

ONDOKUZ MAYIS UNIVERSITY

GRADUATE SCHOOL OF EDUCATIONAL SCIENCES

COMPUTER EDUCATION AND INSTRUCTIONAL TECHNOLOGY

DEPARTMENT

USING STARLOGO IN EDUCATION: DEVELOPING EDUCATIONAL GAME

WITH PROGRAMMING

NOMIN BOLDBAATAR

ADVISOR:

Asst. Prof. Dr. EMİNE ŞENDURUR

THESIS OF MASTER DEGREE

JULY, 2017

ONDOKUZ MAYIS UNIVERSITY

GRADUATE SCHOOL OF EDUCATIONAL SCIENCES

COMPUTER EDUCATION AND INSTRUCTIONAL TECHNOLOGY

DEPARTMENT

USING STARLOGO IN EDUCATION: DEVELOPING EDUCATIONAL GAME

WITH PROGRAMMING

NOMIN BOLDBAATAR

ADVISOR:

Asst. Prof. Dr. EMİNE ŞENDURUR

THESIS OF MASTER DEGREE

JULY, 2017

i

TELİF HAKKI

Bu tezin tüm hakları saklıdır. Kaynak göstermek koşuluyla tezin teslim tarihinden itibaren

……(……) ay sonra tezden fotokopi çekilebilir.

YAZARIN

Adı :

Soyadı :

Bölümü :

İmza :

Teslim Tarihi :

TEZİN

Türkçe Adı :

İngilizce Adı :

ii

ETİK İLKELERE UYGUNLUK BEYANI

Tez yazma sürecinde bilimsel ve etik ilkelere uyduğumu, yararlandığım tüm kaynakları

kaynak gösterme ilkelerine uygun olarak kaynakçada belirttiğimi ve bu bölümler dışındaki

tüm ifadelerin şahsıma ait olduğunu beyan ederim.

Yazar Adı Soyadı: ……………………..

 İmza: ……………………..

iii

KABUL VE ONAY

……. tarafından hazırlanan “……” adlı tez çalışması aşağıdaki jüri tarafından oy birliği/oy

çokluğu ile Ondokuz Mayıs Üniversitesi Bir öğe seçin. Anabilim Dalı’nda Yüksek Lisans /

Doktora tezi olarak kabul edilmiştir.

Danışman: (Unvanı Adı Soyadı)

(Anabilim Dalı, Üniversite Adı) ...…………

Başkan: (Unvanı Adı Soyadı)

(Anabilim Dalı, Üniversite Adı) …………...

Üye: (Unvanı Adı Soyadı)

(Anabilim Dalı, Üniversite Adı) …………...

Üye: (Unvanı Adı Soyadı)

(Anabilim Dalı, Üniversite Adı) …………...

Üye: (Unvanı Adı Soyadı)

(Anabilim Dalı, Üniversite Adı) …………...

Bu tezin Bir öğe seçin. Anabilim Dalı’nda Yüksek Lisans/ Doktora tezi olması için şartları

yerine getirdiğini onaylıyorum.

Tarihi: __/__/____

Eğitim Bilimleri Enstitüsü Müdürü

(İmza ve Mühür)

iv

STARLOGO TNG YAZILIMINI KULLANARAK GÖRSEL

PROGRAMLAMA YARDIMIYLA EĞİTSEL OYUN TASARLANMASI

 Yüksek Lisans Tezi

Nomin Boldbaatar

ONDOKUZ MAYIS ÜNİVERSİTESİ

 EĞİTİM BİLİMLERİ ENSTİTÜSÜ

Temmuz, 2017

ÖZ

Programlama eğitimi, son zamanlarda bilişim teknolojileri alanında temel konulardan biri

haline gelmiştir. Fakat öğrenciler genelde metin tabanlı programlama dillerinin karmaşık

yapısından dolayı bazı zorluklarla karşılaşmaktadır. Bu nedenle programlama eğitimi daha

çok programlamanın soyut yapısını somutlaştırmaya odaklanmaktadır. Eğitim ortamında

eğitsel oyunlar çok yaygın kullanılmaktadır. Çalışmanın amacı öğrencilerinin daha önceki

programlama deneyimi ve becerilerini yeni ortama nasıl aktardıklarını gözlemlemektedir.

Bilgi ve becerilerinin aktarılması için geriye sönümlü metot kullanılmıştır. Bu çalışmada,

üniversite son sınıf öğrencilerinin (N=21) “E-Oyun Tabanlı Öğrenme” dersi kapsamında

görsel programlama kullanarak oyun tasarlamaları süreci incelenmiştir. Bütün katılımcılar

metin tabanlı programlama hakkında temel bilgilere sahiptirler (Python, Java vs.). Fakat bu

öğrencilerin bazıları (N=11) daha önceden blok temelli programlama deneyimine sahip iken

diğerleri (N=10) sadece metin tabanlı programlama deneyimlerine sahiptirler. Araştırma

boyunca çalışan örnek, tamamlamalı örnek ve tam uygulamalı örnekler sunulmuştur. Bu

çalışma bilgisayar oyun tasarlama sürecindeki geriye sönümlü örneklerin değerini

vurgulamayı hedeflemektedir. Farklı programlama deneyimine sahip olan öğrencilerin

çalışma boyunca yaptıkları oyunlar karşılaştırılmıştır. Ayrıca yapılan bütün örnek formatların,

algılanan zorlukların ve bilişsel yüklerin etkilerini karşılaştırmıştır. Başlıca dört bulgu dikkat

çekmektedir. İlk olarak metin temelli programlama deneyimi olan öğrenciler diğer öğrencilere

göre daha yüksek final puanları alması uzak transfer olduğunu göstermiştir. İkinci olarak

tamamlamalı örneğin, deneyimli öğrenciler için daha etkili bir yaklaşım olduğu görülmüştür.

Üçüncü olarak öğrencilerin algıladığı zorluk derecelerine dayanarak, tam uygulamalı örneğin

diğer çözümleme ve tamamlamalı örneklerden daha çok zorlandıkları görülmüştür. Son olarak

örnek formatlarının etkililiğine baktığımızda tamamlamalı örnekler bütün öğrencilerde yüksek

etkililik göstermiştir. Fakat bütün örneklerin ortalama etkililik dereceleri,* daha önce hiç blok

temelli programlama deneyimine sahip olmayan öğrenciler için yüksek etkililik

göstermektedir.

 Anahtar kelimler : oyun tasarımı, çalışan örnek, geriye sönümlü örnek, blok temelli

programlama

Sayfa sayısı : 75

Danışman : Yrd.Doç.Dr Emine Şendurur

v

USING STARLOGO IN EDUCATION: DEVELOPING EDUCATIONAL

GAME WITH PROGRAMMING

MS Thesis

Nomin Boldbaatar

ONDOKUZ MAYIS UNIVERSITY

 GRADUATE SCHOOL OF EDUCATIONAL SCIENCES

July/2017

ABSTRACT

Programming education has certainly become one of the main fields in computer education

for the last few decades. However, students generally have difficulties with sophisticated

nature of text-based programming languages. Therefore, programming education has focused

more and more on making abstractness of programming tangible. The implement of

educational game is widespread in educational settings. The purpose of this study is to

observe how students can transfer their previous programming knowledge and skills into new

situation. In order to observe the transition of their knowledge, backwards-fading method used

during the study. This study examined senior university students’ (N=21) game making

process using block-based programming within “E-Game Based Learning”. All participants

have basic knowledge of text-based programming language such as Python, Java, etc.

However, some of students (N=11) had prior block-based programming experience where as

other students (N=10) had no block-based programming experience. During this study,

different example formats were presented: worked-example, completion-example, and full

practice. This study addresses the added value of faded worked examples in a computer

game-design process. Games of students with different programming experience have

compared throughout the study. Moreover, the comparison of effect of three examples, their

perceived difficulty and cognitive load are also observed. Four findings are on interest. First,

students having text-based programming experience had higher scores than final scores of

others which produced far transfer. Second, completion-example format was more efficient

than others for non-novice learners. Third, full-practice format was more difficult than either

worked-example or completion-example based on student perceived difficulties. Fourth, based

on the efficiency of example formats, completion example represented high efficiency for all

students. However, average efficiency of all example formats represented high efficiency for

students who had no prior block-based programming experience. The theoretical and practical

implications are also discussed.

Key words : game design, worked-example, backwards fading, block-based

programming

Number of Pages : 75

Advisor : Asst. Prof. Dr. EMİNE ŞENDURUR

vi

CONTENTS

TELİF HAKKI …………………………………………………………….….,,i

ETİK İLKELERE UYGUNLUK BEYANI ……………………………….,,.ii

KABUL VE ONAY …………………………………………………………...iii

ÖZ ………………………………………………………………………….…..iv

ABSTRACT…………………………………………………………………..…v

CONTENTS…………………………………………………………………....vi

TABLES………………………………………………………………………viii

FIGURES……………………………………………………………………....ix

I. INTRODUCTION……………………………………………......................1
1.1 Purpose of the study ………………………………………………………………….2

1.2 Research questions ……………………………………………..…………………….4

1.3 Keywords ………………………………………………………………..……………4

II. LITERATURE REVIEW……………………………………......................6
2.1. Cognitive Load Theory ……………………………………………………………..6

2.1.1.Near & Far transfer …………………………………………………………...8

2.1.2.Worked Examples with Backwards Fading …………………………………..9

2.2.Programming in Instructional Settings ..…………………………………………..10

2.2.1.Block-based Programming..12

2.2.2. Starlogo TNG………………………………………………………………….13

2.2.2.1. StarLogoBlocks …………………………………………………………14

2.2.2.2. Spaceland………………………………………………………………..17

2.3. Backwards fading and Block-based Programming ……………………………..18

2.4. Summary ………………………………………………………………………..….18

III. METHOD…………………………………………………….…………...21
3.1. Research Design ……………………………………………………………............21

3.2. Participant ……………………………………………………………………..……22

3.3. Procedure …………………………………………………………………………...23

3.4. Instrument ………………………………………………………………………….25

3.4.1.Introduction to Starlogo TNG software ……………………………………..25

3.4.2.Worked Examples: “Mario” and “Treasure” Games………………………25

3.4.3.Completion Examples: “Running away from the Bears” and “Catching

crashed cars” Games…………………………………………………..………28

3.4.4.Full Practice Examples: “Red Riding Hood: Collecting Carrots” and

“Crossing Bridge (Collecting coins)” Games …………………………….….32

3.4.5. Final Projects …………………………………………………………….…..33

3.5.Instruments ………………………………………………………………….…..….33

3.6.Data Analysis ………………………………………………………………….……34

IV. FINDINGS …………………………………………………………….…35

vii

V. DISCUSSION………………………………………………………………48

REFERENCE…………………………………………………………………55

APPENDIX……………………………………………………………………61

CURRICULUM VITAE……………………………………………………..75

viii

TABLES

Table 1. …………………………………………………………………………………...... 23

Table 2. …………………………………………………………………………………….. 24

Table 3. …………………………………………………………………………………….. 33

Table 4. ………………………………………………………………………………….…. 34

Table 5. ………………………………………………………………………………….….. 35

Table 6. ………………………………………………………………………………….….. 36

Table 7. ………………………………………………………………………………….….. 37

Table 8. ………………………………………………………………………………….….. 38

Table 9. ……………………………………………………………………………………... 38

Table 10……………………………………………………………………………………... 39

Table 11 ...…………………………………………………………………………………... 40

Table 12. ..…………………………………………………………………………………... 40

Table 13 ………………………………………………………………………………….…. 41

Table 14 ………………………………………………………………………………….…. 41

Table 15. ……………………………………………………………………………………. 42

Table 16. ……………………………………………………………………………………..45

ix

FIGURES

Figure 1 …………………………………….………………………….…………………… 15

Figure 2 .……………………………………………………………………......................... 16

Figure 3 ……………………………………………………………………………….……. 16

Figure 4 ………………………………………………………………………………….…. 17

Figure 5 …………………………………………………………………………………….. 18

Figure 6 ……………………………………………………………………………….……. 22

Figure 7 …………………………………………………………………………………….. 26

Figure 8 ………………………………………………………………………………….…. 26

Figure 9 ………………………………………………………………………………….…. 27

Figure 10 ..……………………………………………………………………………….…. 28

Figure 11. ..…………………………………………………………………………………. 28

Figure 12. ..…………………………………………………………………………………. 29

Figure 13. ..…………………………………………………………………………………. 29

Figure 14. ..…………………………………………………………………………………. 30

Figure 15. ..…………………………………………………………………………………. 31

Figure 16. …..………………………………………………………………………………. 31

Figure 17. ..…………………………………………………………………………………. 32

Figure 18. ..…………………………………………………………………………………. 37

Figure 19. ..…………………………………………………………………………………. 40

Figure 20. ..…………………………………………………………………………………. 42

Figure 21. ..…………………………………………………………………………………. 43

Figure 22. ..…………………………………………………………………………………. 43

Figure 23. ..…………………………………………………………………………………. 44

Figure 24. ..…………………………………………………………………………………. 44

1

CHAPTER I

I. INTRODUCTION

For the young generation, playing computer games have become a significant part of their

lives and culture (Wilson, Connolly, Hainey & Moffat, 2011). Besides the growing popularity

of playing computer games, it’s believed to result in diversified amount of benefits, like

increasing interest and motivation on students as well as, for instructors like reduction of

teaching time and instructor load (Petri & Gresse von Wangenheim, 2017). For the last few

decades, educational computer games have become a part of education. Educational games

certainly motivate and engage learners with the subject in an enjoyable way. Computer

games are used in many subjects such as math (e.g. Astra Eagle), physics (e.g.

Supercharged), biology (e.g. The Minecraft Cell), chemistry (e.g. EMD PTE), history (e.g.

World History Games), and language (e.g. Duolingo) education. Many years have passed

since the first computer programing education was introduced to schools in the early 1980s.

According to Papert (as cited by Begel, & Klopfer, 2004), programming in school curricula

encountered some serious problems and as known from the history of instructional media,

computers alone were not the panacea for all problems. However, with the increased

popularity of the Internet, learning started to take various forms. Apparently, computer

science has become one of the fast-growing and developing industries and technology has

begun to be used in various ways in education. Thus, way of learning has changed over time.

For example, they know how to access any information on the web whenever needed, which

can lead to a tendency towards searching and filtering skills rather than rote memorization.

Besides learning, the Internet, apparently, has started to take a big part in everyday lives of

people. According to the Turkish Statistical Institution (2016), many people spend significant

amount of their time with the computers or mobile devices for various activities ranging from

social media (82,4 %), online news (69,5 %), and health (65,9%) to entertainment such as

videos (74,5 %) and web radio (63,7 %).

Many students have grown up by playing games including non-digital ones such as board

games and hide-and-seek. However, digital games are one of the most frequently preferred

activities especially among young users (Fromme, 2003). The literature shows that one of the

major environments which aim to help learners to learn computer programming and to adopt

logical thinking skills in more interesting way is educational games (Backlund & Hendrix,

2013; Battistella & Wangenheim, 2016; Malliarakis, Satratzemi, & Xinogalos, 2013;

Maloney, Peppler, Kafai, Resnick, & Rusk, 2008; Petri & Gresse von Wangenheim, 2017).

The educational games can serve as appropriate tools for both formal and informal learning

situations (Kirriemuir & Mcfarlane, 2004) of the new generation learners since they are more

motivated to learn from educational games which, provide attractive graphics and scenarios

(Malliarakis, Satratzemi, & Xinogalos, 2013; Malliarakis, Satratzemi, & Xinogalos, 2014). In

many years, number of studies have investigated about using computer games in educational

settings. However, there are not enough studies about how students create and design their

own (educational) games and its impact on students learning. Recently, according to the some

educators it’s assumed that making games for learning instead of playing game for learning is

an efficient instructional strategy, there are examples in education enabling students design

2

and develop their own games (Hayes & Games, 2008). In this way, they could learn either to

code or to design as they produce games. Moreover, designing computer games makes

students active learners and creators instead of being consumers of computer games.

There are considerable amount of research investigating both educational games and

programming languages (Leutenegger & Edgington, 2007; Malliarakis et al., 2013;

Vasilateanu, Wyrazic, & Pavaloiu, 2016). Classical programming languages require great

effort due to being abstract, and therefore keeping students involved, motivated, and

interested in the topic throughout the course can become a challenge. There are various

methods, strategies, and techniques to make students interested and motivated. Using games

as a method or integrating games as tools for design and development can leverage the

attention span. Unlike abstract programming environment; visual programming

environments such as Scratch provide students with more concrete results. In other words,

instead of writing codes, they are allowed to drag-drop the code blocks. When they run the

code blocks, the output is more tangible. Although such environments are very useful for

beginners, they are hardly suitable for applications requiring complex programming (Barista ,

Connolly, & Angotti, 2016).

