

IMPROVEMENT OF SOFTWARE SYSTEM TEST

PROCESS THROUGH STATISTICAL PROCESS CONTROL

İSTATİSTİKSEL SÜREÇ KONTROLÜ KULLANILARAK

YAZILIM SİSTEM TEST SÜRECİNİN İYİLE�TİRİLMESİ

CANSET G. ALTUN

Başkent Üniversitesi

Lisansüstü Eğitim Öğretim ve Sınav Yönetmeliğinin

İSTATİSTİK ve BİLGİSAYAR Bilimleri Anabilim Dalı İçin Öngördüğü

YÜKSEK LİSANS TEZİ

olarak hazırlanmıştır.

2008

Fen Bilimleri Enstitüsü Müdürlüğü'ne,

Bu çalışma, jürimiz tarafından İSTATİSTİK ve BİLGİSAYAR BİLİMLERİ

ANABİLİM DALI 'nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Başkan :….......................................

 Prof. Dr. İsmail Erdem

Üye (Danışman) :….......................................

 Dr. Ayça Tarhan

Üye :….......................................

 Yrd. Doç. Dr. Mehtap Akçil Temel

Üye :…...............(İmza)........................

 (Ünvanı, Adı ve Soyadı)

ONAY

Bu tez / /2008 tarihinde, Enstitü Yönetim Kurulunca belirlenen yukarıdaki jüri

üyeleri tarafından kabul edilmiştir.

/ /2008

Prof.Dr. Emin AKATA

 FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRÜ

 i

ACKNOWLEDGEMENTS

At this place, I would like to thank the people who have supported me in writing this

study.

First of all, I would like to thank my supervisor, Dr. Ayça Tarhan. She contributed a

lot to this study, by providing me with many useful suggestions and comments.

I would like to thank my parents, and the rest of my family. They always showed

great interest in my work.

Thank you Karbek, Jan, Kansav, and Nefin; your smile just makes my day.

Ankara, September, 2007

Canset ALTUN

 ii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Surname: Canset Altun

Signature: _______________

 iii

ÖZ

İSTATİSTİKSEL SÜREÇ KONTROLÜ KULLANILARAK YAZILIM SİSTEM TEST

SÜRECİNİN İYİLE�TİRİLMESİ

Canset G. ALTUN

Başkent Üniversitesi Fen Bilimleri Enstitüsü

İstatistik ve Bilgisayar Bilimleri Anabilim Dalı

Yazılım süreçlerinin gelişiminde istatistiksel metodların kullanılması, süreçleri ve

onlara ilişkin nicel analizi iyileştirmek için gereklidir. Bu metodların uygulanabilirliği

en uygun olan süreçlerden birisi de doğrulama ve geçerleme sürecidir.

Bu çalışmada bir proje kapsamında belirlenen test durumlarına, iki sistem test

yöntemi (yol ve düğüm), prospektif (ileriye yönelik) şekilde toplanan veriler üzerinde,

yöntemleri karşılaştırmak amacı ile istatistiksel metodlar kullanılarak analiz

yapılmıştır. Uygulama sırasında daha önce sekiz çalışmada retrospektif (geriye

yönelik) olarak kullanılan SPC-AM yönteminden ve istatistiksel araçlardan

yararlanılmıştır.

Bu çalışma ile;

1. Sistem test süreci için belirlenen ölçümlerin yararını anlamak,

2. Kullanılan sistem test yöntemlerinin etkinliğini değerlendirerek daha etkin

olan yöntemi belirlemek hedeflenmiştir.

Çalışma sonucunda sistem test süreci kapsamında uygulanan test yöntemleri için

belirlenen ölçümlerin verileri kümeleme yöntemi ile gruplanarak değerlendirilmiş ve

süreç için etkili olabilecek yöntemin belirlenen kısıtlara göre uygunluğu konusunda

öneride bulunulmuştur.

Anahtar Kelimeler: Yazılım ölçümleri, istatistiksel süreç kontrolü, sistem test

kapsam analizi

Danışman: Dr. Ayça TARHAN, Hacettepe Üniversitesi, Bilgisayar Mühendisliği

Bölümü.

 iv

ABSTRACT

IMPROVEMENT OF SOFTWARE SYSTEM TEST PROCESS THROUGH

STATISTICAL PROCESS CONTROL

Canset G. ALTUN

Başkent University Institute of Science,

The Department of Statistics and Computer Science

Application of statistical methods on software processes is a required capability to

improve processes and their quantitative understanding. Verification and Validation

process is one of the most applicable process for these statistical methods.

In this study, two different testing techniques (path and node coverage) are applied

on the defined test cases of a project, and statistical methods were implemented

prospectively (looking forward) to compare these two techniques on prospectivelly

collected test case data. While implementing these statistical methods, an

assessment model (SPC-AM) and statistical tools are used which had been

previously implemented for eight different processes retrospectively (looking back).

This study aims to:

1. Understand the use of measurements defined for the system test,

2. Identify which test coverage technique would be useful for the validation

process by evaluating the effectiveness of two black-box test coverage

techniques.

As a result; metric data for test coverage techniques are evaluated by applying

process clustering, and suggestions were proposed on the effectiveness of the

techniques under related circumstances.

KEY WORDS: Software Metrics, Statistical Process Control, System Test Coverage

Analysis.

Supervisor: Dr. Ayça TARHAN, Hacettepe University, Computer Engineering

Department.

 v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... i

ÖZ .. iii

ABSTRACT .. iv

TABLE OF CONTENTS ..v

LIST OF TABLES.. vii

LIST OF FIGURES... viii

LIST OF ABBREVIATIONS...x

1 INTRODUCTION..1

1.1 Overview ...3

2 BACKGROUND...4

2.1 Software Test Process ..4

2.1.1 Verification and Validation (V&V)...5

2.1.2 Testing Methods..6

2.1.2.1 System Testing ..9

2.2 Software Process Management ..9

2.2.1 The CMMI Approach ...11

2.3 Software Measurement ...15

2.3.1 Software Process Measurement ..16

2.3.2 Why Measure?...17

2.3.3 Measurement Scales And Scale Types ...18

2.3.4 Why do we need metrics?..19

2.3.5 The Goal/Question/Metric Method (GQM) ...20

2.4 SPC...23

3 LITERATURE REVIEW ...28

4 AN ASSESMENT MODEL FOR STATISTICAL PROCESS CONTROL.........31

4.1 Model Components...31

4.2 Assessment Process...35

4.3 Assessment Assets...37

4.4 An Assessment and Analysis Tool for Statistical Process Control42

5 CASE STUDY ..44

5.1 Case Study A ..48

5.2 Case Study B ..58

 vi

6 SUMMARY AND CONCLUSIONS ..68

6.1 Discussion on Case Study Results ...68

6.2 Summary and Conclusion ...70

REFERENCES..73

 vii

LIST OF TABLES

Table 1 Metric Usability Attributes used for Evaluating Metric Utilization34

Table 2 The Interpretation of Path and Node Coverage at System Test Level........45

Table 3 Metrics (Base and Derived) used in the Case Studies46

Table 4 Comparison of Test Methods by Standard Deviation Values

in basis Cluster..68

Table 5 Comparison of Test Methods by Mean Values in basis Cluster69

 viii

LIST OF FIGURES

Figure 1 The Software Testing Stages ..5

Figure 2 Verification and Validation Process...6

Figure 3 Basic Node Testing Model Representation ...7

Figure 4 Basic Path Testing Model Representation ..8

Figure 5 Steps for Using Control Charts to Evaluate Process Stability [14]10

Figure 6 The Four Key Responsibilities of Process Management11

Figure 7 Capability Maturity Model Integration (CMMI) ...11

Figure 8 The CMMI model components ..12

Figure 9 The activities of a GQM measurement programme [9]..............................20

Figure 10 The V-GQM Model ..22

Figure 11 Control Chart Example ..24

Figure 12 Florac/Carleton Approach for Process Measurement [24].......................26

Figure 13 Process Attributes used for Stratification...32

Figure 14 The Assessment Process..35

Figure 15 Process Execution Record ..38

Figure 16 Process Similarity Matrixes ...38

Figure 17 Metric Usability Questionnaire and Rating for Base Metrics....................40

Figure 18 Metric Usability Questionnaire and Rating for Derived Metrics41

Figure 19 Process Execution Questionnaires..42

Figure 20 Organization Software Development Methodologies...............................44

Figure 21 Rules for Out-of-Control Points ...47

Figure 22 Similarity Matrixes for Inputs – Case Study A ...48

Figure 23 Similarity Matrixes for Outputs – Case Study A.......................................49

Figure 24 Similarity Matrixes for Activities – Case Study A49

Figure 25 Similarity Matrixes for Roles – Case Study A ..49

Figure 26 Similarity Matrixes for Tools & Techniques – Case Study A....................50

Figure 27 Base Process Clusters for System Test Process50

Figure 28 Process Clusters Report ...51

Figure 29 Process Cluster Distances & Process Attributes.....................................51

Figure 30 Process Cluster Distances & Process Attributes.....................................51

Figure 31 Process Cluster Distances & Process Attributes.....................................52

 ix

Figure 32 Metric Usability Questionnaire and Rating for Number of Test Cases

Defined..53

Figure 33 Metric Usability Report for Node Coverage Process54

Figure 34 Metric Data of Case Study A ...54

Figure 35 Individuals Charts for Derived Metrics of Test Defect Density for Node

Coverage...55

Figure 36 Individuals Charts for Derived Metrics of Test Effectiveness for Node

Coverage...56

Figure 37 Individuals Charts for Derived Metrics of Test Speed for Node

Coverage...57

Figure 38 Process Similarity Matrixes for Inputs – Case Study B............................58

Figure 39 Process Similarity Matrixes for Outputs – Case Study B.........................59

Figure 40 Process Similarity Matrixes for Activities – Case Study B59

Figure 41 Process Similarity Matrixes for Roles – Case Study B59

Figure 42 Process Similarity Matrixes for Tools and Techniques – Case Study B ..60

Figure 43 Base Process Clusters for System Test Process – Case Study B60

Figure 44 Process Clusters Report – Case Study B..60

Figure 45 Process Cluster Distances & Process Attributes.....................................61

Figure 46 Process Cluster Distances & Process Attributes.....................................61

Figure 47 Process Cluster Distances & Process Attributes.....................................61

Figure 48 Metric Usability Questionnaire and Rating for Total Number of Test Cases

Defined for System Testing Process ...63

Figure 49 Metric Usability Evaluation Report – Case Study B.................................64

Figure 50 Metric Data of Case Study B ...64

Figure 51 Individuals Charts for Derived Metrics of Test Defect Density for Path

Coverage...65

Figure 52 Individuals Charts for Derived Metrics of Test Effectiveness for Path

Coverage...66

Figure 53 Individuals Charts for Derived Metrics of Test Speed for Path Coverage67

 x

LIST OF ABBREVIATIONS

CMMI Capability Maturity Model Integrated

GG Generic Goal

GP Generic Practice

GQM Goal-Question-Metric

L2 Maturity Level 2

L3 Maturity Level 3

L4 Maturity Level 4

L5 Maturity Level 5

LCL Lower Control Limit

MUQ Metric Usability Questionnaire

OCP Out-of-Control Point

PEQ Process Execution Questionnaire

QPM Quantitative Process Management

SEI Software Engineering Institute

SG Specific Goal

SP Specific Practice

SPC Statistical Process Control

SPC-AM Assessment Model for Statistical Process Control

SQM Software Quality Management

SRS Software Requirements Specification

SW Software

UCL Upper Control Limit

V&V Verification and Validation

CV Coefficient of Variation

 1

1 INTRODUCTION

Collecting right metrics and analyzing them in a proper manner provides improving

quality and making software processes more efficient while designing and

implementing software. Besides the results of the analysis done being a indicator

for defining processes correctly or implementing them, it can also be a indicator for

the correctness of the methods that are being used for these processes’

applications.

Statistical Process Control (SPC) is a statistical based approach that enables us to

determine whether a process is stable or not by discriminating between the

presence of common cause variation and assignable cause variation. It is a well-

established technique, which has shown to be effective in manufacturing processes

but not yet in software process contexts [1, 2].

Verification and validation (V&V) process which is one of the most applicable

processes for statistical methods is a continuing process throughout the

development. Software inspection and software test are the two methods used to

verify and validate the software during the development [3].

Software testing has been defined as the process of executing software and

comparing the observed behaviour with the desired behavior. The major goal of

software testing is to discover errors in the software, with a secondary goal of

building confidence in the proper operation of the software when testing does not

discover errors [4]. Testing activities have to start at the requirements specification

stage, with planning of test strategies and procedures. Data obtained from a real

project were analyzed using the framework for validation.

Measurement itself is not a goal, but the goal is to improve the processes. How to

measure a test process is a required capability for an effective software testing

process. This implies continuous process monitoring in order to predict its

behaviour, highlight its performance variations and, if necessary, quickly react to it.

