	120.1 (4)
O2—C2—C1	121.2 (4)	C9—C10—H10	120.0
C3—C2—C1	120.2 (4)	C11—C10—H10	120.0
C12—C13—C8	120.7 (4)	C11—C12—C13	119.8 (4)
C12—C13—H13	119.6	C11—C12—H12	120.1
C8—C13—H13	119.6	C13—C12—H12	120.1
C7—N1—C8—C13	45.7 (6)	O2—C2—C3—C4	178.1 (4)
C7—N1—C8—C9	-139.9 (4)	C1—C2—C3—C4	-1.9 (7)
C8—N1—C7—C6	-174.6 (4)	C2—C3—C4—C5	-0.2 (7)

Çizelge 3.4.	(E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiği (II) için bağ
	uzunlukları, bağ açıları ve hidrojen bağları

O1—C1—C6—C5	179.4 (4)	C3—C4—C5—C6	0.8 (7)
C2—C1—C6—C5	-2.9 (6)	C1—C6—C5—C4	0.8 (7)
O1—C1—C6—C7	-1.9 (6)	C7—C6—C5—C4	-177.9 (4)
C2—C1—C6—C7	175.8 (4)	C13—C8—C9—C10	-3.3 (7)
N1-C7-C6-C1	3.2 (7)	N1—C8—C9—C10	-178.0 (4)
N1—C7—C6—C5	-178.2 (4)	C8—C9—C10—C11	2.2 (7)
O1—C1—C2—O2	1.3 (6)	C12—C11—C10—C9	-0.2 (7)
C6—C1—C2—O2	-176.5 (4)	I1—C11—C10—C9	177.2 (4)
O1—C1—C2—C3	-178.7 (4)	C10-C11-C12-C13	-0.7 (7)
C6—C1—C2—C3	3.4 (6)	II—C11—C12—C13	-178.1 (3)
C9—C8—C13—C12	2.4 (7)	C8—C13—C12—C11	-0.4 (7)
N1—C8—C13—C12	176.9 (4)		

3.3.3. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol Bileşiğinin (III) Sentezi (MT24)

50 mL'likbalon içerisinde 2,3-dihidroksibenzaldehit 13,8 mg (0,1 mmol) 10 mL mutlak etil alkolde çözüldü. Daha sonra üzerine 10 mL mutlak etil alkolde 3-brom-4metilanilin 18,6 mg (0.1 mmol) çözülerek ilave edildi. Sonra çözelti 14 saat geri soğutucu altında kaynatıldı. Tepkime sonunda etil alkol buharlaştırıldı. Elde edilen (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiği etanol-kloroform (1:1) karışımında yavaş buharlaştırma yöntemiyle oda sıcaklığında kristallendirildi. Elde edilen kristalin yapısı IR, UV-vis, ¹H-NMR,¹³C-NMR ve X-ışını kırınımı metotlarıyla aydınlatıldı. Verim: %56, E.N.: 134-136°C.

Şekil 3.15. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) sentezi

Şekil 3.16. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) FT-IR spektrumu

FT-IR spektrumu (KBr pelletcm⁻¹): 3345 (y, O-H), 3048 (z, aromatik C-H); 2990 (z, alifatik C-H), 1613 (ş, C=N), 1567 (ş, aromatik C=C), 1202 (ş, aromatik C-O), 1079 (z, C-Br). ş: şiddetli, o: orta şiddetli, z: zayıf, y:yayvan.

Şekil 3.17. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) UV-vis spektrumu

UV-vis. soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 207, 224, 300 nm.

Şekil 3.18. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) ¹H-NMR spektrumu

¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 13,51: (OH₈); 8,57: (H-C=N); 7,76-6,84: (Aromatik H); 5,75: (OH₉); 2,46: (CH₃).

Şekil 3.19. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) ¹³C-NMR spektrumu

¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 162,49: (C₇); 148,97-117,87: (aromatik C'lar); 27,55: (C₁₈).

Şekil 3.20. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) ortep yapısı

Şekil 3.21. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) birim hücre yapısı

Kristal Özellikleri		
Kimyasal Formül	C ₁₄ H ₁₂ BrNO ₂	
Molekül Ağırlığı (M _r)	306.16	
Kristal Sistemi	Triclinic	
Uzay Grubu	P1	
Birim Hücre Parametreleri (Å)	a=7.168 (4), b=8.158 (5), c=11.908 (7)	
	α(°)=103.52 (4), β(°)=100.38 (5),γ(°)=94.50 (5)	
Birim Hücre Hacmi (Å ³)	660.7 (7)	
Birim Hücredeki Molekül Sayısı	2	
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.236	
Çizgisel Soğurma Katsayısı (mm ⁻¹)	3.10	
Boyut/Renk/Biçim	0,600x0,251x0,033/kırmızı/Prizmatik	

Çizelge 3.5. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiğinin (III) kristal yapı verileri

Veri Toplama

Veriler STOE IPDS-2 kırınımmetre sisteminde ω-taraması yöntemi ile toplandı

X-ışını ve Dalga Boyu (Å)	MoK _α ,λ=0,71073 Å
Monokromatör	Grafit
Veri toplama sıcaklığı	293 K
F ₀₀₀	256
Gözlenen yansıma sayısı	7275
Bağımsız yansıma sayısı	2461
Soğurma düzeltmesi	İntegrasyon
Geçirgenlik Faktörü	T_{min} =0,9022, T_{max} =0,9855
R _{int}	0.091

Verilerin Arıtılması

Kullanılan Programlar	SHELXS97, SHELXL97
Yapı Çözülmesi	Direkt Metotlar
Yapı Arıtımı	Tam matris (F ²)'ye göre
Ağırlık Fonksiyonu	$1/\sigma(F^2)$
Hidrojen Atomlarının Yerleştirilmesi	Geometrik ve izotropik arıtım
h, k, l Aralığı	-8 <h<8, -13<l<14<="" -9<k<9,="" td=""></h<8,>
Parametre Sayısı	164
$S(F^2)$	1.12
R	0.222

wR ₂	0,059
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({\rm e}/{\rm \AA}^3)$	0.73, -0.71

Çizelge 3.6. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol bileşiği (III) için bağ uzunlukları, bağ açıları ve torsiyon açıları

Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Acısı	Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Acısı
Br1—C10	2.089 (6)	С13—Н13	0.9300
01	1.323 (9)	C11—C12	1.497 (11)
01—H1	0.8200	C14—H14	0.9300
N1—C7	1.302 (9)	C6—C5	1.400 (10)
N1—C8	1.411 (8)	C6—C1	1.418 (10)
O2—C2	1.401 (10)	C1—C2	1.404 (10)
O2—H2	0.8200	С2—С3	1.322 (12)
C9—C10	1.372 (9)	C5—C4	1.374 (11)
С9—С8	1.376 (10)	С5—Н5	0.9300
С9—Н9	0.9300	C3—C4	1.424 (12)
C8—C14	1.372 (9)	С3—Н3	0.9300
С7—С6	1.402 (10)	C4—H4	0.9300
С7—Н7	0.9300	C12—H12A	0.9600
C10—C11	1.389 (9)	C12—H12B	0.9600
C13—C14	1.388 (11)	C12—H12C	0.9600
C13—C11	1.400 (11)		
C1	109.5	C5—C6—C7	120.0 (6)
C7—N1—C8	126.5 (6)	C5—C6—C1	119.6 (6)
C2—O2—H2	109.5	C7—C6—C1	120.4 (6)
С10—С9—С8	120.1 (6)	O1—C1—C2	119.9 (6)
С10—С9—Н9	120.0	O1—C1—C6	122.2 (6)
С8—С9—Н9	120.0	C2—C1—C6	117.9 (7)
C14—C8—C9	120.0 (6)	C3—C2—O2	121.4 (7)
C14—C8—N1	123.7 (7)	C3—C2—C1	121.8 (7)
C9—C8—N1	116.3 (5)	O2—C2—C1	116.9 (7)
N1C7C6	122.1 (6)	C4—C5—C6	120.8 (7)
N1—C7—H7	118.9	C4—C5—H5	119.6
С6—С7—Н7	118.9	С6—С5—Н5	119.6
C9—C10—C11	121.9 (6)	C2—C3—C4	121.5 (7)
C9—C10—Br1	117.7 (4)	С2—С3—Н3	119.3
C11-C10-Br1	120.3 (5)	С4—С3—Н3	119.3
C14—C13—C11	121.3 (6)	C5—C4—C3	118.3 (8)
C14—C13—H13	119.3	C5—C4—H4	120.8
C11—C13—H13	119.3	C3—C4—H4	120.8
C10-C11-C13	116.9 (6)	C11—C12—H12A	109.5
C10-C11-C12	123.6 (8)	C11—C12—H12B	109.5
C13—C11—C12	119.5 (7)	H12A—C12—H12B	109.5

C8—C14—C13	119.8 (7)	C11—C12—H12C	109.5
C8—C14—H14	120.1	H12A—C12—H12C	109.5
C13—C14—H14	120.1	H12B-C12-H12C	109.5
С10—С9—С8—С14	-0.1 (9)	N1-C7-C6-C5	179.6 (6)
C10—C9—C8—N1	179.6 (6)	N1—C7—C6—C1	0.2 (9)
C7—N1—C8—C14	1.1 (10)	C5—C6—C1—01	-177.5 (6)
C7—N1—C8—C9	-178.7 (6)	C7—C6—C1—01	2.0 (9)
C8—N1—C7—C6	179.9 (6)	C5—C6—C1—C2	2.5 (9)
C8—C9—C10—C11	1.4 (9)	C7—C6—C1—C2	-178.0 (5)
C8—C9—C10—Br 1	178.6 (4)	01—C1—C2—C3	-179.8 (7)
C9—C10—C11—C13	-0.6 (9)	C6—C1—C2—C3	0.3 (10)
Br1-C10-C11-C13	-177.7 (5)	01—C1—C2—02	0.0 (9)
C9—C10—C11—C12	179.2 (7)	C6—C1—C2—02	-179.9 (6)
Br1-C10-C11-C12	2.2 (9)	C7—C6—C5—C4	177.3 (6)
C14—C13—C11—C10	-1.4 (10)	C1—C6—C5—C4	-3.2 (10)
C14—C13—C11—C12	178.7 (7)	02—C2—C3—C4	177.8 (6)
C9—C8—C14—C13	-1.9 (10)	C1—C2—C3—C4	-2.4 (11)
N1-C8-C14-C13	178.4 (6)	C6—C5—C4—C3	1.1 (11)
C11—C13—C14—C8	2.7 (11)	C2—C3—C4—C5	1.7 (11)

3.3.4. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion Bileşiğinin (IV) Sentezi (MT171)

50 mL'likbalon içerisinde 2,3-dihidroksibenzaldehit 13,8 mg (0,1 mmol) 10 mL mutlak etil alkolde çözüldü. Daha sonra üzerine 10 mL mutlak etil alkolde Naminofitalamid 16,2 mg (0.1 mmol) çözülerek ilave edildi. Sonra çözelti 14 saat geri soğutucu altında kaynatıldı. Tepkime sonunda etil alkol buharlaştırıldı. Elde edilen 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiği etanol-kloroform (1:1) karışımında yavaş buharlaştırma yöntemiyle oda sıcaklığında kristallendirildi. Elde edilen kristalin yapısı IR, UV-vis, ¹H-NMR, ¹³C-NMR ve X-ışını kırınımı metotlarıyla aydınlatıldı. Verim: %66, E.N.: 223-225°C.

Şekil 3.22. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin (IV) sentezi

Şekil 3.23. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin (IV) FT-IR spektrumu

FT-IR spektrumu (KBr pelletcm⁻¹): 3468 (z, O-H), 3032 (z, aromatik C-H), 2985 (z, alifatik C-H), 1715 (ş, C=O), 1635 (C=N), 1469 (o, aromatik C=C). ş: şiddetli, o: orta şiddetli, z: zayıf, y:yayvan.

Şekil 3.24. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin (IV) UV-vis spektrumu

UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 207, 224, 291 nm.

Şekil 3.25. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin (IV) ¹H-NMR spektrumu

¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 14,71: (OH₈); 8,62: (H-C=N); 7,26-6,71: (Aromatik H); 6,06: (OH₉).

Şekil 3.26. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin (IV) ¹³C-NMR spektrumu

¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 164,17: (C₇); 159,96: (C₄); 147,21: (C₁₈); 145,85: (C₁₇); 134,95-117,51: (Aromatik C'lar); 77,63: (Kloroform-d).

Şekil 3.27. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin (IV) ortep yapısı

Şekil 3.28. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin (IV) birim hücre yapısı

Kr	istal Ozellikleri	
Kimyasal Formül	$C_{15}H_{10}N_2O_4$	
Molekül Ağırlığı (M _r)	282.25	
Kristal Sistemi	Monoklinik	
Uzay Grubu	P2 ₁ /c	
Birim Hücre Parametreleri (Å)	a=20.564 (4), b=8.8161 (11), c=14.109 (3),	
	β(°)= 94.484 (16)	
Birim Hücre Hacmi (Å ³)	2550.1 (8)	
Birim Hücredeki Molekül Sayısı	8	
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.470	
Çizgisel Soğurma Katsayısı (mm ⁻¹)	0.11	
Boyut/Renk/Biçim	0,630x0,360x0,070/Sarı/Prizmatik	

Çizelge 3.7. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiğinin (IV) kristal yapı verileri

Veri Toplama

Veriler STOE IPDS-2 kırınımmetre sisteminde ω-taraması yöntemi ile toplandı

MoK _α , λ=0,71073 Å
Grafit
293 K
1168
34106
5271
İntegrasyon
T _{min} =0,3957, T _{max} =0,6271
0.103

Verilerin Arıtılması

Kullanılan Programlar	SHELXS97, SHELXL97
Yapı Çözülmesi	Direkt Metotlar
Yapı Arıtımı	Tam matris (F ²)'ye göre
Ağırlık Fonksiyonu	$1/\sigma(F^2)$
Hidrojen Atomlarının Yerleştirilmesi	Geometrik ve izotropik arıtım
h, k, l Aralığı	-25 <h<25, -11<k<11,="" -17<l<17<="" td=""></h<25,>
Parametre Sayısı	384
$S(F^2)$	1.00
R	0.068

wR ₂	0.154
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({\rm e}/{\rm \AA}^3)$	0,47, -0,18

Çizelge 3.8.	2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion bileşiği (IV) için bağ
	uzunlukları, bağ açıları ve torsiyon açıları

Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı	Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı
C20—C19	1.377 (8)	C10—C11	1.384 (5)
C20—C21	1.384 (7)	С10—С9	1.471 (5)
C20—H20	0.9300	C27—C28	1.368 (5)
O7—C26	1.358 (4)	C11—C12	1.428 (5)
O7—H7	0.8200	C25—C30	1.402 (5)
O1—C1	1.212 (3)	C25—C24	1.444 (5)
O8—C27	1.361 (4)	C6—C5	1.378 (5)
O8—H8	0.8200	С6—Н6	0.9300
O2—C8	1.213 (4)	C12—C13	1.350 (5)
N1—N2	1.390 (4)	С24—Н24	0.9300
N1—C1	1.400 (4)	C22—C17	1.372 (5)
N1—C8	1.415 (4)	C22—C21	1.378 (5)
O3—C11	1.341 (4)	C22—C23	1.475 (5)
О3—Н3	0.8200	C28—C29	1.379 (5)
O4—C12	1.347 (4)	С28—Н28	0.9300
O4—H4	0.8200	C13—C14	1.416 (5)
N2—C9	1.274 (4)	С13—Н13	0.9300
O6—C23	1.210 (4)	C4—C5	1.383 (5)
N3—N4	1.381 (4)	C4—H4A	0.9300
N3—C16	1.395 (5)	C30—C29	1.370 (5)
N3—C23	1.414 (5)	С30—Н30	0.9300
N4—C24	1.273 (4)	С5—Н5	0.9300
O5—C16	1.201 (5)	C17—C18	1.381 (5)
C1—C2	1.477 (5)	C17—C16	1.470 (5)
C2—C3	1.375 (5)	C14—C15	1.364 (5)
C2—C7	1.383 (4)	C14—H14	0.9300
С7—С6	1.379 (5)	С9—Н9	0.9300
С7—С8	1.475 (5)	C15—H15	0.9300
C26—C27	1.395 (5)	С29—Н29	0.9300
C26—C25	1.398 (5)	C21—H21	0.9300
C3—C4	1.390 (5)	C18—C19	1.378 (7)
С3—НЗА	0.9300	C18—H18	0.9300
C10—C15	1.365 (5)	C19—H19	0.9300
C19—C20—C21	121.8 (5)	N4—C24—C25	120.0 (3)
C19—C20—H20	119.1	N4—C24—H24	120.0
C21—C20—H20	119.1	C25—C24—H24	120.0
С26—О7—Н7	109.5	C17—C22—C21	121.5 (4)