Lately, there has been an increasing interest in the combination of programming language and

game design. Especially there are many studies mostly utilizing Scratch (Malan & Leitner,

2007; Maloney, Peppler, Kafai, Resnick, & Rusk, 2008; Wilson, Connolly, Hainey, &

Moffat, 2011; Wilson, Hainey , & Connolly, 2013) and other tools: Alice 2.0 (Kelleher &

Pausch, 2006); EToys (Lee, 2011); ToonTalk (Kahn, 1996); Starlogo TNG (Begel & Klopfer,

2004; Klopfer, Scheintaub, Huang, Wendel, & Roque, 2009). Using game has offered many

opportunities to promote learning in an effective way (Garris, Ahlers, & Driskell, 2002).

Students are encouraged to develop their own games with the integration of their knowledge

and skills. Working on the visual design part of the games may trigger the intention to give

movements, to set rules, and so on, which can be possible through the utilization of visual

blocks of codes. Many studies are based on whether learners’ learning performances are

improved by teaching programming language using visual programming software.

Participants of those studies are mostly young and adult learners who have (no) previous

programming knowledge. However, there aren’t enough studies focusing on students’ ability

to transfer their previous abstract programming knowledge into a three-dimensional visual-

based programming environment. This study presents students ability to transfer their abstract

programming language knowledge and skills into game-design with visual programming

tools.

1.1. Purpose of the Study

One of the difficulties in education, especially in higher education, is transferring complex

topics successfully into real life. In these situations, using educational game is considered to

be the one the mostly used and beneficial methods (Mann, Eidelson, Fukuchi, Nissman,

Robertson, & Jardines, 2002). As we know using game as a tool in learning has a plenty of

3

advantages. Educational games are expected to provide such an effective environment, which

contains experiences similar to the real-life experiences. Moreover, it is proved that

educational game can make up a strong educational environment that activates learner’s

previous knowledge and makes it easy to use (Papastergiou, 2009). Therefore for students, it

becomes easy to learn these kinds of experiences by doing on their own and learning from

their mistakes (Petri & Gresse von Wangenheim, 2017). According to the Ebner & Holzinger

(2007), games are beneficial and useful for educational fields such as civil engineering and

medicine (which can be interpreted that learning is more efficient when complex topics are

presented to the students in the form of games. One of the most four common purpose of the

game, which is created for educational purpose, is to help students to understand

programming language (Hayes & Games, 2008). A considerable amount of studies have

investigated the impacts of using educational games in various fields. However, there has

been little attention to the learning experience of students as game designers. For the last few

decades, designing computer games has been used in educational setting. The Logo

Programming language developed by Seymour Papert, Wallace Feurzeig, and Daniel Bobrow

in 1968 was the major game design environment where learners can make simple

conversations with the computer through “turtles” (Papert, 1980). Similar to this, many tools

in order to create 2D or 3D games are developed to help students to learn (simple)

programming concepts and method. Most common software are Scratch, LogoBlocks, Unity

3D, Alice, Moose Croosing, ToonTalk, StarLogo TNG, and many others. Numerous studies

that are related to Scratch have been done recently. Scratch is designed on the basis of visual

programming. Using Scratch application, users can create various projects including games,

animated stories, greeting cards, simulations, and many others. Users are able to program

objects with drag-and-drop code blocks, rather than inputting a programming syntax. On the

other hand, there is also software which allows students to design, create, and use their own

fully functional mobile apps for Android. It is called AppInventor and it’s also a drag-and-

drop visual programming tool.

The related literature indicates that game design in education have a focus on teaching

programming languages and other academic domains (math, history, science, etc…) as well

as understanding game design concept. Many studies have investigated learners’ ability to

transfer their (previous) text-based programming language knowledge into block-based

programming environment or vice versa. For example, Tabet, Gedawy, Alshikhabobakr, and

Razak (2016) examined transfer from programming with Alice, which has the drag-and-drop

interface, to programming with Python, which is a text-based environment. In the first year of

their study, they prepared Alice-based curriculum for teaching computing for grade seven

students. In the following year, they implemented Python-based curriculum for grade eight

students. They found that starting programming education with Alice helped the knowledge

transfer, and thus it facilitated the adaptation to Python. Another example, Armoni,

Meerbaum-Salant, and Ben-Ari (2015) investigated the use of Scratch environment for

teaching a professional text-based programming language (Java or C#) at secondary school.

They observed that such an environment contributed students’ motivation in addition to

learning how to write codes. In a recent study, Weintrop and Holbert (2017) investigated how

learners use both block-based and text-based environment. They used Pencil Code

4

programming environment. In their study, there were two groups of participants: high school

condition and graduate condition. Both groups started using block-based environment of

Pencil Code. During assignments, while learners were shifting from text-to-blocks, they

preferred to use drag-and-drop over typing; therefore, they can prevent themselves from

syntax errors. Findings also showed that learners generally shift from text to block-based

modality to add new command or edit existing commands. It’s shown that novice learners

tend to work on block-based environment, while experienced learner are eager to work on

text-based environment. They emphasised that using dual-modality provides learners to be

able to switch between them as they wanted; therefore, it is encouraging modality for novice

learners; at the same time; it keeps experienced learners engaged.

In this study, it’s aimed to observe how students create educational game both using block-

based programming language and designing their game in 3D medium. Also, it’s aimed to

observe how students can transfer their previous programming knowledge and skills into new

situation. Moreover, in order to observe the transition of their knowledge, backwards-fading

method used during the study. Backwards-fading has been integrated into many subject areas,

but the examples are very rare in programming education, and therefore, this study has

importance to shed light for further similar studies.

1.2. Research Questions:

This study aimed to investigate the following research questions:

 Does the use of backwards fading technique facilitate the transfer of block-based

programming experience into 3D-game making in comparison to that of text-

based programming experience?

o Does the format of practice examples affect the 3D-game making

performance of participants?

 Does the format of practice examples affect the perceived difficulty?

 Does the format of practice examples affect cognitive load?

 What are the perceived challenges and facilitators of working with 3-D game

making environment?

1.3. Keywords

Text-based Programming: It is any programming language requiring the typing the codes in

line with certain syntax.

Backward Fading: Although this concept is used in many other fields including maths and

science, in this study we mean by backwards fading that small accomplishments of step by

step solutions of code blocks. It starts with worked examples, continues with completion

examples, and ends with full practice.

5

Block-based Programming: It is any programming language enabling the user to drag-drop

coding blocks to create functional programs.

Cognitive Load Theory (CLT): It is “a set of learning principles that are proven to results in

efficient instructional environments as a consequence of leveraging human cognitive learning

process” (Clark, Nguyen, & Sweller, 2011, p. 7).

Completion Example: It exemplifies the solution to a certain extent and generally leaves a

few steps to be solved by the learner.

Educational (computer) Game: It is any computer game designed according to certain

instructional goals.

Far Transfer: Far transfer is about tasks, which require being adapted one’s skill to a new

situation each time that is more like transfer between contexts.

Full Practice: It is used as a term to define the tasks requiring the solution of a whole problem

by the learner without any guidance.

Game Design: In this study, we assumed it as a process consisting of scenario creation, rule

definition, character creation, graphical environment creation, and building functional code

blocks.

Information Processing Model: It is a computer-like model explaining how people process

the incoming information through sensory, working, and long-term memory structures.

Near Transfer: Near transfer is about procedures of task which are done more or less the same

way each time they are performed.

Students as game designers: Students who lead, control, and develop their own games

through programming and designing graphical environment.

Transfer of Learning: It occurs when students apply their knowledge and skills anytime and

anywhere they need.

Worked Example: It exemplifies the solution of a problem with the inclusion of all steps

fully.

6

CHAPTER II

II. LITERATURE REVIEW

This study was primarily built upon the principles of cognitive load theory. The focus is on

backwards fading approach within a game-programming environment. Since the intervention

group included two types of participants having different programming backgrounds, there

was also a focus on the effects of near and far transfer issues. Programming education within

various contexts constitutes the secondary part of the literature chapter. Therefore, this

chapter consists of two main parts: Cognitive Load Theory and Programming in Instructional

Setting.

2.1. Cognitive Load Theory

Cognitive Load Theory (CLT) was first introduced during 1980s and then developed and

expanded by 1990s. Before meaningful learning starts, learners are drowned under a number

of information and their interaction that needed to be processed simultaneously; at this point

CLT is involved. The theory suggests that learning happens best under conditions that are

aligned with human cognitive architecture, which consists of sensory memory, working

memory, visual and auditory channels, and long-term memory. This model was first adopted

by cognitive psychologists in the early 1950s and constituted the basics of CLT. This model

explains the information processing in a computer-like fashion, which led some criticism

about the nature of cognition. The model assumes that the information travel through sensory

memory, working memory, and long term memory. Sensory memory is the initial stage of

stimuli perception and it is associated with the senses. It retains stimulus which is important

or interesting and move them into the working memory. This takes only a few seconds. It is

well-known that working memory has extremely limited capacity that can hold about 7±2

meaningful items at a time (Miller, 1956). Working memory deals with the stimuli coming

through our visual and auditory channels and the way we process the information by

thinking, remembering and comparing. We process the stimuli by thinking, remembering and

comparing in working memory. However, long-term memory is the fundemental knowledge

storage and has vast capacity, which stores unlimited amounts of information from small

facts to large complex procedures. These stored information are categorized and organised

according to their manner and Piaget described this structure of memory as a schema.

According to Piaget (as cited in Ultanir, 2012) development of learning process forged

through adaptation which is the process of assimilation and accommodation. Assimilation is

a process of dealing new object or situation using existing schema. Accommodation is a

process of modifying existing schema while dealing with new object or situation in order to

accommodate the new information. Some fundamental functions of schema are to provide

organization and storage for information and to reduce working memory load (Sweller, van

Merrienboer, & Paas, 1998).

Automation of schema is an important process, which occurs after sufficient practice, and

therefore, with automation, working memory load can be reduced for other activities.

7

Moreover, it can become less difficult to perform similar tasks requiring automated schema.

However, without automation, task can be completed eventually but the performance can be

slow (Sweller, van Merrienboer, & Paas, 1998). For instance, each time we drive to work is

an automated task and we can focus on another thing such as listening to the radio or talking

to the person sitting in your car while driving. However, if you are driving to a new place,

you are hundred percent focused on the map or GPS and you won’t even listen to the radio

not to distract your attention. Thus, for you it is a new task, rather than an automated one, so

once you focused on the driving, there is almost no capacity for another task or activity. But

it is possible to turn this new task into automated schema after sufficient practice. Therefore,

learning takes place in working memory while new (automated) schemas and skills are stored

in long-term memory.

According to the information processing model, learning occurs when all these processes are

achieved: attention, activation of prior knowledge, elaboration- rehearsal, encoding and

retrieval. When we receive new information, we pay our attention to sort out the information

that is important. Once relevant information enters the working memory, it is integrated with

pre-existing schemas in long-term memory. This transfer process of schemas from long-term

memory into working memory is called activation of prior knowledge. The process of

integrating new information and activated schemas is called elaboration- rehearsal.

Encoding is to store new knowledge in long-term memory. Since thinking and learning

processes take place in working memory, all these new and pre-exiting schemas must be

brought back into the working memory when we needed. The process is called retrieval. As a

result of all these processes, learning occurs. It is important to have achievement of

successful retrieval of new knowledge and skill which is the basis for transfer of learning.

The transfer of learning is directly connected to the schemas. For instance, when you learn a

new computer application, your new schema will incorporate with the pre-existing schema

and new procedure will be retrieved as long as the application has similar medium that you

experienced before. Nevertheless, this process does not always end with successful learning,

which may mean designing efficient instructional environments, and CLT can be one of the

ways to manage efficient message designs.

“Cognitive load Theory (CLT) is a universal set of learning principles that are proven to

result in efficient instructional environments as a consequence of leveraging human cognitive

learning processes” (Clark, Nguyen, & Sweller, 2006, p. 7). According to the literature

review, sources of cognitive load could be both human cognitive architecture and the

environmental context (Choi, Van Merrienboer, & Paas, 2014; Chu, 2013). CLT is concerned

with the usage of people’s limited cognitive processing capacity to foster their ability to

implement acquired knowledge and skill to the new situation (Lui, Lin, Tsai, & Paas, 2011).

When it comes to the difficult and complex subject, CLT is highly relevant. According to

Clark et al. (2006), there are three types of load: intrinsic, extraneous and germane (pp. 9-

12).

Intrinsic load relates to the inherent structure and complexity of the instructional materials.

Moreover, intrinsic load is relevant to how much different type of information the working

8

memory needs to deal with simultaneously. Extraneous load (ineffective load) relates directly

to the weak design of instructional materials or messages. In extraneous processing learner

engages learning material that does not support learning. Germane load (effective load) is

relevant to the learning procedure that engages learner into deep cognitive process such as

relating new subject to prior knowledge which depends on learner’s motivation, prompts, and

support during the lesson. The main goal of CLT is to make it convenient to learn complex

tasks by efficiently using relationship between working memory and long-term memory

(Paas & Ayres, 2014). Therefore, learning materials are designed to provide efficient learning

performances or motivate learners by reducing intrinsic load which is to divide complex task

into smaller parts and by reducing extraneous load which is to extract components that is

unnecessary for learning. On the other hand, increasing germane load makes learning

materials more effective with the inclusion of numerous relevant examples. These three

cognitive loads are directly connected to the working memory.

2.1.1 Near & Far Transfer of Learning

Every day in our lives we do some action in the idea of transferring our knowledge without

even realizing it. For instance, in our daily life when we buy a new mobile phone, we search

a certain file based on the steps that we know from former mobile phone without any

conscious thought. Another example is that after learning how to solve a math problem,

solving a physics problem may become less challenging. Therefore, it is one of most

important goals to be achieved by students in any educational case. If one can display his/her

knowledge and skills later in a new environment, it is obvious that learning has occurred

successfully. The transfer of learning is not a new matter in education. Its history is based

upon studies of Thorndike and Woodworth on educational psychology perspective in the

early 1900s (Thorndike & Woodworth, 1901). Several studies based on the transfer effect

were concluded negatively in a preponderance way, but still there are studies that are

concluded positively (Atkinson, Renkl, & Merrill, 2003; Price & Driscoll, 1997; Renkl,

Atkinson, & Maier, 2000).

Educational transfer of learning can enable students to apply their knowledge and skills

anytime and anywhere they need. It is also an important factor for motivation of students

when they succeed the task in the way of transferring knowledge without realizing it,

especially within the real life context. The whole process of transferring knowledge is to

apply one’s prior knowledge or experience to similar or different situations. There are two

types of transfer of learning: near and far transfer. Near transfer is about procedures of task

that are done more or less the same way each time they are performed. For instance, near

transfer occurs when students solve problems in math exam that is similar to the problems

they have solved earlier with their homework. Far transfer is about tasks, which require being

adapted one’s skill to a new situation each time that is more like transfer between contexts.

Learning a new language or musical instrument can be shown as examples.

It is important to understand the circumstances facilitating the occurrence of transfer. There

are some conditions for transfer of learning. Firstly, providing learners with boundless

9

practice of the performance may cause better transfer (Butler, 2010). Secondly, while learners

are applying the strategy, they should also observe their own thinking process so that they can

recognise later when and how to apply the strategy they have learnt (Perkins & Salomon,

1992). Thirdly, learners should study the new subject by thinking the metaphor or analogy

(Misko, 1999). For instance, learner can understand the idea of a cell better by thinking of it

as the tiniest structural and functional unit of an organism (Perkins & Salomon, 1992).

Transfer may not occur as often as we hoped to be. However, if the instructor provides the

convenient environment for transfer of learning, there is much better prospect for it to occur

successfully. This may lead to meaningful learning in the end.

2.1.2 Worked-Example with Backwards Fading Effect

Designing instructional materials based on worked-example trends is quiet effective and

widely used in especially in mathematics, physics, and computer science subject areas.

Worked-example instruction provides learners with developing either their skills on complex

problem solving or ability to transfer their learned skills. Moreover, significant amount of

research has found that with the help of worked example instructions, learners are able to

gain generalizable problem solving skills which can be retrieved to solve similar problems in

the future in a way such as transfer of near and far problem solving (Atkinson, & Grose,

2004; Moreno, Reisslein, & Delgoda, Renkl, 2006). There are different ways that problem

solving method can be integrated into the overall instructional design such as: worked

examples, completion examples, full-practice examples, and faded-worked examples. Worked

examples contain problem, full guidance for learner to solve the problem that presented as

step by step instruction, and final answer (Atkinson, Renkl , & Merrill, 2003; Chen, Kalyuga,

& Sweller, 2015). Therefore, learners are expected to study the worked example in order to

be able to apply it to similar problems. According to the cognitive load theory (Clark et al.,

2006), all elements are held in working memory during problem solving process. Solving

problems without any guide can affect learning performance in an obstructive way, because

of overloading the working memory. Therefore, literature shows us that worked-examples

shows better learning solution than conventional problem solving with no guidance.