Florac/Carleton explains the different steps, especially in the data collection and

behavior description, using statistics in the process measurement [5]. W. Steven

Demmy’s study shows that SPC techniques can be used to improve the quality and

productivity of large-scale software development. He discusses the advantages and

 2

disadvantages of software SPC [6]. Manfred Widera’s study shows that even the

simplest data flow oriented criterion contains significantly more information than

node coverage [7]. In the literature, there are number of articles that discuss the

suggestions on implementation of SPC for process improvement in software. These

studies indicate that almost all characteristics of processes and products display

variation when they are measured.

It is indicated that software process data often represent multiple sources that need

to be treated separately, and discovering multiple sources requires the careful

investigation of process executions. Clustering is a technique used to analyze or

divide a universe of data into homogeneous groups. If the executions of a process

show similarity in terms of these attributes, it will be assumed that process

executions form a homogeneous subgroup (or “cluster”) which consistently

performs among its executions; and the process cluster is subject to using SPC

techniques.

In this study, two case studies were implemented at a project-based working

software organization which had achieved Level 3 in the Software-Capability

Maturity Model Integrated (SW-CMMI). The project used here is a large data entry

and query system developed on networked, client/server, server utilizing Java and

IBM DB2. The project was developed during 6 months with a staff of 5 with

approximately 8,000 lines of code.

Two different testing techniques (path and node coverage) were applied on the

defined test cases of the project, and statistical methods were implemented to

compare these two techniques on prospectivelly collected test case data. While

implementing the statistical methods, an assessment model (SPC-AM) which

supports process clustering and metric usability evalulation and its tool (SPC-AAT)

were used. By this study; it was aimed to understand the use of measurements

defined for the system test, and to identify which test coverage technique would be

useful for the validation process by evaluating the effectiveness of two black-box

test coverage techniques.

The main quantitative tool used in this study was SPC by utilizing control charts.

The project analyzed lifecycle data collected during development for testing.

Defects were collected during this life-cycle and were quantitatively analyzed using

 3

statistical methods. As a result; metric data for the two test coverage techniques

were evaluated and suggestions were proposed on the effectiveness.

1.1 Overview

This chapter gives an overview of this thesis.

Chapter 2 gives basic knowledge on software processes like Validation, CMMI

approach, software measurement and SPC. It introduces important terms and

concepts that are used in the following chapters.

Chapter 3 provides a survey of the literature on test coverage and SPC

implementations for software.

Chapter 4 provides the details related to the assessment model and the

assessment process. It describes basic components of the model and explains the

assets developed for use in the assessment.

Chapter 5 contains the application part of this study. It gives detailed flow of the

case studies.

Chapter 6 discusses results of the implemented test coverage methods which

software measures are useful for validation process. In this chapter this study is

summarized and the result and experiences from the thesis are discussed.

 4

2 BACKGROUND

2.1 Software Test Process

The software engineering process is a set of sequential practices that are

functionally coherent and reusable for software engineering organization

implementation and management. It is usually referred to as the software process

or simply the process [8].

A software process is structured approach that describes the different activities that

will lead to a developed product. Software processes are complex and no two

projects are completely the same hence there is not one process that is applicable

in all cases. Many organizations use tailoring (modifying process elements and

changing the workflow) to develop organization and project specific processes. It is

not uncommon for a project to use different processes for different components of a

product [9]. There are a number of generic process models, for example the

waterfall model, evolutionary development, formal systems development and re-use

development [10].

The fundamental activities are the same in all processes: specification, design and

implementation, validation. The specification of the software is critical for the further

development, because a mistake here will lead to difficulties in the design and

implementation. The specification of the software should define its functionality and

constraints. This activity is also known as requirements engineering.

The implementation activity is to design and program according to the specification,

and it will result in an executable system. If the development process is

evolutionary, the specification may also be changed. During the design, the

designers decide the structure of the software, the interfaces, the components, and

sometimes also the data structures and algorithms. The later part of the design is

interleaved with the implementation, and that is why design and implementation is

stated as one activity. Some software projects put little effort on design, and instead

start to implement almost immediately. This approach is not to recommend,

because the lack of structure may create a software that is hard to maintain. There

are no general implementation guidelines to follow, but all programmers develop

 5

their own style. The programmers do not only program, but they do also some

testing and debugging. Testing is to discover failures, and debugging is to find and

correct the place in the code that caused it [9].

Software validation is an activity to make sure that the system meets the

specification and the expectations from the end user (Figure 1). After the

implementation, different modules of the system work independently, and the next

step is to test the modules together. After this test, it is time to test the whole

system. The system test includes to validate the functional- and non-functional

requirements, and to test the most important properties.

The final step in the validation process is the acceptance test. This means to test

the system with data from the end user instead of simulated data. The acceptance

test will reveal whether it meets the requirements, and if the performance is

acceptable [11].

Figure 1 The Software Testing Stages

2.1.1 Verification and Validation (V&V)

Verification and validation are most times used in the same context, but it is

important to remember that they have a different meaning given in the following

definition [3]:

• “Validation: The right product is being built?”

• “Verification: The product is being built right?”

In other words verification is to make sure that the product meets its specified

functional and non-functional requirements. Validation is to make sure that the

product is functioning the way that the end user wants. The objective with

 6

verification and validation is not to make the system completely defect free, but to

make it good enough for its intended use. V&V process which consists of

inspection, review, audit and test subprocesses (Figure 2) is a continuing process

throughout the development. Software inspection and software test are the two

methods used to verify and validate the software during the development. Software

inspection does not require an executable program and can therefore be used

throughout the whole development. Software testing does on the other hand require

an executable program and can only be used in the later stages. Testing is

something that is inevitable in all software development.

Figure 2 Verification and Validation Process

2.1.2 Testing Methods

In testing there are two different approaches when looking at the code. Static testing

is done without executing the code. Instead one goes through the code manually to

find faults. Dynamic testing is done by actually executing the code and looking for

faults [12].

One method for dynamic testing is black-box testing. Black-box tests the

specification without any knowledge of the implementation. This means that the only

criterion for success in the testing is if the result is what it should be according to the

requirement specifications. The input is chosen very carefully to get the desired

result. For each demand a test is designed and the output is compared with the

expected one. If there are no discrepancies then the product is considered to be

correct.

Various flaws can arise when using this method. There is no way to be sure that all

of the code is executed and that all of the cases in the code really is tested. This

 7

means that faults can arise at a later stage when the same demand is tried but

under different conditions.

Black-box testing is a very simple approach from the tester’s point of view. All they

have to do is study the specification and write tests to check that every demand is

fulfilled. They can concentrate completely on the functional demands and therefore

this approach is also sometimes called functional testing. When discrepancies are

found, this method is often much more comfortable for the tester than for the

developer. When writing fault reports using this method it is often not really known

what caused the fault but rather only that there was a fault. This makes revising

more difficult as the developer in a greater extent have to search for the fault in a

much wider part of the product, especially if the fault occurs late in the developing

process.

Black-box testing is perfect for checking a thorough specification to ensure that the

end user’s demands are fulfilled. But the method is much better on confirming that

the demands in the specification is fulfilled than finding all faults due to the difficulty

in deciding on input values. The method is fairly easy for the testers as they do not

have to read the developer’s code but on the other hand the revising could take

longer as it can be difficult to decide where the fault occurred.

Many coverage criteria for software testing such as statement and path coverage,

treat each statement as a single node. The testing techniques considered in this

study are classified in the literature as black-box, because to generate the test

cases for these techniques, a thorough understanding of the source-code of the

programs are not needed. The following two test coverage techniques were studied:

• Node Coverage requires the execution of each processing node was executed.

Figure 3 Basic Node Testing Model Representation

 8

Path coverage requires the execution of all possible paths, for instance; branches,

statements, and other paths in a program (Figure 3). Faults may not be discovered

if the parts containing them have not been executed. The paths should have distinct

branches from the start to end of a control flow graph of a program. Thus,

essentially, thorough testing is possible through this technique. But, in practice, the

number of such paths can be too large in large programs.

Figure 4 Basic Path Testing Model Representation

Similar to node based models, the path based models consider software

architecture with components and interfaces. Initially the different paths in system

are obtained either experimentally or algorithmically. Path reliability is the product of

all component reliabilities along the path. The system reliability is average of all the

path reliabilities. Node based models analytically account for the infinite loops in a

path but path based models terminate the loop to one or to an average execution

time of the path. Mathur developed a method to combine architecture and failure

process by estimating the path reliabilities based on the sequence of components

executed for a single test run and the average over all test runs to obtain the system

reliability [13].

 9

2.1.2.1 System Testing

System testing is testing that is conducted on the complete, integrated system to

evaluate the system’s compliance with its requirements. System testing is generally

based on black-box testing techniques. In black-box testing the internal workings of

the test object are not known and the tester focuses mostly on how the system

reacts to different inputs. This is opposed to white-box testing which studies and

tests different parts of the system, in detail. System testing tends to be more of an

investigatory testing phase, where testers tend to have an almost destructive

attitude and not only test the design, but also the behaviour and the believed

expectations of the end user. System testing is intended to test up to and beyond

the software and hardware requirements specifications. As software faults are found

during system testing new software builds are released that include corrections of

detected faults. The incremental nature of system testing is controlled by defining

regression tests.

2.2 Software Process Management

Software process management is about successfully managing the work processes

associated with developing, maintaining, and supporting software products and

software intensive systems [11]. Successful management is that the products and

services produced meet the business objectives of the organization responsible for

producing the products. The concept of process management is found on the

principles of statistical process control. These principles hold that by establishing

and sustaining stable levels of variability, processes will yield predictable results.

We can then say that the processes are under control statistically.

Predictable results should not be interpreted to mean identical results. Results

always vary; but when a process is under statistical control, they will vary within

predictable limits. If the results of a process vary unexpectedly—whether randomly

or systematically—the process is not under control, and some of the observed

results will have assignable causes. These causes must be identified and corrected

before stability and predictability can be achieved. Controlled processes are stable

processes, and stable processes enable us to predict the results. This in turn

enables us to prepare achievable plans, meet cost estimates and scheduling

 10

commitments, and deliver required product functionality and quality with acceptable

and reasonable consistency. If a controlled process is not capable of meeting end

user requirements or other business objectives, the process must be improved or

retargeted (Figure 4).

Select the Process
Identify the process or product
characteristics that describe

process performance

Select the
appropriate control

charts

Measure process
performance over
a period of time

Use appropriate calculations based on
measurement data to determine the center lines

and control limits for the performace
characteristics

Pilot the measurement
data on the control chart

Are all measured values within
limits and distributed randomly

around the centerlines?

Process is stable,
continue

measuring

Process is not
stable

Identify and
remove

assignable causes

Figure 5 Steps for Using Control Charts to Evaluate Process Stability [14]

At the individual level then, the objective of software process management is to

ensure that the processes you operate or supervise are predictable, meet end user

needs, and (where appropriate) are continually being improved. From the larger,

organizational perspective, the objective of process management is to ensure that

the same holds true for every process within the organization.

There are four key responsibilities of software process management which are

define the process, measure the process, control the process, improve the process.

The flow between these processes are shown in Figure 5 [11, 14].

 11

Figure 6 The Four Key Responsibilities of Process Management

2.2.1 The CMMI Approach

CMMI stands for Capability Maturity Model Integration [16] and it is a process

improvement approach that provides organizations with the essential elements of

effective processes. It can be used to guide process improvement across a project,

a division, or an entire organization. CMMI helps integrate traditionally separate

organizational functions, set process improvement goals and priorities, provide

guidance for quality processes, and provide a point of reference for appraising

current processes.

Figure 7 Capability Maturity Model Integration (CMMI)

 12

The CMMI is a model that needs to be interpreted based upon the business

environment and technical needs of the project; it is not a standard that must be

implemented exactly as documented.

The CMMI is structured in the five maturity levels (Figure 7), the considered process

areas, the specific goals (SG) and generic goals (GG), the common features and

the specific practices (SP) and generic practices (GP) are given in Figure 8. The

process areas are defined as follows:

“The Process Area is a group of practices or activities performed collectively to

achieve a specific objective.”

Figure 8 The CMMI model components

Such objectives could be the part of requirements management at the level 2, the

requirements development at the maturity level 3 or the quantitative project

management at the level 4.

CMMI based process improvement benefits include;

• Improved schedule and budget predictability

• Improved cycle time

• Increased productivity

• Improved quality (as measured by defects)

 13

• Increased end user satisfaction

• Improved employee moral

• Increased return on investment

• Decreased cost of quality

2.2.1.1 CMMI Process Maturity Levels

Initial (Level 1): The initial environment has ill-defined procedures and controls.The

organization does not consistently apply software engineering management to the

process, nor does it use modern tools and technology. Level 1 organizations may

have serious cost and schedule problems.

Repeatable (Level 2): At L2, the organization has generally learned to manage

costs and schedules, and the process is now repeatable. The organization uses

standard methods and practices for managing software development activities such

as cost estimating, scheduling, requirements changes, code changes, and status

reviews.

Defined (Level 3): At L3, the process is well-characterized and reasonably well

understood. The organization defines its process in terms of software engineering

standards and methods, and it has made a series of organizational and

methodological improvements.These specifically include design and code reviews,

training programs for programmers and review leaders, and increased

organizational focus on software engineering. A major improvement in this phase is

the establishment and staffing of a software engineering process group that focuses

on the software engineering process and the adequacy with which it is

implemented.