С27—О8—Н8	109.5	C17—C22—C23	108.7 (3)
N2—N1—C1	117.2 (3)	C21—C22—C23	129.8 (4)
N2—N1—C8	130.9 (3)	C27—C28—C29	120.8 (3)
C1—N1—C8	111.9 (3)	C27—C28—H28	119.6
С11—О3—Н3	109.5	C29—C28—H28	119.6
C12—O4—H4	109.5	C12—C13—C14	120.9 (4)
C9—N2—N1	123.0 (3)	С12—С13—Н13	119.6
N4—N3—C16	130.1 (3)	C14—C13—H13	119.6
N4—N3—C23	118.3 (3)	O6—C23—N3	123.9 (4)
C16—N3—C23	111.5 (3)	O6—C23—C22	131.0 (4)
C24—N4—N3	120.2 (3)	N3—C23—C22	105.1 (3)
01—C1—N1	124.6 (3)	C5—C4—C3	120.8 (4)
01	129.9 (3)	C5—C4—H4A	119.6
N1—C1—C2	105.6 (3)	C3—C4—H4A	119.6
C3—C2—C7	121.7 (3)	C29—C30—C25	120.5 (4)
C_{3} — C_{2} — C_{1}	129.8 (3)	C29—C30—H30	119.8
C7-C2-C1	129.6(3) 108.5(3)	C25-C30-H30	119.8
C6-C7-C2	121.3(3)	C6-C5-C4	121.8 (3)
C6-C7-C8	121.3(3) 129.7(3)	С6—С5—Н5	119.1
$C^2 - C^7 - C^8$	129.7(3) 109.0(3)	C4—C5—H5	119.1
$07 - C^{2}6 - C^{2}7$	105.0(3) 1165(3)	$C^{22}-C^{17}-C^{18}$	122 1 (4)
$07 - C^{26} - C^{25}$	1237(3)	C^{22} C^{17} C^{16}	122.1(1) 108.9(4)
C^{27} C^{26} C^{25}	129.7(3) 119.9(3)	C_{18} C_{17} C_{16} C_{18} C_{17} C_{16} C	129.0(4)
02 - C8 - N1	119.9(3) 124.6(3)	C15 - C14 - C13	129.0 (1)
02 - 03 - 07	124.0(3) 130.4(3)	C15 - C14 - H14	120.6
N1-C8-C7	105.4(3)	C13 - C14 - H14	120.6
$C^2 - C^3 - C^4$	103.0(3) 117.2(3)	05-C16-N3	125.3 (4)
С2—С3—Н3А	121.4	05 - C16 - C17	129.0(4)
$C_2 = C_3 = H_3 \Lambda$	121.4	N_{3} C16 C17	125.0(4) 105 7 (4)
$C_{1} = C_{1} = C_{1} = C_{1}$	121.4 120.9(4)	$N_{2} - C_{9} - C_{10}$	103.7 (+) 121.5 (3)
C15-C10-C9	120.9(4) 119.8(3)	N2 - C9 - H9	121.3 (5)
C13 - C10 - C9	119.8(3)	(10 C0 H0)	119.3
08 C27 C28	119.3(3)	$C10 - C_{2} - 11_{2}$	119.3 121.3 (4)
08 C27 C26	119.1(3) 120.0(3)	C14 - C15 - C10	121.3 (4)
$C_{28}^{28} = C_{27}^{27} = C_{26}^{26}$	120.9(3)	C14 - C15 - H15	119.4
$C_{20} = C_{2} = C_{20}$	117.9(3)	C10-C13-III3	119.4
03-C11-C10	127.0(4)	$C_{30} = C_{29} = C_{28}$	120.1 (4)
03-01-012	114.3(3)	$C_{20} = C_{29} = H_{29}$	119.9
C10-C11-C12	118.3(3)	$C_{28} = C_{29} = H_{29}$	119.9
$C_{20} = C_{23} = C_{30}$	118.8(3)	$C_{22} = C_{21} = C_{20}$	110.0 (3)
$C_{20} = C_{25} = C_{24}$	121.8(3)	C22—C21—H21	121.7
$C_{30} - C_{25} - C_{24}$	119.3 (3)	C20—C21—H21	121./
$C_{0} = C_{0} = C_{1}$	117.2(3)	C19 - C18 - C17	110.0 (3)
C_{2} C_{0} H_{0}	121.4	C17 C18 H18	121./
C/-Cb-Hb	121.4	CI/-CI8-HI8	121./
04—C12—C13	119.9 (4)	C20—C19—C18	121.5 (5)
04—C12—C11	120.5 (3)	C20—C19—H19	119.3

C13—C12—C11	119.6 (3)	C18—C19—H19	119.3
C1—N1—N2—C9	178.5 (3)	C30-C25-C24-N4	-178.1 (3)
C8—N1—N2—C9	0.0 (5)	O8—C27—C28—C29	-179.8 (3)
C16—N3—N4—C24	1.3 (5)	C26—C27—C28—C29	0.9 (5)
C23—N3—N4—C24	-176.0 (3)	O4—C12—C13—C14	-177.8 (3)
N2—N1—C1—O1	3.3 (4)	C11—C12—C13—C14	2.6 (5)
C8—N1—C1—O1	-177.9 (3)	N4—N3—C23—O6	0.3 (5)
N2—N1—C1—C2	-176.9 (2)	C16—N3—C23—O6	-177.5 (3)
C8—N1—C1—C2	1.9 (3)	N4—N3—C23—C22	179.3 (3)
O1—C1—C2—C3	-2.6 (5)	C16—N3—C23—C22	1.5 (4)
N1—C1—C2—C3	177.7 (3)	C17—C22—C23—O6	177.4 (4)
O1—C1—C2—C7	179.0 (3)	C21—C22—C23—O6	-2.5 (6)
N1—C1—C2—C7	-0.7 (3)	C17—C22—C23—N3	-1.6 (4)
C3—C2—C7—C6	-0.4 (5)	C21—C22—C23—N3	178.5 (3)
C1—C2—C7—C6	178.1 (3)	C2—C3—C4—C5	1.2 (5)
C3—C2—C7—C8	-179.1 (3)	C26—C25—C30—C29	-1.1 (5)
C1—C2—C7—C8	-0.6 (3)	C24—C25—C30—C29	-178.9 (3)
N2—N1—C8—O2	-2.8 (5)	C7—C6—C5—C4	0.8 (5)
C1—N1—C8—O2	178.6 (3)	C3—C4—C5—C6	-1.5 (5)
N2—N1—C8—C7	176.4 (3)	C21—C22—C17—C18	0.4 (5)
C1—N1—C8—C7	-2.2 (3)	C23—C22—C17—C18	-179.5 (3)
C6—C7—C8—O2	2.2 (6)	C21—C22—C17—C16	-179.1 (3)
C2—C7—C8—O2	-179.2 (3)	C23—C22—C17—C16	1.0 (4)
C6—C7—C8—N1	-176.9 (3)	C12—C13—C14—C15	-1.6 (5)
C2—C7—C8—N1	1.7 (3)	N4—N3—C16—O5	1.9 (6)
C7—C2—C3—C4	-0.2 (5)	C23—N3—C16—O5	179.3 (4)
C1—C2—C3—C4	-178.4 (3)	N4—N3—C16—C17	-178.4 (3)
O7—C26—C27—O8	-0.5 (4)	C23—N3—C16—C17	-1.0 (4)
C25—C26—C27—O8	179.4 (3)	C22—C17—C16—O5	179.7 (4)
O7—C26—C27—C28	178.8 (3)	C18—C17—C16—O5	0.2 (7)
C25—C26—C27—C28	-1.3 (5)	C22-C17-C16-N3	-0.1 (4)
C15—C10—C11—O3	178.7 (3)	C18—C17—C16—N3	-179.5 (4)
C9—C10—C11—O3	-0.4 (5)	N1—N2—C9—C10	-179.3 (3)
C15—C10—C11—C12	0.6 (5)	C15—C10—C9—N2	-177.4 (3)
C9—C10—C11—C12	-178.5 (3)	C11—C10—C9—N2	1.7 (5)
O7—C26—C25—C30	-178.7 (3)	C13—C14—C15—C10	0.0 (5)
C27—C26—C25—C30	1.4 (5)	C11—C10—C15—C14	0.5 (5)
O7—C26—C25—C24	-1.0 (5)	C9—C10—C15—C14	179.6 (3)
C27—C26—C25—C24	179.1 (3)	C25—C30—C29—C28	0.7 (5)
C2—C7—C6—C5	0.1 (5)	C27—C28—C29—C30	-0.5 (5)
C8—C7—C6—C5	178.6 (3)	C17—C22—C21—C20	-0.1 (5)
O3—C11—C12—O4	-0.1 (5)	C23—C22—C21—C20	179.8 (4)
C10-C11-C12-O4	178.3 (3)	C19—C20—C21—C22	-0.2 (6)
O3—C11—C12—C13	179.5 (3)	C22—C17—C18—C19	-0.4 (6)
C10-C11-C12-C13	-2.1 (5)	C16—C17—C18—C19	179.0 (4)

N3—N4—C24—C25	179.4 (3)	C21—C20—C19—C18	0.2 (7)
C26—C25—C24—N4	4.1 (5)	C17—C18—C19—C20	0.1 (7)

3.3.5. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1-on Bileşiğinin (V) Sentezi (MT61)

50 mL'likbalon içerisinde 2,3-dihidroksibenzaldehit 13,8 mg (0,1 mmol) 10 mL mutlak etil alkolde çözüldü. Daha sonra üzerine 10 mL mutlak etil alkolde 2fenoksianilin 24,3 mg (0.1 mmol) çözülerek ilave edildi. Sonra çözelti 14 saat geri soğutucu altında kaynatıldı. Tepkime sonunda etil alkol buharlaştırıldı. Elde edilen (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1-on bileşiği etanol-kloroform (1:1) karışımında yavaş buharlaştırma yöntemiyle oda sıcaklığında kristallendirildi. Elde edilen kristalin yapısı IR, UV-vis, ¹H-NMR,¹³C-NMR ve Xışını kırınımı metotlarıyla aydınlatıldı. Verim: %62, E.N.: 116-118°C.

Şekil 3.29. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1on bileşiğinin (V) Sentezi

Şekil 3.30. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1on bileşiğinin (V) FT-IR spektrumu

FT-IR spektrumu (KBr pelletcm⁻¹): 3361 (z,O-H), 3197 (z,N-H), 3053 (z, aromatik C-H), 2985 (z, alifatik C-H), 2843 (z,C-N), 1626 (ş,C=O), 1588 (ş,C=C), 1156 (ş, aromatik C-O). ş: şiddetli, o: orta şiddetli, z: zayıf, y:yayvan.

Şekil 3.31. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1on bileşiğinin (V) UV-vis spektrumu

UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 208, 283, 325, 331 nm.

Şekil 3.32. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1on bileşiğinin (V) ¹H-NMR spektrumu

¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 13,73: (NH₂₄); 8,67: (H-C-N); 7,33-6,77: (Aromatik H); 5,77: (OH₉).

Şekil 3.33. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1on bileşiğinin (V) ¹³C-NMR spektrumu

¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 162,29: (C₇); 157,30-117,40: (Aromatik C'lar); 77,30: (Kloroform-d).

Şekil 3.34. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1on bileşiğinin (V) ortep yapısı

Şekil 3.35. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1on bileşiğinin (V) birim hücre yapısı

Kristal Özellikleri			
Kimyasal Formül C ₃₈ H ₃₀ N ₂ O ₆			
Molekül Ağırlığı (M _r)	610.64		
Kristal Sistemi	Triclinic		
Uzay Grubu	P1		
Birim Hücre Parametreleri (Å)	a=7.655 (5),b=8.982(5),c=11.950(5) $\alpha(^{\circ})$ =86.57 (4), $\beta(^{\circ})$ = 75.22 (4), $\gamma(^{\circ})$ =74.92 (4)		
Birim Hücre Hacmi (Å ³)	767.1 (7)		
Birim Hücredeki Molekül Sayısı	1		
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.329		
Çizgisel Soğurma Katsayısı (mm ⁻¹)	0.09		
Boyut/Renk/Biçim	0,620x0,337x0,050/Kırmızı/Şekilsiz		

Çizelge 3.9. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1-on bileşiğinin (V) kristal yapı verileri

Veriler STOE IPDS-2 kırınımmetre sisteminde ω-taraması yöntemi ile toplandı

X-ışını ve Dalga Boyu (Å)	MoK _α , λ=0,71073 Å
Monokromatör	Grafit
Veri toplama sıcaklığı	293 K
F ₀₀₀	320
Gözlenen yansıma sayısı	11662
Bağımsız yansıma sayısı	3183
Soğurma düzeltmesi	İntegrasyon
Geçirgenlik Faktörü	T _{min} =0,9619, T _{max} =0,9952
R _{int}	0.106

Kullanılan Programlar	SHELXS97, SHELXL97
Yapı Çözülmesi	Direkt Metotlar
Yapı Arıtımı	Tam matris (F ²)'ye göre
Ağırlık Fonksiyonu	$1/\sigma(F^2)$
Hidrojen Atomlarının Yerleştirilmesi	Geometrik ve izotropik arıtım
h, k, l Aralığı	-9 <h<9, -11<k<11,="" -14<l<14<="" td=""></h<9,>

Parametre Sayısı	209
$S(F^2)$	0.83
R	0.049
wR ₂	0.083
$\Delta \rho_{\rm max}, \ \Delta \rho_{\rm min} \ ({\rm e}/{\rm \AA}^3)$	0,12, -0,13

Çizelge 3.10. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1-on bileşiği (V) için bağ uzunlukları, bağ açıları ve torsiyon açıları

	-		
Pağ Vanan Atomlar	Bağ Uzunluğu	Pağ Vanan Atomlar	Bağ Uzunluğu
Dag Tapan Atonnai	(Å) ve Açısı	Dag Tapan Atonnai	(Å) ve Açısı
01—C1	1.296 (3)	C3—C4	1.413 (4)
O2—C2	1.375 (3)	С3—Н3	0.9300
O2—H2	0.8200	C1—C2	1.427 (3)
O3—C13	1.385 (3)	C12—C11	1.383 (3)
O3—C14	1.402 (3)	C12—H12	0.9300
N1—C7	1.299 (3)	C11—H11	0.9300
N1—C8	1.412 (3)	C14—C19	1.359 (3)
N1—H1	0.8600	C14—C15	1.366 (3)
С7—С6	1.403 (3)	C5—C4	1.357 (3)
С7—Н7	0.9300	С5—Н5	0.9300
C13—C12	1.383 (3)	C15—C16	1.383 (3)
C13—C8	1.389 (3)	C15—H15	0.9300
C8—C9	1.394 (3)	C19—C18	1.378 (3)
C9—C10	1.377 (3)	C19—H19	0.9300
С9—Н9	0.9300	C4—H4	0.9300
C6—C5	1.425 (3)	C16—C17	1.356 (3)
C6—C1	1.433 (3)	C16—H16	0.9300
C10—C11	1.372 (3)	C17—C18	1.371 (4)
C10—H10	0.9300	C17—H17	0.9300
C3—C2	1.359 (3)	C18—H18	0.9300
C2—O2—H2	109.5	C13—C12—H12	120.0
C13—O3—C14	117.24 (19)	C10—C11—C12	120.7 (3)
C7—N1—C8	126.2 (2)	C10—C11—H11	119.6
C7—N1—H1	116.9	C12—C11—H11	119.6
C8—N1—H1	116.9	C3—C2—O2	119.2 (3)
N1—C7—C6	124.2 (2)	C3—C2—C1	120.4 (3)
N1—C7—H7	117.9	O2—C2—C1	120.4 (2)
С6—С7—Н7	117.9	C19—C14—C15	121.3 (2)
C12—C13—O3	124.5 (2)	C19—C14—O3	118.8 (3)
C12—C13—C8	120.0 (2)	C15—C14—O3	119.8 (3)
O3—C13—C8	115.5 (2)	C4—C5—C6	120.4 (3)
C13—C8—C9	118.6 (2)	C4—C5—H5	119.8
C13—C8—N1	117.7 (2)	С6—С5—Н5	119.8
C9—C8—N1	123.7 (2)	C14—C15—C16	119.0 (3)
C10—C9—C8	121.4 (2)	C14—C15—H15	120.5
С10—С9—Н9	119.3	C16—C15—H15	120.5
С8—С9—Н9	119.3	C14—C19—C18	119.3 (3)
C7—C6—C5	119.5 (2)	C14—C19—H19	120.3
C7—C6—C1	121.0 (2)	C18—C19—H19	120.3
C5—C6—C1	119.5 (2)	C5—C4—C3	120.3 (2)

