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ABSTRACT 

 

USE OF INTELLIGENT METHODS IN HARMONIC ANALYSIS OF POWER 

SYSTEMS 

Emre Öner TARTAN 

Başkent University Institute of Science and Engineering 

Department of Electrical and Electronics Engineering  

 

In the last decades, with the increasing use of non-linear electronic equipments in 

power systems, harmonic pollution has become an important issue in power 

quality. To prevent problems due to the harmonics and to improve the quality of 

the delivered energy, estimation of harmonic parameters magnitude and phase 

angle, is an important task. Conventionally Fourier Transform based algorithms 

are the most commonly used techniques for harmonic estimation, however these 

techniques have certain limitations and drawbacks. On the other hand, recently 

several alternative algorithms utilizing intelligent methods have been proposed for 

harmonic estimation. In this thesis, three hybrid algorithms, composed by 

combining Least Squares Method with evolutionary computation algorithms, are 

applied in harmonic estimation. These algorithms, by utilizing the feature that 

harmonic estimation problem is linear in amplitude and nonlinear in phase, use 

evolutionary computation algorithms for phase angle estimation and Least 

Squares Method  for amplitude estimation. Two of the hybrid algorithms using 

Genetic Algorithm and Particle Swarm Optimization for phase angle estimation, 

were introduced in literature previously. In this thesis a novel hybrid algorithm 

which uses Differential Evolution for phase angle estimation, instead of Genetic 

Algorithm or Particle Swarm Optimization, is presented. The applications are 

realized in simulation environment and the results of the algorithms are compared. 

 

 

KEY WORDS: Harmonic Estimation, Least Squares Method, Genetic Algorithms 

Particle Swarm Optimization, Differential Evolution 

Supervisor: Assist. Prof. Dr. Hamit ERDEM, Başkent University, Department 

of Electrical and Electronics Engineering  
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ÖZ 

 

GÜÇ SİSTEMLERİNİN HARMONİK ANALİZİNDE AKILLI YÖNTEMLERİN 

UYGULANMASI 

Emre Öner TARTAN 

Başkent Üniversitesi Fen Bilimleri Enstitüsü 

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

 

Son on yıllarda, güç sistemlerinde lineer olmayan elektronik cihazların artan 

kullanımıyla birlikte harmonik kirliliği güç kalitesinde önemli bir konu haline 

gelmiştir. Harmoniklere bağlı sorunları önlemek ve iletilen enerjinin kalitesini 

iyileştirmek için, harmonik parametreleri olan faz açısı ve genliğin kestirimi önemli 

bir görevdir. Geleneksel olarak, harmonik kestiriminde Fourier Dönüşümü tabanlı 

algoritmalar en çok kullanılan tekniklerdir ancak bu tekniklerin belirli kısıtlamaları 

ve kusurları vardır. Öte yandan, son zamanlarda harmonik kestirimi için akıllı 

yöntemleri kullanan çeşitli alternatif algoritmalar önerilmiştir. Bu tezde, En Küçük 

Kareler Yöntemi ile evrimsel hesaplama algoritmalarının birleştirilmesiyle 

oluşturulan üç hibrid algoritma harmonik kestiriminde uygulanmıştır. Bu 

algoritmalar, harmonik kestirimi probleminin genlikte doğrusal olması ve fazda 

doğrusal olmaması özelliğinden  faydalanarak, faz açısının kestirimi için evrimsel 

hesaplama algoritmalarını ve genlik kestirimi için En Küçük Kareler Yöntemini 

kullanmaktadırlar. Bu hibrid algoritmalardan, faz açısı kestiriminde Genetik 

Algoritma ve Parçacık Sürü Optimizasyonunu kullanan ikisi daha önce literatürde 

tanıtılmıştır. Bu tezde Genetik Algoritma veya Parçacık Sürü Optimizasyonu yerine 

faz açısının kestiriminde Türevsel Evrimi kullanan yeni bir hibrid algoritma 

sunulmuştur. Uygulamalar simülasyon ortamında gerçekleştirilmiş ve 

algoritmaların sonuçları karşılaştırılmıştır. 

 

 

ANAHTAR SÖZCÜKLER: Harmonik Kestirimi, En Küçük Kareler Yöntemi, 

Genetik Algoritmalar, Parçacık Sürü Optimizasyonu, Türevsel Evrim 

Danışman: Yrd. Doç. Dr. Hamit ERDEM, Başkent Üniversitesi, Elektrik-Elektronik 

Mühendisliği Bölümü 
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1. INTRODUCTION 

 

 With the increasing use of power electronic components within the distribution 

system, power quality has become an important concern of electric utilities and 

end-users. Power quality covers all aspects of power system engineering from 

transmission and distribution level analyses to end-user problems [1]. In the last 

years, the wide usage of nonlinear loads such as adjustable speed drives; 

electronically ballasted lighting; and the power supplies of every computer, copier, 

and fax machine and much of the telecom equipment used in modern offices has 

resulted in increasing injection of harmonics to the power line.  These have 

detrimental effects including communication interference, loss of reliability, 

increased operation costs, equipment overheating, machine transformer and 

capacitor failures, and inaccurate power metering [1]. Therefore, harmonic 

distortion has drawn much attention and has been considered as one of the most 

important problems in power quality [1]. To cancel the harmonic distortion, the 

undesired harmonic components of current or voltage should be detected, then the 

harmonics of equal magnitude but opposite phase should be injected. Hence, to 

prevent problems due to the harmonics and to improve the quality of the delivered 

energy, measurement and estimation of harmonic parameters, magnitude and 

phase angle, has become an important task. 

 

Conventionally Fourier Transform based algorithms are the most commonly used 

techniques for harmonic estimation. However, Fourier transform based algorithms 

has certain limitations in harmonic analysis. Circumstances are encountered in 

practice for which the Discrete Fourier Transform (DFT) or Fast Fourier Transform 

(FFT) cannot be relied on to achieve valid harmonic component identification 

where there are existing noise signals which are not integer multiples of the supply 

frequency [2]. Another approach utilizes Kalman Filtering-based technique to 

estimate the harmonic components. This approach is accurate, but requires the 

correct definition of the state equations, measurement equations and covariance 

matrices [3;4], in other words a priori knowledge. 

 

On the other hand alternatively several methods utilising intelligent methods have 

been proposed for harmonic estimation. Intelligent methods is a broad term, 
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covering a range of computing techniques that have emerged from research into 

artificial intelligence. It includes symbolic approaches and numerical approaches 

such as neural networks, biologically inspired algorithms, fuzzy logic and hybrid of 

different methods [5]. Among intelligent methods neural networks (NN) have been 

popular and applied in several studies for harmonic estimation [2;6-15]. However, 

NNs require training procedure and optimal network structure design for each 

different case, therefore this approach lacks  adaptability and flexibility. Another 

intelligent method approach utilizes evolutionary computation algorithms [16-19]. 

The recent studies also combine least squares method (LS) and propose hybrid 

algorithms for harmonic estimation [17-19]. 

 

Evolutionary computation algorithms are population-based stochastic optimization 

algorithms. Unlike gradient based methods which take step in the direction of the 

most negative slope of error surface and can fall at a local optimum in multi modal 

problems, evolutionary algorithms provide efficient multi-search in problem domain 

by individuals composing their population. Thus these algorithms are unlikely to be 

trapped in local minima and efficient in optimization of nondifferentiable, nonlinear 

and multimodal objective functions.  

 

Genetic Algorithms (GA) are a class of evolutionary computation algorithms 

inspired by the process of natural evolution developed by Holland [20]. Bettayeb 

and Qidwai [17] combined genetic algorithm with least squares method to estimate 

phase angles and amplitudes of harmonics accurately at the same time and to 

provide improvement in convergence time as compared to using the ordinary GA 

[16]. The proposed hybrid algorithm takes advantage that the harmonic estimation 

problem is linear in amplitude and nonlinear in phase. Algorithm iterates between 

linear least squares amplitude estimation and the nonlinear GA-based phase 

estimation.  

 

Particle Swarm Optimization (PSO) is a newer evolutionary computation algorithm, 

more specifically member of swarm intelligent techniques, inspired by social 

behavior of bird flocking or fish schooling, discovered by Kennedy and Eberhart 

[21] in 1995. Lu et al. [19] proposed using a variant of PSO, particle swarm 

optimization with passive congration (PSOPC), instead of genetic algorithm for the 
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estimation of phase angles and the least squares method for estimation of 

amplitudes. This approach is proposed to achive an improved performance over 

the conventional GA and FFT schemes even in the presence of noise. Also PSO 

algorithm needs few parameters to be adjusted, hence is easy to apply and adapt 

in different applications. 

 

Differential Evolution (DE) is one of the most prominent new generation 

evolutionary computation algorithms, proposed by Storn and Price [22], to exhibit 

consistent and reliable performance in nonlinear and multimodal environment. DE 

has shown good performance on many real-world problems and on the majority of 

the numerical benchmark problems as well. In the last years, DE has been widely 

applied to many optimization problems [23] and great number of differential 

evolution publications in scientific journals and conference proceedings are seen. 

In comparative studies DE has proven its superiority as the best performing 

algorithm over other evolutionary algorithms for many problems [24]. In these 

studies, it is shown that DE is reliable, robust and efficient optimization algorithm. 

Besides, one major advantage of DE is the ease of the application. DE needs few 

parameters to be adjusted and has a simple vector based iterative algorithm. 

   

The motivation of this thesis is, to develop a method that is easy to apply, 

adaptable to different cases and accurate, and to achieve an better performance 

than the applied hybrid algorithms, present and apply a novel hybrid algorithm that 

uses DE for phase angle estimation and least squares method for amplitude 

estimation. 

 

Organization of this thesis is as follows 

  

Chapter 2 gives introduction to power quality. Various power quality problems, 

reasons and effects are discussed briefly.  

 

In Chapter 3, harmonics, sources and effects of harmonic distortion are discussed. 

Conventional method for harmonic analysis and the drawbacks of this method are 

described. 
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In Chapter 4, Least Squares Method and Genetic Algorithms are explained. 

Structural property of harmonic estimation problem and hybrid algorithm approach 

for harmonic estimation is described. LS-GA based hybrid algorithm is given. 

 

In Chapter 5, Particle Swarm Optimization and passive congregation concept is 

explained. LS-PSOPC based hybrid algorithm for harmonic estimation is 

described. 

 

In Chapter 6, Differential Evolution is described and a novel LS-DE based hybrid 

algorithm is presented. 

 

In chapter 7, applications of three hybrid algorithms are described and simulation 

results are given. 

 

In chapter 8, by analyzing simulation results, the proposed novel LS-DE based 

hybrid algorithm is discussed and compared with LS-GA based and LS-PSOPC 

based hybrid algorithms and the final conclusion has been given. 

 

In simulations considering the majority of nonlinear loads produce harmonics that 

are odd multiples of the fundamental frequency and for the purpose of 

comparison, the same sample distorted wave used in previous studies [17;18;19], 

is generated and used in simulations of the algorithms. This sample distorted 

signal includes 5rd, 7th, 11th and 13th harmonics, which emerge at the terminal of 

the load bus with six-pulse full-wave bridge rectifier. The simulations are 

performed in MATLAB environment, for noisy and non-noisy conditions.  
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2. POWER QUALITY 

 

2.1 Introduction to Power Quality 

 

Power quality is a broad term having different definitions, generally meant to 

express the quality of voltage or the quality of current and can be defined as: the 

measure, analysis, and improvement of the bus voltage to maintain a sinusoidal 

waveform at rated voltage and frequency [1]. A simpler and perhaps more general 

definition might state: “Power quality is a set of electrical boundaries that allows a 

piece of equipment to function in its intended manner without significant loss of 

performance or life expectancy” [31]. Power quality affects all connected electrical 

and electronic equipment, distribution and transmission lines and any power 

problem manifested in voltage, current, or frequency deviations results in failure or 

misoperation of customer equipment [25]. The dependence of modern life upon 

the continuous supply of electrical energy makes system reliability and power 

quality topics of utmost importance in electric power system area. Power quality 

has economic impacts on utilities, their customers and suppliers of load 

equipment. It has not only direct importance for economic losses of utilities and 

industrial consumers but also for service quality for the end users. Distortion 

sources of power quality problems can be divided into four categories [1]: 

unpredictable events, the electric utility, the customer, and the manufacturer. 

 

 Both electric utilities and end users agree that more than 60% of power quality 

problems are generated by natural and unpredictable events. As another category, 

there are three main sources of poor power quality related to utilities: the point of 

supply generation, the transmission system and the distribution system. Customer 

loads also generate a considerable portion of power quality problems in today's 

power systems and harmonic distortion draws attention as one of the most 

important  end-user related problems. Lastly, two main sources of poor power 

quality related to manufacturing ragulations are due to standards and equipment 

sensitivity. The lack of standards for testing, certification, installation, use of 

electronic equipment and appliances, and proliferation of sensitive electronic 

equipments are major causes of power quality [1]. 

