

BAŞKENT UNIVERSITY

INSTITUTE OF SCIENCE AND ENGINEERING

AN APPLICATION OF SERVICE ORIENTED

ARCHITECTURE (SOA) APPROACH

DENİZ ÇOPUR

MASTER THESIS

2011

SERVİS ODAKLI MİMARİ YAKLAŞIMI UYGULAMASI

AN APPLICATION OF SERVICE ORIENTED

ARCHITECTURE APPROACH

DENİZ ÇOPUR

Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in Department of Computer Engineering

at BaĢkent University

2011

This study named ―An Application of Service Oriented Architecture (SOA) Approach‖

is accepted by our jury as MASTER OF SCIENCE THESIS IN COMPUTER

ENGINEERING on 20/04/2011.

Chairman (Supervisor) :

(Prof. Dr. A. Ziya AKTAġ)

Member :

(Asst. Prof. Dr. Mustafa SERT)

Member :

(Dr. Ali ARĠFOĞLU)

 /05/2011

 Prof. Dr. Emin AKATA

 Director of Institute of

 Science and Technology

ACKNOWLEDGEMENTS

The author would like to acknowledge the contributions of Prof. Dr. Ziya AKTAġ

(Supervisor), his father Tahsin Çopur and his mother Tuna Çopur for their invaluable

guidance and perpetual patience. This thesis wouldn‘t exist without their help.

i

ABSTRACT

AN APPLICATION OF SERVICE ORIENTED ARCHITECTURE APPROACH

Deniz Çopur

BaĢkent University Institute of Science and Engineering

Department of Computer Engineering

SOA (Service Oriented Architecture) is an architectural style of building applications

based on composable, coarse-grained, loosely coupled autonomus software agents

or components called services. A service provider system provides services

containing one or more business operations, and service consumer systems

communicate with the service provider by calling operations defined in the provided

services. In this way, the service provider system and service consumer systems are

integrated. The most important problem of the contemporary healthcare systems is

integration. By integrating various healthcare systems, electronic health record

belonging to an individual can be shared in a secure way. The most important

organization working on solving healthcare systems‘ integration problems today is

IHE (Integrating Healthcare Enterprise). IHE targets solving integration problems of

healthcare systems by creating various healthcare integration profiles. The key

objective of this thesis is to show that IHE profiles can be implemented using SOA.

KEY WORDS: integration, service oriented architecture, web services

Supervisor: Prof. Dr. A. Ziya AKTAġ, BaĢkent University, Computer Engineering

Department.

ii

ÖZ

SERVİS ODAKLI MİMARİ YAKLAŞIMI UYGULAMASI

Deniz Çopur

BaĢkent Üniversitesi Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

SOA (Servis Odaklı Mimari) büyük ölçekli uygulamaların, servis adı verilen yazılım

bileĢenleri kullanılarak geliĢtirilmesidir. Servisler içlerinde bir ya da daha fazla sayıda

süreç barındıran iri ölçekli, birbirlerine gevĢek bağlı otonom yapılardır. Servis sunan

uygulama, iĢ operasyonlarını bir ya da daha fazla sayıda servisler olarak sunar, ve

servis tüketici uygulamalar, bu servisleri kullanarak servis sunan uygulama ile iletiĢim

sağlar. Bu durumda, servis sunucu ve servis tüketici uygulamalar, servis odaklı

mimari kullanarak entegre olmuĢ olur. Günümüzde sağlık alanı için geliĢtirilmiĢ

uygulamaların en önemli sorunu entegrasyon sorunudur. KiĢisel sağlık bilgisinin

farklı sağlık sistemleri arasında gerektiğinde güvenli bir Ģekilde iletilmesi, bu sağlık

sistemlerinin entegre olması ile sağlanabilir. Günümüzde sağlık sistemleri

entegrasyonu alanında çalıĢan en önemli organizasyon IHE‘dir (Integrating

Healthcare Enterprise). IHE, çeĢitli profiller oluĢturarak, bu profillere uygun davranan

sağlık sistemlerinin entegre olabilmelerini hedefler. IHE profilleri servis odaklı mimari

kullanılarak gerçekleĢtirilebilir.

ANAHTAR SÖZCÜKLER: ağ servisleri,entegrasyon, servisodaklı mimari

Danışman: Prof. Dr. A. Ziya AKTAġ, BaĢkent Üniversitesi, Bilgisayar Mühendisliği

Bölümü.

iii

TABLE OF CONTENTS

Page

ABSTRACT..i

ÖZ..ii

TABLE OF CONTENTS..iii

LIST OF FIGURES..vi

LIST OF TABLES..vi

LIST OF ABBREVIATIONS..vii

1 INTRODUCTION...1

1.1 Definition of SOA..1

1.2 SOA Related Terms...3

1.2.1 Service..3

1.2.2 Service provider..3

1.2.3 Service consumer...3

1.2.4 Contract..3

1.2.5 End point..4

1.2.6 Message...4

1.3 A Brief History of SOA ...4

1.4 Promises of SOA 1...5

2 SERVICES...10

2.1 Definition of a Service..10

2.2 Characteristics of Services ..10

2.2.1 Services share a formal contract..11

2.2.2 Services are loosely coupled..12

2.2.3 Services abstract underlying logic..13

2.2.4 Services are composable...14

2.2.5 Services are reusable...15

2.2.6 Services are autonomous...16

iv

2.2.7 Services are stateless..17

2.2.8 Services are discoverable..18

3 WEB SERVICES...20

3.1 Definition of Web Services...20

3.2 A Typical Web Service Scenario..22

3.3 Characteristics of Web Services ..24

4 ISSUES RELATED TO THE IMPLEMENTATION

 AND MANAGEMENT OF SOA...26

4.1 Approaches to Integration..26

4.1.1 Intelligent routing..26

4.1.2 Transformation...26

4.1.3 Tools for service monitoring...27

4.1.4 Advanced capabilities...27

4.1.5 State management...27

4.2 Approaches to Service Enablement...27

4.2.1 Service proxies...27

4.2.2 Service adapters..29

4.2.3 Unified information views...30

4.2.4 Data sources..31

4.2.5 Access and security...31

4.3 Technologies Relevant to SOA..33

4.3.1 ESB (Enterprise Service Bus)..34

4.3.2 BPM (Business Process Management)..38

4.3.2.1 Barriers to BPM..39

4.3.2.2 Properties of recent BPM software...41

5 AN APPLICATION..44

5.1 IHE (Integrating Healthcare Enterprise)...44

5.2 IHE Domains..46

5.3 IHE Profiles..47

v

5.4 Patient Demographics Query (PDQ) Profile...49

5.4.1 PDQ roles...50

5.4.2 PDQ sequence diagram...51

5.4.3 PDQ process flow...52

5.4.4 Transactions between actors..55

5.4.4.1 Patient demographics query...55

5.4.4.2 Patient demographics response...56

5.5 Implementation Architecture...57

5.6 Technologies Used In PDQ Implementation..57

5.7 PDQ Service Implementation Details...59

5.8 ESB Usage...61

5.9 Client Implementation...62

6 SUMMARY AND CONCLUSIONS...63

6.1 Summary..63

6.2 Conclusions..64

6.3 Extensions of the Study..66

REFERENCES..67

APPENDICES..71

APPENDIX A. HL7 MESSAGE SEGMENT DETAILS OF PATIENT

DEMOGRAPHICS QUERY MESSAGE.......................................72

APPENDIX B. HL7 MESSAGE SEGMENT DETAILS OF PATIENT

DEMOGRAPHICS RESPONSE MESSAG................................ 78

APPENDIX C. PDQ QUERY AND RESPONSE EXAMPLES..............................81

APPENDIX D. CD CONTAINING APPLICATION IMPLEMENTATION

vi

LIST OF FIGURES

Figure 1. Web services scenario...22

Figure 2. Enterprise Service Bus (ESB)..34

Figure 3. PDQ actors and transactions...50

Figure 4. PDQ sequence diagram...52

Figure 5. Some clinical use cases which require patient demographics

Query...53

Figure 6. Logical architecture of PDQ implementation.......................................58

LIST OF TABLES

Table 1. PDQ actors and transactions..51

Table 2. PDQ Patient Demographics Request (HL7 QBP^Q22)

segments..56

Table 3. PDQ Patient Demographics Response (HL7 RSP^K22)

segments..57

Table A1. QDP segment...73

Table A2. QPD-3 fields required to be supported...74

Table A3. RCP segment...76

Table A4. DSC segment...77

Table B1. QAK segment...79

Table B2. PID segment...79

vii

LIST OF ABBREVIATIONS

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

DICOM Digital Imaging and Communications in Medicine

EDI Electronic Data Interchange

EHR Electronic Health Record

ESB Enterprise Service Bus

HL7 Health Level 7

IHE Integrating the Health Enterprise

SOA Service Oriented Architecture

BPEL Business Process Execution Language

BPM Business Process Management

PDQ Patient Demographics Query

RMI Remote Method Invocation

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery and Integration

WSDL Web Services Definition Language

XML Extensible Markup Language

1

1 INTRODUCTION

1.1 Definition of SOA

SOA (Service Oriented Architecture) is an architectural style of building applications

based on composable, coarse-grained, loosely coupled autonomus software agents

or components called services. Services are invoked by various service consumers,

for that reason they should have well-defined interfaces. These interfaces should be

based on standards, so that the service consumers and service providers may exist

in different hardware platforms, operating systems, and developed using different

programming languages, but still able to communicate.

SOA is concerned with the independent construction of business-aligned services

that can be combined into meaningful, higher level business processes and solutions

within the enterprise.

SOA definitions are very flexible and do not mandate use of specific communication

protocols, transport mechanisms, message exchange semantics, programming

languages etc. For services published by a service provider that can be invoked by a

service consumer, these two systems must communicate. In SOA applications

service providers and service consumers communicate using messages. But SOA

approach does not mandate the format these messages should be in, what transport

protocols should be used etc. For instance, service providers and service consumers

can communicate using request/reply semantics or use asynchronous

communication patterns, they can use HTTP, JMS (Java Messaging Service), SMTP

(Simple Mail Transfer Protocol) or another transfer protocol, and they can exchange

messages prepared in SOAP (Simple Object Access Protocol) format or some other

message format as noted by Rotem [1].

In order to understand what SOA is, the concept of service should be well

understood. Services are pillars on which the SOA systems are built. SOA is a

modeling technique that groups related behaviors or functionality into software

constructs or large components called services. The system acting as a service

provider can publish one or more services, each having one or more behavior or

functionality. A component of the system offering a service waits in a state of

2

readiness. Consumer components may invoke the service functionality by sending a

message to the service according to the shared service contract [2].

The concept of SOA came about as a way of defining software architectures in a

more sophisticated manner by paying greater attention to the exchanges amongst

large software components. In addition, the method of service orientation places an

emphasis on reusability by separating the interface of a function from its internal

implementation. This form of separation makes service orientation an appropriate

method for both heterogeneous and distributed architectures [3].

Popularity of SOA has increased during the last ten years. This popularity has come

as a result of industry standards that identify interfaces and communication protocols

associated with such services. These services are known as Web services and they

have the capacity to greatly enhance interoperability which makes well designed

services easier to integrate and reuse. When this is taken into account from an ICT

perspective, it appears that the utilization of Web services tends to lower costs

because it promotes reusability of services, and removes the need for proprietary

software adapters. In addition, it can also speed time to market because it allows for

parallel development of services [3].

Rotem[1] states that contemporary SOA systems are generally implemented using

Web services standards, and these standards are agnostic of hardware platforms,

software platforms or programming languages. Using Web services standards is not

the only way of developing SOA applications, a different technology can also be used

to implement SOA systems.

SOA has become a critical component in the development of enterprises that are

more streamlined and better coordinated. SOA serves the purpose of greatly

reducing costs while providing more efficient systems. It seems clear that today‘s

organizations will have to adapt such architectures if they want to remain competitive

as noted by Schulte and Natis [5].

3

1.2 SOA Related Terms

Some important SOA related terms are given in the following subsections:

1.2.1 Service

The major pillar of SOA is the service. Services are coarse grained pieces of logic

that are published by service providers and invoked by service consumers. A service

provider exposes contracts for services and all the functionality exposed in the

service contract should be implemented by the service. Services are discussed in

more detail in Chapter 2 of the thesis.

1.2.2 Service provider

Service providers according to SOA are systems or programs that exposes services.

It is service provider‘s responsibility to publish service contracts, and make sure that

every exposed service implements all the functions (or operations, in SOA

terminology) that are defined in its service contract. In the enterpise world, service

providers can scale from small applications that can publish group of functionality to

the bigger programs or systems as utility services to massive enterprise systems

whose services enable EAI (Enterprise Application Integration).

1.2.3 Service consumer

In SOA, service providers publish services, and service consumers invoke the

services‘ functions by sending and receiving messages to/from service providers. A

service consumer can be any software that interacts with the service provider in order

to invoke service operations. Client applications, other enterprise systems, even

other services belonging to the same corporation can be a service consumer.

1.2.4 Contract

Service‘s contract corresponds to the collection of all the messages supported by the

service collectively. The service contract is published by the service provider, and

service consumers implement the logic for calling the service using this contract. In

this sense, the contract constitutes the interface of the Service similar to interface of

4

an object in object oriented languages. In Web services, service contract is

encapsulated in the document the service provider supplies called WSDL (Web

Services Definition Language). The consumers get the WSDL document and

implement code for communicating with the service prior to calling provider‘s service

functions.

1.2.5 End point

An endpoint is a URI (Uniform Resource Identifier), or an address via which a service

can be communicated. In Web services, service contracts, that is WSDL documents,

contain endpoints to communicate with the service. Each endpoint can support

different transfer protocol or message format.

1.2.6 Message

Messages are the units of communication in SOA. In a request/reply semantics for

instance, a service consumer sends a message to the service provider in order to

invoke a specific service function. The service provider parses the message, invokes

the service operation, and returns the result as another message to the service

consumer. Messages can have different formats (i.e. SOAP messages, HTTP GET

messages etc.) and they can be sent using different transport protocols (i.e. HTTP,

JMS, SMTP). In nowaday‘s Web services implementations for instance, messages

rely on the SOAP standard. SOAP messages have a header and a body. The header

does not contain the parameters related to the service function to be called or service

reply, but general information that is required for tasks such as routing messages,

handle authentication, to be used by the infrastructure that enables SOA.

1.3 A Brief History of SOA

The term SOA is first defined by Schulte and Natis [4], Gartner analysts, in 1996. In

their work called ―"Service Oriented" Architectures, Part 1‖, they defined SOA as:

―A service-oriented architecture is a style of multitier computing that helps

organizations share logic and data among multiple applications and usage modes.‖.

5

As noted by Natis [5], integration of different applications at that time was very

problematic. Different propriatery integration technologies were being used to

accomplish such needs. Common Object Request Broker Architecture (CORBA),

Distributed Component Object Model (DCOM), Electronic Data Interchange (EDI)

and Remote Method Invocation (RMI) can be given as examples of such propriatery

integration technologies. These were successful at exchanging data between

different applications, but they were propriatery. DCOM for example, is specific to the

Windows applications, RMI on the other hand, is specific to the Java language. Some

others, such as CORBA, were very complex to use, and were not widely adopted.

Sometimes, in order to share data between different applications on different

platforms, it was necessary to make these technologies communicate with each

other, which was a very difficult task. ICT world was in need for a new perspective

that could enable systems to communicate with each other regardless of their

hardware and software platforms, regardless of programming language that they

were implemented with. In short, application integration was the main driving force

behind the appearance of SOA.

As noted by Erl [6], the service oriented architecture concept gained importance

especially after the emergence of the web services technology. Erl summarizes the

relation between these two technologies as follows:

―...Web services are about technology specifications, whereas SOA is a software

design principle. Notably, Web services' WSDL is an SOA-suitable interface definition

standard. This is where Web services and SOA fundamentally connect. Those who

see Web services as architecture regard WSDL as the definitive standard of Web

services (others see SOAP as a definitive standard for Web services — this is a view

of Web services as a communication method). In practical use, the ubiquitous Web

services standards enhance the mainstream appeal of SOA design.‖

1.4 Promises of SOA

As noted by Roden and Lublinski [7], there are many business drivers associated

with the decision to adopt SOA. These business drivers and the SOA solutions to

these business needs include:

6

 Restricted budgets: SOA, if adopted properly, decreases development costs.

