

BAŞKENT UNIVERSITY

INSTITUTE OF SCIENCE AND ENGINEERING

LINEAR SWEEP CONTROLLER DESIGN

AND FPGA IMPLEMENTATION

FOR FMCW RADAR APPLICATIONS

BURAK DURSUN

MASTER OF SCIENCE THESIS

ANKARA

FEBRUARY, 2012

LINEAR SWEEP CONTROLLER DESIGN

AND FPGA IMPLEMENTATION

FOR FMCW RADAR APPLICATIONS

FMCW RADAR UYGULAMALARINA YÖNELİK

DOĞRUSAL TARAMA DENETİMCİSİ TASARIMI

VE FPGA GERÇEKLEŞTİRİMİ

BURAK DURSUN

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in Department of Electrical and Electronics Engineering

at Başkent University

FEBRUARY, 2012

This thesis has been approved in partial fulfillment of the requirements for the

degree of MASTER OF SCIENCE IN ELECTRICAL AND ELECTRONICS

ENGINEERING on 24/02/2012 by,

Member (Supervisor) :.….......................................

 Yrd. Doç. Dr. Mustafa Doğan

Member :….......................................

 Doç. Dr. Şimşek Demir

Member :….......................................

 Doç. Dr. Hamit Erdem

APPROVAL

...../02/2012

 Prof. Dr. Emin AKATA

DIRECTOR

INSTITUTE OF SCIENCE AND ENGINEERING

To my Wife (Zeynep Işıl IŞIK DURSUN) and Family.

iv

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my Supervisor Assist. Prof. Dr. Mustafa

DOĞAN for his guidance and trust on me throughout the thesis. I thank to my wife for

her unlimited support during the long study period.

v

ABSTRACT

LINEAR SWEEP CONTROLLER DESIGN AND FPGA IMPLEMENTATION FOR FMCW
RADAR APPLICATIONS

Burak DURSUN

Başkent University Institute of Science and Technology

Department of Electrical and Electronics Engineering

Frequency Modulated Continuous Wave (FMCW) radar systems rely on linear frequency

sweep and Voltage Controlled Oscillators (VCO) are being in use for the sweep ge-

neration. However, developing VCO with linear transfer functions at microwave frequen-

cies is a challenging study and availability of such components is limited. Especially

for the long-distance FMCW radar applications, the non-linear frequency sweep due to

the VCO insufficiency, results in range resolution degradation. In order to develop a

solution for this problem; a case study is completed for an FMCW Radar Altimeter at

4.3 GHz center frequency with 62.5 Hz triangle wave modulated 152.6 MHz frequency

sweep. Open-loop control solution like voltage pre-distortion method are not adequate

for the application like FMCW Radar Altimeter because of the noisy and non-stationary

structure of the system due to environmental condition. In these situations closed-loop

control systems like Phase Lock Loop (PLL) provide more adequate results. In this re-

search; a PLL structure is implemented on an Field Programmable Gate Array (FPGA)

by a Direct Digital Synthesizer (DDS) as the Reference Signal Generator, an improved

Phase-Frequency Detector as the Phase Detector and a Kalman Filter as the Loop Filter.

For design verification and analysis FPGA-In-the-Loop (FIL) simulations are generated

by the use of Mathworks Simulink and Xilinx System Generator.

Keywords: FMCW Sweep Linearization, PLL, Kalman Filter, Model Based FPGA De-

sign, FPGA-In-the-Loop

Advisor: Assist. Prof. Dr. Mustafa DOĞAN, Control Engineering Department, Doğuş

University

vi

ÖZ

FMCW RADAR UYGULAMARINA YÖNELİK DOĞRUSAL TARAMA DENETİMCİSİ
TASARIMI VE FPGA GERÇEKLEŞTİRİMİ

Burak DURSUN

Başkent Üniversitesi Fen Bilimleri Enstitüsü

Elektrik ve Elektronik Mühendisliği Bölümü

Sıklık Kiplenimli Sürekli Dalga (FMCW) radar sistemleri doğrusal frekans taramasına

dayanmaktadır ve frekans taraması Voltaj Kontrollü Osilatörler (VCO) kullanılarak gerçek-

leştirilmektedir. Ancak mikrodalga frekanslarda doğrusal transfer fonkisyonuna sahip

VCO geliştirmek oldukça zorlu bir çalışmadır ve bu komponentler yaygın değillerdir.