Managed (Level 4): At L4, the process is not only understood but it is quantified,

measured, and reasonably well controlled. The organization typically bases its

operating decisions on quantitative process data and conducts extensive analyses

of the data gathered during software engineering reviews and tests. Tools are used

increasingly to control and manage the design process as well as to support data

 14

gathering and analysis. The organization is learning to project expected errors with

reasonable accuracy.

Optimized (Level 5): At L5, the organization has not only achieved a high degree of

control over its process, it has a major focus on improving and optimizing its

operation. This includes more sophisticated analyses of the error and cost data

gathered during the process as well as the introduction of comprehensive error

cause analysis and prevention studies. The data on the process are used iteratively

to improve the process and achieve optimum performance.

The Software Engineering Institute's Software Capability Maturity Model (SW-

CMMI) L4 quantitative analysis leads to SW-CMMI L5 activities. L4 Software Quality

Management (SQM) key process area analysis, which focuses on product quality,

feeds the activities required to comply with defect prevention (DP) at L5 [1].

Quantitative Process Management (QPM) at L4 focuses on the process that leads

to technology change management and process change management at L5. At L3,

metrics are collected, analyzed, and used to status development and to make

corrections to development efforts, as necessary. At L4, measurements are

quantitatively analyzed to control process performance of the project and to develop

a quantitative understanding of the quality of products to achieve specific quality

goals. This study presents the application of statistical process control (SPC) to

accomplish the SQM and QPM and apply these results to DP. Real project results

are used to demonstrate the use of SPC as applied to software development. An

overview of control charts is presented along with L4 quality goals and plans to

meet these goals.

An organization performing L4 quantitative analysis recognizes that it leads to L5

activities. This study presents this progressive relationship in project examples

where statistical process control (SPC) is used to analyze measurements. Results

of this analysis are used to gain a quantitative understanding of process capability,

manage progress toward achieving quality goals, and for defect prevention.

Rigorous statistics have been used in manufacturing but have had limited use in

software development. The SEI's Capability Maturity Model IntegratedSM (CMMI)

calls for rigorous statistics at L4 and emphasizes SPC. This study shows that

 15

control charts and other statistical methods can easily and effectively be applied in a

software setting [17].

2.3 Software Measurement

Measurement in software engineering is called software metrics, or more precise

software metrics are any type of measurement that relates to a software system,

process or its documentation. Software measurement is the objective quantification

of attributes of software entities: processes, products and resources [18]. Software

measurement is needed to gain control over excessive cost of software, low

productivity, and poor quality.

Measurement is a mean to acquire quantitative information of software processes

and products for the purpose of managing them. Measurement can be used to

define the status of processes or product quality, to analyze the effects of changes,

or o follow-up the progression of improvement actions. The main reason for

measuring a software project is to get information about it and the organization, and

be able to control the projects better. Software measurement can help to keep the

people informed about their concerns, but it does not claim to give any absolute

solutions.

Analysis and interpretation of measurement data must be done within the context of

other information about the process or product. Measurement data by themselves

are neither bad news nor good news. A report indicating zero defects in the two

months following product release may be very good news (if the product is being

used by a large number of end users) or very bad news (if there are few to zero end

users using the product). Measurement results must be examined in the context of

other information about the product or process to determine whether action is

required and what action to take. Unexpected measurement results generally

require additional information to properly assess the meaning of the measurement

[11].

In order to understand what must be measured, organizational goals must be

understood. If one of the organizational goals is to improve product quality, then the

test process document must define metrics that allow evaluating improvements in

 16

software quality. Test Metric is a standard means of measuring some attribute of the

software testing process. . They are a means of establishing test progress against

the test schedule and may be an indicator of expected future results. Pusala

introduces test metrics in two forms, Base Metrics and Derived Metrics, as listed

below [12].

• Example of Base Metrics:

Test Cases

New Test Cases

Test Cases Executed

Test Cases Unexecuted

Test Cases Re-executed

Passes

Fails

Test Cases Under Investigation

Test Cases Blocked

1st Run Fails

Test Case Execution Time

Testers

• Example of Derived Metrics:

% Test Cases Complete

% Test Cases Passed

% Test Cases Failed

% Test Cases Blocked

% Test Defects Corrected

2.3.1 Software Process Measurement

Controlling a process means making it behave the way we want it to. This provides

two things for organization: predict results and produce products that have

characteristics required by the end users. With control, we can commit to dates

when products will be delivered and live up to such commitments.

There are five perspectives that are central to process measurement [11]:

 17

• Performance

• Stability

• Compliance

• Capability

• Improvement and investment

2.3.2 Why Measure?

There are four reasons for measuring software processes, products, and resources

[11]:

• To characterize

They are characterized to gain understanding of processes, products, resources,

and environments, and to establish baselines for comparisons with future

assessments.

• To evaluate

They are evaluated to determine status with respect to plans. Measures are the

sensors that let us know when our projects and processes are drifting off track, so

that we can bring them back under control. We also evaluate to assess

achievement of quality goals and to assess the impacts of technology and process

improvements on products and processes.

• To predict

They are predicted so that we can plan. Measuring for prediction involves gaining

understandings of relationships among processes and products and building

models of these relationships, so that the values we observe for some attributes can

be used to predict others. We do this because we want to establish achievable

goals for cost, schedule, and quality—so that appropriate resources can be applied.

Predictive measures are also the basis for extrapolating trends, so estimates for

cost, time, and quality can be updated based on current evidence. Projections and

 18

estimates based on historical data also help us analyze risks and make design/cost

tradeoffs.

• To improve

They are measured to improve when we gather quantitative information to help us

identify roadblocks, root causes, inefficiencies, and other opportunities for improving

product quality and process performance. Measures also help us plan and track

improvement efforts. Measures of current performance give us baselines to

compare against, so that we can judge whether or not our improvement actions are

working as intended and what the side effects may be. Good measures also help us

communicate goals and convey reasons for improving. This helps engage and

focus the support of those who work within our processes to make them successful.

2.3.3 Measurement Scales And Scale Types

Measurement Scales [20];

Ratio: Numeric data with equal distances corresponding to equal quantities of the

attribute.

Interval: Numeric data with equal distances corresponding to equal quantities of the

attribute.

Ordinal: Observations result in assigning discrete rankings.

Nominal: Observations result in assigning a category or class.

Scale Types;

Discrete or event (attribute):

• Counted and plotted as discrete values

• Possible values are finite over any given interval

Continuous (variable):

• Measured and plotted on a continuous scale

 19

• Can assume all values between any two given values

• Effectively, infinite number of values is possible

Large (discrete) counts may be treated as continuous for many purposes.

2.3.4 Why do we need metrics?

A major percentage of software projects suffer from quality problems. Software

testing provides visibility into product and process quality. Test metrics are key

“facts” that project managers can use to understand their current position and to

prioritize their activities to reduce the risk of schedule over-runs on software

releases.

Test metrics help us to measure our current performance. Because today’s data

becomes tomorrow’s historical data, it is ever too late to start recording key

information on your project. This data can be used to improve future work estimates

and quality levels. Without historical data estimates will just be guesses.

The benefits of having good metrics;

• Test metrics data collection helps predict the long term direction and scope for an

organization and enables a more holistic view of business and identifies high-

level goals.

• Provides a basis for estimation and facilitates planning for closure of the

performance gap.

• Provides a means for control/status reporting.

• Identifies risk areas that require more testing.

• Quickly identifies and helps resolve potential problems and identifies areas of

improvement.

• Test metrics provide an objective measure of the effectiveness and efficiency of

testing.

 20

2.3.5 The Goal/Question/Metric Method (GQM)

The GQM method represents a systematic top-down approach to defining and

collecting measurements, and on the other hand, a bottom-top approach when

analyzing data against stated measurement goals. One of the method’s main aims

to establish a visible link from measurement goals to the data collected. The

underlying idea is to avoid the high risk of wasting resources when measurement

data is collected without an idea of its usage. GQM adapts and integrates

organizational objactives into measurement goals, and refines them into

measureable attributes on a step-by-step basis; therefore, GQM helps to identify the

exact metrics necessary for meeting case-specific objectives.

Figure 9 The activities of a GQM measurement programme [9]

A GQM model is a hierarchical structure as shown in Figure 9. It starts with a goal

specifying purpose of the measurement, object to be measured, issue to be

measured, and viewpoint from which the measure is taken. Objects of

measurement include products, processes, and resources. The goal is refined into

several questions that usually break down the issue into its major components.

Questions try to characterize the object of measurement (product, process, or

resource) with respect to a selected quality issue, and to determine its quality from

the selected viewpoint. Each question is then refined into metrics, either objective or

subjective. Objective metrics include the data that depend only on the object that is

being measured and not on the viewpoint from which they are taken. Subjective

metrics depend on both the object that is being measured and the viewpoint from

which they are taken. The same metric can be used to answer different questions

under the same goal. Several GQM models can have questions and metrics in

common.

The goal-driven measurement process is based on 3 precepts, and it consists of 10

steps [20, 21].

 21

The three precepts are;

• Measurement goals are derived from business goals.

• Evolving mental models provide context and focus.

• GQ(I)M1 translates informal goals into executable measurement structures.

The 10 steps are;

1. Identify your business goals.

2. Identify what you want to know or learn.

3. Identify your subgoals.

4. Identify the entities and attributes related to your subgoals.

5. Formalize your measurement goals.

6. Identify quantifiable questions and the related indicators that you will use to

help you achieve your measurement goals.

7. Identify the data elements that you will collect to construct the indicators

that help answer your questions.

8. Define the measures to be used, and make these definitions operational.

9. Identify the actions that you will take to implement the measures.

10. Prepare a plan for implementing the measures.

GQM is currently the best approach and it has been successfully used in many

software organizations. But due to its shortcomings researches have proposed a

number of improved GQM approaches. One of them is V-GQM that is described

below. Olsson and Runeson [20] present an extended GQM, which they call V-

GQM (Validation Goal Question Metric). The purpose of the V-GQM is to take

unforeseen benefits of the metrics into account and to improve subsequent GQM

studies. When the original GQM stops after the analysis of the gathered data, V-

 22

GQM has three additional steps, which are metric validation, question analysis, and

goal refinement as indicated in Figure 9.

Figure 10 The V-GQM Model

First Step: Goal Definition

Analyze The system test process

For the purpose of improving

With respect to efficiency

From the viewpoint of the system tester

In the context of product XXXXX

Second Step: Defining Questions

Q1. Which is the most effective test technique?

 23

Third Step: Identify Metrics

M1. Test Effectiveness

By creating goals, questions and linking them to metrics, data extraction will be

made in a more structured way: each metric will have a clearly defined purpose and

a traceable dependency to the defined goals. This facilitates making analyses on

the collected data and helps drawing conclusions on improvement suggestions.

2.4 SPC

Statistical process control (SPC) involves using statistical techniques to measure

and analyze the variation in processes [22]. The intent of SPC is to monitor product

quality and maintain processes to fixed targets. Statistical quality control refers to

using statistical techniques for measuring and improving the quality of processes

and includes SPC in addition to other techniques, such as sampling plans,

experimental design, variance reduction, process capability analysis, and process

improvement plans.

SPC is used to monitor the consistency of processes used to generate a product as

designed. It aims to get and keep processes under control. No matter how good or

bad the design, SPC can ensure that the product is being generated as designed

and intended. Thus, SPC will not improve a poorly designed product's reliability, but

can be used to maintain the consistency of how the product is made and, therefore,

of the generated product itself and its as-designed reliability.

A primary tool used for SPC is the control chart, a graphical representation of

certain descriptive statistics for specific quantitative measurements of the

processes. These descriptive statistics are displayed in the control chart in

comparison to their "in-control" sampling distributions. The comparison detects any

unusual variation in the process, which could indicate a problem with the process.

Several different descriptive statistics can be used in control charts and there are

several different types of control charts that can test for different causes, such as

how quickly major vs. minor shifts in process means are detected. Control charts

are also used with product measurements to analyze process capability and for

continuous process improvement efforts.

 24

There is an increased interest in using control charts for monitoring and improving

software processes, particularly quality control processes like reviews and testing.

In a control chart, control limits are established for some attributes and, if any point

falls outside the limits, it is assumed to be due to some special causes that need to

be identified and eliminated. If the control limits are too tight, they may raise too

many false alarms and, if they are too wide, they may miss some special situations

[22].

Control Chart (Figure 11): Control charts are simple statistical analysis tools, which

include upper and lower limits to detect any outliers. They look like run charts, but

with the control limits and center line. They are frequently used in SPC analyses

and described in detail in the following section.