С11—С10—С9	119.2 (3)	C5—C4—H4	119.9
C11—C10—H10	120.4	C3—C4—H4	119.9
C9—C10—H10	120.4	C17—C16—C15	120.3 (3)
C2—C3—C4	121.4 (3)	C17—C16—H16	119.8
С2—С3—Н3	119.3	C15—C16—H16	119.8
С4—С3—Н3	119.3	C16—C17—C18	120.2 (3)
O1—C1—C2	120.0 (2)	C16—C17—H17	119.9
O1—C1—C6	122.0 (2)	C18—C17—H17	119.9
C2—C1—C6	118.0 (2)	C17—C18—C19	120.0 (3)
C11—C12—C13	120.1 (2)	C17—C18—H18	120.0
C11—C12—H12	120.0	C19—C18—H18	120.0
C8—N1—C7—C6	177.3 (2)	C13—C12—C11—C10	0.1 (4)
C14—03—C13—C12	5.5 (4)	C4—C3—C2—02	-176.8 (2)
C14—03—C13—C8	-175.1 (2)	C4—C3—C2—C1	1.4 (4)
C12—C13—C 8—C9	-1.0 (4)	O1—C1—C2—C3	179.1 (3)
O3—C13—C8—C9	179.6 (2)	C6—C1—C2—C3	-1.9 (4)
C12—C13—C8—N1	179.6 (2)	O1—C1—C2—02	-2.7 (4)
O3—C13—C8—N1	0.2 (3)	C6—C1—C2—O2	176.3 (2)
C7—N1—C8—C13	-168.2 (2)	C13—O3—C14—C19	101.2 (3)
C7—N1—C8—C9	12.5 (4)	C13—O3—C14—C15	-81.8 (3)
C13—C8—C9—C10	1.2 (4)	C7—C6—C5—C4	179.2 (2)
N1-C8-C9-C10	-179.4 (2)	C1—C6—C5—C4	-0.4 (4)
N1—C7—C6—C5	-178.1 (2)	C19—C14—C15—C16	-1.3 (4)
N1—C7—C6—C1	1.5 (3)	O3—C14—C15—C16	-178.2 (2)
C8—C9—C10—C11	-0.8 (4)	C15—04—C19—08	0.9 (4)
C7—C6—C1—O1	0.8 (4)	O3—C14—C19—C18	177.8 (3)
C5—C6—C1—O1	-179.6 (2)	C6—C5—C4—C3	-0.2 (4)
C7—C6—C1—C2	-178.2 (2)	C2—C3—C4—C5	-0.3 (4)
C5—C6—C1—C2	1.4 (3)	C14—C15—C16—C17	0.4 (4)
O3—C13—C12—C11	179.7 (3)	C15—C16—C17—Cl 8	0.9 (4)
C8—C13—C12—C11	0.3 (4)	C16—C17—C18—C19	-1.2 (4)
C9—C10—C11—C12	0.2 (4)	C14—C19—C18—C17	0.4 (4)

3.3.6. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1-on Bileşiğinin (VI) Sentezi (MT17)

50 mL'lik balon içerisinde 2,3-dihidroksibenzaldehit 13,8 mg (0,1 mmol) 10 mL mutlak etil alkolde çözüldü. Daha sonra üzerine 10 mL mutlak etil alkolde 2metoksianilin 12,3 mg (0.1 mmol) çözülerek ilave edildi. Sonra çözelti 14 saat geri soğutucu altında kaynatıldı. Tepkime sonunda etil alkol buharlaştırıldı. Elde edilen (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1-on bileşiği etanol-kloroform (1:1) karışımında yavaş buharlaştırma yöntemiyle oda sıcaklığında kristallendirildi. Elde edilen kristalin yapısı IR, UV-vis, ¹H-NMR,¹³C-NMR ve Xışını kırınımı metotlarıyla aydınlatıldı.Verim: %58, E.N.: 172-174°C.

Şekil 3.36. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1on bileşiğinin (VI) sentezi

Şekil 3.37. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1on (VI) FT-IR spektrumu

FT-IR spektrumu (KBr pelletcm⁻¹): 3123 (z, O-H), 3182 (z, N-H), 3087 (z, aromatik C-H), 2929 (z, alifatik C-H), 2831 (z, C-N), 1625 (ş, C=O), 1513 (o, C=C), 1218 (ş, C-H). ş: şiddetli, o: orta şiddetli, z: zayıf, y:yayvan.

Şekil 3.38. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1onbileşiğinin (VI) UV-vis. spektrumu

UV-vis. soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 210, 217, 284, 343 nm.

Şekil 3.39. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1on bileşiğinin (VI) ¹H-NMR spektrumu

¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 14,71: (NH₁₇); 8,62: (H-C-N); 7,26-6,71: (Aromatik H); 6,06: (OH₉); 3,95: (CH₃).

Şekil 3.40. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1on bileşiğinin (VI) ¹³C-NMR spektrumu

¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 159,77: (C₇); 128,07-110,00: (Aromatik C'lar); 76,98: (Kloroform-d); 55,98: (C₁₉).

Şekil 3.41. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1on bileşiğinin (VI) ortep yapısı

Şekil 3.42. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1on bileşiğinin (VI) birim hücre yapısı

Çizelge 3.11. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1-on bileşiğinin (VI) kristal yapı verileri

Kristal Ozellikleri		
Kimyasal Formül	C ₁₄ H ₁₃ NO ₃	
Molekül Ağırlığı (M _r)	243.25	
Kristal Sistemi	Monoklinik	
Uzay Grubu	$P2_1/n$	
Birim Hücre Parametreleri (Å)	a=7.551 (2), b=11.318 (3), c=13.490 (4)	
	$\beta = 95.09 \ (2)^{\circ}$	
Birim Hücre Hacmi (Å ³)	1148.3 (6)	
Birim Hücredeki Molekül Sayısı	4	
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.407	
Çizgisel Soğurma Katsayısı (mm ⁻¹)	0.10	
Boyut/Renk/Biçim	0,690x0,447x0,200/Kırmızı/Prizmatik	

Veriler STOE IPDS-2 kırınımmetre sisteminde ω-taraması yöntemi ile toplandı

X-ışını ve Dalga Boyu (Å)	MoK _α , λ=0,71073 Å
Monokromatör	Grafit
Veri toplama sıcaklığı	293 K
F ₀₀₀	512
Gözlenen yansıma sayısı	8462
Bağımsız yansıma sayısı	2380
Soğurma düzeltmesi	İntegrasyon
Geçirgenlik Faktörü	T _{min} =0,3957, T _{max} =0,6271
R _{int}	0.025

Kullanılan Programlar	SHELXS97, SHELXL97
Yapı Çözülmesi	Direkt Metotlar
Yapı Arıtımı	Tam matris (F ²)'ye göre
Ağırlık Fonksiyonu	$1/\sigma(F^2)$
Hidrojen Atomlarının Yerleştirilmesi	Geometrik ve izotropik arıtım
h, k, l Aralığı	-9 <h<9, -14<k<14,="" -16<l<16<="" td=""></h<9,>
Parametre Sayısı	165
$S(F^2)$	0,96
R	0,033
wR ₂	0,082
$\Delta \rho_{\rm max}, \ \Delta \rho_{\rm min} \ ({\rm e}/{\rm \AA}^3)$	0,14,-0,12

	Dož Uzrala ža		De X Umreiler Xer
Bağ Yapan Atomlar	Bag Uzunlugu $\begin{pmatrix} \lambda \\ \lambda \end{pmatrix}$ vo Λ ora	Bağ Yapan Atomlar	(Å) va Aarsi
01 01	(A) ve Açısı	<u> </u>	(A) ve Açısı
01-01	1.2929 (14)	C2 - C3	1.3597 (18)
02-C2	1.3611 (16)	C5—C4	1.3543 (19)
O2—H2	0.8200	С5—Н5	0.9300
O3—C13	1.3615 (16)	C9—C10	1.3805 (19)
O3—C14	1.4219 (16)	С9—Н9	0.9300
N1—C7	1.3038 (15)	C3—C4	1.403 (2)
N1—C8	1.4118 (16)	С3—Н3	0.9300
N1—H1	0.8600	C12—C11	1.374 (2)
C1—C6	1.4244 (17)	C12—H12	0.9300
C1—C2	1.4295 (17)	C4—H4	0.9300
С8—С9	1.3790 (19)	C10—C11	1.373 (2)
C8—C13	1.3992 (18)	С10—Н10	0.9300
C6—C7	1.4048 (17)	C11—H11	0.9300
C6—C5	1.4198 (17)	C14—H14A	0.9600
С7—Н7	0.9300	C14—H14B	0.9600
C13—C12	1.3825 (19)	C14—H14C	0.9600
C2—O2—H2	109.5	С6—С5—Н5	119.8
C13—O3—C14	117.76 (11)	C8—C9—C10	120.07 (12)
C7—N1—C8	127.43 (11)	С8—С9—Н9	120.0
C7—N1—H1	116.3	С10—С9—Н9	120.0
C8—N1—H1	116.3	C2—C3—C4	121.80 (13)
O1—C1—C6	122.66 (11)	С2—С3—Н3	119.1
O1—C1—C2	120.34 (11)	С4—С3—Н3	119.1
C6—C1—C2	117.00 (11)	C11—C12—C13	119.68 (13)
C9—C8—C13	119.95 (11)	C11—C12—H12	120.2
C9—C8—N1	123.52 (11)	C13—C12—H12	120.2
C13—C8—N1	116.53 (11)	C5—C4—C3	119.78 (12)
C7—C6—C5	119.60 (11)	C5—C4—H4	120.1
C7—C6—C1	119.98 (11)	C3—C4—H4	120.1
C5—C6—C1	120.40 (11)	C11—C10—C9	119.68 (13)
N1—C7—C6	123.44 (11)	C11—C10—H10	120.2
N1—C7—H7	118.3	С9—С10—Н10	120.2
С6—С7—Н7	118.3	C10-C11-C12	121.15 (13)
O3—C13—C12	125.16 (12)	C10—C11—H11	119.4
O3—C13—C8	115.38 (11)	C12—C11—H11	119.4
C12—C13—C8	119.46 (12)	O3—C14—H14A	109.5
C3—C2—O2	119.89 (12)	O3—C14—H14B	109.5
C3—C2—C1	120.58 (12)	H14A—C14—H14B	109.5
O2—C2—C1	119.51 (11)	O3—C14—H14C	109.5
C4—C5—C6	120.39 (13)	H14A—C14—H14C	109.5
С4—С5—Н5	119.8	H14B—C14—H14C	109.5

Çizelge 3.12. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1-on bileşiği (VI) için bağ uzunlukları, bağ açıları ve torsiyon açıları

C7—N1—C8—C9	5.95 (19)	C6—C1 —C2—C3	-1.08 (17)
C7—N1—C8—C13	-174.42 (11)	01—C1—C2—O2	-2.14 (18)
O1—C1—C6—C7	3.37 (18)	C6—C1—C2—O2	177.33 (11)
C2—C1 —C6—C7	-176.09 (11)	C7—C6—C5—C4	176.31 (12)
01—C1—C6—C5	-178.05 (11)	C1—C6—C5—C4	-2.28 (18)
C2—C1 —C6—C5	2.49 (17)	C13—C8—C9—C10	0.00 (19)
C8—N1—C7—C6	175.52 (11)	N1—C8—C9—C10	179.62 (11)
C5—C6—C7—N1	-177.88 (11)	O2—C2—C3—C4	-179.02 (13)
C1—C6—C7—N1	0.71 (18)	C1—C2—C3—C4	-0.6 (2)
C14—O3—C13—C12	10.8 (2)	O3—C13—C12—C11	-178.68 (13)
C14—O3—C13—C8	-168.47 (12)	C8—C13—C12—C11	0.6 (2)
C9—C8—C13—O3	178.82 (11)	C6—C5—C4—C3	0.5 (2)
N1—C8—C13—O3	-0.82 (16)	C2—C3—C4—C5	0.9 (2)
C9—C8—C13—C12	-0.53 (19)	C8—C9—C10—C11	0.4 (2)
N1-C8-C13-C12	179.83 (12)	C9—C10—C11—C12	-0.4 (2)
O1—C1—C2—C3	179.45 (12)	C13—C12—C11—C10	-0.2 (2)

3.3.7. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on Bileşiğinin (VII) Sentezi (MT158)

50 mL'likbalon içerisinde 2,3-dihidroksibenzaldehit 13,8 mg (0,1 mmol) 10 mL mutlak etil alkolde çözüldü. Daha sonra üzerine 10 mL mutlak etil alkolde 3-kloro-4metilanilin 14,1 mg (0.1 mmol) çözülerek ilave edildi. Sonra çözelti 14 saat geri soğutucu altında kaynatıldı. Tepkime sonunda etil alkol buharlaştırıldı. Elde edilen (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on bileşiği etanol-kloroform (1:1) karışımında yavaş buharlaştırma yöntemiyle oda sıcaklığında kristallendirildi. Elde edilen kristalin yapısı IR, UV-vis, ¹H-NMR,¹³C-NMR ve X-ışını kırınımı metotlarıyla aydınlatıldı. Verim: %64, E.N.: 143-145°C.

Şekil 3.43. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VII) sentezi

Şekil 3.44. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VII) FT-IR spektrumu

FT-IR spektrumu (KBr pelletcm⁻¹): 3361 (z, O-H), 3244 (z, N-H),3065 (z, aromatik C-H), 2998 (z, alifatik C-H),2825 (z, C-N), 1626 (ş, C=O), 1596 (ş, C=C), 1029 (o, C-Cl).

ş: şiddetli, o: orta şiddetli, z: zayıf, y:yayvan.

Şekil 3.45. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin(VII) UV-vis. spektrumu

UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 209, 218, 285, 318 nm.

Şekil 3.46. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VII) ¹H-NMR spektrumu

¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 13,51: (NH₁₉); 8,58: (H-C-N); 7,31-6,85: (Aromatik H); 5,73: (OH₉); 2,40: (CH₃).

Şekil 3.47. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VII)¹³C-NMR spektrumu

¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 162,49: (C₇); 148,99-117,87: (Aromatik C'lar); 76,66: (Kloroform-d); 19,64: (C₁₇).