 



6 

 

2.2 Power Quality Problems 

 

There are different classifications for power quality issues, each using a specific 

property to categorize the problem. Some of them classify the events as "steady-

state" and "non-steady-state" phenomena. In some regulations (e.g., ANSI C84.1 

[26]) the most important factor is the duration of the event. Other guidelines (e.g., 

IEEE-519 [27]) use the wave shape (duration and magnitude) of each event to 

classify power quality problems. Other standards (e.g., IEC [28]) use the frequency 

range of the event for the classification. the principal phenomena causing 

electromagnetic disturbances according to IEC classifications. IEEE standards use 

several additional terms (as compared with IEC terminology) to classify power 

quality events. Table 2.1 provides information about categories and characteristics 

of electromagnetic phenomena defined by IEEE-1159 [29]. 

 

2.2.1 Transients 

 

Power system transients are undesirable, fast and short-duration events that 

produce distortions. Their characteristics and waveforms depend on the 

mechanism of generation and the network parameters (e.g., resistance, 

inductance, and capacitance) at the point of interest. "Surge" is often considered 

synonymous with transient. Transients are usually classified into two categories: 

impulsive and oscillatory 

 

An impulsive transient is a sudden frequency change in the steady-state condition 

of voltage, current, or both that is unidirectional in polarity. The most common 

cause of impulsive transients is a lightning current surge. 

 

An oscillatory transient is a sudden frequency change in the steady-state condition 

of voltage, current, or both that includes both positive and negative polarity values. 

Oscillatory transients occur for different reasons in power systems such as 

appliance switching, capacitor bank switching, fastacting overcurrent protective 

devices, and ferroresonance. Impulsive and oscillatory transients are shown in 

figure 2.1. 
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Table 2.1 Categories and typical characteristics of power system electromagnetic                                  
phenomena [29] 

 

 

 

 

 

Figure 2.1 (a) Lighting stroke current impulsive transient (b) Oscillator transient 
current caused by back-to-back capacitor switching [29] 
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2.2.2 Long-duration voltage variations 

 

Long-duration variations encompass root-mean-square (rms) deviations at power 

frequencies for longer than 1 min. Long-duration variations can be either 

overvoltages or undervoltages. Overvoltages and undervoltages generally are not 

the result of system faults, but are caused by load variations on the system and 

system switching operations. 

 

2.2.2.1 Overvoltage 

 

An overvoltage is an increase in the rms ac voltage greater than 110 percent at 

the power frequency for a duration longer than 1 min. Overvoltages are usually the 

result of load switching (e.g., switching off a large load or energizing a capacitor 

bank). The overvoltages result because either the system is too weak for the 

desired voltage regulation or voltage controls are inadequate. Incorrect tap 

settings on transformers can also result in system overvoltages. 

 

2.2.2.2 Undervoltage 

 

An undervoltage is a decrease in the rms ac voltage to less than 90 percent at the 

power frequency for a duration longer than 1 min. Undervoltages are the result of 

switching events that are the opposite of the events that cause overvoltages. A 

load switching on or a capacitor bank switching off can cause an undervoltage 

until voltage regulation equipment on the system can bring the voltage back to 

within tolerances. Overloaded circuits can result in undervoltages also. 

 

2.2.3 Short-duration voltage variations 

 

This category encompasses the IEC category of voltage dips and short 

interruptions. Each type of variation can be designated as instantaneous, 

momentary, or temporary, depending on its duration as defined in Table 2.1. 
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2.2.3.1 Interruption 

 

An interruption occurs when the supply voltage or load current decreases to less 

than 0.1 pu for a period of time not exceeding 1 min. Interruptions can be the 

result of power system faults, equipment failures, and control malfunctions. 

 

 

 

Figure 2.2 Three-phase rms voltages for a momentary interruption due to a fault 
and subsequent recloser operation [25] 

 

2.2.3.2 Sags (dips) 

 

A sag is a decrease to between 0.1 and 0.9 pu in rms voltage or current at the 

power frequency for durations from 0.5 cycle to 1 min. Voltage sags are usually 

associated with system faults but can also be caused by energization of heavy 

loads or starting of large motors. Figure 2.6 shows a typical voltage sag that can 

be associated with a single- line-to-ground (SLG) fault on another feeder from the 

same substation and Figure 2.3 illustrates the effect of a large motor starting. 
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Figure 2.3 (a) RMS waveform for vol. sag caused by SLG fault (b) Vol. sag 
waveform caused by SLG fault (c) Vol.sag caused by motor starting [25] 

 

2.2.3.3 Swells 

 

A swell is defined as an increase to between 1.1 and 1.8 pu in rms voltage or 

current at the power frequency for durations from 0.5 cycle to 1 min. As with sags, 

swells are usually associated with system fault conditions, but they are not as 

common as voltage sags. One way that a swell can occur is from the temporary 

voltage rise on the unfaulted phases during an SLG fault., Figure 2.4 illustrates a 

voltage swell caused by an SLG fault. Swells can also be caused by switching off 

a large load or energizing a large capacitor bank. 

 

 

Figure 2.4 Instantaneous voltage swell caused by an SLG fault [25] 
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2.2.4 Voltage imbalance 

 

Voltage imbalance (also called voltage unbalance) is sometimes defined as the 

maximum deviation from the average of the three-phase voltages or currents, 

divided by the average of the three-phase voltages or currents, expressed in 

percent. Voltage imbalance trend for a residential feeder is shown in figure 2.5. 

 

 

 

Figure 2.5 Voltage imbalance trend for a residential feeder [29] 

 

2.2.5 Waveform distortion 

 

Waveform distortion is defined as a steady-state deviation from an ideal sine wave 

of power frequency principally characterized by the spectral content of the 

deviation. There are five primary types of waveform distortion: 

 

■ DC offset 

■ Interharmonics 

■ Notching 

■ Noise 

■ Harmonics 

 

The next chapter is devoted to discussion of harmonics. 
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2.2.5.1 DC offset  

 

The presence of a dc voltage or current in an ac power system is termed dc offset. 

This can occur as the result of a geomagnetic disturbance or asymmetry of 

electronic power converters. Incandescent light bulb life extenders, for example, 

may consist of diodes that reduce the rms voltage supplied to the light bulb by 

half-wave rectification. Direct current in ac networks can have a detrimental effect 

by biasing transformer cores so they saturate in normal operation. This causes 

additional heating and loss of transformer life. Direct current may also cause the 

electrolytic erosion of grounding electrodes and other connectors. 

 

2.2.5.2 Interharmonics  

 

The frequency of interharmonics are not integer multiples of the fundamental 

frequency. Interharmonics appear as discrete frequencies or as a band spectrum. 

Main sources of interharmonic waveforms are static frequency converters, 

cycloconverters, induction motors, arcing devices, and computers. Interharmonics 

cause flicker, low-frequency torques, additional temperature rise in induction 

machines , and malfunctioning of protective (under-frequency) relays. It is 

generally the result of frequency conversion and is often not constant; it varies with 

load. Such interharmonic currents can excite quite severe resonances on the 

power system as the varying interharmonic frequency becomes coincident with 

natural frequencies of the system. They have been shown to affect power-line-

carrier signaling and induce visual flicker in fluorescent and other arc lighting as 

well as in computer display devices. 

 

2.2.5.3 Notching 

 

Notching is a periodic voltage disturbance caused by the normal operation of 

power electronic devices when current is commutated from one phase to another.. 

The  notching appears in the line voltage waveform during normal operation of 

power electronic devices when the current commutates from one phase to 

another. During this notching period, there exists a momentary short - circuit 

between the two commutating phases, reducing the line voltage; the voltage 



13 

 

reduction is  limited only by the system impedance. measurement equipment 

normally used for harmonic analysis. Figure 2.6 shows an example of voltage 

notching from a three-phase converter that produces continuous dc current. 

 

 

 

Figure 2.6 Example of voltage notching caused by converter operation [29] 

 

2.2.5.4 Noise 

 

 Noise is defined as unwanted electrical signals with broadband spectral content 

lower than 200 kHz superimposed on the power system voltage or current in 

phase conductors, or found on neutral conductors or signal lines. Electric noise 

may result from faulty connections in transmission or distribution systems, arc 

furnaces, electrical furnaces, power electronic devices, control circuits, welding 

equipment, loads with solid-state rectifiers, improper grounding, turning off 

capacitor banks, adjustable-speed drives, corona, and broadband power line 

(BPL) communication circuits. The problem can be mitigated by using filters, line 

conditioners, and dedicated lines or transformers. Electric noise impacts electronic 

devices such as microcomputers and programmable controllers. 

 

2.2.6 Voltage fluctuation and flicker 

 

Voltage fluctuations are systemic variations of the voltage envelope or random 

voltage changes, the magnitude of which does not normally exceed specified 
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voltage ranges (e.g., 0.9 to 1.1 pu as defined by ANSI C84.1-1982). Voltage 

fluctuations are divided into two categories: 

 

 step-voltage changes, regular or irregular in time, and 

 cyclic or random voltage changes produced by variations in the load 

impedances 

 

Voltage fluctuations degrade the performance of the equipment and cause 

instability of the internal voltages and currents of electronic equipment. However, 

voltage fluctuations less than 10% do not affect electronic equipment. The main 

causes of voltage fluctuation are pulsed-power output, resistance welders, start-up 

of drives, arc furnaces, drives with rapidly changing loads, and rolling mills. Loads 

that can exhibit continuous, rapid variations in the load current magnitude can 

cause voltage variations that are often referred to as flicker. 

 

2.2.7 Power frequency variations 

 

Power frequency variations are defined as the deviation of the power system 

fundamental frequency from it specified nominal value (e.g., 50 or 60 Hz). The 

power system frequency is directly related to the rotational speed of the 

generators supplying the system. There are slight variations in frequency as the 

dynamic balance between load and generation changes. The size of the frequency 

shift and its duration depend on the load characteristics and the response of the 

generation control system to load changes. 
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3. HARMONICS 

 

Harmonics are sinusoidal voltages or currents having frequencies that are integer 

multiples of the frequency at which the supply system is designed to operate 

(termed the fundamental frequency; usually 50 or 60 Hz) [29]. 

 

Harmonics according to their harmonic number will have frequencies: 

 

 )(hfh   x fundamental frequency 

 

The component with h = 1 is called the fundamental component.  

 

Using the Fourier series, any voltage or current waveform could be reproduced 

from the fundamental frequency component and the sum of the harmonic 

components as 

 

)2sin()(
1

0 hh

k

fthVatV   




                                                                                    (3.1)
  
 

 

where, 

0a : dc component 

hV : peak voltage level 

f : fundamental frequency 

h : phase angle 

 

Figure 3.1 shows an ideal 50-Hz waveform with a peak value of 100, which can be 

taken as one per unit. Likewise, it also portrays waveforms of amplitudes (1/7), 

(1/5), and (1/3) per unit and frequencies seven, five, and three times the 

fundamental frequency, respectively. This behavior showing harmonic 

components of decreasing amplitude often following an inverse law with harmonic 

order is typical in power systems. 
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Figure 3.1 50 Hz-fundamental component, 3rd ,5th,7th harmonics and the 
resulting distorted waveform 

 

3.1 Harmonic Distortion 

 

Ideally, an electricity supply should invariably show a perfectly sinusoidal voltage 

signal at every customer location. However, for a number of reasons, utilities often 

find it hard to preserve such desirable conditions. Waveform distortion, due to the 

harmonics is named as harmonic distortion (figure 3.1) and it constitutes at 

present one of the main concerns for engineers in the several stages of energy 

utilization within the power industry [30]. The increasing use of nonlinear loads in 

industry is keeping harmonic distortion in distribution networks on the rise. 

 

Nonlinear loads are loads in which the current waveform does not resemble the 

applied voltage waveform due to a number of reasons, for example, the use of 

electronic switches that conduct load current only during a fraction of the power 

frequency period. When a nonlinear load is supplied from a supply voltage of 60-

Hz or 50-Hz frequency, it draws currents at more than one frequency, resulting in 

a distorted current waveform. The majority of nonlinear loads produce harmonics 

that are odd multiples of the fundamental frequency. Certain conditions need to 

exist for production of even harmonics [31]. 
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Due to the power system impedance, any current (or voltage) harmonic will result 

in the generation and propagation of voltage (or current) harmonics and affects the 

entire power system. Figure 3.2 illustrates the impact of current harmonics 

generated by a nonlinear load on a typical power system with linear loads [1]. 

 

 

 

Figure 3.2 Propagation of harmonics (generated by a nonlinear load) in power 
systems [1] 

 

3.2 Sources of Harmonics 

 

Among the sources of harmonic voltages and currents in power systems three 

groups of equipment can be distinguished [32]: 

 

• magnetic core equipment, like transformers, electric motors, generators, etc. 

• arc furnaces, arc welders, high-pressure discharge lamps, etc. 

• electronic and power electronic equipment. 

 

3.2.1 Transformers 

 

The relationship between the primary voltage and current – shown in Figure 3.3 as 

a magnetization curve – is strongly non-linear and hence its location within the 

saturation region causes distortion of the magnetizing current (Figure 3.3). 
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Figure 3.3  An example of a transformer-distorted magnetizing current and its 
harmonic spectrum [32] 

 

3.2.2 Arc furnaces 

 

Distortion of arc furnace currents and in consequence also of voltages is an 

important issue because of their common use and large individual powers [32]. 

