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ABSTRACT 

AN ENCODER FAULT TOLERANT FPGA BASED ROBOT CONTROL USING 

BLUETOOTH OF A SMART PHONE 

 

An FPGA based Bluetooth controlled robot with encoder fault tolerant algorithm 

is presented. The smart phone is used to obtain user intentions, such as turning, speeding 

or braking and this data is sent to a robot using Bluetooth. The motor control algorithms 

and robot communication interfaces are implemented on FPGA for parallel processing. 

The robot is capable of changing its position with the help of two independent PI closed 

loop speed controlled DC motors. The motor speed is determined by smart phone 

accelerometer’s sensor data. The FPGA receives speed information and generates 

PWM signals based on this speed data. Motor rpm is calculated via rotary encoder’s 

feedback. In case of an encoder failure an onboard gyroscope helps maintaining normal 

operation. An android based smart phone application has been developed. MATLAB is 

used for simulating an encoder failure and observation of results. The motor control 

algorithm has been implemented using Verilog and tested on the field. 

Keywords: PWM; Bluetooth, PC, DC Motor; PI controller; Rotary encoder; 

Moving average Filter, Android smartphone, PmodBT, PmodHB5, PmodUSBUART, 

accelerometer, MATLAB, Gyroscope, Sensor fusion, Mobile Robot. 
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KISA ÖZET 

ENKODER HATASI TOLERANSLI FPGA BAZLI AKILLI TELEFON İLE 

BLUETOOTH KONTROLLÜ ROBOT 

 

Enkoder hatasına toleranslı algoritmaya sahip olan, FPGA tabanlı Bluetooth 

kontrollü bir robot sunulmaktadır. Dönme, hızlanma veya frenleme gibi kullanıcı 

hatalarını ortaya koymak için akıllı telefon kullanıldı ve bu veriler Bluetooth 

kullanılarak robota gönderildi. Motor kontrol algoritmaları ve robot komünikasyon ara 

yüzü gibi paralel işlemler için FPGA’de uygulandı. Robot, iki bağımsız PI kapalı 

çevrim hız kontrollü DC motor yardımıyla pozisyonunu değiştirebiliyor. Motor hızı, 

akıllı telefondaki akselometre sensörü verileri tarafından belirlendi. FPGA, hız bilgisini 

alıp, bu hız bilgisi doğrultusunda PWM sinyalleri üretir. Motor devri, döner enkoder 

geri beslemesi ile hesaplanır. Enkoder arızası olduğu durumda, yerleşik bir jiroskop, 

robotun normal çalışmayı sürdürmesine yardımcı olur. Android tabanlı akıllı telefon 

uygulaması geliştirildi. MATLAB, bir enkoder hatasını simüle etmek ve sonuçları 

görmek için kullanıldı. Motor kontrol algoritması Verilog kullanılarak gerçekleştirildi 

ve alanda test edildi. 
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I. INTRODUCTION 

1.1. Smart Phone Technology and Mobile Robots 

Smart phone technology has been evolving and its adoption continues to grow [1], 

[2]. Latest smart phone processing capabilities are comparable to a low end personal 

computer [3]. Presence of wireless communication capabilities and on board sensors, 

has allowed smart phones to be used in a significant number of remote applications [4], 

[5], [6]. 

Smart phone interfaced robots have brought a new dimension to the use of smart 

phones as a control device for various applications such as drones, search and rescue, 

surveillance, educational and indoor robots [7], [8], [9]. Although smart phone 

processes sent and received data, the robot must perform various tasks, such as motor 

control, perform predetermined operation in case of communication break, without 

smart phone intervention. Since robot must complete these parallel tasks, FPGA is a 

good candidate for these applications. 

1.2. Problems with Encoders as Rotor Speed Sensors 

Encoders are widely used to obtain rotor speed and position information in closed 

loop motor control systems. A faulty or a failed encoder at the robot’s motor may lead 

to incorrect speed information and result in collapse of the encoder feedback [10] based 

closed loop controller. Encoders are prone to failure for a number of reasons as 

discussed in [11]. 

An Encoder failure, Surface roughness, wheel slip, tread wear, an obstacle or an 

external push can infer a deviation in course of mobile robots with only encoder 

feedback controlled motors. A need for a method for calculating angle deviation 
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independent of encoders and correcting the direction of the robot is eminent. In this 

work, the use of computationally simple and fast acting algorithm in compensating 

encoder error is studied. 

1.3. The FPGA Technology 

FPGAs are Integrated Circuits that allow implementation of custom defined digital 

circuits after the device is manufactured. These designs can be updated or changed as 

needed in the field. FPGAs contain a matrix of programmable logic cells and 

configurable switches that allow the logic cells to be wired together in different desired 

configurations. 

A custom design can be realized by configuring the logic cells and making them 

perform a specific function while and a set of configured logic cells are interconnected 

via the programmable switches to implement desired digital circuit. In most FPGAs 

logic blocks can also function as memory elements. 

Other than this reconfigurable circuitry the manufacturer may put dedicated 

hardware circuits for performing specific tasks. These circuits are known as IP Cores 

and usually consist of hardware circuits that are commonly used, such as protocol 

controllers, memory blocks and memory controllers. 

In contrast with ASICs, FPGAs allow you to realize exactly the hardware that is 

tailored to the need and that design (contrary to ASIC designs) is too changeable if 

required. FPGA based designs are often quicker to realize than ASIC designs. In some 

cases, their performance and efficiency is comparable to their ASIC counterparts. 

FPGAs are also used for prototyping ASIC based designs before their final version is 

manufactured. FPGAs are capable of parallel execution of processes which allows the 
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tasks that need to be done in repeated cycles much more efficiently and quickly than 

microcontrollers. 

Applications include but are not limited to DSP, SDR, ASIC prototyping, Medical 

Imaging, CV, Speech recognition, Cryptography, Bioinformatics, Computer Hardware 

Emulation and Radio Astronomy. 

1.4. Introduction to MEMS 

MEMS (Micro Electro Mechanical System) is a miniature machine that has both 

mechanical and electronic components. The physical dimension of MEMS can range 

from several millimeters to less than one micrometer. MEMS devices vary from simple 

devices with no moving elements at all to complex electromechanical systems. Even if 

there are no moving mechanical elements but the device possesses mechanical 

characteristics, it fulfills the criteria to be defined as MEMS. Some MEMS devices 

convert a mechanical signal to an electrical signal and function as a transducer. 

A wide array of MEMS based sensors (transducers) is developed. Well known 

ones are inertial sensors, temperature, pressure and magnetic field sensors to name a 

few. MEMS are manufactured using same batch fabrication techniques used to 

manufacture ICs. Many commercial MEMS products are integrated and packaged 

together with microelectronic ICs. 

Nomenclature for MEMS differs from region to region for e.g. in Japan they are 

more commonly known as microsystems and in Europe they are commonly referred to 

as Microsystems Technology (MST). 
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1.5. Employability of Inertial Sensors for Angle Estimation 

Inertial sensors are used in a no. of applications alongside conventional encoders 

to improve speed calculations or angle estimations. A Method for angle estimation in 

industrial manipulators using only inertial sensors is discussed in [6]. A sensor fusion 

approach (encoders and IMUs) for angle estimation used to improve precision and 

reduce cost is presented in [12] and [13]. 

Human body motion kinetic modeling [10], GAIT based human modeling, walk 

assist systems [14] and rehabilitation therapy systems [7] readily employ inertial 

sensors for angle estimations. 

1.6. Thesis Outline 

The contribution of this work is FPGA implementation and testing of a gyroscope 

feedback based control loop on a smart phone’s Bluetooth controlled robot which 

resists set path deviation and retains normal operation in a scenario where either the 

primary encoder sensor fails or an external disturbance attempts to deviate the robot 

from its set path. In this research, a 3-axis MEMS gyroscope sensor is applied for 

angular movement estimation and MATLAB is used for providing test stimuli to the 

robot and capturing results. 

The rest of the document is organized as follows. In Section II “Methodology”, 

brief information about the system’s hardware, used software tools, realized FPGA 

circuit, android application and MATLAB code is presented. The FPGA circuit along 

with its constituent modules is discussed in Section III “Realized FPGA Circuit”. 