Şekil 3.48. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VII) ortep yapısı

Şekil 3.49. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VII) birim hücre yapısı

Çizelge 3.13. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1on bileşiğinin (VII) kristal yapı verileri

Kristal Özellikleri		
Kimyasal Formül	C ₁₄ H ₁₂ ClNO ₂	
Molekül Ağırlığı (M _r)	261.70	
Kristal Sistemi	Monoclinic	
Uzay Grubu	P21/c	
Birim Hücre Parametreleri (Å)	a=14.035 (6), b=6.972 (2), c=13.964 (7)	
	$\beta(°) = 116.37(4)$	
Birim Hücre Hacmi (Å ³)	1224.2 (10)	

Birim Hücredeki Molekül Sayısı	4
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.344
Çizgisel Soğurma Katsayısı (mm ⁻¹)	0.30
Boyut/Renk/Biçim	0,290x0,187x0,080/Kırmızı/Prizmatik

Veriler STOE IPDS-2 kırınımmetre sisteminde ω-taraması yöntemi ile toplandı.

X-ışını ve Dalga Boyu (Å)	MoK _α , λ=0,71073 Å
Monokromatör	Grafit
Veri toplama sıcaklığı	293 K
F ₀₀₀	516
Gözlenen yansıma sayısı	9200
Bağımsız yansıma sayısı	2527
Soğurma düzeltmesi	İntegrasyon
Geçirgenlik Faktörü	T _{min} =0,3957, T _{max} =0,6271
R _{int}	0.090

Kullanılan Programlar	SHELXS97, SHELXL97
Yapı Çözülmesi	Direkt Metotlar
Yapı Arıtımı	Tam matris (F ²)'ye göre
Ağırlık Fonksiyonu	$1/\sigma(F^2)$
Hidrojen Atomlarının Yerleştirilmesi	Geometrik ve izotropik arıtım
h, k, l Aralığı	-17 <h<17, -17<l<17<="" -8<k<8,="" td=""></h<17,>
Parametre Sayısı	168
$S(F^2)$	0.86
R	0.052
wR ₂	0.099
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({\rm e}/{\rm \AA}^3)$	0,15, -0,15

Çizelge 3.14. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1on bileşiği (VII) için bağ uzunlukları, bağ açıları ve torsiyon açıları

Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı	Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı
O2—C1	1.291 (2)	C11—C12	1.369 (3)
O4—C12	1.365 (2)	C11—C10	1.393 (3)
O4—C13	1.415 (3)	C11—H11	0.9300
O3—C14	1.369 (2)	С10—Н10	0.9300

O3—C15	1.407 (3)	C2—C3	1.363 (3)
O1—C2	1.360 (2)	С7—Н7	0.9300
01—H1	0.8200	C5—C4	1.354 (3)
N1—C7	1.286 (3)	С5—Н5	0.9300
N1—C8	1.470 (3)	C3—C4	1.396 (3)
N1—H1A	0.8600	С3—Н3	0.9300
C14—C16	1.372 (3)	C4—H4	0.9300
C14—C12	1.390 (3)	C8—H8A	0.9700
C9—C10	1.368 (3)	C8—H8B	0.9700
C9—C16	1.394 (3)	C13—H13A	0.9600
С9—С8	1.502 (3)	C13—H13B	0.9600
C1—C2	1.423 (3)	С13—Н13С	0.9600
C1—C6	1.429 (3)	C15—H15A	0.9600
С16—Н16	0.9300	C15—H15B	0.9600
C6—C7	1.416 (3)	C15—H15C	0.9600
C6—C5	1.418 (3)		
C12—O4—C13	118.44 (18)	C10—C11—H11	120.1
C14—O3—C15	117.26 (18)	С9—С10—Н10	119.6
C2—O1—H1	109.5	С11—С10—Н10	119.6
C7—N1—C8	125.77 (19)	O1—C2—C3	119.8 (2)
C7—N1—H1A	117.1	O1—C2—C1	119.4 (2)
C8—N1—H1A	117.1	C3—C2—C1	120.8 (2)
O3—C14—C16	124.85 (19)	O4—C12—C11	125.07 (19)
O3—C14—C12	115.01 (19)	O4—C12—C14	115.16 (18)
C16—C14—C12	120.14 (19)	C11—C12—C14	119.8 (2)
C10—C9—C16	119.2 (2)	N1—C7—C6	124.3 (2)
С10—С9—С8	121.8 (2)	N1—C7—H7	117.9
С16—С9—С8	119.05 (19)	С6—С7—Н7	117.9
O2—C1—C2	120.56 (19)	C4—C5—C6	120.7 (2)
O2—C1—C6	123.0 (2)	C4—C5—H5	119.6
C2—C1—C6	116.5 (2)	С6—С5—Н5	119.6
C14—C16—C9	120.33 (19)	C2—C3—C4	122.2 (2)
C14—C16—H16	119.8	С2—С3—Н3	118.9
C9—C16—H16	119.8	С4—С3—Н3	118.9
C7—C6—C5	119.5 (2)	C5—C4—C3	119.2 (2)
C7—C6—C1	119.9 (2)	C5—C4—H4	120.4
C5—C6—C1	120.6 (2)	C3—C4—H4	120.4
C12—C11—C10	119.9 (2)	N1—C8—C9	110.93 (17)
C12—C11—H11	120.1	N1—C8—H8A	109.5
C9—C10—C11	120.7 (2)	С9—С8—Н8А	109.5
H13B—C13—H13C	109.5	N1—C8—H8B	109.5
O3—C15—H15A	109.5	C9—C8—H8B	109.5
O3—C15—H15B	109.5	H8A—C8—H8B	108.0
H15A—C15—H15B	109.5	O4—C13—H13A	109.5
O3—C15—H15C	109.5	O4—C13—H13B	109.5
H15A—C15—H15C	109.5	H13A—C13—H13B	109.5

H15B—C15—H15C	109.5	O4—C13—H13C	109.5
H13A—C13—H13C	109.5		
C15—O3—C14—C16	-0.4 (3)	C6—C1—C2—C3	0.8 (3)
C15—O3—C14—C12	179.3 (2)	C13—O4—C12—C11	4.3 (3)
O3—C14—C16—C9	-179.12 (19)	C13—O4—C12—C14	-175.73 (19)
C12—C14—C16—C9	1.2 (3)	C10-C11-C12-O4	179.98 (19)
C10—C9—C16—C14	-0.4 (3)	C10—C11—C12—C14	0.0 (3)
C8—C9—C16—C14	179.76 (19)	O3—C14—C12—O4	-0.7 (3)
O2—C1—C6—C7	-1.1 (3)	C16—C14—C12—O4	179.07 (18)
C2—C1—C6—C7	177.49 (19)	O3—C14—C12—C11	179.31 (18)
O2—C1—C6—C5	-179.40 (18)	C16—C14—C12—C11	-0.9 (3)
C2-C1-C6-C5	-0.8 (3)	C8—N1—C7—C6	179.59 (19)
C16—C9—C10—C11	-0.5 (3)	C5—C6—C7—N1	177.7 (2)
C8—C9—C10—C11	179.28 (18)	C1—C6—C7—N1	-0.6 (3)
C12—C11—C10—C9	0.8 (3)	C7—C6—C5—C4	-177.5 (2)
O2—C1—C2—O1	-0.3 (3)	C1—C6—C5—C4	0.8 (3)
C6-C1-C2-01	-178.89 (18)	O1—C2—C3—C4	179.0 (2)
O2—C1—C2—C3	179.4 (2)	C1—C2—C3—C4	-0.7 (3)
C7—N1—C8—C9	-125.7 (2)	C6—C5—C4—C3	-0.6 (3)
C10—C9—C8—N1	98.3 (2)	C2—C3—C4—C5	0.6 (4)
C16—C9—C8—N1	-81.9 (2)		

3.3.8. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-onBileşiğinin (VIII) Sentezi (MT167)

50 mL'lik balon içerisinde 2,3-dihidroksibenzaldehit 13,8 mg (0,1 mmol) 10 mL mutlak etil alkolde çözüldü. Daha sonra üzerine 10 mL mutlak etil alkolde 3,4dimetoksibenzilamin 16,7 mg (0.1 mmol) çözülerek ilave edildi. Sonra çözelti 14 saat geri soğutucu altında kaynatıldı. Tepkime sonunda etil alkol buharlaştırıldı. Elde edilen (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1on (1:1) karışımında yavaş buharlaştırma yöntemiyle oda sıcaklığında kristallendirildi. Elde edilen kristalin yapısı IR, UV-vis, ¹H-NMR, ¹³C-NMR ve Xışını kırınımı metotlarıyla aydınlatıldı. Verim: %59, E.N.: 160-162°C.

Şekil 3.50. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VIII) sentezi

Şekil 3.51. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VIII) FT-IR spektrumu

FT-IR spektrumu (KBr pelletcm⁻¹): 3377 (z, O-H), 3286 (z, N-H),3089 (z, aromatik C-H), 2994 (z, alifatik C-H), 2803 (z, C-N), 1647 (ş, C=O), 1516 (ş, aromatik C=C), 1190 (ş, aromatik C-O). ş: şiddetli, o: orta şiddetli, z: zayıf, y: yayvan.

Şekil 3.52. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VIII) UV-vis. spektrumu

UV-vis. soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} :218, 267, 335, 353 nm.

Şekil 3.53. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VIII) ¹H-NMR spektrumu

¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 14,71: (NH₁₈); 8,26: (H-C-N); 7,26-6,67: (Aromatik H); 5,77: (OH₉); 4,74: (CH₂); 3,89: (CH₃).

Şekil 3.54. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VIII)¹³C-NMR spektrumu

¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 164,79: (C₇); 154,25: (C₁₇); 148,78-111,16: (Aromatik C'lar); 76,98: (Kloroform-d); 60,16: (C₂₂); 55,95: (C₂₀).

Şekil 3.55. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VIII) ortep yapısı

Şekil 3.56. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4dien-1-on bileşiğinin (VIII) birim hücre yapısı

Çizelge 3.15.	(Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-
	on bileşiğinin (VIII) kristal yapı verileri

Kristal Özellikleri		
Kimyasal Formül	C ₁₆ H ₁₇ NO ₄	
Molekül Ağırlığı (M _r)	287.30	
Kristal Sistemi	Monoclinic	
Uzay Grubu	$P2_1/c$	
	a= 12.9608 (7),b=16.1681(11),c=6.9657	
Birim Hücre Parametreleri (Å)	(4)	
	$\beta(°) = 102.398$ (4)	

Birim Hücre Hacmi (Å ³)	1425.63 (15)
Birim Hücredeki Molekül Sayısı	4
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.339
Çizgisel Soğurma Katsayısı (mm ⁻¹)	0.10
Boyut/Renk/Biçim	0,38x0,27x0,22/Sarı/Prizmatik

Veriler STOE IPDS-2 kırınımmetre sisteminde ω-taraması yöntemi ile toplandı.

X-ışını ve Dalga Boyu (Å)	MoK _α , λ=0,71073 Å
Monokromatör	Grafit
Veri toplama sıcaklığı	293 K
F ₀₀₀	608
Gözlenen yansıma sayısı	16626
Bağımsız yansıma sayısı	2789
Soğurma düzeltmesi	İntegrasyon
Geçirgenlik Faktörü	T_{min} =0,9592, T_{max} =0,9935
R _{int}	0.130

Kullanılan Programlar	SHELXS97, SHELXL97
Yapı Çözülmesi	Direkt Metotlar
Yapı Arıtımı	Tam matris (F ²)'ye göre
Ağırlık Fonksiyonu	$1/\sigma(F^2)$
Hidrojen Atomlarının Yerleştirilmesi	Geometrik ve izotropik arıtım
h, k, l Aralığı	-15 <h<15, -19<k<19,="" -8<l<8<="" td=""></h<15,>
Parametre Sayısı	193
$S(F^2)$	0.91
R	0.049
wR ₂	0.087
$\Delta \rho_{\rm max}, \ \Delta \rho_{\rm min} \ ({\rm e}/{\rm \AA}^3)$	0,12, -0,14

Çizelge 3.16. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1on bileşiği (VIII) için bağ uzunlukları, bağ açıları ve torsiyon açıları

Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı	Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı
O2—C1	1.291 (2)	C11—C12	1.369 (3)
O4—C12	1.365 (2)	C11—C10	1.393 (3)
O4—C13	1.415 (3)	C11—H11	0.9300
O3—C14	1.369 (2)	C10—H10	0.9300

O3—C15	1.407 (3)	C2—C3	1.363 (3)
O1—C2	1.360 (2)	С7—Н7	0.9300
01—H1	0.8200	C5—C4	1.354 (3)
N1—C7	1.286 (3)	С5—Н5	0.9300
N1—C8	1.470 (3)	C3—C4	1.396 (3)
N1—H1A	0.8600	С3—Н3	0.9300
C14—C16	1.372 (3)	C4—H4	0.9300
C14—C12	1.390 (3)	C8—H8A	0.9700
C9—C10	1.368 (3)	C8—H8B	0.9700
C9—C16	1.394 (3)	C13—H13A	0.9600
С9—С8	1.502 (3)	C13—H13B	0.9600
C1—C2	1.423 (3)	C13—H13C	0.9600
C1—C6	1.429 (3)	C15—H15A	0.9600
C16—H16	0.9300	C15—H15B	0.9600
C6—C7	1.416 (3)	C15—H15C	0.9600
C6—C5	1.418 (3)		
C12—O4—C13	118.44 (18)	C10-C11-H11	120.1
C14—O3—C15	117.26 (18)	С9—С10—Н10	119.6
C2—O1—H1	109.5	C11-C10-H10	119.6
C7—N1—C8	125.77 (19)	O1—C2—C3	119.8 (2)
C7—N1—H1A	117.1	O1—C2—C1	119.4 (2)
C8—N1—H1A	117.1	C3—C2—C1	120.8 (2)
O3—C14—C16	124.85 (19)	O4—C12—C11	125.07 (19)
O3—C14—C12	115.01 (19)	O4—C12—C14	115.16 (18)
C16—C14—C12	120.14 (19)	C11—C12—C14	119.8 (2)
C10—C9—C16	119.2 (2)	N1-C7-C6	124.3 (2)
С10—С9—С8	121.8 (2)	N1—C7—H7	117.9
C16—C9—C8	119.05 (19)	С6—С7—Н7	117.9
O2—C1—C2	120.56 (19)	C4—C5—C6	120.7 (2)
O2—C1—C6	123.0 (2)	C4—C5—H5	119.6
C2—C1—C6	116.5 (2)	С6—С5—Н5	119.6
C14—C16—C9	120.33 (19)	C2—C3—C4	122.2 (2)
C14—C16—H16	119.8	С2—С3—Н3	118.9
C9—C16—H16	119.8	С4—С3—Н3	118.9
C7—C6—C5	119.5 (2)	C5—C4—C3	119.2 (2)
C7—C6—C1	119.9 (2)	С5—С4—Н4	120.4
C5—C6—C1	120.6 (2)	C3—C4—H4	120.4
C12—C11—C10	119.9 (2)	N1-C8-C9	110.93 (17)
C12—C11—H11	120.1	N1—C8—H8A	109.5
C9—C10—C11	120.7 (2)	С9—С8—Н8А	109.5
H13B—C13—H13C	109.5	N1—C8—H8B	109.5
O3—C15—H15A	109.5	C9—C8—H8B	109.5
O3—C15—H15B	109.5	H8A—C8—H8B	108.0
H15A—C15—H15B	109.5	O4—C13—H13A	109.5
O3—C15—H15C	109.5	O4—C13—H13B	109.5
H15A—C15—H15C	109.5	H13A—C13—H13B	109.5

H15B—C15—H15C	109.5	O4—C13—H13C	109.5
H13A—C13—H13C	109.5		
C15—O3—C14—C16	-0.4 (3)	C6—C1—C2—C3	0.8 (3)
C15—O3—C14—C12	179.3 (2)	C13—O4—C12—C11	4.3 (3)
O3—C14—C16—C9	-179.12 (19)	C13—O4—C12—C14	-175.73 (19)
C12—C14—C16—C9	1.2 (3)	C10-C11-C12-O4	179.98 (19)
C10-C9-C16-C14	-0.4 (3)	C10-C11-C12-C14	0.0 (3)
C8—C9—C16—C14	179.76 (19)	O3—C14—C12—O4	-0.7 (3)
O2—C1—C6—C7	-1.1 (3)	C16—C14—C12—O4	179.07 (18)
C2—C1—C6—C7	177.49 (19)	O3—C14—C12—C11	179.31 (18)
O2—C1—C6—C5	-179.40 (18)	C16—C14—C12—C11	-0.9 (3)
C2—C1—C6—C5	-0.8 (3)	C8—N1—C7—C6	179.59 (19)
C16—C9—C10—C11	-0.5 (3)	C5—C6—C7—N1	177.7 (2)
C8—C9—C10—C11	179.28 (18)	C1-C6-C7-N1	-0.6 (3)
С12—С11—С10—С9	0.8 (3)	C7—C6—C5—C4	-177.5 (2)
O2-C1-C2-O1	-0.3 (3)	C1—C6—C5—C4	0.8 (3)
C6-C1-C2-01	-178.89 (18)	O1—C2—C3—C4	179.0 (2)
O2—C1—C2—C3	179.4 (2)	C1—C2—C3—C4	-0.7 (3)
C7—N1—C8—C9	-125.7 (2)	C6—C5—C4—C3	-0.6 (3)
C10-C9-C8-N1	98.3 (2)	C2—C3—C4—C5	0.6 (4)
C16—C9—C8—N1	-81.9 (2)		

3.3.9. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4dien-1-on Bileşiğinin (IX) Sentezi (MT33)

50 mL'lik balon içerisinde 2,3-dihidroksibenzaldehit 13,8 mg (0,1 mmol) 10 mL mutlak etil alkolde çözüldü. Daha sonra üzerine 10 mL mutlak etil alkolde 2-amino-4-metilfenol 12,3 mg (0.1 mmol) çözülerek ilave edildi. Sonra çözelti 14 saat geri soğutucu altında kaynatıldı. Tepkime sonunda etil alkol buharlaştırıldı. Elde edilen (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4-dien-1-on bileşiği etanol-kloroform (1:1) karışımında yavaş buharlaştırma yöntemiyle oda sıcaklığında kristallendirildi. Elde edilen kristalin yapısı IR, UV-vis, ¹H-NMR,¹³C-NMR ve X-ışını kırınımı metotlarıyla aydınlatıldı. Verim: %58, E.N.: 214-216°C.