Completion example is shown in a practice problem as some of the steps are represented as in

worked example and other steps are to be completed by the learner. Full-practice example is a

problem of which steps are fully solved by learners alone. Faded worked example is

presented as fully worked-out example firstly and followed by another worked example with

one step missing.

Transfer effect in worked-example promotes learning when both worked–out problem and

full problem. Thus, while learners are moving from worked-out problem to full problem,

extraneous cognitive load reduces, especially when the cases are integrated in an adaptive

way (Najar, Mitrovic, & McLaren, 2016). Fading methods can facilitate the smooth transition

between worked-out example and full problem. The role of fading in worked-example is to

help learners to remember what they have learned in previous stage and apply it to their

current task. Fading is to asking learners to gradually solve problems with increasing number

10

of steps after they get the full worked-out problem example. One of the advantages of fading

is the expectation of fewer errors. There are two kind of fading steps according to their order:

backward fading and forward fading. In backward fading, learners accomplish the last one

step of the first problem, the last two steps of the second problem, and so on until they

succeed all the steps. In forward fading, learners accomplish the problem solving as the first

step rather than the last step, which is opposite to the backward-fading process.

For novice learners studying with worked-examples help them to experience or form relevant

problem solving schemas, which provide them to gain expertise as a result. However, for

learners who already have some schema in their long-term memory, working with worked

examples will be gaining no benefit from it (Kalyuga, Ayres, Chandler, & Sweller, 2003).

Based on the literature, in computer-based instruction near transfer is promoted example-

problem practice with fading effect (Moreno, Reisslein, & Ozogul, 2009), but still the level of

effect may depend on the prior knowledge of learners (Reisslein, Atkinson, Seeling, &

Reisslein, 2006).

2.2. Programming in Instructional Settings

Unlike its predecessors in the history, today’ programming languages appeal to a wide range

of people. Thanks to block-based programming environments, children have opportunities to

get to know coding concepts in their early lives. There are various programming

environments designed for programming education. Although learning how to code is a

popular issue, developing a complete program is still a challenge, especially for novices.

With the increased usage of computers at universities, elementary schools and even

preschools, recently people have changed their approach towards the integration of computers

into the current settings. Computers are now considered as daily tools like telephone or

washing machine. The perception of using computers in everyday situations including

education has been changing. Modern educators have started to consider computers as

creative technologies that can be used for any subject area. Because of being a fundamental

part of computer technologies, programming languages are considered as a subject area to be

explored and taught in a creative way with the inclusion of computers. Its challenging nature,

programming courses have been increasing rapidly. Since then, value of text-based

programming language has been increasing in education.

Text-based programming education can be explored in two categories: software engineering

perpective and educational perspective (Robins, Rountree, & Rountree, 2003). Software

engineering studies focus on programmers and practical implications such as how to develop

software. On the other hand, programming education is now one of the main contents for

modern curriculum as well as still being part of any engineering education. In order to have

generations with 21
st
 century skills, such an educational perspective may facilitate further

skill improvements. Both perspectives can be integrated into curriculums and STEM

approach can be an example for that case. With the increasing interest on programming

11

languages, it’s started to take an important part in pedagogy from preschool to undergraduate

students.

For teaching such complex subjects as programming, educators need to motivate their

students in order to increase their interest. There are various techniques and methods that can

be used in programming education. Some classical methods such as demonstration or drill-

practice etc. can be used in programming education as well as more creative ones such as

game-based methods. Teaching by demonstration is providing learners with examples and

practice. Main principle of demonstration method is learning by doing. The teacher explains

the subject in a very comprehensible way, while students are expected to repeat the steps the

teacher has done. Demonstration method was found as an effective method in some fields

such as chemistry (Omwirhiren & Ibrahim, 2016), agriculture science (Ekeyi, 2013), and

physics (Miller, Lasry, Chu, & Mazur, 2013). While implementing demonstration method in

IT field, instructors explain programming structures that will be needed in following tasks.

Then, students are expected to complete the given tasks. In other words, through

programming by demonstration, learners become automated on common tasks even without

being trained (Guibert, Guittet, & Girard, 2005). Drill-practice method is also an effective

method to obtain meaningful learning. It involves repetition of a specific task in order to help

learners acquire the skill at their own pace. With drill and practice, learner practice the new

material repeatedly until the reaction is automatic (Cooke, Guzaukas, Pressley, & Kerr,

1993). Nevertheless, using creative methods such as game programming/designing is also

effective in programming education. By programming/making game, instructors inform

learners on how to program a game using specific software (e.g. Scratch, Alice, StarLogo,

etc.). It’s important to give detailed information such as implementing sound or graphics or to

show an example game programming code. In this way, student can build and design

complete game with specific software by considering purpose, scenario, characters, and

complexity. There are many studies showing the effectiveness of game designing as a method

for novice learners on programming education (Akcaoglu & Kale, 2016; An, 2016; An &

Cao, 2017; Garvey, 2015).

In addition to conventional programming environment, many other techniques and methods

have been used in programming education. Teaching and learning programming through e-

learning environment has promoted development of interactive educational software and role

of technology in education (Maasoumi, Khazaei, & Shafiei, 2014). Using new devices such

as mobile robots (e.g. LEGO NTX robot) in programming education increases attitude

towards programming and also provides learner with more practical programming knowledge

(Pasztor, Lakatos Török, & Lakatos Török, 2010). Lately, block-based programming

education has become popular in early (elementary) education or introductory programming

stages in university education. Beside the increasing popularity of block-based programming,

new methods have visited the programming education. Because of the difficulty of teaching

or learning programming language, some educators have started to teach block-based

programming language in their early stage of CS education to make it more simple and

tangible. When students get basic skills, educators teach text-based programming language in

the next level or vice versa. With block-based programming language, students learn to

12

program effectively and efficiently without consuming their time. By presenting text-based

programming graphically, students’ learning attitudes and motivation can be improved. With

these methods, students become more active in learning. Teachers guide their students by

asking them to create meaningful and enjoyable projects that lead them to create games for

learning programming. Consequently, by implicating block-based programming environment

into programming education, “learning by teaching” and “learning by design” have become

the main strategies for teaching computer programming (Lin & Yang, 2009). Therefore,

many block-based programming tools are being used lately in education.

2.2.1 Block-based Programming

Block-based programming environments aim to make the coding process more concrete. It is

known that learners have encountered many difficulties of text-based language due to its

abstract nature. Unlike text-based ones, block-based programming provides the learners with

well-designed graphical interfaces allowing simple dragging-dropping actions. Today, block-

based language is aiming to ease those difficulties. The biggest advantage in block-based

programming is to represent text-based programming language better with well-designed

graphic user interface. Young learners have various opportunities to engage in programming

through block-based environments. Generally, these environments are software that are used

to design games. In a simple block-based programming environment, students combine code

blocks in a meaningful way using a mouse and receive visual and sometimes audio feedback.

Code blocks having similar shapes and colours can be put together in order to run in a

functional way. Once a meaningful set of blocks was arranged, the learner can easily run and

see the output instantly. Moreover, as the program starts running, one can follow the code

sequence thanks to the highlighted blocks. In this way, debugging may become less

challenging especially for the beginners.

Any instructional method can be integrated into programming education. Many studies

presenting the variety of the methods are available in the literature. During early stages of

learning programming, some concepts are difficult to learn. Especially for younger learners,

doing robotics allows younger students to begin their programming education with more

basic concepts. Using robotic is a successful way to teach introductory programming for

students as well as for teachers (Koppensteiner, Vittori, Miller, & Goodgame, 2015). It is

found that using robotic also draw attention of large number of female students. Moreover,

Lye and Koh (2014) reviewed 27 empirical studies on programming in K-12 and higher

education. K-12 students were using easy to use visual programming language to create

digital stories and games. They found that, most of the studies reported positive outcomes.

According to Kalelioglu (2015), teaching programming skills to K-12 students using

Code.org is a new approach. This study attempts to investigate the effect of teaching code.org

site on reflective thinking skills towards problem solving and also whether there is a gender

difference in terms of students’ reflective thinking skills towards problem solving. Overall

13

results showed that students developed a positive attitude towards programming, and female

students showed that they were as successful as their male counterparts, and that

programming could be part of their future plans.

In another study, Chapman and Jeannie (2015) used Python as the first programming

language for students who have little or no prior programming experience. Participants were

students from biomedical informatics graduate students, human genetics, molecular biology,

statistics, and similar fields. During one semester, the researchers provided the students with

sufficient programming experience that they could use programming in their graduate studies.

Overall, they have reached the conclusion that Python was a good choice for participants who

found it challenging yet useful and helpful. Ali and Smith (2014) did a similar study but with

a different method. In their study, teaching an introductory programming language in a

general education course for both Computer Science students and those from other major.

During their study, they found out that dividing introductory programming course into two

courses is the effective way for all students. First part is introduction to programming with

Alice and it is effective for students from other majors. Second part is introduction to

programming with Java programming and this is for CS student. Therefore, all students

would be able to take more advanced, Object-Oriented Programming.

Lately, one of the popular approaches to teach programming is game-based instruction. Like

well-designed games, well-designed instructions can easily motivate learners. From that

perspective, the concept of students as designers emerged. In this way, learners design, then

develop, and then play what they created. Educators of various subject areas apply game

programming based approaches in their courses. Rich content and friendly interfaces of

block-based programming software enable teachers as well as learners to practice and

integrate coding into a range of teaching/learning experiences. Popularity of these software

are increasing rapidly. Games are used in several different purposes in game programming

based approach (Fernandez Leiva & Civila Salas, 2010). One of the purpose using game as a

teaching environment is to motivate students. Other one is to use game as a tool for game

design. Students complete a project to demonstrate knowledge and skill acquired during the

course.

There are various ways to develop games depending on the complexity of the interaction,

visual elements, scenario, and so on. For beginners, block-based programming environments

can serve as a tool for developing games demanding neither sophisticated programming nor

graphical design. This generation of block-based environments offers ready-to-use visual

materials, but it is also possible to design inside or outside of the environment, which

enhances the flexibility of the environments. Lego, Pet Park Blocks, Alice, Tinkertoy,

Scratch, Starlogo series, and many more are well-known coding environments. For novice

programmers, Scratch is preferred as a common block-based environment.

Instead of writing codes to tell a computer what to do, block-based programming uses drag-

and-drop colored code blocks and creates flow chart. Through developing games in block-

based environment, students have become the designer of their own games. Majority of youth

14

have already become consumers of video games, but with the approach of making games for

learning, game players have started to program their own games and learn to work on related

software and interface design (Hayes & Games, 2008; Peppler & Kafai, 2007). Thus, students

become ‘designers’ or ‘makers’ of their own products. Maker Movement trend also supports

this idea in educational setting as well as outs-of-school. Maker culture represents learning-

by-doing with open-source software in social environment as well as technology-based

environment.

2.2.2 Starlogo: The Next Generation (TNG)

Over the past years, game has a great influence on young programmers and beginners. Many

simple video games were built by researchers with Starlogo since 1990s. This programmable

modelling environment of Starlogo supports idea of learning by building in a way

constructionist paradigm does.

StarLogo TNG which, is the next version of StarLogo, provides graphical programming

language/blocks and three-dimensional world (Klopfer, Scheintaub, Huang, Wendel , &

Roque, 2009). StarLogo TNG is client-based modelling and simulation software. It builds on

the tradition of Logo-based languages developed by MIT Scheller Teacher Education

Program and is free for all the operating systems in order to be used in instructional goal.

Designing and developing StarLogo TNG project was started in 2002 and was released in

July 2008. Its main aim was to reduce the barriers by making programming easy for novice

learners, persuading younger learners into programming by making games, and providing

with effective 3D games and simulations creation environment. At first, StarLogo TNG is

designed for secondary students mostly who are new and willing to learn programming.

StarLogo TNG is useful for not only programming but also science subject area. Therefore,

StarLogo TNG with its easy programming environment is also appropriate for teachers. Both

teachers and students are able to understand and develop their own 3D world (Begel &

Klopfer, 2004). Starlogo TNG is the next and developed version of Starlogo. The major

developments of Starlogo are StarLogoBlocks which represents code in the shape of puzzle

pieces and Spaceland which provides rich 3D interface for building games (Begel & Klopfer,

2004, Klopfer et al., 2009).

2.2.2.1. StarLogoBlocks

StarLogoBlocks is a visual programming language interface where codes are presented as in

the shape of puzzles. Moreover, “StarLogoBlocks is considered as an instruction-flow

language, where each step in the control flow of the program is represented by a block.”

(Begel & Klopfer, 2004). Blocks are placed as a categorized palette of blocks on the left side

of the interface and can be replaced by dragging onto workspace (see Figure 1). Code blocks

are puzzle-piece shaped and coloured differently according to the programming function. One

of the conveniences provided whilst using puzzle-piece blocks is software itself making

sound of “click” when syntactically appropriate commands are placed together. Such a

feedback can help the beginners to overcome hesitations, and shape for further development.

15

One of the important code blocks is procedure block. Procedure is useful to use a set of

instructions or commands multiple times StarLogoBlocks also contain math operations such

as brackets [], parentheses (), and others. Procedure, if-else, and math operations such as

parentheses blocks are used in order to make Mario (main character) agent move (see Figure.

2). In workspace there is a canvas for each breed to drag and drop blocks to build programs.

Figure. 1. StarLogoBlocks which contains all commands available to the programmer in an

categorized palette.

16

Figure 2. Procedure of movement which contains If-Else and math blocks.

In the first canvas (see Fig. 3 from the left), the available space is used to declare variables

and procedure for the main agent. In everyone canvas, the space is used to declare variables

and procedure for other agent. The setup canvas is used for initiating conditions, i.e. with

setup block one can create and place all the agents and set the initial values of variables. The

runtime canvas is used to run all the code command in all canvas with the help of run and

forever code blocks. When forever block is placed in runtime canvas, agents execute

commands continuously. However, when run block is placed in runtime canvas, agents

execute commands in certain time period that set by the programmer. In collision canvas, the

programmer arranges instructions for agent. This is where the decisions including if agent

collides or touches different breeds or each other in Spaceland by using collision block are

set.

Figure 3. The view of canvas from the Mini map on the
right top corner of the screen

Breed contains the entire agent and its default agent is named Turtle. While programming, the

programmer can give command to all breeds. There are many types of agents in breed (see

17

Figure 4) and some of them are animals, basic-shapes, buildings, landscapes, letters,

numbers, objects, people, and vehicles. One can choose the character according to his/her

scenario. Programmer can also import 3D models as an agent into his project in the form of

SketchUp (.kmz) and Collada (.zip) files.

Figure 4. Edit Breeds

2.2.2.2. Spaceland

Another convenience of StarLogo TNG is the output visualised within a 3D environment

(Klopfer et al., 2009). The tab named Edit Terrain (see Figure 5) allows users to choose

certain region and create a hill or crater in the shape of round or square. Once student clicks

the edit terrain, the terrain will show a grid to assist in selecting a region for editing. When

students choose the region to edit, it will be highlighted in purple. Code blocks that need to

run the game locate in tab labelled runtime. The level tab is about stages of game. Other tab

labelled drawing consists of five drawing tools, namely: rectangle, circle, polygon, pencil,

and image. When student click rectangle tool, it draws a rectangle and fills it in with the RGB

colors. Circle tool draws a circle or oval and fills it in with the RGB color. Polygon tool

draws a series of connected lines. The pencil tool draws free forms. With image tool, student

can put 2D image (.jpg or .png) on the terrain.

18

Figure. 5. Game output in a 3D Environment.

2.3. Backwards fading and Block-based Programming

Many studies have been done in text-based programming education with worked examples

and fading effect. Gray, Clair, James, and Mead (2007) found that using faded worked

example in programming education is effective. They indicated that fading worked example

is an effective strategy for lowering cognitive load by providing gradual exposure to

programming concept. Similarly, much of the worked examples with computer programming

literature are available, but, nonetheless, fading examples have not been well explored or

used in block-based programing education.