Figure 11 Control Chart Example

The application of SPC by Florac and Carleton [21] is based on the following

general characterization of software process management:

Define the process as,

• Design processes that can meet or support business and technical objectives

• Identify and define the issues, models, and measures that relate to the

performance of the processes

Measuring the process as,

 25

• Collect data that measure the performance of each process

• Analyze the performance of each process

• Retain and use the data as follows: to assess process stability and capability,

to interpret the results of observations and analyses, to predict future costs

and performance, to provide baselines an benchmarks, to plot trends, to

identify opportunities for improvement

Controlling the process as,

• Determine whether or not the process is under control (is stable with respect

to the inherent variability of measured performance)

• Identify performance variations that are caused by process anomalies

(assignable causes)

• Eliminate the sources of assignable causes so as to stabilize the process

Improve the process as,

• Understand the characteristics of existing processes and the factors that

affect process capability

• Plan, justify, and implement actions that modify the processes so as to better

meet business needs

• Assess the impacts and benefits gained, and compare these to the costs of

changes made to the processes

The Florac/Carleton approach [24] is addressed to the beginning of process

measurement and explains the different steps using statistics in the process

measurement, data collection and behaviour description especially.

 26

Figure 12 Florac/Carleton Approach for Process Measurement [24]

There are several methods for performing SPC: Scatter diagrams, run charts, cause

and effect diagrams, histograms, bar charts, pareto charts, and control charts.

Although all of these methods are useful, we will focus this study on control charts.

SPC control charts, if successfully applied, can be a significant impetus for software

process improvement. By knowing our normal process, we can reengineer it to

obtain improvement in some performance aspect. And, by identifying anomalous

behavior, we can seek the special cause (an influence from outside the system) and

take action to prevent it from affecting future performance.

The fundamental idea of process improvement is that as the system is observed

over time, the process decreases its variation and, increasingly, gets closer to

achieving its planned performance objective because of the introduction of

improvements. SPC control charts facilitate this process improvement concept.

Thus, you have the reason why the recently issued Software CMM Integration

(CMMI) has specifically used the words "statistically manage" in its CMMI L4

Process Area, "Quantitative Project Management” [17].

 27

There are seven SPC control chart types, each having a specific application. The

control chart required for our application is termed "Individuals and Moving Range."

Symbolically, it is shown as XmR, where X represents the individual observations,

and mR represents the moving range, the difference between successive

observations. The XmR control chart is used when there is only one measurement

of the variable in an observation period.

For all types of control charts, the control limits establish filtering. The high limit is

plus three sigma from the average of the observations, whereas the low limit is the

average minus three sigma. Sigma is a standard statistical measure of the variation

in the process [25].

 28

3 LITERATURE REVIEW

Coverage Measurement Experience During Function Test [26];

Piwowarski, Ohba, Caruso discussed that measurement of statement and branch

coverage of large system software can be done, and is cost effective in removing

errors and if a good test coverage measurement tool is available, an exit criteria of

unit test can be 100% statement coverage.

Improving State-Based Coverage Criteria Using Data Flow Information [27];

Briand, Labiche, Lin show that data flow information can be used to select the best

transition tree when more than one satisfies the transition tree criterion. They further

propose a more optimal strategy for the transition tree criterion, in terms of cost and

effectiveness. The improved tree strategy is evaluated through the two case studies

and the results suggest that it is a cost-effective strategy that would fit into many

practical situations.

Measurement Issues and Software Testing [28];

Cem Kaner worked on measurement issues to identify the methods used in

software testing.

Data Flow Coverage for Testing Erlang Programs [7];

Manfred Widera’s study concludes that while the proposed data flow oriented

coverage criteria are more complex to check than simple node coverage (especially

they rely on the computation of a flow graph), measurements show that even the

simplest data flow oriented criterion contains significantly more information than

node coverage.

Statistical Process Control: Measuring the Software Process – Statistical

Process Conrol for Software Process Improvement [24];

The Florac/Carleton approach is addressed to the beginning of process

measurement and explains the different steps using statistics in the process

measurement, data collection and behaviour description especially.

 29

Define the processes; design processes that can meet or support business and

technical objectives and identify the issues, models, and measures that relate to the

performance of the processes.

Measure the proceses; collect data that measure the performance of each process

and analyze the performance of each process.

Control the processes; determine whether or not the process is under control (is

stable with respect to the inherent variability of measured performance) and identify

performance variations that are caused by process anomalies (assignable causes).

Control the processes by eliminating the sources of assignable causes.

Improve the processes; understand the characteristics of existing processes and

the factors that affect process capability. Plan, justify, and implement actions that

modify the processes so as to better meet business needs. Assess the impacts and

benefits gained, and compare these to the costs of changes made to the processes.

Statistical Process Control in Software Quality Assurance

W. Steven Demmy’s study [6] shows may SPC techniques be used to improve the

quality and productivity of large-scale software development. He concludes with the

advantages and disadvantages of Software SPC. Process monitoring has two major

advantages compared to the detailed inspection of completed software units. First,

errors may be detected earlier or prevented altogether. Second, less effort may be

required to Successful applications insure that processes are operating discipline.

They require correctly than is required to perform detailed checks on all the outputs

of that process. Thus, higher quality may be achieved at a lower development

expense. Despite the advantages listed above, there are several potential

disadvantages. Successful applications require an organizational climate that

rewards the detection and correction of problems. Once formal process monitoring

has been implemented, failures in discipline, in planning, or in commitment will be

quickly visible. If the organizational climate views problem detection as a means of

assigning blame, rather than of solving problems, attempts to support of the system

will be replaced by attempts at system subversion.

 30

The Florac/Carleton approach [24] is addressed to the beginning of process

measurement and explains the different steps using statistics in the process

measurement, data collection and behaviour description especially.

Niessink and Vliet [29] worked on measurement-based improvement which is

that measurement itself is not a goal, but the goal is organisational, or to solve an

organisational problem. It is assumed that the measurement activities are

performed in combination with improvement activities to reach the goal. The

process starts at the leftmost dot with an organisational problem or a goal. The

organisation analysis the problem and arrive in the middle, with either a solution or

a cause to the problem. If they have enough information to solve the problem they

implement it and arrive at the goal (leftmost dot). If they have not enough

information they need to implement a measurement program or design an

experiment (right dot). Analysing the gathered information takes the organisation

back to the middle with a solution. They then implement the solution and arrive at

the goal (left dot). This model is very simplified and it might be that the organisation

has to loop the right part many times to find a solution.

 31

4 AN ASSESMENT MODEL FOR STATISTICAL PROCESS CONTROL

The assessment approach includes an assessment process that guides the

evaluation, an assessment model that defines assets to evaluate a process and

metrics, and an assessment tool that supports this evaluation [30].

The assessment model aims to test the suitability of a software process and metrics

for quantitative analyses. It investigates two basic requirements for quantitative

implementation: Stratification of process executions and data, and metric and data

utilization for statistical analyses [30, 31].

The assesment model was previously utilized on eight case studies in several

industrial contexts. The assesments were performed retrospectively on past

process executions and data in all case studies. The assessments were performed

by individuals who are software experts. Process performers were the basic

information source while trying to capture contextual information of past process

executions.

4.1 Model Components

The first requirement is the stratification of process executions and data. The

purpose of stratification is to obtain and use data that are representative of the

performance of the process with respect to the issues being studied. If it can be

considered that observations are made under essentially the same conditions and

that differences between the measurements are primarily due to common cause

variation, then the observations are very likely grouped rationally.

Since the sampled process executions as being from a single and constant system

of chance causes, a clustering method was developed based on process attributes

such as inputs, outputs, activities, roles, and tools and techniques. The relation of

these attributes to the process is given in Figure 13. If repetitions of a process show

similarity in terms of these attributes, then it is assumed that the process is

consistently performed among its executions. Process attributes are briefly

described below:

 32

Input: An entity that have been entered into the process or expended in its operation

to achieve one or more outputs. The process has a number of inputs to each

execution.

Output: An entity that have been produced by the process or created in its operation

to satisfy process purpose. The process has a number of outputs from each

execution.

Activity: A distinct step within the process, when completed, supports transformation

of input(s) into output(s) to achieve process purpose. The process has a number of

activities that are carried out within each execution.

Role: The actions assigned to or required of a person or group to carry out the

activities within the process. The process allocates responsibility to a number of

roles that participates in one or more process activities.

Tools and Techniques: An implement used in or a practical method applied to some

particular activity to support its completion. The process holds a number of tools

and techniques that are used in one or more process activities.

Figure 13 Process Attributes used for Stratification

Process consistency is assessed for similarity in process attribute values of process

executions. The attribute values were recorded of each execution on a form, and to

compare the similarity of these recorded values on a matrix. Ideally it is desirable

that the process has a unique version in execution. The idea behind process

 33

consistency assessment as basis for stratification is to identify, if any, these differing

versions of a process in execution.

The second requirement is metric utilization. This includes elaboration of basic

measurement practices as well as metric data existence and characteristics.

Measurement practices should be performed for a specific purpose and, metrics

should be uniquely understood to enable consistent implementation. Unique

understanding (mostly enabled by constructing operational definitions) requires

three criteria: communication, repeatability, and traceability. The traceability

requirement is especially important to assessing and improving process

performance. Because measures of performance can signal process instabilities, it

is important that the context and circumstances of the measurement be recorded.

This helps identifying assignable causes of the instabilities. There are studies that

define procedures for successfully implementing measurement practices and for

incorporating measurement capability into the projects of an organization. The

CMMI for example, introduces Measurement and Analysis process area at maturity

level 2, and recommends practices for defining data collection, storage, analysis,

and reporting. Existence and implementation of these practices can be questioned

for a specific project or organization to determine the utilization of existing metrics

and data. Also, there are high-maturity companies that developed the factors to

consider for measurement evaluation and to determine what measures to select for

their specific use.

To evaluate metric utilization, a number of metric usability attributes were identified,

and developed questionnaires based on these attributes for base and derived

metrics separately. Table 1 lists and explains these attributes. Questionnaires

include a rating system based on the answers of questions, and accordingly,

evaluate the usability of a specific metric for applying SPC. A metric must satisfy the

scale type requirement (absolute or ratio) and have enough data points to use (20

at a minimum) as specified by the first two attributes. Verifiability and dependability

of metric data significantly contribute to the confidence in data analysis results. Data

verifiability is related with the consistency in metric data recording and storage

among executions. Data dependability requires all metric data be recorded as close

to its source with accuracy and precision. The awareness of data collectors on

metric data (why it is collected, how it is utilized, etc.) plays a significant role in data

 34

dependability. The last two attributes, data normalizability and data integrability, are

related with the usefulness of a metric and should be satisfied if we expect SPC

analysis provide more insight for process understanding and improvement.

Table 1 Metric Usability Attributes used for Evaluating Metric Utilization

Metric Usability

Attribute

Explanation

Metric Identity Metric should be identified including entity and attribute to measure;

scale type, unit, formula; and data type and range. Included in the

identity is the scale type of the metric. Nominal and ordinal scale

metrics cannot be used for control charting.

Data Existence For any analysis, there should be measurement data. For control

limits to be calculated reliably there should be at least 20 data points.

Data Verifiability Metric data should be recorded at the same place in the process, by

the same responsible body, and using the same method every time.

Data

Dependability

Metric data should be recorded and stored as it is generated to ensure

accuracy and precision; and be collected for a specific purpose.

Feedback mechanisms should exist and be known by data collectors

regarding data analysis and reporting.

Data

Normalizability

Metric data can be normalized with a parameter or with another

metric. Normalizing metric-A with a parameter-P provides comparable

values of metric-A in terms of the parameter-P. Normalized metrics

provide more insight in terms of statistical analysis (e.g., normalizing

number of defects in a product with product size).

Data

Integrability

Metric data can be integrated at project or organization levels. In

practice, metric data should be integrated from individual level up to

organization level for the results of statistical analysis to be effective

organization-wide.

 35

4.2 Assessment Process

The assessment process to follow when applying the model is given in Figure 14.

Figure 14 The Assessment Process

The first step of the assessment process is reviewing and gathering process data

typically in a data file. Data should be consolidated in time sequence and in a form

that is appropriate for comparison among different projects and product types.

During consolidation, traceability should be established between process

executions and data, typically by giving the same identifier to both. The data of

process executions having missing, incomplete, or invalid data points should be

excluded.

The flow at the left side of the figure is for performing stratification. The values of

process attributes were investigated and identified for process executions by filling

 36

out process execution records. If the study is retrospective then several executions

were sampled from past process performances and fill a record for each. A merged

list of values is built from process attribute values of sampled executions on records

and entered into process similarity matrix for verification against entire set of

process executions. The list on the matrix is extended during verification when a

new value shows up.

If the study is prospective, a process execution record is filled when a new instance

of the process is being executed. This increases the confidence on the values of

process attributes for a process execution. Another difference in a prospective study

is that a process execution questionnaire was completed for each instance of the

process in execution and at the same time a process execution record (not while

searching for the assignable causes later in the process as shown in figure). This

was to capture the external factors affecting the process execution more timely, and

have the chance of identifying likely assignable causes in advance.

The last step of the flow at the left side of Figure 14 as basis for stratification was

identifying initial process clusters and possible merges among them by analyzing

the process similarity matrix.

The flow at the right side of the figure was for evaluating metric utilization. First,

usability of each base metric and then usability of each derived metric is evaluated

by filling a metric usability questionnaire, and calculating regarding metric usability

result.