Şekil 3.57. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on bileşiğinin (IX) sentezi

Şekil 3.58. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on bileşiğinin (IX) FT-IR spektrumu

FT-IR spektrumu (KBr pelletcm⁻¹): 3413 (z, O-H), 3067 (z, aromatik C-H), 2994 (o, alifatik C-H), 2876 (z, C-N), 1617 (ş, C=O), 1511 (ş, C=C), 1219 (ş, aromatik C-O), 1024 (o, C=C). ş: şiddetli, o: orta şiddetli, z: zayıf, y:yayvan.

Şekil 3.59. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on bileşiğinin (IX) UV-vis. spektrumu

UV-vis. soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 209, 279, 355 nm.

Şekil 3.60. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on bileşiğinin (IX) ¹H-NMR spektrumu

¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 14,19: (NH₁₉); 8,80: (H-C-N); 8,63: (OH₁₈); 7,69-6,59: (Aromatik H); 5,74: (OH₉); 2,21: (CH₃).

Şekil 3.61. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on bileşiğinin (IX) ¹³C-NMR spektrumu

¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 160,41: (C₇); 153,61-116,67: (Aromatik C'lar); 77,65: (Kloroform-d); 20,51: (C₁₇).

Şekil 3.62. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on bileşiğinin (IX) ortep yapısı

Şekil 3.63. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on bileşiğinin (IX) birim hücre yapısı

Kristal Özellikleri		
Kimyasal Formül	C ₁₄ H ₁₃ NO ₃	
Molekül Ağırlığı (M _r)	243.25	
Kristal Sistemi	Orthorhombic	
Uzay Grubu	P2 ₁ 2 ₁ 2 ₁	
	a=6.1415 (18), b=10.102 (3), c=19.449 (7)	
Birim Hucre Parametreleri (A)	$\alpha(°)=\beta(°)=\gamma(°)=90$	
Birim Hücre Hacmi (Å ³)	1206.6 (7)	
Birim Hücredeki Molekül Sayısı	4	
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.344	
Çizgisel Soğurma Katsayısı (mm ⁻¹)	0.10	
Boyut/Renk/Biçim	0,750x0,387x0,190/kırmızı/Prizmatik	

Çizelge 3.17. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on bileşiğinin (IX) kristal yapı verileri

Veriler STOE IPDS-2 kırınımmetre sisteminde ω-taraması yöntemi ile toplandı

X-ışını ve Dalga Boyu (Å)	MoK _α , λ=0,71073 Å
Monokromatör	Grafit
Veri toplama sıcaklığı	293 K
F ₀₀₀	512
Gözlenen yansıma sayısı	13542
Bağımsız yansıma sayısı	2421
Soğurma düzeltmesi	İntegrasyon
Geçirgenlik Faktörü	T _{min} =0,9504, T _{max} =0,9871
R _{int}	0.066

Kullanılan Programlar	SHELXS97, SHELXL97
Yapı Çözülmesi	Direkt Metotlar
Yapı Arıtımı	Tam matris (F ²)'ye göre
Ağırlık Fonksiyonu	$1/\sigma(F^2)$
Hidrojen Atomlarının Yerleştirilmesi	Geometrik ve izotropik arıtım
h, k, l Aralığı	-7 <h<7, -12<k<12,="" -24<l<24<="" td=""></h<7,>
Parametre Sayısı	166
$S(F^2)$	0.78
R	0.063

wR ₂	0.032
$\Delta \rho_{\rm max}, \ \Delta \rho_{\rm min} \ ({\rm e}/{\rm \AA}^3)$	0,07, -0,08

		, U,	, , , , , , , , , , , , , , , , , , ,
Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı	Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı
01—C1	1.287 (3)	C9—C10	1.379 (4)
N1—C7	1.300 (3)	С9—Н9	0.9300
N1—C8	1.409 (3)	C2—C3	1.349 (4)
N1—H1	0.8600	C13—C12	1.379 (4)
O3—C14	1.365 (3)	С13—Н13	0.9300
O3—H3	0.8200	C10—C12	1.387 (4)
O2—C2	1.362 (3)	C10—C11	1.504 (4)
O2—H2	0.8200	С12—Н12	0.9300
С8—С9	1.376 (4)	C4—C5	1.365 (4)
C8—C14	1.393 (3)	C4—C3	1.404 (4)
Cl—C6	1.411 (3)	C4—H4	0.9300
Cl—C2	1.423 (3)	С3—НЗА	0.9300
C14—C13	1.370 (4)	С5—Н5	0.9300
C6—C7	1.415 (3)	C11—H11A	0.9600
C6—C5	1.423 (4)	C11—H11B	0.9600
С7—Н7	0.9300	C11—H11C	0.9600
C7—N1—C8	130.1 (2)	O2—C2—C1	118.0 (3)
C7—N1—H1	115.0	C14—C13—C12	119.8 (3)
C8—N1—H1	115.0	C14—C13—H13	120.1
Cl4—O3—H3	109.5	C12—C13—H13	120.1
C2—O2—H2	109.5	C9—C10—C12	117.1 (3)
C9—C8—Cl4	119.9 (3)	C9—C10—C11	121.2 (3)
C9—C8—N1	124.3 (2)	C12—C10—C11	121.7 (3)
Cl4—C8—N1	115.8 (3)	C13—C12—C10	122.1 (3)
O1—C1—C6	123.6 (3)	C13—C12—H12	118.9
O1—C1—C2	119.2 (3)	C10—C12—H12	118.9
C6—C1—C2	117.2 (3)	C5—C4—C3	119.9 (3)
O3—Cl4—Cl3	125.0 (3)	C5—C4—H4	120.1
O3—Cl4—C8	115.7 (2)	C3—C4—H4	120.1
C13—Cl4—C8	119.2 (3)	C2—C3—C4	121.0 (3)
C1—C6—C7	119.7 (3)	С2—С3—НЗА	119.5
C1—C6—C5	120.3 (3)	C4—C3—H3A	119.5
C7—C6—C5	119.9 (3)	C4—C5—C6	120.0 (3)
N1—C7—C6	122.3 (3)	C4—C5—H5	120.0
N1—C7—H7	118.9	C6—C5—H5	120.0
С6—С7—Н7	118.9	C10-C11-H11A	109.5
C8—C9—Cl0	121.7 (3)	C10-C11-H11B	109.5
С8—С9—Н9	119.1	H11A—C11—H11B	109.5

Çizelge 3.18.	(Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4
	dien-1-on bileşiği (IX) için bağ uzunlukları, bağ açıları ve torsiyon açıları

С10—С9—Н9	119.1	C10-C11-H11C	109.5
C3—C2—O2	120.5 (3)	H11A—C11—H11C	109.5
C3—C2—Cl	121.5 (3)	H11B-C11-H11C	109.5
C7—N1—C8—C9	-0.8 (4)	C6—C1—C2—C3	0.6 (4)
C7—N1—C8—C14	179.5 (3)	O1—C1—C2—O2	1.8 (4)
C9—C8—C14—O3	179.0 (2)	C6—C1—C2—O2	-178.3 (3)
N1—C8—Cl4—O3	-1.4 (3)	O3—C14—C13—C12	-179.8 (3)
C9—C8—C14—C13	-1.8 (4)	C8—C14—C13—C12	1.1 (4)
N1-C8-C14-C13	177.8 (2)	C8—C9—C10—C12	-0.8 (4)
O1—C1—C6—C7	-5.6 (4)	C8—C9—C10—C11	178.7 (3)
C2—C1—C6—C7	174.4 (2)	C14—C13—C12—C10	-0.2 (4)
O1—C1—C6—C5	178.4 (3)	C9—C10—C12—C13	0.0 (4)
C2—C1 —C6—C5	-1.6 (4)	C11—C10—C12—C13	-179.5 (3)
C8—N1—C7—C6	-179.0 (2)	O2—C2—C3—C4	179.7 (3)
C1—C6—C7—N1	-0.4 (4)	C1—C2—C3—C4	0.8 (4)
C5—C6—C7—N1	175.6 (3)	C5—C4—C3—C2	-1.3 (5)
C14—C8—C9—C10	1.7 (4)	C3—C4—C5—C6	0.3 (4)
N1 — C8 — C9 — C10	-177.9 (2)	C1—C6—C5—C4	1.1 (4)
O1—C1—C2—C3	-179.4 (3)	C7—C6—C5—C4	-174.9 (3)

3.3.10. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on Bileşiğinin (X) Sentezi (MT139)

50 mL'likbalon içerisinde 2,3-dihidroksibenzaldehit 13,8 mg (0,1 mmol) 10 mL mutlak etil alkolde çözüldü. Daha sonra üzerine 10 mL mutlak etil alkolde 2tiyofenmetilamin 11,3 mg (0.1 mmol) çözülerek ilave edildi. Sonra çözelti 14 saat geri soğutucu altında kaynatıldı. Tepkime sonunda etil alkol buharlaştırıldı. Elde edilen (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on bileşiği etanol-kloroform (1:1) karışımında yavaş buharlaştırma yöntemiyle oda sıcaklığında kristallendirildi. Elde edilen kristalin yapısı IR, UV-vis, ¹H-NMR ve Xışını kırınımı metotlarıyla aydınlatıldı. Verim: %60, E.N.: 185-187°C.

Şekil 3.64. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on bileşiğinin (X) sentezi

Şekil 3.65. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on bileşiğinin (X) FT-IR spektrumu

FT-IR spektrumu (KBr pelletcm⁻¹): 3336 (z, O-H), 3249 (z, N-H), 3112 (z, aromatik C-H), 2975 (z, alifatik C-H), 1636 (ş, C=O), 1513 (o, C=C), 1221 (ş, C-S), 848 (o, C-S-C). ş: şiddetli, o: orta şiddetli, z: zayıf, y:yayvan.

Şekil 3.66. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on bileşiğinin (X) UV-vis. spektrumu

UV-vis. soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 221, 266, 291nm.

Şekil 3.67. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on bileşiğinin (X) ¹H-NMR spektrumu

¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 13,51: (NH₁₇); 8,35: (H-C-N); 7,28-6,74: (Aromatik H); 5,25: (OH₉); 4,97: (CH₂).

Şekil 3.68. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on bileşiğinin (X) ¹³C-NMR spektrumu

¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 165,42: (C₇); 150,98-116,83: (Aromatik C'lar); 76,66: (Kloroform-d); 56,01: (C₁₁).

Şekil 3.69. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on bileşiğinin (X) ortep yapısı

Şekil 3.70. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on bileşiğinin (X) birim hücre yapısı

Kristal Özellikleri		
Kimyasal Formül	$C_{12}H_{11}NO_2S$	
Molekül Ağırlığı (M _r)	233.28	
Kristal Sistemi	Monoklinik	
Uzay Grubu	P2 ₁ /n	
Birim Hücre Parametreleri (Å)	a=11.8040 (15), b=5.9552 (5), c=15.6935 (19)	
	β(°)= 98.343 (10)	
Birim Hücre Hacmi (Å ³)	1091.5 (2)	
Birim Hücredeki Molekül Sayısı	4	
Hesaplanan Yoğunluk (Mg.m ⁻³)	1.420	
Çizgisel Soğurma Katsayısı (mm ⁻¹)	0.28	
Boyut/Renk/Biçim	0,640x0,407x0,230/Kırmızı/Prizmatik	

Çizelge 3.19. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on bileşiğinin (X) kristal yapı verileri

Veriler STOE IPDS-2 kırınımmetre sisteminde ω-taraması yöntemi ile toplandı.

MoK _α , λ=0,71073 Å
Grafit
293 K
488
7465
2509
İntegrasyon
T_{min} =0,8819, T_{max} =0,9434
0.057

Kullanılan Programlar	SHELXS97, SHELXL97
Yapı Çözülmesi	Direkt Metotlar
Yapı Arıtımı	Tam matris (F ²)'ye göre
Ağırlık Fonksiyonu	$1/\sigma(F^2)$
Hidrojen Atomlarının	Coometrile ve izetnenile onten
Yerleştirilmesi	Geometrik ve izotropik antim
h, k, l Aralığı	-15 <h<15, -20<l<20<="" -6<k<7,="" td=""></h<15,>
Parametre Sayısı	147
$S(F^2)$	1.07

R	0.053
wR ₂	0.156
$\Delta \rho_{\rm max}, \ \Delta \rho_{\rm min} \ ({\rm e}/{\rm \AA}^3)$	0,50, -0,34

Çizelge 3.20. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on bileşiği (X) için bağ uzunlukları, bağ açıları ve torsiyon açıları

Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı	Bağ Yapan Atomlar	Bağ Uzunluğu (Å) ve Açısı
C1—C7	1.417 (3)	C8—N1	1.465 (3)
C1—C6	1.420 (3)	С8—С9	1.498 (3)
C1—C2	1.425 (3)	C8—H8A	0.9700
C2—O1	1.288 (3)	C8—H8B	0.9700
C2—C3	1.428 (3)	C9—C10	1.413 (3)
C3—O2	1.359 (3)	C9—S1	1.703 (2)
C3—C4	1.363 (3)	C10—C11	1.421 (3)
C4—C5	1.409 (4)	C10—H10	0.9300
C4—H4	0.9300	C11—C12	1.344 (4)
C5—C6	1.355 (4)	C11—H11	0.9300
С5—Н5	0.9300	C12—S1	1.695 (3)
С6—Н6	0.9300	C12—H12	0.9300
C7—N1	1.296 (3)	N1—H1	0.88 (3)
С7—Н7	0.9300	О2—Н3	0.852 (17)
C7—C1—C6	119.5 (2)	N1—C8—H8A	108.6
C7—C1—C2	119.5 (2)	С9—С8—Н8А	108.6
C6—C1—C2	121.0 (2)	N1—C8—H8B	108.6
O1—C2—C1	123.4 (2)	С9—С8—Н8В	108.6
O1—C2—C3	120.24 (19)	H8A—C8—H8B	107.6
C1—C2—C3	116.4 (2)	С10—С9—С8	126.9 (2)
O2—C3—C4	120.1 (2)	C10—C9—S1	111.78 (18)
O2—C3—C2	118.67 (19)	C8—C9—S1	121.20 (18)
C4—C3—C2	121.3 (2)	C9—C10—C11	109.6 (2)
C3—C4—C5	121.2 (2)	C9—C10—H10	125.2
C3—C4—H4	119.4	C11—C10—H10	125.2
C5—C4—H4	119.4	C12—C11—C10	114.1 (2)
C6—C5—C4	120.0 (2)	C12—C11—H11	123.0
С6—С5—Н5	120.0	C10-C11-H11	123.0
C4—C5—H5	120.0	C11—C12—S1	112.5 (2)
C5—C6—C1	120.1 (2)	С11—С12—Н12	123.8
С5—С6—Н6	119.9	S1—C12—H12	123.8
С1—С6—Н6	119.9	C7—N1—C8	126.1 (2)
N1—C7—C1	123.7 (2)	C7—N1—H1	117 (2)
N1—C7—H7	118.1	C8—N1—H1	117 (2)
С1—С7—Н7	118.1	С3—О2—Н3	112 (2)
N1—C8—C9	114.60 (19)	C12—S1—C9	92.06 (12)