Özellikle uzak mesafe FMCW radar uygulamalarında, frekans taramasının VCO yeter-

sizliği nedeni ile doğrusal olmaması, menzil çözünürlüğünü olumsuz yönde etkilemekte-

dir. Bu soruna çözüm üretmek amacı ile; 4.3 GHz merkez frekansında, 62.5 Hz üçgen

dalga kiplenimli olarak 152.6 MHz frekans taraması gerçekleştiren bir FMCW Radar Al-

timetreye yönelik çalışma gerçekleştirilmiştir. Voltaj Ön-Bozulma yöntemi gibi açık döngü

kontrol cözümleri, FMCW Radar Altimetre uygulamalarıgibi, çevresel koşullar nedeni ile

gürültülü ve durağan olmayan sistem yapıları için yetersiz kalmaktadır. Bu şartlar altında

Evre Kenetleme Döngüleri (PLL) gibi kapalı döngü kontrol sistemleri ile daha verimli ne-

ticeler elde edilmektedir. Bu çalışmada Alanda Programlanabilir Kapı Dizileri (FPGA) ile

gerçekleştirimi yapılmış olan PLL yapısında; Referans İşaret Üreteci olarak Doğrudan

Sayısal Sentezleyici (DDS), Evre Algılayıcı olarak geliştirilmiş bir Evre-Sıklık Algılayıcı

(PFD) ve Döngü Süzgeci (LF) olarak Kalman Süzgeci kullanılmıştır. Tasarım doğrulama

ve sonuçların analizi için MathWorks Simulink ve Xilinx System Generator kullanılarak

Döngü-İçinde-FPGA (FIL) simülasyonları gerçekleştirilmiştir.

Anahtar Kelimeler: FMCW Tarama Doğrusallaştırma, PLL, Kalman Süzgeci, Model Ta-

banlı FPGA Tasarımı, Döngü-İçinde-FPGA

Danışman: Yrd. Doç. Dr. Mustafa DOĞAN, Kontrol Mühendisliği Bölümü, Doğuş

Üniversitesi

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vi

ÖZ . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . x

CHAPTERS

1 INTRODUCTION . 1

1.1 FMCW Principles . 2

1.2 VCO Non-Linearity . 3

2 VCO LINEARIZATION METHODS . 5

2.1 Voltage Pre-Distortion . 5

2.2 Phase Lock Loop . 6

2.2.1 Reference signal . 6

2.2.2 Phase detector . 7

2.2.3 Loop filter . 8

2.2.4 Voltage controlled oscillator 8

2.2.5 Frequency divider . 9

3 ARCHITECTURE OF THE SYSTEM . 10

3.1 Reference Signal Generation . 10

3.2 Phase Detection . 13

3.3 Loop Filtering . 14

3.3.1 Computational and probabilistic approaches 15

3.3.2 Algorithm . 18

4 FPGA IMPLEMENTATION . 20

4.1 Direct Digital Frequency Synthesizer 20

4.2 Improved Phase-Frequency Detector 21

4.3 Kalman Filter . 22

viii

5 SIMULATIONS . 24

5.1 VCO and Frequency Divider Simulink Models 26

5.2 Frequency Sweep Analysis of VCO 27

5.3 Frequency Sweep Linearization 31

5.4 Parameter Tuning . 33

6 RESULTS AND CONCLUSIONS . 37

7 DISCUSSION AND FUTURE WORKS . 38

REFERENCES . 39

APPENDICES

A VHDL Codes . 43

A.1 VHDL Code for Reference Counter 43

A.2 VHDL Code for Phase Frequency Detector 45

A.3 VHDL Code for Phase Counter 48

A.4 VHDL Code for Control Input Counter 50

B MATLAB Codes . 52

B.1 MATLAB Code for Reference Counter 52

B.2 MATLAB Code for Phase Frequency Detector 53

B.3 MATLAB Code for Phase Counter 55

B.4 MATLAB Code for Control Input Counter 57

C Passive Loop Filter Transfer Function . 58

C.1 Topology-I . 58

C.2 Topology-II . 61

D PLL Transfer Function . 64

ix

LIST OF FIGURES

FIGURES PAGES

Figure 1.1 Proposed System Block Diagram . 1

Figure 1.2 FMCW Radar Signals . 2

Figure 1.3 LC Oscillator Schematic and Model 4

Figure 1.4 VCO Transfer Functions . 4

Figure 2.1 Voltage Pre-Distortion . 5

Figure 2.2 Typical Charge-Pump PLL Block Diagram 6

Figure 2.3 Implementation of PFD and Charge-Pump 7

Figure 2.4 VCO Feedback Signal Lags, Leads and Signals in Phase 8

Figure 2.5 Passive and Active Loop Filters . 8

Figure 2.6 VCO Transfer Function . 9

Figure 2.7 VCO Model . 9

Figure 3.1 DDS Block Diagram . 10

Figure 3.2 Effects of DDS to Beat Signal . 11

Figure 3.3 Time Diagrams of Conventional and Improved PFD 13

Figure 3.4 D-Type Flip-Flop PFD and PFD Models 14

Figure 3.5 Discrete Kalman Filter Cycle . 18

Figure 3.6 Kalman Algorithm . 19

Figure 4.1 Direct Digital Frequency Synthesizer Block 20

Figure 4.2 Numerically Oscillator Block . 21

Figure 4.3 Improved Phase-Frequency Detector Block 21

Figure 4.4 Kalman Filter Block . 22

Figure 4.5 Kalman Gain Generator Block . 22

Figure 4.6 Control Input Block . 23

Figure 4.7 Divider Block . 23

x

Figure 5.1 Simulink Kalman Filter Block . 25

Figure 5.2 Simulink Kalman Gain Generator Block 25

Figure 5.3 Simulink Control Input Block . 25

Figure 5.4 Simulink Divider Block . 25

Figure 5.5 Simulink VCO Model . 26

Figure 5.6 Simulink Frequency Divider Model 26

Figure 5.7 Linear Input Sweep of Linear VCO 27

Figure 5.8 Control Input of Simulation shown in Figure 5.7 27

Figure 5.9 Output Spectrogram of VCO for Simulation shown in Figure 5.7 . . . 27

Figure 5.10 Linear Input Sweep of Nonlinear VCO 28

Figure 5.11 Control Input of Simulation shown in Figure 5.10 28

Figure 5.12 Output Spectrogram of VCO for Simulation shown in Figure 5.10 . . . 28