SOA minimizes duplication of functionality between systems. It enables reuse

of assets across multiple applications. It also decreases development costs,

because it eliminates the need for software adapters functioning as a bridge

used for integrating different software systems.

 Restricted time: SOA, if adopted properly, decreases development time and

brings efficiency in terms of time to market, since the implementation of

services can be done in parallel. If Web services technology is adopted for

instance, many open source or commercial tools can be used to generate web

service server application from the existing software code. Service proxy code

to be used by the client applications can also be generated automatically

using the service contracts. Developers can easily invoke the service

operations using the generated proxy code1, as if the service is part of their

own system. This shields developers from the complex nature of networking

and learning internals of the service provider. In this way, the time required for

development decreases.

 Rapidly changing business processes: It is desirable to provide agile support

to business processes, and to handle change management impacts more

efficiently and effectively. SOA simplifies the impact of application upgrades.

SOA brings agile support to business processes, handle change management

impacts more efficiently and effectively. If the system is constructed using

services, every service encapsulates a certain functionality. It is easy to spot

the services that needs to be changed according to the changing business

needs. Moreover, if Web services technology is used for instance, these

changes can be done both on server side and on client side quickly, using

tools that are able to generate server and client code automatically.

 Speed and ease of project deployment: SOA systems need servers where the

services are deployed to be consumed by the service consumers. Many SOA

1
 Proxy code: Code which contains proxy object definition(s). Proxy objects mimic remote objects. When an

operation of a proxy object is invoked, the proxy object in turn invokes the corresponding operation of the

remote object that it represents and returns the result of the remote operation to the caller.

7

products, especially Web services systems make changing the service code

and deploying the new service runtime to the associated servers very easy.

 Developing technologies for identical business functions: Since services can

be regarded as free standing constructs, the same service installation can

serve to multiple applications. SOA minimizes duplication of effort during

development through reuse of existing services, enables efficiency in terms of

time to market and development costs.

 Need for integrating systems: Systems to be integrated can be deployed in

different geographies, run on diverse hardware platforms, implemented using

different programming languages. For example, when a core banking system

must be accessed and used by customers through the Internet, a demand is

placed on the system to expose some of its functionality to the application that

drives the Internet access. SOA enables true EAI (Enterprise Application

Integration), brings diverse lines of business across many geographies

together. SOA appears as a solution to many system integration related

problems, as it enables systems to invoke various business functionality of

other systems. In fact, this is the most important benefit of applying SOA.

 Ease of development: SOA eases development by shielding developers and

integrators from system complexities. SOA is also beneficial for both

developers and integrators because they no longer have to understand low-

level systems in order to develop and manage complex processes. In addition,

SOA allows applications can be managed and altered independently because

low-level functions can be shielded behind high-level services.

 Legacy systems integration: A service can be developed in a higher level than

an existing legacy system so that one face of the service can look at the

modern world, speak the modern languages, such as SOAP. The other face of

the system on the other hand, looks at the legacy system, and talks to the

legacy system using its own propriatory language. In this way, using services

as a bridge, it is possible to enable communication between modern world

applications and legacy systems.

8

 Ease of mapping business functionality onto ICT systems: SOA helps in

mapping business functionality onto ICT systems, since every service may

encapsulate a specific business functionality. This is beneficial to businesses

because it allows managers to have better insight into all of the processes of

the business. This is possible because SOA defines the services that the

managers require. In addition, it allows integration specialists, application

managers, and other experts have control over the service implementation.

If the integration of SOA is always specific to a programming language or

environment of an application, then integration effort will necessitate a great deal of

custom integration work [3]. The capacity to link various systems together rapidly will

require highly specialized programming capabilities and knowledge of the internals of

these systems. In addition, ICT managers will be able to significantly reduce costs by

using these general protocols and standards. These are the necessities that drive the

importance of Web services technologies.

There is a theory that asserting that the redefining of infrastructures with a service

oriented approach using standard interfaces between components should lead to

benefits in the area of systems integration, and expert practitioners have confirmed

that such benefits exist [8].

Since there are so many enterprises that are dealing with fragmented applications

and databases, it is important that professional practitioners are focusing of the

importance of SOA in integration of information. In addition, the benefits

associated with application development and maintenance and in particular the

reduction of redundant functionality amongst systems along with the reduction of

duplication during the development process, strengthens the position that SOA can

have a positive impact on ICT service delivery [8]. In that article, it is further asserted

that ―It is also interesting to see the prominence given to more effective mapping of

ICT systems onto business, which is another theoretical benefit of SOA. Clearly, it is

much easier to map a collection of services onto business processes than it is to map

functionality of a traditional monolithic application. The increased precision and

flexibility in this is particularly relevant in a dynamic environment in which business

processes frequently change.‖ [8].

9

It is also noted that, there is evidence suggesting that placing an emphasis on the

service, which exceeds the systems and business worlds, can overcome the

language problems that are often in the way of efficient communication between ICT

and the enterprise [8].

According to Frievald [9], SOA was originally used as a way to reduce cost

associated with integrating large business processes. Frievald[9] contends that the

process was rather simple and involved ―applications and automated processes

access information resources through standard service interfaces, without requiring

programming or knowledge of lower-level systems.‖ Web services provided the open

standards required to employ an ever-present, reusable business function, which

allow business processes to be separated and utilized as basic, controllable entities.

Executives are realizing the benefits associated with SOA especially in the past ten

years. In fact, many executives believe that benefits promised by SOA make the

implementation of SOA a must [10]. Frievald[9] further states that although there was

some initial skepticism associated with the implementation of SOA, there now

appears to be a great deal of success associated with it. According to a survey

conducted in 2005 more than 50% of the respondents reported that they were

familiar with SOA and 87% reported that they had a solid understanding of the

construct of SOA. It is claimed in a white paper that such a rapid understanding of

SOA is a proof that it is a strong construct and it has the capacity to produce many

benefits [10].

10

2 SERVICES

Services are building blocks of SOA based applications. In this chapter, detailed

definition of a service in the context of SOA is given, and characteristics of services

are explained.

2.1 Definition of a Service

A service in the context of SOA can be defined as a software component that

encapsulates a specific business function. A service is well-defined, self-contained,

and it does not depend on the context or state of other services (i.e. services are

loosely coupled constructs). A service should provide a high cohesion and a distinct

function, should contain a coarse grained pieces of logic. A Service should implement

at least all the functionality promised by the contract it exposes. One of the

characteristics of services is service autonomy, which means that every service

should be self-sufficient as noted by Rotem [1].

 As noted earlier in Chapter 1, according to SOA, an enterprise application is

composed of services. A business process for instance, is a process that

encapsulates a business workflow that is composed by combining one or more

services.

A service has a description or specification, and this description consists of an explicit

and detailed narrative definition supported by a low-level (not implementation

specific) process model. The narrative definition is in some cases augmented by

machine-readable semantic information about the service which facilitates service

mediation and consistency checking of enterprise architecture [11].

2.2 Characteristics of Services

According to Erl [12], there are some common service principles that are apparent

with SOA. Erl underlines eight principles associated with SOA. In the following

subsections these principles are summarized [12]:

11

2.2.1 Services share a formal contract

Service contracts play a significant role in SOA. Erl[13] asserts that, services are

formally defined using one or more service description documents. As it relates to

Web services, the technical service description documents usually include the WSDL

service definition and the XSD (XML Schema Definition) schema. There is also a

third type of document known as the policy that will grow in its importance over the

course of SOA adaptation. All of the aforementioned documents may be categorized

as service metadata, since each of the documents provides information concerning

the service. In addition, Erl [13] asserts that the service description documents are

viewed collectively as creating a service contract. In other words, the service contract

is a series of terms and conditions that have to be both met and received by the

service requestor to allow for successful communication and interfaces. The service

contract can also be inclusive of other non-technical documents or legal agreements.

Related to SOA, service contracts identify the formal definitions of the following:

 Service endpoints

 Service operations

 All of the input and output messages maintained by each operation

 The data representation model of each message's contents

 Regulations and characteristics of each service and the manner in which they

function

Indeed shared service contracts are essential to the stability of any SOA initiative. Erl

[13] further explains that ―Service contracts therefore define a great deal of the

underlying architecture of a solution environment, and may even provide semantic

information that explains how services as part of this solution go about accomplishing

a particular task. Either way, this information establishes the terms of engagement to

which consumers of a service need to comply. Because this contract is shared

amongst services, its design is extremely important. Service requestors that agree to

this contract can become dependent on its definition. Therefore, contracts need to be

carefully maintained and versioned after their initial release.‖

Service contract is also important, since, in the Web services projects, the software

code called stub on the client side, is generated from the WSDL document, which is

12

the service contract. When a WSDL document changes, all the clients depending on

this contract should regenerate their stub code and change their service consume

code accordingly, to remain compatible with the service provider.

This description of service contracts is an evidence that they are a chief component

in the implementation of service oriented architectures and these contracts allow for

the other seven principles including service abstraction, composability, and

discoverability and others.

2.2.2 Services are loosely coupled

It is difficult to predict the manner in which the ICT environment of an enterprise will

change over time. It is also impossible to predict the manner in which automation

solutions will develop, integrate or replaced, and because of this, none of these

changes can be planned. One of the primary purposes of SOA implementation is the

ability to respond quickly to such unforeseen changes.

Coupling can be described as a measure of dependency. If the dependency between

the software components is high, the coupling between them can be said tight or

high. Two software components are said to be decoupled, if there is no dependency

between them. In order for SOA to produce the aforementioned benefits, the

relationship amongst the services must be loosely coupled as noted by Erl [13].

Implementing loose coupling is not only related to decreasing dependency between

services. It also relates to decreasing dependency between a service and its

consumers. This is accomplished by designing services that are not specific to

specific service consumer. In this way, a SOA application may have a service

inventory containing services encapsulating standalone units of logic. These

services, as they are loosely coupled, can be used in different compositions.

In addition, as multiple services are being developed to satisfy the needs of a service

oriented enterprise, such services may be organized into particular service models,

which permit the services to be specialized in the same logic in which they

encapsulate. The business service model is particularly critical as it relates to this

construct because it restricts the logic that is represented by a service so that it

reflects a correct expression of a particular business context.

13

When standardization occurs based on a set of service models, various domains of

an organization have the capacity to be abstracted. This type of abstraction permits

the organization to develop relationships that are loosely coupled amongst particular

areas of the organization. This is accomplished when layers of services in SOA are

developed that adequately correspond to the relevant domains‘ business functions.

Once this is successful, loose coupling is beneficial because it improves the agility of

the system. In short, it appears that loose coupling is an essential principle in SOA,

because it allows more flexibility to the organization.

2.2.3 Services abstract underlying logic

This SOA principle concerns with abstracting functionality and technology. Erl [14]

asserts that this phenomenon is also called service interface-level abstraction. This

particular principle is responsible for encouraging enterprises and ICT professionals

to create services as black boxes. These black boxes shield fundamental details from

possible service consumers. This abstraction occurs via closely controlled usage of

service contracts. This principle is necessary, because by restricting the public

information to what has already been identified through the service contract, there is

a greater level of separation between what is consumable and what is hidden. This

principle related to abstraction is also essential as it relates to the principle of loose

coupling.

As noted by Erl[14], there is no limit associated with the amount of logic that can be

present in a service. For example, a service can be developed to carry out a simple

task or can be formulated as an interface to a complete automated solution. In

addition, no limitations are associated with the supply of automation logic that a

service abstracts from. This means that coarse grained services can have the

capacity to render logic from a multiple underlying systems. Even these systems may

reside in different platforms, implemented with different programming languages. As

organizations and ICT professionals evolve to the usage of service models that

create a context related to a business unit or task, it is probable that in environments

with various legacy solutions, one service will commonly render functionality that is

dependent upon various systems. This hides details of the various underlying

systems from the service consumers, since consumers do not need to communicate

with the different proprietary technologies.

14

Abstraction at the interface level is a benefit of a distributed platform that is present

with component and web services based architectures. In addition, the utilization of

Web services particularly increase system-wise business relationships because they

increase the amount of abstraction. Web services are also responsible for abstracting

proprietary implementation details. This type of abstraction prevents users of the

service from being forced to interface with the proprietary technologies of a particular

vendor. Although abstraction is usually associated with a particular service, separate

operations packaged in a service are actually responsible for abstracting the

underlying logic. From this perspective, services can be regarded as vessels for the

operations to carry out tasks. As a result of this, the amount of abstraction in a

service can be identified by the combined levels of abstraction accomplished by each

of the service operations.

Erl[14] claims that this particular principle places a great deal of emphasis on the

manner in which the service contract is designed. If the service contract is generic in

its design, the less consumer-specific the service will be. This issue determines reuse

probability of what is rendered via the service contract.

2.2.4 Services are composable

A service can be composed of other services. As service portfolios increase in their

capacity, service compositions became frequent in service oriented architectures as

noted by Erl[15]. This principle is critical because it guarantees that services are

developed in a way that will allow them to be members or controllers of compositions.

Development of the service functions is important for the service to be composable. It

is important to understand that the composability of a service is actually a type of

reuse and as such functions must be developed in a way that is standardized and

that contain the right amount of granularity, so that advantage of composition

opportunities can be taken.

A universal SOA principle that emphasizes the importance of composability is

orchestration. As it relates to orchestration, a service-oriented business process is

articulated through a composition language, such as BPEL (Business Process

Execution Language). This composition language serves the purpose of organizing

15

the business process as a service composition embodied by a parent process

service. In either case, the necessity for a service to be extremely composable is not

contingent upon existing composition requirements.

2.2.5 Services are reusable

A service oriented architecture supports reuse and this creates flexibility and

decreases time to develop an enterprise system. Main goal of the reuse principle is to

develop every service as an asset of ICT that has repeatable value. When the

number of these reusable assets increase, the chances increase that the effort to

create new business automation requirements by building less and using more of

what is already present will be successful.

This particular principle is geared toward reducing the time required to develop

automation logic. In doing so, the overall responsiveness to change will improve for

the enterprise, and the system becomes more agile. Additionally, the completion of

development requirements will also become more cost-effective. Many enterprises

are investing a great deal in the development of a reusable service inventory to

accomplish these benefits. As noted by Erl [14],

―This principle facilitates all forms of reuse, including inter-application interoperability,

composition and the creation of cross-cutting or utility services. As we established

earlier, a service is simply a collection of related operations. It is therefore the logic

encapsulated by the individual operations that must be deemed reusable to warrant

representation as a reusable service. The emphasis on far reaching reuse also

highlights the suitability of Web services as an implementation option for services. By

making each service available via an industry standard communications framework,

reuse potential can broaden dramatically because the logic encapsulated by a

service now becomes accessible to service requestors built with different underlying

technologies.‖

It is apparent that the principle of reuse is important in realizing the full benefits of

SOA. Reuse allows for the streamlining of the ICT environment, making it more cost

effective and more efficient.

16

2.2.6 Services are autonomous

Autonomy is a critical principle associated with the implementation of SOA. If the

performance of services is to be reliable and predictable, they must have a high level

of control over the underlying resources. The principle of autonomy is consistent with

this measure, as it stresses the necessity for individual services to have significant

amounts of individual autonomy.

Such autonomy is necessary because increasing the level of control a service

possesses over its implementation, the greater reduction in dependencies it will

require, as it relates to shared resources within an organization. This makes a service

more free-standing and reusable. Although a service cannot always be provided with

exclusive ownership of the logic present within it (for instance, a service operation

may need to perform database operations, and database may not be available when

the service needs to connect to the database), the main concern of the enterprise is

acquiring significant amount of control over the logic that is represented when the

service it is executed.

Poulin[16] defines three types of autonomy:

a. Pure autonomy: Pure autonomy means that the service owns and controls all

used components and resources. It is usually more desirable for an

organization having a service inventory that contains pure autonomy, but it is a

very rare case in real life. Erl [17] states that pure autonomy assists the

organization in confronting scalability issues such as concurrent access

conditions. Pure autonomy empowers enterprises to position services in a way

that is more reliable to counteract the single point of failure possibility that

often occurs as a result of leveraging reusable automation logic. However,

because such autonomy commonly requires the development of new service

logic and may demand special deployment conditions, it may produce further

expense and effort.

b. Service- level autonomy: In this case, the service does not own and control

some of its resources. This is the most common scenario in real life. As it

relates to service-level autonomy, the limits of services are different from one

another, however more than one service can still share the same resources.