2.4. Summary

In order to find the answer of the main research question of this study, we need to dig related

literature. The main research question is to find out whether the usage of backwards fading

approach facilitates the transfer of block-based programming experience into 3D-game

making in comparison to that of text-based programming experience. Moreover, other

questions are about whether the formats of practice examples affect the 3D-game making

performance of participants and also cognitive load. According to these questions, our

literature consists of two main parts: Cognitive Load Theory and Programming in

Instructional Setting.

19

The total amount of mental effort being used in the working memory is cognitive load.

Cognitive load could arise from both human cognitive architecture and the environmental

context (Choi, Van Merrienboer, & Paas, 2014; Chu, 2013). Human cognitive architechture is

concerned with how people process the incoming information through sensory, working, and

long-term memory structures. It’s well know that short term memory holds only a small

amount of information (7±2 meaningful item) at a time. Therefore, CLT is concerned with

the usage of people’s limited cognitive processing capacity to foster their ability to

implement acquired knowledge and skill to the new situation (Lui, Lin, Tsai, & Paas, 2011).

Students’ ability to apply their knowledge and skills to the new situation is called transfer

learning. There are two types of transfer of learning: near and far transfer. Near transfer

refers to transfer of one’s prior skill and knowledge between very similar contexts, whereas,

far transfer refers to transfer between contexts. In educational setting, students obtain this

transfer skill by practicing (examples) in similar or dissimilar contexts. It’s found that using

various example formats in education such as worked-example, completion-example, and full-

practice is effective for learners to adopt new skill and knowledge. Transition from worked-

example to full-practice, is called fading effect. The role of fading in example formats is to

help learners to remember their prior skill and knowledge and apply it to their following

stage. There are two kind of fading steps according to their order: backward fading and

forward fading. In backward fading, learners accomplish the last one step of the first

problem, the last two steps of the second problem, and so on until they succeed all the steps,

whereas forward fading is vice versa.

Beyond doubt, programming course has become one of the main courses of this century.

Value of text-based programming language has been increasing in education. However, for

teaching complex subjects such as programming, there have always been many difficulties.

Therefore, educators need to motivate their students in order to increase their interest. There

are many methods that are used to teach programming languages. But last few years, in

programming language education, using game has become popular. Nevertheless, block-

based programming and relevant software have become more familiar in classrooms. With

block based programming, instead of writing codes to tell a computer what to do, block-based

programming uses drag-and-drop colored code blocks and creates flow chart. There are many

block- based programming software that is used for designing games. Many studies have

shown that using game making in introductory programming education is efficient. Through

developing games in block-based environment, students have become the designer of their

own games which makes students more active learner.

In this study, we used game making approach in a different way. Game making approach is

not only used to give introductory programming concepts, but also used to explore how

students transfer their prior text-based programming knowledge into their game making

process. During the process of game making, worked-examples, completion- examples, and

full-practice examples are used with fading effect. Students practiced how to use code blocks

and design a game. At last, students were free to decide which kind of games they were going

to design. Students’ final projects (games) were developed by StarLogo TNG software. More

importantly, in this study, the purpose of using games is not to teach programming, but to see

20

students’ ability to transfer their previous programming knowledge into a new 3-D block-

based programming software through practicing in three different formats (worked;

completion, and full practice examples).

21

CHAPTER III

III. METHOD

In this chapter, we described our research methodology in details. Starting from our specific

research design, we introduced participants, and then gave details of procedures with weekly

activities. Finally, the instruments and data analysis methods were described.

3.1. Research Design

The current study includes a case of Computer Education and Instructional Technologies

(CEIT) students’ 3-D game making process. The case study method often involves simply

observing what happens to a single participant or group of individuals such as a school class

or a specific social group in its context. One of the advantages of this approach is the close

collaboration between the researcher and the participant, while enabling participants to tell

their stories (Miller, & Crabtree, 1999). Important key characteristics of case study are (a) it’s

flexible to cope with complex or dynamic phenomena of the real world and (b) its

conclusions are based on multiple sources of evidence. Different kinds of data such as

evidence, statements, products, and documents are linked together to support the conclusion.

It’s assumed that results driven from a case study are more realistic. On the other hand, data

of case study is hard to interpret. It’s believed that results are difficult to generalize or

replicate the findings. This study includes one particular group of students who are enrolled

to one course and one particular game making tool is used.

Block-based programming has been used widely for younger or novice learners recently. It’s

found that for novice learners starting with block-based programming environment is easier

and more interesting whereas text-based environment is more sophisticated and challenging.

Instructors have studied the learners’ ability to transfer their prior text-based programming

skill to block-based programming environment or vice versa (Armoni, Meerbaum-Salant, &

Ben-Ari, 2015; Tabet, Gedawy, Alshikhabobakr, & Razak, 2016 Weintrop, & Holbert, 2017).

In these studies, block-based programming tools are used as introductory programming

environment. Learners are taught block-based programming such as Alice or Scratch initially

in order to be able to work with text-based programming environment. Unlike these, learners

are not novice in programming in this case. This study emphasizes on students who already

have prior text-based/block-based programming skill and their process of transferring it into

new block-based environment while designing 3D game.

The aim of this case study is to explore the outcomes of backwards fading. Moreover,

students in this case have different programming backgrounds. Some of them (N=11) have

previous experiences with block-based programming environments, whereas others are used

to write codes in text-based environments (N=10). As a result, backwards fading method is

expected to create different effect on learning outcome because of students’ prior knowledge.

In theory, backwards fading can support the expertise gaining (Gray, St Clair, James, &

Mead, 2007). In this case, students both have programming background; thus, this case study

does not aim to teach programming skills, but to observe how those different programming

22

skills are transferred into either similar or different programming environment. This study

emphasis on backwards fading effect on students’ game making process. In order to observe

the students’ game making process and find out the outcomes, this case study includes a

series of embedded units of analysis (Yin, 2009). Although the main case is the students

making 3-D games, their different backgrounds and the details in the backwards fading

approach constitute the smaller units. The embedded design type of the current study was

shown in Figure 6.

Figure 6. The Embedded Design of the Study (adapted from Yin (2009))

3.2. Participants

The participants of the study were CEIT students (N=21) enrolled to an elective course about

games (see Table 1). The majority of them were males (N=19), which is very typical for that

department. All participants have basic knowledge of abstract programming language such as

Python, Java, etc. The participants had all completed a programming language course for two

semesters. In the beginning of the semester, information about students’ previous

programming experiences was gathered, and it was found that almost half of them already

experienced Scratch, which is a block-based programming environment. They know how to

design 2-D scenes and define codes for simple games with Scratch. On the other hand, the

rest of them had never used Scratch or any similar block-based environment, but wrote codes

for simple games. None of the participants ever heard about StarLogo TNG, which is a block-

based environment specific to 3-D game making. This case study explored how difficult for

students to transfer their previous programming knowledge into block-based programming

while designing 3D game using Starlogo TNG program. It’s aimed to observe how different

the game making process of students with block-based programming experience from that of

students with text-based programming experience.

Context: StarLogo TNG (3-D Game Making Environment)

Case: 3-D game making process of CEIT students

Embedded Unit of

Analysis 1: Worked

Example 1 & 2

Embedded Unit of

Analysis 2:

Completion Example

1 & 2

Embedded Unit of

Analysis 3: Full

Practice 1 & 2

Embedded Unit of

Analysis 4: Final

Project

23

Table 1

Participants’ Demographics

 N (21)

Gender

Male 19

Female 2

Previous Experience with

Block-Based Environment

Yes 11

Scratch 11

Alice 10

No 10

Previous Experience with

Text-Based Environment

Yes 21

Python 21

PHP 1

JavaScript 3

No -

3.3. Procedures

This study was conducted in Ondokuz Mayis University in Samsun, Turkey. The course title

was “E-Game Based Learning”. The class met every week for 180 min for one semester. The

students in the class created computer games using StarLogo TNG. StarLogo TNG is client-

based modelling and simulation software that teaches students and teachers how to design

and create their own 3D games and simulations for understanding complex systems. It's

assumed that game design is one of beneficial method in teaching programming language.

Designing games in 3D environment is more appealing and realistic which is familiar with

everyday life experiences (Begel, & Klopfer, 2004). Starlogo TNG is not the only 3D game

making tool. Alice is also 3D modelling and programming environment. However, its level of

sophistication is higher which makes it more appropriate for advanced learners (Begel &

Klopfer, 2004). StarLogo TNG is a game making tool to motivate novice learners and allows

them to begin programming immediately without requiring any level of text-based

programming knowledge (Smith & Dunchan , 2011). In this study, StarLogo TNG was

appropriate for all participants in terms of their prior programming knowledge.

The tasks were all about creating educational 3-D games after taking few weeks of classes

based on the basic knowledge about Starlogo TNG program. Tasks were completed at a

computer laboratory, where each student had the opportunity to work individually. All tasks

24

were the same for all participants and provided within the same sequence by the same

instructor. Since the participants possess basic programming skills, the instructor did not go

into details of concepts and commands. During the first 6 weeks, students were provided with

theoretical information about electronic games, and then at the seventh week, they were given

basic information about Starlogo TNG program via PowerPoint slides including tips about

how to work with the interface. The next two weeks, students were shown how to use some

basic code blocks including procedure block and if-else blocks in the beginning of the course.

“Worked-example” method was applied during those two weeks. The researcher showed

every single step of two simple three-dimensional games created with Starlogo TNG and

students were asked to make the same games. The following two weeks, the researcher

showed students some other code blocks including collision block, etc. In this week,

“completion-example” method was used during the course. Like the previous two weeks, the

researcher showed the game but incomplete forms of two games were given to the students.

They were asked to do the uncompleted parts of the game by themselves. During the last two

weeks, the researcher gave two game scenarios to the students and asked them to create

games according to the scenario. “Full-Practice example” method was used during the two

classes. One of the scenarios was easy and other one was more difficult. All the games were

collected during these six weeks to evaluate them according to the rubrics created specific to

each week. At the end of the semester, participants were asked to create their own games in

two weeks and they were collected as a final project. The procedures were summarized on

Table 2.

Table 2

Weekly plan of the study

 Content Method Game

Week-1-6 Educational Game Presentation ---

Week-7 Introduction to Starlogo

TNG

Presentation +

Starlogo TNG

program interface

Movement of Main

Character

Week-8 Logic Blocks : If-Else Worked Example Mario

Week-9 Logic Blocks : If-Else Worked Example Treasure

Week-10 Collision Block Completion

Example

Running away From

the Bears

Week-11 Collision Block Completion

Example

Catching crashed

cars

Week-12 Summary Full-Practice Red Riding Hood:

Collecting Carrots

Week-13 Summary Full Practice Crossing Bridge

(Collecting coins)

Week-14-16 Students’ Final Project

25

3.4. Weekly Examples

3.4.1. Introduction to Starlogo TNG software

This week researcher prepared presentation to give students main knowledge about StarLogo

software and what kind of games user can create. Six example games created with StarLogo

TNG also presented to the students. Therefore, students had the main idea about code blocks

and what they are going to deal with following six plus three weeks. After the presentation,

researcher showed main content of a game, which is “Movement of Main Character”. In this

game, it is only about how keyboard control is provided by using code blocks. When player

press the keyboard-up button, main character goes forward. For keyboard-right and

keyboard-left buttons, main character turns right and left. For keyboard-back button, the main

character goes back. Whilst researcher was showing the game step by step, students were

simulating.

3.4.2. Worked Examples: “Mario” and “Treasure” Games

At the beginning of each session, participants were given additional information about some

obligatory code blocks, which were going to be used in the following two games such as

Setup code block to create main role of the game, Scatter PC and Run code blocks.

Afterwards participants are shown every step of game. Mostly “If-Else” code block was the

main task of these two sessions. If-Else code block is used to give movement to the main role

with the control of keyboard.

Game-1 Mario: Mario is the main character of the game. Game ground is divided in equal

squares. Colours of the squares are red, blue, and black and they were all placed randomly on

the ground. When Mario is created, size and position of the Mario are set. Size of main

character was set bigger than default size of it. Total duration of the game is 200 seconds.

During the game, player has no control over main character. Once game starts, Mario starts to

move forward by itself. When Mario walks on the “red” square, Mario turns right and size of

it increases by one point. When Mario walks on the “blue” square, Mario turns left and size

of it decreases by one point. When Mario walks on the “black” square, Mario turns 180

degrees and Mario continues to move forward. This loop continues in two hundred seconds.

Code blocks and 3-D world are shown below (see Figure 7-8).

26

Figure 7. Code block of “Mario”

Figure8. 3-D environment of the game “Mario”

Game-2 Treasure: “Treasure” game has an additional code block, which is Collision. This

block is used to show the result of an action when main character hits one object. Scenario of

this game consists of a man, a house, trees, and treasures. The man is the main character of

the game. The house and trees are located randomly in 3D game environment. In addition,

tree is one of the agents that exist in Breed section of StarLogo. The house is designed by

participants with SketchUp program and uploaded into game. SketchUp is a 3D modelling

27

program, which is similar to 3Ds Max program, but easier. The participants had experience to

work with 3Ds Max. Models designed by 3Ds Max program can’t be imported into Starlogo

TNG program, so they designed house using SketchUp (see Figure 11). There are three

different coloured treasures: red, yellow, and black. Movement of the main character is

controlled with keyboard buttons (up, down, right, and left buttons) by player. The duration

of the game is also 200 seconds. In this period of time, the main character has to collect the

treasures as many as possible. When main character collects yellow treasure, he gets hundred

points. When main character collects red treasure, he gets fifty points. When main character

collects black treasure, he loses fifty points. Code blocks and three-dimensional world are

shown below (see Figures 9-10).

Figure 9. Code Blocks of “Treasure”

28

Figure 10. 3-D environment of “Treasure”

Figure 11. 3-D Model designed by SketchUp

3.4.3. Completion Examples: “Running away from the Bears” and “Catching

crashed cars” Games

During these two sessions, participants were also given additional information about some

obligatory code blocks which will be used in following two games. Firstly, participants are

shown every steps of the game with code blocks. Since the participants already had

knowledge about if-Else block, Collision block was the main task of the 10
th

 and 11
th

 weeks.

Therefore all the participants get half-prepared game to complete the missing code blocks.

Game-1 Running away from the Bears: Like previous games, this game also has If-Else and

Collision blocks and the additional task is to give control on the other role in the game with

the code blocks. The scenario of this game consists of Simpson (main character), bears, trees

and a house. The house, trees, and bears are located randomly in 3D game environment. This

game has no time limit. When game starts, Simpson has to go to the house without getting

caught by bears. If a bear catches Simpson, then the player loses. If Simpson gets to home

29

without getting caught, the player wins and it says “Tebrikler! Ayiya yakalanmadan eve

geldiniz!” (“Congratulations, you made it without getting caught by bears”) which pops up

above the house. Full version and a handout version of code blocks are shown below (see

Figures 12, 14).

Figure 12. Full Code block of “Running away from the Bears”

Figure 13. 3D environment of “Running away from the Bears”

30

Figure 14. Handout of “Running away from the Bears”

Game-2 Catching crashed cars: The scenario of this game consists of police car (main

character), two different damaged cars, one undamaged car, people, and trees. Main task of

the game is to catch the crashed cars in thirty seconds. This information is shown on the

bottom left corner of the screen. Both cars and people are moving continuously. Therefore

challenge is to catch the crashed car without hitting person, undamaged car or trees. One of

the two damaged cars is more damaged and the other is less damaged. When the police car

catches the more damaged car and less damaged car, the damaged car disappears and the

player gets ten points for more damaged car and five points for less damaged car. Every time

when police car hits the person, undamaged car and trees, player gets minus points: minus

five point for undamaged car, minus three point for trees, and minus ten point for person also

the person dies after the crash. As a result, player is required to catch as much as possible in

thirty seconds. Full version and a handout version of code blocks are shown below (see

Figures 15, 17).

31

Figure 15. Full code block of “Catching crashed car”

Figure 16. 3-D environment of “Catching crashed car”

32

Figure 17. Handout of “Catching crashed car”

3.4.4. Full Practice Examples: “Red Riding Hood: Collecting Carrots” and

“Crossing Bridge (Collecting coins)” Games

During these sessions, students get handouts. Each handout contains scenario of the game and

guidelines. In order to apply full-practice method, students didn’t get any help before they

started to work on the handouts. Only task is to design a game, which is described on the

handout.

Game-1 Red Riding Hood-Collecting Carrots: Scenario of the game is about Red Riding

Hood, who is collecting carrots for her grandmother’s dinner. It consists of Red Riding Hood

as a main character, her grandmother’s house, carrots, and stinging nettles. When she hits the

carrot, she becomes bigger and carrot disappears. When she hits the stinging nettle, she

becomes smaller. As soon as all the carrots are collected, she goes home and game ends.