Figure 5.13 Nonlinear Input Sweep of Linear VCO 29

Figure 5.14 Control Input of Simulation shown in Figure 5.13 29

Figure 5.15 Output Spectrogram of VCO for Simulation shown in Figure 5.13 . . . 29

Figure 5.16 Nonlinear Input Sweep of Nonlinear VCO 30

Figure 5.17 Control Input of Simulation shown in Figure 5.16 30

Figure 5.18 Output Spectrogram of VCO for Simulation shown in Figure 5.16 . . . 30

Figure 5.19 System Block Diagram of Complete Controller Implementation 31

Figure 5.20 FPGA-In-the-Loop Simulation for ML605 31

Figure 5.21 System Block Diagram of Partial Controller Implementation 31

Figure 5.22 FPGA-In-the-Loop Simulation for Spartan-3E Starter Kit 32

Figure 5.23 Generated Control Input by Controller 32

Figure 5.24 Linearized Spectrogram . 32

Figure 5.25 Linear VCO Control Input and Phase Detector Outputs Without Kalman

Filter, Not Tuned Charge-Pump . 33

Figure 5.26 Linear VCO Control Input and Phase Detector Outputs Without Kalman

Filter, Tuned Charge-Pump (Channel Width = W) 33

Figure 5.27 Nonlinear VCO Control Input and Phase Detector Outputs Without

Kalman Filter, Charge-Pump Channel Width = W 34

xi

Figure 5.28 Nonlinear VCO Control Input and Phase Detector Outputs Without

Kalman Filter, Charge-Pump Channel Width > W 34

Figure 5.29 Nonlinear VCO Control Input and System Model With Kalman Filter

(Q,R), Charge-Pump Channel Width = W 34

Figure 5.30 Nonlinear VCO Output Spectrogram With Kalman Filter (Q ′,R′), Charge-

Pump Channel Width = W ′ . 35

Figure 5.31 Nonlinear VCO Control Input and System Model With Tuned Kalman

Filter (Q′,R′), Tuned Charge-Pump (Channel Width = W ′) 35

Figure 5.32 Nonlinear VCO Output Spectrogram With Tuned Kalman Filter (Q ′,R′),

Tuned Charge-Pump (Channel Width = W ′) 36

Figure 5.33 Spectrogram Comparison . 36

Figure C.1 Original Circuit . 58

Figure C.2 Thevenin Equivalent of the Original Circuit 58

Figure C.3 Original Circuit . 61

Figure C.4 Thevenin Equivalent of the Original Circuit 61

Figure D.1 Linear Model of a PLL . 64

Figure D.2 Characteristic of an Ideal Phase Detector 64

Figure D.3 Simple Low-Pass Filter . 65

Figure D.4 Response of a PLL to a Frequency Step 66

xii

CHAPTER 1

INTRODUCTION

Frequency Modulated Continuous Wave (FMCW) radar sytems are widely in use from

automotive sensors to avionic altimeters. These systems rely on linear frequency sweep

and Voltage Controlled Oscillators (VCO) are being in use for the sweep generation.

However, developing VCO with linear transfer functions at microwave frequencies is a

challenging study and availability of such components is limited. Especially for the long-

distance FMCW radar applications, the non-linear frequency sweep due to the VCO in-

sufficiency, results in range resolution degradation. There are several post-compensation

hardware methods described in literature as solutions for this problem which are intro-

ducing additional circuitry. On the other hand; in addition to the RF front end, FMCW

radar systems include digital signal processing and data processing units in order to

output the detection to an interface unit. This interface unit may be a display or a com-

munications protocol that is being used in the top level system which is including the

FMCW radar sub-system. This thesis work is concentrated on developing an embedded

solution for sweep linearisation of an FMCW Radar Altimeter which can also be inte-

grated with the digital signal processing and the data processing blocks of the whole

system in a single platform like an Field Programmable Gate Array (FPGA).

Linear Sweep
Controller

Processor
Range
Data

A
n
t
e
n
n
a

DSP

I/N

VCO

Mixer

RF Front EndFPGA

Figure 1.1: Proposed System Block Diagram

This thesis is divided into seven chapters. After introducing the problem that is being

worked on briefly in this chapter, several conventional solutions are described in Chapter

2. In Chapter 3, the developed architecture is explained by discussing on parameters of

each design block. Chapter 4 deals with model based implementation of the architecture

1

on FPGA. Chapter 5 demonstrates the various simulations of the design while Chapter 6

is indicating the improvement with the summary of work. Finally in Chapter 7, a discus-

sion is made about the architecture, followed by some recommendation for some future

work. VHDL codes are given in Appendix A and Matlab codes are given in Appendix B.