Implementation and measurement results are given in Section IV “Experimental 

Results”. Concluding remarks are given in Section V “Conclusion”. This is followed 
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by two Appendixes which present MATLAB and Verilog code snippets used in this 

project. 
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II. METHODOLOGY 

2.1. System Introduction 

This project consists of three main elements, 

1- The development of a Bluetooth based smart phone interface to allow control 

of the vehicle using an android application. 

2- An encoder fault tolerant motor control algorithm employing a Gyroscope as 

a secondary sensor.  

3- Development of a MATLAB based system for providing test stimuli and 

observation of results. 

The system is based on an FPGA based digital circuit which is capable of 

establishing a Bluetooth connection between an Android based smart phone or a PC. 

Encoder feedback is used as primary feedback source for motor speed control loop. An 

encoder fault tolerant motor control algorithm based on a secondary gyroscope sensor 

feedback based control loop is realized and tested. 

The rpm speed is derived from smart phone’s tilt angle which is calculated using 

the smart phone’s accelerometer sensor data. A colored circle to indicate the tilt of the 

phone is displayed on the screen as a visual aid. The smart phone transmits the desired 

speed in rpm over the Bluetooth link to the FPGA. The FPGA maintains two DC motors 

at the desired speed with the help of PI closed loop controllers using Hall Effect rotary 

encoders and a gyroscope. 

In case of an encoder failure the rpm values are not calculated correctly and the 

encoder feedback based control loop fails. As a result, the robot deviates from its set 
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path. This deviation in path is detected by the on-board gyroscope. The gyroscope 

feedback based controller kicks in and helps maintaining system operation. 

For simulating an encoder failure and observing results a MATLAB code has been 

developed. With the help of this code various FPGA circuit parameters can be set and 

variables can be observed on a PC in real time via Bluetooth connection. 

There are two modes in which the robot can be operated. The robot can be operated 

in only one mode at a time. If the robot is connected to a smart phone, no data is sent 

from the FPGA to the smartphone and the circuit only receives the rpm speed 

information for the two motors. However, if the robot is connected to MATLAB via a 

PC, various parameters for the FPGA circuit can be set along with sending rpm speed 

and motion angle information. The FPGA circuit on a request from the MATLAB can 

send data to the robot as well. The data usually consists of FPGA circuit’s variables that 

are desired to be monitored. 

2.2. Employed Hardware Equipment and Devices 

All of the Hardware equipment and FPGA kit, sensor modules, Motor driver and 

direction control circuits used in the system are from Diligent. All the Electronic 

Hardware Modules and the FPGA kit are compatible to one another. 

2.2.1. Basys2 FPGA Kit 

Basys2 FPGA kit (250K gates model) from Diligent is used as the FPGA hardware 

platform. The kit has sufficient Hardware resources to support our system. The kit 

employs a Spartan 3E-250 CP132 FPGA from Xilinx. The FPGA has 250K gates in 

total (out of which almost 38% have been employed). The Basys2 kit comes as two 

models, 100K gates and 250K gates models. Previously a 100K gate model kit was used 
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to implement the system but its resources were not enough to support the system. Hence 

the 250K gates model Basys2 FPGA kit is used. The kit uses a USB port which allows 

powering the device and easy programming and data transfer between the PC and the 

kit. A battery connector allows external power source to be connected to the kit if 

powering the device via the USB port is not desired. Each time the FPGA is reset or a 

power disruption occurs, the contents of the loaded program file that define the FPGA 

circuit (bit file) are lost and the FPGA is needed to be programed again. A non-volatile 

Flash ROM can be used to store and load a project bit file on every system startup or 

reset. Important hardware components on the kit include 8 LEDs, 4 digit seven segment 

displays, 4 buttons and 8 slide switches. A 50 MHz on board clock is used as the 

primary clock source (selectable among 25, 50 and 100 MHz). Four I/0 ports allow the 

kit to be connected with the external devices. 

2.2.2. Diligent PmodBT 

PmodBt from Diligent is used as the Bluetooth device for our system. This device 

houses a LMX9838 Bluetooth integrated system IC from Texas Instruments. This 

Bluetooth device uses UART interface for host communication. 

The PmodBT’s UART baud rate is selectable via jumpers present on it. The baud 

rate is set at 115.2 kbps. Some basic parameters at PmodBT are needed to be known or 

are required to be reset. These include device name and device PIN code. These 

parameters are reset by connecting the PmodBT to a PC with the help of a 

PmodUSBUART device. A computer program from TI called “Simply Blue 

Commander” is used to reset these parameters. For connecting the PmodBT to the 

PmodUSBUART a signal rerouting circuit is synthesized on the FPGA. The circuit 

reroutes UART data to a PmodUSBUART and vice versa. 
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2.2.3. Diligent Pmod Gyro 

The PmodGyro houses a L3G4200D STMicroelectronics MEMS gyroscope. This 

device can utilize two communication interfaces I2C and SPI. In this system only SPI 

is used. The L3G4200D can measure angular rate of change in three axes. Each axis 

value is 16 bits wide. Angular rate of change value is selectable from 250, 500 and 2000 

dps.  Our system uses 250 dps angular rate of change which gives the highest precision 

that is 8.75 mdps per digit. 

2.2.4. Diligent Motor Robot Kit Basic 

The Diligent Motor Robot kit consists of parts belonging to a robotic development 

kit. These parts include a steel platform, a pair of wheels, a pair of DC motors, necessary 

supports, connecting wires, nuts and bolts. This kit is the platform for all the hardware 

mounted on the remote vehicle. The Basys2 FPGA kit and the other hardware used are 

mounted on it. 

2.2.5. Diligent PmodHb5 

PmodHB5 modules are used to drive and direction control the DC motors. The 

module employs a full H bridge circuit (2A-12V) for direction control. The 6 pin port 

(J1) has two encoder sensor feedback pins, a pair of supply, enable pin and direction 

control pin. The PWM duty cycle variation is provided at enable pin. Connector “J3” 

and “J2” are used to provide power and connect to the motor respectively. 

2.3. Software Tools 

For Verilog code development Xilinx ISE V 14.5 is used. All the FPGA circuit 

modules have been coded using Verilog HDL. Adept from Diligent is used for 

programming the binary file to the FPGA. 
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The Android application has been coded using java. However, some of the user 

interface components are coded using XML. Android SDK tools are used for Android 

application development. The application is tested on a device running Android OS 

version 4.0, however it is compatible with devices running Android OS version 2.2 and 

above. 

The MATLAB code is developed using MATLAB 2015a. 

2.4. System Design 

The android application connects to the robot via Bluetooth and transmits motor 

speed in rpm and direction information to the FPGA. The raw accelerometer values are 

adjusted by the application, so that they represent motor speeds in rpm. An on screen 

moving circle is displayed which gives visual aid to phone tilt. 

The FPGA circuit receives and processes Bluetooth data. Simultaneously the 

circuit processing data from the encoders calculates current DC motor speed in rpm. A 

PI controller adjusts a 16 bit PWM signal according to the calculated rpm. Direction is 

set according to the received direction information. The motor direction switching has 

enough delay to prevent any damage to the motor driving circuits. 

2.5. Robot’s On-Board Hardware Arrangement 

The Basys2 kit is mounted on a robotic platform called Diligent motor robotic kit. 

Four 6 pin I/O ports are available on the Basys2 Kit. The PmodBT (Bluetooth module) 

is connected at port A, port B and D are connected to the two PmodHB5s (motor driver 

circuits) via a connector cable to the left and right hand side, the PmodGyro (Gyroscope 

sensor) is mounted on port C.  
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Figure II.I. Robot’s Hardware Arrangement Block Diagram. 

Two Battery packs are secured at the back of the robot. One battery pack is used 

to power the FPGA and the other to power the motors. A small connector at the front 

left side of the robot connects the battery pack to the two PModHb5s which deliver the 

power to the two motors. The PmodHb5s and the motors are mounted under the robot. 

Please refer to Figure II.II for more details. 

The PmodBT has a 12 Pin connector. These pins are divided into two 6 pin sets. 

The set from pin 1 to 6 contains all the required pins for necessary device operation. 

The other set from 7 to 12 has three NC (No Connection), a duplicate set of power 

supply and a reset pin. This set is left unconnected to the FPGA kit at a tradeoff for 

reset functionality. The PmodHB5 has three ports. Two ports have six pins and one has 

two pins. One of the six pin ports are connected to the FPGA. 
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Figure II.II. Robot’s Hardware Setup. 

