T.C. N DE ÜN VERS TES FEN B L MLER ENST TÜSÜ K MYA ANAB L M DALI

1H- NDOL-2,3-D ON-3-(N-SUBST TUE T YOSEM KARBAZON) TÜREVLER N N ve METAL KOMPLEKSLER N N SENTEZLER , YAPI TAY NLER VE MOLEKÜLER MODELLEME ÇALI MALARI

YUSUF AKKAYA

Yüksek Lisans Tezi

Danı man Prof. Dr. Fatma KANDEM RL

Temmuz 2012

Yusuf AKKA YA tarafından Prof.Dr.Fatma KANDEMiRLi danı manlı ında hazirlanan "lH-indol-2,3-Dion-3-CN-Substituetiyosemikarbazon) Turevlerinin ve Metal Komplekslerinin Sentezleri, Yapi Tayinleri ve Molektiler Modelleme Calısmalan" adh bu calisma jurimiz tarafından Nigde Universitesi Fen Bilimleri Enstitusu KiMY A Anabilim Dalında Yuksek Lisans tezi olarak kabul edilmistir,

Baskan : Prof.Dr.Kadriye KAYAKIRILMAZ Nigde Universitesi ~

Dye : Prof.Dr.Fatma KANDEMiRLi Nigde Universitesi

Dye : Yrd.Doy.Dr.Murat SARAC;OGLU Erciyes Universitesi ~

ONAY:

Bu tez, Fen Bilimleri Enstitusu Yonetim Kurulunca belirlenrnis olan yukandaki juri uyeleri tarafmdan 13/07/2012 tarihinde uygun gorulmus ve Enstitu Yonetim Kurulu'nun/. 120 tarih ve sayih karanyla kabul edilmistir.

> 1..... /20 ... Doç;. Dr. Osman SiVRiKA YA MUDUR

ÖZET

1H- NDOL-2,3-D ON-3-(N-SUBST TUE T YOSEM KARBAZON) TÜREVLER N N ve METAL KOMPLEKSLER N N SENTEZLER , YAPI TAY NLER VE MOLEKÜLER MODELLEME ÇALI MALARI

AKKAYA, Yusuf Ni de Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Prof. Dr. Fatma KANDEM RL Temmuz 2012, 125 sayfa

Danı man:

Semikarbazit bile iklerinde oksijen atomunun yerine kükürt atomu varsa bu bile iklere tiyosemikarbazit denir. Semikarbazonlar keton veya aldehitin ve semikarbazitin kondensasyon reaksiyonu ile olu ur. Bazı semikarbazonlar ve tiyosemikarbazonlar ve bunların metal komplekslerinin anti-viral ve anti-kanser etki gösterdi i bilinir.

Bu çalı mada; isatin-3-(N-(2-florofenil)) tiysemikarbazon [I2FPTH₂] ve isatin-3-(N-(2-klororofenil)) tiyosemikarbazon [I2CPTH₂] ligandları sentezlenerek ligandların yapıları FT-IR, UV-Visible, elementel analiz (CHNS), ¹H-NMR, ¹³C-NMR yöntemleriyle; ligandların Zn(II) kompleksleri sentezlenerek komplekslerin yapıları FT-IR, UV-Visible, ¹H-NMR, ¹³C-NMR yöntemleriyle; Ni(II) kompleksleri sentezlenerek kompleksleri sentezlenerek kompleksleri sentezlenerek komplekslerin yapıları ise FT-IR, UV-Visible spektrumları yardımıyla aydınlatıldı. Ligandların reaksiyon mekanizması yarı deneysel metot AM1 ile çalı ıldı. Ligandlar ile elde edilen Çinko(II) ve Nikel(II) komplekslerinin elektronik ve geometrik parametreleri RHF ve B3LYP metodu 3-21G(d,p), 3-21G*(d,p), 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) temel setleri kullanılarak hesaplandı.

Ligandların NBO (do al ba orbitali) analiz çalı ması yapıldı. Ligandların ve Zn(II) ve Ni(II) komplekslerinin teorik ve deneysel FT-IR, UV, NMR çalı maları yapıldı.

Anahtar Kelimeler: DFT, RHF, isatin tiyosemikarbazonlar, Metal Kompleksleri

ABSTRACT

SYNTHESIS, STRUCTURE DETERMINATION AND MOLECULAR MODELING STUDIES OF 1H-INDOLE-2,3-DIONE-3-(N-SUBSTITUTED THIOSEMICARBAZONE) DERIVATIVES AND METAL COMPLEXES AKKAYA, Yusuf Ni de University Graduate School of Natural and Applied Sciences Department of Chemistry Supervisor: Prof. Dr. Fatma KANDEM RL July 2012, 125 pages

A thiosemicarbazide is an analog with a sulfur atom in place of the oxygen atom, a semicarbazone is called formed by a condensation reaction between a ketone or aldehyde and semicarbazide. Some semicarbazones, and thiosemicarbazones are known to have anti-viral and anti-cancer activity.

In this study, being synthesized isatin-3-N(2-flourophenyllthiosemicarbazone), isatin-3-N(2-chlorophenyllthiosemicarbazone) and their zinc(II) and nickel(II) complexes were synthesized and their structure were characterized by elemental analysis, infrared, ultraviolet, ¹H-NMR and ¹³C-NMR. Reaction mechanism of ligands were studied by semi-empirical method-AM1. The electronic and geometric parameters of ligands and their metal complexes were calculated at the level of the RHF and B3LYP method by using 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(d,p), 6-311++G(d,p) basis sets.

NBO analysis of ligands were studied and theoretical and experimental FT-IR, UV and NMR studies for ligands and their Zinc(II) and Nickel(II) complexes were carried on.

Key words: DFT, RHF, isatin thiosemicarbazone, metal complexes

TE EKKÜR

Bu ara tırmayı yöneten, gerek laboratuar gerekse tez yazımı boyunca bana her zaman yol gösteren, yüksek lisans ö renimim boyunca maddi ve manevi deste ini esirgemeyen ki ilik, çalı ma azmi bakımından her zaman örnek aldı ım de erli hocam **Prof. Dr. Fatma KANDEM RL** ' ye sonsuz ükran ve saygılarımı sunarım.

Çalı malarım sırasında 2010/37 proje kapsamında sa ladıkları maddi katkılarından dolayı Bilimsel ve Teknolojik Ara tırma Projeler Birimi' ne birimine te ekkürlerimi sunarım.

Laboratuvar çalı malarında sa lamı oldu u katkılarından dolayı **Yrd. Doç. Dr. Özlem SARIÖZ'** e te ekkürlerimi sunarım.

Ba ta **Lokman ULUDA** olmak üzere manevi destekleriyle varlıklarını hep hissettiren dostlarıma te ekkür ederim.

Tüm hayatım boyunca, beni büyük bir sabır ve fedakârlık ile destekleyen ailem Ali-Nesime AKKAYA' ya ablam ve e i Hümeyra-Erhan BOZKURT' a maddi-manevi tüm katkılarından dolayı sonsuz ükran ve te ekkürlerimi sunarım.

Tezimi yazma a amasının her anında ilgisiyle, deste iyle hep yanımda olan ve bana sonuna kadar inanan de erli ni anlım **Pınar'** a te ekkürlerimi sunarım...

ÖZET iii
ABSTRACT iv
TE EKKÜRv
Ç NDEK LER vi
Ç ZELGELER DZNx
EK LLER D Z N xiii
KISALTMALARxv
BÖLÜM I. G R VE ÖNCEK ÇALI MALAR1
1.1 Giri1
1.1.1 Schiff bazları1
1.1.2 Semikarbazon ve tiyosemikarbazon bile ikleri1
1.2 Önceki Çalı malar2
1.2.1 1H-indol-2,3-dion (isatin)
1.2.2 Yapılan çalı maların amacı9
BÖLÜM II. ÖN KAVRAMLAR10
2.1 Elektromanyetik I 11111
2.2.1 Dalga modeli
2.2.2 Parçacık modeli11
2.2.3 Elektromanyetik spektrum ve bölgeleri11
2.2.3.1 Radyo frekansı bölgesi12
2.2.3.2 Mikrodalga bölgesi12
2.2.3.3 nfrared bölgesi
2.2.3.4 Görünür ve morüstü bölge13
2.2.3.5 X-I ınları bölgesi13
2.2.3.6 -I ınları bölgesi13
2.3 Spektroskopi13
2.3.1 nfrared (titre im) spektroskopisi14
2.3.1.1 Yakın infrared bölge14
2.3.1.2 Orta infrared bölge14
2.3.1.3 Uzak infrared bölge14
2.3.1.4 Klasik kuram14
2.3.1.5 Kuantum kuramı15
2.4 Çok atomlu moleküllerin titre imleri

Ç NDEK LER

2.4.1 Moleküllerde titre im türleri	17
2.4.1.1 Gerilme titre imi (stretching)	18
2.4.1.2 Açı Bükülme titre imleri	18
2.4.1.2.1 Makaslama	18
2.4.1.2.2 Sallanma	18
2.4.1.2.3 Dalgalanma	18
2.4.1.2.4 Kıvırma	19
2.4.1.2.5 Burulma	19
2.4.1.3 Düzlem dı 1 açı bükülme	19
2.5 Ligand ve yon Titre imleri	19
2.5.1 Normal koordinat analizi	19
2.6 Ultraviyole-görünür bölge absorpsiyon spektroskopisi	20
2.6.1 Tek 1 in yollu ve çift 1 in yollu spektrofotometreler	23
2.6.2 Küvetlerin temizli i	26
2.6.3 Spektrofotometreden numune okutulması	26
2.6.4 Tercih edilecek olan spektrofotometrik ölçüm cihazının özellikleri	27
2.6.5 Spektrofotometrelerin kalibrasyonu	28
2.6.6 Otoanalizörler	28
2.7 Nükleer Manyetik Rezonans (NMR) Spektroskopisi	28
2.8 Kuantum Kimyası	31
2.8.1 Zamana ba lı schrödinger e itli i	32
2.8.2 Hidrojene benzer atomların schrödinger denklemi	32
2.8.2.1 Yarı-deneysel metotlar (semiempirical methods)	35
2.8.2.2 Ab initio metotlar1	36
2.8.3 Moleküler orbital hesaplamalarında gauss tipi fonksiyonların kullanılması.	37
2.8.3.1 Hesaplamalarda kullanılan temel setleri ve etkileri	37
2.8.3.2 Minimal temel setler	37
2.8.3.3 Polarize temel set	38
2.8.3.4 Difüz fonksiyonları	39
2.8.3.5 Yüksek açısal momentum temel setleri	39
BÖLÜM III. MATERYAL VE METOT	41
3.1 Materyal	41
3.1.1 satin Tiyosemikarbazon Sentezinde Kullanılan Kimyasal Maddeler	41
3.1.2 Kullanılan Çözücüler	41

3.1.3 Kullanılan Cihazlar42
3.2 Metot
3.2.1 satin-3-tiyosemikarbazonların Sentezi43
3.2.1.1 satin-3-N-(2-florofenil) tiysemikarbazon) sentezi (I2FPTH ₂)43
3.2.1.2 satin-3-N-(2-klorofenil) tiysemikarbazon) sentezi (I2CPTH ₂)43
3.2.2 satin-3-tiyosemikarbazonların metal komplekslerinin sentezi43
3.2.2.1 Bis (isatin-3-(N-2-florofenil) tiyosemikarbazonato) çinko(II) sentezi
Zn[(I2FPTH) ₂]43
3.2.2.2 Bis (satin-3-(N-2-florofenil) tiyosemikarbazonato) nikel (II) sentezi
Ni[(I2FPTH) ₂]44
3.2.2.3 Bis (isatin-3-(N-2-klorofenil) tiyosemikarbazonato) çinko (II) sentezi
Zn[(I2CPTH)2]44
3.2.2.4 Bis (satin-3-(N-2-klorofenil) tiyosemikarbazonato) nikel (II)) sentezi
Ni[(I2CPTH)2]44
BÖLÜM IV. BULGULAR VE TARTI MA45
4.1 Deneysel De erlerin Yorumlanması
4.1.1 satin-3-N-(2-florofenil) tiyosemikarbazon) (I2FPTH ₂)45
4.1.1.1 FT-IR çalı ması46
4.1.1.2 NMR çalı ması49
4.1.1.3 UV çalı ması
4.1.2 satin-3-N-(2-klorofenil) tiysemikarbazon) (I2CPTH ₂)52
4.1.2.1 IR çalı ması
4.1.2.2 NMR çalı ması
4.1.2.3 UV çalı ması
4.2 Geometrik Parametrelerin De erlendirilmesi
4.2.1 satin-3-N-(2-florofenil) tiysemikarbazon) (I2FPTH ₂)62
4.2.1.1 satin-3-N-(2-florofenil)) tiysemikarbazon ligandının reaksiyon
mekanizması74
4.2.2 satin-3-(N-(2-klorofenil)) tiysemikarbazon (I2CPTH ₂)76
4.2.2.1 satin-3-N-(2-klorofenil) tiysemikarbazon ligandının reaksiyon
mekanizması85
4.3 satin Tiyosemikarbazon Türevlerinin Metal Kompleksleri
4.3.1 Teorik çalı ma
4.3.2 Komplekslerde IR çalı ması93

4.3.3 Komplekslerde NMR çalı ması	
4.3.4 Komplekslerde UV çalı ması	
BÖLÜM V. SONUÇ	
KAYNAKLAR	104
EKLER	

Ç ZELGELER D Z N

Çizelge 2.1	nfrared spektral bölgeler14
Çizelge 4.1	satin-3-(N-(2-florofenil)) tiysemikarbazon molekülünün deneysel ve
	teorik FT-IR de erleri
Çizelge 4.2	I2FPTH ₂ molekülünün deneysel ve RHF ve B3LYP metodu ile
	hesaplanan deneysel ve teorik ¹ H-NMR de erleri49
Çizelge 4.3	I2FPTH ₂ molekülünün deneysel ve RHF ve B3LYP metodu ile
	hesaplanan deneysel ve teorik ¹³ C-NMR de erleri
Çizelge 4.4	I2FPTH ₂ molekülü için, B3LYP metodu 6-311G(d,p), ve 6-311G+(d,p) ve
	6-311G++(d,p) temel setleri kullanılarak hesaplanan UV-visible spektrum
	de erleri(nm)51
Çizelge 4.5	I2FPTH ₂ molekülünün TDB3LYP/6-311G(d,p), TDB3LYP/6-
	311+G(d,p) ve TDB3LYP/6-311++G(d,p) seviyelerinde hesaplanan
	uyarılma enerjileri (eV) ve salınım kuvvetleri (f)52
Çizelge 4.6	satin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünün deneysel ve
	teorik FT-IR de erleri
Çizelge 4.7	I2CPTH ₂ molekülünün RHF ve B3LYP metodu ile hesaplanan deneysel
	ve teorik ¹ H-NMR de erleri
Çizelge 4.8	I2CPTH ₂ molekülünün RHFve B3LYP metodu ile hesaplanan deneysel
	ve teorik ¹³ C-NMR de erleri
Çizelge 4.9	I2CPTH ₂ molekülü için, B3LYP metodu 3-21G, 3-21G*, 6-31G(d,p), 6-
	311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) temel setleri
	kullanılarak hesaplanan UV-visible spektrum de erleri(nm)59
Çizelge 4.10	I2CPTH ₂ molekülünün B3LYP metodu 3-21G, 3-21G*, 6-31G(d,p), 6-
	311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,2p)
	seviyelerinde uyarılma enerjileri, (eV) ve salınım kuvvetleri (f)59
Çizelge 4.11	I2CPTH ₂ molekülü için, TDRHF metodu 3-21G, 3-21G*, 6-31G(d,p), 6-
	311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) temel setleri
	kullanılarak hesaplanan UV-visible spektrum de erleri(nm)60
Çizelge 4.12	I2CPTH ₂ molekülünün TDRHF metodu 3-21G, 3-21G*, 6-31G(d,p), 6-
	311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,2p)
	seviyelerinde uyarılma enerjileri, (eV) ve salınım kuvvetleri (f)60
Çizelge 4.13	I2FPTH ₂ bile i ine ait B3LYP metodu ile hesaplanan deneysel ve teorik
	ba uzunlukları

Çizelge 4.14	4 $I2FPTH_2$ bile i ine ait RHF metodu ile hesaplanan deneysel ve teorik ba		
	uzunlukları64		
Çizelge 4.15	B3LYP metoduna göre I2FPTH ₂ bile i ine ait deneysel ve teorik ba		
	açıları66		
Çizelge 4.16	RHF metoduna göre $I2FPTH_2$ bile i ine ait deneysel ve teorik ba açıları		
Çizelge 4.17	B3LYP metoduna göre $I2FPTH_2$ bile i ine ait deneysel ve teorik torsiyon		
	açıları		
Çizelge 4.18	RHF metoduna göre $I2FPTH_2$ bile i ine ait deneysel ve teorik torsiyon		
	açıları69		
Çizelge 4.19	B3LYP metoduna göre I2CPTH ₂ bile i ine ait ba uzunlu u77		
Çizelge 4.20	RHF metoduna göre I2CPTH ₂ bile i ine ait ba uzunlu u78		
Çizelge 4.21	B3LYP metoduna göre I2CPTH ₂ bile i ine ait ba açıları79		
Çizelge 4.22	RHF metoduna göre I2CPTH ₂ bile i ine ait ba açıları80		
Çizelge 4.23	B3LYP metoduna göre I2CPTH ₂ bile i ine ait mulliken yükler		
Çizelge 4.24	RHF metoduna göre I2CPTH ₂ bile i ine ait mulliken yükler		
Çizelge 4.25	B3LYP metoduna göre I2CPTH ₂ bile i ine ait NBO yükler83		
Çizelge 4.26	RHF metoduna göre I2CPTH ₂ bile i ine ait NBO yükler84		
Çizelge 4.27	satin-3-(N-(2-klorofenil)) tiysemikarbazon ve satin-3-(N-(2-florofenil))		
	tiysemikarbazon ligandlarının, B3LYP metodu 6-31G(d,p) ve 6-		
	311G(d,p) temel setleri ile hesaplanan fukii fonksiyonları		
Çizelge 4.28	Zn[(I2FPTH) ₂], Zn[(I2CPTH) ₂], Ni[(I2FPTH) ₂], Ni[(I2CPTH) ₂]		
	komplekslerine ait B3LYP metodu ile hesaplanan ba uzunlukları (Å)90		
Çizelge 4.29	Zn[(I2FPTH) ₂], Zn[(I2CPTH) ₂], Ni[(I2FPTH) ₂], Ni[(I2CPTH) ₂]		
	komplekslerine ait B3LYP metodu ile hesaplanan ba açıları91		
Çizelge 4.30	Zn[(I2FPTH) ₂], Zn[(I2CPTH) ₂], Ni[(I2FPTH) ₂], Ni[(I2CPTH) ₂]		
	komplekslerine ait B3LYP metodu ile hesaplanan Mulliken yükleri ve		
	NBO yükleri92		
Çizelge 4.31	Zn[(I2CPTH) ₂] kompleksine ait deneysel ve B3LYP/6-311G(d,p) metodu		
	ile hesaplanan teorik IR de erleri94		
Çizelge 4.32	Ni[(I2CPTH) ₂] kompleksine ait deneysel ve B3LYP/6-311G(d,p) metodu		
	ile hesaplanan deneysel ve teorik IR de erleri95		
Çizelge 4.33	Çinko(Zn) komplekslerine ait deneysel ve teorik 1H-NMR de erleri99		
Çizelge 4.34	Çinko(Zn) komplekslerine ait deneysel ve teorik ¹³ C-NMR de erleri99		

Çizelge 4.35	Zn[(I2FPTH) ₂] molekülü için, TDB3LYP metodu 6-311G(d,p), 6-
	311G+(d,p) ve 6-311++G(d,p) temel setleri kullanılarak hesaplanan UV-
	visible spektrum de erleri(nm), ve bu seviyelerde uyarılma enerjileri,
	(eV) ve salınım kuvvetleri (f)100
Çizelge 4.36	Ni[(I2FPTH) ₂], Ni[(I2CPTH) ₂] molekülü için, TDB3LYP metodu 6-
	311G(d,p), ve 6-311G+(d,p) temel setleri kullanılarak hesaplanan UV-
	visible spektrum de erleri(nm) ile bu seviyelerde uyarılma enerjileri
	(eV) ve salınım kuvvetleri (f)102

EK LLER D Z N

ekil 1.1	Schiff Bazlarının sentez reaksiyonu1		
ekil 1.2	Semikarbazon ve tiyosemikarbazonların sentez reaksiyonu1		
ekil 1.3	satin bile i inin sentez reaksiyonu3		
ekil 1.4	Tiyosemikarbazit bile iklerinin sentez reaksiyonu(1)		
ekil 1.5	Tiyosemikarbazit bile iklerinin sentez reaksiyonu(2)3		
ekil 1.6	satin-3-tiyosemikarbazon bile iklerinin sentez reaksiyonu(1)4		
ekil 1.7	satin-3-tiyosemikarbazon bile iklerinin sentez reaksiyonu(2)4		
ekil 1.8	4-(2-florofenil)-1-(2-oksoindolin-3-ylidin) tiyosemikarbazon bile i i4		
ekil 1.9	4-(3-florofenil)-1-(2-oksoindolin-3-ylidin) tiyosemikarbazon bile i i5		
ekil 1.10	1-(2-oksoindolin-3-ylidin)-4-(2-triflorometil) bile i i		
ekil 1.11	p-florofenil tiyosemikarbazon molekülünün sentez mekanizması6		
ekil 1.12	Tiyosemikarbazon türevi bile iklerin molekül ekilleri7		
ekil 2.1	Elektromanyetik 1 1manın spektrumu [58]12		
ekil 2.2	Moleküllerde titre im türleri17		
ekil 2.3	UV küvet		
ekil 2.4	Basit bir spektrofotometre prizması örne i		
ekil 2.5	Spektrofotometreye ait çalı ma mekanizması		
ekil 2.6	Monokromatörlerde 1 1k prizması örne i		
ekil 2.7	Tek 1 in yollu spektrofotometrelerde çalı ma mekanizması		
ekil 2.8	Çift 1 ın yollu spektrofotometrelerde çalı ma mekanizması24		
ekil 2.9	Çift 1 ın yollu spektrofotometrelerde tek 1 ın yolu kullanılarak numune		
	analizi yapılmasına ait mekanizma24		
ekil 2.10	Absorbansa kar ılık gelen dalgaboyu ve deri im (A/ve A/c) grafi i25		
ekil 2.11	Lamor Dönmesi		
ekil 2.12	TMS de kullanılan kimyasal kayma ölçe i		
ekil 2.13	NMR spektoskopisinde numune analiz yöntemine ait ema30		
ekil 4.1	satin-3-(N-(2-florofenil)) tiysemikarbazon molekülünün deneysel FT-IR		
	Spektrumu		
ekil 4.2	satin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünün deneysel FT-IR		
	Spektrumu		
ekil 4.3	satin-3-(N-(2-klorofenil)) tiysemikarbazonun teorik UV spektrumu61		
ekil 4.4	B3LYP/6-311++G(2d,2p) metodu kullanılarak optimize edilen monomer		
	isatin-3-(N-(2-florofenil)) tiysemikarbazon molekülünün yapısı62		

ekil 4.5	B3LYP/6-311++G(2d,2p) metodu kullanılarak optimize edilen dimer		
	isatin-3-(N-(2-florofenil)) tiysemikarbazon molekülünün yapısı63		
ekil 4.6	B3LYP metodu kullanılarak I2FPTH2 molekülünün Mulliken yükleri71		
ekil 4.7	RHF metodu kullanılarak I2FPTH2 molekülünün Mulliken Yükleri71		
ekil 4.8	B3LYP metodu kullanılarak I2FPTH2 molekülünün NBO yükleri72		
ekil 4.9	B3LYP metodu kullanılarak I2FPTH2 molekülünün NBO yükleri72		
ekil 4.10	B3LYP metodu kullanılarak I2FPTH ₂ molekülüne ait HOMO ekli73		
ekil 4.11	B3LYP metodu kullanılarak I2FPTH ₂ molekülüne ait LUMO ekli73		
ekil 4.12	Reaktant, geçi durumları, ara durum ve ürünlerin optimize edilmi yapıları		
ekil 4.13	I2CPTH ₂ molekülünün monomer yapısı76		
ekil 4.14	I2CPTH ₂ molekülünün dimer yapısı76		
ekil 4.15	Reaktant, geçi durumları, ara durum ve ürünlerin optimize edilmi yapıları		
ekil 4.16	B3LYP metodu kullanılarak isatin-3-(N-(2-klorofenil)) tiysemikarbazon		
	molekülünün HOMO ekli		
ekil 4.17	B3LYP metodu kullanılarak isatin-3-(N-(2-klorofenil)) tiysemikarbazon		
	molekülünün LUMO ekli		
ekil 4.18	B3LYP/6-311+G(d,p) metodu kullanılarak optimize edilen Zn[(I2FPTH) ₂],		
	Zn[(I2CPTH) ₂], Ni[(I2FPTH) ₂], Ni[(I2CPTH) ₂] komplekslerinin yapısı89		
ekil 4.19	Zn[(I2CPTH) ₂] kompleksine ait deneysel FT-IR Spektrumu97		
ekil 4.20	Ni[(I2CPTH) ₂] kompleksine ait deneysel FT-IR Spektrumu		
ekil 4.21	satin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünün Zn ve Ni		
	komplekslerinde teorik UV spektrumu101		

KISALTMALAR

AM1	Austin Model 1		
B3LYP	LYP korelasyon enerjili 3 parametreli Becke karma metodu		
B3LYP/6-31G(d,p)	Temel set		
B3LYP/LanLD2Z	Temel set		
¹³ C-NMR	Karbon-13 nükleer magnetik rezonans spektroskopisi		
DFT	Density Functional Theory (Yo unluk Fonksiyoneli Teorisi)		
e.n	Erime noktası		
HF	Hartree-Fock i lemcisi		
FT-IR	Fourier Transform Infrared Spektroskopisi		
Gaussian-View 3.0	Gaussian View 3.0 paket programi		
¹ H-NMR	Proton-nükleer magnetik rezonans spektroskopisi		
HOMO	highest occupied molecular orbital		
IR	Infrared Spektroskopisi		
LCAO	Lineer Combination Atomic Orbital		
LUMO	Lowest unoccupied molecular orbital		
Μ	Metal		
MO	Moleküler Orbital MS		
Kütle spektroskopisi RHF			
Restricted Hartree-Fo	ock THF		
Tetrahidrofuran			
UV	Ultraviyole spektroskopisi		
UV-visible	Görünür bölge ultraviyole spektroskopisi		

BÖLÜM I

G R VE ÖNCEK ÇALI MALAR

1.1 Giri

1.1.1 Schiff bazları

Primer aminlerin aldehit veya ketonlarla kondenzasyon reaksiyonu vermesi sonucu olu an ve karbon-azot ikili ba 1yla (imin ba 1) tanımlanan bile ikler Schiff bazları olarak adlandırılmaktadır.

ekil 1.1 Schiff Bazlarının sentez reaksiyonu

Schiff bazları, reaksiyona giren karbonil bile iklerinin aldehit veya keton olmasına ba lı olarak aldımin veya ketimin olarak isimlendirilebilir.

1.1.2 Semikarbazon ve tiyosemikarbazon bile ikleri

Semikarbazit bile ikleri ile karbonil bile iklerinin reaksiyonu sonucunda olu an bile iklere semikarbazon denir.

ekil 1.2 Semikarbazon ve tiyosemikarbazonların sentez reaksiyonu

Semikarbazit bile iklerinde oksijen atomunun yerine kükürt atomu varsa bu bile iklere tiyosemikarbazit, karbonil bile ikleriyle reaksiyonu sonucu elde edilen bile iklere ise tiyosemikarbazon denir. satin-3-tiyosemikarbazonlar, içerisinde kükürt atomu bulunan tiyosemikarbazit bile ikleriyle, isatin bile iklerin reaksiyonu sonucu elde edilen, yapılarında oksijen, kükürt, azot atomları bulunan bile iklerdir. Yapılarındaki kükürt atomunun varlı 1 neticesinde tiyosemikarbazon ismini alırlar.

1.2 Önceki Çalı malar

Metal iyonlarının ve isatin tiyosemikarbazonların koordinasyon kimyasına oldukça büyük bir ilgi sözkonusudur. satin tiyosemikarbazonlar, metal iyonuyla, azometin azotu, karbonil oksijeni ve tiyolat sülfür atomlarıyla koordine olabilir.

1-metilisatin-3-tiyosemikarbazonun bakır (II), nikel (II) ve kobalt(II) kompleksleri [1], satin-3-tiyosemikarbazonun çinko (II) ve civa (II) kompleksleri [2], satin-3tiyosemikarbazonun mangan (II), demir (II), kobalt (II), bakır (II), çinko (II), nikel (II) kompleksleri [3], satin-3-(N-substitüe)tiyosemikarbazonların lantan(III) ve prasedmiyum (III) kompleksleri [4], isatin-3-hekzametileniminil tiyosemikarbazonun kobalt(II), nikel(II), bakır (II), çinko (II), kadmiyum (II), kur un (II) kompleksleri [5], N-metilisatin-3-tiyosemikarbazonun kalay (IV) ve zirkonyum (IV) kompleksleri [6], isatin-3-tiyosemikarbazonun Ru (II) kompleksi [7], satin-3-tiyosemikarbazonun Co(II), Ni(II), Cu(II), Zn(II), Pd(II) ve Hg(II) kompleksleri [8] sentez edilmi tir. Yine bazı isatin tiyosemikarbazon türevlerinin iyonla ma sabitleri de erleri [9], kuantum kimyasal hesaplamaları yapılmı tır [10].

S. Gunesdogdu Sagdinc ve arkada ları, yakın dönemde isatin tiyosemikarbazon ve metal komplekslerinin deneysel ve kuantum kimyasal incelenmesi hakkında önemli çalı malar yapmı lardır. Yaptıkları çalı malar neticesinde 5-floroisatin-3-(N-siklohekzil tiyosemikarbazon) molekülünün kristal yapısını deneysel olarak elde etmi lerdir. Çalı malarının devamında ise moleküle ait kuantum kimyasal hesaplamalarda bulunmu lar ve elde ettikleri hesaplama de erlerinin deneysel de erlerle büyük ölçüde uyum içerisinde oldu unu görmü lerdir [11].

1.2.1 1H-indol-2,3-dion (isatin)

Oksoindoller, memelilerin merkezi sinir sistemindeki vücut sıvılarında ve dokularında bulunan bakteri, mantar ve virüslere kar ı koruyucu özelli e sahip geni bir aralıkta biyolojik aktivite gösteren bile iklerdir [12]. 19.yüzyılda indigo bile i inin oksidasyonunun bir ürünü olarak ke fedilen isatin ya da 2,3-dioksoindolin bile i i oksoindolinler arasında en yaygın olarak bilinenidir.