Collision, Set Size, and Die blocks are the most required code blocks of this game. (see

Appendix A)

Game-2 Crossing Bridge (Collecting Coins): Scenario of this game is about a car, which

collects coins while going across the bridge. It consists of a car as a main character, a bridge,

cars in motion, and turning coins. The bridge is placed between two mountains and there is a

river under it. The bridge has two-row car road. The participants are asked to design the

bridge and coin by using SketchUp. Other cars are continuously moving and each turning

coins are placed differently on the bridge. While the car (main-role) is going across the

bridge, it gets point for hitting the turning coin or it loses point for hitting the other car. When

the car gets to another side of the bridge, the game ends. Collision, Set Size, Die, and Run

blocks are the most required code blocks of this game. (see Appendix B)

33

3.4.5. Final Projects

After all these sessions, participants are asked to design their own games using code block

they have learned so far. It was free to choose the desired scenario.

3.5. Instruments

The data collection instruments of this study included students’ weekly activity difficulty

ratings, rubric for each game design (see Appendix C2-C8) and an online form for

participants’ views (see Appendix D). In order to calculate the efficiency metric, students’

self-ratings for the difficulty of the activity were gathered. At the end of each lesson, students

were asked to rate the difficulty on the scale ranging from 1 (very low) to 9 (very high) as

suggested by Paas (1992). To calculate efficiency of each example, equation shown below

was used.

Average Performance in Z Score – Average Difficulty Rating in Z Score

√2

Efficiency metric is calculated by subtracting mental load (ML) from performance (P)

outcomes.

E = P -ML

Since students performed a different activity per week, the assessment of the outputs was

guided by rubrics prepared by the researchers. All criteria were in line with the instruction

and the examples. Rubrics also helped researchers to reach some information on each task

such as completion status, difficulties, transfer of knowledge, and examining if these methods

are appropriate for programming education. Sample of our rubric consists of six fundamental

statements. Each rubric has some supplementary statements depending on the session. Each

statement has three grading: not tried, incomplete, complete. They were all graded and

converted to a total point per week. An example rubric is summarized on Table 3.

Table 3

Rubric Example

Code Blocks Not tried Incomplete Completed

1. Edit Breeds

2. Creating Procedure Block

3. Using Logic-If Block (movement)

4. Math Block

5. Creating Setup Block

(Creating characters and other objects)

5.1.Set xy & size

6. Creating Run Block

7. Terrain Screen

34

Lastly, the online participant view form helped us to have insights of participant’s feelings

and opinions on Starlogo TNG program. Moreover, it helped to understand their experiences

during three-dimensional game design with code blocks. This form had seven main issues.

Followings are a few sample questions of online form:

 In your opinion, what are the top 3 difficult issues with regards to

programming languages?

 What kind of difficulties did you experience in creating codes that you already

know in another platform while coding with Starlogo?

3.6. Data Analysis

The present study includes both qualitative and quantitative data, and thus the data analysis

were completed through the use of different methods. For the first research question, we used

the scores of final project. The comparison of mean scores was done by running an

independent t-test. In order to see the effects of examples’ formats, we ran Friedman’s

ANOVA due to violated assumptions of parametric tests. For that analysis the scores of

weekly activities were used: 1
st
-2

nd
 worked-examples; 1

st
-2

nd
 completion examples; 1

st
-2

nd

full practice examples; and 1 final full practice. The same analyses were done for perceived

difficulty ratings across different formats. Students’ difficulty ratings were transformed into

Z-scores, and then efficiency metrics were calculated for each activity. In this way, the

efficiency metrics were calculated to see how efficient the inclusions of examples were.

Content analyses were conducted for students’ online forms. The revealed themes were used

to answer the last research question. Table 4 shows a sample coding scheme of these data.

Table 4

Sample Coding Scheme for Coding with Starlogo TNG

Theme f

Coding with blocks:

easy

4

Funny 1

Sometimes complex 1

Stacking is challenging 1

Stacking requires complex thinking 1

Finding command blocks 2

Similar with Scratch 1

Time consuming 1

35

CHAPTER IV

IV. FINDINGS

In this chapter, the results of the data analysis are presented. The data were collected and

analyzed in response to the problems stated in chapter 1. The first three sections present the

result derived from analysis using ANOVA and correlation analysis. Fourth section presents

efficiency metrics in terms of cognitive load. The final section presents the content analysis

of qualitative data.

4.1. The Role of Backwards Fading in the Transfer of Block-Based Programming

Experience into 3D-Game Making

The following hypotheses were tested to explore the first research question:

 H0: There are no significant differences between the final scores of students

having text-based programming experience and those of block-based

programming experience.

 Ha: The final scores of students having block-based programming experience are

higher than the final scores of others.

For the analyses, students’ final projects were evaluated according to a rubric (see Appendix

C-8). Those scores are assumed as dependent variables and the grouping variable was the

condition of having previous experience on block-based programming. First, to test the null

hypothesis, we ran independent t-test. Before the main analysis, we tested the assumption of

normality and found that the distributions tend to be normal (see Table 5), which allowed us

to continue with one of the parametric tests.

Table 5

Tests of Normality for Groups

Tests of Normality

Kolmogorov-Smirnov
a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Group 1 .270 10 .047 .841 10 .056

Group 2 ,244 10 .093 .888 10 .160

Although the descriptives showed that students with a previous block-based

programming experience (M=83.5, SE=3.3) had lower scores than the ones with text-

based programming experience (M=85.5, SE=2.2), such a difference was not found

significant with respect to t-test results t(18)=-.503, p>.05 with a small-sized effect

r=.12. As a result, we fail to reject the null hypothesis.

36

Table 6

Independent t-test Results

Levene's Test for

Equality of Variances

t-test for Equality of Means

F Sig. t df Sig. (2-tailed) Mean

Difference

Std. Err.

Diff.

Final

Equal

variances

assumed

.643 .433 -.503 18 .621 -2.00 3.979

Equal

variances

not

assumed

-.503 15.4 .622 -2,00 3.979

4.2. The Effects of Practice Examples’ Formats on 3D-Game Making Performance

The following hypotheses were tested in order to understand the effects of example formats:

 H0: There are no significant differences among the Worked Example, Completion

Example, and Full Practice scores of participants.

 Ha: There are significant differences among the Worked Example, Completion

Example, and Full Practice scores of participants.

This section presents the quantitative analyses of data set, which includes the scores gathered

for each different example type. While grouping variable for this analysis was the conditions

of worked example, completion example, and full practice, the scores of students’ weekly

games were the dependent variables. In order to see the significant differences among data

sets, Analysis of Variance (ANOVA) was an appropriate test, but before conducting the test,

a group of assumptions needs to be tested. First, we checked the normality assumption.

In order to see whether the distributions are normal or not, the histograms and Skewness-

Kurtosis values were examined. Some of the distributions, such as worked example, were

skewed to right as observed on both histograms (see Figure 18) and Skewness values.

Moreover, either Kolmogorov-Smirnov or Shapiro-Wilk tests reported that all of the scores

were significantly non-normal (DWE(21)=0.28, DCE(21)=0.34, p<.001) (see Table 7). Despite

the full practice scores’ tendency to be normal (DFP(21)=0.17, p>.05), the majority of the

distributions are not normal.

37

Figure 18. Histogram of Worked Example Scores

Table 7

Normality Tests for Example Formats

Tests of Normality

Kolmogorov-Smirnov
a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

WORKED .28

3

21 .000 .660 21 .000

COMPLETION .33

5

21 .000 .761 21 .000

FULL .17

4

21 .095 .935 21 .171

Since the normality is one of the assumptions of ANOVA, violating it may lead incorrect

results. That is the reason why we ran Friedman’s ANOVA, a non-parametric alternative

based on ranks (see Table 8). The results of the analysis indicated that the 3D-Game making

scores of students significantly changed over different example types (X
2
(2)=35.11, p<.001),

and therefore we reject the null hypothesis. In order to understand the details of differences,

we conducted post-hoc analysis.

38

Table 8

Distribution Ranks

 Mean Rank

WORKED EXAMPLE 2.31

COMPLETION EXAMPLE 2.69

FULL PRACTICE 1.00

Wilcoxon signed-rank tests were utilized as post-hoc with Bonferroni corrections (α/3=.0167

level of significance). Follow-up results were all resulted in significant values. Based on

negative ranks the scores changed from Worked-Example to Completion-Example

conditions. The scores of game design were significantly higher in Completion-Example

(Mdn=100) than those of Worked-Example (Mdn=96.5), z=-2.80, p<.017, r=-.35. Based on

positive ranks, the scores changed through Full-Practice (Mdn=82.5). In other words, the

scores of game design were significantly lower in Full-Practice than either those of Worked-

Example, z=-4.02, p<.001, r=-.51 or Completion-Example, z=-4.02, p<.001, r=-.51. The

overall comparisons and the results of Wilcoxon signed-rank test were summarized on Tables

10.

Table 9

Follow-up Ranks

N Mean Rank Sum of Ranks

CE – WE

Negative Ranks 4
a
 3.50 14

Positive Ranks 12
b
 10.17 122

Ties 5
c

Total 21

FP – WE

Negative Ranks 21
d
 11 231

Positive Ranks 0
e
 .00 .00

Ties 0
f

Total 21

FP – CE

Negative Ranks 21
g
 11 231

Positive Ranks 0
h
 .00 .00

Ties 0
i

Total 21

a. CE < WE, b. CE > WE, c. CE = WE, d. FP < WE, e. FP > WE, f. FP = WE, g. FP< CE, h. FP> CE, i. FP = CE

39

Table 10

Wilcoxon Signed Ranks Results

CE – WE FP - WE FP - CE

Z -2.798
b
 -4.018

c
 -4.016

c

Asymp. Sig. (2-tailed)
.005 .000 .000

b. Based on negative ranks.

c. Based on positive ranks.

4.3. The Effects of Practice Examples’ Formats on Perceived Difficulty While Making

3D-Games

In this section, the following hypotheses were examined:

 H0: There are no significant differences among the Worked Example, Completion

Example, and Full Practice scores of participants’ perceived difficulty.

 Ha: There are significant differences among the Worked Example, Completion

Example, and Full Practice scores of participants’ perceived difficulty.

Each week, as soon as students complete and submit their works, they were asked to rate the

difficulty of weekly activities. The value ranged from 1 to 9. We calculate the average of

activities for similar activities. In other words, we had 2 WE activities and 2 ratings for each,

and then calculated the average to have one value. Before going further for the main analysis,

we checked for normality because violating that assumption may cause serious errors.

In order to decide whether the distributions are normal or not, the histograms and Skewness-

Kurtosis values were examined. Some of the distributions, such as completion example, were

skewed to left as observed on both histograms and Skewness values. Moreover, either

Kolmogorov-Smirnov or Shapiro-Wilk tests reported that the scores were significantly non-

normal (DCE(21)= 0.20, DFP(21)= 0.23, p<.05), except for Worked Example ratings that are

tending to be normal (DWE(21)= 0.16) (see Table 11). However, we did not risk the overall

results and continued with a non-parametric test named Friedman’s ANOVA.

40

Figure 19. Histogram of Difficulty Ratings in Worked Examples

Table 11

Normality Tests for Difficulty Ratings

Tests of Normality

Kolmogorov-Smirnov
a
 Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

WE_Difficulty
.157

21
.192 .942

21
.236

CE_Difficulty .199 21
.029 .891

21
.023

FP_Difficulty
.230

21
.005 .912

21
.059

The results of the Friedman’ANOVA generated meaningful differences across formats.

Examining the mean ranks already pointed differences on mean ranks (see Table 12), but to

decide the significance, just observing different rankings is not enough. The test statistics for

this case showed that the perceived difficulty scores of students significantly changed over

different example types (X
2
(2)=31.63, p<.001), and therefore we reject the null hypothesis. In

order to understand the details of differences, we conducted post-hoc analysis.

Table 12

Distribution Ranks

 Mean Rank

WE_Difficulty 1.74

CE_Difficulty 1.31

FP_Difficulty 2.95

41

Wilcoxon signed-rank tests were utilized as post-hoc with Bonferroni corrections (α/3=.0167

level of significance). Follow-up results were resulted in different significant values. It was

found that students perceived the Full-Practice (Mdn=5.50) as significantly more difficult

than either Worked-Example (Mdn=3.00, z=-3.00, p<.0167, r=-.88 or Completion-Example

(Mdn=2.50, z=-2.50, p<.0167, r=-.87) based on negative ranks. On the other hand, based on

positive ranks, it can be inferred that students did not find neither Worked-Examples nor

Completion Examples more difficult in comparison to each other, z=-2.25, p>.0167, r=-.45.

Tables 14 Summarized the results of post-hoc results.

Table 13

Follow-up Ranks

 N Mean Rank Sum of Ranks

CE - WE Negative Ranks 14
a
 9.79 137

Positive Ranks 4
b
 8.50 34

Ties 3
c

Total 21

FP - WE Negative Ranks 0
d
 .00 .00

Positive Ranks 21
e
 11 231

Ties 0
f

Total 21

FP - CE Negative Ranks 1
g
 1 1

Positive Ranks 20
h
 11.50 230

Ties 0
i

Total 21

a. CE_Difficulty < WE_Difficulty, b. CE_Difficulty > WE_Difficulty, c. CE_Difficulty = WE_Difficulty, d. FP_Difficulty <

WE_Difficulty, e. FP_Difficulty > WE_Difficulty, f. FP_Difficulty = WE_Difficulty, g. FP_Difficulty < CE_Difficulty, h.

FP_Difficulty > CE_Difficulty, i. FP_Difficulty = CE_Difficulty

Table 14

Wilcoxon Signed Ranks Results

 CE - WE FP - WE FP - CE

Z -2.254
b
 -4.025

c
 -3.991

c

Asymp. Sig. (2-tailed) .024 .000 .000

b. Based on positive ranks.

c. Based on negative ranks.

4.4. The Effects of Practice Examples’ Formats on Cognitive Load

In this research question, we tried to understand the cognitive load students experienced

during different formats of examples of game making. For this purposes, we used both

performance scores (the average scores for each example type) and difficulty ratings (the

42

average ratings for each example type). In order to calculate cognitive load, efficiency metric

was used. We transformed all values into z-scores, and then calculated efficiency values.

Efficiency metric for worked example represents low efficiency with average performance

value of 0.0000005 and an average difficulty value 0.0000010. In contrast, metric for

completion example represents high efficiency with average performance value of 0.0000033

and an average difficulty value 0.0000019. However, the metric for full practice represents

efficiency on line E=0 with equal average performance value and an average difficulty value

of 0.0000005. Considering the places of efficiency values within the efficiency graph, WE

condition can be referred as low; CE as high, and FP as neutral in terms of efficiency. The

summary of the efficiency scores can be found on Table 15 and also in Figures 20, 21, 22.

Moreover, the averages of all practice problems of two groups were taken and are compared.

Considering the cognitive loads of all practice problems depending on two different groups of

students: (group-1) students who had experience with block-based programming language

(Scratch), (group-2) students who only had experience with text-based programming

language (Python), efficiency value of all practice problems of Group-2 was higher that the

efficiency value of other group (see Figures 23, 24).

Table 15

Efficiency Metric

Example Format Performance Mental Effort Efficiency

WE 0.0000005 0.0000010 -0.00143

CE 0.0000033 0.0000019 -0.00095

FP 0.0000005 0.0000005 0

43

Figure 20.Efficiency metric for Worked Example

Figure 21. Efficiency metric for Completion Example

Figure 22. Efficiency metric for Full Practice

44

Figure 23. Efficiency metric for Group-1

Figure 24. Efficiency metric for Group-2

4.5. The Challenges and Facilitators of Working with 3D Game Making Environment

As the majority of our data consists of quantitative parts, we needed to include a qualitative

part. We asked participants to join our online questionnaire to find out their opinions about

45

Starlogo TNG program. It consist of seven questions and totally seven participants

voluntarily have joined. Themes and categories are formed in order to present challenges and

facilitators of both text-based and block-based programming environment. Overall findings

are represented below (Table 16).