The FPGA connected port has a set of power supply pins, a pin to receive motor 

direction a pin to receive enable signal and two pins to feed encoder data to the FPGA. 

The other port is connected to the motor, a set of power supply pins, a set of two pins 

which receive encoder feedback and a set of power rerouting pins for motor direction 

control. The two-pin port is connected to the battery. The encoders are attached with 

the motors. 

The PmodGyro has two headers one 12 pin and the other 8 pin. The device can 

communicate via SPI or I2C interfaces. Header J1 and J2 are used for SPI and I2C 

communication respectively. Only the SPI interface circuit has been realized on the 

FPGA the latter is not used. Hence the 8 pin header is not used and remains 

unconnected. The 12 pin SPI header is divided into two 6 pin sets.  
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Figure II.III. Android Application Screen Shots. 

The set having pins from 1 to 6 provides all the necessary functionality for SPI 

communication. The other set has power supply pair pins, two unconnected pins and 

two interrupt pins. The interrupt functionality is not used and is left unconnected. Please 

refer to Figure II.II for details. 

2.6. Android Application 

An android application is developed solely for this system. This application 

connects to the remote PmodBT Bluetooth device and sends motor speed and direction 

information to the FPGA circuit. The communication between the smartphone and the 

remote Bluetooth device is unidirectional. The smart phone only sends data to and 

retrieves no information from the remote device.   

The application consists of two activities “MainActivity” and 

“BluetoothActivity”. The main activity is the default activity and is the first one to run 

at application startup. This activity displays Okan University’s emblem and brief 

information about the application. This activity’s Screen View is handled by “Title 

View” class. 

A tap anywhere on the screen results in start of the BluetoothActivity. The java 

class that handles activity’s screen view is named “BluetoothAcceleromoterView”. 

This activity fetches the accelerometer data and enables Bluetooth communication. All 

Bluetooth operations are handled in a separate thread named “ConnectThread”. The 
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Activity can turn the Bluetooth Device on or off, fetch and list existing paired devices 

and connect to a Bluetooth device. The raw accelerometer sensor data is tailored to be 

sent to and used by the FPGA circuit by this activity.  

The view affiliated with this activity displays buttons, to turn Bluetooth on or off, 

list already paired devices, make the smart phone’s Bluetooth visible to other devices, 

list nearby visible devices and start the accelerometer. If the “List Paired Devices” or 

“List Visible Devices” Button is pressed a list of paired or visible devices appears on 

the screen. The smartphone’s Bluetooth is connected to the remote device by taping its 

name in the list. A short toast informs the user if the Bluetooth link is successfully 

established or the attempt is failed. 

Once a Bluetooth link is established, accelerometer based motor speed and 

direction information is sent by pressing the “Start Accelerometer” Button. A new set 

of information is sent every 100 ms. The screen View changes and displays current 

speed in rpm values that are being sent. A circle moving with respect to orientation 

provides a visual aid in controlling the remote device. 

2.7. MATLAB Code 

MATLAB Instrument control toolbox provides support for Bluetooth 

communication and is used to connect, send and receive data to and from the robot. The 

data sent to the FPGA includes motor speed rpm set points, controller gains, angular 

displacement set points and control commands to request data from the FPGA circuit, 

enable/disable encoder’s signals and controller circuits. 

Upon data send request the FPGA circuit sends a data set of 16 bytes. Variables 

from any module can be accommodated in this data set in the FPGA circuit and sent to 

MATLAB for observation. Variables that change at a frequency less than 800 Hz are 
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observed without any information loss. Variables with higher frequency of change are 

also observable but an information loss is eminent. 

A set of codes is defined to communicate with the remote Bluetooth device. 

Functions and usage of this code set is defined in Table III.1, Table III.2  and briefly 

discussed in Section 3.4.  

A Bluetooth object is created with remote Bluetooth device’s name and channel 

information. Once a Bluetooth object is constructed the execution of MATLAB “fopen” 

function with the Bluetooth device as its argument attempts to connect the MATLAB 

Instrument Control Toolbox to the remote Bluetooth device.  

As an example, the code snippet for an experiment discussed in Section 4.2.4 is 

provided in Appendix B. A set of variables is initialized to collect data from the remote 

device. Please refer to the MATLAB code in Appendix B, at line 13 and 17 motor A 

and motor B rpm speeds are set by writing their respective codes to the remote device. 

This is followed by setting the proportional and integral gains for the closed loop 

controllers (lines 21 to 47). A for loop then loops for 4 seconds. on each iteration, which 

lasts 100 ms the code inside the loop requests, collects and displays information from 

the remote device in real time. The MATLAB functions “tic” and “toc” at lines 54 and 

58 help maintain precision in data collection interval delay. The time MATLAB takes 

to process the incoming data and display it on the screen varies with almost each loop 

iteration. Hence the time MATLAB takes to complete the process is deducted from the 

time it has to halt for 100ms. Data is read via data read function at line 64. The function 

for displaying the data is executed at 67. 

Gyroscope angular set point is set at lines 79 to 85. The results are retrieved for 

the next seven seconds. The code is the same as lines 53 to 68 and is omitted from the 
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appendix.  The Gyroscope angular set point is once again set at 91 to 97 and results are 

gathered.  Before releasing the Bluetooth link some parameters are set to 0 to stop the 

robot. The Bluetooth link is then released and a relevant message is displayed on the 

MATLAB command window.   

2.8. PmodBT Communication Modes 

PmodBT Houses an LMX9838 module. UART communication interface is used 

between the host and the device. The device uses two modes in UART communication 

namely Command Mode and Transparent Mode. 

2.9. TI LMX98938 Command Mode 

In command mode, all data sent to the device at the UART is tried to be interpreted 

to known commands. These commands are used for setting various device parameters 

or for commanding the device to do a certain task, for example setting Device name 

and pin code, commanding the device to connect to a remote device,

UART baud rate settings etc. Under default device startup settings, the device is in 

command mode on startup, provided that it is not connected to any remote device.  

The device is configured by sending specific commands to it via the UART 

interface. It is connected to the PC with the help of a PmodUSBUART device. PC based 

software from Texas Instruments called Simply Blue Commander is used to send 

parameter setting commands to the PmodBT and set device parameters as needed. The 

PmodBT uses UART interface and a USB port available on the PC is used by Simply 

Blue Commander. A simple signal rerouting circuit is synthesized on the FPGA to 

easily connect the Simply Blue Commander running on a PC to the PmodBT. The 

PmodUSBUART acts merely as a bridge between the two interfaces. 
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Figure II.IV.  Simply Blue Commander Configuration Settings. 

 

Figure II.V. Device Name Changing Commands Execution. 

At first the device is set to factory defaults. Its name is changed to “FPGA 

Bluetooth” and its security pin is set to “1234”. Simply Blue Commander setup 

configurations are shown in Figure II.IV. The sending of commands and changing the 

PmodBt’s device name in command mode is shown in Figure II.V. As seen in Figure 

II.V the default device name is read, is changed as desired and is read again for 

conforming that the change is succesfull.  
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. 

 

Figure II.VI. Real Time Accelerometer Readings Being Monitored in Simply Blue 

Commander, Sent to PmodBT From the Smart Phone. 

2.10. TI LMX98938 Transparent Mode 

In Transparent mode, all the data sent or received over the Bluetooth link is 

communicated to the UART as it is and is not translated as commands. The device by 

defaults is in command mode on start up, but as soon as it connects to a remote device 

it enters transparent mode automatically. For our system, it is assumed that the remote 

device will initiate a connection request with the Bluetooth device which will force the 

Bluetooth module to transparent mode. Hence once the basic parameters are set, there 

is no need for the device to be in command mode anymore. In Figure II.VI, live 

accelerometer data form the smart phone is being observed while the device in 

Transparent mode. 
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Figure II.VII.  Robot Motion Behavior. 

2.11. Robot Motion Behavior 

There are two geared DC motors mounted at the robotic platform. The motors can 

reach speeds up to 300 rpm. Both the motors run independently. This implies that in 

order for a forward or backward motion both the motors should run at the same speed 

and in the same direction. A speed mismatch between the motors causes the robot to 

rotate. 

If both the motors are moving in a clockwise direction and a speed mismatch 

occurs the robotic platform’s rotation is always in the direction of the motor having 

lower speed. In case only one of the motor rotates, the rotation direction is opposite to 

that of the motor. For example, if the motor on the right hand side runs at a lower speed 

the robot will turn right i.e. clockwise. Direction is anticlockwise if true if the motor at 

the right hand side runs slower. 