After initial process clusters were identified and usability of process metrics were

evaluated, the knowledge that is gathered so far was used as well as process data

to finalize process clusters and metrics as basis for control charting. This is where

the flows at left and right sides join in Figure 14. Here initial process clusters and

possible merges were reviewed among them, the number of data points for each

process cluster, and the usability status of process metrics; and the resulting

process cluster-process metric pairs to chart are identified. This model recommends

charting the data for process metrics that are evaluated as “usable” for statistical

analysis; however, it might be a good idea to chart the data for the metrics that are

evaluated as “not usable” to validate (or invalidate) the model’s recommendation. It

 37

is better to review the number of data points per process metric basis since there

may be missing data points.

The data was separately put for process cluster-process metric pairs on control

charts, and watched for the out-of-control points. In a retrospective study, process

execution questionnaire is filled for each out-of-control point to understand the

assignable causes if any. In a prospective study, previously filled process execution

questionnaires were reviewed to understand the assignable causes. Additionally,

performing interviews with process performers was suggested to detect any

reasons for out-of control points, or potential assignable causes that the process

execution questionnaires cannot catch. After removing data points regarding the

assignable causes at each chart, the data was re-charted for each process cluster-

process metric pair and watch if the data on the chart is under control. Here is the

place to judge whether approach helped in starting SPC. If a chart regarding a

process cluster-process metric pair validates the findings of the assessment model,

then SPC monitoring begins for that pair.

4.3 Assessment Assets

The model defines several assets exist for use in the assessment to perform

stratification and to evaluate metric utilization. Process execution record together

with process similarity matrix is utilized to identify process clusters as basis for

stratification. Metric usability questionnaires were used to evaluate metrics’ usability

for SPC, and process execution questionnaire was used to investigate assignable

causes for an out-of-control point on a control chart. The following paragraphs

describe these assets.

Process Execution Record is a form used to capture the instant values of process

attributes for a process execution. Actual values of inputs, outputs, activities, roles,

and tools and techniques for a specific process execution are recorded on the form

(Figure 15). Recorded values were used to identify the merged list of process

attribute values which were entered into Process Similarity Matrix for verification.

 38

Figure 15 Process Execution Record

Process Similarity Matrix is a spreadsheet used to verify process attribute values

against process executions. Process attribute values were recorded into the rows of

the matrix vertically and process execution numbers were recorded into the

columns of the matrix horizontally. By going over process executions, the values of

process attributes were questioned and marked if applicable for each process

execution (Figure 16). The completed matrix helped to see the differences among

process executions in terms of process attribute values, and enabled to identify

stratificated samples of the process executions accordingly.

Figure 16 Process Similarity Matrixes

 39

Metric Usability Questionnaire is a form used to investigate the usability of a

process metric in terms of metric usability attributes. The form has two types, for

base metrics (Figure 17a) and derived metrics (Figure 17b) separately. The form

includes a number of questions as indicators of usability attributes. Answers to

some questions are informative (shaded under “rating” column of MUQ in the

figures) and answers to some are used to rate each usability attribute (expected

answers to such questions are given in the rightmost column of MUQ in the figures).

A metric usability attribute was rated as a corresponding metric usability factor

(MUF) within four ordinal values, based on the answers to its indicators: Fully

satisfied (F: %86-100), Largely satisfied (L: %51-85), Partially satisfied (%16-50),

and Not satisfied (N: %0-15).

(a) Metric Usability Questionnaire

 40

(b) Metric Usability Rating

Figure 17 Metric Usability Questionnaire and Rating for Base Metrics

The values of metric usability factors were formed into a vector and evaluated to

determine the metric usability result. Factor values are evaluated in the order of

criticality of the attributes (1 being the most critical): 1) metric identity, 2) data

existence, 3) data verifiability, and 4) data dependability. The regarding values of

the vector should be at least [F, F, L, L] for a base metric to be usable (vector

values of [F, F, L, P], for example, leads to a result of “not usable”). For a derived

metric, vector values are evaluated together with the values of metric usability

factors 3 and 4 of the base metrics that make up the derived metric. Metric usability

factors of 3 and 4 of the base metrics should have a value of either F or L. A value

of P or N for these attributes of a base metric leads to a result of “not usable” even if

usability factor values of the derived metric satisfy [F, F, L, L]. While coding metric

usability factors 3 and 4 of the base metrics for evaluation of usability of the derived

metric; the lowest ordinal value was taken.

 41

(a) Metric Usability Questionnaire

(b) Metric Usability Rating

Figure 18 Metric Usability Questionnaire and Rating for Derived Metrics

For example, assume that the usability of “defect density” derived metric is

evaluating and rate the attribute values as [F, F, F, L]. If the values of metric

usability factors 3 and 4 of base metric “number of defects” are [F, L], the factors

were coded as “L” (the lowest of [F, L]) as basis for evaluating usability of “defect

density”. Similarly, if the values of metric usability factors 3 and 4 of base metric

“product size” are [L, L], the factors were coded as “L” again (the lowest of [L, L]).

Then, since the metric usability factors of “defect density” are rated as [F, F, F, L]

 42

and the usability ratings for factors 3 and 4 for both base metrics are “L”, it was

concluded that “defect density” derived metric is usable for statistical analysis.

However, if the value of metric usability factor 3 or 4 was P for any of the base

metrics, “defect density” would not be usable for statistical analysis.

Process Execution Questionnaire is a form used to investigate the external

factors that might affect a process execution so that assignable causes exist.

External factors are questioned in terms of changes in process performers, process

environments, and other factors if any (Figure 19). While working retrospectively on

existing process data, this form is used to understand the assignable causes for a

process execution if it led to an out-of-control point. In a prospective study,

however, the form is filled for each instance of the process in execution to identify

the external factors that might be a potential assignable cause.

Figure 19 Process Execution Questionnaires

4.4 An Assessment and Analysis Tool for Statistical Process Control

SPC-AAT has facilities to capture data from outer environment, assess the

suitability of software processes and metrics for SPC, and analyze a software

process with respect to its qualifying metrics using SPC techniques like control

charts, histograms, bar charts, and pareto charts. Accordingly, user interface of the

tool has three main views: Process Data, Assessment, and Process Improvement.

 43

SPC-AAT works integrated with other tools in the environment which hold

measurement data about the processes performed. When measurement data is

imported to SPC-AAT, all necessary assets are created automatically by the tool

before SPC assessment and analysis are started.

The SPC techniques are applied on “process cluster - metric” pairs. A metric value

which is detected as out-of-control point (OCP) according to the tests applied can

be excluded from the analysis via the tool. To exclude an OCP and see related

process execution questionnaire, one just clicks on the point on a control chart.

SPC-AAT also supports what-if analysis for different stratification choices by

merging and splitting current process clusters. As a last thing, SPC assessment and

analysis results can be reported and printed by using the tool [32, 33].

 44

5 CASE STUDY

The project used in this study had been implemented based on the Organization

Software Development Methodology which depends on waterfall model. This

methodology has been generated to cover the goals of CMMI L3 (Figure 20). This

study is about the System Testing phase of the project.

Planning

Requirements

Design

Coding

Testing

Release

Figure 20 Organization Software Development Methodologies

One of the CMMI L3 process areas is Verification and Validation. System Testing is

subject to this area and instructions of the system testing in our organization are

defined below:

The system test design activity can be initiated by the completion of SRS and is

completed before the start date of the system tests. System tester/test team

prepares the system test cases based on the test strategy defined in the Test Plan

and business scenarios/use cases identified in the SRS. System tester/test team

records the system test cases into the requirements management tool and

establishes the traceability between the system test cases and Use cases. The

system test environment is prepared in accordance to the requirements defined in

the Test Plan. System tester/test team ensures that the system test environment is

ready with respect to the system environment requirements defined in the Test

 45

Plan. The system to be tested is integrated and deployed to the system test

environment. System Tester/Test Team perform(s) the system tests according to

the test methods, constraints and validation criteria that are stated in the System

Test Case Document. System Tester/Test Team ensure(s) that the system works

as it is expected in its intended operational environments. System Tester/Test Team

issues the defects that are found in product and product component test and issues

via Configuration Management Tool. At the end of the system test, System

Tester/Test Team update(s) the System Test Case Document or records the results

in the related documents. System Tester/Test Team places the records under

configuration control. System test results are analyzed and recorded periodically

and corrective actions are taken if necessary.

If we look at the purpose of this study, we need to explain which coverage methods

are being used to implement system testing activity. In our organization, path

coverage has been defined, but node coverage has not been defined at system test

level shown in Table 2.

Table 2 The Interpretation of Path and Node Coverage at System Test Level

Path testing

(path coverage)

Independent paths (basis paths) through the control

structure of the operational scenarios are exercised.

Activity diagrams can be used to define the test cases at

system level.

Statement

testing

(statement/

node coverage)

Not applicable at system level

Two case studies were implemented at a project-based working software

organization (referred as organization X in the study) having CMMI L3. System test

 46

process of the project and related metrics of these processes had been worked on.

These metrics were used in the case studies can be seen in Table 3.

The project used here is a large data entry and query system developed on

networked, client/server, server utilizing Java and IBM DB2. The project has two

modules, Data Entry and Reporting. System testing has contained both modules

and these modules were tested together. The project had been developed during 6

months with a staff of 5 with approximately 8,000 lines of code. The project had

achieved L3 in the SW-CMMI, and the organization is pursuing L4. All L4 processes

were installed and conducted on the project during a period of time.

Table 3 Metrics (Base and Derived) used in the Case Studies

Metric Name Description
Number of Test Cases Defined Base Metric
Number of Failed Test Cases Base Metric
Number of Passed Test Cases Base Metric
Functional Size Base Metric
Test Case Execution Time Base Metric
Test Defect Density (# Failed Test Cases / # Test Cases
Defined)

Derived Metric

Test Effectiveness (# Failed Test Cases / Test Case
Execution Time)

Derived Metric

Test Speed (# Test Cases Defined / Test Case Execution
Time)

Derived Metric

For the both case studies described in this study, two coverage methods had

selected to implement. The first method is “Node Coverage” method that there has

been 18 user interfaces, 191 nodes had been tested; and the second one is “Path

Coverage” method that there has been 18 user interfaces, 69 paths and related 297

nodes had been tested and data had been recorded prospectively for both case

studies, Case Study A and Case Study B. Number of node is larger for Path

Coverage case in result of there were duplicated test cases for different paths.

Interface is the unit of measure for both case studies. Test cases are utilized as

data for these interfaces. Test metrics are an important indicator of the

effectiveness of a software testing process. Test metrics that had been defined in

this study were decided in according to section 2.3 of this study. All metrics defined

 47

for the case studies can be seen from Table 3 were collected at interface based

except the “Test Case Execution Time” base metric. Test Case Execution Time

base metric was collected at test case based, then the total time for this metric was

evaluated. Besides, in this study first passes of test cases were evaluated, second

and third passes were not evaluated because of the time constraint caused by the

organization.

Although there is no historical data and ability of the process to generate 20-25

metric data points in the near future [31], in result of this project is a real time

project, executed processes are 18 for each case.

One often assumes that the data are from an approximately normally distributed

population. This is frequently justified by the classical central limit theorem, which

says that sums of many independent, identically-distributed random variables tend

towards the normal distribution as a limit. If that assumption is justified, then about

68 % of the values are within 1 standard deviation of the mean, about 95 % of the

values are within two standard deviations and about 99.7 % lie within 3 standard

deviations [34].

The rules shown in Figure 21 were chosen to be used when detecting Out-of

Control Points.

Figure 21 Rules for Out-of-Control Points

 48

5.1 Case Study A

In the scope of Case Study A, system testing of a real time project was utilized.

Firstly, SRS document was written by the system analyst of the project in April

2007. STC document was written according to SRS document in May 2007 by a

system tester. Test cases were written per user interface defined in the SRS

document. “Node Coverage” method has been implemented to 18 user interfaces,

and 191 nodes were utilized for this case.

SPC assets were used for collecting data in this case. When this case of the study

had started, SPC-AAT was not ready to use. It is aimed to collect data

prospectively, therefore all information were recorded to the forms which were

provided in Appendix A and these information were saved in the folders. After the

SPC-AAT had got ready to utilize, all data were entered to SPC-AAT.

Process attribute values were identified to put on process similarity matrices by

filling process execution records. 191 test case instances were sampled and a

process execution record (completed questionnaires for all metrics identified in

Case Study A are provided in appendix A) was completed for each. The information

on process execution records were provided typical values of process attributes,

and formed an initial base for creation of the similarity matrix. There were 18

process execution records for system test. Completed process similarity matrix for

Inputs, Outputs, Activities, Roles, and Tools & Techniques of all system test

process instances can be seen from Figure 22 to 26.

Figure 22 Similarity Matrixes for Inputs – Case Study A

 49

Figure 23 Similarity Matrixes for Outputs – Case Study A

Figure 24 Similarity Matrixes for Activities – Case Study A

Figure 25 Similarity Matrixes for Roles – Case Study A

 50

Figure 26 Similarity Matrixes for Tools & Techniques – Case Study A

Process similarity matrix for similarity and differences were analyzed in process

executions. After finalizing the matrix, 2 process clusters were labeled A and B as

shown in Figure 27. The number of data points were not enough (at least 20) for

Version A and Version B. Though, we decided to chart data separately for these two

versions to understand the effects of process clustering.