17

For instance, Earl[17] states that ―a wrapper service that encapsulates a

legacy environment that also is used independently from the service has

service-level autonomy. It governs the legacy system, but also shares

resources with other legacy clients.‖. In addition, pure autonomy asserts that

the underlying logic is subject to the power and possession of the service.

According to Erl[17], this is usually true when the logic is developed

specifically in support of the service.

c. Contractual autonomy: It means that a service‘s autonomy is based on service

contracts with others.

Poulin[16] states that ―One of the most dangerous things we have to avoid when

dealing with service autonomy is the absence of control over the used resources. For

example, if we use the service-level autonomy where the service, e.g., consumes

data from a shared data-store, the mandatory element of such service design is the

contract with the data-store. The contract has to define minimal but guaranteed

number of concurrent connections available to the service on-demand, a range of

acceptable response time values, schedule of data-store availability and a like. If the

service design, on the contrary, assumes usage of the data-store silently, without a

contract, it risks sporadic failures caused by potential mismatch between the service

needs and data-store capabilities.‖

2.2.7 Services are stateless

State describes the condition of being for an entity. For instance a car that is being

driven is in a state of motion, as opposed to the parked car which is in a stationary

state. Software components can be stateless and stateful. Erl[17] insists that these

two terms define the runtime condition of a software program as it coincides with the

processing necessary to perform a particular task. The automation of a specific task

requires the processing of data that is related to that task. This data is known as state

information. Software that is actively processing state information is identified as

stateful.

The increases of the processing demands on services that are reused and composed

also increases the necessity to take full advantage of the service processing logic.

The development phase of service oriented architectures calls for a great deal of

18

emphasis to be placed on state management. As a result of this emphasis that is

placed on the reorganization in the management of state information, SOA requires

that there should be a principle that is designed to address these concerns.

This principle asserts that services should reduce the amount of state information

they control, in addition to the length of time for which they remain stateful. Within an

architecture that is service oriented, state information is usually representative of

information that specifically relates to the current service activity. For instance, if a

service is processing a message, its stateful condition is only momentary. In addition,

if the stateful condition is long term, it will not have the capacity to be available to

concurrent consumers.

SOA prefers a condition of statelessness as it relates to the services. The

statelessness encourages autonomy, scalability and reusability.

2.2.8 Services are discoverable

The principle of discoverability is important because it aids in avoiding the creation of

services that are redundant. It also prevents the implementation of services that

contain redundant logic. Since each service within SOA architecture has automated

logic that may be reused, the metadata linked to a service must have the capacity to

accurately define both the functionality supplied by the individual operation of the

service and the purpose of the service.

Erl [15] explains that the principle of discoverability is related in some way to

architectural level discoverability, but it is also distinctive from this type of

discoverability. As it relates to the architectural level, discoverability refers to the

technology architecture's capacity to offer a discovery mechanism, such as a service

registry. Such mechanisms effectively are a part of the overall infrastructure that

supports SOA. Even at times when there is not a necessity for a service registry,

services within the architecture must still be developed as highly discoverable. In

doing so, when a service portfolio increases in size, the new type of management for

those services can be better controlled, since each service possesses sufficient

metadata to correctly communicate its purpose and capacities.

19

After reviewing the eight principles given above, Erl [12] states that ―Of these eight,

autonomy, loose coupling, abstraction, and the need for a formal contract can be

considered core principles that form a baseline foundation for SOA. Although each of

the eight principles support or are supported by the others, these four directly enable

the realization of the remaining principles. It is also worth noting that Web services

naturally support a subset of these principles, which provides an indication as to why

the Web services technology platform is considered so suitable for building service-

oriented solutions.‖

All of these principles assist in the implementation and management of SOA within

the enterprise. It is evident that organizations must have a full and thorough

understanding of these principle prior to implementing a SOA application. If these

principles are not thoroughly understood, an enterprise could waste a great deal of

time and money implementing a SOA plan that will be unsuccessful.

20

3 WEB SERVICES

Web services technology have taken the concept of services and implemented it as

services delivered over the web using technologies such as XML, Web Services

Description Language (WSDL), Simple Object Access Protocol (SOAP), and

Universal Description, Discovery and Integration(UDDI). Nowadays, web services is

the primary technology that is used in implementation of SOA based applications.

Using web services, it is possible to integrate different applications even if they are

written in different programming languages, work on different operating systems and

deployed on different hardware platforms. SOA, powered by web services

technology, is the premier integration and architecture framework in today's complex

and heterogeneous computing environment. In this chapter, web services is defined,

and a typical scenario incorporating web services is given. Advantages and

disadvantages of web services technology are also underlined.

3.1 Definition of Web Services

The software industry understood that combining software applications across

numerous programming languages, operating systems, and hardware platforms

leads to the problem of application integration. This problem is not going to be

remedied through the use of a single proprietary environment and communication

technique.

IBM defines Web services as a technology that permits applications to communicate

with one another utilizing a platform and programming language in a manner that is

autonomous [18]. Additionally, a Web service can be a software interface that depicts

a collection of functions that can be made available throughout the network using

standardized XML messaging. This approach utilizes protocols derived from the XML

language to define a function that is being deployed in a system, so that data can be

traded with other systems or some other Web service. In other words, Web services

are software components capable of communicating with each other over multiple

networks using universally accepted, nonproprietary open-standards based on XML.

Overall, the most important problems that Web services attempt to solve are the

problems of data and application integration.

21

Web services utilize XML, which has the ability to identify all data in a manner that is

platform-independent. This allows for exchange across numerous systems, allowing

for applications that are more loosely-coupled. In addition, Web services can operate

at an intensity that is more abstract in that it has the capacity to reevaluate, alter or

handle data types vigorously and according to demand. As a result, Web services are

able to manage data more easily and permit software to liberally communicate [18].

At the conceptual level, Web services can be viewed as units of work, with each unit

managing a particular task, containing group of operations related to that task. These

operations can be integrated into business-oriented tasks to manage specific

business operational tasks, and as a result, non-technical people can develop

applications that can manage enterprise-wide issues collectively, utilizing a workflow

of Web services applications. When the Web services are developed and built by

technical professionals, business process architects can understand them, so that

they can resolve business level problems. For example, an architect of a business

process can attempt to compile an entire car engine using the car frame, body,

transmission, and other systems, instead of looking at the various components

contained within the engine. Likewise, this unique platform means that the engine

can work in congruence with the components from different car manufacturers [18].

This scenario is analogous of the fact that Web services are assisting in bridging the

gap between the business staff and ICT staff in an organization. The gap is bridged

because Web services simplify technical operations for the business people to

comprehend them more efficiently. As a result, business people can now detail

events and actions and the ICT staff can associate these events and actions with

appropriate services.

In addition, universally identified interfaces along with well designed tasks make it

easier to reuse these tasks. Reusability of application software is important because

it translates to an improved return on investment on software, as it can generate

more from the same amount of resources. This also permits business people to

consider utilizing an existing application in a different manner or even presenting the

existing application to a partner in a different manner, and as a result, the business

transactions between partners are enhanced.

22

According to an article published by IBM, web services are the primary technology

that is used in the implementation of SOA [18]. Indeed nowadays, both XML and

Web services play a significant role in businesses and SOA implementations.

Although web services are widely used, there are also other technologies that can be

utilized in the implementation of certain SOA components. Most SOA initiatives that

involve Web services include the incorporation of legacy data that is present in

technologies including Common Object Request Broker Architecture (CORBA).

Businesses can execute SOA by simply using CORBA, Microsoft‘s Distributed

Component Object Model (DCOM), or Remote Procedure Call (RPC) technologies.

3.2 A Typical Web Services Scenario

Figure 1 depicts a typical web services scenario:

Figure 1. Web services scenario

23

The Web Services Description Language (WSDL) forms the basis for Web Services.

A WSDL file is published by a service provider and contains information regarding

every operation that a web service embodies. A service provider and service

consumer are depicted in Figure 1. The steps involved in providing and consuming a

service are:

1. A service provider describes its service using WSDL. This definition is

published to a directory of services. The directory could use Universal

Description, Discovery, and Integration (UDDI) protocol. Other forms of

directories can also be used.

2. A service consumer issues one or more queries to the directory to locate a

service and determine how to communicate with that service.

3. WSDL provided by the service provider is passed to the service consumer.

This tells the service consumer what operations are provided by the web

service and how to call them. It basicaly contains details of requests and

responses for the service provider.

4. The service consumer uses the WSDL to implement a stub that is used to

send a request to the service provider. All the request and response

messages in Web Services technology are SOAP (Simple Object Access

Protocol) messages, which is an XML based message format.

5. The service provider provides the expected response to the stub and and this

response is passed to the service consumer.

Note that steps 1 to 3 are optional. A service consumer may already know the service

provider and it can request WSDL related to the web service it would like to use

directly from the service provider or get it by other means. Once the service

consumer gets the WSDL document, it has all the required information regarding

reaching the service and using its operations.

24

3.3 Characteristics of Web Services

Web-services technology has advantages and disadvantages. It is important to take

into account all its limitations.

Advantages of Web-Services are noted by Shailesh[19] as follows:

 Web services are open, international standards-based.

 Web services are platform and technology neutral.

 Web services promote reusability.

 Web services make true EAI (Enterprise Application Integration) possible.

 Web services reduce integration costs. Web services allow companies

integrate their own business processes with the business processes of

business partners and clients, with the smaller cost than by using other

integration technologies.

 Since Web Services are organized into the public repositories (UDDI lists,

ebXML lists or others), they are accessible to the interested people worldwide.

As a result of this, the threshold of the exposure of companies for the new

markets is lowered, whereas possibilities for the growth of client base on the

contrary grow.

 Web services do not replace existing applications and components but they

build a superstructure themselves above existing applications. Thus, the

safety of the already made investments into ICT infrastructure is ensured.

 The construction of the new solutions by implementing Web services makes it

easier for companies to make their solution fast to market and in cheaper

manner, since Web services enable less technical business people to

"assemble" software solutions without the need for coding.

 Web services allow for a more scalable architecture.

25

Disadvantages of Web- services are summarized as follows referring to Shailesh[19]:

 Web services standards may evolve. This means, Web services applications

should continually adapt themselves to emerging Web services standards to

keep place in the cutting edge technology frontlines.

 Some vendor solutions create single-vendor approaches which conflict with

the open standards based vision of Web services.

 By utilizing HTTP, Web services can evade existing firewall security measures

whose rules are intended to block or audit communication between programs

on either side of the firewall.

 Web services may suffer from poor performance compared to other distributed

computing approaches such as RMI, CORBA, or DCOM. This is a common

trade-off when choosing verbose text-based formats. XML explicitly does not

count among its design goals either conciseness of encoding or efficiency of

parsing.

26

4 ISSUES RELATED TO THE IMPLEMENTATION AND MANAGEMENT OF SOA

As it relates to the implementation and the overall management of service oriented

architecture, there are several issues that organizations must take into consideration.

The consideration of these issues is critical to ensure that the implementation and

management of the SOA is successful.

4.1. Approaches to Integration

As noted by Frievald [9], the manner in which enterprises choose to integrate SOA

will greatly effect the benefits that are arrived from its integration. There are a variety

of platforms that enterprises can choose from as it relates to the integration of SOA.

Frievald asserts that one of the first things that an organization needs to consider

when integrating SOA is functionality that is required to develop the SOA. These

functionalities are summarized in the following subsections:

4.1.1 Intelligent routing

This functionality is related to service calls in addition to other events that allow

collaboration by steering action in applications and other divisions of the enterprise.

These factors require a tool for distinguishing such things as messages types,

knowing the possible endpoints for messages, identifying data values in them, and

steering messages to where they're needed. All of them must be taken care of

without weighing-down developers with the details of communication instruments or

application manipulations as noted by Patrick[20].

4.1.2 Transformation

A highly developed transformation engines are necessary because application must

work together to offer services or take action against events that may occur. In

addition to the transformation engine, providing mapping amongst the various

representations of business entities is a critical part of application. Even though XML

transformations are also critical, the ideal transformation engines can also handle

non-XML formats such as EDI, SAP IDocs and flat files [20].

27

4.1.3 Tools for service monitoring

Because SOA has a more distributed architecture, organization must have the

capacity to view who is utilizing their services and if service-level agreements are

being obeyed [20].

4.1.4 Advanced capabilities

Certain capabilities such as allowing basic enterprise searches are essential

because certain kinds of services fit more successfully into the distributed SOA

architecture and helps extending services to partners and [20].

4.1.5 State management

Even though many experts agree on that services in an SOA ought to be stateless,

long-running business processes that utilize such services also necessitate a state

management capability such as the capability offered by a Business Process

Execution Language (BPEL) engine [20].

As was mentioned previously, a service oriented architecture is representative of a

consistent way to determine and access distributed services that invoke functionality

which creates the preferred impact with measurable preconditions and opportunities.

The services shield implementation details but have related service descriptions that

present enough information to be comprehended by both the technical and business

requirements for utilizing the service. In addition, the decision to utilize a service is

usually dependent upon an understanding of the requirements and conforming to the

requirements [20].

4.2 Approaches to Service Enablement

This section mentiones some important and commonly used software engineering

techniques for enabling services.

4.2.1 Service proxies

Patrick [20] noted that, as it relates to the enablement of services, service proxies

play a valuable role. Service proxies are the most widespread type of service

enablement, they take on this role because there is often a lack of suitable

28

integration points between the information sources. Service proxies are responsible

for creating an external wrapper. This external wrapper is installed in front of an

information source and behaves as an entryway or "proxy" to allow admission to the

information source. In addition, a service proxy for the purpose of accessing files in a

file system can be developed to gain admittance to a file that is located anywhere in

a file system. The service proxy can also be limited to only certain areas of the file

system.

In addition to the aforementioned functions of a service proxy, they can also be used

to shield the particulars of the costumers‘ actions as it relates to having a session

with the information service [20]. This hiding or shielding of details also relates to

altering the service request into a suitable set of interactions so that the information

service may be updated or retrieved. It also allows for the formation of the information

that will be given back to the customer. There are also more advanced situations that

require the use of service proxies. In such cases the proxy has the capacity to shield

the additional steps that are needed to identify the result that will be given back to the

consumer. Such an advance situation would encompass the retrieval of additional

meta-data, including data sensitivity labels that are in another information store and

must be retrieved and assessed prior to being returned to the consumer.

Service proxies can be utilized to improve performance. This improvement is realized

when proxies cache remote references and information. When this takes place the

subsequent service call will not necessitate any further registry calls [20]. In addition,

as noted by McGovern and Stevens [21], because the service contracts are stored

locally, the consumer is able to limit the amount of network hops needed to employ

the services. The article also asserts that proxies work to improve performance by

removing the need for network calls because the functions are performed locally.

The article [21] further asserts that the proxy will allow local implementations of entire

service methods which do not necessitate service data. Furthermore, methods such

as calculations and currency conversions can also be performed within the proxy. In

addition, even if the method necessitates the need for some service data, the proxy

has the capacity to download the data one time and reuse the data for other method

calls. When this technique is utilized, it is imperative that the proxy support only

methods the service itself provides [20].

29

There are also some definitive facts concerning the design pattern of the proxy. It has

been stated that the proxy serves nothing more than a local reference to a remote

object. In addition, if for some reason the proxy alters the interface of the remote

service, then technically, it ceases to be a proxy. Further, a service provider will make

available proxies for several diverse environments [21].

 Additionally, a service proxy is developed in the native language of the service

consumer. For example, a service provider will provide proxies for Java, C#,

Objective C, Visual Basic, and Delphi if they are the most probable platforms for the

service consumer. Even though the service proxy is not necessary, it does have the

capacity to greatly enhance expediency and performance for service [21].