The amount of turn is proportional to the speed differences among the two motors. 

If the motor on the right hand side is at rest and the left hand side motor starts to spin 

then the robot’s rotation is towards right i.e. anti-clockwise. Direction is clockwise if 

the motor at the left is at rest and the motor at the right hand side spins. 
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Similarly, if both the motors are spinning in an anticlockwise direction and a speed 

mismatch is present, then the robot’s turn direction would be vice versa to the examples 

explained above. Same is true if one of the motor is at rest and the other one is spinning. 

The system is designed such that the motors never run in opposite direction to each 

other. They run at same speed for a straight line motion and a speed mismatch is used 

to make the robot turn. 
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III. REALIZED FPGA CIRCUIT 

 

Figure III.I. FPGA Circuit Major Components Block Diagram. 

3.1. FPGA Circuit introduction 

The FPGA circuit consists of 25 instances of Verilog modules. The main module 

is set as the top module and connects the modules among themselves and with the I/O 

ports at the FPGA. These modules take care of the following tasks: 

1) Pmod devices to FPGA and vice versa communication. 

2) Bluetooth communication data selection and processing. 

3) Gyroscope sensor data processing and angular position calculation. 

4) Encoder data processing and rpm calculations. 

5) PI closed loop control via encoder and/or gyroscope feedback. 

6) PWM signal generation. 

7) Display selectable data on Basys2 Seven Segment display. 

The FPGA circuit close loop PI motor speed and direction controls two DC 

motors. It receives data from PmodBT connected to remote a device via PmodBT’s   
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Figure III.II. FPGA Circuit Module Block Diagram. 

UART interface (transparent mode). If connected to the smart phone the incoming data 

has motor speed (rpm) and direction information. If connected to a PC via MATLAB 

the incoming data can have commands and parameter settings for the circuit as well. 

The FPGA circuit receives pulses from rotary encoders mounted on the motor shaft. 

The circuit counts the number of pulses in a period of time and feeds these values to a 

moving average filter. The filtered no. of pulses in a set period of time is then used to 

calculate motor speed in rpm. 

This speed data is fed to a PI controller. The controller compares the calculated 

rpm from encoder pulses, against the desired rpm speed set point received via the 

Bluetooth and adjusts PWM duty cycle accordingly. 

The focus of this work is not on implementation of complex filtration and control 

algorithms but rather to only investigate the workability of the idea. No complex 
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filtration or estimation techniques are used on the sensor data and neither a complex 

controller is designed. 

3.2. UART Communication Circuit 

UART is a serial line communication interface. Our UART communication block 

consists of three Verilog modules. No clock information is conveyed during the UART 

communication, the transmitter and receiver must agree upon a set of parameters to 

communicate. These parameters include baud rate, number of data bits, number of stop 

bits and use of the parity bit. Our UART circuit uses baud rate 9600, 8 data bits, no 

parity bits and one stop bit. These settings are made at the PmodBT via using command 

mode as explained in Section 2.9 and are hard coded in the FPGA circuit. 

3.2.1. Baud Rate Generator Module 

Middle points of data bits received at the UART are estimated by over sampling 

the signals. The oversampling rate is 16 times the baud rate, which means that each 

serial bit is sampled 16 times.  

The baud rate generator module generates an over sampled signal. The frequency of 

this signal is 16 times the baud rate. For our system’s 115200 baud rate the sampling 

rate must be approximately 27 ticks per second. For our FPGA’s clock rate of 50 Mhz. 

Parameter M in the baud rate generator module defines the required ticks per second. 

 

Figure III.III. UART Receive Module Block Diagram. 
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3.2.2. UART Receive Module 

The receiver module is basically a shift register that shifts in data bit by bit and 

presents it as a byte. Data transmission starts with a 0 bit, followed by 8 data bits with 

no parity bits. A stop bit is used to indicate end of the data set. 

Oversampling is used and each UART byte is sampled in the middle. The circuit 

waits for the 0 start bit and starts a counter for oversampling. As the over sampling rate 

is 16, a counter count 7 indicates the middle of the start data bit. The counter is then 

cleared and reset to 0 and progresses to 16. At 16 counts, the count is at middle point 

of the first data bit. Its value is shifted in and the counter is reset to retrieve next data 

bit. The steps are repeated to retrieve all 8 data bits and the stop bit. 

The implemented FSM has four states namely idle, start, data and stop. Default 

and initial state is the idle state and an enable high is required to move it to start sate 

where the circuit waits for the 0 UART data start bit. At the first data bit (start bit) the 

circuit waits for the middle of the data bit and moves to the data state where each bit is 

shifted in at its middle point. After successfully retrieving the data bits the circuit 

proceeds to stop state where it waits for the stop bits to pass. Receive done tick is set to 

indicate a successful received data byte. The FSM then returns to the idle state. 

 

Figure III.IV. UART Transmit Module Block Diagram. 
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3.2.3. UART Transmit Module 

The UART Transmit module is basically a shift register that takes a byte of data 

and shifts it out bit by bit at a specified rate. The transmission dataset starts with a 0 

start bit, followed by 8 data bits. Parity bits are not used in this system. The transmission 

ends with a stop bit. 

The UART transmitter does not require oversampling. Hence the frequency 

required by this module is 16 times slower than that of the UART Receive module. It 

uses an internal counter to count 16 baud rate generated ticks and shifts a bit out at 

every 16 ticks. 

The FSM implemented has four states namely idle, start, data and stop. The circuit 

is initially in idle state. The UART transmission line is set to high indicating no data 

transfer. As soon as a transmission start line is asserted the FSM moves to the start state 

and the transmit line is set to low indicating start of transmission. The circuit waits for 

16 baud rate ticks before it moves to the data sate. At the data state 8 bits are shifted 

out one at a time to the transmit line. An internal counter ensures that the bits are shifted 

at a rate of 16 times less than the baud rate generated ticks. After shifting the eight bits,  

 

Figure III.V. Transmission Data Controller Module Connections Block Diagram. 
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the system moves to the stop state where the transmit line is asserted to a high and   

transmission done signal is asserted to indicate that the byte transmission is complete. 

The FSM then returns to the idle state and waits for the signal to transfer next data byte. 

3.3. Bluetooth Data Handler Modules 

This set of modules handle the transmitted and received data over the Bluetooth 

link. 

3.3.1. Transmit Data Controller Module 

The module handles the data that needs to be transmitted via the Bluetooth link. 

To observe the results and for troubleshooting a need for a system capable of retrieving 

FPGA circuit’s internal variables in real time was felt. A MATLAB code is written 

which accepts data sets exactly 16 bytes wide at a time via the PC Bluetooth. 

This code sends a Data transmission request to the FPGA circuit. Upon receiving 

the request the FPGA circuit’s transmits data controller module sends 16 bytes of data 

with the help of UART transmit module. The variables that need to be transmitted and 

observed are connected at the module input ports as 16 individual bytes. 

All of the FPGA circuit’s sub modules are interconnected via the main module. 

The main module has a copy of all of these interconnecting module’s variables. Any of 

the 16 of these variables copies can be tied to this module’s input ports for transmission. 

As each port is only a byte wide, variables with larger bit width than a byte can be 

connected by using two or more input ports. Internal variables of sub modules can be 

observed by extracting them to the main module and putting them at the respective 

module’s I/O port. 
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Figure III.VI. Module Received Data Controller Connections Block Diagram. 

The variable set refresh rate over the Bluetooth links is limited to the UART or 

Bluetooth’s data transfer rate. In our system, the UART communicates at a rate of 115.2 

kbps, It takes 16 (no. of variables) times 10 (each variable is 8 bits plus data and a parity 

bit) no of bits to transfer the complete set of 16 variables. The variable data set can be 

refreshed at a maximum rate of 720 Hz. Observations of variables having a higher rate 

of change than 720 Hz is possible and an information loss is likely to occur. 
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byte with the help of the counter. Transmission start bit is asserted to high and the FSM 

moves to the transmit data state. It waits for the transmission complete signal from the 

UART transmit module. If the counter is less than 15, the counter is incremented and 

the next byte is transferred by moving the FSM to select data state. If not the FSM 

moves to idle state and waits for the next transmission start command. 