Table 16

Themes and Categories

Theme Title N (7)

1. Previous Programming Experience

Text-Based Python 6

PHP 2

Visual Basic 3

HTML 1

JavaScript 1

AS3 1

KIVY 1

Block-Based Scratch 4

None

3

2. Programming Language Difficulties/ Challenges

Text-Based Low level of English competency 1

Difficult Structures (syntax, functions, and logic…) 2

Code Editing 1

Debugging 3

Need for extra focus for perfectly running program 2

Need for high competency for doing what you want 2

Thinking multiway/dimensional (higher order thinking) 2

Need for high math skills 1

Like puzzle, sophisticated 2

Block-Based

(Starlogo)

Coding with block is sometimes complex for complex

games

1

Stacking is challenging 1

Stacking requires complex thinking 1

3. Thoughts about Starlogo TNG

Visual Intelligible 5

Menu design is good 1

Ease of use 2

3D environment is not developed well 1

Coding with

blocks

Easy 4

Enjoyable 1

Need for complex thinking 3

Due to its resemblance with Scratch, it was easy 1

Finding commands were hard 5

Designing complex 3D games were challenging 1

46

Flexible 1

Drag-and-drop is easy 1

Time consuming 3

4. 3D Designing + Coding

Pros Deciding & designing elements 3

Deciding on game genre 3

Easy, simple, and understandable 1

Design, play and edit 2

Designing more realistic games 1

Cons Not enough 3D elements 1

Time consuming 2

Restricted for educational games 1

Not flexible for visual changes 1

4.5.1. Previous Programming Experience

Participants were students who had prior knowledge of one or more than one programming

languages. Mostly, participants had knowledge about several text-based programming

languages. At the same time, 3 participants (out of seven) had experience with Scratch

(block-based programming language).

4.5.2. Participants’ perceived difficulties of both text-based and block-based

programming languages.

Because of its complicated nature, programming language has always been difficult for

students to learn and as well as for instructors to teach. Participants’ answers of second

question reveal some challenges they had during their prior text-based programming courses.

Students generally indicated that they have such difficulties whilst creating procedure,

debugging (N=3), and code editing (N=1). Moreover, students indicated that one of the

challenges of text-based programming is it requires ability to think in multiway (N=2). One

student pointed out that “programming requires (at least) low level of English knowledge”

(N=1) in order to understand the function of each code and how to write them correctly.

Moreover, the other challenge in programming is it requires high math skills (N=1). It shows

the relation between programming and mathematics. On the other hand, programming has as

similar logic as puzzle has (N=2). If you group logical puzzle pieces together, you will have

right picture. Similarly, if student has an adequate programming knowledge, it is simple as

playing puzzle. However, students generally found easy and funny to program in block-based

programming environment (N=4). It demonstrates that presenting text-based code tags in the

form of code blocks facilitates the abstract nature of text-based programming language.

Nevertheless, students encountered some difficulties with block-based programming

environment. Even though, its’ simplistic nature, one student indicated that “stacking the

code blocks were challenging” and also, “stacking the code blocks requires complex

thinking” (N=3). Therefore, it’s difficult for them to create complex code design (N=1).

Based on their answer, coding using code blocks is easy when it compared to writing codes.

47

 4.5.3. Students’ perception about Starlogo TNG

The Starlogo TNG is software for making 3D games by programming with code blocks.

Depending on the participants’ answer, it considered into two parts: visual and coding with

blocks. Participants revealed their impression whilst working with Starlogo TNG.

When considering the visual part, most students indicated that it is easy (N=4) and enjoyable

(N=1) to work with. Starlogo TNG is intelligible and easy to use. Moreover, it has good

menu design (N=1). All these statements show that participants’ overall perception about

visual part of Starlogo TNG was positive. However, the visual of 3D environment was not

comprehensible enough (N=1). One participants stated that “Its’ appearance is

comprehensible; however, visuals in 3D environment is not developed enough”. The

characters or objects are shown with bad quality.

As programming with code blocks using Starlogo TNG, participants revealed their opinion

about both positive and negative sides. For most participants (N=5) coding with blocks was

easy and enjoyable. One participant stated that “ease of coding with block is result from its

drag-and-drop feature” (N=1). Other participant stated that “ease of coding with blocks was

because of its similarity with Scratch” (N=1). On the other hand, it’s shown that participants

have had some difficulties with coding with blocks. For most participants it was difficult to

find the needed code blocks (N=5). It was also difficult for them to design complex 3D

games (N=1). One participant pointed out that “designing a complex game using code blocks

is challenging because it requires complex thinking” (N=1). Moreover, for some other

participants, it is easy to code with blocks yet it is time consuming (N=3). One participant

pointed out that “if he had enough experience, he would complete the tasks in less time”.

4.5.4. Pros and cons of designing 3D games using code blocks

It’s shown that there are many pros of designing games using Starlogo TNG more than its

cons. One of pros that participants pointed out was designing the characters or objects as they

wish for their games (N=3). And also, with Starlogo TNG, students can design any kind of

games that they want (N=3). Another advantage is that it’s easy to fix any errors while

designing the games or afterwards (N=2). One participant also came up with the idea that

more realistic games can be designed using Starlogo TNG (N=1). However, there are certain

cons of designing using Starlogo TNG. Firstly; there aren’t enough agents or objects within

Breed Editor (N=1). Therefore, game designer need to import the 3D shapes if is not found in

Breed Editor. Also it‘s difficult to make visual changes in 3D environment (N=1). One other

con can be boundary of Starlogo TNG program. One participant pointed out that “it is

restricted for educational games” (N=1). Moreover, it is considered that working with this

program is time consuming with both simple and complex games (N=2).

48

CHAPTER V

V. DISCUSSION

There are various methods that are used in programming education. For the last few years,

using game making method is the one of the most popular method used in programming

education. The goal of the present study was to examine whether backwards fading technique

facilitates transfer of block-based programming experience into 3D game making in

comparison to text-based programming experience and cognitive load perceptions. This study

is compared following example formats: worked-example, completion-example, and full-

practice. The following sections summarize the hypotheses raised in the introduction, and

discuss the theoretical and practical implication of findings of this study.

5.1. The Role of Backwards Fading in the Transfer of Block-Based Programming

Experience into 3D-Game Making.

In order to achieve acquisition of a new skill, it is beneficial to use both example study and

problem solving with fading procedure. According to Renkl, Atkinson, Maier, & Staley

(2002), fading from worked-example to problem solving produced reliable effects on near

transfer but not on far transfer items within computer based environment, and it was more

beneficial to fade out worked-out solution steps using a backward fading approach (Atkinson,

Renkl, & Merrill, 2003). The same result was also found in physic education, which has

found that backward-fading procedure fosters near transfer (Renkl, Atkinson, & Maier,

2000). We tested hypothesis of backwards fading in the transfer of block-based programming

experience into 3D-game making. We observed the transferring process of programming

experience in two different groups of students with different prior knowledge of

programming: students who had only text-based programming experience and students who

had also block-based programming language experience. Therefore, we expected scores of

students having block-based programming experience would be higher than students having

text-based programing experience. The result, however, didn’t support this hypothesis.

Instead, we found that the students having text-based programming experience had higher

scores than final scores of others. In addition to the backward fading method effect, Renkl et

al. (2002) study showed that backwards fading condition produced more accurate solutions

on far-transfer problems. The fact that backward fading methods promote far transfer is

consistent with the prior research.

5.2. The Effects of Practice Examples’ Formats on 3D-Game Making Performance

It’s shown that example-based learning is more effective for novices when compared to

problem solving. During this study, students accomplished their activities in three different

formats of practice examples: worked-example, completion-example, and full-practice.

49

Using worked-example in education provides many advantages. Worked-example contains

problem itself, solution steps, and the final answer. This procedure demonstrates whole image

problem solving to the learners. Therefore, worked example requires low mental effort.

According to Sweller & Cooper (1985), using worked-example promote better learning of

solution procedure when it compared to the traditional problem solving procedure with no

guidance. Prior studies have shown that, worked example is effective when the learner has

less prior knowledge (Van Gog, Kester, & Paas, 2011). On the other hand, Nievelstein, van

Gog, van Dijck, and Boshuizen (2013) found that worked example were effective for learning

than problem solving, both for novice and advanced students on less structured tasks. And

they didn’t found any evidence for an expertise reversal effect. In other study, Carroll (1994)

found worked example in mathematics was helpful for students who had lower math skills.

During this study, students who were given worked-example required less acquisition time,

needed less direct instruction, and made fewer errors. Alhassan (2017) found positive effect

for the use of self-explanation strategy supported with worked-example when learning topic

related to the programming. Researcher indicated that this positive effect was obvious

through students’ ability to write correct programming code and statement, and ability to find

errors.

Completion-examples support acquisition of knowledge effectively and more time-efficient

(Renkl and Atkinson 2003). Completion-example is the combination of worked-example in

instructional setting and demonstrates better learning outcome. Renkl et al. (2002) suggested

that worked-examples with backwards fading effect would produce better results than

forward fading effect on near transfer items. Gray, St Clair, James, & Mead (2007) suggested

that worked-examples with backwards fading effect can be employed in computer science.

Full-practice is the traditional problem solving procedure. Instruction which consists of

solving traditional problems forces learners who have weak problem solving strategies. Even

though, with such weak strategies, learners may succeed in solving the problem eventually,

their learning outcome is little (Van Gog, Kester, & Paas, 2011).

When it comes to acquisition of a skill, it’s important to include convenient example-format.

It’s shown that full-practice requires more effort when compared to the other formats. There

are some studies which compares these example formats. Previous studies have shown that

worked-example causes higher learning outcomes than full-practice that has no guidance.

Worked-example is effective for learner who has less prior knowledge, where completion-

example is effective for more advanced students.

Depending on different example formats, the hypothesis was to show the difference between

students’ final scores of each example format. However, there were two groups of students:

(1) who were novice in block-based programming language, (2) who had little knowledge

about block-based programming language. We compared students’ final scores of each

example format; even though it was mixed group. The result supported the hypothesis and it

showed that students’ final scores of 3D gaming making significantly changed over different

example types. The scores of game design in completion-example were significantly higher

than those of worked-example.

50

Effectiveness of example format in educational setting depends upon the learners’ level of

prior knowledge (Reisslein, Atkinson, Seeling, & Reisslein, 2006). Fact that final scores in

completion-example are higher than scores in worked example is showing that there was

reversal of the worked example effect. For novice learners, studying with worked-examples

helps them to experience or form relevant problem solving schemas, which provide them to

gain expertise as a result. However, for learners who already have some schema in their long-

term memory, studying with worked examples will be gaining no benefit from it (Kalyuga,

Ayres, Chandler, & Sweller, 2003). Moreover, according to the Renkl and Atkinson (2003),

low prior knowledge learners benefit more from studying worked-examples. However, as

knowledge increases, completion-example solving becomes the more effective learning

activity. For more knowledgeable learners, worked example becomes redundant, and also

becomes the source of extraneous cognitive load, but not germane cognitive load. This

phenomenon is called expertise reversal effect. However full-practice scores of game design

were significantly lower than either worked-example or completion-example. It’s clear that

full-practice format requires more effort to make.

5.3. The Effects of Practice Examples’ Formats on 3D-Game Perceived Difficulty.

Mostly mental load is measured by learner ratings of lesson difficulty on a 1 to 7 or 1 to 9

scale. In our study, each week students rated difficulty from 1 to 9 scale during all formats of

examples. The rating scale technique can be regarded as a valuable research tool for

estimating cognitive burden in instructional research (Paas, 1992). The hypothesis was to

investigate whether students’ perceived difficulties affected by example format. Depending

on the difficulty of example formats, we expected full-practice format would be the most

difficult. The results regarding the measures of cognitive load that are based on mental effort

revealed that significantly different value was found on students’ perceived difficulty of full-

practice. It was found that full-practice was more difficult than either worked-example or

completion-example. Students reported that very high levels of cognitive load required during

full-practice and got low scores on their full-practice activity. Fact that full-practice assumed

as the most difficult format in this study is that, it requires different levels of mental activity

such as computational thinking, problem solving, and design thinking simultaneously.

However, there was no significant difference on students’ perceived difficulties between

worked-example and completion-example. Worked-example provides learners with full

guidance that are needed for problem solving. Completion-example also provides learner

with solution steps yet one single solution step is omitted. Therefore, it requires no/very little

mental effort (Skudder & Luxton-Reilly, 2014). As students gained the acquisition of a new

skill with the help of worked-example, solving problem with completion-example format

would be easier than solving the whole problem with no guidance. Full-practice requires

learners to complete full solution on their own. One of the reason that students’ perceived

difficulties between worked-example and completion-example may result from their prior

knowledge about block or text-based programming language. Moreover, whether students are

novice or not, providing them with full-practice format diminished their motivation.

51

5.4. The Effects of Practice Examples’ Formats on Cognitive Load

In order to understand how students’ cognitive loads affected by example formats, we

measured the efficiency of each example formats by performance scores (the average scores

for each example type) and difficulty ratings (the average ratings for each example type).

Efficiency metric was used in order to calculate cognitive loads. In cognitive load theory,

efficiency is defined by learner performance and learner mental effort. According to the Clark

et al. (2006, p. 19) “Instructional environments that result in higher learning outcomes with

less mental effort are more efficient than environment that lead to lower outcomes with

greater mental effort”. Efficiency metric is used to quantify the efficiency of instructional

product. According to Paas and Van Merrienboer (1993), in order to calculate efficiency

value, all values are transformed into z-scores. Performance z scores and difficulty rating z

scores are represented in a cross of axes. In figure 23 or 24, the line labelled “E=0” indicates

that efficiency is zero. All points on this line are parallel to E = 0 represents the same mental

efficiency. Upper-left part of the coordinate system shows an increase in efficiency which

means higher performance in relation to less mental effort. Lower-right part of the coordinate

system shows a decrease in efficiency, which means lower performance in relation to more

mental effort.

First, cognitive loads of practice problems were measured in order to see impact of examples’

format. The results regarding the measures of cognitive loads that are based on efficiency

metric revealed that efficiency value of completion-example was the highest among all

practice example formats. However, efficiency value of worked-example was resulted as low

and efficiency value of full-practice was resulted as neutral. Cognitive loads of all practice

problems were measured depending on two different groups of students: (group-1) students

who had experience with block-based programming language (Scratch), (group-2) students

who only had experience with text-based programming language (Python). The averages of

all practice problems of two groups were taken and are compared. The results regarding the

measures of cognitive loads that are based on efficiency metric revealed that efficiency value

of all practice problems of Group-2 was higher that the efficiency value of other group (see

Figures 23, 24).

 5.5. The Challenges and Facilitators of Working with 3D Game Making Environment

With the qualitative data, a group of important results were achieved. Overall examination of

qualitative data showed that participants’ perception about 3D game making environment

can be gathered under four sections including students previous programming experience,

challenges/difficulties of programming languages (text-based and block-based), perception

on StarLogo TNG, students perception on designing 3D games using code blocks with

StarLogo TNG.

Students’ overall perception showed that text-based programming is more challenging than

block-based programming language. It is well drawn that text-based programming language

skill has always been difficult to gain. However, block-based programing environment was

easy for students because of its tangible nature. Mostly, block-based programming

52

environment is effective for novice in programming language (Denner, Werner, & Ortiz

2012).

For most students, Starlogo TNG is an easy and enjoyable to work with. Considering the

interface, StarLogo TNG was easy to deal with. However, programming with code blocks

was resulted both positively and negatively. Positive part was that using code blocks was

easy but when it comes to design a complex game, it is time consuming. Because of its drag-

and-drop feature, it was easy for learners. Smith & Duncan (2011) indicated that drag-and-

drop feature provides additional feedback with an auditory “click” when code blocks are

placed together. Therefore, students don’t have to worry about syntax error.

Combination of text-based programming language and designing 3D games affected learners

mostly in a good way. Students had the whole authority to choose genre, characters, and also

design elements of their games. In this way, students were the designer of their own games.

By becoming designers of their own game, students learn not only programming but also they

gain critical and mathematical thinking skill, complex problem solving skill and deep

understanding (Akcaoglu & Kale, 2016). More importantly, designing games provides

students to learn by doing. It was also resulted that one of the advantage of StarLogo TNG

was to be able to design, play, and edit simultaneously. Klopfer et al. (2009) indicated that

having 3D visualisation of simulation output provides immediate feedback on the progress of

the simulation as it being built. With this immediate feedback, students can notice their

mistakes easily and fix (Begel & Klopfer, 2004). On the other hand, many disadvantages of

designing 3D games in block-based environment have arisen. These were inadequacy of

StarLogo TNG software: lack of character (Starlogo Breed) and no intervention on 3D

visualisation of simulation output. Even though, StarLogo TNG was made an ideal software

for educational purpose (Smith & Duncan, 2011), one student found it restricted for

educational games.

5.6. Limitations

It’s important to indicate that the findings of this study are limited to the participants of this

case. They are the senior university students of Computer Education and Instructional

Technologies who enrolled in an E-Game Based Learning course. Students had different

level of prior programming knowledge. Another important limitation of this study is time.