1.1 FMCW Principles

FMCW radar systems, rely on the principle of transmitting a modulated signal with a

triangular frequency envelope to the target and recieving back the reflected signal. The

difference between the transmitted and received signals which is called the beat signal,

projects the ranging information. In Figure 1.2, the time variations of the frequency

modulated transmitted signal x(t) and the received signal reflected back from the target

(y(t)) are shown.

Tm

fmax

fmin

fb Δf

t

t

t

Tm

Td

t0 t0 + Tm /2

xf(t)

x(t)

yf(t)

fb(t)

Tm /2 Tm /2

Figure 1.2: FMCW Radar Signals

x f (t) = fmin + kt,
[
t0, t0 +

Tm

2

]
(1.1)

x(t) = sin

[
2π

(
fmin +

k
2

(t − t0)

)
(t − t0)

]
,

[
t0, t0 +

Tm

2

]
(1.2)

2

Modulation frequency:

fm =
1

Tm
(1.3)

Frequency Deviation:

Δ f = fmax − fmin (1.4)

Center Frequency:

f0 =
fmin + fmax

2
(1.5)

Time Delay:

Td =
2R
c

(1.6)

Beat Frequency:

fb =
∣∣∣x f − y f

∣∣∣ (1.7)

The Slope of the Sweep:

k =
Δ f
Tm

2

= 2 fm Δ f =
fb
Td

(1.8)

The beat frequency fb is generated by the Fast Fourier Transform (FFT) of the beat signal

(fb) and the distance to the target (R) is measured with a resolution of A (1.10).

fb = 2 fmΔ f Td = 2 fmΔ f
2R
c
= A · R (1.9)

The Range Sensitivity:

A =
4 fm Δ f

c
(1.10)

1.2 VCO Non-Linearity

For generation of high frequency x(t) signals LC oscillator based VCO structures are

common.

Ce f f = C0 − 1
2

C2 (1.11)

where C0 is the time average capacitance value and C2 is the second order Fourier

Coefficients of the nonlinear varactor driven by the oscillation.

3

V+ V–

VDD

VC LC tank

–R

I bias
Vbias

VC VG

V+

L

C

RL

RC

–R

V–

Figure 1.3: LC Oscillator Schematic and Model

V1

f0 f0
’

f1

f2

f3

f1

fideal VCO fVCO

V2 V3
V V

V1 V2 V3

f3
f2

’

Kideal =
f3 − f1

V3 − V1
� KVCO

Figure 1.4: VCO Transfer Functions

Ve f f = VG − VC − VT (1.12)

KVCO =
δ f
δVc
=

1
2

f
Ce f f

δCe f f

δVe f f
(1.13)

The varactors in the oscillator structures are not operating linearly as it is given in (1.13)

and described in [1]. Thus transfer functions of VCO are nonlinear as shown in Figure

1.4 [2].

4

CHAPTER 2

VCO LINEARIZATION METHODS

There are various methods in the literature dealing with the VCO non-linearity problem.

Some of them are working on the oscillator structures or the varactors which are the

main reason of non-linearity, while the others are working on post-compensation meth-

ods with the knowledge of operating with a non-linear component. There are open-loop

control solutions like Voltage Pre-Distortion by which VCO transfer function (F) analysis

is done for designing a compensator with the inverse transfer function of the VCO F −1

[3]. However in this thesis, FMCW Radar Altimeter is selected as the case study which

is not suitable to apply an open-loop control design because of the non-stationary envi-

ronmental conditions. Thus it is concentrated on closed loop structures like Phase Lock

Loop (PLL) in this research.

2.1 Voltage Pre-Distortion

In this approach, a measurement of the VCO voltage–frequency characteristic is re-

quired. The inverse of the function may then be used to compute the necessary pre-

distorted voltage to be applied to the VCO tuning node by a waveform generator or

equivalent circuitry.

f f

vvv

K vco
Voltage

Pre-Distortion
Linear Transfer

Function

f

Figure 2.1: Voltage Pre-Distortion

The major drawback of this method is that typically the VCO characteristic is not constant

but varies with environmental conditions, such as ambient temperature. This results in

a poor phase noise behavior and phase deviations. Semiconductor oscillators there-

5

fore generally need some means of stabilization, thus a phase-locked loop is a better

alternative to the simple predistortion approach [4], [5], [6].

2.2 Phase Lock Loop

A PLL is a control loop used to synchronize its output signal which is generated by a

voltage or numerical controlled oscillator, with an input or reference signal in frequency

and in phase. Several variations of PLL exists, as the common ones are analog phase-

locked loop (APLL) which is also referred to as a linear phase-locked loop, digital phase-

locked loop (DPLL) and all digital phase-locked loop (ADPLL). These classifications are

done according to the internal blocks of the structure as they are implemented in digital

or analog. Considering the significant advantages of digital systems over their analog

counterparts such as superiority in performance, speed, reliability and reduction in size

and cost, DPLLs attract much attention compared to APLLs. However, the analog APLLs

are still widely used [7], [8], [9], [10].