3.3.2.  Received Data Controller Module 

This module processes the incoming Bluetooth data. The incoming Bluetooth data 

has various commands and parameters for the FPGA circuit. Each command or a 

parameter value is preceded by a specific code. This module retrieves this information 

and routes them to a module where it is needed. 

This module apart from the clock and reset signals has a received done tick and an 

8 bit wide received data port. Received done tick indicates successful read of a byte by 

the UART receive module and the received data port has the received UART data. 

Output ports of different sizes route received information to other modules. The codes 

and the data they represent and modules which utilize them are briefly summarized in 

Table III.1 and Table III.2. 

 

 

 

Figure III.VII. Control Code Byte Individual Commands. 
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Table III.1. System Commands and Control Codes 
 

 

The FSM for this module has only two states namely idle and select data. The 

module uses a data shift register which accommodates three bytes of data. On 

successful UART byte read, the byte it is shifted in and the oldest one is discarded. The 

first 16 bits (2 bytes) from MSB are data code and the third byte is the data byte. On a 

successful read of a byte by the UART the FSM shifts in the byte and moves to the 

select data state. As each byte of information is preceded by two bytes of code therefore 

three bytes are required for a byte of data to be routed to its desired destination. This 

comparison occurs at every byte transfer and if a match is not found for the preceding 

two bytes of code the data is discarded. 

Codes  Module  Description 
61680 UART transmission Start UART transmission 
00513 PI controller encoder feedback motor a Set point for motor a rpm  
01027 PI controller encoder feedback motor b  Set point for motor b rpm 
01541 Multiple modules see Table III.2 Multiple uses see Table III.2 
02055 MATLAB control Pseudo motor a rpm for simulation   
02569 MATLAB control Pseudo motor b rpm for simulation   

03083 PI controller encoder feedback motor a 
PI controller encoder feedback motor b 

P gain parameter value for encoder  
feedback based controllers 

03597 PI controller encoder feedback motor a 
PI controller encoder feedback motor b   

I gain parameter value for encoder  
feedback based controllers 

04111 PI Gyroscope feedback controller 

P gain parameter value for 
Gyroscope feedback based 
controller 
 

04652 PI Gyroscope feedback controller 

I gain parameter value for 
Gyroscope feedback based 
controller 
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Table III.2. Received Data Code Commands for MATLAB Control 

Bits  Value Description 

0-1/2-3 00 Set motor encoder A/B value to value obtained from encoder 
pulse processor module. 

 01 Overwrite motor encoder A/B value to high. 
 10 Overwrite motor encoder A/B value to low. 

 11 Set motor encoder A/B value to a value obtained from encoder 
pulse processor module (default). 

4/5 0 Set RPM value for control modules to calculated RPM from RPM 
calculated module (default). 

 1 Set RPM value for control modules to received RPM value from 
MATLAB 

6 0 Stop gyro feedback based robot’s angular position controller. 
 1 Start gyro feedback based robot’s angular position controller. 

7 0 Stop encoder feedback based robot’s motor A/B wheel speed 
controller. 

 1 Start encoder feedback based robot’s motor A/B wheel speed 
controller. 

 

3.4. MATLAB Command Control Module 

The MATLAB command control module manipulates calculated motor rpm and 

encoder values in accordance with the information received from MATLAB. Table III.2 

summarizes the byte values and their operation performed by the module. Encoder and 

calculated rpm values pass through this module before they are used anywhere else in 

the system. In case of an encoder failure the encoder pulse may remain at a high or a 

low. In either case the rpm calculated is always 0. Disconnecting the encoders implies 

that the rpm values can no longer be calculated by the FPGA circuit. 

The encoder High and low ticks are processed by “Encoder Pulse Processor” 

module. This module is connected to the encoder pulse line from the pmodHB5. A high 

or low pulse is only recognized only if the encoder pulse remains high or low for 8 

consecutive clock cycles. This effectively filters out glitches in encoder pulses. 
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Figure III.VIII. Module Encoder Signal and RPM MATLAB Controller Connections 

Block Diagram. 

 

The same module also has the functionality to measure each pulse’s Time Period 

and pulse counts per revolution and total pulse counts. Initially this module is used to 

obtain the ppr of the encoder by manually rotating the wheel exactly one revolution. 

Once the encoder ppr information is obtained, there is no need to re-obtain it in the 

system.  

 

 

Figure III.IX. Module RPM Calculator Connections Block Diagram. 
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Figure III.X. Module Encoder Pulse Processor Connections Block Diagram. 

The Pulse Time period information is also not used. Both the functionalities are 

present in the module but as they are not used in the system, their connections are also 

omitted from the figure. 

3.5. RPM Calculator and RPM Data RAM Modules 

Encoder pulse count method is used for speed estimation. The encoder’s resolution 

is 58 ppr. Hence the rpm can be calculated by using the following mathematical 

expression. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑟𝑟𝑆𝑆𝑟𝑟) = (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑟𝑟𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆 𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶 60 
𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆

)/58 (III.1) 

 

where Encoder pulses / revolution = 58 

The module counts the number of pulses in 1.034 seconds to obtain motor speed 

in rpm. The module continuously feeds no. of pulses in 1.034 seconds to a moving 

average filter. This filter uses a 6 bit wide 32 slot memory RAM. On every 32.32 ms a 

fresh value (encoder pulse count) is written to the memory with incrementally 

overwriting all memory the addresses, an average of these values is calculated. The 

average is the motor rpm speed with noise suppressed. This speed is fed to the encoder 

feedback based PI motor controller module as the controller’s process variable. 

In order to conserve FPGA resources, we try to eliminate as many mathematical 

calculations as possible. An analogy has been adopted in this module. The following 

System Clk

Reset
Encoder Pulse

Encoder Pulse
Processor

Processed
Encoder Pulse

PmodHB5
Motor A

Encoder Pulse
And RPM

Matlab Controller



45 

equation gives us motor rotation speed in rpm without performing any division or 

multiplication operations at all.  

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑟𝑟𝑆𝑆𝑟𝑟) = �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑟𝑟𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸 
1.034

�. (III.2) 

 

For wheel rpm, the module only counts the no. of encoder pulses occurring in 

1.034 seconds which is the same is wheel rpm. 

3.6. Module PI Speed Control 

This module close loop speed controls motor rpm with encoder feedback. The PI 

gains are adjustable via MATLAB. Two instances of this module are implemented, one 

for motor “A” and the other for motor “B”. 

The FSM has three states namely delay, calculate error and calculate output. The 

default state is the delay state and sets the rate of control variable calculation which is 

47.5 Hz. The calculate error state calculates the error and output control variable value. 

Error and the control variable are calculated based on the difference between the set 

point and process value (or vice versa if the process value is larger). If the calculated 

value of the variable that holds the control variable’s value exceeds its maximum value 

that is 216 the variable overflows.  

To prevent this from happening the variable is set to maximum value and remains 

there unless the control variable’s value decreased by the calculate error state. 
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3.7. SPI Interface Module 

The PmodGyro houses a L3G4200D STMicroelectronics. This device can utilize 

two communication interfaces I2C and SPI. In this system only SPI is used. The 

L3G4200D can measure angular rate of change in three axes. Each axis value is 16 bits 

wide. Angular rate of change scale value is selectable from 250, 500 and 2000 dps. Our 

system uses 250 dps angular rate of change which gives the highest precision. Each 

digit in this setting is 8.75 mdps. 

The device has a 32 slot 16 bit FIFO buffer for each of three Yaw, pitch and roll. 

This FIFO buffer can be used in five different modes. In this system, the buffer is used 

in its default bypass mode. Only the first slot 16 bit slots are used and on the arrival of 

new data the old data is overwritten. 

SPI mode three is used i.e. the SDI and SDO are driven at the falling edge of SPC 

and are captured at the rising edge of SPC. 

 

 

 

Figure III.XI. Module PI Encoder Feedback Speed Controller Motor A Connections 

Block Diagram. 
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Figure III.XII. Module Master Interface Connections Block Diagram. 

A set of registers are used to control the device’s behavior and to retrieve its data. 

These registers can be accessed via their 6 bit addresses. The 6 address bits are preceded 

by a read/write and an increment select/deselect bit. If the read/write bit is 1 data at the 

address is read, if 0 data is written to the address. The data to be written and read is 

followed by the address data set at MOSI-SDI and MISO –SDO line. 