Senear ve arkada ları tarafından önerilen isatin molekülünün sentezi günümüzde de kullanılan tüm isatin sentez yöntemleri içerisinde en yaygın ve en kolay olanıdır [13].

ekil 1.3 satin bile i inin sentez reaksiyonu

Literatüre tiyosemikarbazit sentezinde yaygın olarak kullanılan iki yöntem yerle mi tir. Bunlardan birincisi Karalı ve arkada ları tarafından önerilmi tir:

ekil 1.4 Tiyosemikarbazit bile iklerinin sentez reaksiyonu (1)

Bal ve arkada ları tarafından önerilen di er sentez yöntemi ise öyledir:

ekil 1.5 Tiyosemikarbazit bile iklerinin sentez reaksiyonu (2)

Karalı ve arkada ları, 5 konumunda flor ve nitro bulunan isatin moleküllerini, katalitik oranda 1-2 damla sülfürik asit veya asetik asit varlı ında farklı türevlerdeki tiyosemikarbazit bile ikleriyle reaksiyona sokarak 5-floroisatin-3-(N-substitüe) tiyosemikarbazon ve 5-nitroisatin-3-(N-sübstitüe) tiyosemikarbazon bile iklerini sentezlemi lerdir [14].

ekil 1.6 satin-3-tiyosemikarbazon bile iklerinin sentez reaksiyonu (1)

Bal ve arkada ları, yine Karalı ve arkada larının sentez yöntemine benzer bir metotla isatin tiyosemikarbazon bile i ini sentezlemi lerdir [15].

ekil 1.7 satin-3-tiyosemikarbazon bile iklerinin sentez reaksiyonu(2)

Pervez ve arkada ları, asetik asit içeren etanoldeki isatinin sıcak çözeltisiyle etanolde çözünmü olan 4-o-florofenil tiyosemikarbaziti karı tırarak yava yava ilave etmi ler ve 2saat reflux edilerek olu an kristalleri filtre ettikten sonra sıcak etanol ve eter yıkayarak 4-(2-florofenil)-1-(2-oksoindolin-3-ylidin) bile i ini elde etmi lerdir [16].

ekil 1.8 4-(2-florofenil)-1-(2-oksoindolin-3-ylidin) tiyosemikarbazon bile i i

Ramazan ve arkada ları, Pervez ve arkada larının kullanmı oldukları metodun aynısını kullanmak suretiyle 4-(3-florofenil)-1-(2-oksoindolin-3-ylidin) tiyosemikarbazon bile i ini elde etmi lerdir. Sentezlenen bile i in di erinden farkı orto konumunda bulunan fenil halkasına ba lı olan flor atomunun meta konumuna ba lanmasıdır [17].

ekil 1.9 4-(3-florofenil)-1-(2-oksoindolin-3-ylidin) tiyosemikarbazon bile i i

Yakub ve arkada ları, Ramazan ve arkada larının kullanmı oldukları metoda benzer bir yolla 1-(2-oksoindolin-3-ylidin)-4-(2-triflorometil) tiyosemikarbazon bile i ini sentezlemi lerdir. Sentezlenen bile i in di erinden farkı meta konumunda bulunan flor atomunun yerine triflor metil grubunun ba lanmasıdır [18].

ekil 1.10 1-(2-oksoindolin-3-ylidin)-4-(2-triflorometil) bile i i

Matthew D. Hall ve arkada ları, yaptıkları çalı mada alı ılmı ın dı ında hidrazin ile phalojen isotiyosiyanat (p-floro fenil isotiyosiyanat) ın tepkimesinden bekledikleri üründen daha farklı bir çökelek elde etmi lerdir. Elde edilen ürüne hidrazinin tersiyer bütil karbazit yapısının ilavesiyle t-Boc korumalı yeni bir ara ürün elde etmi ve bu üründen de asit ortamında tiyosemikarbazon elde etmeyi ba armı lardır [19]. Sentez edilen molekülün di erlerinden farkı isatin grubunun yerine hidrazinden gelen amin grubunun ba lanmı olmasıdır.

ekil 1.11 p-florofenil tiyosemikarbazon molekülünün sentez mekanizması

Devender Pathak ve arkada ları, isatin tiyosemikarbazon türevi bile iklerin aktivite tayinlerinin varlı ının kanıtlanmasında önemli çalı malar yapmı lardır. Çalı maları neticesinde ekil 1-6a numaralı moleküllerin antimikrobiyal [20-27]; 6b-7c numaralı moleküllerin antikanser [28-31]; 8-11 numaralı moleküllerin antiviral [32-37]; 12-16 numaralı moleküllerin antikonvülsant [38-43]; 17-18 numaralı moleküllerin antiinflamator ve analjezik (iltihap önleyici ve a rı kesici) [44,45]; 19 numaralı molekülün antiplasmodial [46]; 20 numaralı molekülün antitüberküler [47]; 21 numaralı molekülün antioksidant [48]; 22 numaralı molekülün anti-HIV etkinli i gösterdi ini ortaya koymu lardır [49,50]. Yaptıkları ara tırmalar sonucunda elde ettikleri veriler ve çe itli aktivite tayinleri ekil 1.12 de ayrıntılı olarak gösterilmi tir[51].

ekil 1.12 Tiyosemikarbazon türevi bile iklerin molekül ekilleri

ekil 1.12 (Devam) Tiyosemikarbazon türevi bile iklerin molekül ekilleri

1.2.2 Yapılan çalı maların amacı

Tez kapsamında yapılan çalı malarda, isatin-2-florofeniltiyosemikarbazon (I2FPTH₂) ile isatin-2-klorofenil tiyosemikarbazon (I2CPTH₂) ligandları ile bu ligandların, Zn(L)₂ ve Ni(L)₂ komplekslerinin sentezlenmesi amaçlanmı tır. Bu bile ikleri ve bunların komplekslerini sentezlemedeki amaç, sentezlenen ve aktivitesi oldu u bilinen elimizdeki farklı isatin-3-tiyosemikarbazonların metal komplekslerini ve isatin-3tiyosemikarbazonların teorik olarak (ba uzunlukları, ba açıları, atomik yükleri, enerjileri) ve koordinasyon esnasında isatin-3-tiyosemikarbazon bile i inde hangi fonksiyonel grupların nasıl bir de i im içerisine girdi ini hem teorik hem de deneysel IR verileriyle incelemektir. Bunun yanı sıra ligandlarının sentez reaksiyonunun teorik olarak incelenmesidir.

satin-3-tiyosemikarbazonlar, adından da anla ıldı 1 gibi içerisinde kükürt atomu bulunan tiyosemikarbazit bile ikleriyle, isatin(1H-indol-2,3-dion) adı verilen bile iklerin reaksiyonu sonucu elde edilen, yapısında oksijen, kükürt, azot atomları bulunan bile iklerdir

satin-3-tiyosemikarbazonlar sentez edilip onların biyolojik aktiviteleri kanıtlanınca bu bile iklerin yapısı itibariyle iyi bir ligand olabilece i dü ünülmü ve bu bile iklerin ve türevlerinin metal kompleksleri sentez edilmi tir.

BÖLÜM II

ÖN KAVRAMLAR

2.1 Elektromanyetik I ınım

Hareketsiz bir elektrik yükü etrafında, her zaman bir elektrik alanı vardır. Bu alan herhangi ba ka bir elektrik yüküne, itme ya da çekme biçiminde bir kuvvet uygularsa ve elektrik yükü bu kuvvetle hareket ederse etrafında manyetik alan olu ur. Bu elektrik ve olu an manyetik alanın bile kesi, elektromanyetik alanı olu turur. Elektrik yükü ivmeli olarak hareket etti inde, bir elektromanyetik dalga olu turur ve enerji ta ır. te bu ta ınan enerjiye, elektromanyetik 1 ıma denir. Yükler periyodik olarak titre im yapıyorlarsa, olu an elektromanyetik alanın elektrik ve manyetik alan bile enleri birbirlerine ve dalganın ilerleme yönüne dik olarak titre irler ve bunlar enine dalgadır [54-55]. Elektromanyetik 1 ımanın dalga ve tanecik olmak üzere iki özelli i vardır:

2.2.1 Dalga modeli

I 1 in do asının önemli bir yönü frekansıdır. Bir dalganın frekansı salınım hızıdır ve Hertz birimi ile ölçülendirilir. Bir hertz saniyede bir salınıma e ittir. I ik genelde, toplamı bile ke dalgayı veren frekanslar tayfına sahiptir. Farklı frekanslar farklı kırılma açılarına maruz kalır. Bir dalga pe i sıra tepelerden ve çukurlardan olu ur. ki çukur ya da tepe noktası arası mesafe dalga boyunu verir. Elektromanyetik tayf dalgaları boylarına göre sınıflandırılır, bina büyüklü ündeki radyo dalgalarından atom çekirde i büyüklü ünde gamma 1 ınlarına kadar. Frekans u denkleme göre dalga boyuna ters orantılıdır:

=f(2.1)

Denkleme göre, "" dalga hızı (vakum ortamda hız "c" olur), "f" frekans, "" ise dalga boyudur. Dalgalar de i ik ortamlar arasından geçerken hızları de i ir ama frekansları aynı kalır. Elektromanyetik dalga enerjisi bazen "1 ıyan enerji" olarak adlandırılır.

2.2.2 Parçacık modeli

Elektromanyetik 1 ınımın foton denen farklı enerji paketleri (kuanta) olarak parçacık benzeri özellikleri vardır. Dalganın frekansı dalganın enerjisi ile do ru orantılıdır. Çünkü fotonlar enerji ta 1yıcıları olarak davranırlar, yüklü parçacıklar tarafından yayılır ve so urulurlar. Foton ba ına enerji Planck-Einstein denklemi ile hesaplanır: E = h f

Burada "E" enerjiyi, "h" Planck sabitini, "f" ise frekansı temsil eder. Bu foton-enerji ifadesi ortalama enerjisi Planck yayılım yasasını elde etmek için kullanılan daha genel bir elektromanyetik osilatörün enerji seviyelerinin belirli bir durumudur [56].

Frekans (f), dalga boyu (), periyot (T) ve genlik gibi özellikleri klasik sinüs dalgası modeliyle incelenebilir. Ancak 1 ıma enerjisinin so urulması ve yayımlanması ile ilgili olayların açıklanmasında dalga modeli ba arılı olamamı tır. Bu nedenle, tanecik modeli geli tirilmi tir. Bu modelde elektromanyetik 1 ıma, enerjileri frekansıyla orantılı olan ve foton adı verilen parçacık paketlerinden olu ur.

I ımanın, parçacıklar ve dalgalar halinde algılanması, birbirini dı layan de il, tamamlayan kavramlar olarak dü ünülmelidir. Dalga-parçacık ikilemi: Fizikte elektromanyetik dalgaların aynı zamanda parçacık özelli ine sahip oldukları ve parçacıkların (örne in elektronların) da aynı zamanda dalga özelliklerine sahip oldukları anlamına gelir. Ba ka bir deyi le, 1 ık ve madde aynı anda hem parçacık hem dalga özelliklerine sahiptirler. Yani ne ba lı ba ına bir dalga ne de ba lı ba ına bir parçacıktırlar. Elektron, proton ve öteki temel parçacıkların davranı larını açıklamada kullanılmı tır [57].

2.2.3 Elektromanyetik spektrum ve bölgeleri

Elektromanyetik dalgalar, sadece dalga boylarına göre de il, aynı zamanda frekans ve enerjilerine göre de tanımlanmaktadır. Bu üç nicelik a a ıda verilen matematiksel ifadelerle birbirlerine ba lıdır:

$$\mathbf{E} = \mathbf{h} = \mathbf{c}\mathbf{h} \tag{2.2}$$

Elektromanyetik tayf (spektrum) gama 1 ınlarından radyo dalgalarına kadar bilinen tüm elektromanyetik dalgaları içeren dizilimdir. Görünür 1 ık tayfı, en uzun radyo dalgalarından en kısa dalga boylu gamma 1 ınlarına kadar uzanan elektromanyetik tayfın bütünü içinde çok küçük bir aralı 1 kapsar [58]. Tayfın dalga boylarına göre dizilen bile enleri unlardır:

ekil 2.1 Elektromanyetik 1 ımanın spektrumu [58]

2.2.3.1 Radyo frekansı bölgesi

Proton yüklü bir parçacıktır. Spini oldu undan manyetik dipol olu turur. Uygun frekansta, EMD nın manyetik alanı ile spinin olu turdu u dipol etkile ir. Spinin i aret de i tirmesi ile enerji de i imleri incelenir.

2.2.3.2 Mikrodalga bölgesi

Molekülün dönmesinin incelendi i bölgedir. Dönme enerjileri arasındaki geçi lerin spektrumu mikrodalga bölgesinde meydana gelir. ESR tekni i molekülü bu bölgede inceler. Bir sistem çiftlenmemi elektrona sahipse sistemin manyetik özelliklerindeki de i imler bu bölgede incelenir.

2.2.3.3 nfrared bölgesi

Moleküldeki titre im enerji seviyeleri arasındaki geçi ler bu bölgede incelenir. Yani molekülün titre im frekansları infrared bölgesinde spektrum verir.

2.2.3.4 Görünür ve morüstü bölge

Atom veya moleküllerde dı kabuktaki elektronların uyarılmasıyla ortaya çıkan elektronik geçi lerle ilgili spektroskopidir.

2.2.3.5 X-I ınları bölgesi

Bir atom veya molekülde iç kabuktaki elektronların kopartılması ve bu bo lu un bir üs kabuktaki eletronlarla doldurulması sonucu bu iki enerji düzeyi farkına e it foton yayınlanır. Bu enerji geçi leri ile ilgili spektroskopidir.

2.2.3.6 -I ınları bölgesi

Çekirdek parçacıklarının yeniden düzenlenmesiyle ilgilidir.

2.3 Spektroskopi

Spektroskopi, maddenin so urdu u ya da yayımladı ı fotonlar incelenerek madde hakkında bilgi edinmemizi sa layan ve elektromanyetik ı ımanın madde ile etkile mesini konu alan bilim dalıdır [55-59]. Burada sözü edilen madde atom, molekül, elektron ya da iyon olabilir [57]. Maddenin elektromanyetik ı ıma ile kendine has bir ili kisi vardır. Molekülün dönme, titre im ve elektronik enerjilerindeki de i iklikler spektroskopinin temelini olu turur. Uygulanan spektroskopik yöntemle söz konusu maddenin yapısı, fiziksel ve kimyasal özelliklerini incelemek, nicel ya da nitel çözümlemeler yapmak mümkündür [55].

Bazı spektroskopik yöntemler a a ıda verilmi tir:

- nfrared Spektroskopisi (FT-IR)
- Ultraviyole Görünür Bölge Absorpsiyon Spektroskopisi (UV)
- Nükleer Magnetik Rezonans Spektroskopisi (NMR)
- Flor esans ve Fosfor esans Spektroskopisi (FS)
- Atomik Emisyon ve Atomik Flor esans Spektroskopisi (AFS)
- Atomik Absorpsiyon Spektroskopisi (AAS)
- Kütle Spektroskopisi (MS)
- X-1 1n1 Spektroskopisi (X-RAY)
- Gama I ını Spektroskopisi ()
- Raman Spektroskopisi (RS)

2.3.1 nfrared (titre im) spektroskopisi

nfrared spektroskopisinde numune, infrared bölgede tüm frekansları içeren elektromanyetik dalga ile 1 ınlanarak geçen veya so urulan 1 ık incelenir [60]. Görünür bölge ve mikrodalga bölgesi arasında kalan enerjinin, moleküller veya molekül içi guruplar tarafında so rulmasının ölçümüne dayalı bir yöntemdir. Molekül frekanslı bir 1 ın so urdu unda, μ elektriksel dipol momentinin bile enlerinden en az biri bu frekansta titre ecektir. te bu titre im spektrumu infrared bölgede gözlenir. nfrared spektroskopisi dalga boyuna, frekansa veya dalga sayısına göre, yakın orta ve uzak bölge olmak üzere üç kısma ayrılır. Bunlar Çizelge 2.1 de verilmi tir.

, .	-	e	
Bölge	(µm)	(cm-1)	(Hz)
Yakın IR	0,78 - 2,5	12800 - 4000	3,8x1014-1,2x1014
Orta IR	2,5-50	4000 - 200	1,2x1014-6,0x101
Uzak IR	50 - 1000	200 - 10	6,0x1012-3,0x101

Çizelge 2.1 nfrared spektral bölgeler

2.3.1.1 Yakın infrared bölge

Molekül titre imlerinin üst ton ve harmoniklerin gözlendi i bölgedir. Dalga sayısı cinsinden 4000 ile 1200 cm⁻¹ arasındadır.

2.3.1.2 Orta infrared bölge

Moleküllerin hemen hemen bütün titre imlerin gözlendi i bölgedir. Dalga sayısı cinsinden 4000-200cm⁻¹ arasındadır.

2.3.1.3 Uzak infrared bölge

A ır atomların titre imleri ile örgü titre imlerinin incelendi i bölgedir. Mikrodalga bölgesine yakın oldu u için moleküllerin dönü hareketleri de incelenebilir. Dalga sayısı ise 200-10 cm⁻¹ arasındadır. Bahsedilen infrared bölgedeki titre imlerle ilgili so urma, klasik kuram ve kuantum kuramı olmak üzere iki kısımda incelenebilir.

2.3.1.4 Klasik kuram

Klasik elektrodinami e göre, bir sistemin elektriksel dipol momentinde bir de i me oluyorsa, o sistem radyasyon yayınlıyor demektir. Yayınlanan radyasyonun frekansı de i en dipol momentin frekansına e ittir. So urma ise yayınlamanın tam tersi olarak dü ünülebilir. Yani bir sistem yayınlayabildi i frekansa e de er frekansa sahip bir 1 ını so urabilir. Molekülün elektrik dipol momenti μ , kartezyen koordinat sisteminde μx , μy ve μz eklinde üç bile eni olan bir vektördür. Bir molekül, üzerine dü en frekanslı bir 1 1 1 so urdu unda, molekülün μ elektriksel dipol momenti veya bile enlerden en az biri, bu frekansta titre ir ve bu titre imin spektrumu infrared bölgesine dü er. Basit harmonik yakla ımda moleküler dipol momentin titre im genli i bütün Q titre im koordinatlarının bir fonksiyonudur. Molekülün denge konumu civarında μ dipol momentinin Taylor serisinin açılımı;

$$\vec{z} = \vec{z}_{o} + \sum \left\{ \frac{\partial \vec{z}}{\partial \vec{z}_{k}} Q_{k} \right\} + \frac{1}{2} \sum_{k} \left\{ \frac{\partial^{2} \vec{z}}{\partial Q_{k}^{2}} Q \right\} +$$
(2.3)

Burada k bütün titre im kordinantları üzerinde toplamı göstermektedir. Küçük genlikli salınımlar için iyi bir yakla ıkla Qk' nın birinci dereceden terimini alıp, daha yüksek mertebeden terimler ihmal edilirse; molekülün elektriksel dipol momenti,

$$\vec{z} = \vec{z}_o + \sum \left\{ \left(\frac{\partial \vec{z}}{\partial \vec{z}_k} \right)_0 \right\} Q_k$$
(2.4)

Klasik teoriye göre, bir titre imin aktif olabilmesi için o molekülün elektriksel dipol momentindeki (veya bile enlerinden en az birindeki) de i imin sıfırdan farklı olması gerekir [61].

$$\left(\frac{\partial \vec{z}}{\partial \vec{z}_{k}}\right)_{0} \neq 0 \qquad = x, y, z \tag{2.5}$$

2.3.1.5 Kuantum kuramı

Kuantum mekani ine göre (n) ve (m) dalga fonksiyonları ile belirtilen n. ve m. iki titre im enerji düzeyi arasında geçi olabilmesi için, 1 ınım so urulma iddetinin bir ölçüsü olan µnm geçi dipol momentleri veya bile enlerinden en az birinin sıfırdan farklı olması gerekir.

$$\vec{\mu}_{nm} = \int \Psi^{(n)} \vec{\mu} \quad \Psi^{(m)} \partial \tau \neq 0$$
(2.6)

Burada (n); n. uyarılmı enerji seviyesindeki molekülün titre im dalga fonksiyonu,

(m) ; temel enerji seviyesindeki molekülün titre im dalga fonksiyonu, hacim elemanı, μ ise elektriksel dipol moment operatörüdür. E itlik (2.5), e itlik (2.6) da yerine konulursa;

$$\vec{\mu}_{nm} = \vec{\mu}_0 \int \Psi^{(n)} \vec{\mu} \quad \Psi^{(m)} \partial \tau + \sum_k \left\{ \left(\frac{\partial \vec{\mu}}{\partial Q_k} \right)_0 \int \Psi^{(n)} Q_k \Psi^{(m)} \partial \tau \right\}$$
(2.7)

elde edilir.

Burada ilk terimdeki (n) ve (m) ortogonal olduklarından (n m) bu terim sıfır olur. Temel enerji düzeyinden, uyarılmı enerji düzeyine geçi olasılı $n_{nm} 2$ ile orantılıdır. Bu nedenle, infrared spektroskopisinde bir molekülün herhangi bir titre iminin gözlenebilmesi için, söz konusu titre im sırasında molekülün, elektriksel dipol momentindeki de i imin sıfırdan farklı olması gerekir [62].

2.4 Çok atomlu moleküllerin titre imleri

Basit iki ve üç atomlu moleküllerdeki titre imlerin sayısını ve çe idini ve bu titre imlerin absorpsiyona neden olup olmayaca ı önceden belirlemek ço unlukla mümkündür. Atom sayısı daha fazla olan karma ık moleküllerde, çe itli tipte ba lar ve atomlar bulunabilir; bu moleküllerde çok sayıda titre im söz konusudur. Çok atomlu moleküllerin titre im hareketi genel olarak karma ıktır. Böyle bir molekülün bütün atomlarının aynı frekans ve aynı fazda basit harmonik hareket yaptıkları titre imlere temel titre imler veya normal kipler denir.

Uzayda herhangi bir nokta belirlemek için üç koordinat gerekir. N adet noktayı belirlemek için ise her biri için üç koordinatlı toplam 3N tane bir koordinat takımı gerekir. Her bir koordinat, çok atomlu bir moleküldeki atomların biri için bir serbestlik derecesine kar ılık gelir. Bu yüzden N atomlu bir molekülün serbestlik derecesi 3N dir. Çok atomlu bir moleküldeki olası titre imlerin sayısı bu ekilde hesaplanır.

Bir molekülün hareketi tanımlanırken, molekülün uzayda bir bütün hareketi yani kütle merkezinin ötelenmesi, kütle merkezi etrafında molekülün bir bütün olarak dönmesi, moleküldeki her bir atomun di er atomlara göre ba ıl hareketi veya di er bir deyimle moleküldeki atomların bireysel titre imleri göz önüne alınır. Moleküldeki bütün atomların uzayda takım halinde hareketinden dolayı, öteleme hareketini tanımlayabilmek için üç koordinat gerekir. Bu yüzden bu hareketin serbestlik derecesi 3N'dir. Molekülün bir bütün olarak dönmesinin tanımlamak için ise üç serbestlik derecesi daha gerekir. Geri kalan 3N-6 serbestlik derecesi, atomlar arası hareketle ilgilidir. Bu ise molekül içindeki olası titre im sayısını gösterir [63].

Bütün atomları tek bir do rultuda yerle mi olan do rusal bir molekül özel bir durumu ifade eder. Burada ba ekseni etrafında atomun dönmesi mümkün de ildir. Dönme hareketini tanımlamak için iki serbestlik derecesi yeterlidir. Bu yüzden do rusal bir molekül için titre im sayısı 3N-5'dir. 3N-6 veya 3N-5 titre imlerinin her biri normal mod olarak adlandırılır.

2.4.1 Moleküllerde titre im türleri

Daha önce bahsedildi i gibi N atomlu bir molekül kapalı bir halka olu turuyorsa, N-1 ba 1 olu aca ından 3N-6 titre imden 2N-5 tanesi açı bükülme titre imi geri kalan N-1 tanesi de ba gerilme titre imidir. 3N-5 titre ime sahip olan moleküllerde ise 2N-4 tanesi açı bükülme geri kalan N-1 tanesi de ba gerilme titre imidir. Çok atomlu moleküllerin titre imi üçe ayrılır [64].

ekil 2.2 Moleküllerde titre im türleri

2.4.1.1 Gerilme titre imi (stretching)

Ba ekseni do rultusunda bulunan atom, molekül veya molekül guruplarının ba do rultusunda yer de i tirmesidir. Bu yer de i tirme vektörleri ba uzunlu undaki de i meyi verir. Bir molekülde bulunan bütün ba ların aynı anda uzaması veya kısalması ekil 2.2.a simetrik gerilme titre imi, e er ba ların bir kısmı uzarken di er kısımları kısalıyorsa ekil 2.2.b asimetrik titre imi olarak tanımlanır. Asimetrik titre imin frekansı simetrik titre imin frekansından daha büyük oldu undan enerjisi de büyüktür. Ba gerilme titre imleri ile gösterilir.

2.4.1.2 Açı bükülme titre imleri

ki ba arasındaki açının periyodik olarak de i im hareketidir. Yer de i tirme vektörleri ba do rultusuna diktir. ekil 2.2.c de atomların hareketi ile bir düzlemin (simetri düzleminin) yok edilmesi hareketi olarak tanımlanır ve ile gösterilir. Açı bükülmenin özel ekilleri ise unlardır:

2.4.1.2.1 Makaslama

ki ba arasındaki açının ba lar tarafından kesilmesi ile periyodik olarak olu an de i im hareketidir. ekil 2.2.d de yer de i tirme vektörleri ba a dik do rultuda ve zıt yöndedir. $_{\rm s}$ ile gösterilir.

2.4.1.2.2 Sallanma

Yer de i tirme vektörleri birbirini takip edecek yöndedir. ki ba arasındaki veya bir ba ile bir grup atom arasındaki açının yer de i tirmesidir. ekil 2.2.e de ba uzunlu u ve ba açısının de eri de i mez ve $_{\rm r}$ ile gösterilir.

2.4.1.2.3 Dalgalanma

Bir ba ile iki ba tarafından tanımlanan bir düzlem arasındaki açının de i im hareketidir. ekil 2.2.f de molekülün tüm atomları denge durumunda düzlemsel ise, bir atomun bu düzleme dik hareket etmesidir. ile gösterilir.

2.4.1.2.4 Kıvırma

Do rusal ve düzlemsel olmayan moleküllerde ba ların atomlar tarafından bükülmesidir. ekil 2.2.g de yer de i tirme vektörleri, ba do rultusuna diktir. Burada ba ın deformasyonu söz konusu de ildir. t ile gösterilir.

2.4.1.2.5 Burulma

ekil 2.2.h de iki düzlem arasındaki açının bir ba veya açıyı deforme ederek, periyodik olarak de i im hareketidir ve ile gösterilir.

2.4.1.3 Düzlem dı 1 açı bükülme

Atomların hareketi ile bir düzlemin (genellikle bir simetri düzlemi) yok edilmesi hareketidir. ekil 2.2.1 da genelde kapalı bir halka olu turan moleküllerde görülür ve hareketin biçimi emsiye biçimindedir ve ile gösterilir.

2.5 Ligand ve iyon titre imleri

2.5.1 Normal koordinat analizi

Bilinen grup frekanslarının yetersizli i; e le me (coupling), dejenerelik, dü ük iddetteki temel titre imler, spektrometrenin sınırları dı ında kalan titre imler, üst ton ve birle im bantları spektrumların yorumlanmasını oldukça zorla tırır. Böyle durumlarda normal koordinat analizi tekni i kullanılarak molekülün temel titre im frekansları teorik olarak hesaplanabilir. Normal koordinat analizinin yapılabilmesi için molekülün nokta grubuna ihtiyaç vardır. Moleküllerin titre im hareketleri ile ilgili enerjiler 1 ık spektrumunun IR bölgesindedir. Hangi titre im hareketlerinin spektrumdaki hangi bandlara kar ılık oldu unu bulabilmek için molekül simetrisinin bilinmesi gerekir. Bu nedenle özellikle IR spektrumlarının açıklanmasında molekülün nokta grubunun ve simetri elemanlarının bilinmesinin önemi büyüktür. Verilen bir molekülün nokta grubunu bilmekle o molekül üzerinde yapılabilecek simetri i lemleri belirlenmi olur. Moleküle ait titre im modlarının hangi simetri türlerine ait oldu u ve bu titre imlerin infrared aktif olup olmadı 1, grup teori yardımıyla karakter tabloları kullanılarak bulunur. Bunun için indirgenme ba ıntısından yararlanılır [64].

$$n_{i} = \frac{1}{h} \sum_{s} n_{r} X(R) X_{i}(R)$$
(2.8)

Burada:

ni = i. Simetri türündeki titre im mod sayısı

h = grubun derecesi (simetri eleman sayısı)

 $n_r = R$ sınıfındaki simetri eleman sayısı

X(R) = R simetri elemanına ait indirgenebilir temsilin karakteri

 $X_i(R) =$. Simetri türündeki R elemanına ait indirgenemez temsilin karakteri

ifade etmektedir.

2.6 Ultraviyole-görünür bölge absorpsiyon spektroskopisi

Çözelti içindeki madde miktarını çözeltiden geçen veya çözeltinin tuttu u 1 ık miktarından faydalanarak ölçme i lemine fotometri, bu tip ölçümde kullanılan cihazlara da fotometre denir. Fotometrik ölçümde, renksiz çözeltilerin konsantrasyonu da ölçülebilir.

ekil 2.3 UV küvet

Analiz edilen örnek üzerine 1 1k demetinin bir kısmını filtreler kullanarak ayıran ve gönderen aletler kolorimetre veya fotometre olarak adlandırılırken, yarıklar ya da prizmalar aracılı 1 ile bu seçicili i yapan aletler spektrofotometre olarak adlandırılırlar.

ekil 2.4 Basit bir spektrofotometre prizması örne i

Maddenin 1 1 1 absorplamasını incelemek için kullanılan düzene e absorpsiyon spektrometresi veya absorpsiyon spektrofotometresi adı verilir. Bir spektrofotometre düzene i, ba lıca 1 1k kayna 1, dalga boyu seçicisi (monokromatör) ve dedektörden olu ur; dedektörde elektrik sinyaline çevrilen optik sinyal bir kaydedici veya bir galvanometre ile ölçülür.

ekil 2.5 Spektrofotometreye ait çalı ma mekanizması

Ana bile enlere ek olarak spektrofotometrede 1 1 1 toplamak, odaklamak, yansıtmak, iki demete bölmek ve örnek üzerine belli bir iddette göndermek amacıyla mercekler, aynalar, 1 1k bölücüleri, giri ve çıkı aralıkları vardır. Örnek, kullanılan dalga boyu bölgesinde 1 1 1 geçiren maddeden yapılmı örnek kaplarına (küvet) konularak 1 1k yoluna yerle tirilir.

UV-görünür bölgede D_2 , W, H₂, Xe, Hg buhar lambası gibi sürekli 1 1k kaynakları kullanılır. Tungsten flaman lambası, görünür ve yakın IR bölgede (320-3000 nm) 1 1k yayar. Tungsten lambasının içinde bir miktar iyot veya brom buharı bulunursa lambanın ömrü artar ve bu lamba tungsten-halojen lambası olarak adlandırılır.
Ulraviyole bölgede en çok kullanılan lambalar, hidrojen ve döteryum elektriksel bo alım lambalarıdır. Bu lambalar 180-380 nm arasında 1 ik yayar. Daha pahalı ve daha uzun ömürlü olan D_2 lambasının yaydı 1 1 1 in iddeti H_2 lambasına göre çok daha fazladır. Xe ark lambası, UV-görünür bölgenin tümünde (150-700 nm) kullanılabilecek iddetli ve sürekli 1 ik kayna ıdır. Civa buhar lambası, her iki bölgede 1 ima yapabilen bir 1 ik kayna ıdır; sürekli spektruma ek olarak kesikli hatlar da içerir.

Örnek üzerine gönderilen 1 1 in daha monokromatik olmasını sa lamak için bazı spektrofotometrelerde çift monokromatör kullanılır. Dalga boyu seçicileri (monokromatörler), 1 ik kayna ından gelen polikromatik 1 iktan tek bir dalga boyunda monokromatik 1 ik elde edilmesini gerçekle tiren düzeneklerdir. Monokromatör, filtreli fotometrelerde 1 ik filtresidir; spektrofotometrelerde ise 1 ik prizmasıdır.

ekil 2.6 Monokromatörlerde 1 1k prizması örne i

I ık filtreleri, camdan yapılmı ve uygun boyalarla boyanmı filtrelerdir. Portatif olup kullanıcı istedi i zaman uygun dalga boyundaki filtreyi cihaza takar. Filtrelerin üzerinde geçirdikleri dalga boyu yazılıdır. Filtrenin rengi, ölçüm yapılacak çözeltinin rengine göre seçilir; örne in, mavi 1 1 1 tutan (sarı) bir maddenin ölçümünde sadece mavi 1 1 1 geçiren filtre kullanılır.

I ık prizmaları, cam veya kuartz olabilir. Özellikle dü ük UV 1 ınları iyi geçirmedi inden cam prizma görünür bölge için uygundur. Kuartz prizmalar ise hem UV 1 ınlarını iyi geçirir, hem de görünür 1 ık ve IR'e yakın bölgelerde çalı maya elveri lidir. Kuartz prizmalar pahalı spektrofotometrelerde bulunur.

Spektrofotometrelerde dedektör, maddenin 1 1 1 absorplayıp absorplamadı ını anlamak için 1 ık kayna ından gelen 1 1 ın iddetinin ölçülmesi amacıyla kullanılan düzenektir. UV-görünür bölgede fotovoltaik dedektörler, foto tüp ve fotoço altıcı tüp olmak üzere kullanılabilen üç tür dedektör vardır.

2.6.1 Tek 1 ın yollu ve çift 1 ın yollu spektrofotometreler

Tek 1 1k yollu spektrofotometrelerde, bile enlerin tümü aynı 1 1k yoluna yerle tirilmi tir. Bu aletin ba lıca üç ayar dü mesi vardır:

Bunlardan biri, alette kullanılan optik a veya prizmayı mekanik olarak döndürmeyi sa lar. kinci dü me, 1 ık yolunu tamamen kapatarak galvanometre "sıfır" geçirgenlik ayarını yapmak içindir. Üçüncü dü me, 1 1 ın geçti i aralı ın enini de i tirir.