Figure 27 Base Process Clusters for System Test Process

 51

Figure 28 Process Clusters Report

As shown in Figure 29 distances between the process clusters is 2. These

distances are based on Process attributes defined in activities and tools&techniques

of Process Clusters A and B.

Figure 29 Process Cluster Distances & Process Attributes

Create test package activity shown and CA Harvest tool made the difference

between these two clusters shown in Figure 30 and Figure 31.

Figure 30 Process Cluster Distances & Process Attributes

 52

Figure 31 Process Cluster Distances & Process Attributes

After identification of initial process clusters, process metrics were utilized to

evaluate their usability for statistical analysis. Number of test cases defined, test

case execution time, number of passed test cases, number of failed test cases, and

functional size as base metrics were identified. These were the metrics for which

data were available on the tool. From the base metrics, test defect density, test

effectiveness and test speed were identified as derived metrics of the system test

process.

Metric Usability Questionnaire was filled for each base and derived metric from

Questionnaire tab-sheet under Metric Evaluation view (excel sheet was filled before

the tool had been ready to use). Example questionnaire for “Number of Test Cases

Defined” base metric with its info, questionnaire and usability ratings are shown in

Figure 32 (completed questionnaires for all metrics identified in Case Study A are

provided in Appendix C).

 53

(a) General Info Tab

(b) Questionnaire Tab

(c) Usability Rating Tab

Figure 32 Metric Usability Questionnaire and Rating for Number of Test Cases
Defined

 54

The usability status of all base and derived metrics are listed in Figure 33. All the

metrics which were defined at the beginning of this case are usable for the node

coverage method for system testing process and usability states can be seen from

metric usability evaluation report.

Figure 33 Metric Usability Report for Node Coverage Process

Test data for node coverage method used in Case study A was completed in SPC-

AAT as shown in table 34.

Figure 34 Metric Data of Case Study A

 55

SPC tools were applied to the qualified process cluster – derived metric pairs. In

this case (node coverage method), control charts drawn for process clusters -

derived metric pairs are shown in the figures 35 to 37.

(a) Defect Density Metric for Version A-B

(b) Defect Density Metric for Version A (c) Defect Density Metric for Version B

Figure 35 Individuals Charts for Derived Metrics of Test Defect Density for Node
Coverage

As it can be seen from Figure 35, version A indicates the process executions which

do not contain any defected test cases. On the other hand, Version B indicates the

process executions which contain defected test cases. Figures 35(a), 35(b) and

35(c) show that clustering worked well for defect density metric when using in node

coverage method. It is because figure 35(a), version A-B, has one out of control

point; where as figure 35(b), version A, and figure 35(c), version B, have no out of

control points. Mean value of version A is equal to 0 (zero) because of the process

executions of version A did not have failed test cases.

 56

(a) Test Effectiveness Metric for Version A-B

 (b)Test Eff. Metric for Version A (c)Test Eff. Metric for Version B

Figure 36 Individuals Charts for Derived Metrics of Test Effectiveness for Node
Coverage

When looking at the figure 36(a) version A-B distribution by Test Effectiveness

metric, there are two out of control points; where as figure 36(b), version A, and

figure 36(c), version B, have no out of control points. Version A (36(b)) indicates the

process executions which do not contain any defected test cases. On the other

hand, Version B (36(c)) indicates the process executions which contain defective

test cases. Clustering here identified and classified process executions on the basis

of the similarity of the characteristics they possess. Figures 36(a), 36(b) and 36(c)

show that clustering worked well for test effectiveness metric when using in node

coverage method. Mean value of version A is equal to 0 (zero) because of the

process executins of version A did not have failed test cases.

 57

(a) Test Speed Metric for Version A-B

 (b) Test Speed Metric for Version A (c) Test Speed Metric for Version B

Figure 37 Individuals Charts for Derived Metrics of Test Speed for Node Coverage

For node covarage method, test speed metric for all versions is under control can

be seen in figures 37(a), 37(b) and 37(c). It can be said that test speed values

calculated for this case are stable. The mean value of test speed for version A was

lower than the mean value of test speed for version B, because number of defined

test cases have a direct ratio with test speed derived metric. Nevertheless number

of test cases defined for version A are higher than number of test cases defined for

version B. Besides figure 37 shows that clustering does not have remarkable effect

on test speed metric when using in node coverage method. A comparison of control

charts of derived metrics between Case A and Case B (that is, between node

coverage and path coverage system testing techniques) is provided in the

discussion section 6.1.

 58

5.2 Case Study B

In this case, system testing of a real time project was implemented. Firstly, SRS

document was written by the system analyst of the project in April 2007. STC

document was written by the system tester according to SRS document in May

2007. Test cases were written per user interface defined in the SRS document.

“Path Coverage” method has been implemented to 18 user interfaces, 69 paths,

and 297 nodes in this case.

SPC-AAT tool was utilized for collecting data in this case. When this case was

started to work, SPC-AAT was ready to use. Therefore all data were entered to

SPC-AAT and Statistical Software tool (Minitab) was utilized for statistical analyses.

Process attribute values were identified to put on process similarity matrices by

filling process execution records. For the path coverage case, 297 test case

instances were sampled and process execution record (completed questionnaires

for all metrics identified in Case Study B are also provided in appendix A) was

completed for each. The information on process execution records provided typical

values of process attributes, and formed an initial base for creation of the similarity

matrix. There were 18 process execution records for system test path coverage

method. Completed process similarity matrix for Inputs, Outputs, Activities, Roles,

and Tools & Techniques of all system test process instances can be seen from

Figure 38 to 42.

Figure 38 Process Similarity Matrixes for Inputs – Case Study B

 59

Figure 39 Process Similarity Matrixes for Outputs – Case Study B

Figure 40 Process Similarity Matrixes for Activities – Case Study B

Figure 41 Process Similarity Matrixes for Roles – Case Study B

 60

Figure 42 Process Similarity Matrixes for Tools and Techniques – Case Study B

Process similarity matrix for similarity and differences were analyzed in process

executions for Case Study B. After finalizing the matrix, 2 process clusters labeled A

and B as shown in Figure 43. The number of data points was not enough (at least

20) for Version A and Version B. Though, it is decided to chart data separately for

these two versions to understand the effects of process clustering.

Figure 43 Base Process Clusters for System Test Process – Case Study B

Figure 44 Process Clusters Report – Case Study B

 61

As shown in Figure 45 distance between the process clusters is 2. This distance is

based on Process attributes defined in activities and tools&techniques of Process

Clusters A and B.

Figure 45 Process Cluster Distances & Process Attributes

Create test package activity shown in Figure and CA Harvest tool caused the

difference between these two clusters shown in Figure 46 and Figure 47.

Figure 46 Process Cluster Distances & Process Attributes

Figure 47 Process Cluster Distances & Process Attributes

 62

After identification of initial process clusters, process metrics were utilized to

evaluate their usability for statistical analysis. Number of test cases defined, test

case execution time, number of passed test cases, number of failed test cases, and

functional size as base metrics were identified. These were the metrics for which

data was available on the tool. From the base metrics, test defect density, test

effectiveness and test speed derived metrics were identified for the system test

process.

Metric Usability Questionnaires was filled for each base and derived metric from

Questionnaire tab-sheet under Metric Evaluation view. Example questionnaire for

“Number of Test Cases Defined” base metric with its info, questionnaire and

usability ratings given are shown in Figure 48 (completed questionnaires for all

metrics identified in Case Study B are provided in Appendix C).

(a) General Info Tab

 63

(b) Questionnaire Tab

(c) Usability Rating Tab

Figure 48 Metric Usability Questionnaire and Rating for Total Number of Test Cases
Defined for System Testing Process

The usability status of all base and derived metrics are listed in Figure 49. All the

metrics defined at the beginning of this case are usable for the path coverage

method for system testing process and usability states can be seen from metric

usability evaluation report.

 64

Figure 49 Metric Usability Evaluation Report – Case Study B

Test data for path coverage method used in Case study B was completed in SPC-

AAT as shown in table 50.

Figure 50 Metric Data of Case Study B

SPC tools were applied to the qualified process cluster – derived metric pairs. In

this case (path coverage method), control charts drawn for process cluster –

derived metric pairs are shown in the figures 51 to 53.

 65

(a) Defect Density Metric for Version A-B

 (b) Defect Density Metric for Version A (c) Defect Density Metric for Version B

Figure 51 Individuals Charts for Derived Metrics of Test Defect Density for Path
Coverage

As it can be seen from Figure 51, version A indicates the process executions which

do not contain any defected test cases. On the other hand, Version B indicates the

process executions which contain defected test cases. Figures 51(a), 51(b) and

51(c) show that clustering does not have remarkable effect on defect density metric

when using in path coverage method. It is because figure 51(a), version A-B, and

figure 51(c), version B have no out of control points. For path covarage method, test

defect density for version A-B, version A and version B is under control and the

values are stable can be seen in Figure 51(a), 51(b), 51(c). Mean value of version A

is equal to 0 (zero) because of the process executions of version A did not have

failed test cases.

 66

(a) Test Effectiveness Metric for Version A-B

 (b) Test Eff. Metric for Version A (c) Test Eff. Metric for Version B

Figure 52 Individuals Charts for Derived Metrics of Test Effectiveness for Path
Coverage

When looking at the figure 52(a) version A-B, figure 52(b), version A, and figure

52(c), version B distribution by Test Effectiveness metric, there are no out of control

points. Version A (52(b)) indicates the process executions which do not contain any

defected test cases. On the other hand, Version B (52(c)) indicates the process

executions which contain defected test cases. Clustering here identified and

classified process executions on the basis of the similarity of the characteristics they

possess. Figures 52(a), 52(b) and 52(c) that clustering does not have remarkable

effect on defect density metric when using in path coverage method. Mean value of

version A is equal to 0 (zero) because of the process executions of version A did

not have failed test cases. Test execution indicates high fail rate at process

 67

execution #9, #16 and then sharp decrease at operation #12, #17 in result of failed

test case number is greater in process execution #12 and #17.

(a) Test Speed Metric for Version A-B

 (b) Test Speed Metric for Version A (c) Test Speed Metric for Version B

Figure 53 Individuals Charts for Derived Metrics of Test Speed for Path Coverage

For node covarage method, test speed metric for all versions is under control can

be seen in figures 53(a), 53(b) and 53(c). It can be said that test speed values

calculated for this case are stable. The mean value of test speed for version A was

lower than the mean value of test speed for version B, because number of test

cases defined for version A are higher than number of test cases defined for version

B; although number of interfaces are less in version A.

A comparison of control charts of derived metrics between Case A and Case B (that

is, between node coverage and path coverage system testing techniques) is

provided in the next section.

 68

6 SUMMARY AND CONCLUSIONS

6.1 Discussion on Case Study Results

Establishing control limits on derived metrics provides an organization the ability to

predict the metrics that will be inserted into project work products, based on work

product size. The use of a standard organizational software development determine

readiness to move from one development stage to the next, and to predict future

rework costs.

In this section, derived metrics were compared for the versions (A and B) seperately

and merged clusters (A-B). One of the objective of this discussion was to

understand if merging had positive or negative effects on the clusters. Derived

metrics were also compared between node coverage and test coverage testing

techniques, because another objective is to derive suggestions on which testing

technique would be effective under specific circumstances. Negative values on

derived metrics axis were not significant in result of 3 standard deviation of the

mean had been implemented.

One of the variable could be utilized in these analyses are coefficient of variation

(CV) which is a statistic that tells you how tightly all the various examples are

clustered around the mean in a set of data.

Table 4 Comparison of Test Methods by Coefficient of Variation Values on the
Basis of Clusters

Node Coverage (CV)

Path Coverage (CV)

Derived
Metric
(CV)

A_B A B A_B A B

DD

1,6949 0,00 0,7197 1,1454 0,00 0,8176

TE

1,9937 0,00 0,9951 0,9888 0,00 0,6493

TS

0,3803 0,4088 0,3237 0,2074 0,2318 0,2049

 69

In probability theory and statistics, the coefficient of variation (CV) is a measure of

dispersion of a probability distribution. It is defined as the ratio of the standard

deviation to the mean [34].

The coefficient of variation of the node coverage is greater than coefficient of

variation of the path coverage except for test speed derived metric. The standard

deviation of a normal distribution is equal to its mean, so its coefficient of variation is

equal to mean values. Distributions with CV < µ are considered low-variance, while

those with CV > µ are considered high-variance. Test defect density, test

effectiveness and test speed derived metrics for both coverage techniques are

considered high-variance except test speed derived metric of the path coverage

tecnique. It is considered low-variance as can be seen from Table 4.

The other variable utilized in this study is mean (µ) which is the sum of a list of data,

divided by the total number of numbers in the data. Data analyzed in this study

represents population which contains all data from test cases. If sample data was

using, it would be possible to do hypothesis testing with the help of 2-Sample t to

analyze the mean values with the standard deviations of this data. As a result,

analyzing only mean values is significant for this study because of having

population data. The comparison of control charts of derived metrics between Case

A and Case B are demonstrated in Table 5.