Moreover, arc furnaces are presently operated at a lower power factor than in the 

past. One of the consequences of this, as well as more stringent requirements 

regarding reactive power compensation, is the increasing rated power of the 

compensating capacitors. This results in lowering the resonant frequency. As the 

amplitudes of high harmonics are of significant value in this range of the spectrum, 

a magnification of the supply voltage harmonics may occur. Conditions for arc 

discharge change in subsequent phases of the heat. The highest level of current 

distortion occurs during the melting phase, whereas it is much lower in the other 

phases (air refining and refining). A typical amplitude spectrum of the current 

(during the melting and refining) is shown in Figure 3.4. 

 

 

 

Figure 3.4 Typical harmonic spectrum of an arc furnace current (a) during melting 
and (b) during refining [32] 
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3.2.3 Rotating machines   

 

The distribution of the armature windings and the presence of slots in the 

machines cause spatial harmonics in them [33]. These in turn produce time 

harmonics in the induced voltages, which appear at the terminals. Most of the 

power station generators are wye-connected. In such machines, triplen harmonic 

voltages do not appear in line-to-line voltages. Also, triplen harmonics can be 

eliminated even in phase-to-neutral voltages by using two-third pitch winding. 

Usually, the most significant harmonics to be minimized by the use of fractional 

pitch windings are the fifth and seventh. Higher harmonics than the ninth are so 

small that they require little attention except in rare cases. 

 

3.2.4 Fluorescent lighting 

 

Fluorescent lights are discharge lamps; thus they require a ballast to provide a 

high initial voltage to initiate the discharge for the electric current to flow between 

two electrodes in the fluorescent tube [25]. Once the discharge is established, the 

voltage decreases as the arc current increases. It is essentially a short circuit 

between the two electrodes, and the ballast has to quickly reduce the current to a 

level to maintain the specified lumen output. Thus, a ballast is also a current-

limiting device in lighting applications. 

 

3.2.5 Converters 

 

The increasing use of the power conditioners in which parameters like voltage and 

frequency are varied to adapt to specific industrial and commercial processes has 

made power converters the most widespread source of harmonics in distribution 

systems [30]. Electronic switching helps the task to rectify 50-/60-Hz AC into DC 

power. In DC applications, the voltage is varied through adjusting the firing angle 

of the electronic switching device. Basically, in the rectifying process, current is 

allowed to pass through semiconductor devices during only a fraction of the 

fundamental frequency cycle, for which power converters are often regarded as 

energy-saving devices. If energy is to be used as AC but at a different frequency, 

the DC output from the converter is passed through an electronic switching 
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inverter that brings the DC power back to AC. Large power converters like those 

used in the metal smelter industry and in HVDC transmission systems. Medium-

size power converters like those used in the manufacturing industry for motor 

speed control and in the railway industry Small power rectifiers used in residential 

entertaining devices, including TV sets and personal computers. Battery chargers 

are another example of small power converters. 

 

3.3 Effects of Harmonics 

 

The undesirable effects of the harmonics produced by the aforementioned loads 

are listed as follows [33]: 

 

1. Capacitors: These may draw excessive current and prematurely fail from 

increased dielectric loss and heating. Also, under resonance conditions, 

considerably higher voltages and currents can be observed than would be the 

case without resonance.  

2. Power Cables: In systems with resonant conditions, cables may be subjected 

to voltage stress and corona, which can lead to dielectric (insulation) failure. 

Further harmonic currents can cause heating. 

3. Telephone Interference: Harmonics can interfere with telecommunication 

systems, especially noise on telephone lines 

4. Rotating Equipment (Motors and Generators): Harmonic voltages and currents 

contribute to increased copper and iron losses, leading to the heating of machines 

and thus reducing their efficiency 

5. Transformers: Harmonic currents increase copper losses and stray load losses, 

and harmonic voltages cause an increase in iron losses. Higher frequency 

harmonics increase losses because they are dependent on frequency, but in 

general higher harmonics are smaller in magnitude. Further, harmonics are 

responsible for increased audible noise 

 6. Electronic Equipment: Computers and allied equipment such as programmable 

controllers frequently require ac sources that have no more than a 5% harmonic 

voltage distortion factor, with the largest single harmonic below 3% of the 

fundamental voltage. Higher levels of harmonics result in erratic functioning or 
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malfunctioning of the equipment. Hence, many medical instruments are provided 

with line conditioners  

7. Metering: Induction disk devices, such as watthour meters, can give erroneous 

readings in systems with severe distortion. 

8. Relaying: As with other equipment, switchgears also can experience increased 

losses due to harmonics.  

 

3.4 Harmonic Analysis 

 

3.4.1 Fourier series 

 

In 1822 J.B.J. Fourier [34] postulated that any continuous function repetitive in an 

interval T can be represented by the summation of a d.c. component, a 

fundamental sinusoidal component and a series of higher-order sinusoidal 

components (called harmonics) at frequencies which are integer multiples of the 

fundamental frequency. Harmonic analysis is then the process of calculating the 

magnitudes and phases of the fundamental and higher-order harmonics of the 

periodic waveform [34]. The resulting series, known as the Fourier series, 

establishes a relationship between a time-domain function and that function in the 

frequency domain.  In practice, data is often available in the form of a sampled 

time function, represented by a time series of amplitudes, separated by fixed time 

intervals of limited duration. When dealing with such data, a modification of the 

Fourier transform, the discrete Fourier transform (DFT), is used. The 

implementation of the DFT by means of the so-called Fast Fourier transform (FFT) 

forms the basis of most modern spectral and harmonic analysis systems [35]. 

 

By definition, a periodic function, f(t), is that where f(t) = f(t + T). This function can 

be represented by a trigonometric series of elements consisting of a DC 

component and other elements with frequencies comprising the fundamental 

component and its integer multiple frequencies. This applies if the following so-

called Dirichlet conditions are met: 

 

 If a discontinuous function, f(t) has a finite number of discontinuities over 

the period T 
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 If f(t) has a finite mean value over the period T 

 If f(t) has a finite number of positive and negative maximum values 

 

The expression for the trigonometric series f(t) is as follows: 
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Eq.(3.2) can be simplified which yields: 
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Equation (3.2) is known as a Fourier series and it describes a periodic function 

made up of the contribution of sinusoidal functions of different frequencies. 

)( ohw   h th order harmonic of the periodic function 

0c         magnitude of the DC component 

hc  and h   magnitude and phase angle of the h th harmonic component 

By Euler’s equation, Equation (3.3) can be represented in a complex form as: 
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3.4.1.1 Orthogonal functions 

 

A set of functions, i , defined in bxa  is called orthogonal (or unitary, if 

complex) if it satisfies the following condition: 

iji

b

a

ji Kdxxx   )()( *
                                                                                                      (3.6) 

Where 1ij  for ji  , and 0  for ji  , and * is the complex conjugate. 

It can also be shown that the functions: 
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T
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dx                                                                                                                      (3.13) 

 

are a set of orthogonal functions. From equation (3.7) to equation (3.13), it is seen 

that the integral over period (  to ) of the product of any two sine and cosine 

functions is zero. 
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3.4.1.2 Fourier coefficients 

 

Integrating equation (3.2) and applying the orthogonal fuctions (equation 3.8 

through equation 3.13), we obtain the Fourier coefficients as follows: 

 






2/

2/

0 ,)(
2

T

T

dttg
T

a                                                                                                             (3.14) 






2/

2/

0 ,)cos()(
2

T

T

h dtthwtg
T

a   and,                                                                         (3.15) 






2/

2/

0 )sin()(
2

T

T

h dtthwtg
T

b                                                                                               (3.16) 

 

where  ,...2,1h
 

 

3.4.2 Fourier transform 

 

Fourier analysis, when applied to a continuous, periodic signal in the time domain, 

yields a series of discrete frequency components in the frequency domain. By 

allowing the integration period to extend to infinity, the spacing between the 

harmonic frequencies, w , tends to zero and the Fourier coefficients, nc , of 

equation (3.5) become a continuous function, such that 
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The expression for the time domain function )(tx , which is also continuous and of 

infinite duration, in terms of  )( fG is then 
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)( fG is known as the spectral density function of x(t). In general, )( fG is complex 

and can be written as 

 

)( fG Re jfG )( Im )( fG                                                                             (3.19) 

 

The real part of )( fG is obtained from 
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Similarly, fort he imaginary part of )( fG
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The amplitude spectrum of the frequency signal is obtained from 
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The phase spectrum is  
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Using equations (3.19) to (3.23), the inverse Fourier transform can be expressed 

in terms of the magnitude and phase spectra components: 
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3.4.3 Discrete Fourier transform  

 

In the case where the frequency domain spectrum is a sampled function, as well 

asthe time domain function, we obtain a Fourier transform pair made up of discrete 

components: 
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Both the time domain function and the frequency domain spectrum are assumed 

periodic, with a total of N samples per period. It is in this discrete form that the 

Fourier transform is most suited to numerical evaluation by digital computation.  If 

equation (3.25) is rewritten as 
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where 
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Over all the frequency components, equation (3.27) becomes a matrix equation. 
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or in a condensed form 

 

)](][[/1)]([ n

kn

k txWNfG                                                                                               (3.29) 

 

In these equations, G(fk) is a vector representing the N components of the function 

in the frequency domain, while [x(tn)] is a vector representing the N samples of the 

function in the time domain. 

 

 Calculation of the N frequency components from the N time samples, therefore, 

requires a total of N2 complex multiplications to implement in the above form. Each 

element in the matrix  [Wkn] represents a unit vector with a clockwise rotation of 

2nπ / N  (n = 0,1,2,…,(N-1)) introduced between successive components. 

Depending on the value of N, a number of these elements are the same. 

 

3.4.4 Fast Fourier transform  

 

For large values of N, the computational time and cost of executing the N2 complex 

multiplications of the DFT can become prohibitive. Instead, a calculation procedure 

known as the FFT, which takes advantage of the similarity of many of the 

elements in the matrix [Wkn ], produces the same frequency components using 

only N/2 log2N multiplications to execute the solution of equation (3.16). Thus, for 

the case N = 1024 = 210, there is a saving in computation time by a factor of over 

200. This is achieved by factorising the [Wkn] matrix of equation (3.27) into log2N 

individual or factor matrices such that there are only two non-zero elements in 

each row of these matrices, one of which is always unity.  

 

Thus, when multiplying by any factor matrix only N operations are required. 

The reduction in the number of multiplications required, to (N/2)log2N, is obtained 

by recognising that 

 

WN/2 = −W0                                                                                                        (3.30) 

 

W(N+2)/2 = −W1                                                                                                   (3.31) 
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To obtain the factor matrices, it is first necessary to re-order the rows of the full 

matrix. If rows are denoted by a binary representation, then the re-ordering is by 

bit reversal. 

 

3.4.5 Drawbacks of FFT based techniques in harmonic estimation 

 

The Fourier transform based techniques are the most widely utilised signal 

processing tools in power system harmonic analysis. However, three problems, 

aliasing, leakage and the picket-fence effect are the main drawbacks of this 

approach. 

 

3.4.5.1 Picket fence effect 

 

If the analyzed waveform has frequencies which are integral numbers of the 

original record length T (or observation time), the FFT will yield the appropriate 

amplitudes at the appropriate frequencies and zero at the others. Thus, ideally, the  

sampling frequency is 

           fs= desired number of points x fundamental frequency component       (3.32) 
 

The picket-fence effect occurs if the analyzed waveform includes a frequency 

which is not one of the discrete frequencies (an integer times the fundamental) 

[36]. A frequency lying between the nth and the (n + 1)st harmonics where (n + 1) 

< N/2, affects primarily the magnitudes of the nth and the (n + 1)st harmonics and 

secondarily the magnitude of all other harmonics. Also, this frequency can cause 

leakage which in turn may cause pseudoaliasing. 

 
3.4.5.2 Aliasing 

 

"Aliasing" is the phenomenon due to which high frequency components of a time 

function can translate into low frequencies if the sampling rate is too low. This is 

shown in figure by showing a relatively high frequency and relatively low frequency 

that share identical sample points. This uncertainty can be removed by demanding 

that sampling rate high enough for the highest frequency present to be sampled at 
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least twice during each cycle [36]. Briefly, sampling theorem states that the 

sampling frequency must be at least twice the highest frequency contained in the 

original signal for a correct transfer of information to the sampled system.  

 

 
 
 

Figure 3.5 Aliasing Effect 

 

3.4.5.3 Spectral leakage 

 

For an accurate spectral measurement, it is not sufficient to use proper signal 

acquisition techniques to have a nicely scaled, single-sided spectrum. Spectral 

leakage is the result of an assumption in the FFT algorithm that the time record is 

exactly repeated throughout all time and that signals contained in a time record 

are thus periodic at intervals that correspond to the length of the time record. If the 

time record has a nonintegral number of cycles, this assumption is violated and 

spectral leakage occurs. Another way of looking at this case is that the nonintegral 

cycle frequency component of the signal does not correspond exactly to one of the 

spectrum frequency lines [37]. 
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4. A HYBRID LEAST SQUARES-GA BASED ALGORITHM FOR HARMONIC 

ESTIMATION 

 

4.1 Least Squares Method 

 

Least Squares Method was first described by Carl Friedrich Gauss around 1794 

[38].  Least Squares is a standard approach to minimize the sum of squared 

vertical distances between the observed responses in the dataset and the 

responses predicted by the linear approximation. 