Ölçümün yapılaca 1 dalga boyu birinci dü me ile ayarlandıktan sonra 1 ık yolu kapatılarak ikinci dü me ile "sıfır" ayarı yapılır. Daha sonra üçüncü dü me ile 1 1 ın geçti i aralı ın eni de i tirilerek ve örnek kabında sadece çözücü kullanılarak galvanometre 100 de erine getirilir. Sıfır ve 100 ayarları her dalga boyunda yeniden yapılmalıdır.

ekil 2.7 Tek 1 in yollu spektrofotometrelerde çalı ma mekanizması

Çift 1 ık yollu spektrofotometrelerde, monokromatörden çıkan 1 ık, e it iddette iki demete bölünerek biri örne e di eri sadece çözücünün bulundu u kaba gönderilir. kiye ayrılan 1 ık, iki ayrı dedektörle algılanır ve dedektörlerde olu an sinyallerin oranı ölçülür. Böylece örnekteki geçirgenlik de eri sürekli olarak çözücününki ile kar 1la tırılmı olur. Burada iki dedektörün tam uyumlu olması, yani e it iddetteki 1 ık ile aynı sinyali olu turması gerekir.

ekil 2.8 Çift 1 ın yollu spektrofotometrelerde çalı ma mekanizması

Çift 1 ık yollu spektrofotometrelerde, tek dedektör kullanılarak da ölçüm yapmak mümkündür. Örnekten ve çözücüden geçen 1 ık demetleri dedektör üzerine art arda gelir ve alternatif türden sinyal olu turur. I ık iddetleri e it ise dedektörde herhangi bir sinyal olu maz; örnek bölmesinden gelen 1 1 ın iddeti absorpsiyon nedeniyle azaldı 1 zaman dedektöre gelen sinyal alternatif sinyal olarak algılanır.

ekil 2.9 Çift 1 ın yollu spektrofotometrelerde tek 1 ın yolu kullanılarak numune analizi yapılmasına ait mekanizma

Çift 1 1k yollu spektrofotometrelerin bir ba ka türü çift dalga boylu spektrofotometrelerdir. Çift dalga boylu spektrofotometrelerde iki farklı monokromatör vardır; iki farklı dalga boyundaki 1 1k, dönen bir 1 1k bölücü yardımıyla örnekle art arda etkile tirilir.

Bulanık çözeltilerde dalga boylarından biri çözeltideki maddenin absorplayaca 1, di eri ise absorplamayaca 1 de erlere ayarlanır. Bulanıklıktan dolayı her iki dalga boyunda aynı miktarda 1 ık kaybı olaca 1ndan iki dalga boyunda yapılan ölçümlerin farkı, sadece örne in absorbansı ile ili kilidir.

Spektrofotometre ile bir maddenin nicel analizinin yapılaca 1 dalga boyunu kararla tırmak için, örne in absorpsiyon spektrumunu bilmek gerekir. Bunun için, maddenin 1 molar çözeltisinin çe itli dalga boylarındaki absorbans de erleri ölçülür.

Çözücünün ve çözeltide bulunan ba ka türlerin 1 1 1 absorplamadı 1, Lambert-Beer e itli ine uyuldu u ve nicel analizin en duyarlı bir biçimde yapılabilece i dalga boyu de eri saptandıktan sonra analizi yapılacak maddeyi içeren ve deri imleri bilinen bir dizi standart çözelti ile bu dalga boyundaki absorbans (A) de erleri ölçülür. A de erleri, standart çözeltilerin bilinen deri imlerine kar 1 grafi e geçirilir.

ekil 2.10 Absorbansa kar ılık gelen dalgaboyu ve deri im (A/ ve A/c) grafi i

Standart çözeltilerin bilinen deri imlerine kar 1 A de erlerini grafi e geçirmek suretiyle elde edilen do ruya kalibrasyon do rusu denir. Nicel analiz, kalibrasyon do rusunun do rusal oldu u bölgede yapılır. Deri imi bilinmeyen örne in A de eri ölçülür ve kalibrasyon do rusunda bu de ere kar ılık gelen deri im saptanır. Molar absorpsiyon katsayısının de erinin bilindi i durumlarda, Lambert-Beer e itli inin analizde do rudan kullanılması da mümkündür. Absorbans(A)= $\cdot c \cdot l$

Spektrofotometrelerde örne in konuldu u örnek kapları(küvet), yuvarlak bir tüp veya dört kö e olabilir. Küvetler, soft veya borosilikat camdan, kuartz veya plastikten yapılır. Soft camlar asidik çözeltiler, boro silikat camlar kuvvetli alkali çözeltiler için uygundur. Corex gibi bazı camlar 340nm'de kullanılabilse de kısa UV dalgalar için uygun de ildir. Kuartz küvetler hem UV hem görünür dalga boyları için uygundur. Plastik küvetler özel üretilmi ise 200-700 nm arasında rahatlıkla kullanılabilir.

2.6.2 Küvetlerin temizli i

Küvetler kullanıldıktan hemen sonra bol çe me suyu ve ardından distile sudan geçirilmelidir. A ırı kirlenen veya koyu renkli reaktiflerin okundu u küvetler yumu ak deterjanlı su, çe me suyu ve distile su ile yıkanmalıdır. Kesinlikle fırça kullanılmamalıdır. Deterjanla temizlenemeyen küvetler, %20'lik nitrik asitte bir gece bekletildikten sonra, distile sudan geçirilip kullanılır. Küvet temizli inde bikromat solüsyonu kullanılmamalıdır. %10'luk NaOH kullanılabilir; ancak küvetler bu çözeltide uzun süre kalmamalıdır.

2.6.3 Spektrofotometreden numune okutulması

Spektrofotometrik ölçümlerde kör, standart ve numune olmak üzere üç tüp hazırlanır. Kör, cihazın optik ayarlarının (sıfır ve 100 ayarı) yapılması amacıyla kullanılan çözeltidir. Kör çözeltisi olarak distile su veya reaktifin kendisi kullanılır. Bazı ölçümlerde numune körü de kullanılabilir. Distile su körü, en sık kullanılan kördür; okuma küvetine distile su konularak hazırlanır. Daima absorbans de erinin sıfırlanması için kullanılır.

Reaktif körü, deneyde kullanılan reaktif ile hazırlanan kördür. Deneyde birden fazla reaktif varsa birden fazla reaktif körüde olabilir. Bazen absorbans de erinin sıfırlanması için, bazen de distile su körüne kar 1 numune gibi kullanılır.

Numune körü, deneyde kullanılan reaktif/numune oranına uygun olarak distile su veya serum fizyolojik ile numune karı tırılarak hazırlanır. Daima distile su veya reaktif körüyle sıfırlanmı cihazda numune gibi okutulur. Numune gibi okutulan reaktif veya numune körü de erleri numune de erinden çıkarılır.

Standart, aranan maddenin bilinen konsantrasyondaki çözeltisidir. Numune, içindeki madde miktarını tayin etmek istedi imiz çözeltidir.

Fotometrik ölçümler, esas olarak iki tipte yapılır. Bunlar, end point ve kinetik okumadır. End point okumada fotometrik okuma, reaksiyon tamamlandıktan sonra yapılır. Bunun için reaksiyon karı ımı belli bir süre ve belli bir sıcaklıkta inkübe edilir. Reaksiyon tamamlanıp ürünlerin olu umu ve dolayısıyla renk olu umu tamamlandıktan sonra okuma yapılır. Kinetik okumada birim zamandaki absorbans de i imi ölçülür.

Genellikle enzimlerin katalitik aktivitelerinin tayininde kullanılır. Hesaplama için deney ortamındaki kromojen maddenin molar absorpsiyon katsayısının bilinmesi gerekir. Analiz tüpüne reaktif ve numune konup belirtilen sıcaklıkta inkübasyona bırakılır. Deney metodunda belirtilen bir süre sonra ilk absorbans de erleri okunur. Daha sonra birer dakika aralarla 2, 3 defa daha absorbans de erleri okunur ve birbirini takip eden her iki okumanın farkı alınır (A). Daha sonra bu dakikalık absorbans farkları toplanıp okuma aralı 1 sayısına bölünerek dakikadaki ortalama absorbans de i imi (A/dakika) bulunur.

Dakikadaki ortalama absorbans de i imi (A/dakika), deneyde ölçülen maddenin miktarı reaksiyon sırasında artıyorsa (+), azalıyorsa (-) bir sayıdır; hesaplamada mutlak de er alınır. E er reaktifte deney artlarında numune olmaksızın bir absorbans de i imi oluyorsa bunun tespit edilip numune için bulunan de erden çıkarılması gerekir. Ayrıca A de erlerinin birbirinden çok farklı olması reaksiyonun lineer olmadı ını gösterir.

Kinetik okumada sonuçlar, A/dakika de erleri bir faktörle çarpılarak bulunur.

2.6.4 Tercih edilecek olan spektrofotometrik ölçüm cihazının özellikleri

-Filtreli fotometre de il, spektrofotometre olmalıdır.

-Okuma aralı 1 340-700 nm aralı ını kapsamalıdır.

-Cihazın küvet okuma kısmı ısıtıcılı olmalıdır.

-Optik okuma için gerek duydu u asgari reaksiyon hacmi küçük olmalıdır.

-Cihaz gerekli program bilgilerini hafızasında tutabilmelidir.

- ebeke elektrik akımındaki dalgalanmaların zararlı etkilerinden korunmak için bir regülatörü olmalıdır.

-Çift 1 ık yollu cihaz olmalıdır.

-Dijital göstergeli ve 0-100 ayarlarını otomatik yapmalıdır.

-Hafıza sistemi açık olmalıdır; test parametreleri kullanıcı tarafından de i tirilebilmelidir.

-Bikromatik (çift dalga boylu) okuma yapabilmelidir.

-Dalga boyu geçi leri kesintisiz olmalıdır; her bir nm dalga boyuna ayarlanabilmelidir.

-Cihaz, non-lineer testleri çalı ıp hesaplayabilmelidir.

2.6.5 Spektrofotometrelerin kalibrasyonu

-Bir miktar potasyum dikromat ($K_2Cr_2O_7$), 100°C'de bir saat süre ile kurutulur.

-Kurutulmu potasyum dikromattan çok hassas olarak 0,005g tartılır ve 1L'lik balon jojede 0,005M sülfürik asit çözeltisinde son hacim 1L olacak ekilde çözülür.

-Bu çözeltinin absorbansı, 15-25°C aralı ında 1cm'lik küvette 350 nm dalga boyunda okunur. Reaktif körü olarak 0,005M sülfürik asit çözeltisi kullanılır.

-Bu artlarda ölçülen absorbans de eri 0,536±0,005 olmalıdır.

2.6.6 Otoanalizörler

Otomatik bir spektrofotometre, otoanalizördür. Otoanalizör, numune ve reaktifleri uygun ölçülerde alıp karı tırır, belirli süre ve ısıda inkübe eder, gerekli sürelerde optik okumaları yapıp sonunda ilgili analiz sonucunu hesaplanmı olarak kullanıcıya sunar.

2.7 Nükleer manyetik rezonans (NMR) spektroskopisi

Atomu olu turan yüklü taneciklerden elektronlar, kendi etraflarında dönerler yani bir "spin" hareketi yaparlar. Atom çekirdeklerinin ço u da "spin" hareketi yaparlar. Atom çekirdeklerinde proton ve nötron sayıları çift sayılı ise (⁴He, ¹²C, ¹⁶O gibi) bu çekirdeklerin net spini yoktur. Çekirdekteki nötron ve proton sayıları tek sayılı ise yani nötron ve proton sayılarının toplamı çift sayılı ise çekirde in net spini tam sayıdır. Çekirdekteki nötron ve proton sayılarının toplamı çift sayılı ise spini yarımlı de er alır.

Kendi ekseni etrafında dönen yüklü bir parçacık, dairesel bir elektrik alanı olu turur ve bu akım bir manyetik alan yaratır. Spin hareketi yapan yüklü bir tanecik, küçük bir mıknatıs gibi davranır ve dolayısıyla dı tan uygulanan bir manyetik alandan etkilenir. Manyetik alan içinde tutulan yüklü bir taneci in olu turdu u manyetik dipol, bu alan içinde Lamor dönmesi hareketini yapar [65].

ekil 2.11 Lamor Dönmesi

Manyetik alan etkisinde olan ve spin hareketi yapan ve net spini olan çekirdek h enerjisine sahip bir 1 ıma ile etkile irse, bu 1 ımanın frekansı Lamor hareketinin frekansına e it oldu u zaman rezonans ko ulu sa lanmı olur ve 1 ık absorplanır.

Manyetik alan içinde tutulan bir çekirde in elektromanyetik 1 ımayı önemli ölçüde absorplaması için, örnek içerisindeki bollu u çok olmalı ve büyük bir manyetik moment de erine sahip olmalıdır. Bu iki özelli i bir arada ta 1yan çekirdekler ¹H, ¹⁹F, ³¹P'dur.

Uygun bir radyo dalgası fotonu ile etkile ti inde proton manyetik rezonansa girece inden ¹H-NMR yöntemiyle bir örnekte hidrojen atomu olup olmadı ını anlamak ve varsa ne kadar hidrojen atomu oldu unu ölçmek mümkündür.

Farklı kimyasal çevreye sahip çekirdeklerin uygulanan radyo dalgası fotonu ile farklı manyetik alanlarda rezonansa girmesine **kimyasal kayma** denir. Kimyasal kayma de erlerini birbirleri ile kar ıla tırabilmek ve tablo haline getirebilmek için incelenen örnekle beraber bir kar ıla tırma maddesinin de kullanılması gerekir.

Sulu olmayan çözeltilerde kullanılan kar ıla tırma maddesi tetrametilsilan'dır [TMS, Si(CH₃)₄]. Bu madde, örnek çözeltisine %5 oranında eklenir. Sulu çözeltilerde kar ıla tırma maddesi olarak 2,2-dimetil-2-silapentan-5-sulfonik asit sodyum tuzu kullanılır. TMS'nin proton rezonansına ait pikin kimyasal kayma de eri sıfır kabul edilir ve öteki piklerin kimyasal kayma de erleri TMS'ninkine göre verilir. Bu tür kimyasal ölçe e ölçe i adı verilir. Bir ba ka ölçek olan ölçe inde TMS'nin kimyasal kayma de eri 10 olarak alınır.

ekil 2.12 TMS de kullanılan kimyasal kayma ölçe i

 $\delta (\text{ppm}) = \frac{\text{TMS ye göre ölçülen kimyasal kayma (Hz)}}{\text{Spektrometrede kullanılan radyodalga frekansı (Hz)}} \ge 10^6$

¹H-NMR, ¹⁹F-NMR, ³¹P-NMR spektrometreleri tasarlanmı ve bunlarla çe itli maddelerin NMR spektrumları elde edilmi tir.

Nükleer manyetik rezonans spektrometreleri, numune sabit frekansta bir elektromanyetik enerjiyle 1 ınlanırken, manyetik alan iddeti sürekli olarak de i tirilecek ekilde tasarlanabilir.

ekil 2.13 NMR spektoskopisinde numune analiz yöntemine ait ema

Taramalı spektrometre ve pulslu spektrometre gibi NMR spektrometreler vardır.

NMR spektrumları, daha çok saf haldeki bile iklerin nitel analizinde ve yapılarının belirlenmesinde kullanılır.

¹H-NMR için, 20-50 mg a ırlı ında örnek 0,5 mL çözücüde çözülerek 15 cm uzunlu unda ve 0,5 cm çapında bir tüp içinde manyetik alana yerle tirilir. Nitel analizde kimyasal kayma de erleri tablolardaki de erlerle kar ıla tırılır.

NMR spektroskopisi ile nicel analiz de gerçekle tirilebilir. Ancak bu amaçla kullanılırken yöntemin duyarlılı 1 çok azdır.

2.8 Kuantum Kimyası

17.asrın sonunda, İsaac Newton mikroskopik cisimlerin hareket kanununu ifade eden klasik mekani i ke fetmi tir. 20. yüzyılın ba larında fizikçiler, klasik mekani in, atomların ve moleküllerin çekirdek ve elektron gibi çok küçük parçacıkların davranı larını do ru bir ekilde tanımlayamadı ını anlamı lardır. Böyle küçük parçacıkların davranı 1 kuantum mekani i olarak adlandırılan kanunlarla tanımlandı ını belirtmi lerdir.

Kuantum kimyası, kuantum mekani ini kimyadaki problemlere uygular. Kuantum kimyasının etkisi kimyanın bütün dallarında hissedilir.

Organik kimyacılar, moleküllerin göreli stabilitesini tahmin etmek, reaksiyon ara ürününün özelliklerini hesaplamak, kimyasal reaksiyonların mekanizmasını hesaplamak, bile iklerin aromatikli ini yorumlamak ve NMR spektrumunu yorumlamak için kuantum mekani ini kullanır.

norganik kimyacılar, geçi metal kompleks iyonlarının özelliklerini açıklamak ve yorumlamak için kuantum mekanik metotlarını kullanır.

Kuantum mekani inin geli mesi 1900 yılında Planck' ın ısıtılan katılar tarafından yayılan 1 1 ın çalı masıyla ba lamı tır.

Kuantum mekani inde bir sistemin durumunu tanımlamak için, Ψ dalga fonksiyonu veya durum fonksiyonu olarak adlandırılan koordinatların bir fonksiyonu önerilir. Genelde durum zamanla de i ti i için, Ψ zamanın da bir fonksiyonudur. Bir boyutlu sistemde bir parçacık için $\Psi = \Psi(x,t)$ eklinde ifade edilir. Dalga fonksiyonu bir sistem hakkında bütün mümkün bilgileri içerir.

Bir boyutlu sistemdeki bir parçacık için a a ıdaki e itlik önerilmi tir.

$$-\frac{\hbar}{i}\frac{\partial\Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + V(x,t)\Psi(x,t);$$
(2.9)

burada \hbar (*hbar*) a a ıdaki ekilde tanımlanır.

$$\hbar = \frac{h}{2f} \tag{2.10}$$

Dalga fonksiyonu kavramı ve onun zamanla de i ti ini gösteren e itlik 1926 yılında Avusturalyalı fizikçi Erwin Shrödinger (1887-1961) tarafından ke fedilmi tir. Bu e itlik zamana ba lı Schrödinger e itli i (veya Schrödinger dalga e itli i) olarak bilinmektedir. Sistem hakkında, onun tanımlamak için mümkün oldu u kadar bilebildi imiz bütün bilgileri dalga fonksiyonu içerir.

2.8.1 Zamana ba lı schrödinger e itli i

Zamana ba lı Schrödinger e itli inin çözümü oldukça zordur. Fakat kuantum mekani inin kimyaya uygulanması için bu e itlikle u ra mak gerekli de ildir. Yerine daha basit zamandan ba ımsız schrödinger e itli i kullanılır. Zamana ba lı Schrödinger e itli i a a ıdaki gibidir.

$$-\frac{\hbar}{i}\frac{\partial\Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial^2 x} + V(x)\Psi(x,t)$$
$$-\frac{\hbar^2}{2m}\frac{d^2\mathbb{E}(t)}{dx^2} + V(x)\mathbb{E}(x) = E\mathbb{E}(x)$$
(2.11)

Yukarıdaki e itlik bir boyutta hareket eden m kütleli bir parçacık için zamandan ba ımsız, Schrödinger e itli idir.

Schrödinger denklemi kuantum mekani inin ve kuantum kimya problemlerinin çözümünde temel bir denklemdir. Zamandan ba ımsız olarak yazılan Schrödinger denklemi sistemin kararlı durumunu ifade etmektedir.

2.8.2 Hidrojene benzer atomların schrödinger denklemi

Hidrojene benzer atomların çözümü çok elektronlu sistemler için büyük bir önem ta ımaktadır. Çok elektronlu atomların teorisi, hidrojene benzer atomların teorisine dayanır. Çok elektronlu atomlarda genellikle hidrojene benzer atomların özfonksiyonları kullanılmaktadır. Hidrojene benzer atomlara, iki parçacıktan olu an sistem olarak bakılabilir. Bunlardan biri kütlesi M ve yükü Ze_0 olan çekirdektir ve di eri ise çekirde in alan etkisinde hareket eden kütlesi m_0 ve yükü e_0 olan elektrondur. Burada Z atom numarasıdır. Böylece Z=1, 2, 3 ise , He^+ , Li^{++} , Be^{+++} vs için Schrödinger denkleminin çözümü yazılabilir. Durumu basitle tirmek için çekirde in sabit oldu u ve sadece elektronun hareket etti i kabul edilebilir. Bu arta göre, çekirde in kütlesi elektronun kütlesi yanında sonsuz olarak kabul edilmektedir. Burada çekirdek hareketinin etkisinin çok küçük oldu u gösterilebilir. Çekirdek hareketinin etkisini göz önünde bulundurmak için elektronun kütlesi yerine e itli inde yazılan indirgenmi kütle kullanılır.

$$\sim \equiv \frac{m_0 M_z}{M_z + m_0} \tag{2.12}$$

 M_Z - Z çekirde inin kütlesidir. $m_0 << M_Z$ oldu undan $m_0 = \sim$ dir. Bu sistem için Schrödinger denklemi (2.13) e itli indeki gibi yazılır

$$H \mathbb{E} = E \mathbb{E}$$
(2.13)

Burada *H* Hamiltonian operatörüdür ve (2.14) eklinde yazılır.

$$H = -\frac{\hbar^2}{2m_0}\nabla^2 + U$$
 (2.14)

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 Laplace operatörüdür.

r uzaklı ında çekirdek alanının etkisinde kalan elektronun potansiyel enerjisi (2.15) e itli indeki gibi yazılır.

$$U = -\frac{Ze_0^2}{r}$$
(2.15)

Schrödinger denkleminin çözümü için kartezyen koordinatlarından küresel koordinatlara geçi yapılır. x, y, z koordinatlarındaki Laplace operatörü, (2.16) e itlikleri kullanılarak küresel koordinatlarda a a ıdaki gibi yazılabilir.

$$\nabla^{2} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) + \frac{1}{r^{2} \sin \left[-\frac{\partial}{\partial }} -\frac{\partial}{\partial \left[-\frac{\partial}{\left[-\frac{\partial}{\partial \left[-\frac{\partial}{\left[$

Bu durumda hareket etmeyen çekirdek alanındaki elektron için Schrödinger denklemi küresel koordinatlarda (2.17) e itli indeki gibi elde edilir.

$$\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial \mathbf{E}}{\partial r}\right) + \frac{1}{r^{2}\sin\left[}\frac{\partial}{\partial\left[}\left(\sin\left[\frac{\partial \mathbf{E}}{\partial\left[}\right]\right] + \frac{1}{r^{2}\sin^{2}\left[}\frac{\partial^{2}\mathbf{E}}{\partial\left\{^{2}\right]} + -\frac{2m_{0}}{\hbar^{2}}\left(E + \frac{Ze_{0}^{2}}{r}\right)\mathbf{E} = 0$$
(2.17)

Burada *E* elektronun enerjisidir.

Çok elektronlu sistem için Hamiltonian operatörü a a ıdaki gibi yazılabilir.

$$H = -\frac{\hbar^2}{2m_0} \sum_{i=1}^{N} \nabla_i^2 + U$$
(2.18)

Burada $\nabla_i^2 - i$ elektronu için Laplace operatörüdür. Tüm elektronlar üzerinde toplam yapılmaktadır.

$$U = \sum U_0(i) + \sum U(ij) = -\sum_{i=1}^N \frac{Ze_0^2}{r_i} + \frac{1}{2} \sum_{i,j=1}^N \frac{e_0^2}{r_{ij}}$$
(2.19)

U çekirdek ve elektronların olu turdu u potansiyel enerjidir. Birinci terim elektronlar ve çekirdekler arası elektrostatik etkile imi,

$$\sum U_0(i) = -\sum_{i=1}^N \frac{Ze_0^2}{r_i}$$
(2.20)

ikinci terim elektronlar arası elektrostatik etkile imi gösterir.

$$\sum U(ij) = \frac{1}{2} \sum_{i,j=1}^{N} \frac{e_0^2}{r_{ij}}$$
(2.21)

Bu denklemlerde r_i *i* . elektronun çekirdekten uzaklı 111, r_{ij} elektronlar arası uzaklı 1 gösterir. Toplamdaki üs, *i* = *j* terimlerinin ihmal edildi ini gösterir.

$$\frac{\hbar^2}{e_0^2 m_0} = a_0 \tag{2.22}$$

formülü göz önüne alınırsa, (2.18) e itli i daha uygun bir ekilde a a ıdaki gibi yazılabilir.

$$H = -\frac{1}{2}e_0^2 a_0 \sum_{i=1}^N \nabla_i^2 + U$$
(2.23)

Burada a_0 hidrojen atomunun birinci Bohr yarıçapıdır. Ψ , *N* elektronu olan sistemin Hamiltonian operatörüne ait özfonksiyon ise, (2.22) e itli i kullanılarak Schrödinger denklemi yeniden a a ıdaki gibi yazılabilir.

$$\sum_{i=1}^{N} \nabla_{i}^{2} \Psi + \frac{2}{e_{0}^{2} a_{0}} (E - U) \Psi = 0$$
(2.24)

Çok elektronlu sistemde e itli inin çözümü sadece yakla ımlarla mümkündür. Kuantum mekanik metotlarının moleküler sistemlere uygulanması, çok merkezli problemlere neden olmaktadır ve bazı durumlarda çözümü çok zordur. Hidrojen iyonunun dı ında Schrödinger denkleminin tam çözümü moleküler sistemler için, mümkün de ildir. Bundan dolayı, moleküler problemlerin çözümü için belirli vakla ımlar kullanılmaktadır. Bunlardan bazıları: çift elektron metodu, Heitler-London metodu, Moleküler orbital metodu ve di erleridir. Schrödinger e itli inin çözümü için, elektronik yapı metotları, de i ik yakla ımlarla karakterize edilir. Elektronik yapı metotları ba lıca iki gruba ayrılır [52].

2.8.2.1 Yarı-deneysel metotlar (semiempirical methods)

Yarı-deneysel metotlar, Schrödinger e itli inde yakla ımı basitle tirmek için, deneysel verilerden türetilen parametreler kullanılarak, karakterize edilir [52,53]. Böylece, göreli olarak pahalı de ildir ve çok büyük moleküllere pratik olarak uygulanabilir. Yarı-deneysel metotların birçok çe idi vardır. AM1, PM3 ve MNDO en iyi bilinen yarı-deneysel metotlardandır. Yarı-deneysel metotlar, a a ıda belirtilenler de dahil olmak üzere, birçok modelleme için uygundur.

Çok büyük sistemler için pratiktir. Çok büyük sistemler için, örne in, Hartree-Fock (HF) veya Yo unluk Fonksiyonel Teori (DFT Density Functional theory) [52] metodu ile yapılan optimizasyonda bir ba langıç yapısı elde etmek için yarı-deneysel metotlar kullanılmalıdır. Temel durumdaki moleküler sistemler için yarı-deneysel metotlar iyi bir ekilde parametrize edilmi tir. Genelde yarı-deneysel metotlar organik moleküller için geli tirilmi tir. Moleküler orbitaller, atomik yük, titre im modu gibi bir molekül hakkında kalitatif bilgi elde etmek için kullanılır. Bazı durumlarda ise yarı-deneysel metotlar kalitatif veya yarı kantitatif ekilde alternatif konformasyon ve substituent etkisinden kaynaklanan enerji e ilimini yorumlamak için ba arılı bir ekilde kullanılır.

Yarı-Deneysel Metotların Sınırları: Yarı-deneysel metotlar bütün komponent atomları içine alan parametrelerin geli tirildi i sistemler için kullanılabilir. Buna ilave olarak yarı deneysel metotların iyi bilinen sınırlamaları vardır. yi bir ekilde parametrize edilmemi moleküller için, hidrojen ba ları ve geçi yapıları hesaplamalar sırasında problem olu turur.

AM1, MNDO/3 ve PM3 gibi yarı-deneysel metotlarla hesaplamayı basitle tirmek için, deneysel verilerden çıkarılan parametreler kullanır. nceleme altındaki kimyasal sistemler için uygun mevcut parametrelere ba lı olarak Schrödinger e itli inin yakla ık bir ekli çözülür. Farklı yarı-deneysel metotlar, büyük bir ölçüde, farklı parametre gruplarıyla karakterize edilmi tir [52].

2.8.2.2 Ab initio metotları

Ab initio metotları moleküler orbital teorisini, atomik ve moleküler sistemlerin özelliklerini yorumlamayla ilgilidir [52]. Ab initio metodu, kuantum mekani inin temel kanunlarına dayanır ve temel e itlikleri çözmek için yakla ık teknikleri ve matematiksel yakla ımın bir de i imini kullanır [52,53]. Moleküler mekanik veya yarı deneysel metotlara benzemeyen ab initio metotları hesaplamalarında deneysel parametre kullanılmaz. Bunun yerine ab initio hesaplamaları, kuantum mekanik kavramlarına ve fiziksel sabitlerin küçük bir sayı de erine ba lıdır.

Ab initio metotları, zor matematiksel hesaplamaların bir serisini kullanarak, Schrödinger e itli inin çözümünü arar. Yarı deneysel ve ab initio metotları hesaplama fiyatı ve sonucun hassasiyeti arasında birbirinden ayrılır. Yarı-deneysel hesaplama oldukça ucuz ve moleküler sistemin uygun kalitatif tanımlarını sa lar ve iyi parametreler kullanıldı 1 zaman sistemin yapısı ve enerjinin kantitatif yorumu hassas olur. Tersine, ab initio hesaplamaları, geni aralıktaki sistem için yüksek kaliteli kantitatif yorumlar sa lar ve herhangi bir spesifik sistemle sınırlandırılmamı tır[52].

Yakın zamanlarda, elektronik yapı metotlarının üçüncüsü olan, DFT metodu geni bir ekilde kullanılmaya ba lanmı tır. DFT ço u ekilde ab initio metoduna benzer. DFT hesaplamaları, HF gibi hesaplama kayna ının aynı niceliklerini gerektirir, ama en azından ab initio metodundan daha ucuzdur. DFT metotları çekicidir çünkü modelde elektron korelasyonunun etkisini içerir. Bir moleküler sistemdeki elektronlar di erinin hareketini etkiler. HF hesaplamaları bu etkiyi ortalama bir etki olarak dü ünür ve her bir elektronu göz önüne alır ve ortalama elektron yo unlu u kabul edilir. Oysa elektron korelasyonunu içeren metotlar, zıt spinli elektron çiftlerinin ani etkile imlerini hesap eder. Bu yakla ım, bazı sistemler için HF' den daha az hassas sonuç vermesine sebep olur.

2.8.3 Moleküler orbital hesaplamalarında gauss tipi fonksiyonların kullanılması

Temel set, bir molekül içindeki moleküler orbitallerin matematiksel gösterimidir [52]. Temel set, belirli bir yüzey bölgesinde, her bir elektronun sınırlaması olarak yorumlanabilir. Büyük temel setler daha az sınırlama içerir. Fakat daha büyük bilgisayar kaynaklarını gerektirir. En sık kullanılan iki tip temel fonksiyonu vardır. Bunlar; Slater, Gauss fonksiyonlarıdır.

2.8.3.1 Hesaplamalarda kullanılan temel setleri ve etkileri

Temel set, teorik hesaplamalar olu turmak için kullanılan bir sistem içindeki orbitallerin matematiksel tanımıdır. Büyük temel setler, uzaydaki elektronların yerle mesinde birkaç sınırlamayı kullanarak orbitalleri daha hassas bir ekilde tahmin eder. Do ru kuantum mekaniksel resimde, elektronların uzayda herhangi bir yerde bulunma olasılı 1 vardır. Elektronik yapı hesaplamaları için standart temel setler, orbitalleri olu turmak için Gaussian fonksiyonunun lineer bile imini kullanır.

2.8.3.2 Minimal temel setler

Minimal temel setler örnekteki gibi her bir atom için ihtiyaç duyulan temel fonksiyonun minimum sayısını içerir.

H:1s C:1s2s2p_x2p_y2p_z

Minimal temel set, 6 atomik orbitali kullanır.

STO-3G temel seti minimum temel settir.(en küçük mümkün temel set olmamasına ra men) o, her temel fonksiyonu için üç ilkel Gaussian fonksiyonu kullanır.

3G: Gaussian

STO: Slater tipi orbital

STO-3G: Gaussian fonksiyonlu Slater orbital

Minimal temel setin apaçık iki eksikli i vardır. Birincisi bütün temel fonksiyonlarının ya tek ba ına küresel (s fonksiyonu) ya da toplamının (p fonksiyonları) küresel olmasıdır. Sonuç olarak küresel çevresi olan veya küresel çevreye yakın olan atomlardan olu an moleküller, küresel çevresi olmayan atomlardan olu an moleküllerden daha iyi tanımlanacaktır.

kinci eksikli i temel fonksiyonların atom merkezli olmasından kaynaklanmaktadır. Oysa bu kesinlikle gerekli de ildir. Temel fonksiyonlar için ba ka açık yerle tirme yoktur. Bununla beraber temel fonksiyonlar için atom merkezli yerle melerin seçimi ba lar arasında elektron da ılımını tanımlamak için onların esnekli ini sınırlar.