The fact that students’ full-practice scores were low might be resulted from insufficient

amount of time spent during worked-example and completion-example sessions. It suggests

that in order to get higher scores in full-practice, duration of worked-examples and

completion-examples can be increased.

5.6.1. Delimitations

This case study explored how difficult for students to transfer their previous programming

knowledge into block-based programming while designing 3D game using Starlogo TNG

program. Participants of this case were senior university students of Computer Education and

Instructional Technologies (CEIT) who enrolled in an E-Game Based Learning course. This

53

study is not designed for basic programming skills, yet to observe the ability to transfer one’s

prior knowledge into new situation. CEIT students who had prior programming

knowledge/skill were appropriate for this study. There is not much delimitation in this study.

However, variety of examples provided during this study delimited. In this study, provided

completion-examples are delimited. Fact that full-practice format was assumed as the most

difficult format in this study is because it requires high/different level of mental load

simultaneously. In order to decrease students’ perceived mental effort level, variety of

worked and completion example can be enriched.

5.7. Implications

5.7.1. Theoretical Implications

The use of examples is also very common in introductory programming courses. Our findings

are on the efficiency of a learning environment that combines three different example formats

with backwards-fading approach. During gaining of a new skill, it is beneficial to provide

learners with worked-examples in order to form relevant schema in long term memory.

Worked-examples are beneficial for novice learners with less/no prior knowledge. Once

schema is formed, learner can solve similar problem in the way of near or far transfer.

Educational transfer of learning can enable students to apply their knowledge and skills

anytime and anywhere they need. In order to observe smooth transition from worked-

example to full-practice problem, fading effect is used. Backwards fading effect provides

learners with worked-example with full guidance and then followed by another worked

example with one last step missing. It is beneficial to fade out worked-out solution steps

using a backward fading approach (Atkinson, Renkl, & Merrill, 2003). Completion-example

is beneficial when the learner has prior knowledge or non-novice learner. Full-practice is only

effective when learner is expert. Providing learners with boundless practice of the

performance may cause better transfer (Butler, 2010).

5.7.2. Practical Implications

The practical implication of our study is quite clear. Example formats are used a lot in

Computer Science and similar fields. And in most courses use the instructional design of

example-problem blocks. It’s possible that some difficulties may occur during courses

especially for the novice learners. It is may be due to intrinsic cognitive load imposed by

sophisticated nature of programming tasks. So far, there is strong empirical evidence for the

superiority of completion-example over worked-example or full-practice when designing 3D

games using block-based programming environment. In order to make full-practice problems

easy for learner, extraneous load must be minimized. This study suggests that future study

can organize worked & completion examples in more effective way in terms of learning time.

5.8. Recommendations for Further Studies

Participants of this study practiced different types of example formats throughout the study.

These example formats were worked-example, completion-example, and full-practice.

54

Students’ scores of completion-example were resulted higher than their scores of worked-

example. However, their scores of full-practice was resulted significantly lower than either

worked-example or completion example. These findings suggest that, for students having

prior (block-based or text-based) programming skill, worked example became redundant.

However, to achieve sufficient knowledge transfer in order to accomplish full-practice

example, duration of completion-example sessions can be increased. Duration can be

beneficial for achieving sufficient schemas in order to be able to accomplish full-practice. In

finding which arises from students' perceived difficulty, full-practice was also more difficult

than either worked-example or completion example. Full-practice format was assumed as the

most difficult format in this study because it requires high/different level of mental effort

simultaneously. However, there was no significant difference on students’ perceived

difficulties between worked-example and completion-example. These findings suggest that in

order to decrease students’ perceived mental effort level, variety of worked and completion

example can be enriched. Moreover, duration of completion-example sessions can be

increased in order to make sure of whether students have sufficient skill of solving problems

with no guidance. The results regarding the measures of cognitive loads that are based on

efficiency metric revealed that efficiency value of all practice problems of Group-2 was

higher that the efficiency value of other group (see Figures 23, 24). Findings suggested that

future study can be conducted without worked-example format with non-novice learners.

Overall suggestion for further studies, providing students with sufficient completion-

examples who have prior knowledge and skill in order to make sure whether students

achieved enough knowledge skill and whether students are able to complete the full-practice

without any guidance.

5.9. Conclusion

It’s assumed that using games have many benefits in education. It is not only to teach

knowledge but also help them to learn to develop competences that will be useful to them in

their future career endeavours. There are many educational games that are properly designed

and developed in order to be fully exploited. However, in this study students became

designers and developers of their own educational games instead of being consumers of

educational games already developed. Since the participants had prior programming

knowledge, students’ ability to transfer their prior knowledge was observed. During game

making process, different example formats were used: worked-example, completion-

example, and full-practice. The evidence suggests certain worked example techniques with

backwards fading effect are an improvement over conventional problem solving techniques,

in terms of learning time and performance on far transfer for novices in block-based

programming environment. In situations where the student is not novice, worked-example

appears more to be redundant. However, providing them with completion-example appears

more effective example format. For full-practice problems, it’s assumed that providing

students with sufficient time and variety of example can lead better learning outcome.

55

REFERENCE

Akcaoglu, M., & Kale, U. (2016). Teaching to teach (with) game design: Game design and learning

workshops for preservice teachers. Education, 16(1), 60-81.

Alhassan, R. (2017). The Effect of Employing Self-Explanation Strategy with Worked Examples on

Acquiring Computer Programming Skills. Journal of Education and Practice, Vol.8, No. 6,

186-196.

Ali, A., & Smith, D. (2014). Teaching an Introductory Programming Language in a General

Education Course. Journal of Information Technology Education: Innovations in Practice,

13, 57-67. Retrieved from http://www.jite.org/documents/Vol13/JITEv13IIPp057-

067Ali0496.pdf

An, Y. J. (2016). A case study of educational computer game design by middle school students.

Educational Technology Research and Development, 64(4), 555-571.

An, Y. J., & Cao, L. (2017). The Effects of Game Design Experience on Teachers’ Attitudes and

Perceptions regarding the Use of Digital Games in the Classroom. TechTrends, 61(2), 162-

170.

Atkinson, R. K., Renkl , A., & Merrill, M. M. (2003). Transitioning From Studying Examples to

Solving Problems: Effects of Self-Explanation Prompts and Fading Worked-Outs Steps.

Juornal of Educational Psychology, Vol. 95, No. 4, 774-783.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to ""Real" Programming.

ACM Transitions on Compting Education, Vol. 14, No. 4, Article 25

Backlund, P., & Hendrix, M. (2013, September). Educational games-are they worth the effort? A

literature survey of the effectiveness of serious games. Games and virtual worlds for serious

applications (VS-GAMES), Paper presented at the 2013 5th international conference on

IEEE, (pp. 1-8).

Battistella, P., & Wangenheim, C. V. (2016). Games for teaching computing in higher education–a

systematic review. IEEE Technology and Engineering Education, 9(1), 8-30.

Begel , A., & Klopfer, E. (2004). Starlogo TNG: An Introduction to Game Development. 1-15.

Carroll, W., M. (1994). Using WorkedExample as as Instructional Support in the Algebra Classroom.

Journal of Educational Psychology, Vol. 86, No. 3, 360-367.

Chang, C.-K. (2014). Effects of Using Alice and Scratch in an Introductory Programming Course For

Corrective Instruction . J. Educational Computer Research, Vol. 51 (2), 185-204.

Chapman, B. E., & Irwin, J. (2015). Python as a first programming language for biomedical scientists.

In Proceedings of the 14th Python in Science Conference (SCIPY 2015): Published online at

http://conference. scipy. org/proceedings/scipy2015/(last accessed 23-09-2015).

Chen, O., Kalyuga, S., & Sweller, J. (2015). The Worked Example Effect, the Generation Effect, and

Element Interactivity. Journal of Education Psychology, Vol. 107, No. 3, 689-704.

http://www.jite.org/documents/Vol13/JITEv13IIPp057-067Ali0496.pdf
http://www.jite.org/documents/Vol13/JITEv13IIPp057-067Ali0496.pdf

56

Choi, H.-H., Van Merrienboer, J., & Paas, F. (2014). Effects of the Physical Environment on

Cognitive Load and Learning: Towards a New Model of Cognitive Load . Educational

Psychology eview, 225-244.

Chu, H.-C. (2013). Potential Negative Effects of Mobile Learning on Students' Learning Achievement

and Cognitive Load- A Format Assessment Perspective. Educational Technology & Society,

332-344.

Clark, R. C., Nguyen , F., & Sweller, J. (2006). Efficiency in Learning: Evidence-Based Guidelines to

Manage Cognitive Load. San Francisco: Pfeiffer.

Cooke, N. L., Guzaukas, R., Pressley, J. S., & Kerr, K. (1993). Effects of Using a Ratio of New Items

to Review Items During Drill and Practice: Three Experiments. EDUCATION AND

TREATMENT OF CHILDREN Vol. 16, No. 3, 213-234.

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they

be used to measure understanding of computer science concepts? Computers & Education,

58(1), 240–249.

Ebner, M., & Holzinger, A. (2007). Successful implementation of user-centered game based learning

in higher education: An example from civil engineering. Computers & education, 49(3), 873-

890.

Ekeyi, D. N. (2013). Effect of demonstration method of teaching on students’ achievement in

agricultural science. World Journal of Education, 3(6), 1.

Fernandez Leiva, A. J., & Civila Salas, A. C. (2010). Practices of Advanced Programming: Tradition

Versus Innovation. Computer Applications in Engineering Education, 237-244.

França Batista, A., Connolly, T., & Peres Angotti, J. (2016). A Framework for Games-Based

Construction Learning: A Text-Based Programming Languages Approach. Academic

Conferences & Publishing International Ltd., 815-823.

Fromme, J. (2003, 5). Computer Games as a Part of Children's Culture. Retrieved from Game

Studies: http://www.gamestudies.org

Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning : A research and

practice model. Simulation & Gaming, 441-467.

Garvey, G. P. (2015). Fostering 21st Century Skills through Game Design and Development.

International Association for Development of the Information Society.

Gray, S., St Clair, C., James, R., & Mead, J. (2007). Suggestion for Graduated Exposure to

Programminh Concepts Using Faded Worked Examples. In Proceedings of the third

international workshop on Computing education research (pp. 99-110). ACM.

Guibert, N., Guittet, L. T., Girard, P. (2005). A study of an efficiency of an alternate programming

paradigm to teach the basics of programming. Recuperado de

http://www.lisi.ensma.fr/fr/equipes/idd/publications.html.

Hayes, E. R., & Games, I. A. (2008). Making Computer Games and Design Thinking. Games and

Culture, 1-24.

57

Kahn, K. (1996). ToonTalk: An Animated Programming Environment for Children . Journal of Visual

Languages and Computing , 197-217.

Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code. org.

Computers in Human Behavior, 52, 200-210.

Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The Expertise Reversal Effect. Educational

Psychologist, Vol. 38(1), 23-31.

Kelleher, C., & Pausch, R. (2006). Lessons Learned from Designing a Programming System to

Support Middle School Girls Creating Animated Stories. IEEE Symposium on Visual

Languages and Human-Centric Computing.

Kirriemuir, J., & Mcfarlane, A. (2004). Literature Review in Games and Learning.A NESTA

Futurelab Research report - report 8.

Klopfer, E., Scheintaub, H., Huang, W., Wendel , D., & Roque, R. (2009). The Simulation Cycle:

combining games, simulations, engineering and science using StarlogoTNG. E-Learning, Vol.

6 No:1, 71-96.

Lee, Y. J. (2011). Empowering teachers to create educational software: A constructivist approach

utilizing Etoys, pair programming and cognitive apprenticeship. Computers & Education,

527-538.

Leutenegger, S. T., & Edgington, J. (2007). A Games First Approach to Teaching Introductory

Programming. ACM SIGCSEBulletin, 39(1), 115-118.

Lin, J. M. C., & Yang, M. C. (2009). Analyzing student performance and attitudes toward textual

versus iconic programming languages. Journal of Computers in Mathematics and Science

Teaching, Vol.28, No:1, 71-89.

Lui, T. C., Lin, Y. C., Tsai, M. J., & Paas, F. (2011). Split-attention and redundancy effects on moble

learning in physical environments. Computers and education, Vol.56, No:2, 172-181.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking

through programming: What is next for K-12?. Computers in Human Behavior, Vol. 41, 51-

61.

Maasoumi, M., Khazaei, B., & Shafiei, M. (2014). Programming The Way to Enrich Educational

Foundations of E-Learning . E-Learning and Software for Education, 306-313.

Malan, D. J., & Leitner, H. H. (2007). Scratch for Budding Computer Scientists. In Proceedings of the

38th SIGCSE technical symposium on Computer science education. ACM, 223-227.

Malliarakis, C., Satratzemi, M., & Xinogalos, S. (2013). A Holistic Framework for the Development

of an Educational Game Aiming to Teach Computer Programming. Academic Conferences

International Limited, 359-368.

Malliarakis, C., Satratzemi, M., & Xinogalos, S. (2014). Designing Educational Games for Computer

Programming: A Holistic Framework. Electronic Journal of e-Learning, Vol. 12(3), 281-298.

58

Maloney, J., Peppler, K., Kafai, Y. B., Resnick, M., & Rusk, N. (2008). Programming by Choise:

Urban Youth Learning Programming with Scratch. In Proceedings of the 39th SIGCSE

technical symposium on Computer science education. ACM, 367-371.

Mann, B. D., Eidelson, B. M., Fukuchi, S. G., Nissman, S. A., Robertson, S., & Jardines, L. (2002).

The development of an interactive game-based tool for learning surgical management

algorithms via computer. The American Journal of Surgery, Vol. 183 (3), 305–308.
Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity

for Processing Information. The Psychological Review, Vol. 63, 81-97.

Miller, W. L., & Crabtree, B. F. (1999). The dance of interpretation. Doing qualitative research, 2,

127-143.

Miller, K., Lasry, N., Chu, K., & Mazur, E. (2013). Role of physics lecture demonstrations in

conceptual learning. Physical review special topics-physics education research, Vol. 9(2),

020113.

Moreno , R., Reisslein, M., & Ozogul, G. (2009). Optimizing Worked-Example Instuction in

Electrical Engineering: The Role of Fading and Feedback during Problem-Solving Practice.

Journal of Engineering Education, 83-92.

Najar, A.S., Mitrovic, A. & McLaren, B.M. (2016). Learning with intelligent tutors and worked

examples: selecting learning activities adaptively leads to better learning outcomes than a

fixed curriculum. User Modeling & User-Adapted Interaction, Vol. 26(5), 459-491

doi:10.1007/s11257-016-9181-y

Nievelstein, F., van Gog, T., van Dijck, G., & Boshuizen, H. P. A. (2013). The worked example and

expertise reversal effect in less structured tasks: Learning to reason about legal cases.

Contemporary Educational Psychology, 38, 118 – 125.

http://dx.doi.org/10.1016/j.cedpsych.2012.12.004

Omwirhiren, E. M., & Ibrahim, K. U. (2016). The Effects of Two Teachers' Instructional Methods on

Students' Learning Outcomes in Chemistry in Selected Senior Secondary School in Kaduna

Metropolis, Nigeria. Journal of Education and Practice, Vol. 7(15), 1-9

Paas, F. G. (1992). Trainig strategies for attaining transfer of problem-solving skill in statistics: A

cognitive-load approach. Journal of Educational Psychology, Vol. 84(4), 429-434.

Paas , F., & Ayres , P. (2014). Cognitive Load Theory: A Broader View on the Role of Memory in

Learning and Education. Educational Psychology Review, Vol. 26, 191-195.

Paas, F. G., & Van Merriënboer, J. J. (1993). The efficiency of instructional conditions: An approach

to combine mental effort and performance measures. Human factors, Vol. 35(4), 737-743.

Papert, S. (1980). Mindstorm: Children, Computers, and poweful ideas. New York: Basic Books.

Papastergiou, M. (2009). Digital game-based learning in high school computer science education:

Impact on educational effectiveness and student motivation. Computers & Education, 52(1),

1-12.

Pasztor, A., Lakatos Török, & Lakatos Török, E. (2010). Effects of Using Model Robots in the

Education of Programming. Informatics in Education, Vol.9, No. 1, 133-140.

59

Peppler, K. A., & Kafai, Y. B. (2007). What Videogame Making Can Teach Us about Literacy and

Learning: Alternative Pathways into Participatory Culture. Online Submission.

Perkins, D. N., & Salomon, G. (1992). Transfer of Learning. International Encyclopedia of

Education, Second Edition, 1-13.

Petri, G., & Gresse von Wangenheim, C. (2017). How games for computing education are evaluated?

A systematic literature review. Computers & Education Vol. 107, 68-90.