VSS

VDD

Reference Signal
VCO

N.ff
Phase

Detector

I/N
Frequency Divider

Loop
Filter

Output
Signal

+

–

PLL Block Diagram

Figure 2.2: Typical Charge-Pump PLL Block Diagram

In Figure 2.2 the block diagram of a typical PLL circuit is shown. As seen in the figure,

the PLL consists of a Reference Signal Generator, a VCO, a Frequency Divider, a Phase

Detector, a Charge-Pump which can be defined as a part of Phase Detector and a Loop

Filter.

2.2.1 Reference signal

Due to the difficulties of developing a high frequency oscillator with a stable output and

good noise properties, PLL circuits are widely in use by generating the required output

6

by available high quality low frequency oscillators. Crystal oscillators have adequate

properties as reference signal sources but without a PLL structure it is not possible to

use them because of low frequency outputs and limited frequency tuning [8]. The transfer

function of a PLL is analysed in Appendix D.

2.2.2 Phase detector

The Phase Detector compares the phases of the input and output signals, and generates

an error signal proportional to the phase deviation between them. There are several

ways of implementing a phase detection unit like analog solutions that are using mixers

or digital solutions that are using exclusive-or gates. But due to the advantages like false

lock condition avoidance, Phase-Frequency Detector (PFD) implementation is the most

popular way for phase detection. Figure 2.3 shows a typical block diagram of a PFD with

D-Type Flip-Flop structure.

loop
filter

VDD

VSS

ref

VCO

up

down

D

R

R
D

PFD

1

1

I up

I down

Figure 2.3: Implementation of PFD and Charge-Pump

The PFD is triggered by the edges of the reference and VCO signals and it is reset once

both edges have been detected. In Figure 2.4, typical waveforms in the phase-frequency

detector are shown. In the case that the VCO runs too slow, the edges of the VCO signal

come after the edges of the ref signal. This condition generates an up pulse, increasing

the frequency of the VCO. Consequently, in the case that the edges of the VCO signal

come before the ref signal, a down pulse is generated which decreases the frequency of

VCO.

The switchable current sources in the Charge-Pump are controlled by the up and down

signals. As the switches close, charge is sinked from Loop Filter or sourced to it.

7

ref

VCO

up

down

I +Iup d

I

I

up

d Id

a) VCO lags c) lockedb) VCO leads

Figure 2.4: VCO Feedback Signal Lags, Leads and Signals in Phase

2.2.3 Loop filter

The output of the phase detector includes a dc term that is proportional to the phase

error, and some high frequency components. The higher frequency terms are filtered out

by the low pass in order to avoid disturbance. Both active and passive filters can be used

as Loop Filter. Main topologies of these filters are given in Figure 2.5. Transfer functions

of the basic and most commonly used passive loop filter topologies are analysed in

Appendix C.

Figure 2.5: Passive and Active Loop Filters

In APLLs active filters are mainly used for the improvement of lock-in and hold-in ranges.

Hold-in range is the maximum frequency step of the reference signal that will not disturb

the stability of the locked system while the lock-in range is the range of frequencies within

the system that the reference signal can be acquired and tracked. Since there are no

lock-in or hold-in range problems in PFD, passive filters are satisfactory. Thus there is

no need for active filters since active devices increase cost, complexity and noise [7].

2.2.4 Voltage controlled oscillator

A Voltage Controlled Oscillator (VCO) generates a periodic oscillator with a transfer func-

tion given in Figure 2.6.

8

fout

Vin

KVCO

f0

f2

f1

V1 V2

f = f + .out

o

o KVCO

Vinf : frequency for

K : VCO gain(Hz/V)VCO

Vin

K :(-) / (-)VCO f2 f2 V2 V1

Figure 2.6: VCO Transfer Function

Figure 5.5 shows the model of a VCO. According to the Barkhousen stability criteria if

the loop gain (GH) is equal to unity then the output oscillation will be a sinusoidal wave.

VoG

H

Vi

HVo

Vi HV o

GVi

1-GH

Figure 2.7: VCO Model

The actual clock which is generated by a PLL, comes from the VCO which generates a

periodic oscillation. The frequency of this periodic oscillation can be controlled using the

modulation of some control voltage. The control voltage corresponds to some filtered

form of the phase error, in a PLL. In response to this correspondence, the VCO adjusts

its frequency.

2.2.5 Frequency divider

Since reference signal is in low frequency range, in order to check the phase difference

of VCO output and the reference signal, a Frequency Divider should be in use. The

frequency range of the PLL circuit is also limited by the digital divider in these circuits.

A practical limit to the frequency range is put by the number of bits in the divider control

logic. The counter implementation will limit both the minimum and maximum achievable

division ratio in divider implementation. Fundamental limits to the possible number of

bits in the divider do not exist. However, in order not to increase circuit complexity and

power consumption, divider should be implemented with adequate number of bits for a

correct PLL operation.