Bölünmü Valans Temel Set (Bölünen "Valance Basis Set"): Minimum temel setin birinci eksikli i, valans temel fonksiyonları için iki set olu turarak giderilebilir. Valans temel setin bölünmesinde iç kabuk atomik orbitalleri bir fonksiyon, valans atomik orbitalleri iki fonksiyon ile gösterilir. Temel setini daha büyük yapmanın birinci yolu, atomlar için temel fonksiyon sayısını artırmaktır. 3-21G ve 6-31G gibi bölünen valans temel setlerin her bir valans orbitali için iki veya daha fazla temel fonksiyonu vardır. Örne in hidrojen ve karbon a a ıdaki gibi gösterilir.

H:1s,1s

 $C:1s2s2s\ 2P_x2P_y2P_z2P_x\ 2P_y\ 2P_z$

Birinci veya birinci olmayan (prime, unprime) farklı boyuttadır.

Dunning-Huzinaga temel seti gibi çift zeta (double zeta) temel setlerini her bir atomun iki boyutlu lineer fonksiyonundan bütün moleküler orbitalleri olu turur. Benzer ekilde 6-311G gibi üçlü bölünen valans temel setleri her bir orbital tipinin sıkı tırılmı (contracted) fonksiyonlarının üç boyutunu kullanır.

2.8.3.3 Polarize temel set

Minimum temel setin ikinci eksikli i, ana grup a ır atomlarına d tipi fonksiyonu, hidrojene ise p tipi fonksiyonu ilave ederek giderilir. Bölünen valans temel setleri, orbitalin boyutunun de i mesine izin verir. Fakat ekli de i mez. Polarize temel setleri; her bir atomun tanımına, temel durum için gerekli olan açısal momentumu olan orbitalleri ilave ederek sınırlamayı kaldırır. Örne in, polarize temel set; karbon atomuna

d fonksiyonlarını ve geçi metallerine, f fonksiyonlarını ve hidrojen atomlarına, p fonksiyonlarını ilave eder.

31G(d) temel setinde, a ır atomlara d fonksiyon temel seti ilave edilmektedir. Bu temel set, orta boyutlu sistemleri içeren hesaplamalar için çok yaygın olarak kullanılmaktadır. Bu temel set 6-31G olarak da bilinir. Ba ka bir popüler polarize temel set 6-31G(*d*,*p*) 6-31G** olarak bilinir. 6-31G(*d*,*p*) 6-31G** temel setlerinde, *p* fonksiyonları H atomuna, *d* fonksiyonları a ır atomlara ilave edilir.

2.8.3.4 Difüz fonksiyonları

Difüz fonksiyonları *s* ve *p* tipi fonksiyonların büyük boyut versiyonlarıdır. Orbitallerin uzayın daha büyük bölgesinde bulunmasına izin verir. Difüz fonksiyonlu temel setler elektronların göreli olarak çekirdekten uzak oldukları sistemler için önemlidir. Örne in ortaklanmamı elektronu olan moleküller, önemli negatif yükü olan di er sistemler, uyarılmı durumdaki sistemler, dü ük iyonizasyon potansiyeli olan sistemler, kesin asitli in tanımları vs. 6-31+G(d) temel set, a ır atomlara ilave edilen difüz fonksiyonlu 6-31G(d) temel setleridir. Çift + versiyonu olan -31++G(d) hidrojen atomlarına da difüz fonksiyonlarını ilave eder. Hidrojen atomlarındaki difüz fonksiyonları hassasiyette nadiren önemli bir azalma yapar.

2.8.3.5 Yüksek açısal momentum temel setleri

Daha büyük taban setler bile imdi ço u sistemler için pratiktir. Böyle temel setler üçlü zeta temel set için polarizasyon fonksiyonlarını her atoma ilave eder. Örne in 6-31G(2d) temel seti iki d fonksiyonunu bir atom yerine her bir a ır atoma ilave eder, oysa 6-311++G(3df,3pd) temel seti, valans bölge fonksiyonunu üç setini ihtiva eder. Bunlar: A ır atomlar ve hidrojenlerdeki difüz fonksiyonları, çoklu polarizasyon fonksiyonları, a ır atomlardaki 3d fonksiyonları ve 1f fonksiyonu, hidrojen atomlarındaki 3p fonksiyonları ve 1d fonksiyonudur.

Böyle temel setleri, elektron korelasyon metotlarındaki, elektronlar arası etkile imi tanımlamak için faydalıdır. Hartree-Fock hesaplamaları için genellikle ihtiyaç duyulur.

Bazı büyük temel setler bulundukları periyodik tablonun sırasına ba lı olarak a ır atomlar için polarizasyon fonksiyonlarının farklı setlerini belirtir. Örne in 6-311+(3df, 2df, p) temel setleri; periyodik tablonun ikinci ve daha yüksek sıralarındaki

a ır atomlara 3d fonksiyonlarını ve 1f fonksiyonlarını, 1. sıra a ır atomlarına 2d fonksiyonları ile 1f fonksiyonlarını ve hidrojen atomuna ise 1p fonksiyonunu yerle tirir.

BÖLÜM III

MATERYAL VE METOT

3.1 Materyal

3.1.1 satin tiyosemikarbazon sentezinde kullanılan kimyasal maddeler

Hidrazin hidrat; tiyosemikarbazitlerin eldesinde kullanıldı.

2-florofenil-3-tiyosemikarbazit; satin-3-N-florofenil tiysemikarbazonların eldesinde kullanıldı.

2-klorofenil-3-tiyosemikarbazit; satin-3-N-klorofenil tiysemikarbazonların eldesinde kullanıldı.

Çinko(II)asetat.2hidrat; satin-3-tiyosemikarbazonların ve türevlerinin çinko (Zn) komplekslerinin eldesinde kullanıldı.

Nikel(II)asetat.2hidrat; satin-3-tiyosemikarbazonların ve türevlerinin nikel (Ni) komplekslerinin eldesinde kullanıldı.

satin; satin-3-tiyosemikarbazonların eldesinde kullanıldı.

3.1.2 Kullanılan çözücüler

Metanol: Tiyosemikarbazit, tiyosemikarbazon bile iklerinin ve metal komplekslerinin eldesinde ve sentezlenen bile iklerin UV spektrumunun belirlenmesinde çözücü olarak kullanıldı.

Dietileter; Sentezlenen metal komplekslerinin safla tırılmasında yıkama çözücüsü olarak kullanıldı.

Etilasetat ve Petroleteri; Yapılan sentezlerin TLC kontrolünde kullanıldı.

Etanol; Kristallendirme ve yıkama i lemleri için kullanıldı.

3.1.3 Kullanılan cihazlar

¹**H-NMR ve** ¹³**C-NMR Analizleri:** Erciyes Üniversitesi Teknoloji Ara tırma ve Uygulama Merkezinde Bruker 400 cihazıyla gerçekle tirilmi tir.

Erime noktası tayin cihazı: Sentezlenen bütün bile iklerin erime noktasını belirlemek ve saflıklarının kontrol edilmesi için Ni de Üniversitesi Fen Edebiyat Fakültesi, Kimya bölümünde bulunan Electrothermal 9100 cihazı kullanılmı tır.

Infrared Spektrumları (FT-IR): Sentezlenen tüm ligant ve komplekslerin önemli fonksiyonel gruplarının belirlenmesinde ve metal-azot, metal-oksijen, metal-kükürt bandlarının uzak infrared bölgesinin belirlenmesinde Ni de Üniversitesi Fen Edebiyat Fakültesi, Kimya bölümünde bulunan Jasco 300 FT-IR cihazı kullanılmı tır.

Ultraviyole-Görünür Bölge Spektrumları (**UV-Vis**): Sentezlenen bile iklerin, özellikle komplekslerin d-d ve yük aktarım geçi lerinin belirlenmesinde Ni de Üniversitesi Fen Edebiyat Fakültesi, Kimya bölümünde bulunan Shimadzu 160 A double beam UV cihazı kullanılmı tır.

Manyetik karı tırıcılı ısıtıcı: Isı ve karı tırma gereken bütün reaksiyonların kurulmasında kullanılmı tır.

nce tabaka kromotografi: Merck TLC Aluminium Sheets 60 F 254 kullanılmı tır.

Etüv: Sentezlenen tüm ligant ve komplekslerin kurutulması amacıyla Ni de Üniversitesi Fen Edebiyat Fakültesi, Kimya bölümünde bulunan Müve marka FN 120 model etüv kullanılmı tır.

Gaussian G03W: Sentezlenen tüm ligant ve komplekslerin bilgisayar ortamında moleküler modellenmesinde kullanılmı tır.

3.2 Metot

Ligandlar ile kompleksler Ni de Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü Anorganik Kimya Ara tırma Laboratuvarı'nda sentez edilmi tir ve elde edilen bile iklerin bilgisayar ortamındaki çalı maları Gaussian 03W paket programıyla yapılmı tır.

3.2.1 satin-3-tiyosemikarbazonların sentezi

3.2.1.1 satin-3-N-(2-florofenil) tiysemikarbazon) sentezi (I2FPTH₂)

2 mmol (0.294 g) isatin 25 mL etanolde çözünene kadar manyetik karı tırıcıda karı tırıldı. Karı an çözeltiye 2 mmol (0.360 g) 2-florofenil-3-tiyosemikarbazitin 25mL etanoldeki çözeltisi eklendi ve karı tırma i lemi yapıldı. Ortama 2-3 damla dumanlı sülfürik asit ilave edildi ve 2-3 saat geri so utucu altında kaynatıldı. Ürün süzüldü, safla tırıldı ve kurutuldu. Turuncu katı ürün elde edildi.

3.2.1.2 satin-3-N-(2-klorofenil) tiysemikarbazon) sentezi (I2CPTH₂)

3.5 mmol (0.514g) isatin 25 mL etanolde çözünene kadar manyetik karı tırıcıda karı tırıldı. Karı an çözeltiye 3.5 mmol (0.698g) 2-klorofenil-3-tiyosemikarbazitin 25mL etanoldeki çözeltisi eklendi ve karı tırma i lemi yapıldı. Ortama 2-3 damla dumanlı sülfürik asit ilave edildi ve 2-3 saat geri so utucu altında kaynatıldı. Ürün süzüldü, safla tırıldı ve kurutuldu. Sarı katı ürün elde edildi.

3.2.2 satin-3-tiyosemikarbazonların metal komplekslerinin sentezi

3.2.2.1 Bis (isatin-3-(N-2-florofenil) tiyosemikarbazonato) çinko(II) sentezi Zn[(I2FPTH)₂]

1mmol (0.3142g) I2FPTH₂ 15mL etanolde 50-55°C ye kadar ısıtılarak çözüldü ve üzerine 0.5mmol (0.1097g) çinko(II)asetat.2 hidratın 15mL etanoldeki çözeltisi damla damla eklendi ve 6-9 saat su banyosunda geri so utucu altında kaynatıldı. Ürün reaksiyon ortamında çöktü ve açık turuncu renkli katı önce süzüldü, sora metanol ve eterle yıkandı ve ürün desikatörde kurutuldu.(e.n:238°C). (hesp: %C:51.66, %H:2.92, %N:15.91, %S:8.98, bul. : %C:51.21, %H:2.97, %N:15.22, %S:8.25)

3.2.2.2 Bis (satin-3-(N-2-florofenil) tiyosemikarbazonato) nikel (II) sentezi Ni[(I2FPTH)₂]

1 mmol (0.3142g) I2FPTH₂ 15 mL etanolde karı tırılarak 50-55 °C de çözüldü. Karı an çözeltiye 0.5mmol (0.124g) Ni(CH₃COO).2H₂O nun 15mL etanoldeki çözeltisi ilave edildi. Olu an yeni çözeltiye 2-3 damla dumanlı sülfürik asit ilave edilip 2 saat geri so utucu altında kaynatıldı. Koyu kahverengi katı ürün süzüldü, metanol ve dietil eter ile yıkandıktan sonra etüvde kurutuldu (e.n:299°C).

3.2.2.3 Bis (isatin-3-(N-2-klorofenil) tiyosemikarbazonato) çinko (II) sentezi Zn[(I2CPTH)2]

1 mmol (0.3300g) I2CPTH₂15 mL etanolde karı tırılarak 50-55 °C de çözüldü. Karı an çözeltiye 0.5 mmol (0.1097g) Zn(CH₃COO).2H₂O nun 15mL etanoldeki çözeltisi ilave edildi. Olu an yeni çözeltiye 2-3 damla dumanlı sülfürik asit ilave edilip 6 saat geri so utucu altında kaynatıldı. Turuncu katı ürün süzüldü, metanol ve dietil eter ile yıkandıktan sonra etüvde kurutuldu. (hesp: %C:49.07, %H:2.79, %N:15.36, %S:8.11, bul.: %C:49.70, %H:2.78, %N:15.45, %S:8.84)

3.2.2.4 Bis (satin-3-(N-2-klorofenil) tiyosemikarbazonato) nikel (II)) sentezi Ni[(I2CPTH)2]

1 mmol (0.3300g) I2CPTH₂ 15 mL etanolde karı tırılarak 50-55 °C de çözüldü. Karı an çözeltiye 0.5 mmol (0.124g) Ni(CH₃COO).2H₂O nun 15mL etanoldeki çözeltisi ilave edildi. Olu an yeni çözeltiye 2-3 damla dumanlı sülfürik asit ilave edilip 2 saat geri so utucu altında kaynatıldı. Kahverengi katı ürün süzüldü, metanol ve dietil eter ile yıkandıktan sonra etüvde kurutuldu. (hesp: %C:50.16, %H:2.80, %N:15.60, %S:8.92, bul. : %C:50.22, %H:3.27, %N:16.09, %S:6.76)

BÖLÜM IV BULGULAR VE

TARTI MA

Bu çalı mada 2 farklı isatin-3-tiyosemikarbazon ligandı ve bu 2 farklı ligandın Zn(II) ve Ni(II) kompleksleri sentezlenip bu ligandların ve komplekslerin elementel analiz, UV-Visible, ¹H-NMR, ¹³C-NMR gibi spektroskopik yöntemlerle karakterizasyonu yapıldı. Bunun yanı sıra sentezlenen ligand ve komplekslerin bilgisayar ortamında modellenmesi yapılarak teorik FT-IR spektrum de erleri, UV-Visible spektrum de erleri ve NMR de erleri hesaplandı. Elde edilen deneysel de erler ile teorik de erler kar ıla tırıldı.

Sentez edilen ligantlar öncelikle karakterize edilmi olup, bu karakterizasyon yapılırken ¹H-NMR, ¹³C-NMR, elementel analiz gibi spektroskopik yöntemlere ba vurulmu ve elde edilen analiz sonuçlar bu ligantların saf bir ekilde elde edildi ini ve yapılarının do rulu unu göstermi tir.

Ligantların analizi yapıldıktan sonra Zn ve Ni kompleksleri sentezlenmi ve benzer ekilde elde edilen komplekslerin de IR, UV, ¹HNMR, ¹³C-NMR ve elementel analiz yöntemleriyle yapılarının do rulu u kanıtlanmı tır. Ayrıca çinko(II) komplekslerinde ligantın (C=N), (C=S) grupları üzerinden, nikel(II)komplekslerinde ise bu koordinasyona (C=O) grubunun da katılarak ligantın 3 di li davrandı 1 IR sonuçlarıyla desteklenmi tir. imdi sırasıyla önce deneysel sonuçların yorumlanmasına sonra da bilgisayar ortamında yapılan modellemelerin ve bulunan de erlerin yorumlanmasını inceleyelim.

4.1 Deneysel De erlerin Yorumlanması

4.1.1 satin-3-N-(2-florofenil) tiyosemikarbazon) (I2FPTH₂)

Tiyosemikarbazon bile ikleri, yapısında bulunan fonksiyonel gruplardan dolayı metal bile ikleriyle kompleksler olu turabilir. Bu komplekslerde tiyosemikarbazonlar ço unlukla üç di li monodeprotonlanmı O, N, S ligandları olarak davranır. satin-3-tiyosemikarbazonların ve bunların farklı türevlerinin antibakteriyel, antifungal gibi biyolojik aktivitileri vardır.

Bu çalı mada Pervez ve arkada ları tarafından sentezlenen [16] ve kristal yapısı aydınlatılan isatin-2-florofenil tiyosemikarbazon molekülünün kuantum kimyasal incelenmesi (Ba uzunlukları, ba açıları, Mulliken yükleri reaksiyon mekanizması...) teorik ve deneysel FT-IR, NMR ve UV-Visible spektrum çalı maları yapılmı tır. Ayrıca bu molekülün Zn ve Ni kompleksleri sentezlenip yapıları aydınlatılmaya çalı ılmı tır.

4.1.1.1 FT-IR çalı ması

Grup frekans bölgesi olarak adlandırılan 4000-1450 cm⁻¹ bölgesinde, absorpsiyon bandları genelde diatomik birimlerin gerilmelerinden kaynaklanmaktadır. Bu çalı mada 4000-1200 cm⁻¹ bölgesi B3LYP/6-311G(d,p) metoduyla incelenmi ve deneysel de erleri ile birlikte Çizelge 4.1 de deneysel FT-IR grafi i ekil 4.1 de verilmi tir. satin-3-(N-(2-florofenil)) tiysemikarbazon molekülünde isatin halkasında azot ve oksijen, tiyosemikarbazon halkasında azot ve kükürt donör atomları bulunmaktadır.

satin tiyosemikarbazonlar donör atomlarla koordine oldu undan metale koordine olup olmadı 1 titre im dalga sayıları ile kar ıla tırılarak karar verilebilir. satin-3-(N-(2florofenil)) tiysemikarbazon molekülünde deneysel olarak 3313, 3186 ve 3072 cm⁻¹ de gözlenen titre im frekansları indol halkasına ait N-H ve tiyosemikarbazon halkasına ait N-H gerilme titre imleridir. B3LYP/6-311G(d,p) metoduyla yapılan i aretlemelerde indol halkasına ait N-H gerilmesi 3535 cm⁻¹ de , tiyosemikarbazon grubuna ait olan N21-H23 ve N17-H19 gerilme titre imleri sırasıyla 3492 cm⁻¹ ve 3438 cm⁻¹ de i aratlenmi tir.

ekil 4.1 satin-3-(N-(2-florofenil)) tiysemikarbazon molekülünün deneysel FT-IR Spektrumu

Deneysel 6-311G(d,p)		G(d , p)	aretlemeler
3313	3535	76	(N7H12)
3186	3492	117	(N21H23)
3072	3438	92	(N17H19)
	3237	10	(C25H29)
	3205	6	(C31H26), (C30H33)
	3198	15	(CH)halkaB kombinasyonu
	3193	14	(C28H32), (C30H33), (C26H31)
2162	3191	15	(C9H14), (C3H6), (C2H1)
	3183	6	(CH)halkaB kombinasyonu
1979	1731	274	(C11015), (C16N13), (N17H19), (N7H12)
1690	1663	82	(N7H12), (CH)halkaB kombinasyonu, (CC)halkaB kombinasyonu
1618	1659	130	(N21H23), (CC)halka kombinasyonu, (CH)halkaA kombinasyonu
1594	1639	135	(CC)halkaA komb., (C18N21), (N21H23), (CH)HalkaA komb.
	1636	11	(CH)halkaA kombinasyonu, (CC)halkaA kombinasyonu
1538	1625	150	(N17H19), (C3N16), (N17H12)
1493	1590	737	(N19H23)
1463	1528	108	(N17H19), (N21H23)
1451	1518	39	(CH)halkaB kombinasyonu
	1508	77	(N17H19)
	1488	183	(N17H19), (CH)halkaA kombinasyonu
1407	1425	81	(N7H12)
	1400	324	(C18N21), (N21H23), (N17H19), (N7H12)
1347	1366	53	pr (CH)halkaB kombinasyonu
	1349	34	(CH)halkaA kombinasyonu, (CC)halkaA kombinasyonu
1320	1324	48	(N7H12), (CC)halkaB kombinasyonu, (N7C1)
	1316	10	pr(CH)halkaA kombinasyonu
1296	1294	24	(N17H19), (N7H12), pr(CH)halkaB kombinasyonu
1270	1278	6	(C26H31), (C30H33)
1228	1246	56	(N7H12), (N17H19)

Çizelge 4.1 satin-3-(N-(2-florofenil)) tiysemikarbazon molekülünün deneysel ve teorik FT-IR de erleri

4.1.1.2 NMR çalı ması

RHF ve B3LYP metodu ve 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) ve 6-311++G(2d,2p) temel setleri ile gaz fazında hesaplanan ¹H-NMR de erleri Çizelge 4.2 ve ¹³C-NMR de erleri Çizelge 4.3 de deneysel de erleri ile birlikte verilmi tir.

	п			RHF		1	1	n
I2FPTH ₂	Deneysel	3-21G	3-21G*	6-31 G(d,p)	6-311 G(d,p)	6-311+ G(d,p)	6-311++ G(d,p)	6-311++2 G(2d,2p)
H14	7,40	8,40	8,11	8,34	8,25	8,48	8,49	8,47
H1	6,94	7,00	7,05	7,08	6,95	7,10	7,09	7,06
H10	7,37	7,51	7,58	7,40	7,25	7,41	7,41	7,50
H5	7,49	7,88	7,75	7,80	7,68	7,82	7,81	7,91
H29	7,70	9,92	9,69	10,03	9,85	10,00	9,97	10,21
H31	7,32	7,25	7,17	7,51	7,39	7,55	7,54	7,62
H32	7,26	7,74	7,61	7,59	7,45	7,56	7,53	7,64
H33	7,10	7,52	7,47	7,47	7,29	7,40	7,39	7,51
H22	11,26	9,00	10,23	9,15	8,81	9,24	9,27	9,46
H19	12,86	11,41	12,91	11,32	10,95	11,41	11,41	11,75
H12	10,71	5,65	6,38	6,45	6,21	6,68	6,69	6,85
\mathbf{R}^2		0.654	0.864	0.654	0.639	0.676	0.684	0.693
		I	I	B3LYP	I		J	1
H14	7.40	7,43	7,24	7,74	7,90	8,03	8,01	8,06
H1	6.94	6,38	6,18	6,72	6,86	6,87	6,83	7,00
H10	7.37	6,90	6,71	7,15	7,25	7,32	7,31	7,41
H5	7.49	7,08	6,89	7,32	7,42	7,51	7,49	7,62
H29	7.70	9,14	8,94	9,84	10,00	10,06	10,03	10,36
H31	7.32	6,49	6,29	7,09	7,26	7,33	7,31	7,46
H32	7.26	6,96	6,75	7,24	7,35	7,30	7,33	7,46
H33	7.10	6,82	6,61	7,13	7,19	7,16	7,16	7,31
H22	11,26	9,57	9,35	10,04	9,98	10,26	10,30	10,60
H19	12,86	12,44	12,22	12,71	12,50	12,78	12,76	13,27
H12	10.71	5,71	5,51	6,51	6,54	6,82	6,85	7,07
\mathbf{R}^2		0.852	0.854	0.831	0.808	0.825	0.830	0.830

Çizelge 4.2 I2FPTH₂ molekülünün deneysel ve RHF ve B3LYP metodu ile hesaplanan deneysel ve teorik 1 H-NMR de erleri

				RHF				
12FPTH ₂	Deneysel	3-21G	3-21G*	6-31 G(d,p)	6-311 G(d,p)	6-311+ G(d,p)	6-311++ G(d,p)	6-311++2 G(2d,2p)
C9	129,51	119,14	118,81	125,67	132,47	132,89	132,76	131,44
C5	121,71	115,13	120,56	120,58	126,89	127,60	127,65	126,27
C3	132,01	126,54	126,29	133,90	141,28	141,61	141,60	140,53
C2	116,45	103,54	108,93	108,23	113,51	114,02	113,94	112,66
C4	143,09	134,43	136,28	143,29	150,30	150,92	151,04	150,36
C8	120,32	110,42	118,43	117,48	122,72	123,92	123,94	123,12
C183	133,19	127,55	127,76	129,38	133,36	134,47	134,41	133,60
C11	163,11	160,70	159,51	161,04	165,80	167,68	167,73	167,83
C18	178,41	188,33	164,18	191,98	196,93	198,89	198,96	197,19
C22	130,61	121,97	126,95	127,37	133,28	134,09	134,11	133,09
C25	157,74	141,26	150,49	147,84	155,13	155,58	155,53	155,28
C24	122,90	114,68	115,79	121,50	127,59	128,25	128,19	127,25
C26	111,61	109,56	112,74	114,07	120,18	120,80	120,80	119,41
C28	126,94	119,14	121,81	124,25	130,99	131,52	131,57	130,03
C30	124,87	117,44	120,33	123,91	130,38	130,52	130,50	129,39
R ²		0.872	0.967	0.947	0.946	0.946	0.946	0.953
		1		B3LYP				
I2FPTH ₂	Deneysel	3-21G	3-21G*	6-31 G(d,p)	6-311 G(d,p)	6-311+ G(d,p)	6-311++ G(d,p)	6-311++ G(2d,2p)
C9	129,50	108,53	107,48	116,43	126,60	126,83	126,73	126,05
C5	121,71	110,19	109,16	118,20	128,48	129,06	129,51	128,21
C3	132,01	116,11	115,03	125,01	136,09	136,62	136,57	135,79
C2	116,45	98,59	97,56	105,46	114,20	114,68	114,62	113,69
C4	143,09	126,01	124,98	136,55	148,03	148,49	148,62	148,17
C8	120,32	107,90	106,92	117,60	127,26	128,17	128,35	127,94
C13	133,19	118,10	116,96	123,64	131,59	132,59	132,36	131,88
C11	163,11	149,03	147,97	155,82	166,26	168,87	168,88	168,88
C18	178,41	160,59	158,11	169,80	180,64	182,41	182,52	181,59
C22	130,61	116,27	115,38	124,26	134,65	135,41	135,30	134,88
C25	157,74	140,15	139,11	148,48	161,87	162,28	162,61	162,08
C24	122,90	105,64	104,59	114,46	124,12	123,85	124,62	124,42
C26	111,61	102,31	101,26	109,52	119,18	119,52	119,83	118,86
C28	126,94	111,45	110,39	119,39	129,99	130,52	130,84	129,66
C30	124,87	110,35	109,25	118,67	129,14	129,32	129,46	128,78
R ²		0.872	0.967	0.947	0.970	0.970	0.968	0.969

Çizelge 4.3 I2FPTH₂ molekülünün deneysel ve RHF ve B3LYP metodu ile hesaplanan deneysel ve teorik 13 C-NMR de erleri

3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p) 6-311++G(d,p) ve 6-311++G(2d,2p) temel setleri ile yapılan ¹H-NMR hesaplamalarında indol halkası hariç, korelason katsayıları RHF metodu ile yapılan hesaplamalarda sırasıyla 0.872, 0.967, 0.947, 0.946, 0.946, 0.946, 0.953 olarak, B3LYP metodu ile yapılan hesaplamalarda ise sırasıyla 0.872, 0.967, 0.947, 0.970, 0.970, 0.970, 0.968 ve 0.969 olarak hesaplanmı tır.

Bu sonuçlara göre B3LYP metodu ile yapılan ¹H-NMR hesaplamalarında daha hassas sonuçlar bulunmu tur. ndol halkasında bulunan N atomuna ba lı H12' nin NMR kayma de eri deneysel olarak 10.71 bulunmu , B3LYP metodu ve 6-311++G(2d,2p) temel seti ile yapılan hesaplamada 7.07 olarak hesaplanmı tır. Bunun yanı sıra yine tiyosemikarbazon grubunda bulunan N atomuna ba lı H22 ve H19' un NMR kaymaları deneysel olarak 11.26, 12.86 olarak bulunmu olup, B3LYP metodu 6-311++G(2d,2p) temel seti ile yapılan hesaplamada ise 10,60 ve 13,27 olarak hesaplanmı tır.

4.1.1.3 UV çalı ması

I2FPTH₂ ligandı için B3LYP metodu ve 6-311G(d,p), 6-311+G(d,p) ve 6-311++G(d,p) metotları ile optimize edilen UV-visible spektrum de erleri (nm) Çizelge 4.4 de verilmi tir

Çizelge 4.4 I2FPTH₂ molekülü için, B3LYP metodu 6-311G(d,p), ve 6-311G+(d,p) ve 6-311G+(d,p) temel setleri kullanılarak hesaplanan UV-visible spektrum de erleri(nm)

Deneysel		256		370	
6-311G(d,p)	250	256	264	352	412-398
6-311+G(d,p)	250-254	259	267	359	417-405
6-311++G(d,p)	250-254	259	267	359	417-404

I2FPTH₂ molekülünün TDB3LYP/6-311G(d,p), TDB3LYP/6-311+G(d,p) ve TDB3LYP/6-311++G(d,p) seviyelerinde hesaplanan uyarılma enerjileri (eV) ve salınım kuvvetleri (f) Çizelge 4.5 te verilmi tir. Moleküllerin TDB3LYP bant bo lu u üzerindeki tüm geçi leri ve salınım kuvvetlerinin 0,04 üzerindeki tüm de erleri Çizelge 4.5 e dahil edilmi tir.