 

For the given data z(t) least square estimation can be written in the form: 

 

AtAthAthAthtz T

nn )()(...)()()( 2211                                                      (4.1) 

where  

z= observed variable 

a1,…, an = unknown parameters 

h1,…, hn = known functions that may depend on other known variables 

The variables h1,…, hn are called regression variables or regressors and the model 

of equation (4.1) is called a regression model, where 
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Equation (4.1) can bee written as 

11)()( nxxn

T Attz                                                                                                              (4.4) 

 
If N measurements are taken then for the kth measurement the equation can be 

written as 
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or       AHZ .                                                                                                     (4.6) 

where  Z = N x 1 vector and   A = N x n matrix       
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and      
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To obtain the least squares estimate minimizing J 

 

 
 


N

k

N

k

T AkHkz
N

ke
N

J
1 1

22 )).()((
1

)(
1

                                                            (4.9) 

 

becomes in vector form as 

][
1

)()(
1 

 AHHAZHAAHZZZ
N

AHZAHZ
N

J TTTTTTT
          (4.10) 

 



 AHZZHAAHZ TTTT )(                                                                              (4.11) 

 

Therefore, 
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Setting to zero the derivative of J with respect to 


A   
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4.2 Genetic Algorithm 

 

4.2.1 Inspiration 

 

Genetic algorithms are a class of evolutionary algorithms inspired by the process 

of natural evolution.The idea behind the algorithm lies on the neo-Darwinian 

paradigm which has been composed of Darwin’s classical theory of evolution with 

Weismann’s theory of natural selection and Mendel’s concept of genetics.[39] 

Neo-Darwinism is based on processes of reproduction, mutation, competition and 

selection. Evolution  can be seen as a set of these processes leading to the 

maintenance or increase of a population’s ability, called evolutionary fitness, to 

survive and reproduce in a specific environment resulting in better generations.[40] 

The idea of  GA as an simulation of the natural evolution dates back to the early 

1950s, but it was only later, Holland, one of the contributors in foundation of 

evolutionary computation introduced the methodology of genetic algorithms in a 

more formal and tractable way [20]. 

 

Genetic algorithms can be represented by a sequence of procedural steps for 

moving from one population of artificial chromosomes to a new population. 

Population consists of artificial chromosomes, also named as individuals, which 

are candidate solutions for optimization problem and each chromosome is 

encoded in variable domain as a number of genes represented by 0 or 1. GA 

measures the chromosome’s fitness by using an evaluation function to carry out 

reproduction. In the reproduction process, the crossover operator exchanges parts 

of two single chromosomes, and mutation operator changes the gene value in 

some randomly chosen location of the chromosome and a new generation takes  

place. As a result, after a number of successive reproductions, the less fit 

chromosomes become extinct, while those bests able to survive gradually come to 

dominate the population. 

 

The main attractions of GAs lies in the fact that unlike the gradient based methods, 

do not require the calculation of the derivatives and can effectively explore many 

regions of the search space simultaneously, rather than a single region.   
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4.2.2 Algorithm 

 

 Steps in the GA are numbered and the details explained as below [42] 

 

Step 1: The problem variable domain is represented as a chromosome of a fixed 

length, the size of a chromosome population N, the crossover probability pc  and 

the mutation probability pm are choosen 

Step 2: To measure the performance, or fitness, of an individual chromosome, a 

fitness function is defined in the problem domain 

Step 3: An initial population of chromosomes of size N is generated 

Step 4: Fitness of each individual chromosome is calculated 

Step 5: A pair of chromosomes is selected for mating from the current population 

Step 6: By applying genetic operators-crossover and mutation, a pair of offspring 

chromosomes is created 

Step 7: The created offspring chromosomes is placed in the new population 

Step 8: Step 5 is repeated until the size of the new chromosome population 

becomes equal to the size of the initial population, N 

Step 9: The initial (parent) chromosome population is replaced  with the new 

(offspring) population 

Step 10: To step 4 is returned and the process is repeated until the termination 

criterion is satisfied 

 

The flowchart of Genetic Algorithm is given in figure 4.1. 
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Figure 4.1 Flowchart of Genetic Algorithm [42] 
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4.2.2.1 Encoding 

 

Typically, GAs encode a continuous parameter, x, as a n integer string of q bits, 

ak, k=0,1,…q-1, each of which is a coefficient for a power of 2: 
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When decoded, integers are normalized by a factor of 12 q  and multiplied by a    

bU-bL  so that values span the range between a parameters’s upper and lower 

bounds, bU and bL , respectively. Assuming that equal resorces are devoted to 

each parameter, a vector of D parameters will require l=q.D bits in all. 

 

4.2.2.2 Selection 

 

An initial population of individual structures P(0)  is generated (usually randomly) 

and each individual is evaluated for fitness [43]. Then some of these individuals 

are selected for mating and copied to the mating buffer C(t). In Holland’s original 

GA, individuals are chosen for mating probabilistically, assigning each individual a 

probability proportional to its observed performance. The probability of an 

individual being chosen is a function of its observed fitness. A straightforward way 

of doing this would be to total the fitness values assigned to all the individuals in 

the parent population and calculate the probability of any individual being selected 

by dividing its fitness by the total fitness. Thus, better individuals are given more 

opportunities to produce offspring. This, one of the most commonly used 

chromosome selection techniques is called roulette wheel selection [44]. In this 

technique chromosomes occupy slices in wheel, which have areas proportional to 

to their fitness ratios. Once a pair of parent chromosomes is selected, the 

crossover operator is applied. As a result individuals are selected for reproduction 

on the basis of their fitness,i.e, fitter chromosomes occupy larger areas and hence 

have the highest likelihood of selection for reproduction. Tournament selection  

and elitist strategy are the other popular methods for selection.  
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4.2.2.3 Reproduction 

 

Crossover  

The idea behind crossover can be stated as follows: given two individuals who are 

highly fit, ideally aim is to create a new individual that combines the best features 

from each. Crossover operates in a way that  recombines features at random. It 

treats these features as building blocks scattered throughout the population and 

tries to recombine them into better individuals via crossover. Sometimes crossover 

may combine the worst features from the two parents, in which case these 

children will not survive for long. But sometimes it will recombine the best features 

from two good individuals, creating even better individuals, provided these 

features are compatible. After encoding phase, the representation becomes the 

classical bitstring representation: individual solutions in the population are 

represented by binary strings of zeros and ones of length L. A GA creates new 

individuals via crossover by choosing two strings from the parent population, lining 

them up, and then creating two new individuals by choosing a crossover point 

where two parent chromosomes break and then exchanging the chromosome 

parts after that point. As a result, two new offspring are created. Generally a value 

of 0.7 for the crossover probability is chosen. Crossover operation is shown in 

figure 4.2. 

 

 

Figure 4.2 Crossover in GA [45] 
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Mutation  

 
The sequence of selection and crossover operations may stagnate at any 

homogeneous set of solutions. Under such conditions, all chromosomes are 

identical, and thus the average fitness of the population cannot be improved. 

However, the solution might appear to become optimal, or rather locally optimal, 

only because the search algorithm is not able to proceed any further. Mutation 

operator’s is equivalent to a random search and its role is to gurantee that the 

search algorithm is not trapped on a local optimum by preventing loss of genetic 

diversity. The mutation probability is quite low for GAs, typically in the range 

between 0.001 and 0.01 [42]. The mutation operation is shown in figure 4.3. 

 

 

 

Figure 4.3 Mutation Operation in GA [45] 

 

4.3 A Hybrid Least Squares – GA Based Algorithm For Harmonic Estimation 

 

A signal composed of harmonics is mathematically described as  
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where n=1,2,…,N harmonics represents the order of the harmonic; An, wn, Φn are 

the amplitude, phase angle and angular frequency of the nth harmonic 

respectively, nn fw 2 ;and v(t) is the additive noise. 

The estimated signal model is 
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where nA


, n



  are the estimation of nA ,  n  respectively. Thereby, the original 

signal can be represented as  
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where r(t) is the estimation residual indicating difference between )(tZ  and )(tZ


. 

 

It can be seen that nonlinearity is due to the phase of the sinusoids.  However 

signal is linear in amplitude. A hybrid algorithm proposed by Bettayeb and Qidwai  

iterating between GA based phase estimation and Least Squares based amplitude 

estimation is applied in [18]. Once the phases are estimated by GA based 

estimator, LS method is used for the  estimation of amplitudes. 

 

The resulting sampled linear model with K samples of the system with additive 

noise is given by 

 

)()()( kvAkHkZ  , k =1,2,…,K                                                                            (4.20) 

 

where Z(k) is the kth sample of the measured values with additive noise v(k);        

A = [A1 A2 …AN]T is the vector of the amplitudes to be estimated; H(k) is the system 

structure matrix given by: 
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where the phases are estimated from the last GA iteration. The estimation model 

for this system is  



 AkHkZ )()(                                                                                                    (4.22)           

The estimate 


A  for the required parameter vector A can be obtained by 

minimizing the objective function by differentiating with respect to A and setting it 

to zero, which gives LS estimation algorithm 
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Using the structure matrix with the sampled values constituting )(kZ would give 

estimates for the amplitudes, which ensures that the estimation of the signal in 

equation (4.22) is the best in the condition of n



  .However, the values of n



 are not 

the best solution and need to be optimized. Therefore, in the next iteration 


n is 

updated using a certain optimization algorithm according to the cost function J, 

which is defined as the total square error between actual sample values and the 

estimated values of the signal and for the ith chromosome is given by  
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The performance index for the GA is calculated using both amplitudes and phases 

and the cycle is repeated until maximum number of generations reached or 

convergence condition satisfied. 
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5. A HYBRID LEAST SQUARES-PSOPC BASED ALGORITHM FOR 

HARMONIC ESTIMATION 

 

5.1 Particle Swarm Optimization 

 

5.1.1 Inspiration 

 

Particle Swarm Optimization is a population-based stochastic optimization 

algorithm discovered by Kennedy and Eberhart [46] in 1995. The inspiring concept 

was the the social model of bird flocking or fish schooling which has collective 

behaviors of simple individuals interacting with their environment and each other. 

The theory that individual members of the school can profit from the discoveries 

and previous experience of all other members of the school during the search of 

food, suggesting that social sharing of information among conspeciates offers an 

evolutionary advantage was fundamental to the development of PSO. By 

syntesizing the cognitive human social behaviour with this hypothesis the PSO 

model is based on the two following factor 

 

i. The autobiographical memory, which remembers the best previous 

position of each individual iP in the swarm 

ii. The publicized knowledge, which is the best solution 
gP found currently 

by the population 

 

5.1.2 Algorithm 

 

PSO shares many similarities with evolutionary computation techniques such as 

Genetic Algorithm [47]. The system is initialized with a population of random 

solutions and searches for optima by updating generations. However, unlike GA, 

PSO has no evolution operators such as crossover and mutation. Compared to 

GA, the advantages of PSO are that PSO is easy to implement and there are few 

parameters to adjust. PSO requires only primitive mathematical operators, and is 

computationally inexpensive in terms of both memory requirements and speed 

while it is effective in finding the global optimal solution [48] .In the last years PSO 

has been applied in many areas such as function optimization, artificial neural 
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network training, fuzzy system control, and other areas where evolutionary 

computation algorithms can be applied [49]. 

 

The ith particle at the kth iteration has the following two attributes 

 

1) A current position in N dimensional search space 
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If the sum of accelerations would cause the velocity on that dimension to exceed 

m axV ,which is a parameter defined by user, then the velocity on that dimension is 

limited to m axV . It determines the resolution, or fineness, with which regions 

between the present solution and the target(best so far) position are searched. If 

m axV is too high, particles might flt past good solutions or if m axV is too small, on the 

hand, particles may not explore sufficiently beyond locally good regions, could 

become trapped in local optima, unable to move far enough to reach a better 

position in problem domain [50]. 

 

In each iteration of PSO, the swarm is updated by the following equations: 
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where iP is the best previous position of the ith particle(also known as pbest) and 

1r  and 2r are random elements from two uniform sequences in the range (0,1). 
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The acceleration constants 1c  and 2c in equation (5.1), also named as cognitive 

and social parameters respectively, represent the weighting of the stochastic 

acceleration terms that pull each particle toward pbest and gbest positions [50]. 

Small values limit the movement of the particles, while large numbers may cause 

the particles to diverge. 

 

The effect of considering a random value for acceleration constant helps to create 

an uneven cycling for the trajectory of the particle when it is searching around the 

optimal value. Since the acceleration parameter controls the strength of terms, 

a small value will lead to a weak effect; therefore, the particles will follow a wide 

path and they will be pulled back only after a large number of iterations. If the 

acceleration constant is too high then the steps will be limited by m axV  [54]. 

 

 According to the different definitions of 
gP , there are two different versions of 

PSO [46]. 