9

CHAPTER 3

ARCHITECTURE OF THE SYSTEM

Conventional types of PLL structures are described in Section 2.2. However this thesis

work does not deal exactly with one of them but demonstrates a PLL structure between

DPLL and ADPLL. Since in the case study that is being worked on operates at high

frequencies, using a Numerically Controlled Oscillator (NCO) is not possible. So even

the motivation is designing a system by digital implementations of components; due to

the operational frequency, system should involve a high frequency VCO and a high fre-

quency divider. As conventional DPLL, this design also includes a Phase-Frequency

Detector but with some improvements that are described in Section 3.2. On the other

hand, digital designs of reference signal sources and Loop Filter structures are not com-

mon. These topics are also detailed in this chapter.

3.1 Reference Signal Generation

The reference signal source is implemented by a Numerically Controlled Oscillator (NCO).

The architecture of this structure has a great influence on the performace of the loop. It

is possible to implement a NCO by a divide-by-n counter which divides the high clock fre-

quency by n in order to generate a lower frequency output. Since Direct Digital Synthesis

(DDS) method provides much better frequency resolution then such a simple counter,

NCO is designed by a DDS structure.

Phase
Increment

Phase Accumulator

clk

Δθ

Δ

clk

Δ

+
Sine

Look-Up
Table

θ(n)
sin (θ(n))

Figure 3.1: DDS Block Diagram

10

As shown in Figure 3.1 a DDS block typically consists of a Phase Increment block for

determining the output frequency, a Phase Accumulator which maps the instantaneous

phase of output signal and a Look-Up Table (LUT) in order to generate a sinusoidal out-

put signal. In the case that is being worked on, since a sinusoidal reference signal is

not required, LUT is not implemented. So, the output generates as a ramp signal at

a frequency of Phase Increment (Δθ) times the resolution as shown on Equation 3.1.

Frequency resolution can be define as frequency over two to the power of Phase Accu-

mulator bits.

fout =
fclkΔθ

2bit
(3.1)

If the reference signal is generated by a crystal oscillator as in the conventional cases;

then the beat frequency signal (fb(t)) will be a smooth DC level during transmitted signal

(x(t)) and received signal (y(t)) are both ramping or de-ramping. However, a digitally

generated reference signal will have a stair-like shape. Thus beat frequency signal will

also have same steps with the reference signal as it is shown in Figure 3.2.

xf(t)

fb(t)

fsvco

Td

A

6.7 ns (1m TOF)

20 ns (3m TOF)

yf(t)

Td

B

B

0

Figure 3.2: Effects of DDS to Beat Signal

Since the beat signal frequency projects the target distance, FFT algorithm is extremely

important for high resolution frequency detection which defines higher resolution in target

distance measurement. As the FFT algorithm may cause a lower resolution measure-

11

ment independent from the Range Sensitivity (A) parameter of FMCW radar principles,

DDS effect on the beat frequency also causes Range Resolution degradation. Thus

while choosing the Range Resolution of a design; equation (1.10), FFT algorithm and

DDS resolution should be considered together. On the other hand, since the clock fre-

quency is selected as 50 MHz in the design, time interval of each frequency step of

reference signal will be 20 ns. So in this case, since the time of flight (TOF) of a mi-

crowave signal to a target in 1 meter distance, accuracy of the measurement may only

be 3 meters. For these reasons, Modulation Frequency (fb) and Frequency Deviation

(Δ f) parameters of Range Sensitivity (A) are associated with the number of bits and

clock rate of DDS during the design process.

Most FMCW Radar Altimeters operate at approximately 150 MHz bandwidth in 4.3 GHz

center frequency with a modulation frequency between 50 Hz and 300 Hz. Consequently,

the Range Sensitivity is mostly between 100 Hz/m and 600 Hz/m. Even though it seems

that 600 Hz/m provides a higher Range Resolution; since the main goal of this research

is the linear frequency sweep control, low frequency steps have been preferred. The

main reason for this decision is that the Loop Filter used after the Phase Detector will

smooth the frequency steps, as described in [11]. As the low frequency steps are filtered

better, a linearised VCO transfer function has been obtained. Since the smoothing de-

formed both time intervals and frequency steps, the measurement accuracy is improved

as well as the Range Resolution is converged to the Range Sensitivity.

When the DDS resolution is chosen as 27-bits, the reference signal frequency steps

become 0.327529 Hz, as indicated on equation (3.2). The VCO output signal frequency

is scaled down to MHz level by the Frequency Divider with the ratio of 1/1024 (N = 210)

in order to be comparable with reference frequency. So as it is shown in equation (3.2),

VCO output signal frequency steps become 381.47 Hz. Modulation frequency is selected

as 62.5 Hz while frequency bandwidth is defined as 152.588 MHz. According to these

selections, Range Sensitivity is calculated as 127.245 Hz/m in equation (3.5). If DDS

resolution was selected higher, then Range Sensitivity will be under 100 Hz/m limit. For

example, 28-bits DDS resolutions corresponds to 63.2223 Hz/m Range Sensitivity. Thus

27-bits resolution for the DDS architecture is ideal for this design.

f sDS S =
fclk

2bit
=

50 MHz
227

= 0.327529 Hz (3.2)

12

f sVCO = f sDS S · N = 381.47 Hz (3.3)

Δ f = f sVCO

step count︷�︸︸�︷
1

2 fm 1
fclk

(3.4)

When we place the equation (3.2), (3.3) and (3.4) in equation (1.10), we will get equation

(3.2).