Çizelge 4.5 I2FPTH₂ molekülünün TDB3LYP/6-311G(d,p), TDB3LYP/6-311+G(d,p) ve TDB3LYP/6-311++G(d,p) seviyelerinde hesaplanan uyarılma enerjileri (eV) ve salınım kuvvetleri (f)

6-311	3.01(0.04) E2	3 51(0 46) E4	4 68(0 18) E0	4 85(0 18) E10	4.06(0.06)E11
G(d,p)	3.11(0.30) E3	5.51(0.40) E4	4.00(0.10) 1.9	4.05(0.16) 1210	4.90(0.00)E11
6-311+	2.97(0.04) E2	3 45(0 45) E4	4.64(0.16) E9	4 70(0 15) E10	4.87(0.09) E12
G(d,p)	3.06(0.30) E3	5.45(0.45) E4		4.79(0.13) 1210	4.95(0.07) E14
6-311++	2.97(0.04) E2	2 45(0 45) E4	4.64(0.16) E9	4 70(0 15) E10	4.88(0.09) E12
G(d,p)	3.06(0.30) E3	5.45(0.45) E4		4.79(0.13) E10	4.95(0.07) E14

4.1.2 satin-3-N-(2-klorofenil) tiysemikarbazon) (I2CPTH₂)

4.1.2.1 IR Çalı ması

Grup frekans bölgesi olarak adlandırılan 4000-1450 cm⁻¹ bölgesinde absorpsiyon bandları, genelde diatomik birimlerin gerilmelerinden kaynaklanmaktadır. Bu çalı mada 4000-1200 cm⁻¹ bölgesi B3LYP metodu 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+ G(d,p), 6-311++G(d,p) ve 6-311++G(2d,2p) temel setleri ile incelenmi ve deneysel de erleriyle birlikte Çizelge 4.6 da verilmi tir. satin-3-(N-(2-klorofenil)) tiysemikarbazon molekülüne ait deneysel FT-IR spektrumu ise ekil 4.2 de verilmi tir. satin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünde isatin halkasında azot ve oksijen, tiyosemikarbazon halkasında azot ve kükürt donör atomları bulunmaktadır.

satin tiyosemikarbazonlar donör atomlarla koordine oldu undan metale koordine olup olmadı 1 titre im dalga sayıları ile kar ıla tırılarak karar verilebilir. satin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünde deneysel olarak 3249, 3224 cm⁻¹ de gözlenen titre im frekansları indol halkasına ait N-H ve tiyosemikarbazon halkasına ait N-H gerilme titre imleridir. B3LYP metoduyla 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311+G(d,p), 6-311++G(d,p) ve 6-311++G(2d,2p) temel setleri ile yapılan hesaplamalarda indol halkasına ait N6-H25 gerilmesi sırasıyla 3482, 3482, 3548, 3550, 3538, 3531, 3538 cm⁻¹ de; tiyosemikarbazon grubuna ait olan N19-H29 gerilmesi 3336, 3337, 3479, 3465, 3466, 3465, 3477 de tiosemikarbazon grubuna ait N20-H30 gerilmeleri sırasıyla, 3309, 3311, 3440, 3433, 3437, 3330, 3442 cm⁻¹ de i aretlenmi tir.

ekil 4.2 satin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünün deneysel FT-IR Spektrumu

								B3LY	Р						
Den.	3-21G 3-21G* 6-31G (d,p)						6-31 (d,	11G ,p)	6-31 (d	1+G ,p)	6-31 (d	l++G ,p)	6-31 (2d	1++G 2p)	aretlemeler
	Fr.	id.	Fr.	id.	Fr.	id.	Fr.	id.	Fr.	id.	Fr.	id.	Fr.	id.	
3249	3482	82	3482	80	3548	76	3550	76	3538	80	3531	80	3538	79	(N6H25)
3224	3336	129	3337	131	3479	98	3465	107	3466	105	3465	104	3477	97	(N19H29)
3173	3309	128	3311	118	3440	100	3433	97	3437	96	3330	95	3442	99	(N20H30)
	3257	23	3261	19	3247	20	3231	17	3232	1	3229	20	3234	22	(C14H27)
2163	3231	14	3230	14	3217	16	3200	14	3200	11	3199	11	3205	11	(CH)halkaB
	-				3210	14	3192	14	3192	11	3191	11	3198	10	(CH)halkaB
					3209	16	3192	15	3192	12	3191	11	3197	11	(CH)halkaA
1699	1702	144	1701	144	1747	235	1731	261	1723	301	1716	302	1708	285	(NH)mol, (C18N21), (O9C12)
1592	1657	96	165	94	1673	87	1663	90	1662	87	1660	84	1657	80	(NH)mol, (C18N21), (CH)halkaB, (CC)halkaB
	1671	513	1634	561	1651	144	1659	192	1638	202	1635	202	1634	187	(N19H29), (CC)halkaA, (CH)halkaA
	1631	11	1629	13											(N20H30), (C18N21), (CC)indol, (CH)halkaB
	1627	133			1640	91	1626	98	1625	97	1623	91	1622	108	(N19H29), (CC)halkaA, (CH)halkaA
1538	1621	87	1611	93	166	198	162	268	1620	202	1618	203	107	159	(NH)mol, (C18N21), (CC)halkaB, (CH)halkaB
1488	1585	300	1585	337	1591	766	1583	644	1582	64	1579	645	1579	654	(CC)halkaA, (CH)halkaA, (N19H29)
	1534	38	1533	26	1532	130	1526	197	1523	172	1522	171	1523	92	(CH)halkaA- B, (NH)mol.
	1530	29	1527	45	1521	60	1514	25	1512	31	1511	32	1512	60	(CH)halkaA,B, (N19H29)
	1513	26	1513	28	1509	39	1499	39	1498	42	1497	37	1500	42	(CH)halkaB, (N20H30)
1456	1503	73	1503	75	1502	151	1493	127	1492	131	1491	141	1494	141	(CH)halkaA- B, (N2H30)
1439	1485	243	1484	250	148	85	1473	69	1471	69	1470	69	1475	88	(CH)halkaA, (N20H30)
	1428	62	1428	47	1432	68	1424	62	1425	6	1422	57	1420	51	(N6H25), (CH)halkaB

Çizelge 4.6 satin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünün deneysel ve teorik FT-IR de erleri

		1410	395	1400	342	1401	317	1392	371	1390	379	1388	183	1387	397	(C16N19), (CH)halkaB, (NH)mol.
-	1369	1374	31	1371	49	1365	83	1364	67	1363	64	1362	67	1363	62	(C16N19), (CH)halkaB, (NH)mol.
	1311	1363	45	1362	96	1342	21	1330	34	1335	30	1334	36	1334	45	(C13N19), (CH)halkaA
	1311			1319	53	1339	55	1340	48	1323	44	132	53	1319	55	(C16N19), (CH)halkaB, (NH)mol., (CC)halkaB
		132	49													(N6H25), (CC)halkaB, (CH)halkaB
Ī	1289	1292	43	1291	73	1301	20	1290	18	1290	22	1292	23	1292	34	(N6H25), (N20H30), (CC)indol
		1282	114	1278	78	1272	41	1265	35	1264	36	1262	32	1262	30	(CH)halkaA, (C13N19), (N6C12), (N6H25)
	1244					1254	56	1246	52	1244	48	1244	49	1241	35	(CH)halkaB, (N20N21)
						1226	41	1220	40	1218	52	1218	44	1218	39	(CH)halkaB, (N20N21), (CC)indol
ľ		1232	70	1232	81	1207	906	1195	969	1194	964	1192	145	1189	10	(CH)halkaB
	1200	1219	80	1219	70									1188	848	(N6C12), (CH)halkaB
-	1130	1183	146	1178	79	1184	26	1179	59	1179	87	1179	90	1180	21	(N2030), (CH)halkaA, (C16N20)
	1117	1151	281	1144	435	1175	88	1179	107	1167	88	1166	109	1165	79	pr(N19H29), (C16N20), (CH)halkaA
	1130	1138	37	1118	21	1152	30	1146	49	1145	47	1145	54	1144	57	(CH)halkaB
ĺ		1090	362	1096	424			1123	10	1122	12	1122	11	1123	14	(CH)halkaB, (N20N21)
ľ		1062	15			1049	17	1041	19	1047	2	1047	21	1051	20	(C3Cl33)

Çizelge 4.6 (Devam) satin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünün deneysel ve teorik FT-IR de erleri

RHF ve B3LYP metodu 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) temel setleri ile gaz fazında hesaplanan ¹H-NMR de erleri Çizelge 4.7 ve ¹³C-NMR de erleri Çizelge 4.8 de deneysel de erleri ile birlikte verilmi tir.

				B3LYP				
I2CPTH ₂ Atomlar	Deneysel	3-21G	3-21G*	6-31 G(d,p)	6-311 G(d,p)	6-311+ G(d,p)	6-311++ G(d,p)	6-311++2 G(2d,2p)
H28	7,56	7,55	7,30	7,82	7,98	7,98	7,96	8,02
H23	6,95	6,40	6,20	6,73	6,88	6,87	6,83	7,00
H31	7,40	6,94	6,73	7,18	7,25	7,29	7,26	7,38
H24	7,55	7,11	6,90	7,34	7,43	7,49	7,45	7,61
H27	7,71	9,30	8,97	10,08	10,21	10,31	10,30	10,62
H22	7,37	6,89	6,69	7,33	7,50	7,57	7,59	7,74
H26	7,43	7,04	6,80	7,32	7,43	7,45	7,42	7,61
H32	7,10	6,75	6,54	7,08	7,16	7,18	7,17	7,34
H29	11,28	9,87	9,59	10,23	10,26	10,56	10,57	10,98
H30	12,84	12,45	12,07	12,78	12,63	12,84	12,81	13,34
H25	10,81	5,73	5,52	6,52	6,58	6,84	6,87	7,09
\mathbf{R}^2		0.86	0.869	0.813	0.801	0.816	0.816	0.823
	I.		1	RHF				L
H28	7,58	8,54	8,26	8,28	8,13	8,46	8,46	8,44
H23	6,95	7,03	6,81	7,09	6,97	7,10	7,09	7,15
H31	7,40	7,56	7,33	7,39	7,22	7,40	7,38	7,47
H24	7,55	7,92	7,68	7,81	7,68	7,82	7,81	7,90
H27	7,71	10,00	9,61	8,34	7,95	10,21	10,18	10,45
H22	7,37	7,60	7,39	7,66	7,54	7,80	7,81	7,91
H26	7,43	7,85	7,57	7,66	7,48	7,76	7,73	7,86
H32	7,10	7,42	7,18	7,56	7,44	7,37	7,36	7,48
H29	11,28	9,18	8,84	7,95	7,49	9,46	9,46	9,75
H30	12,84	11,46	10,98	11,41	11,08	11,46	11,46	11,80
H25	10,81	5,68	5,46	6,46	6,23	6,68	6,69	6,85
\mathbf{R}^2		0.648	0.666	0.624	0.621	0.672	0.676	0.689

Çizelge 4.7 I2CPTH₂ molekülünün RHF ve B3LYP metodu ile hesaplanan deneysel ve teorik $^1\mathrm{H}\text{-}\mathrm{NMR}$ de erleri

B3LYP										
I2CPTH ₂	Deneysel	3-21G	3-21G*	6-31 G(d,p)	6-311 G(d,p)	6-311+ G(d,p)	6-311++ G(d,p)	6-311++2 G(2d,2p)		
C17	120	109	108	117	127	127	127	126		
C11	128	110	109	118	128	129	129	128		
C5	133	116	115	125	136	137	136	136		
C4	112	99	98	105	114	115	115	114		
C10	143	126	125	137	148	149	149	148		
C15	123	108	107	118	127	128	128	128		
C18	130	118	116	124	132	133	133	132		
C12	163	149	148	156	166	169	169	169		
C16	178	162	154	171	181	183	183	182		
C13	137	120	121	131	143	143	143	143		
C3	132	124	113	127	136	137	138	136		
C14	122	106	105	114	124	124	125	124		
C1	132	113	114	124	135	135	135	135		
C8	131	114	113	123	133	134	134	133		
C2	129	111	110	119	129	130	130	129		
R ²		0.954	0.976	0.988	0.988	0.989	0.992	0.988		
				RHF						
12СРТН	Demonst	3-21G	3-21G*	6-31	6-311	6-311+	6-311++	6-311++2		
1201 1112	Deneysei			G(d,p)	G(d,p)	G(d,p)	G(d,p)	G(2d,2p)		
C17	120	120	118	G(d,p) 125	G(d,p) 132	G(d,p) 133	G(d,p) 133	G(2d,2p) 132		
C17 C11	120 128	120 115	118 114	G(d,p) 125 121	G(d,p) 132 127	G(d,p) 133 128	G(d,p) 133 124	G(2d,2p) 132 126		
C17 C11 C5	Deneyser 120 128 133	120 115 127	118 114 125	G(d,p) 125 121 134	G(d,p) 132 127 141	G(d,p) 133 128 142	G(d,p) 133 124 128	G(2d,2p) 132 126 141		
C17 C11 C5 C4	Deneyser 120 128 133 112	120 115 127 104	118 114 125 102	G(d,p) 125 121 134 108	G(d,p) 132 127 141 114	G(d,p) 133 128 142 114	G(d,p) 133 124 128 114	G(2d,2p) 132 126 141 113		
C17 C11 C5 C4 C10	Deneysei 120 128 133 112 143	120 115 127 104 135	118 114 125 102 133	G(d,p) 125 121 134 108 143	G(d,p) 132 127 141 114 150	G(d,p) 133 128 142 114 151	G(d,p) 133 124 128 114 151	G(2d,2p) 132 126 141 113 150		
C17 C11 C5 C4 C10 C15	Deneysei 120 128 133 112 143 123	120 115 127 104 135 110	118 114 125 102 133 109	G(d,p) 125 121 134 108 143 118	G(d,p) 132 127 141 114 150 123	G(d,p) 133 128 142 114 151 124	G(d,p) 133 124 128 114 151 124	G(2d,2p) 132 126 141 113 150 123		
C17 C11 C5 C4 C10 C15 C18	Deneysei 120 128 133 112 143 123 130	120 115 127 104 135 110 128	118 114 125 102 133 109 125	G(d,p) 125 121 134 108 143 118 130	G(d,p) 132 127 141 114 150 123 134	G(d,p) 133 128 142 114 151 124 135	G(d,p) 133 124 128 114 151 124 135	G(2d,2p) 132 126 141 113 150 123 134		
C17 C11 C5 C4 C10 C15 C18 C12	Deneysei 120 128 133 112 143 123 130 163	120 115 127 104 135 110 128 161	118 114 125 102 133 109 125 159	G(d,p) 125 121 134 108 143 118 130 161	G(d,p) 132 127 141 114 150 123 134 166	G(d,p) 133 128 142 114 151 124 135 168	G(d,p) 133 124 128 114 151 124 135 168	G(2d,2p) 132 126 141 113 150 123 134 168		
C17 C11 C5 C4 C10 C15 C18 C12 C16	Deneysei 120 128 133 112 143 123 130 163 178	120 115 127 104 135 110 128 161 190	118 114 125 102 133 109 125 159 179	G(d,p) 125 121 134 108 143 118 130 161 195	G(d,p) 132 127 141 114 150 123 134 166 201	G(d,p) 133 128 142 114 151 124 135 168 200	G(d,p) 133 124 128 114 151 124 135 168 199	G(2d,2p) 132 126 141 113 150 123 134 168 198		
C17 C11 C5 C4 C10 C15 C18 C12 C16 C13	Deneysei 120 128 133 112 143 123 130 163 178 137	120 115 127 104 135 110 128 161 190 128	118 114 125 102 133 109 125 159 179 128	G(d,p) 125 121 134 108 143 118 130 161 195 134	G(d,p) 132 127 141 114 150 123 134 166 201 141	G(d,p) 133 128 142 114 151 124 135 168 200 144	G(d,p) 133 124 128 114 151 124 135 168 199 144	G(2d,2p) 132 126 141 113 150 123 134 168 198 143		
C17 C11 C5 C4 C10 C15 C18 C12 C16 C13 C3	Deneysei 120 128 133 112 143 123 130 163 178 137 132	120 115 127 104 135 110 128 161 190 128 123	118 114 125 102 133 109 125 159 179 128 113	G(d,p) 125 121 134 108 143 118 130 161 195 134 132	G(d,p) 132 127 141 114 150 123 134 166 201 141 140	G(d,p) 133 128 142 114 151 124 135 168 200 144 132	G(d,p) 133 124 128 114 151 124 135 168 199 144 132	G(2d,2p) 132 126 141 113 150 123 134 168 198 143 131		
C17 C11 C5 C4 C10 C15 C18 C12 C16 C13 C3 C14	Deneysei 120 128 133 112 143 123 130 163 178 137 132 122	120 115 127 104 135 110 128 161 190 128 123 114	118 114 125 102 133 109 125 159 179 128 113 111	G(d,p) 125 121 134 108 143 118 130 161 195 134 132 132	G(d,p) 132 127 141 114 150 123 134 166 201 141 140	G(d,p) 133 128 142 114 151 124 135 168 200 144 132 127	G(d,p) 133 124 128 114 151 124 135 168 199 144 132 127	G(2d,2p) 132 126 141 113 150 123 134 168 198 143 131 126		
C17 C11 C5 C4 C10 C15 C18 C12 C16 C13 C3 C14 C1	Deneysei 120 128 133 112 143 123 130 163 178 137 132 122 132	120 115 127 104 135 110 128 161 190 128 123 114 122	118 114 125 102 133 109 125 159 179 128 113 111 122	G(d,p) 125 121 134 108 143 118 130 161 195 134 132 132 125	G(d,p) 132 127 141 114 150 123 134 166 201 141 140 136	G(d,p) 133 128 142 142 114 151 124 135 168 200 144 132 127 137	G(d,p) 133 124 128 114 151 124 135 168 199 144 132 127 137	G(2d,2p) 132 126 141 113 150 123 134 168 198 143 131 126 131 126 136		
C17 C11 C5 C4 C10 C15 C18 C12 C16 C13 C3 C14 C1 C1 C8	Deneysei 120 128 133 112 143 123 130 163 178 137 132 122 132 131	120 115 127 104 135 110 128 161 190 128 121 123 114 122 123	118 114 125 102 133 109 125 159 179 128 113 111 122 121	G(d,p) 125 121 134 108 143 118 130 161 195 134 132 132 132 128 127	G(d,p) 132 127 141 114 150 123 134 166 201 141 140 136 133	G(d,p) 133 128 142 114 151 124 135 168 200 144 132 127 137 137	G(d,p) 133 124 128 114 151 124 135 168 199 144 132 127 137	G(2d,2p) 132 126 141 113 150 123 134 168 198 143 131 126 131 126 136 135		
C17 C11 C5 C4 C10 C15 C18 C12 C16 C13 C3 C14 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	Deneysei 120 128 133 112 143 123 130 163 178 137 132 122 132 121 132 122 132 131 129	120 115 127 104 135 110 128 161 190 128 121 123 114 122 123 117	118 114 125 102 133 109 125 159 179 128 113 111 122 121 115	G(d,p) 125 121 134 108 143 118 130 161 195 134 132 132 132 128 127 127	G(d,p) 132 127 141 114 150 123 134 166 201 141 140 136 133 135	G(d,p) 133 128 142 114 151 124 135 168 200 144 132 127 137 129	G(d,p) 133 124 128 114 151 124 135 168 199 144 132 127 137 129	G(2d,2p) 132 126 141 113 150 123 134 168 198 143 131 126 131 126 135 128		

Çizelge 4.8 I2CPTH₂ molekülünün RHF ve B3LYP metodu ile hesaplanan deneysel ve teorik 13 C-NMR de erleri
3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) ve 6-311++G(2d,2p) temel setleri ile yapılan ¹H-NMR hesaplamalarında indol halkası hariç, korelason katsayıları B3LYP metodu ile yapılan hesaplamalarda sırasıyla 0.86, 0.869, 0.813, 0.801, 0.816, 0.816, 0.823 olarak, RHF metodu ile yapılan hesaplamalarda ise sırasıyla 0.648, 0.666, 0.624, 0.621, 0.672, 0.676, 0.689 olarak hesaplanmı tır.

Bu sonuçlara göre B3LYP metodu ile yapılan ¹H-NMR hesaplamalarında daha hassas sonuçlar bulunmu tur. satin molekülünde bulunan indol halkasındaki N atomuna ba lı H25 in NMR kayma de eri deneysel olarak 10.81 bulunmu , B3LYP metodu ve 6-311++G(2d,2p) temel seti ile yapılan hesaplamada 7.09 olarak hesaplanmı tır. Bunun yanı sıra yine tiyosemikarbazon grubunda bulunan N atomuna ba lı H29 ve H30 un NMR kaymaları deneysel olarak 11.28, 12.84 olarak bulunmu olup, B3LYP metodu 6-311++G(2d,2p) temel seti ile yapılan hesaplamada ise 10,98 ve 13,34 olarak hesaplanmı tır.

4.1.2.3 UV çalı ması

satin-3-(N-(2-klorofenil)) tiysemikarbazon [I2CPTH₂] ligandı için B3LYP ve RHF metodu 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) temel setleri ile optimize edilen UV-visible spektrum de erleri (nm) Çizelge 4.9 ve Çizelge 4.11 de verilmi tir. I2CPTH₂ molekülünün TDB3LYP ve TDRHF metodu 3-21G, 3-21G*, 6-31G, 6-311G(d,p), 6-311+G(d,p) ve 6-311++G(d,p) seviyelerinde hesaplanan uyarılma enerjileri (eV) ve salınım kuvvetleri (f) Çizelge 4.10 ve Çizelge 4.12 de verilmi tir. Moleküllerin TDB3LYP ve TDRHF bant bo lu u üzerindeki tüm geçi leri ve salınım kuvvetlerinin 0,04 üzerindeki tüm de erleri Çizelge 4.10 ve Çizelge 4.12 ye dahil edilmi tir. satin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünün B3LYP metodu 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(d,p) temel setleri ile olu turulan teorik UV spektrumu ekil 4.3 de verilmi tir. Elde edilen hesaplama verilerine bakıldı ında isatin-3-(N-(2-klorofenil)) tiysemikarbazon molekülü için B3LYP metoduyla yapılan hesaplamaların RHF metoduyla yapılan hesaplamalara göre daha hassas sonuçlar verdi i görülebilir.

Çizelge 4.9 I2CPTH₂ molekülü için, B3LYP metodu 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) temel setleri kullanılarak hesaplanan UV-visible spektrum de erleri(nm)

Deneysel			255	368	
3-21G	245	250	263	351	415-386
3-21G*		249	259		384-347
6-31G(d,p)	246	251	261	353	406-398
6-311G(d,p)	244	256	275	354	405-400
6-311+G(d,p)	247	259-254	268-260	360	414-405
6-311++G(d,p)	248-246	259-254	268-260	360	414-405
6-311++G(2d,2p)	249	259-255	269	360	413-407

Çizelge 4.10 I2CPTH₂ molekülünün B3LYP metodu 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) seviyelerinde uyarılma enerjileri, (eV) ve salınım kuvvetleri (f)

3-21G	2.99(0.06) E2 3.20(0.30) E3	3.53(0.34) E4	4.71(0.17) E9	4.95(0.13) E13	5.05(014) E14
3-21G*	3.23(0.32) E3 3.57(0.38) E5	4.79(0.21) E9	4.96(0.17) E12		
6-31G(d,p)	3.05(0.04) E2 3.11(0.27) E3	3.51(0.44) E4	4.73(0.15) E9	4.88(0.20) E10	5.02(0.09) E13
6-311G(d,p)	3.06(0.04) E2 3.11(0.29) E3	3.50(0.44) E4	4.66(0.16) E9	4.84(0.17) E12	5.06(0.04) E15
6-311+G(d,p)	2.99(0.04) E2 3.06(0.30) E3	3.44(0.41) E4	4.63(0.16) E9 4.76(0.04) E11	4.79(0.12) E12 4.88(0.11) E14	5.01(0.04) E15
6-311++G(d,p)	3.00(0.04) E2 3.06(0.29) E3	3.44(0.42) E4	4.63(0.15) E9 4.76(0.04) E11	4.79(0.12) E12 4.88(0.11) E14	5.01(0.04) E15 5.04(0.04) E16
6-311++G(2d,2p)	3.00(0.04) E2 3.05(0.30) E3	3.44(0.42) E4	4.61(0.14) E9	4.78(0.12) E12 4.86(0.10) E14	4.98(0.07) E15

Çizelge 4.11 I2CPTH₂ molekülü için, TDRHF metodu 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) temel setleri kullanılarak hesaplanan UV-visible spektrum de erleri(nm)

Deneysel						255
3-21G(d,p)			201	220	227	263
3-21G*(d,p)	186	198	201	221	227	263
6-31G(d,p)	183	194	202	217	232	275
6-311G(d,p)	185	196	209	218	235	275
6-311+G(d,p)	190	201	214	232	240	277
6-311++G(d,p)	190	201	214	232	240	277
6-311++G(2d,2p)	191	201	215-214	233	242	286

Çizelge 4.12 I2CPTH₂ molekülünün TDRHF metodu 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) seviyelerinde uyarılma enerjileri, (eV) ve salınım kuvvetleri (f)

3-21G	4.70(0.60) E1	5.45(0.26) E4	5.63(0.21) E5	6.18(0.13) E6	6.27(0.08) E7 6.69(0.22) E9
3-21G*	4.71(0.62) E1	5.46(0.29) E4	5.61(0.19) E5	6.16(0.04) E6	6.24(0.16) E7 6.65(0.21) E9
6-31G(d,p)	4.51(0.64) E1	5.32(0.22) E4	5.69(0.10) E5	5.99(0.15) E6	6.37(0.31) E8 6.76(0.23) E9
6-311G(d,p)	4.47(0.63) E1	5.27(0.22) E4	5.68(0.10) E5	5.96(0.11) E6	6.31(0.35) E8 6.69(0.24) E9
6-311+G(d,p)	4.37(0.61) E1	5.17(0.19) E4	5.34(0.19) E5	5.79(0.24) E7	6.18(0.22) E8 6.51(0.24) E10
6-311++G(d,p)	4.37(0.61) E1	5.17(0.19) E4	5.34(0.19) E5	5.79(0.23) E7	6.18(0.22) E8 6.51(0.24) E11
6-311++G(2d,2p)	4.33(0.61) E1	5.13(0.20) E4	5.32(0.20) E5	5.73(0.23) E7 5.72(0.23) E7	6.16(0.22) E8 6.50(0.23) E11

ekil 4.3 satin-3-(N-(2-klorofenil)) tiysemikarbazonun teorik UV spektrumu

4.2 Geometrik Parametrelerin De erlendirilmesi

4.2.1 satin-3-N-(2-florofenil) tiysemikarbazon) (I2FPTH₂)

Pervez ve arkada larının kristal yapısını belirledi i isatin-2-florofenil tiyosemikarbazon $[I2FPTH_2]$ molekülünün deneysel de erleri ile [16] bu molekülün monomer yapısı RHF ve B3LYP metodu ile 3-21G, 3-21G*, 6-31G (d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) temel setleri kullanılarak hesaplanan de erleri kar ıla tırılmı tır.

satin-2-florofenil tiyosemikarbazon molekülünün kristal yapısı dimer oldu undan dolayı bahsedilen yöntemlerle önce bu dimer yapıların optimizasyonu yapılmı tır.

B3LYP/6-311++G(2d,2p) metodu ile optimize edilen isatin-3-(N-(2-florofenil)) tiysemikarbazon molekülünün monomer eklinin yapısı, atom numaraları ile birlikte ekil 4.4 de verilmi tir.

satin-3-(N-(2-florofenil)) tiysemikarbazon molekülünün B3LYP/6-311++G(2d,2p) metodu kullanılarak optimize edilmi dimer yapısı ise ekil 4.5 te verilmi tir.

ekil 4.4 B3LYP/6-311++G(2d,2p) metodu kullanılarak optimize edilen monomer isatin-3-(N-(2-florofenil)) tiysemikarbazon molekülünün yapısı

ekil 4.5 B3LYP/6-311++G(2d,2p) metodu kullanılarak optimize edilen dimer isatin-3-(N-(2-florofenil)) tiysemikarbazon molekülünün yapısı

RHF ve B3LYP metodu ile 3-21G, 3-21G*, 6-31G (d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) temel setleri kullanılarak hesaplanan ba uzunlukları ile deneysel ba uzunlukları Çizelge 4.13 te verilmi tir.

R 3I VD	Donovcol	3 210	3 21 C*	6-31	6-311	6-311+	6-311++	6-311++
DSLIF	Deneysei	5-216	5-21 G [*]	G(d,p)	G(d,p)	G(d,p)	G(d,p)	G(2d,2p)
C28-C30	1.351	1.395	1.395	1.394	1.391	1.392	1.392	1.389
C30-C26	1.368	1.398	1.398	1.397	1.395	1.395	1.395	1.393
C26-C24	1.373	1.379	1.379	1.381	1.378	1.378	1.378	1.376
C24-F27	1.365	1.383	1.383	1.361	1.362	1.364	1.365	1.362
C24-C22	1.370	1.405	1.405	1.405	1.403	1.403	1.403	1.400
C22-N21	1.407	1.403	1.403	1.403	1.403	1.403	1.403	1.402
N21-C18	1.343	1.348	1.348	1.353	1.352	1.354	1.354	1.351
C18-S20	1.635	1.719	1.719	1.672	1.670	1.668	1.668	1.666
C18-N17	1.378	1.390	1.390	1.393	1.393	1.394	1.394	1.390
N17-N16	1.344	1.376	1.376	1.336	1.333	1.333	1.333	1.332
N16-C13	1.291	1.301	1.301	1.299	1.295	1.295	1.295	1.293
C13-C11	1.498	1.501	1.501	1.500	1.502	1.501	1.501	1.500
C11-O15	1.229	1.259	1.259	1.240	1.233	1.235	1.235	1.234

Çizelge 4.13 I2FPTH₂ bile i ine ait B3LYP metodu ile hesaplanan deneysel ve teorik ba uzunlukları

C11-N7	1.348	1.370	1.370	1.365	1.363	1.363	1.363	1.362
N7-C4	1.406	1.413	1.413	1.408	1.407	1.407	1.407	1.406
C4-C2	1.367	1.385	1.385	1.387	1.385	1.385	1.385	1.382
C2-C3	1.376	1.403	1.403	1.401	1.399	1.399	1.399	1.397
C3-C5	1.377	1.400	1.400	1.399	1.397	1.398	1.397	1.395
C5-C9	1.377	1.400	1.400	1.398	1.395	1.396	1.396	1.393
C9-C8	1.387	1.390	1.390	1.393	1.391	1.391	1.391	1.389
C8-C4	1.381	1.416	1.416	1.412	1.409	1.409	1.409	1.407
C13-C8	1.445	1.455	1.455	1.456	1.455	1.456	1.456	1.454
C22-C25	1.375	1.399	1.399	1.401	1.399	1.400	1.400	1.397
C25-C28	1.377	1.397	1.397	1.397	1.394	1.394	1.394	1.391
\mathbf{R}^2		0.9567	0.9567	0.9684	0.9721	0.9724	0.9724	0.9738

Çizelge 4.13 (Devam) I2FPTH $_2$ bile i ine ait B3LYP metodu ile hesaplanan deneysel ve teorik ba uzunlukları

Çizelge 4.14 I2FPTH $_2$ bile i ine ait RHF metodu ile hesaplanan deneysel ve teorik ba uzunlukları

RHF	Denevsel	3-21G	3-21C*	6-31	6-311	6-311+	6-311++	6-311++
KIII	Deneysei	5-210	5-216	G(d,p)	G(d,p)	G(d,p)	G(d,p)	G(2d,2p)
C28-C30	1.351	1,394	1,381	1,380	1,381	1,381	1,378	1.389
C30-C26	1.368	1,398	1,387	1,386	1,386	1,386	1,383	1.393
C26-C24	1.373	1,378	1,370	1,369	1,369	1,369	1,367	1.376
C24-F27	1.365	1,383	1,341	1,337	1,336	1,336	1,334	1.362
C24-C22	1.370	1,406	1,391	1,390	1,390	1,390	1,387	1.400
C22-N21	1.407	1,401	1,408	1,408	1,408	1,408	1,406	1.402
N21-C18	1.343	1,355	1,334	1,335	1,336	1,336	1,333	1.351
C18-S20	1.635	1,668	1,675	1,673	1,671	1,671	1,670	1.666
C18-N17	1.378	1,401	1,365	1,364	1,365	1,365	1,361	1.390
N17-N16	1.344	1,373	1,336	1,335	1,335	1,335	1,334	1.332
N16-C13	1.291	1,301	1,260	1,258	1,258	1,258	1,255	1.293
C13-C11	1.498	1,500	1,511	1,514	1,514	1,514	1,512	1.500
C11-O15	1.229	1,260	1,207	1,201	1,202	1,202	1,202	1.234
C11-N7	1.348	1,370	1,345	1,345	1,345	1,345	1,342	1.362
N7-C4	1.406	1,413	1,403	1,403	1,403	1,403	1,402	1.406
C4-C2	1.367	1,385	1,376	1,375	1,376	1,376	1,372	1.382

C2-C3	1.376	1,403	1,391	1,390	1,391	1,391	1,388	1.397
C3-C5	1.377	1,400	1,388	1,387	1,388	1,388	1,385	1.395
C5-C9	1.377	1,400	1,388	1,388	1,388	1,389	1,386	1.393
C9-C8	1.387	1,390	1,380	1,379	1,379	1,379	1,376	1.389
C8-C4	1.381	1,416	1,393	1,391	1,391	1,391	1,388	1.407
C13-C8	1.445	1,455	1,466	1,466	1,467	1,467	1,465	1.454
C22-C25	1.375	1,399	1,387	1,386	1,387	1,387	1,384	1.397
C25-C28	1.377	1,397	1,388	1,388	1,388	1,388	1,385	1.391
\mathbf{R}^2		0.964	0.971	0.9741	0.9744	0.9737	0.9729	0.9745

Çizelge 4.14 (Devam) $I2FPTH_2$ bile i ine ait RHF metodu ile hesaplanan deneysel ve teorik ba uzunlukları

Bu molekül için deneysel ba uzunluklarının (Pervez ve arkada ları) [16], hesaplanan de erlerle B3LYP metoduna göre korelasyonları incelendi inde, 3-21G, $3-21G^*$, 6-31G (d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) ve 6-311++G(2d,2p) temel setleri için bulunan korelasyonlar sırasıyla 0.9567, 0.9567, 0.9684, 0.9721, 0.9724, 0.9724, 0.9738 dir. RHF metodunda ise korelasyonlar aynı temel setler için sırasıyla 0.9640, 0.971, 0.9741, 0.9744, 0.9737, 0.9729, 0.9745' dir.

Tiyosemikarbazon grubuna ait olan C18-S20, C18-N17, N17-N16, N16-C13 ba uzunlukları ise B3LYP/6-311++ G(2d,2p) metodunda 1.666 , 1.390 , 1.332 , 1.293 olarak, deneysel de erleri ise sırasıyla, 1.635 , 1.378 , 1.344 , 1.291 olarak bulunmu tur.

Pervez ve arkada ları tarafından isatin-3-(N-(2-florofenil)) tiysemikarbazon bile i inin yapısı X-1 ını kırınımı yöntemiyle çalı ılmı tır. Çalı manın sonucunda fenil halkasına ait C28-C30, C30-C26, C26-C24, C24-C22 ba uzunlukları B3LYP/6-311++ G(2d,2p) metodu ile yapılan hesaplamada sırasıyla 1.389 , 1.393 , 1.376 , ve 1.400 olarak, deneysel olarak ise 1.351 , 1.368 , 1.373 , 1.370 , olarak bulunmu tur [16]. Çizelge 4.13 te verilen bu ba uzunluklarının teorik de erleri, deneysel de erlerle uyumludur.

Bu molekül için deneysel ba açıları (Pervez ve arkada ları), B3LYP ve RHF metodu ile 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(d,p) ve 6-311++G(2d,2p) temel setleri kullanılarak hesaplanan ba açıları Çizelge 4.15 ve Çizelge 4.16' da verilmi tir.