The SPI interface module’s input ports consist of 8 bit send data port, a begin 

transmission bit, a MISO bit, clock and reset bits. Output ports consist of 8 bit received 

data port, an end transmission bit a MOSI bit and a synchronous clock. The FSM 

consists of three states namely idle, receive transmit and hold. 

The FSM is initially in idle state. If a begin transmission bit is asserted high the 

FSM moves to receive transmit state where a byte of data is shifted out and in bit by bit 

via MOSI-SDI and MISO-SDO lines. This data receive and transmission is done in 

accordance with SPI mode3. After the operation is complete and end transmission 

signal is asserted to indicate a successful receive/ transmission of a byte to master 

interface module. The FSM moves to hold state. An asserted slave select by the master  
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Figure III.XIII. Module SPI Interface Connections Block Diagram. 

interface module implies that there is no more data to be transmitted/ received. In this 

case, the FSM is routed back to idle state. If a begin transmission bit is asserted the 

FSM is routed to receive transmit state. A separate always blocks generates SCLK 

signals at a rate of 12.2 kHz. This clock is generated only when receive or transmit 

operation is in progress. 

The master interface module controls the data that needs to be transmitted from 

and to the PmodGyro via the SPI interface. In order to use L3G4200D some parameters 

need to be set. In this system, the “CTRL_REG1” needs to be set for selecting Output 

data rate, bandwidth and enabling the Z, Y and X axis gyroscopes. All the other control 

variables are set to default values and there is no need to reset them. Once the control 

variables are set the FPGA circuit only needs to send periodic data read commands to 

the device and retrieve the incoming data. 

The FSM consists of 7 states, namely idle, setup, temperature, run, hold, wait slave 

select and wait run. Default state is the idle state. On a start assert the FSM moves to 

setup command. If not done the control register is initialized. The control value 0Fh 

which sets the data output rate to 100 Hz and enables gyroscope in X, Y and Z axis 
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preceded by 20h (address of the control register) is sent to the device one byte at a time. 

FSM waits for the byte transfer in hold state and returns back to setup state on transfer 

complete. Once the initial setup is completed, the FSM moves to the slave select and 

wait run sate progressively. 

The delay between each data read is adjusted in wait run state.  The states run and 

temperature send commands to retrieve temperature and gyroscope data. The decision 

for next state is made upon the previous state information. Such that if the temperature 

data is read previously via temperature state the next data to be read is gyroscope 

registers via run state and vice versa. The default is temperature state. The command 

for reading temperature data is 26h but the command code is preceded by a high read 

and low increment address bit. Code A6h is sent to the device which implies that the 

temperature data is read from the OUT_TEMP register. The FSM moves to hold sate 

waits for the byte transfer to complete and sends the FSM back to temperature state. 

Once the command is sent to the device the next to be received byte has the temperature 

data hence a 00h is sent to the device and temperature data is retrieved in hold state. 

The FSM proceeds to wait state, as the temperature data has been retrieved the wait 

state sends the FSM to run state. 

The run state a sends command for retrieving X, Y and Z axis gyroscope data. The 

address for reading “OUT_X_L” register that has the lower significant byte of the x 

axis gyroscope data is 28h. The other data sets are in a sequence at incremented 

addresses from the “OUT_X_L” register, for e.g. “OUT_X_H” is at 29h “OUT_Y_L” 

is at 30h. E8h is written to the device as the data read bit and address increment bits are 

asserted. If the address increment bit is asserted the read address is automatically 
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incremented in multiple read commands. The FSM moves to hold state and waits for 

the byte to be transferred and returns to the run state. 

The address is incremented to retrieve next register’s data. The FSM retrieves data 

from all 6 registers by incrementing data address, moving to the hold state waiting for 

the byte transfer, collecting data and returning to the run state for 5 more times. The 

FSM returns to the wait run state and if a start is not asserted to 0, the FSM infers a set 

delay and proceeds to read temperature data again. 

3.8. Distance Calculator 

The distance calculator module integrates the angular rate of change in Z-axis 

(Yaw axis) of the gyroscope. The MEMS gyroscopes exhibit a steady state drift. To 

prevent this steady state, drift the values are integrated only when the robot is in motion. 

An observation of the steady state drifts with the robot in a stationary state is done. Any 

angular rate of change higher than these observations in any of the axis implies that the 

robot is in motion. The values are 4.5 dps for X axis and 2.25 dps for Y axis. 

The last two bits of the rate of change are truncated. This induces quantization 

error but is beneficial in slicing of gyroscope drift error.  The Z axis angular speed is 

integrated at a rate of 256 Hz. The FSM for this module consists of only two states  

 

 

Figure III.XIV. Module Angular Distance Calculator Connections Block Diagram. 
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namely delay and integrate. The default state is the delay state. The FSM waits for a 

specific time period in the delay state and if the condition of robot motion is found to 

be true the FSM moves to the integrate state. 

The default state is the delay state. The FSM waits for a specific time period in the 

delay state and if the condition of robot motion is found to be true the FSM moves to 

the integrate state. The gyroscope value is integrated and a 2’s complement based 

subtraction operation is performed if the angular speed is found to be negative. 

3.9. Gyroscope Feedback Based Angular Position Controller 

In case of a total encoder failure calculated rpm becomes 0 as no pulse ticks are 

registered. Similar is the case for encoder pulse stuck at a low or a high. The encoder 

feedback based controller by design progressively starts to increase PWM duty cycle 

which increases motor speed. This results in a speed mismatch between the speeds of 

the two motors and the robot starts to deviate from its path. This angular deviation is 

continuously calculated and monitored from the gyroscope data and is fed to the 

Gyroscope feedback based PI controller which attempts to correct the error in PWM 

 

Figure III.XV. Module PI Gyroscope Feedback Angular Position Controller 

Connections Block Diagram. 
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duty cycle. The angular distance values range from 0 to 8129 for 0 to 360 degrees for 

robot’s anticlockwise rotation. 

This module PI regulates the robot’s angular orientation in Yaw axis using angular 

distance covered in Yaw axis as feedback. This angular distance is calculated form 

angular rate of change obtained by an onboard gyroscope. The angular deviation is 

corrected via manipulating speed of only one of the motors. The PI gains of the module 

are adjustable via MATLAB. The controller is applied only on one of the two motors 

at a time. In this system, it is applied to the motor that is the motor on the left hand side 

named motor A. An analogy is developed to be used in this module. 

For the robot to move forward both the motors spin in clockwise direction. A 

wheel spin speed mismatch causes the robot to turn. The robot will move clock wise in 

Yaw axis in a condition where the left hand side motor spins at a greater speed the right 

hand side’s motor and anticlockwise if the left hand side motor’s spinning speed is less 

than the right hand side motor’s spinning speed. The robot turns clockwise when the 

motor A’s speed increases and turns antilock wise when the speed decreases. The PI 

controller module increases the motor’s speed to turn the robot clockwise or correcting 

anti clock wise deviation and reduces the speed to turn anti clockwise and to correct 

clockwise deviation. The robot must also follow the shortest path for deviation 

correction or turning to a set point. 

The process variable is the distance covered calculated from the “angular distance 

calculator” module whose value is 13 bits wide. The set point is the desired angular 

direction and is adjustable via MATLAB. The output is a 16 bit wide control variable 

which is fed to PWM generation module for the motor. 
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For correct speed adjustment and to make the robot always follow the shortest path 

an analogy has been used between the MSB of the angular position variable and the 

MSB of the error variable. If the set point is less than the process variable and both the 

MSB’s of the angular position and error variables are same i.e. 1 1 or 0 0 the wheel 

speed is increased and decreased if they differ. The opposite is true if the set point is 

larger than the process variable. If the MSB’s are same the speed is decreased and 

increased if they differ. 

For example, if the current angular position is 60 degrees and the set point is 30 

degrees, both the MSB’s are same and the speed is increased to turn the robot clockwise 

from 60 to 30 degrees. On the contrary if the set point is 60 degrees and the robot is at 

30 degrees the speed is decreased to turn it anti clock wise. Please refer to figure for 

examples on possible scenarios. 

The PI gains are adjustable via MATLAB. The FSM has three states namely delay, 

calculate error and calculate output. The default state is the delay state and sets the rate 

of control variable calculation which is 47.5 Hz. The calculated error state calculates 

the error and output control variable value. Error and the control variable is calculated 

based on the difference between the set point and process value (or vice versa if the 

process value is larger). If the calculated value of the variable that holds the control 

variable’s value exceeds its maximum value that is 216 the variable overflows. To 

prevent this from happening the variable is set to maximum value and remains there 

unless the control variable’s value decreased by the calculate error state. 
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Figure III.XVI.  Direction Decision Making Analogy Block Diagram. 
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Figure III.XVII.  Module PWM Generator Motor A/B Connections Block 

Diagram. 