A =

4 fm
fclk

2bit
N

1

2 fm
1
fclk

c
=

1.70785 e10

2bit

27−bit
====⇒ 127.245 Hz/m (3.5)

3.2 Phase Detection

In order to avoid false lock condition, the phase detector has been designed like a Phase-

Frequency Detector as described in Section 2.2.2. But this design includes some im-

provements over a conventional PFD. Since a PFD outputs the phase difference in (0, 2π)

range related with the signal at lower frequency, for some initial conditions as shown in

Figure 3.3, phase locking may take longer.

REF

VCO

PFD

Improved
PFD

STATES: I=idle , U=Up , D =Down

I I

I

I

III

I

UU

U UD

DD

D

Figure 3.3: Time Diagrams of Conventional and Improved PFD

Figure 3.4 shows a PFD with D-Type Flip-Flop structure and the three-state system

model of this structure. Furthermore, the contribution of the structure that is developed

in this study is indicated with bold lines in this figure. As shown on the model, the direct

13

transition between states up and down in PFD architecture. However, in the developed

structure, if one of the input signals rises when the other is low, a transition is occur

between the states up and down.

D

D

R

R

Q

Q

C

C

up

down

REF

VCO

`1´

`1´

1 0 1 0
X D U I
1 1 0 0

U

I

D

VCO

VCO

VCO

REF

REF

REF

VCO, _ REF REF, _ VCO

Figure 3.4: D-Type Flip-Flop PFD and PFD Models

The Charge-Pump is implemented by an up-down counter which acts identically with the

common transistor topology. It is possible to model transistor widths by implementing a

variable count rate counter but it is also possible to multiply the output of counter with a

constant that will symbolize the transistor width.

3.3 Loop Filtering

Loop Filters are basically low pass filters, however corner frequency decision is extremely

critical. If there is a modulation on the reference signal, it may not be efficient to use a

filter with a fixed bandwidth. Therefore a filter with an adaptive bandwidth in behaviour

has been designed. The designed filter is actually a Kalman Filter that operates inde-

pendently from the frequency domain characteristics.

The Kalman Filter is one of the most well known and widely used mathematical tool

for stochastic estimation from noisy sensor measurements. In the case that is being

worked throughout the thesis, the noisy measurement is Phase Detector output which

projects lots of different system noise parameters that are tending to behave as a gaus-

sian noise all together. The Kalman Filter is a set of mathematical equations implement-

ing a predictor-corrector type estimator which is optimal in the sense that minimizes the

estimated error covariance. In the following sub-sections computational and probabilistic

approach of the filter and the algorithm is explained [12] [13].

14

3.3.1 Computational and probabilistic approaches

The Kalman Filter is used to try to estimate the state x ∈ �n of a discrete-time controlled

process. The following linear stochastic difference equation determines the mentioned

process (3.6).

xk = Axk−1 + Buk + wk−1 (3.6)

The x ∈ �m measurement of the process is

zk = Hxk + vk (3.7)

The process and measurement noise is respectively presented by the random variables

wk and vk. Each of these variables are assumed to be independent than other variables,

carry normal probability distributions and are white in characteristics. In another words,

each of these variables are assumed to be independent than other variables, they are

characteristically white, and with normal probability distributions;

p(w) ∼ N(0,Q) (3.8)

p(v) ∼ N(0,R) (3.9)

It is possible that the process noise covariance Q and measurement noise covariance R

matrices to change according to each measurement or time step. Hence, in this process

we assume that they are constant.

The state at the previous time step k − 1 is related to the state at the current step k by

the nxn matrix A in the difference equation (3.6), in any possible absence of a driving

function or process noise. It should be kept in mind that in practice A might change

according to each time step, hence in this process we assume it to be constant. The

optional control input u ∈ �l is related to the state x by the nx1 matrix B. The state is

related to the measurement zk by the mxn matrix H in the measurement equation (3.7).

It is possible that H may change according to each time step or measurement, hence in

this process we assume that it is constant.

x̂−k ∈ �n is defined as a priori (before) state estimate at step k, as the process prior to step

15

k is known, and given the measurement zk, x̂k ∈ �n is the posteriori (after) state estimate

at step k. Accordingly, the priori and the posteriori estimate errors can be defined as in

equations (3.10) and (3.11).

ek
− ≡ xk − x̂−k (3.10)

ek ≡ xk − x̂k (3.11)

Then, the priori estimate error covariance is

Pk
− = E

[
ek
−ek
−T

]
(3.12)

and the posteriori estimate error covariance becoming

Pk = E
[
ekek

T
]

(3.13)

Trying to find an equation that computes the posteriori state by using a linear combination

of the priori estimate x̂−k and a weighted difference between an actual measurement zk

and a prediction Hx̂−k of the measurement is the beginning of the derivation of the Kalman

Filter.

x̂k = x̂−k + K
(
zk − Hx̂−k

)
(3.14)

The result of the difference (zk − Hx̂−k) in equation (3.14) is named as the measurement

innovation or residual. This difference (residual) reflects the discrepancy between the

actual measurement zk and the predicted measurement Hx̂−k . Zero residual indicates

that the predicted measurement and the actual measurement are in complete harmony.