B3LYP	3-21G	3-21G*	6-31G (d,p)	6-311G (d,p)	6-311+ G(d,p)	6-311++ G(d,p)	6-311++ G(2d,2p)	Deneysel
C1-C3-F32	120.7	120.7	119.5	119.3	119.1	119.1	119.1	120.1
F32-C3-C13	116.9	116.9	117.3	119.3	117.5	117.5	117.5	116.5
C3-C13-N19	114.7	114.7	115.4	115.7	117.5	116.0	116.0	116.8
C14-C13-N19	127.2	127.2	127.1	126.9	126.8	126.8	126.8	126.6
C13-C3-C1	122.4	122.4	123.1	123.1	123.4	123.4	123.4	123.4
C3-C1-C2	119.1	119.1	118.6	118.7	118.6	118.6	119.5	118.1
C1-C2-C8	119.5	119.5	119.6	119.5	119.5	119.5	121.3	120.2
C2-C8-C14	121.1	121.1	121.3	121.3	121.3	121.3	120.1	120.8
C8-C14-C13	119.8	119.8	119.8	120.0	120.1	120.1	117.2	120.8
C14-C13-C3	118.1	118.1	117.6	117.4	117.2	117.2	117.2	116.6
C13-N19-C16	132.0	132.0	132.3	132.3	132.1	132.2	132.1	130.4
N19-C16-S7	130.4	130.4	130.0	129.9	129.9	129.9	129.9	129.5
N19-C16-N20	112.4	112.4	112.5	112.4	112.5	112.7	112.5	112.3
S7-C16-N20	117.2	117.2	117.5	117.6	117.5	117.4	117.5	118.2
C16-N20-N21	119.3	119.3	121.3	121.4	117.8	121.7	121.5	121.1
N20-N21-C18	117.8	117.8	119.1	119.5	119.4	119.4	119.4	117.8
N21-C18-C12	125.9	125.9	126.7	126.7	126.8	126.8	126.8	127.3
N21-C18-C15	127.5	127.5	126.6	126.6	126.6	126.7	126.6	126.0
C18-C12-O9	125.6	125.6	126.4	126.5	126.5	126.6	126.5	127.1
O9-C12-N6	127.8	127.8	127.4	127.4	127.3	127.2	127.3	127.2
N6-C10-C4	129.5	129.5	128.8	128.8	128.8	128.7	128.8	128.9
C17-C15-C18	132.7	132.7	133.4	133.3	133.4	133.4	133.4	133.3
C15-C18-C12	106.5	106.5	106.7	106.6	106.6	106.5	106.6	106.6
C18-C12-N6	106.5	106.5	106.2	106.1	106.2	106.2	106.2	105.8
C12-N6-C10	110.9	110.9	111.3	111.4	111.3	111.3	111.3	111.8
N6-C10-C15	109.3	109.3	109.4	109.4	109.3	109.4	109.3	108.9
C10-C15-C17	120.6	120.6	120.1	120.1	120.0	120.0	120.0	119.8
C15-C17-C11	118.5	118.5	118.6	118.6	118.6	118.6	118.6	117.9
C17-C11-C5	120.5	120.5	120.6	120.6	120.6	120.6	120.6	121.1
C11-C5-C4	121.4	121.4	121.5	121.4	121.4	121.4	121.4	121.6
C5-C4-C10	117.8	117.8	117.4	117.4	117.4	117.4	117.4	117.4
C4-C10-C15	121.2	121.2	121.9	121.8	121.9	121.9	121.9	122.4
\mathbf{R}^2	0.979	0.979	0.989	0.984	0.982	0.979	0.990	

Çizelge 4.15 B3LYP metoduna göre $I2FPTH_2$ bile i ine ait deneysel ve teorik ba açıları

RHF	3-21G	3-21C*	6-31	6-311	6-311+	6-311++	6-311++2	Denevsel
MIII	5-210	5-210	G(d,p)	G(d,p)	G(d,p)	G(d,p)	G(2d,2p)	Dencysei
C1-C3-F32	120,1	120,8	120,0	119,0	120,9	120,9	118,9	120,1
F32-C3-C13	116,0	120,7	117,6	117,8	117,8	117,8	117,8	116,5
C3-C13-N19	116,6	127,3	115,0	115,2	116,3	115,3	115,3	116,8
C14-C13-N19	124,6	114,7	127,5	127,4	127,4	127,4	127,4	126,6
C13-C3-C1	122,9	122,5	123,3	123,2	123,4	123,4	123,3	123,4
C3-C1-C2	118,9	119,1	118,6	118,7	118,7	118,7	118,7	118,1
C1-C2-C8	119,4	119,5	119,4	119,4	120,3	119,3	119,4	120,2
C2-C8-C14	121,1	121,1	121,3	121,3	121,3	121,3	121,3	120,8
C8-C14-C13	119,8	119,9	119,9	120,0	120,0	120,0	120,1	120,8
C14-C13-C3	117,8	118,0	117,4	117,4	117,3	117,3	117,3	116,6
C13-N19-C16	132,2	131,9	132,6	132,6	130,5	132,5	132,6	130,4
N19-C16-S7	129,6	130,5	129,2	129,1	129,1	129,1	129,1	129,5
N19-C16-N20	114,0	111,5	113,8	113,8	112,8	113,8	114,0	112,3
S7-C16-N20	116,4	118,0	117,0	117,1	117,1	117,1	116,9	118,2
C16-N20-N21	119,5	119,5	121,3	121,4	121,5	121,5	121,6	121,1
N20-N21-C18	120,1	118,1	120,7	120,8	117,7	120,7	120,7	117,8
N21-C18-C12	126,8	125,9	127,6	127,7	120,7	127,7	127,7	127,3
N21-C18-C15	127,5	127,5	126,7	126,7	126,7	126,7	126,8	126,0
C18-C12-O9	125,7	125,7	126,3	126,4	127,4	126,4	126,6	127,1
O9-C12-N6	127,9	127,8	127,5	127,5	127,4	127,4	127,2	127,2
N6-C10-C4	129,2	129,5	128,4	128,4	128,4	128,4	128,3	128,9
C17-C15-C18	132,1	132,7	132,9	132,8	133,4	132,9	132,9	133,3
C15-C18-C12	105,7	106,6	105,7	105,7	105,6	105,6	105,6	106,6
C18-C12-N6	106,4	106,5	106,2	106,1	105,8	106,1	106,2	105,8
C12-N6-C10	111,5	110,9	111,8	111,9	111,9	111,9	111,8	111,8
N6-C10-C15	109,4	109,2	109,7	109,7	108,7	109,7	109,8	108,9
C10-C15-C17	120,9	120,6	120,5	120,5	119,9	120,5	120,5	119,8
C15-C17-C11	118,4	118,5	118,4	118,5	118,5	118,5	118,5	117,9
C17-C11-C5	120,3	120,5	120,4	120,3	121,1	120,3	120,3	121,1
C11-C5-C4	121,5	121,4	121,7	121,7	121,6	121,6	121,6	121,6
C5-C4-C10	117,6	117,8	117,2	117,2	117,5	117,2	117,2	117,4
C4-C10-C15	121,4	121,2	121,9	121,8	122,4	121,9	121,9	122,4
\mathbf{R}^2	0,973	0,980	0,978	0,978	0,970	0,979	0,979	

Çizelge 4.16 RHF metoduna göre I2FPTH₂ bile i ine ait deneysel ve teorik ba açıları

B3LYP	3-21 G(d,p)	3-21 G*(d,p)	6-31 G(d,p)	6-311 G(d,p)	6-311+ G(d,p)	6-311++ G(d,p)	6-311++ G(2d,2p)	Deneysel
C10-N6-C12-O9	-180,0	-180,0	-180,0	-180,0	-180,0	180,0	180,0	177,5
C10-N6-C12-C18	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-1,8
C12-N6-C10-C4	180,0	180,0	180,0	180,0	180,0	180,0	-180,0	-177,2
C12-N6-C10-C15	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,3
C18-N21-N20-	180,0	180,0	180,0	180,0	-180,0	-180,0	180,0	-175,5
N20-N21-C18-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
N20-N21-C18-	180,0	180,0	-180,0	180,0	-180,0	-180,0	-180,0	178,0
N21-N20-C16-S7	0,0	0,0	180,0	180,0	-180,0	0,0	180,0	174,9
N21-N20-C16-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-4,4
C13-N19-C16-S7	0,0	0,0	0,0	-180,0	0,0	0,0	0,0	-0,8
C13-N19-C16-	-180,0	-180,0	180,0	180,0	180,0	180,0	-180,0	178,3
C16-N19-C13-C3	180,0	180,0	-180,0	180,0	-180,0	-180,0	-180,0	-170,6
C16-N19-C13-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	11,8
N21-C18-C12-O9	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,6
N21-C18-C12-N6	-180,0	-180,0	-180,0	180,0	180,0	-180,0	-180,0	180,0
C15-C18-C12-O9	180,0	180,0	180,0	180,0	180,0	180,0	-180,0	-177,7
C15-C18-C12-N6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,7
N21-C18-C15-	180,0	180,0	180,0	180,0	180,0	-180,0	180,0	-179,2
N21-C18-C15-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-1,5
C12-C18-C15-	0,0	-180,0	0,0	0,0	0,0	0,0	0,0	-0,9
C12-C18-C15-	-180,0	-180,0	-180,0	-180,0	-180,0	-180,0	-180,0	176,9
N6-C10-C4-C5	-180,0	-180,0	-180,0	-180,0	180,0	-180,0	-180,0	178,1
C15-C10-C4-C5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,2
N6-C10-C15-C18	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,2
N6-C10-C15-C17	180,0	180,0	180,0	180,0	-180,0	180,0	180,0	-178,3
C4-C10-C15-C18	180,0	180,0	-180,0	180,0	180,0	-180,0	-180,0	178,5
C4-C10-C15-C17	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3
C10-C4-C5-C11	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,4
C4-C5-C11-C17	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,8
C5-C11-C17-C15	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,7
C11-C17-C15-	-180,0	-180,0	180,0	-180,0	-180,0	-180,0	180,0	-177,4
C11-C17-C15-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1

Çizelge 4.17 B3LYP metoduna göre $I2FPTH_2$ bile i ine ait deneysel ve teorik torsiyon açıları

N19-C13-C3-F32	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,1
N19-C13-C3-C1	-180,0	-180,0	-180,0	-180,0	-180,0	-180,0	-180,0	-179,0
C14-C13-C3-F32	-180,0	-180,0	180,0	-180,0	-180,0	-180,0	180,0	179,0
C14-C13-C3-C1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-1,1
N19-C13-C14-C8	180,0	180,0	180,0	0,0	-180,0	180,0	180,0	179,0
C3-C13-C14-C8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,3
F32-C3-C1-C2	180,0	180,0	180,0	180,0	180,0	-180,0	-180,0	-180,0
C13-C3-C1-C2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
C3-C1-C2-C8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7
C1-C2-C8-C14	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,5
C2-C8-C14-C13	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,6

Çizelge 4.17 (Devam) B3LYP metoduna göre $I2FPTH_2$ bile i ine ait deneysel ve teorik torsiyon açıları

Çizelge 4.18 RHF metoduna göre I2FPTH $_2$ bile i ine ait deneysel ve teorik torsiyon açıları

RHF	3-21G	3-21G*	6-31 G(d,p)	6-311 G(d,p)	6-311+ G(d,p)	6-311++ G(d,p)	6-311++ G(2d,2p)	Deneysel
C10-N6-C12-O9	180,0	180,0	180,0	180,0	180,0	180,0	180,0	177,5
C10-N6-C12-C18	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-1,8
C12-N6-C10-C4	-180,0	0,0	-180,0	180,0	180,0	180,0	0,0	-177,2
C12-N6-C10-C15	-180,0	0,0	0,0	0,0	0,0	0,0	0,0	1,3
C18-N21-N20-C16	-180,0	180,0	180,0	180,0	180,0	180,0	-180,0	-175,5
N20-N21-C18-C12	0,0	0,0	0,0	0,0	0,0	0,0	-180,0	0,0
N20-N21-C18-C15	-180,0	0,0	180,0	180,0	180,0	180,0	180,0	178,0
N21-N20-C16-S7	-180,0	180,0	-180,0	-180,0	-180,0	-180,0	-180,0	174,9
N21-N20-C16-N19	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-4,4
C13-N19-C16-S7	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,8
C13-N19-C16-N20	-180,0	-180,0	-180,0	-180,0	180,0	-180,0	-180,0	178,3
C16-N19-C13-C3	180,0	180,0	-180,0	-180,0	-180,0	-180,0	-180,0	-170,6
C16-N19-C13-C14	0,0	0,0	0,0	0,0	0,0	0,0	0,0	11,8
N21-C18-C12-O9	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,6
N21-C18-C12-N6	-180,0	-180,0	-180,0	180,0	-180,0	180,0	-180,0	180,0
C15-C18-C12-O9	-180,0	-180,0	180,0	-180,0	180,0	-180,0	-180,0	-177,7
C15-C18-C12-N6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,7
N21-C18-C15-C10	180,0	-180,0	-180,0	180,0	-180,0	-180,0	-180,0	-179,2

N21-C18-C15-C17	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-1,5
C12-C18-C15-C10	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,9
C12-C18-C15-C17	180,0	180,0	-180,0	-180,0	-180,0	-180,0	180,0	176,9
N6-C10-C4-C5	180,0	-180,0	-180,0	-180,0	-180,0	-180,0	-180,0	178,1
C15-C10-C4-C5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,2
N6-C10-C15-C18	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,2
N6-C10-C15-C17	-180,0	180,0	180,0	180,0	180,0	180,0	180,0	-178,3
C4-C10-C15-C18	-180,0	-180,0	180,0	180,0	180,0	180,0	180,0	178,5
C4-C10-C15-C17	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3
C10-C4-C5-C11	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,4
C4-C5-C11-C17	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,8
C5-C11-C17-C15	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,7
C11-C17-C15-C18	180,0	0,0	-180,0	180,0	-180,0	-180,0	-180,0	-177,4
C11-C17-C15-C10	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
N19-C13-C3-F32	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,1
N19-C13-C3-C1	180,0	180,0	180,0	180,0	-180,0	-180,0	-180,0	-179,0
C14-C13-C3-F32	-180,0	-180,0	180,0	180,0	-180,0	180,0	180,0	179,0
C14-C13-C3-C1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-1,1
N19-C13-C14-C8	-180,0	-180,0	-180,0	-180,0	180,0	180,0	180,0	179,0
C3-C13-C14-C8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,3
F32-C3-C1-C2	180,0	180,0	-180,0	-180,0	180,0	-180,0	-180,0	-180,0
C13-C3-C1-C2	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1
C3-C1-C2-C8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7
C1-C2-C8-C14	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,5
C2-C8-C14-C13	0,0	0,0	0,0	0,0	0,0	0,0	0,0	-0,6

Çizelge 4.18 (Devam) RHF metoduna göre $I2FPTH_2$ bile i ine ait deneysel ve teorik torsiyon açıları

satin-3-(N-(2-florofenil)) tiysemikarbazon [I2FPTH₂] molekülü için B3LYP ve RHF metodu ile 3-21G, 3-21G*, 6-31G (d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) ve 6-311++G (2d,2p) temel setleri kullanılarak hesaplanan Mulliken ve NBO yükleri ekil 4.6-4.9 da verilmi tir.

ekil 4.6 B3LYP metodu kullanılarak I2FPTH $_2$ molekülünün mulliken yükleri

ekil 4.7 RHF metodu kullanılarak I2FPTH2 molekülünün mulliken Yükleri

ekil 4.8 B3LYP metodu kullanılarak I2FPTH2 molekülünün NBO yükleri

ekil 4.9 B3LYP metodu kullanılarak I2FPTH2 molekülünün NBO yükleri

I2FPTH₂ molekülü için B3LYP ve RHF metodu ile 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311G(2d,2p) temel setleri kullanılarak gaz fazında yapılan Mulliken yük ve NBO yük hesaplamalarında N6, C4, C5, C11, C17, C15, O9, N21, N20, N19, S7, C14, C8, C2, C1, F32 atomlarında negatif yük yo unlu u bulundu u gözlenmi tir ve yük yo unlukları kullanılan temel setlere göre de i mektedir.

satin-3-(N-(2-florofenil)) tiysemikarbazon $[I2FPTH_2]$ molekülü için B3LYP metodu ile 6-311G(d,p) temel seti kullanılarak hesaplanan HOMO ve LUMO ekilleri ekil 4.10 ve 4.11 de verilmi tir.

ekil 4.10 B3LYP metodu kullanılarak I2FPTH2 molekülüne ait HOMO ekli

ekil 4.11 B3LYP metodu kullanılarak I2FPTH2 molekülüne ait LUMO ekli

4.2.1.1 satin-3-N-(2-florofenil)) tiysemikarbazon ligandının reaksiyon mekanizması

Reaksiyon mekanizmasının incelenmesinde, hesaplamalar satin-3-(N-(2-florofenil) tiysemikarbazonun protonlanmı yapısından ba lanmı olup elde edilen ürünün protonlanmı ekline kadar devam edilmi tir. Reaksiyon mekanizması yarı deneysel metotlardan olan AM1 (Austin Model) ile incelendi. ekil 4.12 de ba langıç maddelerinin, geçi durumunu(GD) nun, ara ürünün(AD) ve sonuç ürününü olu turan atomların uzaysal düzenlenmesi ve AM1 ile hesaplanan 1a+2a, GD1, AD1, GD2, 3b moleküllerinin ba uzunlukları ve Mulliken yükleri verilmi tir.

Protonlanmı isatin molekülü (1a) ve 2-florofenil-3-tiyosemikarbazit molekülü birbirinden yeteri kadar uzakta iken C15=O16, C15-C13, C15-N14, C13-C12, C13-O31, C13-N17, N17-N18 atomları arasındaki ba uzunlukları sırasıyla 1.225Å, 1.552Å, 1.407Å, 1.410Å, 1.307Å, 3.000Å, 1.358Å dir.

Birinci geçi durumunda bu ba uzunlukları sırasıyla 1.229Å, 1.564Å, 1.391Å, 1.461Å, 1.337Å, 1.954Å, 1.370Å, ara durumda, 1.230Å, 1.589Å, 1.384Å, 1.505Å, 1.390Å, 1.560Å, 1.399Å, ikinci geçi durumunda, 1.232 Å, 1.584Å, 1.380Å, 1.496Å, 1.448Å, 1.496Å ve sonuç ürününde (protonlanmı ekliyle) 1.228Å, 1.562Å, 1.395Å, 1.445Å, 3.000Å, 1.319Å olmaktadır.

C13, C15, O16, N17 atomlarının mulliken yükleri birbirinden yeteri kadar uzakta iken; 0.277, 0.317, -0.215, -0.291, birinci geçi durumunda; 0.320, 0.316, -0.224, -0.273, ara durumda; 0.144, 0.286, -0.271, -0.001, ikinci geçi durumunda; 0.246, 0.314, -0.243, -0.321, sonuç ürününde ise 0.130, 0.344, -0.244, -0.016 olmaktadır.

Elde edilen mulliken yük de erlerine bakıldı ında 2-florofenil tiyosemikarbazit molekülünde bulunan N17 atomunun mulliken yükleri tüm ara ve geçi durumlarında negatif de erlerde olmakla beraber isatin molekülünde bulunan C13 atomunun mulliken yükleri tüm durumlarda pozitif de erlerde çıkmı tır. Sonuç olarak N17 atomu C13 atomuna nükleofilik olarak saldırmı tır.

ekil 4.12 Reaktant, geçi durumları, ara durum ve ürünlerin optimize edilmi yapıları

4.2.2 satin-3-(N-(2-klorofenil)) tiysemikarbazon (I2CPTH₂)

satin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünün monomer ve dimer eklinin yapıları atom numaraları ile birlikte ekil 4.13 ve 4.14 te verilmi tir.

ekil 4.13 I2CPTH $_2$ molekülünün monomer yapısı

ekil 4.14 I2CPTH2 molekülünün dimer yapısı

RHF ve B3LYP metodu ile 3-21G, 3-21G*, 6-31G(d,p), 6-31G(d,p), 6-311G (d,p), 6-311+G(d,p), 6-311++G(d,p) temel setleri kullanılarak hesaplanan ba uzunlukları, ba açıları, Mulliken yükleri, NBO yükleri Çizelge 4.19 - 4.26 da verilmi tir.

B3LYP metodu ile hesaplanan ba uzunlukları, RHF metodu ile hesaplanan ba uzunluklarından daha büyüktür. Örne in 3-21G, 3-21G*, 6-31G (d,p), 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) ve 6-31G(d,p), 6-311++G(2d,2p) temel setleri ile hesaplanan C13-C14 ba uzunlu u B3LYP metodunda, 1.406Å, 1.405Å, 1.404Å, 1.402Å, 1.402Å, 1.402Å, 1,399Å iken, RHF metodunda 1.390Å, 1.390Å, 1.388Å, 1.388Å, 1.391Å, 1.388Å dır. B3LYP ve RHF metotlarıyla hesaplanan temel setlere göre ba uzunluklarında kayda de er bir de i im söz konusu de ildir.

Atomlar	3 210	3 21*C	6-31	6-311	6-311+	6-311++	6-311++G
	3-21G	J-21 G	G(d,p)	G(d,p)	G(d,p)	G(d , p)	(2d,2p)
C13-C14	1.406	1.405	1.404	1.402	1.402	1.402	1.399
C14-C8	1.393	1.393	1.393	1.390	1.390	1.391	1.388
C8-C2	1.395	1.394	1.393	1.391	1.391	1.391	1.389
C2-C1	1.397	1.395	1.394	1.392	1.392	1.392	1.390
C1-C3	1.381	1.388	1.390	1.386	1.386	1.387	1.384
C3-Cl33	1.844	1.771	1.767	1.767	1.767	1.766	1.764
C3-C13	1.406	1.413	1.412	1.410	1.410	1.410	1.407
C13-N19	1.401	1.401	1.403	1.402	1.402	1.403	1.401
N19-C16	1.353	1.361	1.356	1.355	1.355	1.356	1.353
C16-S7	1.720	1.668	1.673	1.671	1.671	1.669	1.667
C16-N20	1.389	1.400	1.392	1.392	1.392	1.394	1.390
N20-N21	1.376	1.372	1.336	1.333	1.333	1.333	1.332
N21-C18	1.300	1.301	1.299	1.295	1.295	1.295	1.293
C18-C12	1.502	1.500	1.501	1.502	1.502	1.501	1.500
C12-O9	1.259	1.260	1.240	1.233	1.233	1.235	1.234
C12-N6	1.369	1.370	1.364	1.363	1.363	1.363	1.361
N6-C10	1.414	1.413	1.408	1.407	1.407	1.407	1.406
C10-C4	1.385	1.385	1.387	1.384	1.385	1.385	1.382
C4-C5	1.403	1.403	1.401	1.399	1.399	1.399	1.397
C5-C11	1.400	1.400	1.399	1.397	1.397	1.398	1.395
C11-C17	1.400	1.400	1.398	1.395	1.395	1.396	1.393
C17-C15	1.390	1.390	1.393	1.391	1.391	1.391	1.389
C15-C10	1.415	1.416	1.412	1.409	1.409	1.409	1.407
C15-C18	1.454	1.455	1.456	1.455	1.455	1.456	1.454

Çizelge 4.19 B3LYP metoduna göre I2CPTH₂ bile i ine ait ba uzunlu u

Atomion	2 210	2.21*0	6-31	6-311	6-311+	6-311++	6-311++G
Atomar	3-21G	3-21*G	G(d,p)	G(d,p)	G(d,p)	G(d,p)	(2d,2p)
C13-C14	1.390	1.30	1.388	1.38	1.391	1.391	1.388
C14-C8	1.382	1.382	1.381	1.380	1.384	1.384	1.381
C8-C2	1.381	1.380	1.386	1.385	1.381	1.382	1.379
C2-C1	1.382	1.381	1.381	1.380	1.382	1.382	1.379
C1-C3	1.371	1.377	1.384	1.383	1.379	1.379	1.375
C3-Cl33	1.828	1.757	1.745	1.744	1.753	1.753	1.754
C3-C13	1.390	1.397	1.388	1.386	1.397	1.397	1.394
C13-N19	1.404	1.404	1.414	1.416	1.407	1.407	1.404
N19-C16	1.332	1.341	1.337	1.337	1.339	1.339	1.335
C16-S7	1.736	1.671	1.673	1.671	1.671	1.671	1.671
C16-N20	1.359	1.372	1.360	1.359	1.365	1.365	1.360
N20-N21	1.377	1.371	1.338	1.337	1.335	1.335	1.334
N21-C18	1.262	1.263	1.260	1.258	1.258	1.258	1.255
C18-C12	1.510	1.508	1.512	1.514	1.514	1.514	1.512
C12-O9	1.227	1.228	1.207	1.201	1.202	1.203	1.202
C12-N6	1.348	1.349	1.345	1.345	1.345	1.345	1.342
N6-C10	1.409	1.408	1.403	1.402	1.403	1.403	1.402
C10-C4	1.371	1.371	1.376	1.375	1.376	1.376	1.372
C4-C5	1.391	1.391	1.391	1.390	1.391	1.391	1.388
C5-C11	1.385	1.385	1.388	1.387	1.388	1.388	1.385
C11-C17	1.389	1.389	1.388	1.388	1.388	1.388	1.386
C17-C15	1.374	1.374	1.380	1.379	1.379	1.379	1.376
C15-C10	1.394	1.394	1.393	1.391	1.391	1.391	1.388
C15-C18	1.461	1.461	1.467	1.467	1.467	1.467	1.465

Çizelge 4.20 RHF metoduna göre I2CPTH $_2$ bile i ine ait ba uzunlu u

Atom	3-21G	3-21*G	6-31G	6-311	6-311+	6-311++	6-311++
Atom			(d , p)	G(d,p)	G(d,p)	G(d,p)	G(2d,2p)
C1-C3-Cl33	118	118	118	118	118	118	118
Cl33-C3-C13	120	120	120	119	120	120	120
C13-C14-C8	121	121	121	121	121	121	121
C14-C8-C2	121	121	121	121	121	121	121
C8-C2-C1	119	119	119	119	119	119	119
C2-C1-C3	120	120	120	119	120	120	120
C1-C3-C13	122	122	122	123	122	122	122
C3-C13-C14	117	117	117	116	117	117	117
C3-C13-N19	118	118	118	118	118	118	118
C14-C13-N19	125	125	125	125	125	125	125
C13-N19-C16	133	132	133	132	132	132	133
N19-C16-S7	130	130	130	131	131	131	130
N19-C16-N20	112	112	113	112	111	112	112
S7-C16-N20	117	117	117	117	117	117	117
C16-N20-N21	122	122	122	119	120	121	122
N20-N21-C18	119	119	119	118	118	119	119
N21-C18-C12	127	127	127	126	126	127	127
C18-C12-O9	126	127	127	126	126	126	126
O9-C12-N6	127	127	127	128	128	127	127
N6-C10-C4	129	129	129	130	130	129	129
N21-C18-C15	127	127	127	127	127	127	127
C15-C18-C12	107	107	107	107	107	107	107
C18-C12-N6	106	106	106	107	107	106	106
C12-N6-C10	111	111	111	111	111	111	111
N6-C10-C15	109	109	109	109	109	109	109
C10-C15-C17	120	120	120	121	121	120	120
C18-C15-C17	133	133	133	133	133	133	133
C15-C17-C11	119	119	119	118	118	119	119
C17-C11-C5	121	121	121	121	121	121	121
C11-C5-C4	121	121	121	121	121	121	121
C5-C4-C10	117	117	117	118	118	117	117
C4-C10-C15	122	122	122	121	121	122	122
C18-C15-C10	107	107	107	107	107	107	107

Çizelge 4.21 B3LYP metoduna göre $I2CPTH_2$ bile i ine ait ba açıları

A 4 am	3-21G	3-21*G	6-31G	6-311G	6-311+G	6-311++G	6-311++G
Atom			(d , p)	(2d,2p)			
C1-C3-Cl33	117	118	119	119	117	117	117
Cl33-C3-C13	120	121	120	120	121	121	121
C13-C14-C8	121	121	120	121	121	121	121
C14-C8-C2	121	121	120	120	121	121	121
C8-C2-C1	119	119	120	120	119	119	119
C2-C1-C3	119	120	120	120	120	120	120
C1-C3-C13	123	122	121	121	122	122	122
C3-C13-C14	117	117	119	119	117	117	117
C3-C13-N19	118	118	120	120	117	117	117
C14-C13-N19	125	125	121	121	125	125	125
C13-N19-C16	132	132	127	126	133	133	133
N19-C16-S7	130	130	127	127	130	130	130
N19-C16-N20	114	113	115	115	114	114	114
S7-C16-N20	116	117	118	119	117	117	117
C16-N20-N21	120	120	121	121	122	122	122
N20-N21-C18	120	120	120	120	121	121	121
N21-C18-C12	127	127	128	128	128	128	128
C18-C12-O9	126	126	126	126	126	126	127
O9-C12-N6	128	128	127	127	127	127	127
N6-C10-C4	129	129	128	128	128	128	128
N21-C18-C15	127	128	127	127	127	127	127
C15-C18-C12	106	106	106	106	106	106	106
C18-C12-N6	106	106	106	106	106	106	106
C12-N6-C10	111	111	112	112	112	112	112
N6-C10-C15	109	109	110	110	110	110	110
C10-C15-C17	121	121	120	120	120	120	120
C18-C15-C17	132	132	133	133	133	133	133
C15-C17-C11	118	118	118	119	118	118	119
C17-C11-C5	120	120	120	120	120	120	120
C11-C5-C4	122	121	122	122	122	122	122
C5-C4-C10	118	118	117	117	117	117	117
C4-C10-C15	121	121	122	122	122	122	122
C18-C15-C10	107	107	107	107	107	107	107

Çizelge 4.22 RHF metoduna göre $I2CPTH_2$ bile i ine ait ba açıları

	B3LYP											
Atom	3-21G	3-21G*	6-31 G(d,p)	6-311 G(d,p)	6-311+ G(d,p)	6-311++ G(d,p)	6-311++2 G(2d,2p)					
C18	0.275	0.273	0.188	0.090	-0.369	0.244	-0.040					
C12	0.712	0.711	0.640	0.423	0.275	0.049	0.456					
N6	-0.848	-0.849	-0.669	-0.479	-0.261	-0.230	-0.250					
C10	0.348	0.348	0.290	0.235	-0.127	-0.285	0.269					
C4	-0.188	-0.189	-0.110	-0.041	-0.712	-0.627	-0.281					
C5	-0.178	-0.179	-0.092	-0.088	-0.176	-0.191	-0.167					
C11	0.348	-0.184	-0.096	-0.105	-0.503	-0.544	-0.397					
C17	-0.208	-0.209	-0.127	-0.021	-0.546	-0.274	-0.274					
C15	0.044	0.045	0.123	-0.140	1.643	0.926	0.412					
09	-0.507	-0.509	-0.534	-0.371	-0.364	-0.322	-0.501					
N21	-0.423	-0.422	-0.378	-0.235	0.193	-0.018	-0.319					
N20	-0.527	-0.545	-0.351	-0.267	-0.043	0.203	0.120					
C16	0.271	0.466	0.377	0.225	0.188	0.219	0.779					
N19	-0.890	-0.901	-0.648	-0.474	-0.068	-0.105	-0.147					
S7	0.025	-0.123	-0.233	-0.210	-0.428	-0.564	-0.614					
C13	0.374	0.352	0.359	0.339	-1.063	-0.527	-0.365					
C14	-0.162	-0.163	-0.069	-0.069	0.215	0.159	-0.011					
C8	-0.194	-0.195	-0.104	-0.101	-0.315	-0.209	-0.116					
C2	-0.179	-0.179	-0.078	-0.083	-0.373	-0.646	-0.518					
C1	-0.161	-0.174	-0.076	0.014	0.001	-0.309	-0.343					
C3	-0.278	-0.173	-0.159	-0.274	0.294	0.237	0.595					
Cl33	0.075	0.022	-0.014	-0.089	0.427	0.487	0.066					