C7—C1—C2—O1	0.2 (3)	C6—C1—C7—N1	-179.4 (2)
C6—C1—C2—O1	-178.9 (2)	C2—C1—C7—N1	1.4 (3)
C7—C1—C2—C3	-178.9 (2)	N1—C8—C9—C10	102.8 (3)
C6—C1—C2—C3	2.0 (3)	N1—C8—C9—S1	-81.9 (3)
O1—C2—C3—O2	-1.4 (3)	C8—C9—C10—C11	176.2 (2)
C1—C2—C3—O2	177.76 (19)	S1—C9—C10—C11	0.5 (2)
O1—C2—C3—C4	179.3 (2)	C9—C10—C11—C12	-0.3 (3)
C1—C2—C3—C4	-1.6 (3)	C10-C11-C12-S1	-0.1 (3)
O2—C3—C4—C5	-179.4 (2)	C1—C7—N1—C8	-176.6 (2)
C2—C3—C4—C5	-0.1 (4)	C9—C8—N1—C7	-41.7 (3)
C3—C4—C5—C6	1.3 (4)	C11—C12—S1—C9	0.4 (2)
C4—C5—C6—C1	-0.9 (4)	C10—C9—S1—C12	-0.54 (19)
C7—C1—C6—C5	-180.0 (2)	C8—C9—S1—C12	-176.49 (19)
C2-C1-C6-C5	-0.8 (4)		
M.A No Bileşik formülleri Adlandırma ve verim E.N. . $(C_{19}H_{13}Cl_2NO_3)$ 138-140 I (E)-3-(((3-klor-4-(4-458 °C klorfenoksi)fenil)imino)metil) benzen-1,2-diol %58 $(C_{13}H_{10}INO_2)$ 167-169 II (E)-3-(((4-iyotfenil)imino)metil) 339 °C benzen-1,2-diol %60 $(C_{14}H_{12}BrNO_2)$ (E)-3-(((3-brom-4-134-136 III 306 °C metilfenil)imino)metil)benzen-1,2-diol %56 $(C_{15}H_{10}N_2O_4)$ 223-225 IV 292 CH=N 2-((2,3-°C dihidroksibenzildien)amino) 0 ΟН isoindolin-1,3-dion, %66 'nн

Çizelge 3.21. Sentezlenen Bileşiklerin Formülleri, Adlandırılmaları, Erime Noktaları ve Molekül Ağırlıkları.

4. BULGULARVE TARTIŞMA

Sentezlenen bileşiklerin yapıları IR, UV-vis., ¹H-NMR ve ¹³C-NMR spektroskopileri kullanılarak aydınlatıldı. Ayrıca uygun çözücülerde azometin bileşiklerinin tek kristalleri elde edildi ve elde edilen bu kristallerin yapıları X-ışınları difraktometresi kullanılarak belirlendi.

4.1. Sentezlenen Bileşiklerin IR Verileri

- I. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol (I) (C₁₉H₁₃Cl₂NO₃), FT-IR spektrumu (KBr pellet cm⁻¹): 3506 (z, O-H), 3068 (z, aromatik C-H), 1622 (ş, C=N), 1571 (ş, aromatik C=C), 1185 (ş, aromatik C-O), 1092 (o, C-Cl).
- II. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol (II) (C₁₃H₁₀INO₂), FT-IR spektrumu (KBr pelletcm⁻¹): 3447 (ş, O-H), 3070 (z, aromatik C-H), 2981 (z, alifatik C-H), 2905 (z, C-N), 1622 (ş, C=N), 1575 (ş, aromatik C=C), 1202 (ş, aromatik C-O), 1033 (o, C-I).
- III. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol (III) (C₁₄H₁₂BrNO₂), FT-IR spektrumu (KBr pelletcm⁻¹): 3345 (y, O-H), 3048 (z, aromatik C-H); 2990 (z, alifatik C-H), 1613 (ş, C=N), 1567 (ş, aromatik C=C), 1202 (ş, aromatik C-O), 1079(z, C-Br).
- IV. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion (IV) (C₁₅H₁₀N₂O₄), FT-IR spektrumu (KBr pelletcm⁻¹): 3468 (z, O-H), 3032 (z, aromatik C-H), 2985 (z, alifatik C-H), 1715 (ş, C=O), 1635 (C=N), 1469 (o, aromatik C=C).
- V. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1-on (V) (C₃₈H₃₀N₂O₆), FT-IR spektrumu (KBr pelletcm⁻¹): 3361 (z,O-H), 3197 (z,N-H), 3053 (z, aromatik C-H), 2985 (z, alifatik C-H), 2843 (z,C-N), 1626 (ş,C=O), 1588 (ş,C=C), 1156 (ş, aromatik C-O).
- VI. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1-on (VI) (C₁₄H₁₃NO₃), FT-IR spektrumu (KBr pelletcm⁻¹): 3123 (z, O-H), 3182 (z, N-H), 3087 (z, aromatik C-H), 2929 (z, alifatik C-H), 2831 (z, C-N), 1625 (ş, C=O), 1513 (o, C=C), 1218 (ş, C-H).

- VII. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on (VII) (C₁₄H₁₂ClNO₂), FT-IR spektrumu (KBr pelletcm⁻¹): 3361 (z, O-H), 3244 (z, N-H), 3065 (z, aromatik C-H), 2998 (z, alifatik C-H),2825 (z, C-N), 1626 (ş, C=O), 1596 (ş, C=C), 1029 (o, C-Cl).
- VIII. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on (VIII) (C₁₆H₁₇NO₄), FT-IR spektrumu (KBr pelletcm⁻¹): 3377 (z, O-H), 3286 (z, N-H), 3089 (z, aromatik C-H), 2994(z, alifatik C-H), 2803 (z, C-N), 1647 (ş, C=O), 1516 (ş, aromatik C=C),1190 (ş, aromatik C-O).
 - IX. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4-dien-1on (IX) (C₁₄H₁₃NO₃), FT-IR spektrumu (KBr pelletcm⁻¹): 3413 (z, O-H), 3067 (z, aromatik C-H), 2994 (o, alifatik C-H), 2876 (z, C-N), 1617 (ş, C=O), 1511 (ş, C=C), 1219 (ş, aromatik C-O), 1024 (o, C=C).
 - X. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on (X) (C₁₂H₁₁NO₂S), FT-IR spektrumu (KBr pelletcm⁻¹): 3336 (z, O-H), 3249 (z, N-H), 3112 (z, aromatik C-H), 2975 (z, alifatik C-H), 1636 (ş, C=O), 1513 (o, C=C), 1221 (ş, C-S), 848 (o, C-S-C).

4.2. Sentezlenen Bileşiklerin UV-vis.Verileri

- I. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol (I) (C₁₉H₁₃Cl₂NO₃), UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 215, 273nm.
- II. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol (II) (C₁₃H₁₀INO₂), UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 206, 228, 321, 285nm.
- III. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol (III) (C₁₄H₁₂BrNO₂), UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 207, 224, 300 nm.
- IV. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion (IV) ($C_{15}H_{10}N_2O_4$), UVvis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 207, 224, 291 nm.
- V. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1-on (V) ($C_{38}H_{30}N_2O_6$),UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 208, 283, 325, 331 nm.

- VI. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1-on (VI) (C₁₄H₁₃NO₃), UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 210, 217, 284, 343 nm.
- VII. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on (VII) (C₁₄H₁₂ClNO₂),UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 209, 218, 285, 318 nm.
- VIII. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on (VIII) (C₁₆H₁₇NO₄), UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 218, 267, 335, 353 nm.
 - IX. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1on (IX) (C₁₄H₁₃NO₃), UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 209, 279, 355 nm.
 - **X.** (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on (X) (C₁₂H₁₁NO₂S), UV-vis soğurma spektrumu ($\lambda_{max/nm}$, 2×10⁻⁵ M C₂H₅OH): λ_{max} : 221, 266, 291 nm.

4.3. Sentezlenen Bileşiklerin ¹H-NMR Verileri

- I. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol (I) (C₁₉H₁₃Cl₂NO₃), ¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 13,28: (OH₈); 8,59: (H-C=N); 7,44-6,87: (Aromatik H); 5,73: (OH₉).
- II. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol (II) (C₁₃H₁₀INO₂), ¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 13,45: (OH₈); 8,58: (H-C=N); 7,75-6,83: (Aromatik H); 5,74: (OH₉).
- III. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol (III) (C₁₄H₁₂BrNO₂), ¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 13,51: (OH₈); 8,57: (H-C=N); 7,76-6,84: (Aromatik H); 5,75: (OH₉); 2,46: (CH₃).
- IV. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion (IV) (C₁₅H₁₀N₂O₄), ¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 14,71: (OH₈); 8,62: (H-C=N); 7,26-6,71: (Aromatik H); 6,06: (OH₉).

- V. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1-on (V) (C₃₈H₃₀N₂O₆), ¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 13,73: (NH₂₄); 8,67: (H-C-N); 7,33-6,77: (Aromatik H); 5,77: (OH₉).
- VI. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1-on (VI) (C₁₄H₁₃NO₃), ¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 14,71: (NH₁₇); 8,62: (H-C-N); 7,26-6,71: (Aromatik H); 6,06: (OH₉); 3,95: (CH₃).
- VII. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on (VII) (C₁₄H₁₂ClNO₂), ¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 13,51: (NH₁₉); 8,58: (H-C-N); 7,31-6,85: (Aromatik H); 5,73: (OH₉); 2,40: (CH₃).
- VIII. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on (VIII) (C₁₆H₁₇NO₄), ¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 14,71: (NH₁₈); 8,26: (H-C-N); 7,26-6,67: (Aromatik H); 5,77: (OH₉); 4,74: (CH₂); 3,89: (CH₃).
 - IX. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on (IX) (C₁₄H₁₃NO₃), ¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 14,19: (NH₁₉); 8,80: (H-C-N); 8,63: (OH₉); 7,69-6,59: (Aromatik H); 2,78: (H₁₃); 2,49: (CH₂); 2,21: (CH₃).
 - X. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on (X) (C₁₂H₁₁NO₂S), ¹H-NMR spektrumu (CDCl₃, 400 MHz, standart: TMS, ppm): 14,19: (NH₁₇); 8,35: (H-C-N); 7,28-6,74: (Aromatik H); 5,25: (OH₉); 4,97: (CH₂).

4.4. Sentezlenen Bileşiklerin ¹³C-NMR Verileri

- I. (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol (I)
 (C₁₉H₁₃Cl₂NO₃), ¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm):
 162,98: (C₇); 155,56-118,20: (Aromatik C'lar); 76,98: (kloroform-d).
- II. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol (II) (C₁₃H₁₀INO₂),¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 162,77: (C₇); 148,99-118,02: (Aromatik C'lar); 91,66: (C₁₃); 76,99: (kloroform-d).

- III. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol (III) (C₁₄H₁₂BrNO₂),
 ¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 162,49: (C₇);
 148,97-117,87: (aromatik C'lar); 27,55:(C₁₈).
- IV. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion (IV) (C₁₅H₁₀N₂O₄), ¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 164,17: (C₇); 159,96: (C₄); 147,21: (C₁₈); 145,85: (C₁₇); 134,95-117,51: (Aromatik C'lar); 77,63: (Kloroform-d).
- V. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1-on (V) $(C_{38}H_{30}N_2O_6)$, ¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 162,29: (C₇); 157,30-117,40: (Aromatik C'lar); 77,30: (Kloroform-d).
- VI. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1-on (VI) (C₁₄H₁₃NO₃), ¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 159,77: (C₇); 128,07-110,00: (Aromatik C'lar); 76,98: (Kloroform-d); 55,98: (C₁₉).
- VII. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on (VII) (C₁₄H₁₂CINO₂), ¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 162,49: (C₇); 148,99-117,87: (Aromatik C'lar); 76,66: (Kloroform-d); 19,64: (C₁₇).
- VIII. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on (VIII) (C₁₆H₁₇NO₄), ¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 164,79: (C₇); 154,25: (C₁₇); 148,78-111,16: (Aromatik C'lar); 76,98: (Kloroform-d); 60,16: (C₂₂); 55,95: (C₂₀).
 - IX. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4 dien-1-on (IX) (C₁₄H₁₃NO₃), ¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 160,41: (C₇); 153,61-116,67: (Aromatik C'lar); 77,65: (Kloroform-d); 20,51: (C₁₇).
 - X. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on (X) (C₁₂H₁₁NO₂S), ¹³C-NMR Spektrumu (CDCl₃, 400 MHz, Standart: TMS, ppm): 165,42: (C₇); 150,98-116,83: (Aromatik C'lar); 76,66: (Kloroform-d); 56,01: (C₁₁).

4.5.Sentezlenen bileşiklerin X ışını verileri

- **I.** (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol (I) (C₁₉H₁₃Cl₂NO₃), kristal sistemi triklinik, uzay grubu P1, birim hücre boyutları a=8.747 (3), b=9.723 (3), c=10.927 (4), α(°)= 90.37 (3), β(°)= 110.19 (3), γ(°)= 100.35 (3), Z=2, R=0,043.
- II. (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol (II) (C₁₃H₁₀INO₂), kristal sistemi triklinik, uzay grubu P1, birim hücre boyutları a= 6.047 (3), b=8.932 (3), c=12.312 (5), α(°)= 86.40 (3), β(°)= 83.86 (4),γ(°)= 68.88 (3), Z=2, R=0,039.
- III. (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol (III) (C₁₄H₁₂BrNO₂), kristal sistemi triklinik, uzay grubu P1, birim hücre boyutları a=7.168 (4), b=8.158 (5), c=11.908 (7), α(°)=103.52 (4), β(°)=100.38 (5),γ(°)=94.50 (5), Z=2, R=0,222.
- IV. 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion (IV) (C₁₅H₁₀N₂O₄), kristal sistemi monoklinik, uzay grubu P2₁/c, birim hücre boyutları a=20.564 (4), b=8.8161 (11), c=14.109 (3), β(°)= 94.484 (16), Z=8, R=0,068.
- V. (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklohekza-2,4-dien-1-on (V) (C₃₈H₃₀N₂O₆), kristal sistemi triklinik, uzay grubu P1, birim hücre boyutları a=7.655 (5), b=8.982 (5), c=11.950 (5), α(°)= 86.57 (4), β(°)= 75.22 (4), γ(°)= 74.92 (4), Z=1, R=0,049.
- VI. (Z)-2-hidroksi-6-(((2-metoksifenil)amino)metilen)siklohekza-2,4-dien-1-on (VI) (C₁₄H₁₃NO₃), kristal sistemi monoklinik, uzay grubu P2₁/n, birim hücre boyutları a=7.551 (2), b=11.318 (3), c=13.490 (4), $\beta = 95.09$ (2)°, Z=4, R=0,033..
- VII. (Z)-6-(((3-klor-4-metilfenil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on (VII) (C₁₄H₁₂ClNO₂), kristal sistemi monoklinik, uzay grubu P2₁/c, birim hücre boyutları a=14.035 (6), b=6.972 (2), c=13.964 (7), β (°)= 116.37 (4), Z=4, R=0,052.
- VIII. (Z)-6-(((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on (VIII) (C₁₆H₁₇NO₄), kristal sistemi monoklinik, uzay grubu P2₁/c, birim hücre boyutları a= 12.9608 (7),b=16.1681 (11),c=6.9657 (4), β (°)= 102.398 (4), Z=4, R=0,049.