3.10. PWM Generation Module 

PWM scheme is used to control the motor’s speed. This module generates PWM 

duty cycles and direction control signal for DC motor speed control. The control 
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to the enable high state. The enable signal is set to a high for a time defined by the 

control variables and the FSM transits to enable low state. The enable pin is set to a low 

for the reaming time period of the PWM signal and the FSM transits to the delay state 

again. 

3.11. Data Display Modules 

A set of four seven-segment Led display on the FPGA kit is present on the Basys2 

Kit. A set of three modules display real time data on the FPGA kit’s on this display. 

The data that needs to be displayed is selected via switches “N3, E2 and F3” on the 

FPGA kit, Table III.3 summarizes the switch states and the data displayed. The data 

switching task is handled by the data select module. The data is converted from Hex to 

BCD by “Hex to BCD” module. 

The “seven segment display” module displays data on the display. To save 

resources on the FPGA kit the seven-segment displays share the eight led light pins and 

each one has individual enable pin. The module generates time multiplexed signals to 

turn each display on one at a time and presents BCD to seven segment decoded data at 

its led pins the very instant to the display. All the values that are greater than 12 bits are 

truncated to 12 bits. 
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Table III.3.  Switch Selections  

Switch N3 Switch E2 Switch F3 Description 
0 0 0 X axis angular rate of change 
0 0 1 Y axis angular rate of change 
0 1 0 Z axis angular rate of change 
0 1 1 Temperature 
1 0 0 Motor A rpm 
1 0 1 Motor B rpm 
1 1 0 Angular distance covered 
1 1 1 Angular distance covered 
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IV. EXPERIMENTAL RESULTS 

 

4.1. Test Conditions 

The Experiments are performed at the “Power Electronics and Energy Conversion 

Laboratory”, Faculty of Engineering and Architecture, Okan University, Tuzla 

Campus. The robot is run on a slightly rough and flat ceramic tiled surface. The 

MATLAB code is used to generate test stimuli and observation of the results for the 

Experiments. 

Experimental tests are performed to assess the performance of the system. All the 

experiments are performed on only one of the two motors with the other one running 

normally and hence its data is also not presented. Controller parameters for encoder 

feedback based controller are set as 𝑘𝑘𝑝𝑝 = 64 and 𝑘𝑘𝑖𝑖 = 8. For gyroscope feedback based 

controller 𝑘𝑘𝑝𝑝 = 256, 𝑘𝑘𝑖𝑖 = 8. 

4.2. Results and Observations 

In all the experimental result figures, top graphs present the two controller’s 

control variables. These control variables are thirteen bits wide and have 0.0122% duty 

cycle value per digit. Black line plots the Encoder feedback controller control variable. 

This variable is overflow protected. Gray line plot is Gyroscope feedback controller 

control variable which is allowed to overflow by design and is the reason behind the 

flipping of variable values from minimum to maximum and vice versa. This overflow 

allows subtraction operation based on 2’s complemented addition without the need of 
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a separate subtraction circuit. Second graph in each circuit present the % duty cycle 

obtained from the resultant of the two control variables. 

Third graph presents robot’s angular deviation (Yaw axis) in degrees. Fourth graph 

presents motor’s speed in rpm. 

4.2.1. Encoders Running in Normal Mode 

In Error! Reference source not found., initially both the encoders run as normal 

and the system is allowed to gain momentum. An approx. 5 degrees deviation is gained 

till 8 s. At this instant, the gyroscope feedback based controller starts and rectifies the 

deviation. At 18 s, the motor encoder is disconnected. From this instant, the encoder 

feedback based control variable progressively proceeds to maximum value and the 

gyroscope feedback based control variable attempts to counter balance it. From 18 s to 

22 s, a 20 degrees clockwise deviation is recorded which rectifies between 22 to 24 s. 

A small raise and loss in rpm is also recorder at these instants. 

 

 

 

Figure IV.I. Experimental Results with Encoders in Normal Mode. 
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Figure IV.II. Experiment Results with Encoder Running Normal and External 

Disturbances. 

 

Figure IV.III. Results with Encoders Running Normally and Changing Set Points. 
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Figure IV.IV. Results with Encoders Disconnected and Varying Angular Set Point. 

the figure this disturbance results in an angular rotation of the robot which is corrected 

by the Gyro controller. 

4.2.3.  Encoders Running Normally and Changing Angular Set Point 

In Figure IV.III, both the encoders run normally. The direction set point is set at 

45 degrees and -60 degrees at 16 and 36 respectively. Both controllers run normally, 

when the gyroscope feedback based controller attempts to alter wheel speed the encoder 

feedback based controller recognizes it as an error and tires to correct it. Due to this a 

small rise at 17 s and a decline at 36 s in its value is observed. As the PI gains for the 

gyroscope feedback based controller are much higher the robot is easily directed to the 

set angle by it. 

4.2.4. Results with Encoders Disconnected and Varying Angular Set Point 

In Figure IV.IV, the system is initially allowed to gain momentum and the encoder 

is disconnected at 9 s. The direction set point is reset to 45 and -60 at 19 s and 35 s 

respectively. An overflow in control value results in a spike at 35 s value. The robot 

turns to the specified angles with only gyroscope feedback based closed loop control. 
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Figure IV.V. Encoders Disconnected and External Distortions. 

4.2.5. Encoders Disconnected and External Distortions 

In Figure IV.V, the encoders are disconnected at 8 s. The system is subjected to 

distortions at 13 s, 18 s and 27 s. As seen in Figure IV.V, the robot returns to its set 
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closed loop controller. 
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V. CONCLUSION 

A dual sensor feedback motor control algorithm for a robotic platform is proposed. 

The purpose of this research is to demonstrate that inertial sensors can improve 

robustness in the systems like discussed in this document. Our practical setup 

successfully demonstrated ability to resist direction deviation and maintain 

functionality in case of an encoder failure with the help of a gyroscope sensor.  

Similar systems already employing encoders and gyroscopes can use this method 

for increasing fault tolerance and control robustness without any added hardware. 

Future works may include implementation of more complex filtration and control 

algorithms to the current system. 
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APPENDIX A 