 

 If 
gP is the best position among all the particles in the swarm(also known 

as gbest), such a version is called global version 

 If 
gP is taken from some smaller number of adjacent particles of the 

population (also known as lbest), such a version is called the local version  

 

The global version maintains only a single best solution, and each particle moves 

towards its previous best position and towards the best particle in the whole 

swarm. The best particle acts as an attractor, pulling all the particles towards it. In 

the local version, each particle moves  towards its previous best position, and also 

towards the best particle in its restricted neighbourhood and thus maintains 

multiple attractors. A sub-set of particles is defined for each particle from which the 

local best particle is selected. Global version is actually a special case of local 

version in which neighbourhood size is equal to swarm size. Pi and Pg are given by 

the following equations, respectively: 
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where J is the objective function Mm  and M is the total number of particles. 

 

The standard PSO algorithm with inertia weight is given below and the flowchart is 

shown in figure 5.1. 

 

Step1: Initialize   

(a) Set constants kmax, c1, c2, v
0
max, initialize inertia weight w and counter k 

(b) Randomly initialize particle positions Dxi 
0 in nR  for i = 1,…, p   

(c) Randomly initialize particle velocities 0

max

00 vvi   for i = 1,…, p  

(d) Evaluate fitness values 0

if for i = 1,…, p 

(e) Set  fi_best for i=1,…, p. Set fg_best to best fi_best 

Step2: Optimize 

(a) Update particle velocity vector vi
k+1  using equation (5.1) 

(b) Update particle velocity vector xi
k+1  using equation (5.2) 

(c) Evaluate 1k

if  is evaluated using particles’ space coordinates xi
k+1 for i = 

1,…,p  

(d) If 
besti

k

i ff _

1  then k

i

k

i

k

ibesti xpff   11

_ ,  for i = 1,…, p 

(e) If 
bestg

k

i ff _

1  then k

i

k

bestg

k

ibestg xpff   1

_

1

_ , for  i = 1,…, p 

(f) If stopping condition is satisfied step3 is processed 

(g) All particle velocities k

iv  for i = 1,…, p are updated 

(h) All particle positions k

ix  for i = 1,…, p are updated 

(i) If k = kmax 

(j) Increment k 

(k) Update w 

(l) Go to 2a  

Step3: Terminate 
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Figure 5.1 Flowchart of PSO Algorithm [55] 
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5.1.3 A modified particle swarm optimizer 

 

The maximum velocity Vmax serves as a constraint to control the global exploration 

ability of a particle swarm. As a larger Vmax facilitates global exploration, a smaller 

Vmax encourages local exploitation.Empirical studies performed on PSO indicate 

that even when the maximum velocity and acceleration constants are correctly 

defined, the particles may still diverge, i.e., go to infinity; a phenomena known as 

“explosion” of the swarm. Two methods are proposed in the literature in order to 

control this “explosion”. 

 

The inertia weight w, is introduced in [51], in order to govern how much of the 

previous velocity should be retained from the previous time step. The inertia 

weight [51] was set to a constant value, typically in the range of [0.8,1]. A larger 

inertia weight facilitates global exploration and a smaller inertia wieght tends to 

facilitate local exploration to fine-tune the current search area. The equation (5.1) 

with inertia weight becomes 
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The position update rule remains same as in equation (5.2). 

 

Generally the inertia weight is not kept fixed, but is varied as the algorithm 

progresses, so as to improve performance [50].  Commonly, a linearly decreasing 

inertia weight (first introduced by Shi and Eberhart [52], [53]) has produced good 

results in many applications [54]; however, the main disadvantage of this method 

is that once the inertia weight is decreased, the swarm loses its ability to search 

new areas because it is not able to recover its exploration model. 

 

5.2 Particle Swarm Optimization With Passive Congregation 

 

Congregation, is a grouping by social forces, that is the source of attraction is the 

group itself. Congregation can be classified into passive congregation and social 

congregation. Passive congregation is an attraction of an individual to other group 
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members but where there is no display of social behavior. Social congregations 

usually happen in a group where the members are related (sometimes highly 

related). A variety of inter-individual behaviors are displayed in social 

congregations, necessitating active information transfer [56]. For example, ants 

use antennal contacts to transfer information about individual identity or location of 

resources [57]. 

 

In aggregation, which is different from congregation group members can react 

without direct detection of an incoming signals from the environment, because 

they can get necessary information from their neighbors [56]. Individuals need to 

monitor both environment and their immediate surroundings, such as the bearing 

and speed of their neighbors [56]. Therefore, each individual in an aggregation has 

a multitude of potential information from other group members that may minimize 

the chance of missed detection and incorrect interpretations [56]. He et al. [58]  

proposed that such information transfer can be employed in the model of passive 

congregation. Inspired by this, and to keep the model simple and uniform with 

SPSO, He et al.[58]  proposed a variant of PSO with passive congregation: in 

which information can be transferred among individuals of the swarm. The 

equation (5.5), with proposed model introducing passive congregation becomes 
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where Ri is a particle selected randomly from the swarm, c3 the passive 

congregation coefficient, and r3 is a uniform random sequence in the range (0,1). 

The position update is the same as in equation (5.2). 

 
5.3 A Hybrid Least Squares – PSOPC Based Algorithm For Harmonic 

Estimation 

 

In [26] Lu et. al presented a new algorithm which utilizes the particle swarm 

optimizer with passive congregation (PSOPC) to estimate the phases of the 

harmonics, alongside a least-square (LS) method that is used to estimate the 

amplitudes. Following a similar procedure as in the algorithm introduced in [18], 
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the new algorithm applies a hybrid method iterating between particle swarm 

optimizer with passive congregation (PSOPC)-based phase estimation and LS-

based amplitude estimation.  

 

Amplitude estimation process is performed as explained in chapter 4, utilizing least 

squares method through equations (4.20) and (4.23). However, in phase 

estimation stage instead of GA, PSO with passive conregation is used. 

 

Using PSOPC as the optimization scheme, the procedure of the proposed 

algorithm is depicted as follows 

 

To implement the algorithm, a number of parameters should be initialized, 

including N as the number of phases to be estimated; P as the size of the swarm 

used in PSOPC;  M as a predefined number of iterations indicating the maximum 

generation; and    the cost function. 

 

In the first iteration, the values of ),...,2,1(
1

Nnn 


  are randomly selected. 

Consequently, )(kH


 is calculated according to equation (4.21). Afterwards, the 

amplitude 


1A  is estimated by equation (4.23). Finally, the signal )(1 kZ


 is 

reconstructed from 

1

n and 


1A  by the equation (4.22). The error between )(1 kZ


 

and )(kZ  is calculated according to the cost function given in equation (4.24) to 

direct the search in the next iteration. In the mth iteration, the position of the ith 

particle is denoted as ),...,,( 21

m

iN

m

i

m

i

m

iX


 
 

 

In the (m+1)th iteration, the particle 1m

iX  is updated according to the equation 

(5.2), which is calculated from 

m

n and

mA . The process repeats until the maximum 

iteration M is reached or the condition J  is satisfied. The detailed pseudocode 

for the proposed algorithm is listed in table 5.1 and a flowchart is presented in 

figure 5.2 to describe the estimation process. 
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Table 5.1 Pseudo Code for LS-PSOPC based algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set k:=1; 

Randomly initialize positions and velocities of all particles  Xi=[Φi1, Φi2,…, ΦiN] 

  WHILE (the termination conditions are not met) 

      FOR (each particle i in the swarm) 

         Calculate amplitudes: Calculate the amplitudes of each harmonic , ];,,..[ 1
k

N

kk AAA


  

                                            using the LS method given by equation(4.20)  

         Calculate fitness:        Calculate the fitness value of current particle J(Xi) using equation (4.21) 

         Update pbest:              Compare the fitness value of pbest with J (Xi).  If  J(Xi) is better than 

                                               the fitness value of pbest, then set pbest to  the current position Xi;       

         Update gbest:              Find the global best position of the swarm. If J (Xi) is better than the  

                                               fitness  value of gbest, then gbest is set to the position of the current                        

                                               particle Xi;  

               Update Ri:                      Randomly select a particle from the swarm as Ri,  

               Update velocities: Calculate velocities Vi using Eq.( 5.6). If Vi > Vmax   then Vi = Vmax.                      

                                               If Vi < Vmin then    Vi = Vmin 

                       Update positions: Calculate positions Xi using equation (5.6) 

          END FOR 

       Set k:=k+1; 

  END WHILE 

    END WHILE 
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Figure 5.2 Harmonic Estimation Process by PSO[19] 
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6. A HYBRID LEAST SQUARES-DE BASED ALGORITHM FOR HARMONIC 

ESTIMATION 

 

Differential evolution (DE) is a simple yet powerful evolutionary algorithm (EA) for 

global optimization presented by Price and Storn firstly in a technical report [59]. 

DE proved its performance on benchmark functions in the first contest on 

evolutionary computation in 1996 [60]. Price and Storn [61;62], by the extensive 

empirical evidence of DE’s robust performance on a wide variety of test functions, 

introduced DE to a large international audience and many other researchers in 

optimization became aware of DE’s potential. In the last years, there is an 

increasing interest in differential evolution. DE has been widely applied to many 

optimization problems and great number of differential evolution publications in 

scientific journals and conference proceedings are seen [23]. 

 

DE has shown good performance on many real-world problems, and on the 

majority of the numerical benchmark problems as well. In comparative studies DE 

has proven its superiority as the best performing algorithm over  other evolutionary 

algorithms for many problems[24]. 

 

The differential Evolution method briefly consists of three basic steps: 

 

(i) Generation of (large enough) population with N individuals [x = (x1, x2, …, xm )]     

 in the m-dimensional space, randomly distributed over the entire domain of the    

function in question and evaluation of the individuals of the so generated by    

finding f(x); 

(ii) Replacement of this current population by a better fit new population, and 

(iii) Repetition of this replacement until satisfactory results are obtained or certain 

criteria of termination is met [23].  

 

6.1 Population Structure 

 

The current population, symbolized by xP is composed of vectors, gix , as  

 
)( ,, gigx xP   i = 1,……,Np, g = 1,…,gmax,                                                          (6.1) 
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 )( ,,, gijgi xx  , j = 0,1,…,D-1.                                                                               (6.2) 

 
where Np denotes the number of population vectors, g defines the generation 

counter , and D the dimensionality, i.e. the number of parameters. 

 

Once initialized,DE mutates randomly chosen vectors to produce an intermediary 

population  

 

                  ),( ,, gigv vP    i= 1,…,Np, g = 1,…, gmax,                                          (6.3) 

                   ),( ,,, gijgi vv 
 
j = 1,…,D                                                                    (6.4) 

 

Each vector ,n the current population is then recombined with a mutant to produce 

a trial population, uP , of Np trial vectors, giu ,  

 

)( ,, gigu uP  , i=1,…,Np, g=1,…, gmax,                                                                    (6.5) 

giu , = ( giju ,, ),j=1,...,D                                                                                               (6.6) 

 

During recombination, trial vectors overwrite the mutant population, so a single 

array can hold both populations. 

 

6.2 Initialization 
 

Before the population can be initialized, both upper and lower bounds for each 

parameter must be specified. These 2D values can be collected into two, D-

dimensional initialization vectors, bL and bU, for which subscripts L and U indicate 

the lower and upper bounds of the parameter vectors ijx , , respectively. Once 

initialization bounds have been specified, random number generator, )1,0[jrand , 

returns a uniformly distributed random number from within range [0,1),i.e., 

1)1,0[0  jrand   and assigns each parameter of every vector a value from within 

the prescribed range.The initialization of the population is realized via 

 

LjLjUjjij bbbrandx ,,,0,, )).(1,0[ 
                                                                                (6.7)
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6.3 Mutation 
 

Once initialized, DE mutates and recombines the population to produce a 

population of Np trial vectors. In particular, differential mutation adds a scaled, 

randomly sampled, vector difference to a third vector. Equation (6.8) shows how to 

combine three different, randomly chosen vectors to create a mutant vector,  

 

).( ,2,1,0, grgrgrgi xxFxv                                                                                               (6.8) 

    

The scale factor, )1,0( F , is a positive real number that controls the rate at 

which the population evolves. In classic DE base vector indexes, r0, r1, r2 are 

randomly chosen vectors index that are different from each others and the target 

vector index, i. In figure 6.1, differential mutation is shown: the weighted 

differential, )( ,2,1 grgr xxF  is added to the base vector, grx ,0 , to produce mutant giv , .  

 

 

 

Figure 6.1 Differential Mutation 

 

There are variants of DE represented by the notation[1] DE/x/y/z where x denotes 

the base vector, y denotes the number of difference vectors used, and z 

representing the crossover method. The classic DE version which is modeled 

through Eq.(6.1-6.8) has the notation DE/rand/1/bin.  
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The DE/ran/1/bin algorithm pits each vector gix , in the current population against a 

trial vector giu , to whose composition it contributes through uniform crossover with 

a randomly (“/ran/”) chosen base vector grx ,1 that has been mutated by the 

addition of a single (“/1/”) scaled and randomly chosen difference vector 

)( ,2,1 grgr xxF   The appellation “bin” refers to the fact that the number of 

parameters inherited by the trial vector giu ,  from the mutant vector giv ,  

approximates a binomial distribution. During survivor selection, giu ,  replaces gix ,  if 

)()( ,, gigi xfuf  f; otherwise, gix , retains its place in the population.  