- IX. (Z)-2-hidroksi-6-(((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4-dien-1on (IX)(C₁₄H₁₃NO₃), kristal sistemi ortorombik, uzay grubu P2₁2₁2₁, birim hücre boyutları a=6.1415 (18), b=10.102 (3), c=19.449 (7), $\alpha(^{\circ})=\beta(^{\circ})=\gamma(^{\circ})=90$, Z=4, R=0,063.
- X. (Z)-2-hidroksi-6-(((tiyofen-2-ilmetil)amino)metilen)siklohekza-2,4-dien-1-on (X) (C₁₂H₁₁NO₂S), kristal sistemi monoklinik, uzay grubu P2₁/n, birim hücre boyutları a=11.8040 (15), b=5.9552 (5), c=15.6935 (19), β(°)= 98.343 (10), Z=4, R=0,053.

IR spektrumlarında azometin (>C=N-) grubunun soğurması 1689-1471 cm⁻¹ bölgeleri arasında gözlenmektedir. C=N gerilme titreşimi, değişken şiddette olmakla beraber, C=C gerilme titreşimlerinden daha şiddetlidir (Silverstein ve Bassler, 1962). *o*-hidroksi Schiff bazlarında keto yapısının delokalize π bağı taşıyan karbonil C=O grubundan kaynaklanan keskin soğurmaları 1600 cm⁻¹ den daha büyük değerde gözlenmektedir. 5-nitro-N-salisilidenetilamin üzerine yapılan çalışmalarda asetonitril içerisinde alınan spekturumda karbonil frekansının 1680 cm⁻¹ geldiği gösterilmiştir (Majerz vd, 2000). Bu da keto karakterin artmasıyla karbonil frekansının yükseldiğini göstermektedir.

IR spektrumlarında azometin grubu dışında moleküle bağlı diğer grupların titreşimlerini de gözlemek mümkündür. Nitro grubunun bağlı olması durunda 1550-1500 cm⁻¹ ve 1360-1290 cm⁻¹ bölgesinde iki kuvvetli soğurma gösterir. Molekül içi hidrojen bağlı sistemlerde 3200-2500 cm⁻¹ arasında zayıf ve yayvan bir pik meydana gelirken moleküller arası hidrojen bağlı sistemlerde 3550-3450 cm⁻¹ arasında soğurma gözlenmektedir. Aromatik C-H gerilme titreşimleri 3100-3000 cm⁻¹ bölgesinde ortaya çıkarken aromatik C=C gerilme titreşimleri 1600-1585 cm⁻¹ ve 1500-1400 cm⁻¹ bölgesinde ve CH₂ için alifatik C-H asimetrik gerilmesi 2926 cm⁻¹ ve simetrik C-H gerilmesi 2853 cm⁻¹, CH₃ için asimetrik C-H gerilmesi 2962 cm⁻¹ ve simetrik C-H gerilmesi 2872 cm⁻¹ gözlenir. Aromatik halkaya klor bağlanmasıyla oluşan C-Cl bağı gerilme titreşimi 1096-1089cm⁻¹, florun varlığında C-F gerilme titreşimi 1250-1100 cm⁻¹, C-Br gerilme titreşimi 1090-1025 cm⁻¹ ve C-I gerilme titreşimi de 1080-1025 cm⁻¹ aralığında gelmektedir (George ve McIntyre, 1987; Köksal, 1996; Silverstein ve Bassler, 1962).

I, II, III ve IV numaralı bileşiklerin IR spektrumlarında, C=N gerilme titreşimi 1613-1635 cm⁻¹ değerlerinde, O-H gerilme titreşimi ise 3345-3506 cm⁻¹ değerlerinde gözlendi. Moleküller arası hidrojen bağı bulunan bileşiklerin fenol-imin formunda oldukları anlaşılmaktadır.

V, VI, VII, VIII, IX ve X numaralı bileşiklerin IR spektrumlarında, C=O titreşimi 1617-1647 cm⁻¹ değerlerinde gözlendi. Keto-amin formundaki bu bileşiklerde hem molekül içi hem de moleküller arası hidrojen bağları oluşturduğundan FT-IR spektrumunda O-H pikleri çok zayıftır.

Tüm bileşiklerin UV-vis spektrumlarında, imin grubuna ait $\pi \rightarrow \pi^*$ ve $n \rightarrow \pi^*$ geçişleri çözücü olarak etil alkol içerisinde belirlendi. Elde edilen azometin bileşiklerinin UV-vis spekturumu incelendiğinde C=N gruplarına ait bantlar 240-300 nm'de ve 300-371 nm aralığında gözlenmiştir.

¹H-NMR spektrumları incelendiğinde 2-hidroksi Schiff bazlarının δ =10-16 ppm' de gözlenen ikili yada geniş tekli OH pikleri ile δ =8-9 ppm' de gözlenen ikili H-C=N- piklerinin keto-amin formundan kaynaklandığı bulunmuştur. İkili pikin amin protonu (N-H) ile metin protonunun (=C-H) etkileşmesinden oluşan yarılmadan kaynaklandığı belirtilmiştir. Keto formundan dolayı NH ve =C-H protonları sırasıyla δ =15.64 ve δ =9.56 ppm'de ikili pik olarak gözlenmiştir. Naftil protonları δ =7.87-6.92 ppm' de çoklu pik olarak bulunmuştur. Ar-CH₃ protonları δ =2.08 ppm ve δ =2.01 ppm' de tekli pik olarak gözlenmişlerdir (Ünver, 2010).

Sentezlenen bileşiklerin ¹H-NMR spektrumları incelendiğinde azometin protonuna ait (H-C=N) pik ve Schiff Bazının O-H'ye ait piktir. O-H'ye ait pikler 8,3-7,3 ppm arasında, -CH=NR- grubuna ait pikler 3,35-3,76 ppm arasında gözlendi. Bileşiklerin ¹H-NMR spektrumu incelendiğinde CH=NR piki 3,35-3,76 ppm değerinde singlet şeklinde görülmüştür.

Enol formunda olan (E)-3-(((3-klor-4-(4-klorfenoksi)fenil)imino)metil)benzen-1,2-diol (I) ($C_{19}H_{13}Cl_2NO_3$), (E)-3-(((4-iyotfenil)imino)metil)benzen-1,2-diol (II) ($C_{13}H_{10}INO_2$), (E)-3-(((3-brom-4-metilfenil)imino)metil)benzen-1,2-diol (III) ($C_{14}H_{12}BrNO_2$), ve 2-((2,3-dihidroksibenzildien)amino)isoindolin-1,3-dion (IV) ($C_{15}H_{10}N_2O_4$) bileşiklerinin C=N pikleri FT-IR spektrumlarında 1613-1635 arasında görülmüştür. Enol formundaki bu bileşiklerde FT-IR spektrumlarında O-H pikleri 3345-3506 cm⁻¹ aralığında gözlenmiştir.

Keto formunda olan (Z)-2-hidroksi-6-(((2-fenoksifenil)amino)metilen)siklo hekza-2,4-dien-1-on(V)(C₁₉H₁₆NO₃), (Z)-2-hidroksi-6-(((2-metoksifenil)amino) metilen)siklohekza-2,4-dien-1-on (VI) ($C_{14}H_{13}NO_3$),(Z)-6-((((3-klor-4-metilfenil) amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on (VII) ($C_{14}H_{12}CINO_2$), (Z)-6-((((3,4-dimetoksibenzil)amino)metilen)-2-hidroksisiklohekza-2,4-dien-1-on (VIII) ($C_{16}H_{17}NO_4$), (Z)-2-hidroksi-6-((((2-hidroksi-5-metilfenil)amino)metilen)siklohekza-2,4-dien-1-on (IX) ($C_{14}H_{13}NO_3$) ve (Z)-2-hidroksi-6-((((tiyofen-2-ilmetil)amino) metilen)siklohekza-2,4-dien-1-on (X) ($C_{12}H_{11}NO_2S$) bileşiklerinin C-N pikleri IR spektrumlarında 2803-2876 arasında görülmüştür. Keto formundaki bu bileşiklerde hem molekül içi hem de moleküller arası hidrojen bağları yapdığından FT-IR spektrumunda O-H pikleri çok zayıftır.

5. SONUÇ VE ÖNERİLER

Yapmış olduğum çalışmaların değerlendirilmesinden hazırlamayı hedeflediğim yeni Schiff bazı ligantlarının oluştuğu belirlenmiştir. Oluşan tüm yeni bileşikler tek kristal olup yapıları spektroskopik (FT-IR, UV-vis., ¹H-NMR, ¹³C-NMR ve X-ışınları kırınımı) yöntemleri ile aydınlatılmıştır.

Bileşiklerde çok güçlü molekül içi ve moleküller arası hidrojen bağı gözlenmiştir. Tüm spektroskopik ve kristallografik metotlardan elde edilen verilerin sonuçlarına göre bileşiklerin yapılarının verilen formüllere uygun olduğu söylenebilir. Schiff bazları ve kompleksleri temel bilimler alanında olduğu kadar endüstri alanındaki önemini de giderek artırmaktadır. Özellikle boya ve polimer teknolojisinde, ilaç sanayinde, tıp alanındaki biyolojik araştırmalarda ve tarım alanında bu bileşiklerden büyük ölçüde yararlanılmakta ve yeni sentezlerin yapılması yönündeki çalışmalar yoğun bir şekilde devam etmektedir. Schiff bazlarının floresans özellik göstermesi ve bu özelliğin kompleksleşme durumunda metal konsantrasyonuna bağlı olarak değişmesi, metallerin tanınması açısından analitik ve çevre kimyası için de önemlidir. Son zamanlarda sıvı kristal teknolojisinde kullanılabilecek ve non-linear optik özellik gösteren birçok Schiff bazı sentezlenerek çalışılmıştır. Çalışmalarda elektron çekici grup içeren ligandların ve metal komplekslerinin biyolojik aktivitelerinin fazla olduğu, hepsinin bakır komplekslerinin antibakteriyel aktivite gösterdiği, özellikle hidroksi sübstitüe Schiff bazı ve komplekslerinin daha fazla aktivite gösterdiği bulunmuştur. Nükleik asitlerle etkileşime girebilen yeni moleküllerin araştırılması ve tasarlanması, kemoterapide DNA'ya bağlanabilen yeni antikanser ilaçların geliştirilmesi günümüzde araştırmacıların üzerinde çok çalıştığı konulardan biridir. Schiff bazları, önemli antibakteriyel ve kemoterapötik potansiyelleriyle medikal kimyada önemli bir bileşik sınıfını temsil etmektedir.

Biyolojik özelikleri dikkate alındığında, hastalıklarla mücadelede yeni ilaçların geliştirilebilmesi için potansiyel ajanlar olmaları nedeniyle Schiff bazları ve komplekslerinin DNA ile etkileşimlerinin araştırılması oldukça önemlidir.

Verilen bu özellikler ve uygulamalar dikkate alınarak; Bundan sonraki çalışmalarımızda sentezlenen tüm Schiff bazı bileşikleri ile bazı komplekslerin biyolojik özellikleri ve DNA' ya etkileri de incelenebilecektir.

Bütün bu özelliklerinden dolayı seçilen ve tez kapsamında çalışılan bileşiklerin koordinasyon kimyasına, analitik kimyaya, biyokimyaya, organik kimyaya, spektroskopi ve kristallografiye, mikrobiyolojiye ve tıp bilimine katkılarının olabileceği düşünülmektedir.

- a) Bu çalışmada sentezlenen bileşiklerin bakteriler üzerindeki etkileri incelenebilir.
- b) Bu bileşiklerin metal kompleksleri hazırlanarak meydana gelen değişimler spektroskopik olarak çalışılabilir.
- c) Sentezlenen bileşiklerin polarografik özellikleri araştırılabilir.
- d) Fotokromizm ve termokromizm özellik gösterip göstermedikleri incelenebilir.
- e) Bileşiklere ait proton transfer mekanizmaları araştırılabilir.
- f) Bu bileşiklerin farklı türevleri ve metal kompleksleri hazırlanarak spektroskopik özellikleri ve kristal yapıları incelenerek meydana gelen değişimler ortaya konabilir.
- g) Parmak izleri ve avuç izleri suç mahallindeki en önemli deliller arasında yer alır.
 Schiff bazlarının parmak izi çözümlemedeki etkileri incelenebilir.
- h) Azometin bileşiklerinin termal özellikleri incelenerek faz geçişleri belirlenebilir.

KAYNAKLAR

- Aksu M. (2001). Çinko(II), kadmiyum(II) ve civa(II) iyonları ile Schiff bazları arasında mono-, di- ve tri- nükleer komplekslerin hazırlanması ve analitik amaçla kullanılabilirliklerinin araştırılması. Doktora Tezi, Ankara Üniversitesi, Fen bilimleri Enstitüsü, Ankara.
- Alexander, V. 1995. Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides. *Chemical Reviews*, 95:2, 273-342.
- Altundas, A., Sarı, N., Colak, N. and Ögütcü, H. 2010. Synthesis and biological activity of new cycloalkylthiophene-Schiff bases and their Cr (III) and Zn (II) complexes. *Medicinal Chemistry Research*, 19:6, 576-588.
- Asiri, A. M., Khan, S. A., Sharma, K., 2013. Synthesis, spectroscopic and physico chemical investigations of environmentally benign heterocyclic Schiff base derivatives as antibacterial agents on the bases of in vitro and density functional theroy. *Journal of Photochemistry and Photobiology B: Biology*, 120:82-89.
- Aydogan, F., Oecal, N., Turgut, Z. and Yolacan, C. 2001. Transformations of aldimines derived from pyrrole-2-carboxaldehyde. Synthesis of thiazolidinofused compounds. *Bull. Korean Chem. Soc*, 22:5, 476-480.
- Bal, M. (2010). Yeni azo-Schiff bazı türü ligand ve metal komplekslerinin sentezi, spektroskopik ve genotoksik özelliklerinin incelenmesi. Yüksek Lisans Tezi, Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü, Kahramanmaraş.
- Beraldo, H. and Gambino, D. 2004. The wide pharmacological versatility of semicarbazones, thiosemicarba-zones and their metal complexes. *Mini Reviews in Medicinal Chemistry*, 4:1, 31-39.
- Beyer, H. and Walter, W. 1988. Lehrbuch der Organischen Chemie, 21. Aufl., S. 533: S. Hirzel Verlag, Stuttgart.
- Blower, P. J. 1997. Small coordination complexes as radiopharmaceuticals for cancer targeting. *Transition Metal Chemistry*, 23:1, 109.
- Brown, W. H., Poon, T. and Poon, T. 2014. *Introduction to Organic Chemistry*. John Wiley & Sons, Florida.
- Calligaris, M., Nardin, G. t. and Randaccio, L. 1972. Structural aspects of metal complexes with some tetradentate Schiff bases. *Coordination Chemistry Reviews*, 7:4, 385-403.
- Catanescu, O., Grigoras, M., Colotin, G., Dobreanu, A., Hurduc, N. and Simionescu, C. I. 2001. Synthesis and characterization of some aliphatic–aromatic poly (Schiff base) s. *European Polymer Journal*, 37:11, 2213-2216.
- Cerrada, P., Oriol, L., Pinol, M., Serrano, J., Alonso, P., Puertolas, J., Iribarren, I. and Munoz Guerra, S. 1999. Influence of hydroxy functionalization and metal cross-linking on fiber properties of liquid-crystalline Polyazomethines. *Macromolecules*, 32:11, 3565-3573.
- Ceylan, Ü., Tanak, H., Gümüş, S., Ağar, E. 2016. Spectroscopic (FT-IR and UV-Vis) and theoretical (HF and DFT) investigation of 2-Ethyl-N-[(5-nitrothiophene-2-yl)methylidene]aniline. *Journal of Molecular Structure*, 1110:1-10