Table 5 Comparison of Test Methods by Mean Values on the Basis of Clusters

Node Coverage (µ)

Path Coverage (µ)

Derived
Metric
(µ)

A_B A B A_B A B

Defect
Density

0,1260 0,0000 0,3240 0,0941 0,0000 0,1303

Test
Effectiveness

0,0337 0,0000 0,0867 0,0316 0,0000 0,0437

Test
Speed

0,2837 0,2565 0,3264 0,3710 0,3544 0,3773

 70

According to analysis of table 5, the path coverage and the node coverage methods

in basis of clustering, it can be clearly seen that clustering is a good way to analyze

with statistical methods based on test defect density, test effectiveness and test

speed derived metrics. Therefore it can be stated the case studies that were worked

on confirmed the SPC-AM. When looking at the Table 5, mean values of each

cluster can be analyzed by means of both test techniques. The result of this cluster

analysis is a number of heterogeneous versions with homogeneous contents which

means that there are substantial differences between the versions, but the

individuals within a single version are similar. Firstly, if defect density derived metric

is analyzed for case studies A and B, it can be said that there had been found out

more defects by doing system testing with node coverage technique than path

coverage technique. Secondly, test effectiveness of node coverage is more than

test effectiveness of path coverage. It can be said that node coverage is more

effective technique than path coverage by looking at the mean values. Thirdly, by

means of test speed derived metric, although number of test cases defined for path

coverage technique are more than number of test cases defined for node coverage

technique, test speed mean value of path coverage technique is greater than test

speed mean value of node coverage technique. Using path coverage technique is

less time consuming when performing the system testing.

6.2 Summary and Conclusion

Statistical Process Control (SPC) aims at quality improvement through reduction of

variation. The best known tool of SPC is the control chart. After many experinces,

the control charts have turned up to be a successful practical technique for

monitoring process measurements.

A prospective study had been recently initiated on qualification test process for two

case studies in this study. This study was performed to help the improvement of

prospective studies will better capture information of process executions and data.

For each of the case studies, different versions of processes (process clusters)

were identified, evaluated the usability of process metrics and performed SPC

analysis for the suitable process clusters and metrics. Node coverage method and

path coverage method were utilized of a project at the same organization. The

 71

organization at which case studies were performed is a software development

organization having CMMI L3. In the first case, utilization of node coverage, base

and derived metrics of system testing process were investigated. In the second

case, utilization of path coverage and same metrics of node coverage process of

the project were investigated. It was observed that the identification of process

clusters is closely related to the purpose of quantitative analysis. In this study, the

purpose was to understand qualification test process performance and the identified

clusters were merged in such a way that the there will be no difference in testing

practices in execution.

In this study, SPC - AM was used in order to test the suitability of SPC for the

qualification test process and the metrics. With the help of Statistical Software tool

(MINITAB), refining the product quality, improving process capability and managing

projects have become pretty easy to control. The SPC–AM simply describes the

way of understanding the context for identifying samples of process executions,

identifying metrics for statistical analysis and also for the generated process data.

There were number of constraints related to the case studies and their applications.

The first one was number of process executions for both case studies were less

than the expectation of the assessment model. The clusters were merged to utilize

these process executions. This was helpful to understand the benefit of merging

these process executions. Second, however there were nearly 200 data points for

each of case studies, metrics could just utilized on the interface based except the

“test execution time” base metric. After having collected, test execution time was

summed for each interface.

For qualification test (case study-A and case study-B), process clusters were

identified for each of these two cases and all process metrics were evaluated as

“largely usable” for statistical analysis. After control charting the data, it is observed

that process clusters were under control with respect to the derived metrics of

software test process for both case studies. If there is not adequate time to test all

of the nodes that are covered by the test cases, path coverage method is a better

way to find the failed functions in the system. Besides, second and third passes of

these test cases should be evaluated to make consistent analyses for node

coverage model.

 72

According to analysis of table 5, the path coverage and the node coverage methods

by mean values in basis of clustering, it can be clearly seen that clustering is a good

way to analyze with statistical methods based on test defect density, test

effectiveness and test speed metrics. Therefore it can be stated the case studies

that were worked on confirmed the SPC-AM. The suggestions of this study are: 1.

More test cases should be written to find out clearer analyses results and 2. Path

coverage method for system testing should be preferred if there is time constraint

on the system testing phase.

MINITAB Statistical Software tool was used to extract control charts in result of

SPC-AAT was not beneficial enough to extract control charts in detail of having

some information about statistical methods. On the other hand SPC-AAT reduced

the time required for statistical analysis by providing a focal point to analyze the

metric data besides collecting, organizing and assessing.

SPC-AAT was successful to ease rational sampling process. The attributes of

process executions (inputs, outputs, activities, roles, tools & techniques) were

entered and SPC-AAT automatically identified the process clusters.

SPC-AAT enhanced defining derived metrics and reduced the time required for

calculation. Defining new derived metrics by using existing base or derived metrics

was easy. New metrics were defined by just typing the name and the formula of the

new derived metric and SPC-AAT calculated metric values for all process

executions automatically.

It is obvious that the use of SPC (control charts) and other statistical methods can

easily and effectively be used in a software testing in case studies implemented in

this study. SPC can identify undesirable trends and can point out fixable problems

and potential process improvements. Control charts can show the capability of the

process, so achievable goals can be set. They can provide evidence of process

stability, which can justify predicting process performance. SPC analysis can

provide valuable information used in defect prevention and for lessons learned.

SPC is relatively new to software development but after working on this study our

observation is that SPC can support software process improvement and improve

the quality of software products.

 73

REFERENCES

[1] CAIVANO, D., Software Maintenance and Reengineering, 2005. CSMR 2005.

Ninth European Conference on Volume , Issue , 21-23 March 2005 Page(s):

288 – 293.

[2] ROBESON, K., PROBERT, R. L., CHEN, Y., Effective Test Metrics for Test

Strategy Evolution.

[3] OLSSON, F., LUDBERG, H., 2003. Automated Module Testing of Embedded

Software Systems. Lund University.

[4] SEDIGH, S., GHAFOOR, A., GHAFOOR, A., 2002. Temporal Modeling of

Software Test Coverage. 26 th Annual International Computer Software and

Applications Conference.

[5] DUMKE, R., BRAUNGARTEN, R., BLAZEY, M., HEGEWALD, H., REITZ, D.,

RICHTER, K., 2006. Software Process Measurement and Control. Otto-von-

Guericke University.

[6] DEMMY, W. S., PETRINI, A. B., Statistical Process Control In Software Quality

Assurance.

[7] WIDARA, M., Data Flow Coverage for Testing Erlang Programs, pp. 151-166.

[8] Wang, Y., King, G., 2000. Software Engineering Processes – Principles and

Applications. CRC Press, Boca Raton London New York.

[9] GRESSE, C., HOISLE, B., WÜRST, J., 1995. A process model for GQM-Based

Measurement, STTI Report , University of Kaiserslautern, s.229.

[10] LEWIS, R. O., Independent Verification and Validation, IEEE Transactions on

Vehicular Technology, vol.40, no.4, s.708-713, 1991.

[11] FLORAC, W. A., PARK, R. E., CARLETON, A. D., 1997. Practical Software

Measurement: Measuring for Process Management and Improvement.

[12] PUSALA, R., 2006. Operational Excellence through Efficicient Software Testing

Metrics.

 74

[13] YU, Y. T., TANG, S. F., POON, P. L., CHEN, T. Y., 2001. “A study on a path-

based strategy for selecting black-box generated test cases, International

Journal of Software Engineering and Knowledge Engineering.

[14] KRISHNAMURTHY, S., and MATHUR, A.P., 1997. On the Estimation of

Reliability of a Software System Using Reliabilities of its Components,

Proceedings 8th International Symposium of Software Reliability Engineering

(ISSRE), pp. 146-155.

[15] Carleton, A. D., Paulk, M. C., 1997. Statistical Process Control (SPC) for

Software.

[16] Sommerville, I. , 2001. Software Engineering, sixth edition, Pearson Education,

Essex.

[17] CMU/SEI, Capability Maturity Model Integration – Version 1.1. Technical Report

(Continuous: CMU/SEI-2002-TR-001, Staged: CMU/SEI-2002-TR-002),

December 2001.

[18] FENTON, N. E., 1991. Software Metrics: A Rigorous Approach. London:

Chapman & Hall.

[19] http://www.micquality.com/six_sigma_glossary/measurement_scales.htm

[20] OLSSON, T., RUNESON, P., 2001. V-GQM: A Feed-Back Approach to

Validation of a GQM Study, Metrics ’01 - International Software Metrics

Symposium.

[21] PARK, R. E., GOETHERT, W. B., FLORAC, W. A., 1996. Goal Driven Software

Measurement, Software Engineering Institute, Carnegie Mellon University.

[22] Montgomery, D. C., Introduction to Statistical Quality Control, 4th Edition.

Arizona State University.

[23] JALOTE, P., SAXENA, A, 2002. Optimum Control Limits for Employing

Statistical Process Control in Software Process. IEEE Transactions on

Software Engineering Volume 28, s: 1126 – 1134.

 75

[24] FLORAC, W. A., CARLETON, A. D., 1999. Measuring the Software Process –

Statistical Process Conrol for Software Process Improvement.

[25] LIPKE, W., 2002. "Statistical Process Control of Project Performance."

CrossTalk.

[26] PIWOWARSKI, P., MITSURU O., CARUSO, J., Coverage Measurement

Experience During Function Test, International Business Machines

Corporation.

[27] BRIAND, L.C., LABICHE, Y., 2004. Improving State-Based Coverage Criteria

Using Data Flow Information, Carleton University.

[28] KANER, C., 2001. Measurement Issues and Software Testing. Florida

Instıtude of Technology.

[29] NIESSINK, F., VLIET, H., 2001. Measurement Program Success Factors

Revisited. Information and Software Technology, Volume 43.

[30] TARHAN ,A., DEMİRÖRS, O., Assessment of Software Process and Metrics

to Support Quantitative Understanding.

[31] TARHAN ,A., An assessment model for the applicability of statistical process

control for software processes, 2006.

[32] KIRBA(, S., TARHAN, A., DEMİRÖRS, O., An Assessment and Analysis Tool

for Statistical Process Control of Software Processes.

[33] KIRBA(, S., An assessment and analysis tool for statistical process control of

software processes, 2007.