 
The mutation being used in DE/best/1/bin is given as 

 

).( ,2,1,, grgrgbestgi xxFxv                                                                                   (6.9)  

 

6.4 Crossover 
 

To complement the differential mutation search strategy, DE employs uniform 

crossover as the classic variant of diversity enhancement which mixes parameters 

of the mutation vector giv , and the so-called target vector gix , in order to generate 

the trial vector giu ,  as 

 





 

gij

rjgij

gij
x

orCrandifv
u

,,

,,

,,gi,

)1,0[(,
=u  

otherwise

jj rand
                                                 (6.10) 

 

The crossover probability, ],1,0[rC  is a user-defined value that controls the 

fraction of parameter values that are copied from the mutant. If the random 

number is less than or equal to Cr , the trial parameter is inherited from the mutant  

giv , ; otherwise, the parameter is copied from the vector, gix , . In addition, the trial 

parameter with randomly chosen index, randj , is taken from the mutant to ensure 

that the trial vector does not duplicate gix , . Figure 6.2 plots possible trial vectors 

that can result from uniformly crossing a mutant vector giv , , with the vector gix , . 
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Figure 6.2 The possible additional trial vectors u’i,g,u’’i,g  of x i,g and  v i,g. 

 

6.5 Selection 
 
DE uses simple one-to-one surviovr selection where the trial vector ui,g competes 

against the target vector xi,g. If the trial vector, ui,g, has an equal or lower objective 

function value than its target vector, xi,g, it replaces the target vector in the next 

generation; otherwise, the target retains its place in the population for at least one 

more generation (equation (6.13)). 

 








;

;

,

,

1,

gi

gi

gi
x

u
x     

if

if

    .

)()( ,,

otherwise

xfuf gigi 
                                                                            (6.11) 

 

Once the new population is installed, the process of mutation, recombination and 

selection is repeated until the optimum ia located, or a prespecified termination 

criterion is satisfied, e.g., the number of generations reaches a preset maximum, 

gmax. Figure 6.3 shows the flowchart of DE algorithm and table 6.1 presents the 

pseudo-code for classic DE.  
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Figure 6.3 Flowchart of Differential Evolution 
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Table 6.1 Classic algorithm of DE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   FOR ( i = 1;  i ≤ Np; i = i+1 )  // Initiliaze population 

       FOR ( j = 1; j ≤ D; j = j+1 )  xj,i,g= xj
lower

 +Uj(0,1).(xj
upper

 - xj
lower

); 

       END FOR 

       f(i) = f(xi,g);   //Evaluate and store f(xi,g) 

END FOR 

FOR ( g = 1; g ≤ G; g = g+1 )   //  Generation loop 

      FOR ( i = 1; i ≤ Np; i = i+1 )  //  Generate a trial population 

            Jrandi = floor[Ri(0,1).D]+1;   //  Randomly select a parameter 

             DO r1 = floor(R(0,1)i.Np)+1; WHILE (r1 = i); //Select 3 distinct indices  

             DO r2 = floor(R(0,1)i.Np)+1; WHILE (r2 = i or r2 = r1); 

             DO r3 = floor(R(0,1)i.Np)+1; WHILE (r3 = i or r3 = r1 or r3 = r2); 

            FOR ( j=1; j ≤ D; j= j+1;)   // Generate a trial vector 

                  if (Rj(0,1) ≤  Cr or  j= jrandi) uj,i,g = vj,i,g = xj,r1,g+F.( xj,r2,g-.xj,r3,g); 

                   else uj,i,g= xj,i,g; 

               END FOR 

        END FOR 

         FOR ( i = 1; i ≤ Np; i = i+1 )   //  Select new population 

                if  f(ui,g) ≤  f(xi,g)    //  Evaluate trial vector and compare with target vector 

                { 

                      FOR  ( j = 1;  j ≤ Np; j = j+1 ) xj,i,g  = uj,i,g;  // Replace inferior target 

                      END FOR 

                      f(i) = f(ui,g);         

                 } 

           END FOR 

END FOR  //  End 
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6.6 Harmonic Estimation 

 

In hybrid algorithms given in chapters 4 and 5, for the estimation of phase angles 

GA and PSOPC are used as the optimization algorithm. Amplitude estimation by 

Least Squares Method take part after estimation of phase angles. By following the 

same iterative procedure, in this thesis, instead of GA and PSOPC, as the 

optimization algorithm DE is proposed for the estimation of phases.  

 

To apply the algorithm, the parameters, which are common in three population 

algorithms should be initialized as in the previous algorithms; D, the number of 

phases to be estimated, which is the dimension of the particles, Np, the size of the 

population and  G, number of  maximum generations. The cost function is the 

same as given in equation (4.24). In the first iteration, as in the previous algorithms 

the values of vectors,  

 

)()( ,,,,, gijgijgi xx


  , j = 0,1,…,D-1.                                                                 (6.12) 

 

are randomly selected. Consequently, )(kH


 is calculated according to equation 

(4.21). Afterwards, the amplitudes ][ ,,, gijgi AA


  are estimated by equation 

(4.23.). Finally, the signal giZ ,



 is reconstructed from 
gi ,



 and giA ,



by equation (4.22)  

The cost function of the vector gix , , f(xi,g), which is the error between )(kZ


 and 

)(, kZ gi  is calculated according to equation (4.21). Then for each target vector xi,g,    

i = 1,2,…, Np, a mutant vector vi,g is generated from randomly chosen three vectors 

which are distinct from each other and ith vector. vi,g is produced by adding a 

scaled, randomly sampled, vector difference to a third vector according to the 

equation (6.9)  and by appliying uniform crossover to the target and mutant 

vectors, trial population ][ ,gig xU   is obtained. By calculating the cost function of 

trial population and comparing with target population, the new target vectors 1, gix

are simply updated according to equation (6.13) and new population 1, gxP  is 

obtained. The phases in new target vectors are used in the next iteration in the 



58 

 

structure matrix. The process repeats until the maximum iteration G is reached or 

the condition f(xi,g) <   is satisfied. The pseudo code for the proposed algorithm is 

presented in table 6.2 to describe the estimation process. 

 

Table 6.2 Pseudo-code for the LS-DE based algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set g:=1 and randomly intialize all target vectors of population Px,  xi = [xj, i] = [Φj,i] 

         FOR ( each target vector xi in the target population ) 

        Calculate amplitudes:          Calculate the amplitudes of each harmonic , ];[ ,,, gijgi AA


  

                                                   using the LS method given by equation(4.20)  

         Calculate fitness:                Calculate the fitness value of current vector f(xi,g) using equation  

                                                       (4.21) and store in f(i). Find xbest with the best fitness. 

          END FOR 

  WHILE (the termination conditions are not met) 

          FOR ( each vector ui in the trial population )          

              Select vectors:                 Randomly select two vectors xr1, xr2 from target population  such 

                                                        that r1,r2 are different from each others, the target vector index,. 

                                                        and  the best vector xbest.  

              Generate mutant vector: Generate mutant vector  vi,g from xbest, xr1, xr2 according to the                  

                                                        equation (6.9) 

                    Generate trial vector:       Generate trial vector ui,g by applying  uniform crossover to vi,g  and                    

                                                         xi,g according to the equation (6.10)     

              Calculate amplitudes:      Calculate the amplitudes of each harmonic , ];[ ,,, gijgi AA


  

                                                     using the LS method given by equation(4.23)  

              Calculate fitness:             Calculate the fitness value of  current vector, f(ui,g) using equation  

                                                         (4.24). Find xbest with the best fitness.  

              Update population:         Compare fitness value  f(ui,g) with f(i). If f(ui,g) is better than f(xi,g),      

                                                        then replace the target vector with trial vector and update f(i)  as f(ui,g) 

           END FOR 

         Set g:=g+1; 

END WHILE      
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7. APPLICATIONS 

 

7.1 Application of Hybrid Least-Squares GA Based Algorithm for Harmonic 

Estimation  

 

The test signal Z0(t) in this application, was also used in previous studies 

[17;18;19]. The test signal is a distorted voltage waveform at the terminals of the 

load bus for the system in figure 7.1. Figure 7.1 shows the sample system which 

comprises of a two-bus three-phase system with a full-wave six pulse bridge 

rectifier at the load bus. 

 

The front-end diode bridge rectifiers of 3-phase, 6-pulse static power convertors 

(ac-dc), such as those found in variable speed drives, are considered nonlinear 

because they draw current in a non-sinusoidal manner. The characteristic 

harmonics are based on the number of rectifiers (pulse number) used in a circuit 

and can be determined by the following equation: 

 

h = (n x p) ±1                                                                                                      (7.1)      

                                                         

where: 

n = an integer (1, 2, 3, 4, 5 …) 

p = number of pulses or rectifiers 

 

Therefore, for 6 pulse rectifier, the characteristic harmonics will be: 

h = (1 x 6) ± 1  5th & 7th harmonics 

h = (2 x 6) ± 111th & 13th harmonics 

h = (3 x 6) ± 1 17th & 19th harmonics 

h = (4 x 6) ± 1 23rd & 25th harmonics 

 

Harmonic distortion will be with the predominant harmonics being the 5th and 

7th. The 11th, 13th and other higher orders are also present but at lower levels. 
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Figure 7.1 Simple power system: a two-bus architecture with six-pulse full-wave 
bridge rectifier supplying the load [18] 

 

The test signal is mathematically described as 

 

)()sin(

)sin()sin()sin()sin(*)(

131313

1111117775551110

tvtwA

twAtwAtwAtwAtZ









    
(7.2) 

 

where v(t) is the white gaussian noise, A1, A5, A7, A11, A13 representing the 

amplitudes and 1 , 5 , 7 , 11 , 13   representing the phase angles of fundamental 

component, 5th, 7th, 11th and 13th harmonics respectively.The harmonic content 

of test signal Z0(t) is given in table 7.1. 

 

Table 7.1 Harmonic Content of test signal Z0(t) 

 

Harmonic Order Amplitude 

(p.u) 

Phase Angle 

(Degrees) 

Fundamental (50 Hz) 0.95 -2.02 

5th (250 Hz) 0.09 82.1  

7th (350 Hz) 0.043 7.9 

11th (550 Hz) 0.03 -147.1 

13th (650 Hz) 0.033 162.6 

 

Simulation are employed to produce the test signal and sample 64 points per cycle 

from the distorted 50-Hz voltage waveform. The algorithm is operated under non-

noisy and noisy situations. The signal-to-noise ratios (SNRs) are chosen to be 20 
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dB, 10 dB and 0 dB, respectively. For every situation simulation is repeated 10000 

times and average, minimum and maximum error index values are recorded.  

 

7.1.1 Encoding-decoding 

 

In the application, the first step is to represent the problem variables as a 

chromosome by binary encoding. It is assumed that sample signal contains 5rd, 

7th, 11th and 13th harmonics. Thus each chromosome will represent the 5 phase 

values including the phase of fundamental component. A chromosome becomes a 

concatenated binary string in which each phase is represented by n binary bits. 

Each phase is represented by 19 bits as proposed in [18] and consequently lenght 

of a chromosome which is the number of bits of an individual representing 5 

phases, becomes 95.  

 

In the decoding stage chromosomes are partitioned into bit strings representing 

phase values and decoded to values in problem domain by converting to decimal 

and scaling.  Since a phase represented by 19 bits in a chromosome, it can take 

values between 0 and 192 -1 decimally.The decoding was given by equation (4.16).  

 

Since the bounds of variable domain are bL = 0 and bU = 360 degrees, after 

converting the each binary string to decimal, it is normalized by a factor 1/ )12( 19   

and multiplied by 360 which maps this interval into problem domain. The decoded 

value of 19 bit binary string becomes 

 







1

0
19

2.
12

360 n

k

kx                                                                                                  (7.3) 

 

The precision of the decoding which is half of the difference of two consecutive 

phase values, will be  

 

4-

19
3.4332x10

2

1
.

12

360


  
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7.1.2 Fitness function, performance measure and parameter determination 

 

Size of the population N is selected as 50 and number of generations G is 

selected as 100. 

 

The performance measure fitness function is defined as  

 

Fitness(n) = 1/∑error(k)2 = 
2

1

))()((

1







K

k

kZkZ

                                                (7.4) 

 
where n is the chromosome number, k is the sample number, Z  is the original 

signal and 


Z  Is the estimated signal value. According to the equation (7.4) the 

chromosome which has smaller error will have a greater fitness value, hence 

bigger chance for selection.  

 

A typical value proposed for the crossover probability Pc is 0.7 which was also 

used in [18]. It is stated that Pc = 0.7 generally gives good results and Pm is 

usually selected as 0.001 in many applications [42]. However, sometimes a 

greater mutation may lead to significant improvement in the population fitness, by 

increasing the randomness to avoid from local optimum. Thus, one way of 

providing some degree of insurance is to compare results obtained under different 

rates of mutation [42]. 