- Chukhadzhyan, G., Sarkisyan, E. and Elbakyan, T. 1972. Zhur. Org. Khim., 1972, 8, 1119. Chem. Abs, 77, 125828.
- Ciardelli, F., Carlini, C., Pertici, P. and Valentini, G. 1989. Polymer effect on catalysis by macromolecules/transition metal complexes. *Journal of Macromolecular Science—Chemistry*, 26:2-3, 327-347.
- Cozzi, P. G. 2004. Metal–Salen Schiff base complexes in catalysis: practical aspects. *Chemical Society Reviews*, 33:7, 410-421.
- Dede, B., Karipcin, F. and Cengiz, M. 2009. Novel homo-and hetero-nuclear copper (II) complexes of tetradentate Schiff bases: Synthesis, characterization, solvent-extraction and catalase-like activity studies. *Journal of Hazardous Materials*, 163:2-3, 1148-1156.
- Di Bella, S., Fragalà, I., Leonardi, N. and Sortino, S. 2004. Self-assembled monolayers of bis (salicylaldiminato) nickel (II) Schiff-base complexes: synthesis and structure. *Inorganica Chimica Acta*, 357:13, 3865-3870.
- Duman, H. 2007. 1, 10-fenantrolin türevi bir Schiff bazı ve geçiş metal komplekslerinin sentezi spektroskopik ve termal analizi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Yıldız Teknik Üniversitesi, İstanbul.
- Eger, K., Grieb, G. and Spätling, S. 1990. Synthesis of pyrrolo [2, 3-d] pyrimidine ribosides and their potential in chemotherapeutics. *Journal of Heterocyclic Chemistry*, 27:7, 2069-2075.
- Elliott, M. C. and El Sayed, N. N. E. 2005. Stereodivergent radical cyclisation reactions of cyclohexa-1, 4-dienes. *Tetrahedron Letters*, 46:17, 2957-2959.
- Erdik, E. (2008). Organik kimyada spektroskopik yöntemler, Ankara Üniversitesi Fen Fakültesi Gazi Kitapevi, Ankara.
- Erşahin, F. 2007. 3-metil salisilaldehitten elde edilen Schiff bazlarının sentezi ve spektroskopik özelliklerinin incelenmesi. Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Samsun.
- Farrugia, L. J. 1997. ORTEP 3 for Windows a version of ORTEP III with a Graphical User Interface (GUI). *Journal of Applied Crystallography*, 30:5-1, 565-565.
- Farrugia, L. J. 1999. WinGX suite for small molecule single crystal crystallography. Journal of Applied Crystallography, 32:4, 837-838.
- Fernández-G, J., del Rio-Portilla, F., Quiroz-Garcia, B., Toscano, R. and Salcedo, R. 2001. The structures of some ortho-hydroxy Schiff base ligands. *Journal of Molecular Structure*, 561:1-3, 197-207.
- Fessenden, R., Logue, M. and Fessenden, J. 2001. Organik Kimya,(Çev. T. Uyar): Ankara.
- Filarowski, A., Głowiaka, T. and Koll, A. 1999. Strengthening of the intramolecular O... H... N hydrogen bonds in Schiff bases as a result of steric repulsion. *Journal of Molecular Structure*, 484:1, 75-89.
- Fishwick, B., Griffiths, J. and Hill, J. 1991. Coupling of diazonium ions to Schiff's bases. *Journal of Chemical Research. Synopses*:1, 24-25.

- Forman, S. E. 1964. Synthesis of Oximes 1. *The Journal of Organic Chemistry*, 29:11, 3323-3327.
- Freedman, H. H. 1961. Intramolecular H-bonds. I. A spectroscopic study of the hydrogen bond between hydroxyl and nitrogen. *Journal of the American Chemical Society*, 83:13, 2900-2905.
- Gaber, M., Issa, R., Aly, F. and Ayad, M. 1989. Studies of Ti (IV) and Zr (IV) chelates with N2O2; schiff bases of 2-hydroxy-1-naphthaldehyde with aromatic diamines. *Thermochimica Acta*, 155, 309-316.
- Gavranić, M., Kaitner, B. and Meštrović, E. 1996. Intramolecular N– H... O hydrogen bonding, quinoid effect, and partial π -electron delocalization in Naryl Schiff bases of 2-hydroxy-1-naphthaldehyde: the crystal structures of planar N-(α -naphthyl)-and N-(β -naphthyl)-2-oxy-1-naphthaldimine. *Journal* of Chemical Crystallography, 26:1, 23-28.
- George, W. O. and McIntyre, P. S. 1987. *Infrared spectroscopy*. John Wiley & Sons Inc, Chicago.
- Ghassemzadeh, M., Fallahnedjad, L., Heravi, M. M. and Neumüller, B. 2008. Synthesis, characterization and crystal structure of new silver (I) and palladium (II) complexes containing 1, 2, 4-triazole moieties. *Polyhedron*, 27:6, 1655-1664.
- Grabarić, Z., Koprivanac, N., Papić, S., Parac-Osterman, Đ. and Matanić, H. 1993. Synthesis, application and biodegradation of a chromium azomethine dye. *Dyes and Pigments*, 23:4, 255-265.
- Golcu, A., Tumer, M., Demirelli, H., Wheatley, A. R., 2005. Cd (II) and Cu(II) complexes of polydentane Schiff base ligands: Synthesis, characterization, properties and biological activity. *Inorganica Chiminica Acta*, 358:1785-1797.
- Hanack, M., Deger, S. and Lange, A. 1988. Bisaxially coordinated macrocyclic transition metal complexes. *Coordination Chemistry Reviews*, 83:115-136.
- Higasio, Y. S. and Shoji, T. 2001. Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol and pyrazins. *Applied Catalysis A. General*, 221:1-2, 197-207.
- İlkeler, G. K. and Cilt, M. U. 2002. I ve II; RH Petrucci, WS Harwood ve FG Herring, Çeviri Editörleri: T. Uyar ve S. Aksoy, Palme Yayıncılık, İstanbul.
- Ismail, K. Z., El-Dissouky, A. and Shehada, A. Z. 1997. Spectroscopic and magnetic studies on some copper (II) complexes of antipyrine Schiff base derivatives. *Polyhedron*, 16:17, 2909-2916.
- Jenkins, P. R. 1992. Organometallic reagents in synthesis. Oxford University Press, İngland.
- Johnson, D., Pippard, M., Murphy, T. and Rose, N. 1982a. An in vivo evaluation of iron-chelating drugs derived from pyridoxal and its analogs. *Journal of Pharmacology and Experimental Therapeutics*, 221:2, 399-403.
- Johnson, D. K., Murphy, T. B., Rose, N. J., Goodwin, W. H. and Pickart, L. 1982b. Cytotoxic chelators and chelates 1. Inhibition of DNA synthesis in cultured

rodent and human cells by aroylhydrazones and by a copper (II) complex of salicylaldehyde benzoyl hydrazone. *Inorganica Chimica Acta*, 67:159-165.

- Juhász, L., Dinya, Z., Antus, S. and Gunda, T. E. 2000. A new approach for the synthesis of naturally occurring dihydrobenzo [b] furan-type neolignans of potential biological activity. *Tetrahedron Letters*, 41:14, 2491-2494.
- Karaer, H. 1997. Schiff Bazlarına Diazonyum Tuzlarının Kenetlenmesi ile Oluşan Bazı Azo-Azometin Boyarmaddelerinin Sentezi ve Yapılarının Spektroskopik Tekniklerle İncelenmesi. OMÜ. Doktora Tezi, Fen Bilimleri Enstitüsü, Ondokuzmayıs Üniversitesi, Samsun
- Kittel, C., McEuen, P. and McEuen, P. 1996. *Introduction to Solid State Physics*. Wiley New York.
- Köksal, H. 1996. 'Geçiş metallerinin naftilsalisilaldiminlerle kompleks bileşiklerinin sentezi, yapı ve spektral özelliklerinin incelenmesi'. Yüksek Lisans Tezi, Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü, Kahramanmaraş.
- Krygowski, T. M., Woźniak, K., Anulewicz, R., Pawlak, D., Kolodziejski, W., Grech, E. and Szady, A. 1997. Through-resonance assisted ionic hydrogen bonding in 5-Nitro-N-salicylideneethylamine. *The Journal of Physical Chemistry A*, 101:49, 9399-9404.
- Kumar, K. N. and Ramesh, R. 2004. Synthesis, characterization, redox property and biological activity of Ru (II) carbonyl complexes containing O, N-donor ligands and heterocyclic bases. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 60:12, 2913-2918.
- Küçükgüzel, I., Küçükgüzel, S. G., Rollas, S. and Kiraz, M. 2001. Some 3thioxo/alkylthio-1, 2, 4-triazoles with a substituted thiourea moiety as possible antimycobacterials. *Bioorganic & Medicinal Chemistry Letters*, 11:13, 1703-1707.
- Layer, R. W. 1963. The Chemistry of Imines. Chemical Reviews, 63:5, 489-510.
- Majerz, I., Pawlukojć, A., Sobczyk, L., Dziembowska, T., Grech, E. and Szady-Chełmieniecka, A. 2000. The infrared, Raman and inelastic neutron scattering studies on 5-nitro-N-salicylideneethylamine. *Journal of Molecular Structure*, 552:1-3, 243-247.
- March, J. 1992. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. John Wiley & Sons, Argentina.
- Noorizadeh, S. and Maihami, H. 2006. A theoretical study on the regioselectivity of Diels-Alder reactions using electrophilicity index. *Journal of Molecular Structure: THEOCHEM*, 763:1-3, 133-144.
- Nurşen, S., Arslan, S., Loğoğlu, E. and Şakıyan, İ. 2003. Antibacterial activites of some new amino acid-Schiff bases. *Gazi University Journal of Science*, 16:2, 283-288.
- Offe, H. 1988. Antituberculosis Drugs. Springer, 1-30, Germany.
- Oyama, N., Ohsaka, T. and Nakanishi, M. 1987. Electrochemically polymerized N, N-dimethylaniline films containing tris-(bathophenanthroline disulfonato) iron (II/III) complexes. *Journal of Macromolecular Science—Chemistry*, 24:3-4, 375-388.

- Papić, S., Koprivanac, N., Grabarić, Z. and Parac-Osterman, Đ. 1994. Metal complex dyes of nickel with schiff bases. *Dyes and Pigments*, 25:3, 229-240.
- Park, S., Mathur, V. and Planalp, R. P. 1998. Syntheses, solubilities and oxygen absorption properties of new cobalt (II) Schiff-base complexes. *Polyhedron*, 17:2-3, 325-330.
- Patai, S. 1970. Chemistry of the carbon-nitrogen double bond, London.
- Pfeiffer, P., Breith, E., Lübbe, E. and Tsumaki, T. 1933. Tricyclische orthokondensierte nebenvalenzringe. *Justus Liebigs Annalen der Chemie*, 503:1, 84-130.
- Pickart, L., Goodwin, W. H., Burgua, W., Murphy, T. B. and Johnson, D. K. 1983. Inhibition of the growth of cultured cells and an implanted fibrosarcoma by aroylhydrazone analogs of the Gly-His-Lys-Cu (II) complex. *Biochemical Pharmacology*, 32:24, 3868-3871.
- Reichert, D. E., Lewis, J. S. and Anderson, C. J. 1999. Metal complexes as diagnostic tools. *Coordination Chemistry Reviews*, 184:1, 3-66.
- Roothaan, C. C. J. 1951. New developments in molecular orbital theory. *Reviews of Modern Physics*, 23:2, 69.
- Rylander, P. 2012. Catalytic Hydrogenation Over Platinum Metals. Elsevier, New Jersey.
- Salman, S., Farrant, R. and Lindon, J. 1991. Studies of tautomerism in 2hydroxynaphthaldehyde Schiff bases by multinuclear magnetic resonance. *Spectroscopy Letters*, 24:9, 1071-1078.
- Schiff, H. 1869. Untersuchungen über salicinderivate. Justus Liebigs Annalen der Chemie, 150:2, 193-200.
- Scovill, J. P., Klayman, D. L. and Franchino, C. F. 1982. 2-Acetylpyridine thiosemicarbazones. 4. Complexes with transition metals as antimalarial and antileukemic agents. *Journal of Medicinal Chemistry*, 25:10, 1261-1264.
- Sharaby, C. M. 2007. Synthesis, spectroscopic, thermal and antimicrobial studies of some novel metal complexes of Schiff base derived from [N1-(4-methoxy-1, 2, 5-thiadiazol-3-yl) sulfanilamide] and 2-thiophene carboxaldehyde. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66:4-5, 1271-1278.
- Sheldrick, G. 1997. SHELXL97, SHELXS97 and SHELX97-2. University of Göttingen, Germany.
- Shriver, D. F. and Atkins, P. W. 1999. *Inorganic Chemistry 3.0*. Oxford University Press, London.
- Silverstein, R. M. and Bassler, G. C. 1962. Spectrometric identification of organic compounds. *Journal of Chemical Education*, 39:11, 546.
- Soliman, A. A., Ali, S. A. and Orabi, A. 2006. Spectral and thermal studies of some chromium and molybdenum complexes with ONO donor Schiff bases. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 65:3-4, 841-845.

- Taylor, M. K., Reglinski, J. and Wallace, D. 2004. Coordination geometry of tetradentate Schiff's base nickel complexes: the effects of donors, backbone length and hydrogenation. *Polyhedron*, 23:18, 3201-3209.
- Temple, D., Yevich, J., Covington, R., Hanning, C., Seidehamel, R., Mackey, H. and Bartek, M. 1979. Synthesis of 3, 4-dihydro-4-oxothieno [2, 3-d] pyrimidine-2-carboxylates, a new series of orally active antiallergy agents. *Journal of Medicinal Chemistry*, 22:5, 505-510.
- Ünver, H., Hayvali, Z. 2010. Synthesis, spectroscopic studies and structures of square-planar nickel(II) and copper(II) complexes derived from 2-{(Z)-[furan-2-ylmethyl]imino]methyl}-6-methoxyphenol, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75:782-788.
- West, D. X., Padhye, S. B. and Sonawane, P. B. 1991. *Complex Chemistry*. Springer, 1-50, New York.
- Zvezdina, É., Zhdanova, M., Barchan, I., Simkina, Y. N. and Dorofeenko, G. 1980. Antimicrobial activity of some pyridinium salts and compounds of the pyrimidine series. *Pharmaceutical Chemistry Journal*, 14:2, 144-148.

ÖZGEÇMİŞ

Adı ve Soyadı : Mahmut Taşdoğan

Doğum Yeri : Gaziantep

Doğum Tarihi : 22.02.1973

Yabancı Dili : İngilizce

Eğitim Durumu

Lise	: Malatya Lisesi (1992)
Lisans	: Çukurova Üniversitesi Fen-Edebiyat Fakültesi
	Kimya Bölümü (1997)
Yüksek Lisans	: Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü
	Kimya Anabilim Dalı/Organik Kimya (02.2016-07.2019)

Çalıştığı Kurum/Kurumlar ve Yıl

TED Samsun Koleji Özel Lisesi (2009-2019)

Yayınlar

1. Uzun, S., Taşdoğan, M., Ağar, E. (2017). Quantum mechanical calculations on a new Schiff base compound. Imcofe'17, Natural Sciences, Engineering and Architecture, Rome. (August 23-25. 2017).

2. Temel, E., Akkaya, A., Taşdoğan, M., Ağar, E. (2017). Structural and spectroscopic analysis of (E)-2-((2,3-dihydroxybenzylidene)amino)-3a,7a-dihydro-1H-isoindole-1,3(2H)-dione. Turcmos 2017, III. İnternational Turkish Congress on Molecular Spectroscopy. Bodrum, Turkey. (August 26-29. 2017).