4.2.2 Service adapters

As noted by Patrick [20], another critical component in service enablement is the use

of service adapters. Service adapters are actually an embedded component of a

service proxy. However, there are some concrete differences as it relates to the

manner in which these approaches enable service. The primary differentiation can be

made in that the service adapter is incorporated into the response processing logic of

an information source. In the most common form of this incorporation can be seen in

application packages or an application server that host the application, as opposed to

an external component of the information source.

There is a primary benefit associated with the use of a service adaptor [20]. This

benefit or advantage has to do with the fact that service adapters usually do not

require another linkage between the information source and the service enablement

piece. This is different from the service proxy approach in that there is usually a

network link between the proxy and the consumer, and a connection between the

information source and the proxy; however the service adaptor approach only

necessitates support for the link between the adapter and the consumer. The benefit

of this is that it usually produces an environment that is more secure because the

communication with the information source is arbitrated by the adapter which is

integrated into the request processing logic of the information source.

30

4.2.3 Unified information views

One of the critical issues that organizations must take into consideration while

realizing SOA is unified information views. Simply revealing information sources as

services does not take into account the issue of unified information views. Revealing

information sources as services also has no effect upon the issue of updating the

information that is contained in the unified view. Indeed a service based approach is

problematic because it lacks the logic that is responsible for understanding the

information sources that possess the information that is required to develop a unified

view of a unit and the interactions between the assorted pieces of information found

in each information source that compile the unified view [20].

Once an organization understands this dynamic a developer should organize an

information service that will reflect a unified view [20]. Patrick concedes that this

would be a difficult task because the developer would have to have knowledge of all

of the information sources. This task is even more difficult when there is a

requirement to carry out updates on the information that is within the unified view. In

such a case, a developer might have to recall where the information was derived.

The developer would then be forced to manage the problem associated with knowing

what aspect of the information was altered that the related information sources that

had to the updates. Additionally, the developer would have to confront the issue of

not being able to update some of the data store [20].

Although this can be a significant issue there are products that address the problems

associated with developing a unified view. These products as noted by Patrick [20],

―provide service based views to application developers without the need to develop

the actual code to assemble the unified view. Instead, these types of products utilize

graphical modeling tools which can discover and display schema contained in

structured storage and allow unified views to be graphically constructed and then

code generated. Furthermore, the generated "code" can be in the form of a

declarative query language, such as XQuery. This enabled a variety of optimization

techniques to be brought to bear when processing service requests, particularly if the

services are defined in a layered manner. These types of products also include

features which handle the issue of utilizing the appropriate authentication mechanism

31

and connection management of each information source so that the identity of the

requesting entity is available to the information source.‖

4.2.4 Data sources

There are many different sources of information within an organization which are

inclusive of directories, images, text files and databases. In addition, the manner in

which this information can be stored is also varied. In order to confront the problems

that may arise as a result of all the varied information, a developer has to code to

meet the needs of every source. In addition, as the information source grows and

additional information sources are apparent, there must be changes made that adjust

the specifics of the format of the information source. Even though SQL offers a

generic purpose mechanism that allows access to the data that is located in

databases, however the implementation of SQL as a way to get information from

other information sources was never utilized. As a result, a concept arose involving

the use of information sources as services [20].

In the use of Service Oriented Architecture, organizations are now depending upon

service-based information sources. Even though this approach could be carried out

with many different types of technologies, Web services and XML are the preferred

technologies. Using SOA, organizations now have the capacity to hide details

concerning whether the information source uses an SQL query or any other

mechanism to gain access to the information [20].

As a result of this, technology developers do not have to learn several different

access schemes. Instead developers will be able to focus on creating service

requests and managing service responses. When organizations use certain

technologies, developers can be taken away from the details of authenticating the

information source to dealing with connection management.

4.2.5 Access and security

Patrick [20], asserts that information contained in a SOA is only as good as the

security that the business implements. In most cases vendors tend to focus on

certain aspects of security such as authorization, authentication and secure

communication. However, the business environment also requires that other security

32

issues be considered. These additional security issues concern such things as new

privacy laws and regulatory statues. In addition, there are now other business

requirements that are an important component for most businesses. Making sure

these security features are present is no longer an option as there are now serious

personal and financial penalties that can occur if these new policies are not adhered

to.

Contemporary business systems gather information from many diverse sources and

this information is retrieved in various formats. With this in mind, it becomes an

increasingly difficult task to manage all of these various forms of information in one

type in information warehouse. Indeed businesses are forced to choose between

many different security solutions that are not integrated and do not have the capacity

to be managed from one location [20].

Indeed integrating SOA with the security of the organization can be a difficult

challenge. However for many of the reasons that is previously mentioned, the

integration of security is critical for the proper implementation and management of

SOA. Integrating security is particularly difficult as it relates to SOA because there is

a requirement that all the components of each application have a separate security

administration. Initially businesses undertook these measures because it was

believed that each component was vulnerable to security breaches. So then if

information sources are taken into consideration it is apparent that every source has

an authorization mechanism, an authentication mechanism and an auditing

mechanism. Since all these mechanisms exist a great deal of money can be spent to

manage all of these individual mechanisms [20].

Viewing this issue as a problem for businesses, some security vendors have

attempted to resolve this issue via the concept of centralized enforcement servers.

Many of the information vendors nowadays actually use a security system as the

authority on policy decisions. However, Patrick [20] argues that large percentage of

these systems has not been very effective. The effectiveness of these systems is

further reduced if they are utilized in an SOA which is extremely distributed. For

instance, the Department of Defense's Network Centric Enterprise Services (NCES),

found that the network latency alone as it related to producing remote authorization

decisions ended in a 70% performance deficiency for each web service business

33

request [20]. According to Patrick [20], the addition of extra bandwidth could combat

many of the performance related problems. However additional bandwidth will not

confront the network latency problems, or the potential for the security services to be

a bottleneck or single point of failure.

As noted by Patrick [20], a common approach to security in the world of business is

to protect the resource in a way that is a close to the resource that is possible.

However, businesses must confront the issue of unifying the protection without

degrading the performance. For this reason, there are certain products that offer a

collection of security services that permit security measures to take place as close to

the resources as possible. As with any other service, the execution details of

involving the security service are abstracted via a service interface. In addition, the

security constructs present in this approach may be used with the service proxy and

service adapter approaches discussed earlier in the research; it can also be used

within applications themselves.

Patrick [20] states that, to effectively implement a distributed environment there must

be a centralized administration approach. Such an approach must also be

established on services as to ensure that varied implementations can be incorporated

permitting existing investments to be integrated. In addition, promising standards

concerning provisioning and policy language, including the XML Access Control

Markup Language (XACML) and Service Provisioning Markup Language (SPML) are

the building blocks of the security mechanisms that are present in information

sources and they have the ability to integrate.

4.3 Technologies Relevant to SOA

Two software technologies, namely ESB (Enterprise Service Bus) and BPM

(Business Process Management) gained interest in the SOA world, since they

simplify SOA implementations, improve their quality by adding new capabilities and

increase their agility. They also reduce complexity of management of SOA

deployments. These technologies are investigated in the following sections.

34

4.3.1 ESB (Enterprise Service Bus)

An ESB is a software system that functions as a transit layer for carrying information,

providing connectivity to a wide range of heterogeneous systems. The bus provides a

set of capabilities to enable application integration and service-oriented architecture

(SOA), including service creation and mediation, routing, data transformation, and

management of messages between endpoints. ESB is an important software product

category today, many prominent software companies offer ESB products (such as

Oracle ESB by Oracle, WebSphere ESB by IBM) and there are many open source

ESB implementations (such as Apache ServiceMix, JBoss ESB, OpenESB,

MuleESB, WSO2 ESB), since they act as integration platform that allows connecting

various applications and systems together quickly and easily, enabling them to

exchange data. Figure 2 depicts functions provided by a typical ESB from

architectural point of view.

Figure 2. Enterprise Service Bus (ESB)

The key advantage of an ESB is that it allows different applications to communicate

with each other by acting as a transit system for carrying data between applications

within an enterprise or across the Internet.

35

Contemporary ESBs offer the following functionality:

 Service creation and hosting: ESBs expose and host reusable services, using

Mule ESB as a lightweight service container.

 Service mediation: ESBs shield services from message formats and protocols,

separate business logic from messaging, and enable location-independent

service calls.

 Message routing: ESBs route, filter, aggregate, and re-sequence messages

based on content and rules.

 Data transformation: ESBs exchange data across varying formats and transport

protocols.

When an ESB is utilized, businesses have the capacity to rapidly put together

applications from the services that are plugged into the bus and they can then

develop new applications that are information based. The orchestration of services is

now available to alter the manner in which the ICT infrastructure of a company uses

information sources. It also changes the manner in which a company integrates the

capabilities supplied by and to external partners to permit the business to efficiently

execute its undertaking.

ESB is essential because it offers flexibility to permit data transformations and

various services to be ―plugged into the bus and then be reused by any number of

different services and application components [20].‖ In addition, one of the primary

benefits associated with the implementation of ESB is its ability to eliminate the need

to make a particular processing flow hard code. As such, the processing flow can be

defined and then assembled by non-developers.

Data transformations are a significant component in the implementation and

management of service oriented architectures. The exposing of an information

source as services does not give consideration to the concept of transforming

information into a new format. Transforming information into a new format is often

necessary because most enterprises have different identifiers associated with bits of

information. Although it may seem beneficial to standardize the information models

36

associated with an application, in most cases it is neither possible nor practical. This

is particularly true when there are aspects of an application are services supplied by

an external partner. Consequently, there is often a requirement for data

transformation even if information sources are offered as services [20].

There are many approaches that can be utilized to transform the data. The concept

of canonical information format is an approach that can be used to rectify this

problem. As it relates to the canonical approach, individual information services have

to normalize information into a canonical format2. This particular approach does

come with some problems including some limitations. The most prominent limitation

has to do with the fact that many businesses do not have the ability to identify an

individual data dictionary. In addition they do not have the capacity to guarantee that

their partners will use the definitions that are identified [20].

Understanding this limitation, businesses may choose to embrace another approach

that will allow them to develop other services that only offer the capacity for data

transformation. When this type of construct is created, the business can then allow

individual implementations to make requests to other services. Although this

approach can be successful it does have some drawbacks. For instance the

separation and reuse of data transformation can create hard coded process flows

that might need to be altered [20].

In addition to the assertions made by Patrick [20], Arsanjani [23] states that

businesses that have a variety of services will eventually need an administrative and

operational model. Such a model will improve the ability to achieve the following:

 Maintain a range of interface techniques, such as messaging, synchronous

request/response, and publish/subscribe.

 Manage a significant amount of large numbers of service interactions in a

convenient manner.

2
 Canonical format can be defined in enterprise application integration context as, “the Canonical Model is a

design pattern used to communicate between different data formats. It introduces an additional format, called

the "canonical format", "canonical document type" or "canonical data model". Instead of writing translators

between each and every format (with potential for a combinatorial explosion), it is sufficient just to write a

translator between each format and the canonical format [22+.”

37

 Offer support for highly developed service interaction capacity which would be

inclusive of such things as store and forward transactions, infrastructure

services, quality of service and security.

 Offer a strong, controllable, disseminated integration infrastructure that rely

upon the aforementioned principles of SOA.

 Manage both Web services along with conventional EAI communication

standards and technologies.

Arsanjani [23] asserts that a business that is confronted with such issues should

develop an ESB that can supply middleware capabilities throughout the businesses

so that all the various service interactions can be managed appropriately. Further, an

ESB must have the capacity to support the mediation, transformation, integration and

communications technologies that are needed by the services and capacity to

distribute geographical deployment, utilizing a common model for both the

management and administration of the enterprise. According to Arsanjani [23], the

critical features of an ESB, include the following: ―It is deployed as one or more "hub"

components. Each hub provides a localized but resilient capability to perform routing,

transformation, security, and other functions commonly referred to as "intermediary"

functions. It has a namespace directory and administration services used to

administer the services it supports access to. In a geographically deployed ESB, the

administration services maintain a consistent configuration across a network of

cooperating Hubs. It has a number of inbound ports. Each inbound port is configured

to receive service requests on a set of addresses using a particular protocol, for

example, SOAP/HTTP or WebSphere MQ. It has a number of outbound ports. Each

outbound port is configured to forward service requests to and receive responses

from a set of addresses using a particular protocol [23].‖

This type of construct allows the ESB to support the virtual service provider pattern

and remote service strategy for any number of services across an enterprise in a

common way. In addition, the ESB can allow transformations between a variety of

data format, security, or transactional models in addition to service requesters and

providers. By possessing this function the ESB acts as both a control and

38

encapsulation point for the expected difficulty and different scenarios that are present

in an organization.

Thus, the enterprise service bus is important in the development and implementation

of an SOA. It is apparent that ESB assists businesses in streamlining various

functions. It is also apparent that ESB is most useful as it relate to SOA involving

large companies.

4.3.2 BPM (Business Process Management)

Noted by Smith [24], business processes are at the heart of business operations.

Using SOA approach, software systems can be built using services. Like services,

business processes can be considered as software blocks, but business processes

tend to be bigger, much more coarsly grained constructions. It is natural for a

business process to encapsulate a workflow containing calls to many SOA services

deployed in geographically and technologically dispersed providers, some of which

may belong to different constitutions. In business process world, the messages

exchanged between different systems are business documents. These documents

can be considered as parameters passed to service operations. In a way, it is

possible to think about business processes as software blocks related to business,

not with a specific product. Business process blocks perform workflows containing

service calls to different products, and need to be managed separately from the

services they connect to.

For decades business process management was limited to only the ability to

document processes. As the means to document processes technologically improved

so did the potential to use technology to manage more aspects of the process. Over

the years built business process management tools failed to simplify a subset of the

overall complex process like workflow, or enterprise application integration. Today,

business process management products hold promise of a comprehensive solution to

manage all enterprise processes with greater efficiency as noted by Smith[24].

SOA organizes ICT infrastructure to achieve greater efficiency through reuse, and

better agility with the use of services. It is a response to proliferation in systems,

technologies, communication protocols, databases and data models. SOA hides this

complexity behind a set of business services and provides an infrastructure that

39

standardizes how these services communicate and how they are managed. The

result is that ICT can respond faster and build new solutions for the business faster

and cheaper. A transformation to SOA predominantly benefits ICT [24].

BPM and SOA, when combined work together to synergistically improve both

business and ICT efficiency and agility providing higher order benefits. In addition,

the unification of BPM with SOA delivers unprecedented simplicity and efficiency in a

SOA environment [24]. Many leading software companies such as IBM and Oracle

are aware of this and include a BPM implementation in their product catalogue.

4.3.2.1 Barriers to BPM

Business processes are by definition dynamic in structure as they manage

operational flow in a business that must adapt to changing business conditions. It is

challenging to manage these processes without incurring additional complexity. First

generation solutions lacking completeness and minimal integration introduced

barriers to business process management efficiency. Barriers included the inability to

address all process types with one solution, products that add complexity by requiring

ICT to first integrate the components of the BPM solution, ineffective collaboration

capabilities that occur outside of the process context, and performance, scalability,

and availability that failed to address enterprise requirements [24].

In the following, some of the barriers to BPM are outlined:

a. Process diversity: There is a natural diversity in the type of processes found

in business operations. Processes may predominantly require human

interaction, system to system exchange and transformation of information, the

generation of documents, or the need to arrive at an important decision. In

addition, processes can be characterized as simple or complex and may need

to manage a limited or large number of transactions. Some processes, like a

sales campaign, are long running and may take weeks, months, or even years

while others occur in less than a second. Processes may also be

characterized as highly structured with repeatable tasks or unstructured where

the flow of the process can only be determined during process execution.

40

As noted by Harvey[25], the diversity of these processes has traditionally

required the enterprise to use multiple process management systems that

specialize in managing a subset of these process types. The unintended

consequence results in trading process complexity for infrastructure

complexity. Efficiency may be improved in some processes but overall

efficiency and agility is still challenged due to the limitations or barriers

imposed by a point process solution.

The ideal process management solution is a platform that is truly complete that

it can address all types of processes. This reduces ICT complexity inherent in

supporting multiple products. It also provides a long term growth path for

managing more processes over time increasing overall process management

benefits, return on investment, and lower ICT and business costs. This

solution must also address the needs of both business and ICT with tools

appropriate to each role.

b. Collections instead of suites: The component capabilities of business

process management suites have existed separately for many years.