 

In this application, to ensure the optimal value, Pc is selected experimentally, 

starting from 0.1, incremented by 0.1 until 1. For every Pc value, algorithm is 

executed 100 times, each having 100 generations and average fitness values of 

population is recorded. Performance graph showing mean of the average 

performances of population for Pc values from 0.6 to 1, over 100 executions is 

given in figure 7.2. It is seen that, average fitness of population for Pc=0.7, is better 

than other Pc values.  As a result, Pc = 0.7 is also verified as an optimal cross 

probability value as in [18]. 
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Figure 7.2 Performance graphs for different Pc values (Pm=0.01) 

 

Same procedure is followed for the determination of mutation rate Pm. For Pc=0.7, 

mutation rate Pm is incremented starting from 0.001, by 0.001 until 0.01 and for 

each value algorithm executed 100 times. It is observed that, when mutation rate 

 

 

 

Figure 7.3 Performance graphs for different Pm values (Pc=0.7) 
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is not introduced or when it is very low, premature convergence may occur which 

chromosomes begin to converge early on towards solutions which may no longer 

be valid for later data. Increasing Pm values helps to overcome this problem by 

increasing genetic diversity. This characteristic is seen from the performance 

graph (figure 7.3) for the mutation rate, Pm=0.01 and Pm=0.1. Oscillations in 

performance curve are due to increased mutation rate which increased 

randomness, equivalently genetic diversity. As proposed in [18] Pm=0. 01 is found 

to be a suitable mutation rate. 

 

In the simulation studies, as the performance measure, error index of the 

estimated signal described in [19] is calculated by 
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where k is the sample number and Z(k) is the value of the kth sample of actual 

signal. In [19] error index of fundamental frequency component is given as  
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where S(k) is the value of kth sample of the actual fundamental frequency 

component in the original signal given by 

 

1)()( AkHkS f                                                                                                               (7.7) 

 

where 1A is the amplitude of fundamental component and )(kH f is the first column 

of the structure matrix )(kH given as  
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Estimation of fundamental components shown in [18;19] were calculated 

according to the equation given below 

 



 1)()( AkHkZ ff                                                                                                  (7.9) 

 

The obtained results are reconstructed into a signal for the purpose of comparison 

with the actual fundamental frequency component presented in the original signal. 

However, from the practical point of view, the fundamental component can be 

obtained by measuring the level of harmonic current(or voltage) present in the 

system and injecting currents (or voltages) of opposite polarity to cancel them out.  

Therefore, for the comparison of estimated and actual fundamental component, in 

this thesis another error index, is calculated as 
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 where )(kS


 is obtained by extracting the estimated harmonics from the sampled 

signal as 

 

hh AkHkZkkZkS
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 )()()(Z  )()( h                                                               (7.11)    
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where )(kZh



 is the sum of estimated harmonics, 
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7.1.3 Simulation results  

 

The simulation is repeated 10000 times for the noisy and  non-noisy conditions, 

average, minimum and maximum error index values for each is recorded. For SNR 

values 0 dB, 10 dB, 20 dB and when there is no noise, 1 , 2 , 3  values are given in 

table 7.2, 7.3 and 7.4 respectively.  

 

Table 7.2 Average, minimum and maximum 1 values for noisy and non-noisy 

situations in LS-GA based algorithm 

 

Noise 

Conditions 

Error index 1  

Average Min Max 

No noise 0.0316 2.9951x10-8 0.1881 

SNR  = 20 dB 0.1702 0.0010 0.7040 

SNR = 10dB 0.7561 0.0112 6.1521 

SNR = 0dB 4.0917 0.0780 53.8073 
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Table 7.3 Average, minimum and maximum 2 values for noisy and non-noisy 

situations in LS-GA based algorithm 

 

Noise 

Conditions 

Error index 
2  

Average Min Max 

No noise 0.0211 4.0242x10-10 0.1267 

SNR  = 20 dB 0.0548 4.1119x10-8 0.5213 

SNR = 10dB 0.3561 3.8323x10-7 6.0620 

SNR = 0dB 3.4337 1.8931x10-5 53.4942 

 

Actual fundamental component and reconstructed estimations are shown in figure 

7.4 for different noise conditions. As seen from figure 7.4, the reconstructed 

waveform according to the equation (7.9) is a pure sinusoidal. The corresponding 

2 error index values calculated from equation (7.6) are given in table 7.3.  

 

 

Figure 7.4 Actual and estimated fundamental components by LS-GA based 
algorithm according to equation (7.9) for (a) No noise (b) SNR = 20 
dB (c) SNR = 10 dB (d) SNR = 0 dB 
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Table 7.4 Average, minimum and maximum 3 values for noisy and non-noisy 

situations in LS-GA based algorithm 

 

Noise 

Conditions 

Error index 3  

Average Min Max 

No noise 0.0109 3.7896x10-9 0.0624 

SNR  = 20 dB 0.1204 0.0049 0.5035 

SNR = 10dB 0.4102 0.0166 1.3270 

SNR = 0dB 0.7109 0.0076 2.9992 

 

 

 

 

Figure 7.5 Actual and estimated fundamental components by LS-GA based 
algorithm,  according to equation  (7.11) for (a) No noise (b) SNR = 20 
dB  (c) SNR = 10 dB (d) SNR = 0 dB 
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On the other hand, figure 7.5 shows the estimated fundamental component 

obtained according to the equation (7.10) and table 7.4 gives the corresponding 

error index values 3   calculated according to the equation (7.10) considering 

practical concerns. The estimated fundamental waveform in figure 7.5 , is obtained 

by cancelling the harmonics, therefore, differently from figure 7.4, waveform is not 

a pure sinusoidal. Consequently, two calculations will result in different estimation 

errors will be different. Moreover, it is observed that in different noisy -conditions 

error index values 2  and 3  
do not change in same way such that a lower 2  

does not always ensure a lower 3  or vice versa correspondingly. Therefore, 

regarding this characteristic, in the following applications, 3  which is calculated 

based on compensation of estimated harmonics, is proposed to be used as an 

error index for fundamental component instead of 2 . 

 

 

 

Figure 7.6 Actual and estimated distorted waveforms by LS-GA based algorithm, 
for (a) No noise (b) SNR = 20 dB (c) SNR = 10 dB (d) SNR = 0 dB 
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The original distorted waveform )(0 tZ  which is sum of all harmonics and 

fundamental component without noise, and its estimation )(tZ


 reconstructed from 

equation (4.18) is shown in figure 7.6. The corresponding error index values are 

given in table 7.2 for different noise conditions and the estimated amplitudes are 

given in table 7.5. 

 

Table 7.5  Actual and average of estimated amplitudes in LS-GA based algorithm 
for (a) No noise  (b) SNR = 20 dB   (c) SNR = 10 dB   (d) SNR = 0 dB 

 

Harmonic Order Actual 

Amplitudes 

Estimated Amplitudes 

No Noise 20 dB 10 dB 0 dB 

Fundamental (50Hz) 0.9500 0.9499 0.9469 0.9509 0.9466 

5th (250 Hz) 0.0900 0.0897 0.0900 0.0831 0.0656 

7th (350 Hz) 0.0430 0.0429 0.0420 0.0338 0.0309 

11th (550 Hz) 0.0300 0.0297 0.0280 0.0223 0.0221 

13th (650 Hz) 0.0330 0.0328 0.0314 0.0246 0.0232 

 

7.2 Application of Hybrid Least Squares-PSOPC Based Algorithm For 

Harmonic Estimation  

 

In this application the test signal Z(t) has the same harmonic content as the used 

one in part 7.1, given  by the equation (7.2) and in table 7.1. 

 

A simulation is employed to produce the test signal and sample 64 points per cycle 

from the distorted 50-Hz waveform. The algorithm utilizing PSO with passive 

congregation is operated under non-noisy and noisy situations. The signal-to-noise 

ratios (SNRs) are chosen to be 20 dB, 10 dB and 0 dB, respectively. For every 

situation simulation is repeated 10000 times and error index values 
1 and 3 given 

by equations (7.5) and (7.10), are recorded.   

 

The values of parameters c1, c2 and c3 are determined experimentally by changing 

one parameter by 0.1 while keeping others fixed. It is verified that setting c1,c2 as 
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0.5 and the passive congregation coefficient as 0.6 gives the best results as 

proposed in [19]. Maximum number of generations G is set as 100 and number of 

particles Np is selected as 50. Max velocity is generally limited as the half of the 

difference of upper and lower boundaries [55]. Thus, following the usual approach 

maximum velocity for each dimension is limited as Vmax = (uL-bL)/2 = 180. 

 

In [52], it is reported that when time varying inertia weight is employed, even better 

performance can be obtained and in [53] it is experimentally shown on benchmark 

functions, lineraly decreasing inertia weight improves the performance of PSO. 

Therefore, a decaying inertia weight starting at 0.9 and ending at 0.4, is used in 

[53]. However, adaptation of inertia weight may be problem dependent. Linearly 

decreasing inertia wiegt can be given as 

 

w=wi-α.g/G  

where wi is the inital inertial weight which is generally set as 0.8 or 0.9, 

α is the linear decreasing coefficient, 

g is the generation number and 

G is the total number of generations 

 

By trying different adaptations, it is observed that it is suitable to initialize inertia 

weight as 0.9 and adapt as w = 0.9 - 0.4g/G. While the genereation number 

increases, w decreases linearly from 0.9 to 0.5. When fixed inertia weight w=0.9 is 

used, velocities more oscillate, so for convergence of phase angles, more number 

of generations is needed. For fixed and time-varying inertia weights, the behaviour 

of average velocities and average positions of particles are shown in figure 7.7. It 

is seen that adaptive inertia weight provides better convergence and results in 

fewer iterations than a fixed inertia weight.   

 

The harmonic estimation procedure follows the same way as in the previous 

application. After phase estimation, amplitudes are estimated by LS, but for phase 

estimation instead of GA,  PSOPC is utilized.Fitness values of swarm is calculated 

and phase angles represented by positions of particles are used in the next 

iteration. 
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Figure 7.7 Average velocities and positions of population for (a) Fixed inertia 
weight (b) Time-varying inertia weight 

 

Average, minimum and maximum error index values for 10000 runs of the 

simulation are given in table 7.3. By comparing the tables 7.2 and 7.6 it can be 

seen that PSOPC provides more accuracy in approximation of Z(t), than GA, in all 

noisy and non-noisy situations, especially when there is no noise. The estimated 

and actual waveforms are shown in figure 7.8 for average 
1 values. 

1  gives a 

measure of the approximation to the distorted signal Z(t). Therefore, in non-noisy 

condition, 
1 can be used to compare the algorithms instead of 3 equivalently. 

However, considering practical concerns it is suitable to use 3  
for comparison of 

estimations of fundamental component.
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Table 7.6 Average, minimum and maximum 
1 values for noisy and non-noisy   

conditions in LS- PSOPC based algorithm 

 

Noise 

Conditions 

Error index 
1   

Average Min Max 

No noise 0.0041 2.2194x10-11 0.1848 

SNR  = 20 dB 0.1449 0.0007 0.6761 

SNR = 10dB 0.7190 0.0110 5.9502 

SNR = 0dB 3.9593 0.0501 53.7733 

 

 

 

 

Figure 7.8 Estimated and actual distorted waveforms by LS-PSOPC based 
algorithm for (a) No noise (b) SNR = 20 dB (c) SNR = 10 dB  (d) SNR 
= 0 dB  
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Table 7.7 Average, minimum and maximum 3  values for noisy and non-noisy 

conditions in  LS-PSOPC based algorithm 

 

Noise 

Conditions 

Error index 3  

Average Min Max 

No noise 0.0042 1.9389x10-11 0.1905 

SNR  = 20 dB 0.1119 0.0005 0.5419 

SNR = 10dB 0.3928 0.0032 1.3056 

SNR = 0dB 0.6084 0.0066 1.8053 

 

 

 

 

Figure 7.9 Estimated and actual fundamental components by LS-PSOPC based 
algorithm for (a) No noise (b) SNR = 20 dB (c) SNR = 10 dB (d) SNR = 
0 dB  
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The estimated average amplitudes of LS-PSOPC based algorithm are given in 

table 7.8. When the results are analysed with the previous application which 

utilizes GA, it is seen that hybrid algorithm utilizing PSOPC achieves improved 

estimation accuracy in comparison with GA. Comparing the rates of error index 

values from tables 7.3 and 7.7, it is seen that PSOPC is significantly better when 

there is no noise.   