Çizelge 4.23 B3LYP metoduna göre I2CPTH $_2$ bile i ine ait mulliken yükler

				RHF			
Atom	3-21G	3-21G*	6-31	6-311	6-311+	6-311++	6-311++2
Atom			G(d,p)	G(d,p)	G(d,p)	G(d,p)	G(2d,2p)
C18	0.351	0.345	0.201	0.179	-0.492	0.095	0.154
C12	0.961	0.960	0.845	0.612	0.447	0.210	0.657
N6	-1.059	-1.059	-0.832	-0.615	-0.494	-0.462	-0.404
C10	0.414	0.413	0.323	0.305	0.269	-0.014	0.221
C4	-0.233	-0.233	-0.162	-0.054	-0.742	-0.444	-0.416
C5	-0.212	-0.213	-0.134	-0.072	-0.116	-0.226	-0.031
C11	-0.249	-0.249	-0.177	-0.106	-0.577	-0.719	-0.511
C17	-0.193	-0.195	-0.100	-0.032	-0.717	-0.204	-0.308
C15	-0.086	-0.083	-0.035	-0.163	1.741	0.783	0.643
09	-0.632	-0.635	-0.613	-0.477	-0.448	-0.404	-0.590
N21	-0.472	-0.468	-0.361	-0.285	0.138	-0.058	-0.272
N20	-0.697	-0.719	-0.496	-0.373	-0.105	0.147	0.058
C16	0.486	0.692	0.504	0.350	0.285	0.345	0.884
N19	-1.109	-1.125	-0.764	-0.570	-0.217	-0.257	-0.253
S7	-0.063	-0.209	-0.315	-0.298	-0.594	-0.772	-0.674
C13	0.440	0.417	0.317	0.283	-0.711	-0.410	-0.240
C14	-0.219	-0.220	-0.088	-0.007	0.058	0.116	-0.030
C8	-0.232	-0.233	-0.158	-0.092	-0.302	-0.176	-0.119
C2	-0.242	-0.242	-0.140	-0.079	-0.435	-0.935	-0.513
C1	-0.179	-0.196	-0.117	0.018	-0.100	-0.345	-0.424
C3	-0.343	-0.229	-0.186	-0.204	0.393	0.422	0.650
Cl33	0.077	0.022	0.012	-0.099	0.293	0.372	-0.002

Çizelge 4.24 RHF metoduna göre $I2CPTH_2$ bile i ine ait mulliken yükler

	B3LYP											
Atom	3-21G	3-21G*	6-31	6-311	6-311+	6-311++	6-311++2					
Atom			G(d,p)	G(d,p)	G(d,p)	G(d,p)	G(2d,2p)					
C18	0.105	0.099	0.105	0.108	0.110	0.109	0.109					
C12	0.584	0.584	0.639	0.641	0.631	0.631	0.641					
N6	-0.616	-0.616	-0.620	-0.595	-0.595	-0.593	-0.593					
C10	0.177	0.177	0.177	0.192	0.184	0.184	0.184					
C4	-0.273	-0.273	-0.272	-0.244	-0.242	-0.240	-0.239					
C5	-0.217	-0.218	-0.213	-0.167	-0.173	-0.172	-0.171					
C11	-0.258	-0.258	-0.256	-0.216	-0.229	-0.227	-0.225					
C17	-0.188	-0.190	-0.191	-0.156	-0.143	-0.141	-0.142					
C15	-0.120	-0.119	-0.111	-0.107	-0.115	-0.115	-0.114					
09	-0.521	-0.523	-0.610	-0.616	-0.616	-0.616	-0.625					
N21	-0.209	-0.207	-0.230	-0.241	-0.227	-0.226	-0.225					
N20	-0.420	-0.420	-0.395	-0.373	-0.394	-0.393	-0.391					
C16	0.261	0.234	0.239	0.279	0.270	0.269	0.264					
N19	-0.580	-0.583	-0.596	-0.587	-0.602	-0.602	-0.601					
S7	-0.203	-0.157	-0.170	-0.187	-0.159	-0.156	-0.153					
C13	0.145	0.151	0.141	0.135	0.135	0.136	0.134					
C14	-0.243	-0.247	-0.244	-0.215	-0.216	-0.216	-0.213					
C8	-0.229	-0.229	-0.224	-0.182	-0.185	-0.184	-0.182					
C2	-0.242	-0.245	-0.240	-0.198	-0.204	-0.203	-0.202					
C1	-0.246	-0.242	-0.245	-0.219	-0.218	-0.215	-0.214					
C3	-0.049	-0.088	-0.059	-0.031	-0.051	-0.052	-0.055					
Cl33	-0.045	0.001	-0.012	-0.020	-0.005	-0.004	0.002					

Çizelge 4.25 B3LYP metoduna göre $I2CPTH_2$ bile i ine ait NBO yükler

				RHF			
Atom	3-21G	3-21G*	6-31	6-311	6-311+	6-311++	6-311++2
Atom			G(d,p)	G(d,p)	G(d,p)	G(d,p)	G(2d,2p)
C18	0.148	0.137	0.147	0.146	0.152	0.153	0.154
C12	0.759	0.759	0.805	0.794	0.787	0.787	0.801
N6	-0.728	-0.728	-0.707	-0.676	-0.678	-0.675	-0.676
C10	0.229	0.227	0.222	0.240	0.235	0.235	0.230
C4	-0.290	-0.289	-0.285	-0.252	-0.253	-0.250	-0.236
C5	-0.190	-0.192	-0.178	-0.124	-0.130	-0.128	-0.133
C11	-0.275	-0.274	-0.267	-0.221	-0.235	-0.234	-0.230
C17	-0.157	-0.160	-0.156	-0.112	-0.099	-0.097	-0.097
C15	-0.153	-0.149	-0.142	-0.140	-0.150	-0.150	-0.148
09	-0.626	-0.629	-0.699	-0.690	-0.686	-0.686	-0.699
N21	-0.212	-0.205	-0.231	-0.235	-0.223	-0.223	-0.223
N20	-0.536	-0.537	-0.496	-0.470	-0.492	-0.490	-0.488
C16	0.455	0.424	0.419	0.464	0.456	0.456	0.456
N19	-0.691	-0.696	-0.701	-0.684	-0.684	-0.683	-0.699
S7	-0.337	-0.276	-0.303	-0.324	-0.297	-0.296	-0.296
C13	0.192	0.199	0.156	0.147	0.180	0.180	0.179
C14	-0.253	-0.258	-0.200	-0.151	-0.215	-0.213	-0.209
C8	-0.212	-0.213	-0.223	-0.178	-0.158	-0.156	-0.158
C2	-0.250	-0.253	-0.218	-0.163	-0.201	-0.200	-0.196
C1	-0.228	-0.224	-0.237	-0.205	-0.188	-0.186	-0.186
C3	-0.063	-0.103	-0.045	-0.009	-0.056	-0.056	-0.057
Cl33	-0.065	-0.014	-0.022	-0.029	-0.031	-0.031	-0.027

Çizelge 4.26 RHF metoduna göre $I2CPTH_2$ bile i ine ait NBO yükler

RHF ve B3LYP metodu ile hesaplanan ba açıları hemen hemen aynıdır. Temel setlere göre de bir de i im söz konusu de ildir. Ba uzunlu u, ba açıları ve torsiyon açılarının hesaplanmasında temel setlerden herhangi birisi kullanılabilir.

4.2.2.1 satin-3-N-(2-klorofenil) tiysemikarbazon ligandının reaksiyon mekanizması

Reaksiyon mekanizmasının incelenmesinde, hesaplamalar satin-3-(N-(2-klorofenil)) tiysemikarbazonun protonlanmı yapısından ba lanmı olup elde edilen ürünün protonlanmı ekline kadar devam edilmi tir. Reaksiyon mekanizması yarı deneysel metotlardan olan AM1 (Austin Model) ile incelendi. ekil 4.15 te ba langıç maddelerinin, geçi durumunu(GD) nun, ara ürünün(AD) ve sonuç ürününü olu turan atomların uzaysal düzenlenmesi ve AM1 ile hesaplanan 1a+2a, GD1, AD1, GD2, 3b moleküllerinin ba uzunlukları ve Mulliken yükleri verilmi tir.

Protonlanmı isatin molekülü (1a) ve 2-klorofenil-3-tiyosemikarbazit molekülü birbirinden yeteri kadar uzakta iken C15=O16, C15-C13, C15-N14, C13-C12, C13-O31, C13-N17, N17-N18 atomları arasındaki ba uzunlukları sırasıyla 1.225Å, 1.552Å, 1.407Å, 1.410Å, 1.307Å, 3.000Å, 1.358Å dir.

Birinci geçi durumunda bu ba uzunlukları sırasıyla 1.230Å, 1.589Å, 1.384Å, 1.505Å, 1.390Å, 1.559Å, 1.399Å, ara durumda, 1.229Å, 1.564Å, 1.391Å, 1.461Å, 1.337Å, 1.956Å, 1.370Å, ikinci geçi durumunda, 1.232 Å, 1.584Å, 1.380Å, 1.496Å, 1.448Å, 1.496Å 1.383 Å ve sonuç ürününde (protonlanmı ekliyle) 1.228Å, 1.562Å, 1.395Å, 1.447Å, 3.000Å, 1.318Å, 1.352Å olmaktadır.

C13, C15, O16, N17 atomlarının mulliken yükleri birbirinden yeteri kadar uzakta iken; 0.277, 0.317, -0.215, -0.291, birinci geçi durumunda; 0.320, 0.316, -0.224, -0.273, ara durumda; 0.143, 0.285, -0.271, -0.001, ikinci geçi durumunda; 0.230, 0.330, -0.232, -0.235, sonuç ürününde ise 0.150, 0.340, -0.241, -0.041 olmaktadır.

	cur		20			ې فر	۵ ۵۵ ۵ ۲۰۹۵				
tiyo	semik	arbazo	on 	0.000							
Atom	1a-2	GD1	AD1	GD2	3h	Atom	1a-2	GD1	AD1	GD2	3h
ntom	14 2	Ba	Uzunlu	u(Å)	50	7 Rom	14.2	Mulliken	Viikler ()	50
C15-O16	1.225	1.230	1.229	1.232	1.228	C11	0.191	0.149	0.077	0.141	0.143
C15-C13	1.552	1.589	1.564	1.584	1.562	C12	-0.233	-0.241	-0.225	-0.250	-0.200
C15-N14	1.407	1.384	1.391	1.380	1.395	C13	0.277	0.320	0.143	0.230	0.150
C13-C12	1.410	1.505	1.461	1.496	1.447	C15	0.317	0.316	0.285	0.330	0.340
C12-C11	1.464	1.435	1.447	1.437	1.449	N14	-0.304	-0.303	-0.289	-0.319	-0.321
C13-O31	1.307	1.390	1.337	1.448	3.000	016	-0.215	-0.224	-0.271	-0.232	-0.241
O31-H34	0.989	0.976	0.983	0.973	0.965	H35	0.314	0.289	0.264	0.279	0.227
C13-N17	3.000	1.559	1.956	1.496	1.318	N17	-0.291	-0.273	-0.001	-0.235	-0.041
N17-H32	1.014	1.035	1.018	1.206	3.518	H33	0.161	0.173	0.240	0.559	0.231
N17-H33	1.014	1.035	1.018	1.028	1.025	H34	0.175	0.190	0.258	0.297	0.324
N17-N18	1.358	1.399	1.370	1.383	1.352	N18	-0.274	-0.281	-0.280	-0.210	-0.255
N18-C19	1.458	1.476	1.470	1.475	1.475						
O31-H32	3.606	2.420	2.655	1.565	0.963						
O31-H33	3.310	2.601	2.817	2.814	2.204						<u> </u>

ekil 4.15 Reaktant, geçi durumları, ara durum ve ürünlerin optimize edilmi yapıları

satin-3-(N-(2-klorofenil)) tiysemikarbazon ve satin-3-N-(2-florofenil) tiysemikarbazon ligandlarının B3LYP metodu ve 6-31G(d,p), 6-311G(d,p) temel setleri ile heaplanan Fukii fonksiyonları Çizelge 4.27 de verilmi tir. HOMO için S (kükürt) atomunun katkısı sırasıyla %44.94, %44.33, %49.16, %49.15 dir. Di er katkılar tiyosemikarbazon hakasına ait N (azot) atomlarından ve fenil halkasından gelmektedir.

Çizelge 4.27 satin-3-(N-(2-klorofenil)) tiysemikarbazon ve satin-3-(N-(2-florofenil)) tiysemikarbazon ligandlarının, B3LYP metodu 6-31G(d,p) ve 6-311G(d,p) temel setleri ile hesaplanan fukii fonksiyonları

Atom	номо		Atom	номо	
I2CPTH ₂	6-31G(d,p)	6-311G(d,p)	I2FPTH ₂	6-31G(d,p)	6-311G(d,p)
C11	2.47	2.62	C2		
C5	5.66	5.82	C3	3.33	3.33
C10	4.66	4.84	C4	2.66	2.66
C11			C5	1.28	1.28
N6	1.41	1.55			
C15	4.75	4.95	C8	2.62	2.62
C17	1.80	1.80	C9	1.18	1.17
C12	1.01	1.02	C11		
C18	5.97	6.06	C13	3.93	3.93
O9	3.96	4.01	O15	2.36	2.36
N21	2.31	2.41	N16	1.20	1.20
N20	8.84	9.08	N17	5.03	5.02
C16	1.18	1.17	C18	1.16	1.16
S8	44.94	44.33	S20	49.16	49.15
N19	4.02	3.81	N21	8.35	8.36
C13			C22	3.02	3.03
C3	1.73	1.61	C24	3.77	3.78
C14			C25	1.68	1.69
C2	2.02	1.88	C30	1.95	1.95
	LUMO			LUMO	
C5	6.42	6.51	C3	6.46	6.47
C10	3.94	3.96	C4	3.94	3.94
N6	1.40	1.36	N7	1.41	1.41
C15	3.06	3.12	C8	3.15	3.15
C17	4.98	5.05	C9	4.99	5.00
C12	9.92	9.78	C11	9.99	9.99
C18	13.50	13.62	C13	13.41	13.42
09	8.66	8.51	O15	8.71	8.70
N21	24.46	24.22	N16	24.82	24.82
N20	2.78	3.67	N17	4.10	4.09
C16	6.24	6.40	C18	5.84	5.84
S7	8.64	8.68	S20	8.34	8.33
N19	1.76	1.78	N21	1.81	1.81

ekil 4.16 B3LYP metodu kullanılarak isatin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünün HOMO ekli

ekil 4.17 B3LYP metodu kullanılarak isatin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünün LUMO ekli

4.3 satin Tiyosemikarbazon Türevlerinin Metal Kompleksleri

4.3.1 Teorik çalı ma

B3LYP metodu ile ve 6-311+G(d,p) temel seti kullanılarak optimize edilen, Zn[(I2FPTH)₂], Zn[(I2CPTH)₂], Ni[(I2FPTH)₂], Ni[(I2CPTH)₂] komplekslerin üç boyutlu yapısı ekil 4.18 de verilmi tir.

B3LYP, metodu ile ve 6-311G(d,p), 6-311+G(d,p) temel seti kullanılarak, Zn[(I2FPTH)₂], Zn[(I2CPTH)₂], Ni[(I2FPTH)₂], Ni[(I2CPTH)₂] kompleksleri için hesaplanan geometrik parametreler ve Mulliken Yükleri Çizelge 4.28-4.30 de verildi. Temel setlere göre ba uzunluklarında, ba açılarında, Mulliken ve NBO yüklerinde kayda de er bir fark yoktur. Bundan dolayı geometrik parametrelerin ve yüklerin hesaplanmasında iki temel setten herhangi biri tercih edilebilir.

ekil 4.18 B3LYP/6-311+G(d,p) metodu kullanılarak optimize edilen Zn[(I2FPTH)₂], Zn[(I2CPTH)₂], Ni[(I2FPTH)₂], Ni[(I2CPTH)₂] komplekslerinin yapısı

Çizelge 4.28 Zn[(I2FPTH)₂], Zn[(I2CPTH)₂], Ni[(I2FPTH)₂], Ni[(I2CPTH)₂] komplekslerine ait B3LYP metodu ile hesaplanan ba uzunlukları (Å)

Atom	Zn[(I2FPTH) ₂]		Ni[(I2FPTH) ₂]		Zn[(I2CPTH) ₂]		Ni[(I2CPTH) ₂]	
	6-311 C(d n)	6-311+ C(d p)	6-311 C(d n)	6-311+ C(d n)	6-311 C(d n)	6-311+ C(d p)	6-311 C(d p)	6-311+ C(d n)
C28-C30	1.392	1.392	1.392	1.393	1.402	1.402	1.403	1.403
C30-C26	1.395	1.396	1.395	1.395	1.391	1.391	1.390	1.390
C26-C24	1.378	1.378	1.379	1.379	1.391	1.392	1.392	1.393
C24-F27	1.363	1.366	1.360	1.363	1.392	1.393	1.391	1.392
C24-C22	1.403	1.402	1.402	1.401	1.386	1.387	1.387	1.388
C22-N21	1.405	1.406	1.401	1.402	1.769	1.768	1.765	1.764
N21-C18	1.360	1.364	1.363	1.367	1.410	1.410	1.408	1.408
C18-S20	1.756	1.759	1.744	1.741	1.404	1.405	1.400	1.401
C18-N17	1.326	1.322	1.323	1.324	1.363	1.365	1.366	1.368
N17-N16	1.347	1.347	1.357	1.355	1.756	1.759	1.743	1.741
N16-C13	1.310	1.310	1.304	1.306	1.324	1.321	1.322	1.323
C13-C11	1.525	1.458	1.505	1.505	1.348	1.347	1.358	1.356
C11-O15	1.210	1.212	1.212	1.213	1.309	1.309	1.304	1.305
C11-N7	1.386	1.385	1.385	1.386	1.526	1.527	1.506	1.505
N7-C4	1.392	1.393	1.396	1.397	1.210	1.212	1.211	1.213
C4-C2	1.386	1.386	1.385	1.385	1.386	1.385	1.385	1.386
C2-C3	1.398	1.398	1.399	1.399	1.392	1.394	1.396	1.397
C3-C5	1.396	1.396	1.395	1.396	1.386	1.385	1.384	1.385
C5-C9	1.393	1.395	1.396	1.396	1.398	1.398	1.399	1.399
C9-C8	1.393	1.396	1.395	1.396	1.396	1.396	1.395	1.396
C8-C4	1.413	1.413	1.417	1.416	1.393	1.395	1.395	1.396
C13-C8	1.455	1.458	1.450	1.452	1.393	1.396	1.395	1.396
C22-C25	1.400	1.400	1.400	1.401	1.413	1.413	1.417	1.416
C25-C28	1.394	1.394	1.393	1.393	1.455	1.458	1.450	1.452
S20Zn21	2.322	2.302	1.899	1.912	2.322	2.301	2.257	2.270
N17Ni41			2.258	2.271			1.899	1.912

Çizelge 4.29 Zn[(I2FPTH)₂], Zn[(I2CPTH)₂], Ni[(I2FPTH)₂], Ni[(I2CPTH)₂] komplekslerine ait B3LYP metodu ile hesaplanan ba açıları

Atom No	Zn[(I2FPTH) ₂]		Ni[(I2FPTH) ₂]		Zn[(I2CPTH) ₂]		Ni[(I2CPTH) ₂]	
	6-311	6-311+	6-311	6-311+	6-311	6-311+	6-311	6-311+
	G(d.p)	G(d.p)	G(d.p)	G(d.p)	G(d.p)	G(d.p)	G(d.p)	G(d.p)
C1-C3-F32	119	119	120	119	118	118	118	118
F32-C3-C13	118	118	117	117	120	120	120	120
C3-C13-N19	116	116	117	117	118	118	119	119
C14-C13-N19	127	126	126	126	125	124	124	124
C13-C3-C1	123	123	123	123	122	122	122	122
C3-C1-C2	119	118	119	119	120	120	120	120
C1-C2-C8	120	120	119	119	119	119	119	119
C2-C8-C14	121	121	121	121	121	121	121	121
C8-C14-C13	120	120	120	120	120	120	121	121
C14-C13-C3	118	118	117	117	120	118	117	118
C13-N19-C16	132	132	131	131	133	133	131	131
N19-C16-S7	114	114	117	117	114	113	116	116
N19-C16-N20	118	118	120	119	118	118	120	120
S7-C16-N20	128	128	124	124	128	128	123	124
C16-N20-N21	117	117	112	112	117	118	112	112
N20-N21-C18	117	117	117	117	117	117	117	117
N21-C18-C12	126	126	120	120	126	126	120	120
N21-C18-C15	127	128	132	132	127	128	132	132
C18-C12-O9	131	131	129	129	131	131	129	129
O9-C12-N6	124	125	127	126	124	125	127	126
N6-C10-C4	129	129	129	129	129	129	129	129
C17-C15-C18	134	134	134	134	134	134	134	134
C15-C18-C12	106	106	107	107	106	106	107	107
C18-C12-N6	104	105	105	105	104	105	105	105
C12-N6-C10	113	112	112	112	113	112	112	112
N6-C10-C15	109	109	109	109	109	109	109	109
C10-C15-C17	119	119	120	120	119	119	120	120
C15-C17-C11	120	119	119	119	120	119	119	119
C17-C11-C5	120	121	121	121	120	121	121	121
C11-C5-C4	121	121	121	121	121	121	121	121
C5-C4-C10	118	118	118	118	118	118	118	118
C4-C10-C15	122	122	122	122	122	122	129	129
N7-N6-Ni41	92	93	119	120	92	93	119	120
C4-N6-Ni41			123	123			124	123
N6-Ni41-S24			84	84			84	84
Ni41-S24-C8			91	91			91	91

Atom	Zn[(I2FPTH) ₂]		Ni[(I2FPTH) ₂]		Zn[(I2CPTH) ₂]		Ni[(I2CPTH) ₂]	
	6-311	6-311+	6-311	6-311+	6-311	6-311+	6-311	6-311+
	G(d.p)	G(d.p)	G(d.p)	G(d.p)	G(d.p)	G(d.p)	G(d.p)	G(d.p)
~ ~ ~ ~			N	Aulliken yü	ikler			
C18	0.204	0.244	0.226	0.053	0.206	-0.533	0.226	0.071
C12	0.429	0.276	0.379	0.488	0.429	-0.498	0.379	0.451
N6	-0.255	0.093	-0.252	0.126	-0.255	-0.456	-0.251	0.124
C10	0.253	-0.455	0.239	-0.503	0.253	0.117	0.238	-0.531
C4	0.050	-0.780	0.046	-0.871	0.051	-0.837	0.046	-0.856
C5	0.022	-0.171	0.019	-0.068	0.023	-0.177	0.019	-0.065
C11	-0.030	-0.389	-0.016	-0.339	-0.029	-0.382	-0.016	-0.340
C17	0.047	0.144	0.118	-0.375	0.049	0.117	0.120	-0.336
C15	-0.157	1.045	-0.131	1.062	-0.158	1.109	-0.131	1.059
09	-0.315	-0.297	-0.322	-0.213	-0.314	-0.302	-0.323	-0.211
N21	-0.532	0.359	-0.486	0.068	-0.533	0.385	-0.486	0.102
N20	-0.220	-0.429	-0.262	0.363	-0.220	-0.456	-0.262	0.360
C16	0.165	-0.418	0.198	-0.353	0.162	-0.533	0.195	-0.420
N19	-0.126	0.444	-0.162	0.343	-0.116	0.634	-0.158	0.495
S 7	-0.422	-0.050	-0.301	-0.169	-0.422	-0.015	-0.305	-0.216
C13	0.109	0.215	0.135	0.340	0.288	0.117	0.316	-0.369
C14	0.125	0.203	0.068	0.614	0.123	0.117	0.063	0.312
C8	-0.022	-0.061	-0.004	-0.128	-0.016	-0.089	0.004	-0.022
C2	0.017	0.026	0.012	-0.027	0.019	-0.185	0.013	-0.248
C1	-0.001	0.426	0.006	0.380	0.129	-0.025	0.140	-0.099
C3	0.219	-0.506	0.215	-0.992	-0.277	-0.139	-0.283	0.088
C133	-0.248	-0.187	-0.244	-0.178	-0.079	0.273	-0.071	0.299
				NBO yük	ler			
C18	0.160	0.164	0.148	0.148	0.161	0.166	0.150	0.117
C12	0.661	0.654	0.663	0.663	0.661	0.651	0.663	0.643
N6	-0.606	-0.612	-0.608	-0.608	-0.606	-0.612	-0.608	-0.616
C10	0.205	0.192	0.210	0.210	0.205	0.193	0.210	0.091
C4	-0.250	-0.277	-0.253	-0.253	-0.250	-0.277	-0.253	-0.253
C5	-0.156	-0.357	-0.157	-0.157	-0.156	-0.355	-0.156	-0.186
C11	-0.218	-0.649	-0.227	-0.227	-0.218	-0.648	-0.227	-0.871
C17	-0.160	-0.300	-0.146	-0.146	-0.160	-0.300	-0.145	0.377
C15	-0.131	-0.198	-0.134	-0.134	-0.131	-0.200	-0.135	-0.505
09	-0.570	-0.571	-0.575	-0.575	-0.570	-0.570	-0.574	-0.549
N21	-0.412	-0.314	-0.296	-0.296	-0.412	-0.313	-0.297	-0.192
N20	-0.389	-0.378	-0.420	-0.420	-0.388	-0.379	-0.420	-0.410
C16	0.319	0.309	0.316	0.316	0.321	0.312	0.317	0.299
N19	-0.555	-0.566	-0.569	-0.569	-0.565	-0.573	-0.575	-0.587
S 7	-0.446	-0.263	-0.266	-0.266	-0.442	-0.262	-0.262	-0.054
C13	0.094	0.096	0.104	0.104	0.127	0.129	0.138	0.129
C14	-0.215	-0.218	-0.223	-0.223	-0.213	-0.218	-0.220	-0.315
C8	-0.196	-0.197	-0.198	-0.198	-0.183	-0.185	-0.185	-0.244

Çizelge 4.30 Zn[(I2FPTH)₂], Zn[(I2CPTH)₂], Ni[(I2FPTH)₂], Ni[(I2CPTH)₂] komplekslerine ait B3LYP metodu ile hesaplanan Mulliken yükleri ve NBO yükleri

4.3.2 Komplekslerde IR çalı ması

B3LYP metodu 6-311G(d,p) temel setinde Zn[(I2CPTH)₂], Ni[(I2CPTH)₂], kompleksinin infrared spektrumunda gözlenen bandların hesaplanan temel titre im dalga sayıları ve bu dalga sayılarının hangi titre im türüne ait oldu u, iddetleri ile birlikte 4000-1200 cm⁻¹ bölgesi için Çizelge 4.31 ve Çizelge 4.32 de ölçeklendirilmemi ekliyle verildi.

satin grubundaki v(N6-H25) I2CPTH₂ ligandında 3249 cm⁻¹ de gözlenen gerilme titre imleri, Zn[(I2CPTH)₂] kompleksinde 3391 cm⁻¹, Ni[(I2CPTH)₂] kompleksinde 3387cm⁻¹ de gözlendi. B3LYP/6-311 teorik seviyesinde yapılan hesaplamalarda bu titre im 3648 cm⁻¹ ve 3652 cm⁻¹ de i aretlendi. Tiyosemikarbazon grubundaki v(N19-H29) I2CPTH₂ ligandında 3224cm⁻¹ de gözlenen gerilme titre imi, Zn[(I2CPTH)₂] kompleksinde 3206 cm⁻¹, Ni[(I2CPTH)₂] kompleksinde 3172cm⁻¹ de gözlendi. B3LYP/6-311 teorik seviyesinde yapılan hesaplamalarda bu titre imler sırasıyla cm⁻¹, 3570 cm⁻¹ ve 3204 cm⁻¹ de i aretlendi. I2CPTH₂ ligandında 3173 cm⁻¹ de i aretlenen v(N20-H30) gerilme titre iminin $Zn[(I2CPTH)_2]$ ve $Ni[(I2CPTH)_2]$ komplekslerinde gözlenememesi, kompleks olu umu esnasında deprotonlanmanın oldu unu göstermektedir.

I2CPTH₂ ligandında deneysel olarak, i aretlenen 1699 cm⁻¹ de i aretlenen (C=O) bandı Zn[(I2CPTH)₂] kompleksinde, 1694 cm⁻¹ de, Ni[(I2CPTH)₂] 1674 cm⁻¹, i aretlendi. Zn komplekslerinde v(C=O) gerilme bandında kayda de er bir de i im sözkonusu de ildir. Bu da Zn[(I2CPTH)₂] komplekslerinde ba lanmanın karbonil oksijeni üzerinden olmadı ını göstermektedir. Ni[(I2CPTH)₂] kompleksinde 25cm⁻¹ lik kayma gözlenmekte bu da bu komplekste ba lanmanın indol halkasına ba lı oksijen atomu üzerinden oldu unu göstermektedir.
6-311G(d,p)							
Deneysel	Frek	ans	aretlemeler				
	Titre im	iddet					
3391	3648	69.70	(N4H41), (N15H35)				
	3648	72.63	(N4H41), (N15H35)				
3206	3570	192.43	(N8H9), (N19H22)				
	3569	218.18	(N8H9), (N19H22)				
	3239	37.36	(C52H55), (C43H46)				
	3239	137.84	(C52H55), (C43H46)				
2162	3204	20.06	(CH)halkaA,C				
	3199	22.02	(CH)isatinB,D				
	3191	9.33	(CH)halkaA,C				
	3191	15.50	(CH)halkaA,C				
	3187	13.96	(CH)isatinB,D				
	3187	9.63	(CH)isatinB,D				
1694	1794	14.61	(C23O27), (N4H41), (C14O26) (N15H35)				
	1794	577.42	(C23O27), (N4H41), (C14O26) (N15H35)				
	1662	202.51	(N4H41), (N15H35), (CC)isatinB,D				
	1662	22.60	(N4H41), (N15H35), (CC)isatinB,D				
1671	1635	80.62	(N8H9), (N19H22), (CC)halkaA,C				
	1631	20.24	(CC)isatinB,D (CH)isatinB,D				
1614	1621	111.61	(N8H9), (N19H22), (CC)halkaA,C				
1590	1595	75.11	(C3N5), (N6C7), (C13N16), (C18N17)				
	1594	14.96	(C3N5), (N6C7), (C13N16), (C18N17)				
	1572	755.76	(N8H9), (N19H22)				
1571	1516	10.45	(CH)isatinB,D				
	1501	10.96	(CH)isatinB,D				
1515	1501	256.13	(CH)isatinB,D				
	1494	17.65	(CH)halkaA,C, (N8H9), (N19H22)				
1484	1476	47.48	(CH)halkaA,C				
1456	1476	41.91	(CH)halkaA,C				
	1442	1351.4	(CN)tiyo halkası, (CH)halkaA,C				
1440	1440	2240.3	(CN)tiyo halkası, (CH)halkaA,C				
	1420	177.15	(N4H41), (N15H35)				
	1360	125.32	(CH)isatinB,D				
1337	1358	110.53	(CH)isatinB,D				
	1343	10.58	(N8H9), (N19H22), (CH)halkaA,C				
	1342	290.25	(CH)halkaA,C, (CC)halkaA,C				
	1312	16.07	(CC)isatinB,D, (C28H37), (C10H34)				
1307	1312	17.96	(CC)isatinB,D, (C28H37), (C10H34)				
	1295	103.58	(CH)halkaA,C, (N8H9), (N19H22)				
1280	1294	91.42	(CH)halkaA,C, (N8H9), (N19H22)				
	1265	180.75	(N4H41), (N15H35)				
1234	1265	138.32	(N4H41), (N15H35)				

Çizelge 4.31 Zn[(I2CPTH)₂] kompleksine ait deneysel ve B3LYP/6-311G(d,p) metodu ile hesaplanan teorik IR de erleri

	1198	206.85	(CH)halkaB,D
1167	1196	240.47	(CH)halkaB,D
	1189	7.75	(CH)halkaA,C
1157	1180	30.39	(CH)halkaB,D
	1169	262.46	(N4H41), (N15H35), (CH)halkaA,C
	1168	473.74	(N4H41), (N15H35), (CH)halkaA,C
1138	1152	7.77	(CH)halkaA,C
	1152	23.91	(CH)halkaA,C
	1126	107.14	(CH)halkaB,D
1090	1125	46.96	(CH)halkaB,D
	1070	13.97	(CH)halkaA,C
	1049	11.35	(CH)halkaB,D
	1045	77.33	(C44Cl64), (C53Cl65)
	1045	42.64	(C44Cl64), (C53Cl65)
	1002	13.04	(CH)isatinB,D

Çizelge 4.31 (Devam) $Zn[(I2CPTH)_2]$ kompleksine ait deneysel ve B3LYP/6-311G(d,p) metodu ile hesaplanan teorik IR de erleri

Çizelge 4.32 Ni[$(I2CPTH)_2$] kompleksine ait deneysel ve B3LYP/6-311G(d,p) metodu ile hesaplanan deneysel ve teorik IR de erleri