Document management practiced in the 1980‘s demonstrated the value of

workflow and human and process interaction. Business process management

suites introduced the innovation of solution completeness with the inclusion of

all required process management tools with the implicit promise that tools

easily work together [24].

BPM‘s primary benefit is increased efficiency for processes that span multiple

systems in the enterprise. Given this goal it makes sense that it is more

efficient to start with a process management solution that benefits from a high

level of internal integration simplifying the ability to remove complexity, deliver

faster time to value, and improve business agility.

c. Communication breakdown: It is often said that business process

management is essentially change management. One of the greatest

challenges inherent in both is managing the human and organizational aspect

of change. People naturally resist change for a variety of reasons. Successful

41

process management requires cooperation, communication, and collaboration

of all key stakeholders in both the business and ICT [24].

Effective communication and collaboration within the cross-functional process

team provides the foundation for success. Effective collaboration requires

process context and trying to find a process notification in an ever lengthening

list of emails provides a poor solution. In addition, the last few years has seen

the emergence of the importance of social networking in the corporate

environment. It is only natural that these new collaborative communication

technologies have a place in bringing the organization together in the

management of processes. Communication will benefit from the inclusion of

new communication choices while process collaboration will be improved with

communication in context [24].

d: Enterprise Readiness: Enterprise software requires enterprise-class

capabilities and performance. As discussed earlier some processes require

scaling to incredibly large numbers of transactions. Other processes may

contain a complexity that requires the utmost in execution efficiency. In

addition, like all enterprise software, availability, redundancy, and performance

need to be provided for. Without an enterprise grade infrastructure, process

management is constrained to singular departmental processes without

stringent requirements for availability [24].

4.3.2.2 Properties of recent BPM software

Contemporary BPM products offer various features targeting to simplify BPM

implementation and management. This section mentiones some important properties

of recent BPM software.

a. Unified process foundation: As noted by Harvey [25], business process

management has been shown to consistently simplify and increase efficiency

for processes that connect isolated silos of information across the enterprise. It

stands to reason that in order to help remove complexity business process

management software should itself be unified.

42

Referring to Harvey [25], the unified process engines provide for modular plug-

in execution of BPEL (Business Process Execution Language), the rules

engine, and human workflow with common rules available across all modules.

A unified engine delivers implementation of BPMN execution providing all the

benefits designed in this latest standard. The business catalog is a common

metadata store for both design and run time. End-to-end management unifies

management and monitoring of business processes with the connecting

middleware so that problem management does not stop at the process

boundary. A problematic process can be inspected through its process state

and into any interconnecting web services simplifying diagnostics and problem

resolution.

Integration services simplify connecting to additional systems and include a

variety of adapters for operational systems, integration with UDDI (Universal

Description, Discovery and Integration) and WSIL (Web Services Inspection

Language) repositories, imaging and content management systems, and the

ability to integrate metrics from various operational data stores, messaging

systems, OLTP systems, and process engines. It also unifies operation with

various products such as business Intelligence systems [25].

Enterprise grade process management requires enterprise-class operational

performance for both latency and throughput, high availability, and should be

enterprise architecture capable. The unified process foundation provides

enterprise grade support for both large numbers of processes and users. High

availability from clustering and end-to-end high availability along with database

high availability assures that processes will always be available.

b. User-centric design: There are many types of contributors to the process

management lifecycle. They include process modelers, developers, approvers,

and casual participants in both the business and ICT. Each role has specific

requirements and each individual their own preferences. Recent BPM products

address requirements for the many roles and preferences of users in both ICT

and the business. They generatlly contain different tools for technical business

analysts and similar varied roles of process participants in the business. Easy-

to-use process analysis and report generation tools simplify process status

43

and operational detail reporting. Multichannel development tools enable

simplified integration and reuse of interfaces across Web, portal, and service

channels [25].

c. Business process reports: Process analysis and reporting provides critical

business visibility. Business users require a wide variety of reports and the

flexibility to tailor reports to changing requirements. Recent BPM tools provide

easy-to-use, rich, visual report editor. Impact, gap, and redundancy and similar

reports can be generated easily providing visualization of process efficiency

and new simulation reports help visualize potential process scenarios [25].

44

5 AN APPLICATION

In this chapter, as an application of SOA, an IHE(Integrating Healthcare Enterprise)

profile PDQ(Patient Demographics Query) is implemented using web services

technology and deployed on an ESB acting as a service provider. Introduction to the

IHE concepts and implementation details are given in the following sections.

5.1 IHE (Integrating the Health Enterprise)

One of the key problems in the contemporary eHealth systems is interoperability. As

noted by Dogac et al. [26], interoperability concept in healthcare can be investigated

in different domains, such as the interoperability of messages exchanged between

healthcare systems, Electronic Health Records (EHRs), patient identifiers, coding

terms, clinical guidelines and healthcare business processes.

The IHE Initiative is a long-term program sponsored by RSNA3, HIMSS4, ACC5, ESR6

and other professional societies to promote the coordinated use of healthcare ICT

3
 RSNA (Radiological Society of North America): “RSNA is a professional society established in 1915, working on

improving patient care through education and research. More than 40,000 medical imaging professionals are

members of RSNA, including radiologists, radiation oncologists, medical physicists and allied scientists.*27+”

4
 HIMMS (Healthcare Information and Management Systems Society): “HIMSS is a cause-based, not-for-profit

organization exclusively focused on providing global leadership for the optimal use of information technology

(IT) and management systems for the betterment of healthcare. Founded 50 years ago, HIMSS and its related

organizations have offices in Chicago, Washington, DC, Brussels, Singapore, Leipzig, and other locations across

the United States. HIMSS represents more than 30,000 individual members, of which two thirds work in

healthcare provider, governmental and not-for-profit organizations. HIMSS also includes over 470 corporate

members and more than 85 not-for-profit organizations that share our mission of transforming healthcare

through the effective use of information technology and management systems. HIMSS frames and leads

healthcare practices and public policy through its content expertise, professional development, and research

initiatives designed to promote information and management systems’ contributions to improving the quality,

safety, access, and cost-effectiveness of patient care. *28+”

5
 ACC (American College of Cardiology): “The American College of Cardiology is transforming cardiovascular

care and improving heart health through continuous quality improvement, patient-centered care, payment

innovation and professionalism. The College is a 39,000-member nonprofit medical society comprised of

physicians, nurses, nurse practitioners, physician assistants, pharmacists and practice managers, and bestows

credentials upon cardiovascular specialists who meet its stringent qualifications. The College is a leader in the

formulation of health policy, standards and guidelines, and is a staunch supporter of cardiovascular research.

The ACC provides professional education and operates national registries for the measurement and

improvement of quality care. *29+”

45

standards and to provide a common framework for multi-vendor systems integration.

IHE re-uses existing standards such as DICOM7 and HL78 as the building blocks for

assembling larger integrated solutions, thus the IHE framework is not re-inventing a

new standard in healthcare but provides a practical method to make these standards

work.

High-quality patient care and optimal clinical workflow require efficient access to all

relevant data in the healthcare enterprise. Integration of modalities and clinical ICT

systems from a variety of manufacturers is essential to achieve this goal. In spite of

integration solutions available from many manufacture, connecting systems from

multiple vendors is a real challenge. IHE provides a common framework for building

effective solutions to overcome integration problems.

The following are key problems of contemporary healthcare systems:

 Inadequate access to comprehensive medical information.

 Lack of consistency in medical data between departments and institutions.

 Errors in transferring medical data between systems from different suppliers.

 Risky investments in proprietary solutions instead of expandable open

systems.

 Limitations in workflow optimization and inadequate support of user tasks.

6
 ESR (European Society of Radiology): “The European Society of Radiology (ESR) was founded in December

2005 by merging the European Congress of Radiology (ECR) and the European Association of Radiology (EAR),

thus establishing a single house of radiology in Europe. It is an apolitical, non-profit organisation, exclusively

and directly dedicated to promoting and coordinating the scientific, philanthropic, intellectual and professional

activities of Radiology in all European countries. [30+”

7
 DICOM (Digital Imaging and Communications in Medicine): “DICOM is a global Information Technology

standard that is used in virtually all hospitals worldwide. Its current structure, which was developed in 1993, is
designed to ensure the interoperability of systems used to: Produce, Store, Display, Process, Send, Retrieve,
Query or Print medical images and derived structured documents as well as to manage related workflow. *31+”

8
 HL7 (Health Level Seven International): ”Founded in 1987, HL7 is a not-for-profit, ANSI accredited standards

developing organization dedicated to providing a comprehensive framework and related standards for the

exchange, integration, sharing, and retrieval of electronic health information that supports clinical practice and

the management, delivery and evaluation of health services. HL7's 2,300+ members include approximately 500

corporate members who represent more than 90% of the information systems vendors serving healthcare.

*32+”

46

IHE is working on defining the required interfaces to improve the exchange of data

between Imaging and ICT Systems within and across healthcare units. It is a global

initiative that creates frameworks for passing vital health information seamlessly from

application to application, system to system, and setting to setting within and across

healthcare enterprises.

IHE does not create standards, but creates technical frameworks and integration

profiles. IHE promotes the coordinated use of established standards, such as:

 Healthcare content standards (such as HL7, HL7 CDA, DICOM).

 Electronic business standards (such as ebXml registry, SOAP, web services).

 Internet standards (such as HTTP, IETF and W3C).

The systems that conform to the IHE integration profiles have the following benefits:

 Efficient exchange of clinical information

 Easier systems implementations

 Workflow optimization

 Improved quality of patient care

IHE is supported by clinical users, administrators, ICT specialists, standards

development organizations and the medical technology industry. IHE is an

international endeavor, many countries have already joined the IHE initiative to adopt

and promote the deployment of its integration framework in clinical practice at

national level.

5.2 IHE Domains

IHE is organized for clinical and operational domains. In each domain users with

clinical and operational experience identify integration and information sharing

priorities and vendors of relevant information systems develop consensus, standards-

based solutions to address them.

Each domain includes a technical committee, whose primary task is developing and

documenting these solutions (known as integration profiles), and a planning

47

committee, whose primary tasks are long-term scope planning and organizing

deployment activities (such as testing events and educational programs). Each

domain develops and maintains its own set of Technical Framework documents.

Currently active IHE Domains include [33]:

 IT Infrastructure

 Cardiology

 Pharmacology

 Eye Care

 Laboratory

 Patient Care Coordination

 Patient Care Devices

 Quality, Research and Public Health

 Radiology

 Radiation Oncology

 Anatomic Pathology

5.3 IHE Profiles

IHE Integration Profiles describe the solution to a specific integration problem, and

document the system roles (Actors), standards and design details for implementers

to develop systems that cooperate to address that problem.

IHE Profiles are a convenient way for implementers and users to be sure they're

talking about the same solution without having to restate the many technical details

that ensure actual interoperability. For convenient reference, each Profile has a short

acronym.

Each domain specifies a collection of Profiles for problems directly related to their

domain. IT Infrastructure Domain, which is the central IHE domain related to

healthcare organizations, contains the following active IHE profiles [34]:

48

a. [ATNA] Audit Trail and Node Authentication: authenticates systems using

certificates and sends PHI-related audit events to a repository to help implement

confidentiality policies.

b. [BPPC] Basic Patient Privacy Consents: records patient privacy consents, notes

consent on electronically published documents and enforces privacy appropriate

to the use.

c. [CT] Consistent Time: ensures system clocks and time stamps of computers in a

network are well synchronized (median error less than 1 second).

d. [XDM] Cross-enterprise Document Media Interchange: transfers documents and

metadata using CDs, USB memory, or email attachments.

e. [XDR] Cross-enterprise Document Reliable Interchange: exchanges health

documents between health enterprises using a reliable point-to-point push

network communication.

f. [XDS] Cross Enterprise Document Sharing: registers and shares electronic health

record documents between healthcare enterprises, physician offices, clinics,

acute care in-patient facilities and personal health records.

g. [XDS-SD] Cross-enterprise Sharing of Scanned Documents: couples legacy

paper, film, and electronic documents with the healthcare metadata needed to

manage them as electronic health record documents.

h. [XUA] Cross-Enterprise User Assertion: communicates claims about the identity

of an authenticated principal (user, application, system...) across enterprise

boundaries.

i. [EUA] Enterprise User Authentication: enables single sign-on by facilitating one

name per user for participating devices and software.

j. [PAM] Patient Administration Management: establishes the continuity and integrity

of patient data in and across acute care settings, as well as among ambulatory

caregivers.

49

k. [PDQ] Patient Demographics Query: lets applications query a central patient

information server and retrieve a patient‘s demographic and visit information.

l. [PIX] Patient Identifier Cross Referencing: cross-references patient identifiers

between hospitals, sites, health information exchange networks, etc.

m. [PSA] Patient Synchronized Application: allows selection of a patient in one

application to cause other applications on a workstation to tune to that same

patient.

n. [PWP] Personnel White Pages: provides basic directory information on human

workforce members to other workforce members and applications.

o. [RID] Retrieve Information for Display: provides simple (browser-based) read-only

access to clinical information (e.g. allergies or lab results) located outside the

user‘s current application.

5.4 Patient Demographics Query (PDQ) Profile

As defined by item (k) in the profile list above, PDQ (Patient Demographics Query) is

IHE IT infrastructure integration profile that provides ways for multiple distributed

applications to query a patient information server for a list of patients, based on user-

defined search criteria, and retrieve a patient‗s demographic (and, optionally, visit or

visit-related) information.

PDQ is an important profile, as it provides a way to obtain crucial demographics

information related to patients to healthcare institutions. It is also important as various

IHE profiles use this profile as a prerequisite. So, in a sense, it is used as one of the

basic building blocks in creating healthcare systems relying on IHE profiles. For that

reason, PDQ is selected to be implemented in this study as a SOA application. Also,

this PDQ implementation can be used as an example in developing remaining IHE IT

infrastructure profiles, as all IHE profiles are similarly constructed, and based on

similar standards.

50

Figure 3. PDQ actors and transactions

5.4.1 PDQ roles

PDQ defines two actors, that represents two systems or software components that

fulfills the roles assigned to them: Patient Demographics Supplier and Patient

Demographics Consumer. Figure 3 depicts the actors directly involved in the Patient

Demographics Query Integration Profile and the relevant transactions between them.

Actor: Patient Demographics Consumer

Role: Requests a list of patients matching a minimal set of demographic criteria (e.g.,

ID or partial name) from the Patient Demographics Supplier. Populates its attributes

with demographic information received from the Patient Demographics Supplier.

Actor: Patient Demographics Supplier

51

Role: Returns demographic information for all patients matching the demographic

criteria provided by the Patient Demographics Consumer.

Table 1 lists the transactions for each actor directly involved in the Patient

Demographics Query Profile. In order to claim support of this Integration Profile, an

implementation must perform the Required transactions (labeled ‗R‘). Transactions

labeled ‗O‘ are Optional. Note that only required transactions defined in the PDQ

profile are implemented in this study.

ITI-21 messages are implemented usign HL79 Version 2.5. HL7 Version 2.5 standard

documents Chapter 3 – Patient Administration (for RSP^K22 message) and Chapter

5 – Query (for QBP^Q22 message) can be investigated for details related to the HL7

Version 2.5 messages.

Table 1. PDQ actors and transactions

5.4.2 PDQ sequence diagram

Figure 4 depicts sequence diagram of UML showing the order of transactions, that is

the messages passed between the actors defined in the PDQ IHE profile. Patient

Demographics Query message is realized using HL7 Version 2.5 QBP^Q22 message

and Patient Demographics Response message is realized using HL7 Version 2.5

RSP^K22 message.

9
 Recall that HL7 is a framework and related standards for the exchange, integration, sharing and retrieval of

electronic health information that supports clinical practice and the management, delivery and evaluation of

health services [32].

52

Figure 4. PDQ sequence diagram

5.4.3 PDQ process flow

The Patient Demographics Supplier performs the following functions: It receives

patient registration and update messages from other systems in the enterprise (e.g.