 

Table 7.8  Actual and average of estimated amplitudes in LS-PSOPC based 
algorithm for (a) No noise (b) SNR = 20 dB (c) SNR = 10 dB             
(d) SNR = 0 dB 

 

Harmonic Order Actual 

Amplitudes 

Estimated Amplitudes 

No Noise 20 dB 10 dB 0 dB 

Fundamental (50Hz) 0.9500 0.9500 0.9497 0.9510 0.9466 

5th (250 Hz) 0.0900 0.0900 0.0902 0.0832 0.0648 

7th (350 Hz) 0.0430 0.0429 0.0420 0.0336 0.0288     

11th (550 Hz) 0.0300 0.0296 0.0279 0.0219 0.0197 

13th (650 Hz) 0.0330 0.0328 0.0313  0.0243  0.0217 

 

7.3 Application of A Novel Hybrid Least Squares- DE Based Algorithm For 

Harmonic Estimation  

 

In this application, for the purpose of comparison, as in parts 7.2 and 7.3, the 

same signal in the equation (7.2), having the harmonic content given in table 7.1, 

is used. The proposed algorithm follows the iterative procedure as in the previous 

hybrid algorithms; in the phase estimation, differently, instead of PSOPC and GA, 

Differential Evolution is utilized as the optimization algorithm.The used model of 

DE is the DE/best/1/bin which is given aby the equation (6.9). This version 

differently from standard DE/rand/1/bin model uses the best vector as the base 

vector in mutation stage. Using DE/best/1/bin model of DE as the optimization 

scheme, the procedure of the proposed algorithm is depicted as follows 

 

In the first iteration, the target vectors representing the phase angles are initialized 

randomly in equation (4.21) and estimation of amplitudes is performed by Least 
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Squares Method as presented by equation (4.23). From estimated signals in 

equation (4.22) the cost function value of  each vector is calculated and recorded.  

Then each mutant vector is constituted by adding a scaled difference of two 

random vectors to the best vector. By applying crossover to the target vectors and 

mutant vectors trial population is obtained.  Then, by calculating the cost function 

of trial population and comparing with target vectors, the new target population is 

obtained. The phases in new target vectors are used in the next iteration. 

 

In DE, trying to tune the three main control variables F and Cr and finding bounds 

for their values has been a topic of intensive research [63].  The rule of thumb 

values for the control variables given by Storn and Price [64]: 

1. F  [0.5, 1.0] 

2. Cr  [0.8, 1.0] 

3. Np  10.D 

are valid for many practical purposes. These values are not strictly defined and still 

lack generality. Therefore, this does not mean that low values of Cr should always 

be avoided. Low values of Cr are advantageous for separable functions, since the 

search concentrates on the axes of the coordinate system as outlined in [23]. 

Gamperle [63] reported that the control variable settings for F, Cr, and Np can be 

quite difficult to find, and some objective functions are sensitive to the proper 

setting. Common parameters used in other population based algorithms are set as 

 Maximum number of generations, G =100 

 Size of the population Np=50 

Dimension of each vector in the population D=5 

 

For the selection of control parameters Cr and F, as one of the parameters is 

incremented, starting from 0.1  until 1, the other is  kept  fixed and for each 

combination program is executed for 1000 times.From the resulting 10x10 error 

index matrix it is seen that F=0.4 with Cr=0.7 gives the minimum average value. 

Estimated distorted waveforms and fundamental components, in different noise 

conditions are shown in figure 7.10 and figure 7.11 for average 
1 , 

3 values, 

respectively.The average, maximum and minimum values of 
1 , 

3 over 10000 

executions are shown in tables 7.9 and 7.10 respectively. As seen from tables DE 
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gives better performance over other algorithms and shows more reliable 

convergence. 

 

 

Figure 7.10 Estimated and actual distorted waveforms by in LS-DE based 
algorithm for (a) No noise (b) SNR = 20 dB (c) SNR = 10 dB (d) SNR 
= 0 dB  

 

Table 7.9 Average, minimum and maximum 3  values for noisy and non-noisy 

conditions in  LS-DE based algorithm 

 

Noise 
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Error index
1  
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No noise 2.1974x10-5 2.0189x10-31 0.0483 

SNR  = 20 dB 0.1409 0.0007 0.6760 

SNR = 10dB 0.7151 0.0106 5.9489 

SNR = 0dB 3.9520 0.0484 53.7733 

0 0.005 0.01 0.015 0.02
-1.5

-1

-0.5

0

0.5

1

1.5

Time

(a)

A
m

p
lit

u
d
e

0 0.005 0.01 0.015 0.02
-1.5

-1

-0.5

0

0.5

1

1.5

Time

(b)

A
m

p
lit

u
d
e

0 0.005 0.01 0.015 0.02
-1.5

-1

-0.5

0

0.5

1

1.5

Time

(c)

A
m

p
lit

u
d
e

0 0.005 0.01 0.015 0.02
-1.5

-1

-0.5

0

0.5

1

1.5

Time

(d)

A
m

p
lit

u
d
e



78 

 

 

 

Figure 7.11 Estimated and actual fundamental components by LS-PSOPC based 
algorithm for (a) No noise (b) SNR = 20 dB (c) SNR = 10 dB (d) SNR 
= 0 dB  

 

Table 7.10 Average, minimum and maximum 3  values for noisy and non-noisy 

conditions in  LS-DE based algorithm 

 

Noise 
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Error index 
3  

Average Min Max 

No noise 2.0814x10-5 1.1595x10-30 0.0489 

SNR  = 20 dB 0.1079 0.0005 0.5412 

SNR = 10dB 0.3889 0.0032 1.2814 

SNR = 0dB 0.6009 0.0066 1.2997 
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The average amplitudes for 10000 runs of simulations are given in table 7.11. 

 

Table 7.11  Actual and average of estimated amplitudes in LS-DE based algorithm 
for   (a) No noise   (b) SNR = 20 dB  (c) SNR = 10 dB  (d) SNR = 0 dB 

 

Harmonic Order Actual 

Amplitudes 

Estimated Amplitudes 

No Noise 20 dB 10 dB 0 dB 

Fundamental (50Hz) 0.9500 0.9500 0.9501 0.9507 0.9574 

5th (250 Hz) 0.0900 0.0900 0.0903 0.0823 0.0639 

7th (350 Hz) 0.0430 0.0430 0.0421 0.0337 0.0292 

11th (550 Hz) 0.0300 0.0300 0.0286 0.0216 0.0196 

13th (650 Hz) 0.0330 0.0330 0.0310 0.0246 0.0214 

 

7.4 Comparative Results 

 

The minimum-maximum and average 1  values of three algorithms are given in 

table 7.12 and table 7.13 respectively. 

 

Table 7.12 Minimum and maximum 1  values of the algorithms 

 

Noise 

Conditions 

GA PSOPC DE 

Min Max Min Max Min Max 

No noise 2.9951x10
-8

 0.1848 2.2363x10
-14

 0.1881 2.0189x10
-31

 0.0483 

SNR=20dB 0.0010 0.7040 0.0007 0.6761 0.0007 0.06760 

SNR=10dB 0.0112 6.1521 0.0110 5.9502 0.0106 5.9489 

SNR=0dB 0.0780 53.8073 0.0500 53.7733 0.0484 53.7733 
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Table 7.13 Average 1  values of the algorithms 

 

Noise 

Conditions 

Error index 
3  

GA PSOPC DE 

No noise 0.0316 0.0041 2.1974x10-5 

SNR  = 20 dB 0.1702 0.1449 0.1409 

SNR = 10dB 0.7561 0.7190 0.7151 

SNR = 0dB 4.0917 3.9593 3.9520 

 

The minimum-maximum and average 3  values of three algorithms are given in 

table 7.13 and table 7.14 respectively. 

 

Table 7.14 Minimum and maximum 3  values of the algorithms 

 

Noise 

Conditions 

GA PSOPC DE 

Min Max Min Max Min Max 

No noise 3.7896x10
-9

 0.0624 1.9389x10
-11

 0.1905 1.1595x10
-30

 0.0489 

SNR=20dB 0.0005 0.5490 0.0005 0.5419 0.0005 0.5412 

SNR=10dB 0.0077 1.4814 0.0032 1.3056 0.0032 1.2814 

SNR=0dB 0.0128 6.0948 0.0066 1.8053 0.0066 1.2997 

 

 

Table 7.15 Average 3  values of the algorithms 

 

Noise 

Conditions 

Error index 
3  

GA PSOPC DE 

No noise 0.0109 0.0042 2.0814x10-5 

SNR  = 20 dB 0.1176 0.1119 0.1079 

SNR = 10dB 0.4099 0.3928 0.3889 

SNR = 0dB 0.7121 0.6084 0.6009 
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8. CONCLUSION 

 

In this thesis, three hybrid algorithms which use Least-Squares Method for 

amplitude estimation and evolutionary computation algorithms GA, PSOPC and 

DE for phase angle estimation are applied respectively.  These algorithms utilize 

the structural property of the signals containing harmonics, which states that the 

harmonic estimation problem is linear in amplitude and nonlinear in phase. Based 

on this property, algorithms proceed in an iterative way; after the phase angles are 

estimated with an evolutionary computation algorithm, amplitudes are simply 

calculated by Least Squares Method and at each iteration phases are updated 

according to the cost function to be used in the next iteration. Two of the 

algorithms which use GA and PSOPC, were studied in papers [18,19] previously. 

Third novel algorithm utilizing DE/best/1/bin model of DE is presented in this 

thesis. Simulations are realized in Matlab environment on the generated sample 

test signal, which was used in [18;19] previously. In three algorithms, common 

population based algorithm parameters are set to same values; number of 

generations is set as 100 and population size is set as 50.  The algorithms are 

tested for noisy and non-noisy conditions. For noisy conditions SNR values are 

chosen as 0 dB, 10 dB and 20 dB respectively. In order to observe convergence 

properties simulations are ran 10000 times for each condtion. For each noisy 

situation by adding white gaussian noise to original sample signal, 10000 noisy 

signals are obtained and the same signals are used in three algorithms for the 

purpose of comparison.  

 

 In all three algorithms, the estimation model is based on the approximation of the 

distorted signal by minimizing the difference between sampled distorted signal  

)()()( kvkZkZ o   and estimated signal )(kZ


. Thus in non-noisy conditon, for 

performance measure of estimation of fundamental component, error index of 

distorted signal, 1  , can be used. However, it is observed that in different noisy -

conditions a lower 1  does not always ensure a lower 2  or vice versa 

correspondingly. Therefore, in this thesis, instead of 2  used in [19], 3  is defiend 

as the error index for the fundamental component which is calculated by extraction 
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of estimated harmonics from the test signal and it is proposed to evaluate 3  as an 

performance measure for the fundamental component. Therefore, as a 

performance measure error index 1 (equation (7.5)) is used for the estimation of 

the distorted signal and 3 (equation (7.10)) is used for the estimation of the 

fundamental component. 

 

Comparative simulation results of the algorithms, showing the minimum-maximum 

and average error index values for the distorted signal are given in table 7.12 and 

table 7.13 respectively. It is seen that GA has the worst performance in all 

conditions. Average values obtained from 10000 trials for each case, show that DE 

ensures better convergence than PSOPC in all conditons. When minimum and 

maximum values obtained from 10000 trials, are considered, PSOPC and DE, 

when SNR = 20 dB have an equal minimum and when SNR = 0 dB have an equal 

maximum. All other values of DE is better than PSOPC. 

 

The minimum-maximum and average error index values for the fundamental 

component are given in table 7.14 and table 7.15, respectively. GA only achieves 

an equal minimum when SNR = 20 dB, in other conditions has worse performance 

than PSOPC and DE. When rate of average error index performances are 

considered, DE has a significant superiority over other algorithms when there is no 

noise. In high noisy conditions DE has a closer performance to other algorithms, 

but is still better.Considering the minimum and maximum values, it is seen that in 

noisy conditions the best values obtained by DE and PSOPC are same, however 

when the maximum values are considered DE has a lower than PSOPC.  

 

The simulation work is carried out on a PC with a 2.93GHz Intel Core 2 Duo CPU 

and 2.00-GB RAM. Average time for the execution of the LS-PSOPC based 

algorithm on the sampled test signal is recorded as 1.1419 seconds. In [19] LS-

PSOPC based algorithm was introduced as a more computationally efficient 

algorithm than LS- GA based algorithm. Simulation results show that the average 

computation time for LS-DE algorithm is 0.9620 seconds. Therefore, when 

compared with LS-PSOPC based algorithm, it is seen that LS-DE based algorithm 
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also improves the computation time with %15.75. However due to the computation 

time, the algorithm is applicable off-line like PSOPC and GA.  

 

As  a result, 

 For the applied algorithms differentiability or continuity are not necessary. 

As such, they are flexible and can be adapted to different cases for 

nonlinear optimization of phase angles in harmonic estimation. The only 

configuration will be made in the programs for different harmonics, is just to 

specify the harmonic orders to be estimated 

 DE is a simple algorithm, needs few operations and has few control 

parameters; only Cr and F values are needed to be examined. Hence, it is 

easy to apply. 

 PSOPC has an better performance than GA 

 DE outperforms PSOPC and GA in all conditions, significantly when there 

is no noise 

 DE requires less computation time than PSOPC. 

 

In conclusion, in this thesis a new hybrid algorithm which can accurately estimate 

the amplitudes and phases of the harmonics contained in a voltage or current 

waveform for PQ monitoring, is presented .The estimation process is iterative and 

in each iteration, the algorithm first applies DE to estimate the phases, then 

calculates the amplitudes using the LS. DE is robust, converges fast, easy to apply 

and adapt, with Least Squares Method to different cases in harmonic estimation. 

Multiple trials are used to investigate the on-average performance of the 

algorithms and simulation results show that hybrid method utilizing DE 

outperforms the other algorithms. Therefore, it is proposed to use LS-DE based 

hybrid algorithm for harmonic estimation.  
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