[34] http://en.wikipedia.org/wiki/Coefficient_of_variation

APPENDICES

A. SPC-AM ASSETS

Figure 1 Process Execution Record

Figure 2 Process Execution Questionnaire

Figure 3 Process Similarity Matrix

Figure 4 Metric Usability Questionnaire for Base Metrics

Figure 5 Metric Usability Questionnaire for Derived Metrics

B. DETAILS OF CASE STUDIES A, B

SPC-AM Assets

Process Execution Records of Case Study A

Figure 6 Process Execution Record of Process Execution #1

Figure 7 Process Execution Record of Process Execution #1

Figure 8 Process Execution Record of Process Execution #1

Figure 9 Process Execution Record of Process Execution #1

Figure 10 Process Execution Record of Process Execution #1

Figure 11 Process Execution Record of Process Execution #2

Figure 12 Process Execution Record of Process Execution #2

Figure 13 Process Execution Record of Process Execution #2

Figure 14 Process Execution Record of Process Execution #2

Figure 15 Process Execution Record of Process Execution #2

Figure 16 Process Execution Record of Process Execution #2

Figure 17 Process Execution Record of Process Execution #3

Figure 18 Process Execution Record of Process Execution #3

Figure 19 Process Execution Record of Process Execution #3

Figure 20 Process Execution Record of Process Execution #3

Figure 21 Process Execution Record of Process Execution #3

Figure 22 Process Execution Record of Process Execution #3

Figure 23 Process Execution Record of Process Execution #4

Figure 24 Process Execution Record of Process Execution #4

Figure 25 Process Execution Record of Process Execution #4

Figure 26 Process Execution Record of Process Execution #4

Figure 27 Process Execution Record of Process Execution #4

Figure 28 Process Execution Record of Process Execution #4

Figure 29 Process Execution Record of Process Execution #5

Figure 30 Process Execution Record of Process Execution #5

Figure 31 Process Execution Record of Process Execution #5

Figure 32 Process Execution Record of Process Execution #5

Figure 33 Process Execution Record of Process Execution #5

Figure 34 Process Execution Record of Process Execution #5

Figure 35 Process Execution Record of Process Execution #6

Figure 36 Process Execution Record of Process Execution #6

Figure 37 Process Execution Record of Process Execution #6

Figure 38 Process Execution Record of Process Execution #6

Figure 39 Process Execution Record of Process Execution #6

Figure 40 Process Execution Record of Process Execution #6

Figure 41 Process Execution Record of Process Execution #7

Figure 42 Process Execution Record of Process Execution #7

Figure 43 Process Execution Record of Process Execution #7

Figure 44 Process Execution Record of Process Execution #7

Figure 45 Process Execution Record of Process Execution #7

Figure 46 Process Execution Record of Process Execution #7

Figure 47 Process Execution Record of Process Execution #8

Figure 48 Process Execution Record of Process Execution #8

Figure 49 Process Execution Record of Process Execution #8

Figure 50 Process Execution Record of Process Execution #8

Figure 51 Process Execution Record of Process Execution #8

Figure 52 Process Execution Record of Process Execution #8

Figure 53 Process Execution Record of Process Execution #9

Figure 54 Process Execution Record of Process Execution #9

Figure 55 Process Execution Record of Process Execution #9

Figure 56 Process Execution Record of Process Execution #9

Figure 57 Process Execution Record of Process Execution #9

Figure 58 Process Execution Record of Process Execution #9

Figure 59 Process Execution Record of Process Execution #10

Figure 60 Process Execution Record of Process Execution #10

Figure 61 Process Execution Record of Process Execution #10

Figure 62 Process Execution Record of Process Execution #10

Figure 63 Process Execution Record of Process Execution #10

Figure 64 Process Execution Record of Process Execution #10

Figure 65 Process Execution Record of Process Execution #11

Figure 66 Process Execution Record of Process Execution #11

Figure 67 Process Execution Record of Process Execution #11

Figure 68 Process Execution Record of Process Execution #11

Figure 69 Process Execution Record of Process Execution #11

Figure 70 Process Execution Record of Process Execution #11

Figure 71 Process Execution Record of Process Execution #12

Figure 72 Process Execution Record of Process Execution #12

Figure 73 Process Execution Record of Process Execution #12

Figure 74 Process Execution Record of Process Execution #12

Figure 75 Process Execution Record of Process Execution #12

Figure 76 Process Execution Record of Process Execution #12

Figure 77 Process Execution Record of Process Execution #13

Figure 78 Process Execution Record of Process Execution #13

Figure 79 Process Execution Record of Process Execution #13

Figure 80 Process Execution Record of Process Execution #13

Figure 81 Process Execution Record of Process Execution #13

Figure 82 Process Execution Record of Process Execution #13

Figure 83 Process Execution Record of Process Execution #14

Figure 84 Process Execution Record of Process Execution #14

Figure 85 Process Execution Record of Process Execution #14

Figure 86 Process Execution Record of Process Execution #14

Figure 87 Process Execution Record of Process Execution #14

Figure 88 Process Execution Record of Process Execution #14

Figure 89 Process Execution Record of Process Execution #15

Figure 90 Process Execution Record of Process Execution #15

Figure 91 Process Execution Record of Process Execution #15

Figure 92 Process Execution Record of Process Execution #15

Figure 93 Process Execution Record of Process Execution #15

Figure 94 Process Execution Record of Process Execution #15

Figure 95 Process Execution Record of Process Execution #16

Figure 96 Process Execution Record of Process Execution #16

Figure 97 Process Execution Record of Process Execution #16

Figure 98 Process Execution Record of Process Execution #16

Figure 99 Process Execution Record of Process Execution #16

Figure 100 Process Execution Record of Process Execution #16

Figure 101 Process Execution Record of Process Execution #17

Figure 102 Process Execution Record of Process Execution #17

Figure 103 Process Execution Record of Process Execution #17

Figure 104 Process Execution Record of Process Execution #17

Figure 105 Process Execution Record of Process Execution #17

Figure 106 Process Execution Record of Process Execution #17

Figure 107 Process Execution Record of Process Execution #18

Figure 108 Process Execution Record of Process Execution #18

Figure 109 Process Execution Record of Process Execution #18

Figure 110 Process Execution Record of Process Execution #18

Figure 111 Process Execution Record of Process Execution #18

Figure 112 Process Execution Record of Process Execution #18

Process Execution Records of Case Study B

Figure 113 Process Execution Record of Process Execution #1

Figure 114 Process Execution Record of Process Execution #1

Figure 115 Process Execution Record of Process Execution #1

Figure 116 Process Execution Record of Process Execution #1

Figure 117 Process Execution Record of Process Execution #1

Figure 118 Process Execution Record of Process Execution #1

Figure 119 Process Execution Record of Process Execution #2

Figure 120 Process Execution Record of Process Execution #2

Figure 121 Process Execution Record of Process Execution #2

Figure 122 Process Execution Record of Process Execution #2

Figure 123 Process Execution Record of Process Execution #2

Figure 124 Process Execution Record of Process Execution #2

Figure 125 Process Execution Record of Process Execution #3

Figure 126 Process Execution Record of Process Execution #3

Figure 127 Process Execution Record of Process Execution #3

Figure 128 Process Execution Record of Process Execution #3

Figure 129 Process Execution Record of Process Execution #3

Figure 130 Process Execution Record of Process Execution #3

Figure 131 Process Execution Record of Process Execution #4

Figure 132 Process Execution Record of Process Execution #4

Figure 133 Process Execution Record of Process Execution #4

Figure 134 Process Execution Record of Process Execution #4

Figure 135 Process Execution Record of Process Execution #4

Figure 136 Process Execution Record of Process Execution #4

Figure 137 Process Execution Record of Process Execution #5

Figure 138 Process Execution Record of Process Execution #5

Figure 139 Process Execution Record of Process Execution #5

Figure 140 Process Execution Record of Process Execution #5

Figure 141 Process Execution Record of Process Execution #5

Figure 142 Process Execution Record of Process Execution #5

Figure 143 Process Execution Record of Process Execution #6

Figure 144 Process Execution Record of Process Execution #6

Figure 145 Process Execution Record of Process Execution #6

Figure 146 Process Execution Record of Process Execution #6

Figure 147 Process Execution Record of Process Execution #6

Figure 148 Process Execution Record of Process Execution #6

Figure 149 Process Execution Record of Process Execution #7

Figure 150 Process Execution Record of Process Execution #7

Figure 151 Process Execution Record of Process Execution #7

Figure 152 Process Execution Record of Process Execution #7

Figure 153 Process Execution Record of Process Execution #7

Figure 154 Process Execution Record of Process Execution #7

Figure 155 Process Execution Record of Process Execution #8

Figure 156 Process Execution Record of Process Execution #8

Figure 157 Process Execution Record of Process Execution #8

Figure 158 Process Execution Record of Process Execution #8

Figure 159 Process Execution Record of Process Execution #8

Figure 160 Process Execution Record of Process Execution #8

Figure 161 Process Execution Record of Process Execution #9

Figure 162 Process Execution Record of Process Execution #9

Figure 163 Process Execution Record of Process Execution #9

Figure 164 Process Execution Record of Process Execution #9

Figure 165 Process Execution Record of Process Execution #9

Figure 166 Process Execution Record of Process Execution #9

Figure 167 Process Execution Record of Process Execution #10

Figure 168 Process Execution Record of Process Execution #10

Figure 169 Process Execution Record of Process Execution #10

Figure 170 Process Execution Record of Process Execution #10

Figure 171 Process Execution Record of Process Execution #10

Figure 172 Process Execution Record of Process Execution #10

Figure 173 Process Execution Record of Process Execution #11

Figure 174 Process Execution Record of Process Execution #11

Figure 175 Process Execution Record of Process Execution #11

Figure 176 Process Execution Record of Process Execution #11

Figure 177 Process Execution Record of Process Execution #11

Figure 178 Process Execution Record of Process Execution #11

Figure 179 Process Execution Record of Process Execution #12

Figure 180 Process Execution Record of Process Execution #12

Figure 181 Process Execution Record of Process Execution #12

Figure 182 Process Execution Record of Process Execution #12

Figure 183 Process Execution Record of Process Execution #12

Figure 184 Process Execution Record of Process Execution #12

Figure 185 Process Execution Record of Process Execution #12

Figure 186 Process Execution Record of Process Execution #13

Figure 187 Process Execution Record of Process Execution #13

Figure 188 Process Execution Record of Process Execution #13

Figure 189 Process Execution Record of Process Execution #13

Figure 190 Process Execution Record of Process Execution #13

Figure 191 Process Execution Record of Process Execution #14

Figure 192 Process Execution Record of Process Execution #14

Figure 193 Process Execution Record of Process Execution #14

Figure 194 Process Execution Record of Process Execution #14

Figure 195 Process Execution Record of Process Execution #14

Figure 196 Process Execution Record of Process Execution #14

Figure 197 Process Execution Record of Process Execution #15

Figure 198 Process Execution Record of Process Execution #15

Figure 199 Process Execution Record of Process Execution #15

Figure 200 Process Execution Record of Process Execution #15

Figure 201 Process Execution Record of Process Execution #15

Figure 202 Process Execution Record of Process Execution #15

Figure 203 Process Execution Record of Process Execution #16

Figure 204 Process Execution Record of Process Execution #16

Figure 205 Process Execution Record of Process Execution #16

Figure 206 Process Execution Record of Process Execution #16

Figure 207 Process Execution Record of Process Execution #16

Figure 208 Process Execution Record of Process Execution #16

Figure 209 Process Execution Record of Process Execution #17

Figure 210 Process Execution Record of Process Execution #17

Figure 211 Process Execution Record of Process Execution #17

Figure 212 Process Execution Record of Process Execution #17

Figure 213 Process Execution Record of Process Execution #17

Figure 214 Process Execution Record of Process Execution #17

Figure 215 Process Execution Record of Process Execution #17

Figure 216 Process Execution Record of Process Execution #18

Figure 217 Process Execution Record of Process Execution #18

Figure 218 Process Execution Record of Process Execution #18

Figure 219 Process Execution Record of Process Execution #18

C. METRIC USABILITY QUESTIONNAIRES OF CASE STUDIES A, B

SPC-AM Assets

Metric Usability Questionnaires of Case Study A

Figure 220 Metric Usability Questionnaire of “# Test Cases” Base Metric

Figure 221 Metric Usability Questionnaire of “# Test Cases” Base Metric

Figure 222 Metric Usability Questionnaire of “# Test Cases” Base Metric

Figure 223 Metric Usability Questionnaire of “Test Case Execution Time” Base Metric

Figure 224 Metric Usability Questionnaire of “Test Case Execution Time” Base Metric

Figure 225 Metric Usability Questionnaire of “Test Case Execution Time” Base Metric

Figure 226 Metric Usability Questionnaire of “# Passed Test Cases” Base Metric

Figure 227 Metric Usability Questionnaire of “# Passed Test Cases” Base Metric

Figure 228 Metric Usability Questionnaire of “# Passed Test Cases” Base Metric

Figure 229 Metric Usability Questionnaire of “# Failed Test Cases” Base Metric

Figure 230 Metric Usability Questionnaire of “# Failed Test Cases” Base Metric

Figure 231 Metric Usability Questionnaire of “# Failed Test Cases” Base Metric

Figure 232 Metric Usability Questionnaire of “Function Point” Base Metric

Figure 233 Metric Usability Questionnaire of “Function Point” Base Metric

Figure 234 Metric Usability Questionnaire of “Function Point” Base Metric

Figure 235 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 236 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 237 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 238 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 239 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 240 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 241 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 242 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 243 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 244 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 245 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 246 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 247 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 248 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 249 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 250 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 251 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 252 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 253 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 254 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 255 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 256 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 257 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 258 Metric Usability Questionnaire of “Test Speed” Derived Metric

Metric Usability Questionnaires of Case Study B

Figure 259 Metric Usability Questionnaire of “# Test Cases” Base Metric

Figure 260 Metric Usability Questionnaire of “# Test Cases” Base Metric

Figure 261 Metric Usability Questionnaire of “# Test Cases” Base Metric

Figure 262 Metric Usability Questionnaire of “Test Case Execution Time” Base Metric

Figure 263 Metric Usability Questionnaire of “Test Case Execution Time” Base Metric

Figure 264 Metric Usability Questionnaire of “Test Case Execution Time” Base Metric

Figure 265 Metric Usability Questionnaire of “# Passed Test Cases” Base Metric

Figure 266 Metric Usability Questionnaire of “# Passed Test Cases” Base Metric

Figure 267 Metric Usability Questionnaire of “# Passed Test Cases” Base Metric

Figure 268 Metric Usability Questionnaire of “# Failed Test Cases” Base Metric

Figure 269 Metric Usability Questionnaire of “# Failed Test Cases” Base Metric

Figure 270 Metric Usability Questionnaire of “# Failed Test Cases” Base Metric

Figure 271 Metric Usability Questionnaire of “Function Point” Base Metric

Figure 272 Metric Usability Questionnaire of “Function Point” Base Metric

Figure 273 Metric Usability Questionnaire of “Function Point” Base Metric

Figure 274 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 275 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 276 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 277 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 278 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 279 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 280 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 281 Metric Usability Questionnaire of “Test Defect Density” Derived Metric

Figure 282 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 283 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 284 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 285 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 286 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 287 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 288 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 289 Metric Usability Questionnaire of “Test Effectiveness” Derived Metric

Figure 290 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 291 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 292 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 293 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 294 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 295 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 296 Metric Usability Questionnaire of “Test Speed” Derived Metric

Figure 297 Metric Usability Questionnaire of “Test Speed” Derived Metric

	canset_altun_tez
	canset_altun_ekler