Reisslein, J., Atkinson, R.K., Seeling, P., & Reisslein, M. (2006). Encountering the expertise reversal

effect with a computer-based environment on electrical circuit analysis. Learning &

Instruction, 16(2), 92-103.

Renkl, A., & Atkinson, R. K. (2003). Structuring the Transition From Example Study to Problem

Solving in Cognitive Skill Acquisition: A Cognitive Load Perspective. Educational

Psychologist, Vol. 38(1), 15-22.

Renkl, A., Atkinson, R. K., Maier, U. H., & Staley, R. (2002). From Example to problem solving:

Smooth Transitions helps learning. Journal of Experimental Education, 70(4), 293-315.

Skudder, B., & Luxton-Reilly, A. (2014). Worked examples in computer science. ACE '14

Proceedings of the Sixteenth Ausralasian Computing Education Conference, Vol. 148, 59-64.

Smith, V. A., & Duncan, I. (2011). Biology Students building Computer Simulations Using StarLogo

TNG. Bioscience Education, Special Edition, Vol. 18(1), 1-9.

Sweller, J., & Cooper, G. A. (1985). The Use of Worked Examples as a Substitute for Problem

Solving in Learning Algebra. Cognition and Instruction, Vol.2 (1), 59-89.

Sweller, J., van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive Architecture and Instructional

Design. Educational Psychology Review, Vol. 10, No. 3, 251-296.

Tabet, N., Gedawy, H., Alshikhabobakr, H., & Razak, S. (2016, July). From Alice to Python.

Introducing Text-based Programming in Middle Schools. Paper presented at the Proceeding

21
st
 Annual Conference on Innovation and Technology in Computer Science Education

(ITiCSE), Arequipa, Peru, (pp. 124-129).

doi: 10.1145/2899415.2899462

Ültanir, E. (2012). An Epistemologic Glance at the Constructivist Approach: Constructivist Learning

in Dewey, Piaget, and Montessori.

Van Gog, T., Kester, L., & Paas, F. (2011). Effects of worked examples, example-problem, and

problem-example pairs on novices’ learning. Contemporary Educational Psychology, 36(3),

212-218.

Vasilateanu, A., Wyrazic, S., & Pavaloiu, B. (2016). A Science Fiction Serious Game For Learning

Programming Languages. eLearning and Software for Education, 561-564.

Weidman, J., & Baker, K. (2015). The Cognitive Science of Learning: Concepts and Strategies for the

Educator and Learner. Neuroscience In Anesthesiology and Perioperative Medicine, Vol. 121,

No.6, 1586-1599.

Weintrop, D., & Holbert, N. (2017). From Blocks to Text and Back: Programming Patterns in a Dual-

modality Environment. SIGCSE., 633-638.

https://doi.org/10.1145/2899415.2899462

60

Wilson, A., Connolly, T., Hainey, T., & Moffat, D. C. (2011, October). Evaluation of Introducing

Programming to younger School Children Using a Game Making Tool. Paper presented at the

Proceedings of the 5th European Conference on Games-based Learning (ECGBL), University

of Athens, Greece, 20-21 October (pp. 639-694). Academic Conferences International

Limited.

Wilson, A., Hainey , T., & Connolly, T. M. (2013). Using Scratch with Primary School Children: An

Evaluation of Games Constructed to Gauge Understanding of Pragramming Concepts.

International Journal of Game-Based Learning, 3(1), 93-109.

61

APPENDIX

APPENDIX A-1: Full-Practice game hand-out of Red Riding Hood: Collecting Carrots

(Turkish)

E-Oyun Tabanlı Öğrenme Dersi

LAB Uygulama: Oyun – 1

Senaryo: Kırmızı başlıklı kızın ananesine akşam yemeği için havuç toplayan oyun

hazırlayınız. Sahne kırmızı başlıklı kızın ananesi olan ev, havuçlar ve ısırgan otlarından

oluşacaktır. Kırmızı başlıklı kız havuca çarptığında hem kız büyüyecek hem de havuç

sahneden kaybolacak, ve ısırgan otuna çarptığında ise küçülecektir. Sahnedeki bütün

havuçları topladıktan sonra eve gidecek ve oyun bitecektir.

İpucu: Başrolü büyüdüğünde boyutu evin büyüklüğünden büyük olmaması için

büyüklüğü arttıran değere 1 yerine 0.5 veriniz.

Nesneler: Ev, Kırmızı başlıklı kız (başrol), havuç ve ısırgan otu(küçük yeşil ot)

Tasarlama aşaması:

 İçerikteki tüm objeleri sahnede rastgele yerleştiriniz. Ek olarak ağaç

yerleştirebilirsiniz.

 Başrolünün nesnelere çarpma eylemini Collision (Çarpışma) kod bloğu ile

oluşturabilirsiniz.

 Başrolün havuca çarptığında ise havucun sahneden kaybolmasını sağlayınız. Bunun

için de Die kod bloğunu kullanınız.

 Başrolün büyüyüp ya da küçülmesi için Set Size(Boyut Ayarlama) kod bloğunu

kullanınız.

62

APPENDIX A-2: Full-Practice game hand-out of Red Riding Hood: Collecting Carrots

(English)

E-Game Based Learning Course

LAB Practice – Game 1

Scenario: Game consists of Red Riding Hood as a player, house of her grandmother, carrots,

and nettles. Red Riding Hoods has to collect all carrots to prepare dinner for her

grandmother. When the main role collides with the carrot, she gets bigger and carrot

disappears. When she collides the nettle, she gets smaller. The game ends when she gets

home after all the carrots are collected,

Hint: Each time when the main role collides the carrot, set the enlarging value as 0.5

instead of 1 to avoid to become bigger the size of the house

Objects: Red Riding Hood (main role), house, carrot, and nettle

 Designing:

 Locate all the objects randomly in the terrain. You can also locate trees additionally.

 Use “Collision” code block for action of the main role colliding with other objects.

 Use “Die” code block for disappearance of carrot when it is collided.

 Use “Set Size” code block to change the size of the main role.

63

APPENDIX B-1: Full-Practice hand-out of Crossing Bridge (Collecting coins) (Turkish)

E-Oyun Tabanlı Öğrenme Dersi

LAB Uygulama: Oyun – 2

Senaryo: Oyunun başrolü olan arabanın köprü yolunda karşıdan karşıya geçmesini sağlayan

oyun hazırlayınız. Köprüde başroldeki arabanın dışında hareket halinde olan arabalar ve

demir paralar olacak. Başroldeki araba köprüde ilerlerken diğer arabaları çarparsa puan

azalacak ve demir paralara çarparsa artı puan kazanacaktır. Sonunda başroldeki araba

köprüyü geçtiğinde ise ekranda ‘Tebrikler, Köprüyü geçtiniz!’ yazısını yazınız.

Nesneler: başrol arabası, hareket halinde olan arabalar, köprü ve demir para

Tasarlama aşamaları:

 Köprüyü ve demir paraları SketchUp programında tasarlayınız. Köprü çift şeritli

olacaktır.

 Sahnede karşı karşıya olan iki dağı bağlayan bir köprü ve dağların arasında deniz

olacak şekilde düzenleyiniz.

 Hareket halinde olan arabaları eşit sayıda köprünün iki tarafında olacak şekilde ve her

biri için (başrol arabası dâhil olmak üzere) ayrı ayrı konum belirleyiniz.

İpucu: Arabaların sürekli hareket halinde olacak şekilde ayarlanması için

Run(Çalıştır) bloğunda hareket vermek istediğimiz karakterin(kendi oyunlarınıza

göre) karşısında Forward(ileri gitme komut) bloğunu yerleştirebilirsiniz

 Demir Paraları köprünün üzerinde yerleştirilirken sürekli dönecek şekilde ayarlayınız

ve her biri için de ayrı ayrı konum belirleyiniz.

 İpucu: Demir paraların sürekli dönme hareketini vermesi için Run(Çalıştır) bloğunda

dönme hareket vermek istediğimiz karakterin(kendi oyunlarınıza göre) karşısında Left

degs(sola dönme komut) ya da Right degs(sağa dönme komut) bloğunu

yerleştirebilirsiniz

 Hareket halinde olan araba ve demir para sayısı: isteğe bağlı

64

APPENDIX B-2: Full-Practice hand-out of Crossing Bridge (Collecting coins) (English)

E-Game Based Learning Course

LAB Practice – Game 2

Scenario: Game consists of cars one of them as a main role, coins, bridge between two

mountains, and a river. The bridge has two-lane road. On the bridge, there will be cars in

motion and turning coins. Main role (car) has to cross the bridge. If it collides with other cars,

score will decrease. If it collides with coins, score will increase. Game ends when the main

role reaches to the end of the bridge Finally, sign as “Congratulations You’ve crossed the

Bridge” pops up on the screen.

Objects: Main-role car, other cars, coins, and bridge.

Designing:

 Design coins and bridge using SketchUp. Be sure to create bridge with two-lane road.

 Locate the bridge between two mountains and draw river under the bridge between

the mountains.

 Place every cars at different locations on the bridge.

Hint: In order to make cars to be in motion, use Forward code block for each car in

Run block

 Place the coins continuously turning way in different location.

Hint: In order to make coins to be continuously turning, use Left degs or Right degs

code block for coin in Run block

 It is optional to set the number of cars and coins.APPENDIX C-1: Rubric (Sample)

65

APPENDIX C1: Rubric Sample

Student Name:

Grade:

Game:

Code Blocks Not tried Incomplete Completed

1. Edit Breeds

2. Creating Procedure

Block

3. Using Logic-If

Block (movement)

4. Creating Setup

Block

(Creating

characters and

other objects)

4.1.Set xy

4.2.Set size

5. Creating Run

Block

6. Terrain Screen

66

APPENDIX C-2: Rubric for Worked Example

Session-1: Introduction to Starlogo TNG

Using IF Block

Student Name:

Grade:

Game 1: Mario

Code Blocks Not tried Incomplete Completed

1. Edit Breeds

2. Creating Procedure

Block

3. Using Logic-If

Block (movement)

4. Math Block

5. Creating Setup

Block

6. (Creating

characters and

other objects)

7. Set xy & size

8. Creating Run

Block

9. Terrain Screen

67

APPENDIX C-3: Rubric for Worked Example

Session-2: Introduction to Collision Block

Student Name:

Grade:

Game 2: Treasure

Code Blocks Not tried Incomplete Completed

1. Edit Breeds

2. Creating Procedure

Block

3. Using Logic-If

Block (movement)

4. Creating Setup

Block

(Creating

characters and

other objects)

4.1.Set xy & size

4.2.Setting Camera

4.3.Using Scatter

Block

4.4.Set Color Block

4.5.Set & Show Score

Blocks

5. Collision Block

5.1.Using If & Math

Blocks

5.2.Using Stamp

Block

5.3.Using Die Block

6. Creating Run

Block

7. Terrain Screen

68

APPENDIX C-4: Rubric for Completion Example

Session-3: Collision Block - Completion Example 1

Student Name:

Grade:

Game 3: Running Away From the Bears

Code Blocks Not tried Incomplete Completed

1. Collision Block

1.1.Using Say Block

1.2. Creating Camera

1.3.Using Die Block

2. Creating Run

Forever Block

69

APPENDIX C-5: Rubric for Completion Example

Session-4: Collision Block – Completion Example 2

Student Name:

Grade:

Game 4: Police: Catching crashed cars

Code Blocks Not tried Incomplete Completed

1. Edit Breeds

2. Creating Procedure

Block

3. Using Logic-If

Block (movement)

4. Creating Setup

Block

(Creating

characters and

other objects)

4.1.Set xy & size

4.2.Setting Camera

4.3.Using Scatter

Block

4.4.Set Color Block

4.5.Set & Show Score

Blocks

4.6.Reset & Show

Clock

4.7. Set Status

5. Collision Block

5.1.Using If & Math

Blocks

5.2.Using Stamp

Block

5.3.Using Die Block

6. Creating Run

Block

6.1.Forward blocks

7. Terrain Screen

70

APPENDIX C-6: Rubric for Full Practice

Session-5: Collision Block – Full Practice 1

Student Name:

Grade:

Game 5 : Red Riding Hood: Collecting Carrots

Code Blocks Not tried Incomplete Completed

1. Edit Breeds

2. Creating Procedure

Block

3. Using Logic-If

Block (movement)

4. Creating Setup

Block

(Creating

characters and

other objects)

4.1.Set size

4.2.Setting Camera

4.3.Using Scatter

Block

5. Collision Block

5.1.Using Die Block

6. Creating Run

Block

Additional Note:

71

APPENDIX C-7: Rubric for Full Practice

Session-6: Collision Block – Full Practice 2

Student Name:

Grade:

Game 6: Crossing Bridge (Collecting coins)

Code Blocks Not tried Incomplete Completed

1. Edit Breeds

2. Creating Procedure

Block

3. Using Logic-If

Block (movement)

4. Creating Setup

Block

(Creating

characters and

other objects)

4.1.Set size

4.2.Set Attitude

4.3.Setting Camera

4.4.Set & Show Score

5. Collision Block

5.1. Set Score + Math

5.2.Using Die Block

6. Creating Run

Block

6.1.Forward Block

6.2.Right Block

7. Editing Terrain

(Creating

mountain and lake)

Additional Note:

72

APPENDIX C-8: Rubric for Final Project

Final Project

Student Name:

Grade:

Code Blocks Not tried Incomplete Completed

1. Edit Breeds

2. Creating Procedure

Block

3. Using Logic-If

Block (movement)

4. Set Heading

5. Creating Setup

Block

(Creating

characters and

other objects)

5.1.Set xy

5.2.Set size

5.3.Scatter Block

5.4.Set & Show Score

5.5. Set & Show Clock

5.6. Set Status

5.7. Set Camera

6. Creating Run

Block

7. Collision Block

7.1.Set Score

8. Terrain Screen

Additional Note:

73

APPENDIX D-1: Online Participant View Form Questions (Turkish)

 Daha önce programlama dili dersi aldınız mı? Hangi programlama dilini/dillerini

biliyorsunuz?

 Programlama dillerinin size en zor gelen 3 yönü nedir?

 Daha önce herhangi bir görsel programlama (Scratch, Alice, Starlogo,... vs) kullandınız

mı? Kullandıysanız hangilerini kullandınız?

 Starlogo programını nasıl buldunuz? Kullanırken zorlandınız mı? Ne tür görevlerde

zorlandınız?

 Starlogo programı görsel açıdan anlaşılabilir mi?

 Starlogo'da kod yazarken önceden bildiğiniz komutları oluşturmada ne tür

zorluklar/kolaylıklar yaşadınız?

 Hem kod yazarak hem 3 boyutlu ortam yaratarak oyun tasarlamanın olumlu ve olumsuz

yanlarını yazınız.

74

APPENDIX D-2: Online Participant View Form Questions (English)

 Have you ever taken a programming language course before? Which programming

languages do you know?

 What are the three difficulties of programming languages?

 Have you ever experienced visual programming language before? If so, which visual

programming language have you experienced?

 How do you find Starlogo TNG? Were there any difficulties while you were working

on it? Which tasks were difficult to accomplish?

 Is Starlogo TNG comprehensible visually?

 What kind of difficulties have you experienced on Starlogo TNG while you were

creating code block which you have known already?

 Please write advantages and disadvantages of designing game with both coding and

designing 3D environment.

75

CURRICULUM VITAE

Nomin Boldbaatar

Personal Details

Phone +90 552 228 3593

E-mail nominboldbaatar12@gmail.com

Nationality Mongolian

Education

2014 - 2017 Ondokuz Mayıs University, Samsun, Turkey

 MSc. in Computer Education and Instructional Technology

2010 - 2014 Ondokuz Mayıs University Bc. in Computer Education and

Instructional Technology

Conferences Kaynarca, İ., Kandin, E. & Boldbaatar, N. (2015, May). Kamu

Personeline Yönelik Yapılan Hizmet içi Eğitimlerin

değerlendirilmesi: Ondokuz Mayıs Üniversitesi Örneği. 9
th

International Computer & Instructional Technologies

Symposium (ICITS), Afyonkarahisar, Turkey.

Boldbaatar, N. (2016, May). Transferring Desktop Experience

into Mobile Experience: A Case Study from Cognitive Load

Perspective. 10
th

International Computer & Instructional

Technologies Symposium (ICITS), Rize, Turkey.

Sendurur, E., Efendioglu, E., Caliskan, N. Y., Boldbaatar, N.,

Kandin, E., & Namazli, S. (2017, April). The M-Learning

Experience of Language Learners in Informal Settings. 13
th

International Conference on Mobile Learning, Budapest,

Hungary.

mailto:nominboldbaatar12@gmail.com

76