	6-311 G(d,p)		
Deneysel	Fre	kans	aretlemeler
	Titre im	iddet	
3387	3652	106.74	(N3H25), (N13H30)
	3652	49.48	(N3H25), (N13H30)
3172	3587	63.05	(N9H10), (N20H22)
	3586	167.35	(N9H10), (N20H22)
	3204	6.71	(CH)halkaA,C
2162	3204	10.94	(CH)halkaA,C
	3193	50.50	(CH)halkaB,D
	3190	13.90	(CH)halkaB,D
	3183	14.52	(CH)halkaB,D
	3183	12.07	(CH)halkaB,D
1674	1802	24.19	(O1C2), (O11C12), (N3H25), (N13H30)
	1793	600.46	(O1C2), (O11C12), (N3H25), (N13H30)
1614	1658	257.19	(CH)isatinB,D, (CC)isatinB,D
1592	1637	81.19	(CH)isatinA,C, (CC)isatinA,C, (N9H10), (N20H22)
	1635	159.17	(CH)isatinA,C, (CC)isatinA,C, (N9H10), (N20H22)
	1621	28.45	(CH)isatinA,C, (CC)isatinA,C, (N9H10), (N20H22)
	1620	90.49	(CH)isatinA,C, (CC)isatinA,C, (N9H10), (N20H22)
1519	1568	236.69	(N9H10), (N20H22)
	1564	709.391	(N9H10), (N20H22)
	1516	114.68	(CH)isatinB,D
	1552	110.43	(CH)isatinB,D
1456	1499	113.26	(CH)isatinA,C

	1499	290.55	(CH)isatinA,C
	1490	90.47	(CH)isatinB,D
	1490	116.97	(CH)isatinB,D
	1487	184.09	(CH)isatinA,C
	1486	240.08	(CH)isatinA,C
1440	1461	814.57	(CH)isatinA,C, (C8N9), (C19N20)
	1459	807.88	(CH)isatinA,C, (C8N9), (C19N20)
	1414	71.25	(CH)isatinB,D, (N3H25), (N13H30)
1397	1414	82.16	(CH)isatinB,D, (N3H25), (N13H30)
	1355	312.53	(CH)isatinB,D
1338	1355	218.61	(CH)isatinB,D
	1340	35.30	(CH)isatinA,C, (N9H10), (N20H22)
	1339	372.90	(CH)isatinA,C, (N9H10), (N20H22)
1310	1315	12.56	(CH)isatinA,C
	1310	40.96	(CH)isatinB,D, (N3H25), (N13H30)
1277	1309	26.16	(CH)isatinB,D, (N3H25), (N13H30)
	1282	42.69	(CH)halka komb., (NH)halka komb.
	1264	36.00	(CH)halka komb., (NH)halka komb.
1233	1263	173.96	(CH)halka komb., (NH)halka komb.
	1239	8.7	(N3H25), (N13H30)
	1239	12.78	(N3H25), (N13H30)
	1220	97.66	(CH)isatinB,D, (N3H25), (N13H30)
	1218	153.61	(CH)isatinB,D, (N3H25), (N13H30)
1157	1200	126.75	(CH)isatinB,D, (C2N3), (C12N13)
	1196	762.11	(CH)isatinB,D, (C2N3), (C12N13)
	1180	56.57	(CH)isatinB,D
1144	1180	48.31	(CH)isatinB,D
	1155	116.68	(CH)isatinA,C, (N6N7), (N17N18)
	1155	115.02	(CH)isatinA,C, (N6N7), (N17N18)
	1141	225.02	(CH)isatinA,C
		1	

Çizelge 4.32 (Devam) Ni[(I2CPTH)₂] kompleksine ait deneysel ve B3LYP/6-311G(d,p) metodu ile hesaplanan deneysel ve teorik IR de erleri

ekil 4.19 Zn[(I2CPTH)₂] kompleksine ait deneysel FT-IR spektrumu

ekil 4.20 Ni[(I2CPTH)₂] kompleksine ait deneysel FT-IR spektrumu

4.3.3 Komplekslerde NMR çalı ması

Zn[(I	2FPTH)2]			Zn[(I2CPTH) ₂]					
Ato m	Deneysel	6-311 G(d,p)	6-311+ G(d,p)	Atom	Deneysel	6-311 G(d,p)	6-311+ G(d,p)		
H14	7,70	7,73	8,60	H28	7,58	7,79	8,60		
H1	7,10	6,76	6,93	H23	6,97	6,77	6,94		
H10	7,36	7,21	7,25	H31	7,35	7,23	7,26		
H6	7,00	6,60	6,4	H24	6,95	6,60	6,66		
H29	8,00	10,35	10,54	H27	7,59	10,42	10,50		
H31	7,44	7,23	7,22	H22	7,42	7,45	7,48		
H32	7,70	7,53	7,58	H26	7,57	7,62	7,70		
H33	7,24	7,17	7,17	H32	7,30	7,11	7,22		
H23	11,03	7,95	7,87	H29	10,94	8,36	8,42		
H19				H30					
H12	10,67	6,16	6,28	H25	10,41	6,16	6,28		

Çizelge 4.33 Çinko(Zn) komplekslerine ait deneysel ve teorik ¹H-NMR de erleri

Çizelge 4.34 Çinko(Zn) komplekslerine ait deneysel ve teorik ¹³C-NMR de erleri

	Zn[(I2F	PTH)2]		Zn[(I2CPTH) ₂]				
Atom	Deneysel	6-311 G(d,p)	6-311+ G(d,p)	Atom	Deneysel	6-311 G(d,p)	6-311+ G(d,p)	
C9	123	130	131	C17	127,8	130	132	
C5	116	126	127	C11	122,7	126	127	
C3	126	138	138	C5	131,9	138	139	
C2	112	113	113	C4	111,6	113	113	
C4	132	147	148	C10	142,6	148	148	
C8	116	125	126	C15	117,3	125	126	
C13	132	149	151	C18	167	149	152	
C11	167	162	164	C12	171	162	164	
C18	178	183	184	C16	174	183	185	
C22	126	134	134	C13	137,0	142	143	
C25	136	161	162	C3	130,5	135	136	
C24	125	130	132	C14	127,8	130	132	
C26	115	118	119	C1	128,4	134	134	
C28	125	131	132	C8	130,1	134	135	
C30	117	129	129	C2	126,1	129	129	

4.3.4 Komplekslerde UV çalı ması

Zn[(I2FPTH)₂] ve Zn[(I2CPTH)₂] için B3LYP metodu 6-311G(d,p), 6-311+G(d,p) temel setleri ile optimize edilen UV-visible spektrum de erleri (nm) Çizelge 4.35 ve Çizelge 4.36 da verilmi tir. Moleküllerin TDB3LYP bant bo lu u üzerindeki tüm geçi leri ve salınım kuvvetlerinin 0,04 üzerindeki tüm de erleri Çizelge 4.35 ve Çizelge 4.36 ya dahil edilmi tir. Komplekslere ait B3LYP metoduyla olu turulan teorik UV spektrumu ekil 4.21 de verilmi tir. Elde edilen hesaplama verilerine bakıldı ında komplekslere hesaplanan deneysel ve teorik UV de erlerinin birbiriyle uyumlu oldu u görülebilir.

Çizelge 4.35 Zn[(I2FPTH)₂] molekülü için, TDB3LYP metodu 6-311G(d,p) , 6-311G+(d,p) ve 6-311++G(d,p) temel setleri kullanılarak hesaplanan UV-visible spektrum de erleri(nm), ve bu seviyelerde uyarılma enerjileri, (eV) ve salınım kuvvetleri (f)

Zn[(12FPTH) ₂]						Zn[(I2CPTH) ₂]					
Deney.	(6-311G(d,p)	6-311+G(d,p)		Deney.	6	6-311G(d,p)		6-311+G(d,p)		
435	474	2.61(0.19) E3	479	2.59(0.25) E3	431	470	2.64(0.195) E3	481	2.58(0.25)E3		
			473	2.62(0.11) E4				474	2.62(0.10) E4		
	469	2.64(0.08) E4	464	2.67(0.08) E5		466	2.66(0.08) E4	466	2.66(0.09)E5		
	462	2.68(0.24) E5	463	267(0.08) E6		462	2.69(0.23) E5	455	2.72(0.08)E6		
	461	2.69(0.12) E6				459	2.70(0.15) E6				
	449	2.76(0.12) E7	443	2.80(0.16) E7		448	2.76(0.14) E7	445	2.78(0.15)E7		
	444	2.80(0.04) E8									
	402	3.08(0.13) E11	405	3.06(0.18)E11		402	3.08(0.14) E11	406	3.05(0.18) E11		
	402	3.08(0.21) E12	403	3.08(0.12) E12		402	3.08(0.22) E12	404	3.07(0.13) E12		
252	264	4.69(0.32) E32	267	4.64(0.30) E32	254	264	4.70(0.35) E32	267	4.64(0.340) E32		
						263	4.72(0.05)E34	260	4.76(0.06) E37		
	251	4.94(0.14) E40	254	4.89(0.12) E39		255	4.86(0.06) E37	257	4.83(0.04) E39		
			252	4.93(0.04) E41		249	4.94(0.18) E42	254	4.88(0.20) E42		
			252	4.93(0.05)E42							
	248	4.99(0.15) E43	250	4.96(0.13) E43		251	4.98(0.08) E43	251	4.95(0.13) E45		
			248	5.00(0.27) E46		247	5.02(0.22) E45	245	4.98(0.08) E47		

ekil 4.21 satin-3-(N-(2-klorofenil)) tiysemikarbazon molekülünün Zn ve Ni komplekslerinde teorik UV spektrumu

Çizelge 4.36 Ni[(I2FPTH)₂], Ni[(I2CPTH)₂] molekülü için, TDB3LYP metodu 6-311G(d,p), ve 6-311G+(d,p) temel setleri kullanılarak hesaplanan UV-visible spektrum de erleri(nm) ile bu seviyelerde uyarılma enerjileri (eV) ve salınım kuvvetleri (f)

		Ni[(I2FPTH	I) ₂]		Ni[(I2CPTH) ₂]						
Den.	В	3LYP/6-311	B	3LYP/6-311+	Den.	B	3LYP/6-311	B3	3LYP/6-311+		
		G(d,p)		G(d,p)			G(d,p)		G(d,p)		
851	668	1.86(0.08) E3	664	608	960	665	1.86(0.08) E3	662	1.87(0.06) E3		
			628	1.97(0.06) E4				627	1.98(0.05) E4		
403	455	2.72(0.05) E9	445	2.78(0.09) E10	442	455	2.73(0.06) E9	468	2.65(0.09) E9		
	442	2.80(0.05)E10	436	2.84(0.12) E12		442	2.80(0.07) E10	446	2.78(0.10) E10		
	433	2.86(0.17)E11	428-	2.90(0.11) E14		431	2.86(0.14)E11	436-	2.85(0.11)E12		
	423	2.93(0.09)E13	410	3.02(0.05)E16		423	2.93(0.09)E13	411-	2.90(0.05) E14		
	10.5						. ,				
	406	3.05(0.05)E15						409	3.03(0.04) E16		
	397	3.12(0.06) E16			376	396	3.13(0.08) E16	394-	3.14(0.18)E18		
	394	3.14(0.08)E17									
	392	3.16(0.08)E18	396	3.13(0.16) E18		393	3.13(0.17) E17	391	3.14(0.07) E19		
	368	3.36(0.22)E23	395	3.13(0.07) E19		371	3.42(0.05) E22	364	3.40(0.09) E23		
	349	3.55(0.04) E26	364	3.41(0.08) E23		369	3.36(0.17) E23	359	3.45(0.11) E25		
	313	3.96(0.04)E33	358	3.45(0.11) E25		349	3.55(0.04) E26	325	3.81(0.09) E31		
	310	3.99(0.06)E35	325	3.81(0.09) E31		311	3.98(0.07) E35	308-	4.02(0.06) E37		
	306	4.05(0.10)E37	306	4.04(0.07)E37		307	4.04(0.12)E37	302	4.10(0.05) E39		
	283	4.38(0.06) E47	300	4.12(0.05) E39				300	4.13(0.07) E41		
	282	4.39(0.10) E48	298	4.16(0.05) E41		283	4.38(0.11) E49	294-	4.22(0.05) E46		
	276	4.49(0.04) E52	292	4.25(0.05) E45	256	276	4.480.119)E55	285	4.34(0.08) E51		
	274	4.52(0.09) E55	286	4.39(0.06) E49		273	4.54(0.04) E57	282	4.38(0.04) E54		
	271	4.56(0.05)E57	276	4.48(0.15) E58		273	4.55(0.08) E58	277	4.47(0.12)E56		
256	263-	4.38(0.13)E62	<u></u>					275	4.52(0.04) E59		
	262	4.72(0.05)E63	273	4.54(0.04) E60		266	4.66(0.04) E63	268	4.62(0.04) E63		
	254	4.87(0.04) E69	266	4.66(0.11)E64		263	4.71(0.12)E64	266	4.66(0.04) E66		
	252	4.91(0.20) E71	259	4.78(0.05) E69		262	4.73(0.05) E65	265	4.68(0.06) E67		
	252	4.92(0.06) E73	259	4.79(0.25) E70		252	4.91(0.04) E74	264	4.69(0.13)E68		
	249	4.98(0.06)E75	258	4.81(0.10) E71		252	4.92(0.21) E75	258	4.80(0.26) E74		

BÖLÜM V

SONUÇ

satin-3-N-(2-florofenil tiysemikarbazon), satin-3-N-(2-klororofenil tiysemikarbazon ligandları ve bu ligandların çinko (II) ve Ni (II) kompleksleri sentezlendi.

Sentezlenen ligandların ve çinko (II) ve Ni (II) kompleksleri elementel analiz, UV, IR, NMR çalı malarıyla aydınlatıldı.

satin-3-N-(2-florofenil tiysemikarbazon), satin-3-N-(2-klororofenil tiysemikarbazon ligandlarının moleküler parametreleri ab initio (RHF) ve DFT metodları (B3LYP) ile 3-21G, 3-21G*, 6-31G(d,p), 6-311G(d,p), 6-311++g(d,p), 6-311++g(2d,2p) temel setleri kullanılarak incelendi.

I2FPTH₂, I2CPTH₂ ligandlarının mulliken atomik yükleri ile NBO yükleri, geometrik parametreleri (ba uzunlukları ve be açıları), elektronik parametreleri RHF ve B3LYP metodu 3-21G(d,p), $3-21G^*(d,p)$, 6-31G(d,p), 6-311G(d,p), 6-311G+(d,p), 6-311++G(d,p), 6-311++G(2d,2p) seviyelerinde hesaplandı. Bu sonuçlara göre B3LYP metodu ile hesaplanan ba uzunluklarının genelde Hartree-Fock (RHF) metodu kullanılarak hesaplanan ba uzunluklarına göre daha uzun oldu u görüldü.

satin-3-N-(2-florofenil)) tiysemikarbazon (I2FPTH₂) ile isatin-3-(N-(2-klororofenil)) tiysemikarbazon (I2CPTH₂) ligandlarının reaksiyon mekanizması yarı deneysel metod olan AM-1 ile incelendi.

I2FPTH₂, I2CPTH₂ ligandları RHF ve DFT metodları (B3LYP) ile 3-21G(d,p), 3-21G*(d,p), 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) ve 6-311++G(2d,2p) temel setleri ile optimize edilip, uyarılmı durumları zamana ba lı (time-dependent) TDB3LYP ve TDRHF seviyelerinde UV-Visible spektrum de erleri hesaplandı.Zn(II) ve Ni(II) komplekslerinin UV-Visible spektrum de erleri ise TDB3LYP/6-311G(d,p) ve, TDB3LYP/6-311+G(d,p) seviyelerinde incelendi. Ligandların Fukii fonksiyonları incelendi.

KAYNAKLAR

[1] Ferrari, M.B., Pelizzi, C., Pelosi, G., "Preparation, characterization and x-ray structures of 1-methylisatin-3-thiosemicarbazone copper, nickel and cobalt complexes", Polyhedron, 21, 2593-2599, (2002).

[2] Akinchan, N.T., Drozdewski, P.M., Holzer, W., "Synthesis and spectroscopic studies on zinc(II) and mercury(II) complexes of isatin-3-thiosemicarbazone", J.Mol.Struc, 641, 17-22, (2002).

[3] Rodriguez-Arguelles, M.C., and et all.," Transition-metal complexes of isatin-3thiosemicarbazone,x-ray crystal structure of two nickel complexes", J. norg.Chem, 73, 7-15, (1999).

[4] Rai, A.,Sengupta, S.K.,Pandey, Om.P.''Lanthanium(III) and prasedmium(III) complexes with isatin-thiosemicarbazones'', Spectrochimica Acta Part A 61, 2761-2765, (2005).

[5] Labisbal E., and et all.,''Spectral and structural studies of metal complexes of satin-3-hexamethyleniminylthiosemicarbazone prepared electrochemically'', Polyhedron, 19, 1255-1262, (2000).

[6] Cristurean, E., Parneis, C., "Controlled synthesis II.reaction of Sn(IV) and Zr(IV) with isatin-3-thiosemicarbazones and N-methylisatin-3-thiosemicarbazone"
 Chimie. Anul XIII, I-II, 155-159, (2004).

[7] Mazumder, U.K., et all.," Synthesis, anticancer and antibacterial activity of some novel mononuclear Ru(II) complexes", Chem.Pharm.Bull, 52(2), 178-185, (2004).

[8] Konstantinovic, S.S., and et all., 'Spectrophotometric study of Co(II), Ni(II), Cu(II), Zn(II), Pd(II) and Hg(II) complexes with isatin-3-thiosemicarbazone'', J.Serb.Chem.Soc, 72(10), 975-981, (2007).

[9] Müjgan Özkütük, Cemil Ö retir, Taner Arslan, Fatma Kandemirli, "Acid Dissociation Constants of Some Novel Isatin Thiosemicarbazone Derivatives " J. Chem. Eng. Data 2010, 55, 2714–2718

[10] Fatma Kandemirli et al., 'Quantum Chemical Calculations for some Isatin Thiosemicarbazones' Quantum Chemistry – Molecules for Innovations pages 25-58

[11] S. Gunesdogdu Sagdinc, F. Kandemirli, 'Experimental and quantum chemical studies of 5-Fluoroisatin-3-(N-cyclohexylthiosemicarbazone) and its metal complexes'' Phosphorus, Sulfur, and Silicon and the Related Elements 10.1080/10426507.2012.681405

104

[12] Cerchiaro, G., Ferreira, C.M.A.," Oxindoles and Copper Complexes with Oxindole-derivatives as potential pharmacological agents", J.Braz.Chem.Soc,17, 1473-1485, (2006)

[13] Senear, A.E., Herbert, S.,"The synthesis of potential antimalarials. 7-chloro-(2-pyridyl)-4-quinolinemethanol", J.Am.Chem.Soc, 2, 2695-2697, (1946)

[14] Karali, N.,Gürsoy, A.,Kandemirli,F.,''Synthesis and structure-anti tuberculosis activity relationship of 1H-indole-2,3-dion derivatives'', Bioorg.Med.Chem, 1-17, (2007)

[15] Ratan, B.T., Anand, B., 'Synthesis and evalution of anti-HIV activity of isatin-3thiosemicarbazone derivatives', Bioorg. Med. Chem. Lett, 15, 4451-4455, (2005)

[16] Humayun Pervez, Muhammad Yaqub, Muhammad Ramzan, Mohammad S. Iqbal and M. Nawaz Tahir, ''4-(2-Fluorophenyl)-1-(2-oxoindolin-3-ylidene) thiosemicarbazide'', Acta Cryst. E66, o1018, (2010)

[17] Muhammad Ramzan, Humayun Pervez, M. Nawaz, Tahir and Muhammad Yaqub,
"4-(3-Fluorophenyl)-1-(2-oxoindolin-3-ylidene) Thiosemicarbazide", Acta Cryst.
E66, o2494 –o2495, (2010)

[18] Muhammad Ramzan, Humayun Pervez, Muhammad Yaqub and M. Nawaz Tahir ,"1-(2-Oxoindolin-3-ylidene)-4- [2-(trifluoromethyl) phenyl] thiosemicarbazide", Acta Cryst., E66, o2387 (2010)

[19] Matthew D. Hall, Noeris K. Salam, Synthesis, Activity, and Pharmacophore Development for Isatin-_-thiosemicarbazones with Selective Activity toward Multidrug-Resistant Cells, J. Med. Chem. 2009, 52, 3191–3204

[20] Manna K, Aggarwal Y. Microwave assisted synthesis of new indophenazine 1, 3, 5 trisubstituted pyrrazoline derivatives of benzofuran and their antimicrobial activity. Bioorg. Med. Chem. Lett. 2009; 19: 2688-2692.

[21] Pandeya SN, Kumar R, Pathak AK, Nath G. Synthesis and biological evaluation of triazine derivatives. Der. Pharm. Chem.2010; 2(2): 257-266.

[22] Rahman AHA, Keshk EM, Hanna MA. Synthesis and evaluation of some new spiroindoline based hetrocycles as potentially active antimicrobial. Bioorg. Med. Chem. 2004; 12: 2483-2488.

[23] Singh GS, Luntha P. Synthesis and antimicrobial activity of new 1alkyl/cyclohexyl-3, 3 diaryl-1'-methylspiro [azetidine-2, 3'-indoline]-2', 4-diones. Euro. J. Med. Chem. 2009; 44: 2265-2269. [24] Patel A, Bari S, Talele G, Patel J. Synthesis and antimicrobial activity of some new isatin derivatives. Iran. J. Pharm. Res. 2006;4:249-254.

[25] Pardasani RT, Pardasani P, Muktawat S, Chaturvedi V. Reaction of 2-thiozoline-2thiol with isatin derivatives. Phosp. Silic. Sulp.1998; 142: 221-227.

[26] Olomola TO, Bada DA. Synthesis and antibacterial activity of two spiro[indole] thiadiazole derivatives. Toxi. Environ. Chem.2009;91(5):941-946.

[27] Pandeya SN, Sriram D, Nath G. Synthesis, antibacterial, antifungal and anti-HIV activity of norfloxacin mannich bases Euro. J. Med. Chem. 2000; 35: 249-255.

[28] Vine KL, Locke JM, Ronson M. In vitro cytotoxicity evaluation of some substituted isatin derivatives. Bioorg. Med. Chem.2007; 15: 931-938.

[29] Solomon VR, Lee C, Hu H. Hybrid pharmacophore design and synthesis of isatinbenzothiazole analogs for their anti-breast cancer activity. Bioorg. Med. Chem. 2009; 17: 7585-7592.

[30] Wee XK, Yeo WK, Zhang B, Tan VBC. Synthesis and evaluation of functionalized iso indigo as antiproliferative agents. Bioorg.Med. Chem. 2009; 17: 7561-7562.

[31] Ge P, Kalwan TI. Design and Synthesis of 3,5-dialkylamino substituted 8H, 10H-3(R),15b (S)-2,3,6,7-tetrahydro-1,5,3- dioxoazepino[3,2-c]indolo[3,2-g]pteridine-7-ones. Bioorg. Med.Chem. Lett.1997; 7(23): 3023-3026.

[32] Shibinskya MO, Lyakhov SA, Mazepa AV, Andronati SA. Synthesis, Cytotoxicity, Antiviral activity and interferon inducing ability of 6-(2-aminomethyl)-6H-indolo [2, 3-b] quinoxalines. Euro. J. Med. Chem. 2010; 45: 1237-1243.

[33] Chen LR, Wang YC, Lin YW, Chou SY, Chen SF. Synthesis and evaluation of isatin derivatives as effective SARS Coronavirus 3CL protease inhibitors. Bioorg. Med. Chem. Lett. 2005; 15: 3058-3062.

[34] Andrieu BM, Merour JY. Reaction of 3-([(triflouromethyl)sulfonyl]oxy)-1H – indole derivatives withdiamines and carbon nucleophiles, synthesis of 6H-indolo[2,3-b] quinoxaline derivatives. Tetrah. 1998; 54: 11095-11110.

[35] Sin N, Venables BL, Combrink KD, Gulgeze HB, Yu KL, Civiello RL. Respiratory, syncytial virus fusion inhibitors part 7, structure activity relationship with a series of isatin oximes that demonstrate antiviral activity invivo. Bioorg. Med. Chem. Lett. 2009; 19:4857-4862.

[36] Sriram D, Yogeeswari P, Gopal G. Synthesis, anti HIV and antitubercular activity of lamivudine prodrugs. Euro. J. Med. Chem. 2005; 40:1373-1376.

[37] Oliveira MRP, Torres SC, Garden SV, Santos CVB, Alves TR. Synthesis and antiviral evaluation of isatin Ribonucleosides. Nucle. Nucleio. Nucleic acid. 2002; 11(12): 825-835.

[38] Palluotto F, Carotti A, Casini G, Camagna F, Genchi G. Structure activity relationship of 2-aryl-2, 5 dihydropyridazino [4,3-b] indol- 3(3H)-ones at the benzodiazepine receptor. Bioorg. Med. Chem.1996; 4(12): 2091-2104.

[39] Campagna F, Carotti A, Casini G, Palluotto F, Genchi G, Sarro GBD. 2-Aryl-2, 5dihydropyridazino [4,3-b] indol-3(3-H) ones. Bioorg. Med. Chem.1993; 1(6): 437-446.

[40] Ragavendran JV, Sriram D, Patel SK, Reddy IV, Bhathwajan N.Design and synthesis and anticonvulsant activity from a combined phthalamide-GABA-anilide and hydrazone pharmacophore. Euro.J. Med. Chem.2007; 42: 146-151.

[41] Azam F, Alkskas IA, Khokra SL, Prakash O. Synthesis of some novel N4-(naphtha [1, 2-d]thiazol-2yl) semicarbazides as potential anticonvulsants. Euro. J. Med. Chem. 2009; 44: 203-211.

[42] Sridhar SK, Pandeya SN, Stables JP, Ramesh A. Anticonvulsant activity of hydrazones, Schiff and mannich bases of isatin derivatives. Euro. J. Pharm. Sci. 2002; 16: 129-132.

[43] Raj M, Veerasamy N, Singh VK. Highly enantioselective synthesis of 3cycloalkanone-3-hydroxy-2-oxindoles, potential anticonvulsants. Tetrah. Lett. 2010; 51: 2157-2159.

[44] Panneerselvam P, Reddy RS, Murali K, Kumar NR. Synthesis, analgesic, antiinflammatory, and antimicrobial activities of 5- sustituted isatin derivatives. Der Pharm. Chem. 2010; 2(1): 28-37.

[45] Matheus ME, Violante FDA, Garden SJ, Pinto AC. Isatin inhibit cyclooxygenase-2 and inducible nitric oxide synthase in a Mouse macrophage cell-line. Euro. J. Pharmcol. 2007; 556: 200-206.

[46] Chiyanzu I, Clarkson C, Smith PJ, Lehman J. Design, synthesis and antiplasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorg. Med. Chem. Lett.2005; 13: 3249-3261.

[47] Sriram D, Yogeeswari P, Gopal G. Synthesis, anti-HIV and antitubercular activities of lamivudine prodrugs. Euro. J. Med. Chem. 2005; 40: 1373-1376.

[48] Andreani A, Burnelli S, Granaiola M, Leoni A. New isatin derivatives with antioxidant activity. Euro. J. Med. Chem. 2010; 45: 1374-1378.

[49] Bal TR, Anand B, Yogeeswari P, Sriram D. Synthesis and evaluation of anti-HIV activity of isatin -thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett. 2005; 15: 4451-4455.

[50] Pawar VS, Lokwani DL, Bhandari SV, Bothara KG. Design, docking study and ADME prediction of isatin derivatives as anti HIV agents. Med. Chem. Res. 2010. DOI 10.1007/S00044-010-9329-Y.

[51] Bhanupriya Bhrigu, Devender Pathak, Nadeem Siddiqui, M Shamsher Alam, Waquar Ahsan, Search for Biological Active Isatins: A Short Review, International Journal of Pharmaceutical Sciences and Drug Research, IJPSDR October-December, 2010, Vol 2, Issue 4 (229-235)

[52] Calais, Jean-Louis, Quantum Chemistry Workbook: Basic Concepts and Procedures in the Theory of Electronic Structure of Matter Edition, John Wiley and Sons, 1994.

[53] Yarkony, D. R. ed., Modern Electronic Structure Theory, World Scientific, 1995.

[54] Nasuho lu, R., Tokmakçıo lu, E., 1969. Modern Üniversite Fizi i. 169s Ankara Üniversitesi, Ankara.

[55] Erdik, E., 1998. Organik Kimyada Spektroskopik Yöntemler. 531s. Gazi Büro Kitabevi yayını, Ankara.

[56] tr.wikipedia.org/wiki/Elektromanyetik_1 nnm(Eri im Tarihi: Haziran 2011)

[57] Skoog. D. A., Holler, F. J. and Nieman, T.A., 1998, Enstrümentel analizin ilkeleri.(Çev. E.Kılıç, F. Köseoglu, H. Yılmaz). 846s. Bilim Yayıncılık, stanbul

[58] http://www.akat.org(Eri im Tarihi: Haziran 2011)

[59] Banwell, C.N., McCash, E.M., 1996. Fundamentals of Molecular Spectroscopy.308p. Tata McGraw-Hill Publishing Company Limited, New Delhi.

[60] Atkins, P. W., 1985. Quanta. Oxford University Clarenden pres, Oxford.

[61] Bransden, B. H., and Joachim, C. J., 1983. Physics of Atom and Molecules Logman, London.

[62] Woodward, L. A., 1972. ntroduction to the Theory and Molecular Vibration Spectroscopy. Oxford University Press, UK.

[63] Cotton, F. A., 1971. Chemical Applications of Group Theory. 2nd ed Wiley, London.

[64] Gans, P., 1971. Vibrating Molecules. Chapman and Hall, London

[65] http://www.mustafaaltinisik.org.uk/45-uzm-02.pdf

EKLER

EK-A

THEORETICAL STUDY ON 4-(2-FLUOROPHENYL)-1-(2-OXOINDOLIN-3-YLIDENE) THIOSEMICARBAZIDE

<u>YusufAkkaya¹</u>, Fatma Kandemirli¹, Murat Saracoglu²

¹Ni de University, Department of Chemistry, 51240 Ni de, Turkey

² Turkey Erciyes University, Faculty of Education, 38039, Kayseri, Turkey

Abstract

Some of Isatin β -thiosemicarbazide and its derivatives forming with transition metal ions coordination compounds of diverse compositions and structures listors number listors these substances are biologically active [1]. The biological activity of thiosemicarbazones has been known for a considerable period of time, both as anticancer and antiviral drugs. The title compound, $C_{15}H_{11}FN_4OS$, is almost planar, the dihedral angle between the aromatic ring systems being 5.00 (13). The conformation is stabilized by intramolecular N—H...N and N—H...O hydrogen bonds, which generate S(7) and S(53) rings, respectively[2]. In this study, density functional theory calculations at the B3LYP and RHF level of theory with the 6-31G(d,p), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) basis sets, have been used to investigate the optimized structures and other molecular properties, and reaction mechanism of title compound were studied by semi-empirical AM1 method. The geometrical parameters and Mulliken charges of the title molecules by using semi-empirical AM1 method are given in Figure 1.

References

[1] Zyong Kuang Fung, Cand. Sci. (Chem.) Dissertation, Chisinau, 1984.

[2] Humayun Pervez, Muhammad Yaqub, Muhammad Ramzan, Mohammad S. Iqbal and M. Nawaz Tahir Acta Cryst. (2010). E66, o1018

Acknowledgement

This project was financially supported by research Center of Ni de University with the project number 2010/37

THEORET CAL STUDY OF B S(SAT N-3-(N-2-FLUOROPHENYL TH OSEM CARBAZONATO) Z NC(II) COMPLEX

YusufAkkaya, Fatma Kandemirli, Özlem Sarıöz

Department of Chemistry, Ni de University, Ni de, Turkey

Isatin-thiosemicarbazone may act as chelating agent coordinating through imino nitrogen, carbonylo oxygen and thiolato sulfur atoms. Coordination through O donor atoms is dependent on the nature of the metal. Zinc (II) and mercury (II) complexes prepared by reacting isatin-3-thiosemicarbazon are suggested tetrahedral structures and coordinated through imino nitrogen, and thiolato sulfur atoms [1]. In this study, we report the synthesis and spectroscopic characterization of zinc(II) complex with ligands isatin-3-(N-2fluorophenyl) thiosemicarbazone. Elemental analysis, infrared spectroscopy, UV spectroscopy H NMR were used to characterize the complex and theoretical calculations (vibrational wavenumbers, geometric parameters, atomic charges and the other molecular properties) were performed using the the GAUSSIAN 09 program package [2] in which Ab initio calculations and DFT calculations have been applied by using B3LYP functional with 6-311G(d,p) and 6-311+G(d,p) basis sets (optimized structure is given in Figure 1).

Figure 1. 4 - isatin-3-(n-2-fluorophenyl thiosemicarbazonato) zinc(ii) complex optimized with B3LYP/6-311G(d, p)

References

N.T. Akinchan, P.M. Drozdzewski, W.Holzer, J. Mol. Struct. 641 (2002) 17.
 M. J. Frisch et al., Gaussian 09, Revision C.02, Gaussian, Inc., Wallingford CT, (2009).

Acknowledgements

The financial support for this study was provided by the BAP Fund (Project Number: FEB 2010/37)