Patient Registration systems). The method in which the Patient Demographics

Supplier obtains the updated patient demographic information is not addressed by

PDQ profile. So, it is assumed that updated patient demographic information exists in

a persistent storage that is accessible by this agent. It is a prerequisite that the

53

Patient Demographics Supplier possesses current demographic information. One

method by which current demographic information may be obtained is for the Patient

Demographic Supplier to be grouped with another IHE actor, such as Order Filler,

that either maintains or receives such information.

Patient Demographics Supplier responds to queries for information. It receives a

Patient Demographics Query or Patient Demographics and Visit Query request from

the Patient Demographics Consumer, and returns demographics (and, where

appropriate, visit) information from the single domain that is associated with the

application to which the query message is sent.

Some use cases are described in the following sections as examples of PDQ profile

usage.

Figure 5. Some clinical use cases which require patient demographics query

54

Use Case 1: Enter patient information into bedside equipment.

An admitted patient is assigned to a bed. The patient may or may not be able to

provide positive ID information. The nurse needs to enter patient identity information

into some bedside equipment to establish the relationship of the assigned bed to the

patient. The equipment issues a query for a patient pick list to a patient

demographics supplier that provides data for a patient pick list. Search criteria

entered by the nurse might include one or more of the following:

 Partial or complete patient name (printed on the patient record or told by the

patient)

 Patient ID (this may be obtained from printed barcode, a bed-side chart, etc.)

 Date of birth / age range

 Bed ID

The system returns a list of patients showing the full name, age, sex, room/bed, and

admit date, and displays the list to the nurse. The nurse then selects the appropriate

record to enter the patient identity information into the bedside equipment application.

Use Case 2: Enter patient identity information into physician‘s information system in

his/her office.

A patient visits a physician office for the first time. The physician needs to register the

patient, in doing so, it is desired to record the patient‗s demographic data in the

physician‘s information system. The physician office is connected to a hospital

enterprise‗s central patient registry. The physician issues a patient query request to

the central patient registry, with some basic patient demographics data as search

criteria. In the returned patient list, the physician picks up an appropriate record for

the patient, including the hospital‗s patient ID, to enter into the system.

The physician‘s information system may use its own patient identifier, coordinating

this identifier with the patient identifier returned in the pick list (sharing the hospital‗s

Patient ID Domain) to retrieve information from the hospital‗s clinical repository.

55

Use Case 3: Query patient demographics in an enterprise with multiple patient ID

domains.

A lab technician enters some basic demographics data (e.g., patient name) into a lab

application to query a patient demographics supplier to identify a patient for his lab

exams. As the application also needs the patient identifier in another Patient ID

Domain in the enterprise for results delivery, the application is configured to receive

patient IDs from other domains in the query response.

Figure 5 depicts UML use case diagrams related mentioned use cases.

5.4.4 Transactions between actors

PDQ defines four transactions passed between the actors Patient Demographics

Consumer and Patient Demographics Supplier as shown in Table 1. In this study,

transactions Patient Demographics Query and Patient Demographics Reply are

implemented.

5.4.4.1 Patient demographics query

Transaction ITI-21 is used by the Patient Demographics Consumer and Patient

Demographics Supplier. This transaction involves a request by the Patient

Demographics Consumer Actor for information about patients whose demographic

data match data provided in the query message. The request is received by the

Patient Demographics Supplier Actor. The Patient Demographics Supplier Actor

immediately processes the request and returns a response in the form of

demographic information for matching patients.

The Patient Demographics Query is conducted by the HL7 QBP^Q22 message. The

Patient Demographics Consumer actor shall generate the query message whenever

it needs to select from a list of patients whose information matches a minimal set of

demographic data.

The segments contained in the HL7 QBP^Q22 message are summarized in Table 2.

The information contained in the segments, that is, the related fields and its

semantics defined for each segment of the HL7 QBP^Q22 message can be found in

56

the Appendix A. This information is vital to the implementation, since PDQ profiles

mandates certain values to the certain segment fields, and define query semantics.

The receiver shall respond to the query by sending the RSP^K22 message. This

satisfies the requirements of acknowledgment; no intermediate ACK message (HL7

Acknowledgement Message) is to be sent.

Table 2. PDQ Patient Demographics Request (HL7 QBP^Q22) segments

Each Patient Demographics Query request specifies two distinct concepts. The

Patient Demographics Query is always targeted at a single source of patient

demographic information (referred to in this Transaction as the patient information

source). A Patient Demographics Supplier may have knowledge of more than one

source of demographics. A Patient Demographics Supplier shall support at least one

source of patient demographics and may support multiple sources of demographics.

Detailed information of segments contained in PDQ Patient Demographics Request

(HL7 QBP^Q22) are given in Appendix A.

5.4.4.2 Patient demographics response

The Patient Demographics Response is conducted by the HL7 RSP^K22 message.

The Patient Demographics Supplier Actor shall generate this message in direct

response to the QBP^Q22 message previously received. This message satisfies the

Application Level, Original Mode Acknowledgement for the HL7 QBP^Q22 message.

57

The segments of the message listed without enclosing square brackets in the Table 3

below are required. Detailed descriptions of all segments listed in the table below are

provided in the following subsections. Other segments of the message are optional.

Table 3. PDQ Patient Demographics Response (HL7 RSP^K22) segments

Detailed information of segments contained in PDQ Patient Demographics Response

(HL7 RSP^K22) are given in Appendix B.

Many PDQ query and response examples are provided in Appendix C.

5.5 Implementation Architecture

Logical implementation architecture is summarized in Figure 6. On the server side,

Mule ESB is deployed with two units connected. Patient demographics database is

connected to the ESB using the database connection mechanism provided by the

Mule ESB. This is where the demographics information of the patients is stored.

Patient demographics suppier is a web service deployed on the ESB, and managed

by the ESB as a service component. On the client side, several patient demographics

consumers are shown, which are connect to the ESB acting as a service provider for

the patient demographics supplier web service.

58

Patient demographics consumers are implemented as standalone Java swing

applications. They connect to the patient demographics supplier web service, and

send a message containing patient demographics query. Patient demographics

supplier receives the patient demographics query requests from patient

demographics consumers, queries the patient demographics database, and returns

the results to the patient demographics consumers as a patient demographics query

response message.

Figure 6. Logical architecture of PDQ implementation

5.6 Technologies Used in PDQ Implementation

 Java programming language: Used for implementing PDQ actors. Java SE 6

Update 24 JDK is used [35].

 Eclipse IDE: Eclipse is used as a development environment for implementing

PDQ actors [36].

59

 HAPI open source HL7 application programming interface. HAPI is used for

parsing HL7 messages sent by Patient Demographics Consumers to Patient

Demographics Supplier into Java data structures. HAPI is also used for

generating HL7 messages sent as a reply by Patient Demographics Supplier to

Patient Demographics Consumers [37].

 Apache CXF v2.3.3 open source web services framework. CXF is used to

develop PDQ web service that Patient Demographics Supplier provides. Patient

Demographics Consumers communicate with PDQ web service. CXF allows

developed services can talk different protocols such as SOAP, RESTful HTTP, or

XML HTTP. Variety of transports such as JBI, HTTP, or JMS are supported by

CXF. PDQ web service implemented as an application in this study supports

SOAP over HTTP [38].

 Apache Axis2 v1.5.4 web services framework is used in clients (Patient

Demographics Consumers) [39].

 Mule ESB community edition 3.1.1 is used as an ESB, on which PDQ web service

is deployed [40].

 Oracle Database 10g is used as a database storing Patient Demographics

information [41].

5.7 PDQ Service Implementation Details

A PDQ web service is implemented, which fulfills the IHE PDQ Patient Demographics

Supplier role. PDQ service has only one operation, query, with the following

signature:

public String patientDemographicsQuery(String v25__QBP_Q22)

throws PDQServiceException

The query has only one parameter, v25__QBP_Q22 of data type String. This variable

holds HL7 QBP^Q22 message sent by a Patient Demographics Consumer actor,

containing information related to a patient whose demographics information is

60

requested. This string containing HL7 message is parsed by the HAPI, and a QBP

object containing all the parameters supplied in the patient demographics query

message is constructed to be processed by the service.

The service processes the QBP object and queries the patient demographics

database. The result set of the query contains patients to be sent to the Patient

Demographics Consumer as the Patient Demographics Query Response message.

Note that more than one patient can be located conforming to the fields supplied in

the QBP^Q22 message.

The QBP message contains an HL7 QPD (Query Parameter Definition) segment.

This segment contains one or more repetitions of the Field QPD-3-Demographics

Fields. Every instance of QPD-3 field contains two components that together contain

the name and value of a distinct demographics parameter to be used in the query.

According to the PDQ specification, Patient Demographics Consumer may query and

Patient Demographics Supplier should support the fields mentioned in the Table A2

in Appendix B. These are Patient Identifier List (PID.3), Patient Name (PID.5),

Date/Time of Birth (PID.7), Administrative Sex (PID.8), Patient Address (PID.11),

Patient Account Number (PID.18). For example, the following QPD field given as a

query parameter:

@PID.5.1.1^SMITH~@PID.8^F

requests all patients whose PID-5-Patient Name matches the value ―SMITH‖ and

whose sex is female. According to the PDQ specification, the Patient Demographics

Supplier shall return demographic records that reflect the best fit to all of the supplied

search criteria. Obviously there can be more than one patient record corresponding

to the given criteria. All the matching patients should be returned in the Patient

Demographics Response sent to the Patient Demographics Consumer.

After processing the QBP object, the service constructs a database query (or more

than one database queries in case more than one QPD segment is provided in the

QBP message), and collects list of matching patient records.

61

Next, PDQ service instantiates a RSP object using HAPI , then fills the object with the

demograpics information belonging to the matching patients (if any) by iterating the

matching patient record list.

After the RSP object is constructed, this object is rendered into a String object

containing encoded HL7 message by HAPI:

ca.uhn.hl7v2.parser.Parser parser = new

ca.uhn.hl7v2.parser.PipeParser();

String encodedMessage = parser.encode(rsp);

Encoded message is the return value of the service operation

patientDemographicsQuery, containing the HL7 RSP^K22 message.

5.8 ESB Implementation

Mule 3 Community Edition is used as an ESB product in the implementation. Mule

uses the units called Service Component as building blocks. Mule documentation

defines a Service Component as ―The key part of the service is the service

component. The service component executes business logic on messages, such as

reading the invoice object, adding information to it from the customer database, and

then forwarding it to the order fulfillment application.‖ [40].

So, every Service Component receives a message, contains a business logic that is

executed with the received message provided as a parameter, and may produce a

new message, which then can be sent to another application, or service component.

PDQ service is implemented as a POJO (Plain Old Java Object). Mule contains a

mechanism that can be used to publish a POJO as a web service. In order to

accomplish this, Mule creates a service component holding the POJO containing the

business logic (that is, the operations of the created web service), and exposes this

service component as a service provider. The public methods defined in the POJO

becomes operations of the published web service. Mule instance can be configured

to use various web services frameworks to be used to publish a particular POJO as a

web service. In this implementation, Apache CXF framework is selected to be used

as a web service provider implementation.

62

PDQService class is a POJO with only one public method:

patientDemographicsQuery() which is exposed as the single operation of the

PDQService web service by the ESB. The WSDL of the published PDQService is

provided by the ESB.

5.9 Client Implementation

Client of the PDQService web service is implemented using Apache Axis2 web

services framework. Axis2 has a tool called wsdl2java, which is a java executable

used to generate web service stub and other related java classes given a web

service WSDL URI. The gererated classes are sufficient to call operations of the

source web service.

In PDQ implementation, the client is Patient Demographics Consumer. Patient

Demographics Consumer is responsible for calling the patientDemographicsQuery

operation of the PDQService web service and supplying the v25__QBP_Q22

operation parameter holding HL7 QBP^Q22 message.

HAPI is used in the Patient Demographics Consumer client project to create HL7

QBP^Q22 message and parse HL7 RSP_K22 message returned from the

PDQService containing the results of the patient demographics query.

63

6 SUMMARY AND CONCLUSIONS

6.1 Summary

In this study, SOA, the architectural approach commonly used in many contemporary

large scale applications, is investigated. SOA allows ICT organizations to create

applications by bringing together components of application functionality called

services. Services are discrete sets of functionality that are completely separate from

each other but can work together.

SOA is an architectural style for building software applications that use services

available in a network such as the web. Applications in SOA are built based on

services. It promotes loose coupling between services, so that they can be reused. A

service is an implementation of a well-defined business functionality and such

services can then be consumed by clients in different applications or business

processes.

Since each service stands alone, services can be used as building blocks for multiple

processes and do not have to be recreated for each type of process or message.

This modular approach allows creation of functionality once and makes it possible to

re-use it as many times as needed, streamlining development.

Using SOA, businesses can realize dramatic savings on development costs and can

rapidly adapt to changing business conditions by reusing and reconfiguring existing

services in developing new applications. SOA also enables better integration of

enterprise IT resources, including previously isolated application silos and legacy

systems.

In the thesis, eight characteristics of services including reusability and the

advantages of using SOA especially in the field of application integration are

explained in detail.

Web services, the most popular technology to implement SOA systems and two

product categories relevant to SOA, namely ESB and BPM are also defined in the

thesis and discussed. A typical scenario incorporating web services technology is

64

given. Also, the advantages and disadvantages of the web services technology are

underlined.

Lastly, as an application of SOA, IHE profile PDQ (Patient Demographics Query) is

implemented using web services technology and deployed on an ESB acting as a

service provider.

6.2 Conclusions

Merging SOA and web services technology enables true enterprise application

integration, since web services give SOA applications the ability to easily integrate

with applications which are written in a different programming language, running on

different operating system and deployed on different hardware platform.

In IHE PDQ implementation completed as an application of SOA in the thesis, PDQ

actors are considered as web services. Transactions containing HL7 messages are

implemented as SOAP messages. Thinking an application as a collection of services,

each containing related operations, greatly simplifies the application design. Once

PDQ actors are realized as web services, and the IHE transactions are considered as

web service operations, the implementation was straight forward.

In the PDQ implementation, the most problematic part was learning HL7 V2.5

messaging standard. HL7 V2.5 messages do not contain structure information as

XML messages do. They are plain text messages, containing different segments

each starting at a new line. Every segment has many fields separated by pipe (‗|‘)

character. Both constructing and parsing messages is difficult, since one has to know

which field in the segment contains what information, and the messages themselves

are hardly human readable. In order to minimize such a difficulty, an open source

HL7 API named HAPI is used. HAPI was really useful, since it greatly reduced

development time and effort by providing an API which is able to automatically parse

HL7 V2.5 messages into a Java data structure, and construct an HL7 V2.5 message

from a given Java HL7 message object containing aggregated segments.

Tools such as ESBs greatly simplfy SOA application development, and brings agility

to SOA implementations. ESBs provide many services to SOA applications which

eliminate complexities related to SOA application deployment and maintenance.

65

Another open source software, Mule ESB 3 Community Edition, is used as a service

provider providing the web service playing the role of Patient Demographics Supplier

PDQ actor. Mule ESB was quite easy to use, but difficult to master. It was easy to

perform common tasks such as exposing a java class as a web service, but changing

the web services framework used by Mule to CXF framework was quite difficult. This

was mainly because lack of Mule documentation on the subject, which is a common

problem with some open source tools and libraries.

Mule has an Eclipse plug-in, which can be used in developing mule service

containers within the development environment. It has many wizards which help

development process and reduce development time. Wizards can perform tasks such

as running the mule standalone server and automatically deploying developed

classes from within the Eclipse environment.

CXF and AXIS2 are well documented open source Java web services frameworks.

They both are mature, and easy to use. Therefore, they are used in server and cliend

sides to enable web services technology. For example, AXIS2 wsdl2java tool is used

to generate stub class for the PDQ web service hosted by ESB from the WSDL

generated by CXF framework. CXF and AXIS2 seamlessly worked together, thanks

to web services technology, and Patient Demographics Consumer programs easily

made query requests to the ESB. This web service can be called from Patient

Demographics Consumers written in different programming languages, since web

services are programming language agnostic.

Moreover, since Patient Demographics Supplier is deployed on an ESB, it can use

many services provided by Mule ESB product, such as log management, transaction

management, transformation support, transportation management, routing support,

security, etc.