MATLAB Code 

1     data = 0; 
2     bt = Bluetooth('FPGA BLUETOOTH    ',1);     %% Bluetooth Device name 
and channel 
3     fopen(bt);                                  %% Connect to Bluetooth 
device 
4     %% Vriable Initialization 
5     A = []; 
6     T = []; 
7     X = 1; 
8     fwrite(bt, uint8(240)); 
9     pause(0.5); 
10    fwrite(bt, uint8(240)); 
11    pause(0.5); 
12     
13    fwrite(bt, uint8(32));  %% Encoder feedback Controller P gain value   
14    fwrite(bt, uint8(11));  %% Encoder feedback Controller P gain set code 
15    fwrite(bt, uint8(12));  %% Encoder feedback Controller P gain set code 
16     
17    fwrite(bt, uint8(4));   %% Encoder feedback Controller i gain value   
18    fwrite(bt, uint8(13));  %% Encoder feedback Controller i gain set code 
19    fwrite(bt, uint8(14));  %% Encoder feedback Controller i gain set code 
20     
21    fwrite(bt, uint8(32));  %% P gain Gyroscope feedback controller 
22    fwrite(bt, uint8(15));  %% Gyroscope feedback Controller p gain set 
code 
23    fwrite(bt, uint8(16));  %% Gyroscope feedback Controller p gain set 
code 
24     
25    fwrite(bt, uint8(8));   %% i gain Gyroscope feedback controller 
26    fwrite(bt, uint8(17));  %% Gyroscope feedback Controller i gain set 
code 
27    fwrite(bt, uint8(18));  %% Gyroscope feedback Controller i gain set 
code 
28     
29    fwrite(bt, uint8(110)); %% Motor a rpm speed 
30    fwrite(bt, uint8(1));   %% Motor a rpm speed set code 
31    fwrite(bt, uint8(2));   %% Motor a rpm speed set code 
32     
33    fwrite(bt, uint8(110)); %% Motor b rpm speed  
34    fwrite(bt, uint8(3));   %% Motor b rpm speed set code 
35    fwrite(bt, uint8(4));   %% Motor b rpm speed set code 
36     
37    fwrite(bt, uint8(0));   %% Encoders set to normal 
38    fwrite(bt, uint8(5));   %% Encoders settings function code  
39    fwrite(bt, uint8(6));   %% Encoders settings function code 
40     
41    fwrite(bt, uint8(0));    %% MSB Gyroscope controller angular set point  
42    fwrite(bt, uint8(19));   %% Gyroscope controller angular set point 
function code  
43    fwrite(bt, uint8(20));   %% Gyroscope controller angular set point 
function code 
44     
45    fwrite(bt, uint8(0));    %% MSB Gyroscope controller angular set point  
46    fwrite(bt, uint8(21));   %% Gyroscope controller angular set point 
function code  
47    fwrite(bt, uint8(22));   %% Gyroscope controller angular set point 
function code 
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48    subLoop = tic;               
50    fullLoop = tic; 
51     
52    for i = 1:1:40              %%Fetch results for 4 seconds      
53    fwrite(bt, uint8(240));      
54    elTime = toc(subLoop);    %% Timing calculations for improving 
system performance 
55    if(elTime<.1) 
56    pause(0.1-elTime); 
57    end 
58    subLoop = tic; 
59    toc(fullLoop) 
60    fullLoop = tic; 
61    fwrite(bt, uint8(240));  
62    data = fread(bt,16);                %% Read data from Bluetooth Device 
63    dataInBinary = (dec2bin(data));      
64    A = [A single(data)]; 
65    T(:,X) = X; 
66    X = X + 1; 
67    ResultsDLive;                       %% Display updated results 
68    fwrite(bt, uint8(0)); 
69    end 
70     
71    fwrite(bt, uint8(128)); %% Encoder disconnect setting 
72    fwrite(bt, uint8(5));   %% Encoders settings function code function 
code  
73    fwrite(bt, uint8(6));   %% Encoders settings function code function 
code 
74     
75    for i = 1:1:40            %%Fetch results for 4 seconds       
76    %%%%%%%%%%%%%% 
77    end 
78     
79    fwrite(bt, uint8(4));    %% MSB Gyroscope controller angular set point 
80    fwrite(bt, uint8(19));   %% Gyroscope controller angular set point 
function code  
81    fwrite(bt, uint8(20));   %% Gyroscope controller angular set point 
function code  
82     
83    fwrite(bt, uint8(0));    %% MSB Gyroscope controller angular set point  
84    fwrite(bt, uint8(21));   %% Gyroscope controller angular set point 
function code   
85    fwrite(bt, uint8(22));   %% Gyroscope controller angular set point 
function code  
86     
87    for i = 1:1:70       %Fetch results for 7 seconds          
88    %%%%%%%%%%%%%%              
89    end 
90     
91    fwrite(bt, uint8(26));   %% MSB  of Gyro Scope set point angle 
92    fwrite(bt, uint8(19));   %% function code  
93    fwrite(bt, uint8(20));   %% function code 
94     
95    fwrite(bt, uint8(169));  %% LSB gyro set point  
96    fwrite(bt, uint8(21));   %% function code  
97    fwrite(bt, uint8(22));   %% function code 
98     
99    for i = 1:1:80               
100   %%%%%%%%%%%%%%% 
101   end 
102    
103   pause(0.1); 
104   %% set all to default 
105   fwrite(bt, uint8(0));   %% Set to 0 (Ecoders to normal) 
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106   fwrite(bt, uint8(5));   %% Encoders set code  
107   fwrite(bt, uint8(6));   %% Encoders set code 
108   fwrite(bt, uint8(0));   %% Motor b rpm speed set to be zero 
109   fwrite(bt, uint8(3));   %% Motor b speed set code 
110   fwrite(bt, uint8(4));   %% Motor b speed set code 
111   fwrite(bt, uint8(0));   %% Motor a speed set to be zero 
112   fwrite(bt, uint8(1));   %% Motor a speed set code 
113   fwrite(bt, uint8(2));   %% Motor a speed set code 
114   pause(0.5); 
115   fclose(bt);             %% Disconnect Bluetooth Device 
116   clear bt;               %% Clear the bt Variable 
117   disp('Bluetooth link released')      %% Display Message that the 
Bluetooth Link is released 
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APPENDIX B 

  
Verilog Code Excerpt (Module PI Gyro Feedback controller) 

delay: 
begin 
if  (count_reg < 20'b1111_1111_1111_1111_1111) 
begin 
count_next     =  count_reg + 1;   
state_next     = delay; 
end 
else if (start != 1'b1) 
begin 
state_next = delay; 
error_next   = 0;    
propotional_next   = 0;     
integral_next   = 0;   
output_value_a_next  =  0; 
output_value_b_next  =  0;  
end 
else 
begin 
count_next   = count_reg + 1; 
state_next   = calculate_error;  
if(active_motor_hold_reg !=  active_motor_reg)  
begin 
error_next   = 0;  
propotional_next   = 0;    
integral_next   = 0;   
output_value_a_next  =  0; 
output_value_b_next  =  0;  
active_motor_hold_next  = active_motor_reg; 
end  
if(set_point > 0) 
set_point_reg   = set_point; 
else  
set_point_reg = 0; 
end 
end 
calculate_error: 
begin 
if    (set_point == process_value) 
begin 
error_next     = 0; 
propotional_next   = 0;   
integral_next    = 0;    
output_value_a_next  =  0; 
output_value_b_next  =  0;      
end 
else if  (set_point  > process_value) 
begin 
error_next   = set_point - process_value; 
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if(error_reg[12] == 1'b0)  
begin 
propotional_next   = error_reg; 
integral_next    = integral_reg   + 
(error_reg[12:5]); 
output_value_b_next  =  integral_reg + propotional_reg;  
output_value_a_next  =  0; 
active_motor_next   = 1'b1; 
end  
else  
begin 
process_value_neg   = 13'b1111_1111_1111_1 - 
error_reg;        
propotional_next   = process_value_neg; 
integral_next    = integral_reg + 
(process_value_neg[12:5]); 
output_value_b_next  =  0;  
output_value_a_next  =  integral_reg + propotional_reg;  
active_motor_next   = 1'b0; 
end 
end 
else if (set_point < process_value) 
begin 
error_next   = process_value - set_point; 
if(error_reg[12] == 1'b0)  
begin 
propotional_next = error_reg; 
integral_next =integral_reg   +(error_reg[12:5]); 
output_value_a_next  =  integral_reg + propotional_reg;  
output_value_b_next  =  0; 
active_motor_next   = 1'b0; 
end  
else  
begin 
process_value_neg  = 13'b1111_1111_1111_1 - error_reg;
  
propotional_next  = process_value_neg;  
integral_next    = integral_reg + 
(process_value_neg[12:5]); 
output_value_a_next  =  0;  
output_value_b_next  =  integral_reg + propotional_reg; -  
active_motor_next   = 1'b1; 
end 
end 
else 
begin 
output_value_a_next  =  output_value_a_reg; 
output_value_b_next  =  output_value_b_reg; 
end 
state_next = output_adjust; 
end 
output_adjust: 
begin 
if(count_reg == 3'b000) 
begin 
if(error_reg > error_hold_reg)  
adjust_output_next = ~adjust_output_reg; 
error_hold_next   =  error_reg; 
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count_next     =  count_reg+1'b1; 
end 
if(adjust_output_reg == 1'b1) 
begin 
output_value_a_out_next  =  ~output_value_a_reg; //+ 1'b1; 
output_value_b_out_next  =  ~output_value_b_reg;// + 1'b1; 
end 
else 
begin 
output_value_a_out_next   = output_value_a_reg; 
output_value_b_out_next   = output_value_b_reg; 
end 
count_next = count_reg + 1'b1; 
state_next = calculate_output; 
end 
calculate_output:         
        //adjust output as 
needed (for example if motor maximum power output capability is 
reached) 
begin 
if   (output_value_a_reg[WIDTH-1] == 1'b1) 
begin 
 output_value_next   = 12'b1111_1111_1111; 

 integral_next   = 12'b1111_1111_1111; 
 output_value_reg_out  = 12'b1111_1111_1111; 
 overflow_next   = 1'b1; 
end 

count_next     = 0; 
state_next     = delay; 

end 
endcase 
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