With the help of standards such as web services, and products such as ESB and

BPM, SOA provides a level of flexibility.

66

6.3 Extension of the Study

PDQ transactions Patient Demographics and Visit Query and Patient Demographics

and Visit Reply are not implemented in the PDQ implementation provided with the

thesis, because of the time limitations. Patient Demographics Query and Patient

Demographics Reply implementations reused, and these two transactions can be

implemented as a new operation in the PDQ web service.

An IHE PDQ implementation provided with this thesis can be taken as an example

and other IHE profiles belonging to various IHE domains can be implemented, since

all IHE profiles are similarly structured, and built on similar paradigms.

A BPM product can be used in case PDQ transactions are required to participate in

large scale business processes. Such an implementation could not be completed in

the thesis because of time limitations, but the current PDQ web service

implementation can be reused, since BPM products, just like ESBs, contain

mechanisms for exposing java classes as web services.

67

REFERENCES

[1] ROTEM, A., SOA Defined,

http://www.rgoarchitects.com/Files/SOADefined.pdf, 2007, 10.11.2010.

[2] Service Oriented Methodology, White Paper. NextAxiom, 2003.

[3] Service Oriented Architectures, Adobe, White Paper, 2004.

[4] SCHULTE and NATIS, ―Service Oriented" Architectures, Part 1,

Gartner, 1996.

[5] NATIS, Service-Oriented Architecture Scenario‖,

http://www.gartner.com/DisplayDocument?doc_cd=114358 , 2003,

15.11.2010.

 [6] ERL, T., A brief history of SOA,

http://searchsoa.techtarget.com/expert/KnowledgebaseAnswer/0,289625,sid2

6_gci1238390_mem1,00.html?ShortReg=1&mboxConv=searchSOA_RegActiv

ate_Submit&, 2006, 09.07.2010.

[7] RODEN, M. and LUBLINSKY, B., Applied SOA: Service Oriented Architecture and

Design Strategies, 2006.

[8] Service Oriented Architecture Insights from the Front Line, Survey, Published by

Freeform Dynamics, 2006.

[9] FRIEVALD, J., iWay SOA Middleware An Agile Framework for Fast, Flexible, Low

Risk Service Deployments, iWay Software, 2006.

[10] From Pilot to Payoff: Service Oriented Architecture Hits it Stride, InfoWorld,

White Paper, 2006.

[11] Wikipedia, http://en.wikipedia.org/wiki/Service_(systems_architecture), 2009,

13.07.2010.

68

[12] ERL, T., The principles of service-orientation part 1 of 6: Introduction to service-

orientation,

http://searchwebservices.techtarget.com/tip/1,289483,sid26_gci1165286,00.ht

ml, 2006, 15.06.2010.

[13] ERL, T., The principles of service-orientation part 2 of 6: Service contracts and

loose coupling,

http://searchwebservices.techtarget.com/tip/0,289483,sid26_gci1171966,00.ht

ml, 2006, 15.06.2010.

[14] ERL, T., The principles of service-orientation part 3 of 6: Service abstraction and

reuse,

http://searchwebservices.techtarget.com/tip/0,289483,sid26_gci1179915,00.ht

ml, 2006, 15.06.2010.

[15] ERL, T., The principles of service-orientation part 4 of 6: Service discoverability

and composition,

http://searchwebservices.techtarget.com/tip/0,289483,sid26_gci1187364,00.ht

ml, 2006, 15.06.2010.

[16] POULIN, M., Evolution of principles of Service Orientation: Service

Autonomy,

http://www.ebizq.net/blogs/service_oriented/2009/02/evolution_of_principles_o

f_service_orientation_service_autonomy_part_5.php, 2009, 12.8.2010.

 [17] ERL, Thomas, The principles of service-orientation part 5 of 6: Service

autonomy and statelessness,

http://searchwebservices.techtarget.com/tip/0,289483,sid26_gci1192369,00.ht

ml, 2006, 17.06.2010.

[18] New to SOA and Web services, IBM. http://www-

128.ibm.com/developerworks/webservices/newto/, 2004, 15.12.2010.

[19] SHAILESH, S., Web Services and SOA History,

http://www.saptechies.com/web-services-and-soa-history/, 2005, 24.11.2010.

69

[20] PATRICK, P, ― Impact of SOA on Enterprise Information Architectures.‖, 2005.

[21] MCGOVERN, SAMEER, STEVENS and MATHEWW, ―Java Web Services

Architecture‖, 2006.

[22] http://en.wikipedia.org/wiki/Canonical, 25,02,2011.

[23] ARSANJANI, A, ―Toward a pattern language for Service-Oriented Architecture

and Integration, Part 1: Build a service eco-system.‖, 2005.

[24] SMITH, H., ―Business Process Management (BPM): The Third Wave‖,

2003.

[25] HARVEY, M., ―Essential Business Process Modeling‖, 2005.

[26] DOGAC, NAMLI, OKCAN, LALECI, KABAK and EICHELBERG, ―Key Issues of

Technical Interoperability Solutions in eHealth and the RIDE project‖,

http://www.google.com/url?sa=t&source=web&cd=5&ved=0CDkQFjAE&url=htt

p%3A%2F%2Fwww.epractice.eu%2Ffiles%2Fmedia%2Fmedia_754.pdf&ei=O

a-2TdngBcrFswaWhdzfDQ&usg=AFQjCNH_Ai6LuedZFRClZzS7YnZI3k9QlA ,

2007, 15.04.2011.

[27] Radiological Society of North America (RSNA),

http://www.rsna.org/About/index.cfm, 21.02.2011.

[28] Healthcare Information and Management Systems Society (HIMSS),

http://www.himss.org/ASP/aboutHimssHome.asp, 21.02.2011.

[29] American College of Cardiology (ACC),

http://www.cardiosource.org/ACC/About-ACC.aspx, 21.02.2011.

[30] European Society of Radiology (ESR),

http://www.myesr.org/cms/website.php?id=/en/about_esr_ecr.htm,

21.02.2011.

[31] Digital Imaging and Communications in Medicine (DICOM),

http://medical.nema.org/dicom/geninfo/Brochure.pdf, 21.02.2011.

http://www.himss.org/ASP/aboutHimssHome.asp
http://www.cardiosource.org/ACC/About-ACC.aspx
http://www.myesr.org/cms/website.php?id=/en/about_esr_ecr.htm
http://medical.nema.org/dicom/geninfo/Brochure.pdf

70

[32] Health Level Seven International (HL7),

http://www.hl7.org/about/index.cfm?ref=common, 21.02.2011.

[33] IHE Technical Frameworks, http://wiki.ihe.net/index.php?title=Frameworks,

21.02.2011.

[34] IHE Technical Profiles, http://wiki.ihe.net/index.php?title=Profiles, 21.02.2011.

[35] Java Development Kit Downloads,

http://www.oracle.com/technetwork/java/javase/downloads/index.html,

02.04.2011

[36] Eclipse IDE (Integrated Development Environment), http://www.eclipse.org

[37] HAPI Open Source Application Programming Interface,

http://hl7api.sourceforge.net/, 02.03.2011.

[38] Apache CXF Web Services Framework, http://cxf.apache.org, 21.02.2011.

[39] Apache Axis2 Web Services Framework, http://axis.apache.org/axis2/java/core/,

21.02.2011.

[40] Mule ESB (Enterprise Service Bus), http://www.mulesoft.org, 21.02.2011.

[41] Oracle Database 10g, http://www.oracle.com, 21.02.2011.

http://www.hl7.org/about/index.cfm?ref=common
http://wiki.ihe.net/index.php?title=Frameworks
http://wiki.ihe.net/index.php?title=Profiles

71

APPENDICES

APPENDIX A. HL7 MESSAGE SEGMENT DETAILS OF PATIENT

DEMOGRAPHICS QUERY MESSAGE

APPENDIX B. HL7 MESSAGE SEGMENT DETAILS OF PATIENT

DEMOGRAPHICS RESPONSE MESSAGE

APPENDIX C. PDQ QUERY AND RESPONSE EXAMPLES

APPENDIX D. CD THAT CONTAINS APPLICATION IMPLEMENTATION

72

APPENDIX A. HL7 MESSAGE SEGMENT DETAILS OF PATIENT

DEMOGRAPHICS QUERY MESSAGE

This section summarizes segment details of HL7 Version 2.5 QBP^Q22 message,

that is used as a content for IHE PDQ ITI-21 transaction [Table 2]. The further details

can be obtained from IHE web page [33], and HL7 web page [32].

A1. MSH Segment

The Patient Demographics Supplier is able to obtain demographics from at least one

and possibly multiple patient information sources. When more than one patient

information source is available, Field MSH-5-Receiving Application specifies the

patient information source that this query is targeting. The Patient Demographics

Supplier shall return this value in MSH-3-Sending Application of the RSP^K22

response. The value specified in MSH-5 is not related to the value requested in QPD-

8 What Domains Returned.

A list shall be published of all Receiving Applications that the Patient Demographics

Supplier supports, for the Patient Demographics Consumer to choose from. Each

query is processed against one and only one source of patient demographic

information.

Field MSH-9-Message Type shall have all three components populated with a value.

The first component shall have a value of QBP; the second component shall have a

value of Q22. The third component it shall have a value of QBP_Q21.

A2. QPD Segment

The Patient Demographics Consumer Actor shall send attributes within the QPD

segment as described in Table A1.

73

The Consumer shall specify ―IHE PDQ Query‖ for QPD-1-Message Query Name.

Field QPD-3-Demographics Fields consists of one or more repetitions, each of which

contains two components that together contain the name and value of a distinct

parameter to the query. Acceptable segments are PID and PD1.

Table A1. QPD segment

The first component of each parameter contains the name of an HL7 element in the

form:

@<seg>.<field no>.<component no>.<subcomponent no>

The above format is populated according to common HL7 usage for specifying

elements used in query parameters, as follows:

 <seg> represents a 3-character segment ID from the HL7 Standard.

 <field no> is the number of a field within the segment as shown in the SEQ

column of the segment attribute table for the segment selected.

 <component no>, for fields whose data types contain multiple components,

shall contain the cardinal number of the component being valued. For fields

whose data types do not contain multiple components, <component no> shall

not be valued and its preceding period shall not appear.

 <subcomponent no>, for components whose data types contain multiple

subcomponents, shall contain the cardinal number of the subcomponent being

74

valued. For components whose data types do not contain multiple

subcomponents, <subcomponent no> shall not be valued and its preceding

period shall not appear.

The second subcomponent of each parameter contains the value that is to be

matched. If it is desired to constrain the quality of a match within the bounds of an

algorithm known to the Supplier, the algorithm and constraint values may be

specified in Fields QPD-4 through QPD-7.

The Patient Demographics Consumer may specify, and the Patient Demographics

Supplier shall support, the fields in the Table A2.

Table A2. QPD-3 fields required to be supported

The Patient Demographics Supplier shall return demographic records that reflect the

best fit to all of the search criteria.

An example of parameter expressions in QPD-3:

@PID.5.1.1^SMITH~@PID.8^F

requests all patients whose family name (first subcomponent (data type ST) of the

first component (data type FN) of PID-5-Patient Name (data type XPN)) matches the

value ―SMITH‟ and whose sex (PID-8-Sex 3625 (data type IS)) matches the value

―female‟.

75

Field QPD-8 restricts the set of domains for which identifiers are returned in PID-3:

1. In a multiple-domain environment, QPD-8 may be used to identify one or more

domains of interest to the Patient Demographics Consumer and from which the

Consumer wishes to obtain a value for PID-3-Patient Identifier. Note that the patient

information source designated by MSH-5 may or may not be associated with any of

the Patient ID Domains listed in QPD-8-What Domains Returned.

If QPD-8 is empty, the Patient Demographics Supplier shall return all Patient IDs

known by the Patient Demographics Supplier for each patient that matches the

search criteria.

If QPD-8 is specified and the domains are recognized, the Patient Demographics

Supplier shall return the Patient IDs for each patient that matches the search criteria.

Any domain not recognized by the Patient Demographics Supplier is an error

condition.

2. In a single-domain environment, QPD-8 may be ignored by the Patient

Demographics Supplier. The Supplier shall always return the identifier from the

Patient ID Domain known by the Patient Demographics Supplier.

Within field QPD-8, only component 4 (Assigning Authority) shall be valued. The

Patient Demographics Supplier may or may not be able to supply additional

identifiers from the domains specified in QPD-8.

The Patient Demographics Consumer shall be able to support at least one of the

following mechanisms for specifying QPD-8:

1. Transmit an empty value and receive all identifiers in all domains known by the

Patient Demographics Supplier (one or more domains), or

2. Transmit a single value and receive zero or more identifiers in a single domain, or

3. Transmit multiple values and receive mutiple identifiers in those multiple domains.

76

A3. RCP Segment

The Patient Demographics Consumer Actor shall send attributes within the RCP

segment as described in Table A3. Fields not listed are optional and may be ignored.

Table A3. RCP segment

Field RCP-1-Query Priority shall always contain ―I”, signifying that the response to

the query is to be returned in Immediate mode.

The Patient Demographics Consumer Actor may request that responses to the query

be sent, using the HL7 Continuation Protocol, in increments of a specified number of

patient records. (In the context of the HL7 query, a patient record is defined as the

PID segment and any segments accompanying it for each patient.) It is desirable to

request an incremental response if the query could result in hundreds or thousands

of matches. So, the Patient Demographics Supplier Actor shall support the HL7

Continuation Protocol.

Field RCP-2 is of data type CQ, which contains two components. The first component

contains the number of increments, always expressed as an integer greater than 0,

while the second component contains the kind of increment, always RD to signify that

incremental replies are specified in terms of records.

For example, 50^RD requests 50 records at a time.

A4. DSC Segment

The Patient Demographics Consumer Actor may request additional increments of

data by specifying this segment on the query request. This segment should be

omitted on the initial query request. Its purpose is to request additional increments of

77

the data from the Patient Demographic Supplier Actor. Table A4 summarizes fields

contained in this segment.

Table A4. DSC segment

To request additional increments of data, DSC-1 (Continuation Pointer) shall echo

the value from RSP^K22 DSC-1.

DSC-2 (Continuation Style) shall always contain ―I‖, signifying that this is part of an

interactive continuation message.

78

APPENDIX B. HL7 MESSAGE SEGMENT DETAILS OF PATIENT

DEMOGRAPHICS RESPONSE MESSAGE

This section summarizes segment details of HL7 Version 2.5 RSP^K22 message,

that is used as a content for IHE PDQ ITI-21 transaction [Table 3]. The further details

can be obtained from IHE web page [33], and HL7 web page [32].

B1. MSH Segment

Field MSH-3-Sending Application specifies the patient information source that

processed the query. The Patient Demographics Supplier shall use Field MSH-3-

Sending Application of the RSP^K22 message to return the value it received from the

Patient Demographics Consumer in Field MSH-5-Receiving Application of the

QBP^Q22 message.

Field MSH-9-Message Type shall have all three components populated with a value.

The first component shall have a value of RSP; the second component shall have a

value of K22. The third component shall have a value of RSP_K22.

B2. MSA Segment

The Patient Demographics Supplier Actor is not required to send any attributes within

the MSA segment beyond what is specified in the HL7 standard.

B3. QAK Segment

The Patient Demographics Supplier Actor shall send attributes within the QAK

segment as defined in Table B1.

QAK-1 (Query Tag) shall echo the same value of QPD-2 (Query Tag) of the

QBP^Q22 message, to allow the Patient Demographics Query Consumer to match

the response to the corresponding query request.

79

Table B1. QAK segment

B4. QPD Segment

The Patient Demographics Supplier Actor shall echo the QPD Segment value that

was sent in the QBP^Q22 message.

B5. PID Segment

The Patient Demographics Supplier Actor shall return one PID segment group for

each matching patient record found. The Supplier shall return the attributes within the

PID segment as specified in Table B2. In addition, the Patient Demographics

Supplier Actor shall return all other attributes within the PID segment for which it is

able to supply values.

Table B2. PID segment

The Patient Demographics Supplier may or may not be able to supply additional

identifiers from the domains specified in QPD-8. Inability to supply an identifier in a

particular domain is not an error, provided that the domain is recognized.

80

The PID segment and its associated PD1 and QRI segments are returned only when

the Patient Demographics Supplier Actor is able to associate the search information

in QPD-3 with one or more patient records in the patient information source

associated with MSH-5-Receiving Application.

B6. QRI Segment

For each patient for which the Patient Demographics Supplier Actor returns a PID

Segment, it may optionally return the QRI (Query Response Instance) segment, but

is not required to do so.

B7. DSC Segment

If the number of records is specified in RCP-2-Quantity Limited Request, the Patient

Demographics Supplier Actor shall return an incremental response of that number of

records when the number of matching records it finds exceeds the number of records

specified in RCP-2.

As long as the Patient Demographics Supplier Actor has records to return in addition

to those returned in the incremental response, the Supplier shall return a DSC

Segment. The single field of the DSC Segment shall contain a unique alphanumeric

value (the Continuation Pointer) that the Patient Demographics Consumer may return

in the DSC of the QBP^Q22 message to request the next increment of responses.

The Supplier shall return increments as many times as the Consumer requests them

(and there are increments to return), and shall stop when the Consumer sends a

cancel query (QCN^J01) message (or when there are no more increments to return).

81

APPENDIX C. PDQ QUERY AND RESPONSE EXAMPLES

Inbound query:

MSH|^~\&|OTHER_IBM_BRIDGE_TLS|IBM|PAT_IDENTITY_X_REF_MGR_MISYS|

ALLSCRIPTS|200902261315200600||QBP^Q22^QBP_Q21|7965847682428535543|

P|2.5 QPD|Q22^Find

Candidates^HL7|4870964660388599565096567512128|@PID.5.1.1^MOO*

RCP|I|10^RD

Outbound response:

MSH|^~\&|PAT_IDENTITY_X_REF_MGR_MISYS_TLS|ALLSCRIPTS|OTHER_IBM_

BRIDGE_TLS|IBM|20090226141518-

0500||RSP^K22|OpenPIXPDQ10.243.0.65.19770811493153|P|2.5

MSA|AA|7965847682428535543

QAK|4870964660388599565096567512128|OK||6|6|0 QPD|Q22^Find

Candidates^HL7|4870964660388599565096567512128|@PID.5.1.1^MOO*

PID|1||LPDQ113XX04^^^IHELOCAL&1.3.6.1.4.1.21367.2009.1.2.310&ISO^PI~PDQ

113XX04^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI~TEMP000025^^^EMC

O&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI||MOODY^WARREN||19780820|M|||1000

CLAYTON RD^^CLAYTON^MO^63105

PID|2||LPDQ113XX05^^^IHELOCAL&1.3.6.1.4.1.21367.2009.1.2.310&ISO^PI~PDQ

113XX05^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI~TEMP000026^^^EMC

O&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI~TEMP000026^^^EMCO&1.3.6.1.4.1.213

67.2009.1.2.348&ISO^PI||MOONEY^STAN||19780920|M|||100 TAYLOR^^ST

LOUIS^MO^63110

PID|3||TEMP000020^^^EMCO&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI||MOORE^M

ARK||19380224|F|||^^Chicago^IL^65932

PID|4||TEMP000019^^^EMCO&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI||MOORE^M

ARTHA||19820904|F|||^^Gainesville^FL^32609

PID|5||LPDQ113XX02^^^IHELOCAL&1.3.6.1.4.1.21367.2009.1.2.310&ISO^PI~PDQ

113XX02^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI~PDQ113XX02^^^IHEN

A&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI||MOORE^RALPH||19510707|M|||510 S

KINGSHIGHWAY^^ST. LOUIS^MO^63110^USA

82

PID|6||39^^^MIEH&1.3.6.1.4.1.21367.2009.1.2.380&ISO^PI~39^^^MIEH&1.3.6.1.4.1.

21367.2009.1.2.380&ISO^PI~LPDQ113XX01^^^IHELOCAL&1.3.6.1.4.1.21367.2009.

1.2.310&ISO^PI~PDQ113XX01^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI||

MOORE^CHIP||19380224|M|||^^^IN

Inbound query:

MSH|^~\&|OTHER_IBM_BRIDGE_TLS|IBM|PAT_IDENTITY_X_REF_MGR_MISYS|

ALLSCRIPTS|20090226131524-

0600||QBP^Q22^QBP_Q21|4384605233932006785|P|2.5

QPD|Q22^FindCandidates^HL7|2846266284165483109045739371027|@PID.3.1^P

DQ113XX05~@PID.3.4.1^IHENA~@PID.3.4.2^1.3.6.1.4.1.21367.2009.1.2.300~@PI

D.3.4.3^ISO RCP|I|10^RD

Outbound response:

MSH|^~\&|PAT_IDENTITY_X_REF_MGR_MISYS_TLS|ALLSCRIPTS|OTHER_IBM_

BRIDGE_TLS|IBM|20090226141522-

0500||RSP^K22|OpenPIXPDQ10.243.0.65.19770811557491|P|2.5

MSA|AA|4384605233932006785

QAK|2846266284165483109045739371027|OK||1|1|0

QPD|Q22^FindCandidates^HL7|2846266284165483109045739371027|@PID.3.1^P

DQ113XX05~@PID.3.4.1^IHENA~@PID.3.4.2^1.3.6.1.4.1.21367.2009.1.2.300~@PI

D.3.4.3^ISO

PID|1||LPDQ113XX05^^^IHELOCAL&1.3.6.1.4.1.21367.2009.1.2.310&ISO^PI~PDQ

113XX05^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI~TEMP000026^^^EMC

O&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI~TEMP000026^^^EMCO&1.3.6.1.4.1.213

67.2009.1.2.348&ISO^PI||MOONEY^STAN||19780920|M|||100 TAYLOR^^ST

LOUIS^MO^63110

Inbound query:

MSH|^~\&|OTHER_IBM_BRIDGE_TLS|IBM|PAT_IDENTITY_X_REF_MGR_MISYS|

ALLSCRIPTS|20090226131528-

0600||QBP^Q22^QBP_Q21|6615205736011743610|P|2.5

QPD|Q22^FindCandidates^HL7|5319227404379208453030172570701|@PID.3.1^P

DQ113*~@PID.3.4.1^IHENA~@PID.3.4.2^1.3.6.1.4.1.21367.2009.1.2.300~@PID.3.

4.3^ISO RCP|I|10^RD

83

Outbound response:

MSH|^~\&|PAT_IDENTITY_X_REF_MGR_MISYS_TLS|ALLSCRIPTS|OTHER_IBM_

BRIDGE_TLS|IBM|20090226141526-

0500||RSP^K22|OpenPIXPDQ10.243.0.65.19770811618339|P|2.5

MSA|AA|6615205736011743610

QAK|5319227404379208453030172570701|OK||5|5|0

QPD|Q22^FindCandidates^HL7|5319227404379208453030172570701|@PID.3.1^P

DQ113*~@PID.3.4.1^IHENA~@PID.3.4.2^1.3.6.1.4.1.21367.2009.1.2.300~@PID.3.

4.3^ISO

PID|1||LPDQ113XX03^^^IHELOCAL&1.3.6.1.4.1.21367.2009.1.2.310&ISO^PI~PDQ

113XX03^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI~TEMP000024^^^EMC

O&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI||MOHR^ALICE||19580131|F|||820 JORIE

BLVD.^^OAK BROOK^IL^60523

PID|2||LPDQ113XX04^^^IHELOCAL&1.3.6.1.4.1.21367.2009.1.2.310&ISO^PI~PDQ

113XX04^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI~TEMP000025^^^EMC

O&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI||MOODY^WARREN||19780820|M|||1000

CLAYTON RD^^CLAYTON^MO^63105

PID|3||LPDQ113XX05^^^IHELOCAL&1.3.6.1.4.1.21367.2009.1.2.310&ISO^PI~PDQ

113XX05^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI~TEMP000026^^^EMC

O&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI~TEMP000026^^^EMCO&1.3.6.1.4.1.213

67.2009.1.2.348&ISO^PI||MOONEY^STAN||19780920|M|||100 TAYLOR^^ST

LOUIS^MO^63110

PID|4||LPDQ113XX02^^^IHELOCAL&1.3.6.1.4.1.21367.2009.1.2.310&ISO^PI~PDQ

113XX02^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI~PDQ113XX02^^^IHEN

A&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI||MOORE^RALPH||19510707|M|||510 S

KINGSHIGHWAY^^ST. LOUIS^MO^63110^USA

PID|5||39^^^MIEH&1.3.6.1.4.1.21367.2009.1.2.380&ISO^PI~39^^^MIEH&1.3.6.1.4.1.

21367.2009.1.2.380&ISO^PI~LPDQ113XX01^^^IHELOCAL&1.3.6.1.4.1.21367.2009.

1.2.310&ISO^PI~PDQ113XX01^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI||

MOORE^CHIP||19380224|M|||^^^IN

84

Inbound query:

MSH|^~\&|OTHER_IBM_BRIDGE_TLS|IBM|PAT_IDENTITY_X_REF_MGR_MISYS|

ALLSCRIPTS|20090226131532-

0600||QBP^Q22^QBP_Q21|8635581430489875581|P|2.5 QPD|Q22^Find

Candidates^HL7|6644708965997494512161758864244|@PID.7.1^19780920

RCP|I|10^RD

Outbound response:

MSH|^~\&|PAT_IDENTITY_X_REF_MGR_MISYS_TLS|ALLSCRIPTS|OTHER_IBM_

BRIDGE_TLS|IBM|20090226141529-

0500||RSP^K22|OpenPIXPDQ10.243.0.65.19770811677697|P|2.5

MSA|AA|8635581430489875581

QAK|6644708965997494512161758864244|OK||2|2|0 QPD|Q22^Find

Candidates^HL7|6644708965997494512161758864244|@PID.7.1^19780920

PID|1||LPDQ113XX05^^^IHELOCAL&1.3.6.1.4.1.21367.2009.1.2.310&ISO^PI~PDQ

113XX05^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI~TEMP000026^^^EMC

O&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI~TEMP000026^^^EMCO&1.3.6.1.4.1.213

67.2009.1.2.348&ISO^PI||MOONEY^STAN||19780920|M|||100 TAYLOR^^ST

LOUIS^MO^63110

PID|2||TEMP000018^^^EMCO&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI||RICHTER^

CHARLES||19780920|M|||^^Gainesville^FL^32609

Inbound query:

MSH|^~\&|OTHER_IBM_BRIDGE_TLS|IBM|PAT_IDENTITY_X_REF_MGR_MISYS|

ALLSCRIPTS|20090226131536-

0600||QBP^Q22^QBP_Q21|7597683905236566560|P|2.5 QPD|Q22^Find

Candidates^HL7|8494764101303661668890645833527|@PID.5.1.1^MO*~@PID.8^

F RCP|I|10^RD

Outbound response:

MSH|^~\&|PAT_IDENTITY_X_REF_MGR_MISYS_TLS|ALLSCRIPTS|OTHER_IBM_

BRIDGE_TLS|IBM|20090226141533-

0500||RSP^K22|OpenPIXPDQ10.243.0.65.19770811737041|P|2.5

MSA|AA|7597683905236566560

QAK|8494764101303661668890645833527|OK||3|3|0 QPD|Q22^Find

85

Candidates^HL7|8494764101303661668890645833527|@PID.5.1.1^MO*~@PID.8^

F

PID|1||LPDQ113XX03^^^IHELOCAL&1.3.6.1.4.1.21367.2009.1.2.310&ISO^PI~PDQ

113XX03^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI~TEMP000024^^^EMC

O&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI||MOHR^ALICE||19580131|F|||820 JORIE

BLVD.^^OAK BROOK^IL^60523

PID|2||TEMP000020^^^EMCO&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI||MOORE^M

ARK||19380224|F|||^^Chicago^IL^65932

PID|3||TEMP000019^^^EMCO&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI||MOORE^M

ARTHA||19820904|F|||^^Gainesville^FL^32609

Inbound query:

MSH|^~\&|OTHER_IBM_BRIDGE_TLS|IBM|PAT_IDENTITY_X_REF_MGR_MISYS|

ALLSCRIPTS|20090226131539-

0600||QBP^Q22^QBP_Q21|4679266744837668258|P|2.5 QPD|Q22^Find

Candidates^HL7|1314273928499923525175380892595|@PID.5.1.1^MOORE~@PI

D.7.1^19380224 RCP|I|10^RD

Outbound response:

MSH|^~\&|PAT_IDENTITY_X_REF_MGR_MISYS_TLS|ALLSCRIPTS|OTHER_IBM_

BRIDGE_TLS|IBM|20090226141537-

0500||RSP^K22|OpenPIXPDQ10.243.0.65.19770811796403|P|2.5

MSA|AA|4679266744837668258

QAK|1314273928499923525175380892595|OK||2|2|0 QPD|Q22^Find

Candidates^HL7|1314273928499923525175380892595|@PID.5.1.1^MOORE~@PI

D.7.1^19380224

PID|1||TEMP000020^^^EMCO&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI||MOORE^M

ARK||19380224|F|||^^Chicago^IL^65932

PID|2||39^^^MIEH&1.3.6.1.4.1.21367.2009.1.2.380&ISO^PI~39^^^MIEH&1.3.6.1.4.1.

21367.2009.1.2.380&ISO^PI~LPDQ113XX01^^^IHELOCAL&1.3.6.1.4.1.21367.2009.

1.2.310&ISO^PI~PDQ113XX01^^^IHENA&1.3.6.1.4.1.21367.2009.1.2.300&ISO^PI||

MOORE^CHIP||19380224|M|||^^^IN

86

Inbound query:

MSH|^~\&|OTHER_IBM_BRIDGE_TLS|IBM|PAT_IDENTITY_X_REF_MGR_MISYS|

ALLSCRIPTS|20090226131543-

0600||QBP^Q22^QBP_Q21|6880881378099874844|P|2.5

QPD|Q22^FindCandidates^HL7|6058651775104617438922166242613|@PID.5.1.1^

MOORE~@PID.11.1.1^10 PINETREE RCP|I|10^RD

Outbound response:

MSH|^~\&|PAT_IDENTITY_X_REF_MGR_MISYS_TLS|ALLSCRIPTS|OTHER_IBM_

BRIDGE_TLS|IBM|20090226141540-

0500||RSP^K22|OpenPIXPDQ10.243.0.65.19770811854243|P|2.5

MSA|AA|6880881378099874844

QAK|6058651775104617438922166242613|OK||1|1|0

QPD|Q22^FindCandidates^HL7|6058651775104617438922166242613|@PID.5.1.1^

MOORE~@PID.11.1.1^10 PINETREE

PID|1||TEMP000020^^^EMCO&1.3.6.1.4.1.21367.2009.1.2.348&ISO^PI||MOORE^M

ARK||19380224|F|||10 PINETREE^^Chicago^IL^65932

Inbound query:

MSH|^~\&|OTHER_IBM_BRIDGE_TLS|IBM|PAT_IDENTITY_X_REF_MGR_MISYS|

ALLSCRIPTS|20090226131547-

0600||QBP^Q22^QBP_Q21|2872542276009194118|P|2.5

QPD|Q22^FindCandidates^HL7|7686684818086385492683445220529|@PID.5.1.1^

OTHER_IBM_BRIDGE RCP|I|10^RD

Outbound response:

MSH|^~\&|PAT_IDENTITY_X_REF_MGR_MISYS_TLS|ALLSCRIPTS|OTHER_IBM_

BRIDGE_TLS|IBM|20090226141544-

0500||RSP^K22|OpenPIXPDQ10.243.0.65.19770811913601|P|2.5

MSA|AA|2872542276009194118

QAK|7686684818086385492683445220529|OK||2|2|0 QPD|Q22^Find

Candidates^HL7|7686684818086385492683445220529|@PID.5.1.1^OTHER_IBM_

BRIDGE

PID|1||103^^^IBOT&1.3.6.1.4.1.21367.2009.1.2.370&ISO^PI||OTHER_IBM_BRIDGE

^MARION||19661109|F

87

PID|2||301^^^IBOT&1.3.6.1.4.1.21367.2009.1.2.370&ISO^PI||OTHER_IBM_BRIDGE

^SONDRA||19671109|F