The nxm matrix K in equation (3.14) is the blending factor or Kalman gain, which mi-

nimizes the posteriori error covariance which is given in equation (3.13). In order to

accomplish this minimization, first, the equation (3.14) must be substituted into the above

definition for ek. Then, one must substitute that into equation (3.13). Then, the indicated

expectations must be performed with taking the derivative of the trace of the result with

respect to K. Then, that result must be set equal to zero, and then solving for K we get

the equation (3.15).

16

Kk = P−k HT
(
H P−k HT + R

)−1

=
P−k HT

H P−k HT + R
(3.15)

When we look at equation (3.15), it is seen that as the measurement error covariance R

approaches zero, the gain weights the residual more heavily.

lim
Rk→0

Kk = H−1 (3.16)

As the a priori estimate error covariance P−k approaches zero, the gain K weights the

residual less heavily.

lim
P−k→0

Kk = 0 (3.17)

Another way of thinking about the weighting by K is that as the measurement error

covariance R approaches zero, the actual measurement zk becomes more and more

trusted while the predicted measurement Hx̂−k becomes less and less trusted. On the

other hand, as the a priori estimate error covariance Pk approaches zero the actual

measurement k is trusted less and less, while the predicted measurement Hx̂−k is trusted

more and more.

According to Bayers’ Rule the probability of the a priori estimate x̂−k depends on the

conditions of the previous measurements zk. The Kalman Filter maintains the first two

moments of the state distribution as shown in equations (3.18) and (3.19).

E [xk] = x̂k (3.18)

E
[
(xk − x̂k)(xk − x̂k)

T
]
= Pk (3.19)

The a posteriori estimate covariance equation reflects the variant of the state distribution

(the second non-central moment).

17

p(xk|zk) ∼ N
(
E[xk], E

[
(xk − x̂k)(xk − x̂k)

T])
= N(x̂k, Pk) (3.20)

3.3.2 Algorithm

The Kalman filter estimates the process state at some time and then obtains feedback

in the form of noisy measurements. Relying on this, the equations for the Kalman Filter

is divided into two groups as the time update equations and the measurement update

equations. Time update equations project the state and the error covariance ahead

to obtain the priori estimates for the next time step. These equations can be consid-

ered as predictor equations. Measurement update equations use the measurement as

a feedback in order to obtain an improved posteriori estimate. These equations can be

considered as corrector equations. As shown in Figure 3.5, the estimation algorithm can

be defined as a cycle of predictor-corrector algorithm.

Time Update
(Predict)“ ”

Measurement Update
(Correct)“ ”

Figure 3.5: Discrete Kalman Filter Cycle

The specific equations for the time and measurement updates are given in equations

(3.21) to (3.25)

x̂−k = A x̂k−1 + B uk (3.21)

P−k = A Pk−1 AT + Q (3.22)

Kk = P−k HT
(
H P−k HT + R

)−1
(3.23)

x̂k = x̂−k + Kk
(
zk − H x̂−k

)
(3.24)

Pk = (1 − KkH) P−k (3.25)

18

As seen in equations (3.21) and (3.22), the time update equations project the state and

the covariance estimates forward from the step k − 1 to step k. On the measurement

update, computing the Kalman gain is the first step. Then by incorporating zk measure-

ment, using equation (3.24) generates a posteriori state estimate. Finally, a posteriori

error covariance estimate should be obtained via equation (3.25). After each time and

measurement update pair, the process is repeated with the previous posteriori estimates

used to project or predict the new priori estimates.

x̂−k = x̂k−1 + uk (3.26)

P−k = Pk−1 + Q (3.27)

Kk =
P−k

P−k + R
(3.28)

x̂k = x̂−k + Kk
(
zk − x̂−k

)
(3.29)

Pk = (1 − Kk) P−k (3.30)

For the case of this thesis equations (3.21) to (3.25) were translated to equations (3.26)

to (3.30).So the algorithm that was implemented for the Kalman Filter appears as shown

in Figure 3.6.

Figure 3.6: Kalman Algorithm

19

CHAPTER 4

FPGA IMPLEMENTATION

Model based design methodology is used in this thesis. Xilinx ISE Design Suite is used

for implementation and by the use of Xilinx System Generator, Mathworks Simulink is

used as the main platform for top level system design. Several sub-blocks of system are

designed in Xilinx ISE Project Navigator with VHDL (Very High Speed Integrated Circuit

Hardware Description Language. In this chapter, the linear frequency sweep controller

design is described by investigating each sub-block implementation. As it is indicated on

Chapter 3, except the high frequency components of the system that are VCO and the

Frequency Divider, all other system components are designed digitally inside the FPGA.

The main blocks of controller includes a Direct Digital Frequency Synthesizer (DDFS) as

the reference signal generator, a Phase-Frequency Detector for phase detection and the

Kalman Filter as the loop filter.

4.1 Direct Digital Frequency Synthesizer

For digital oscillation at various frequencies a Numerically Controlled Oscillator (NCO)

is designed in this block. Also a counter is implemented in order to generate a triangle

waveform for the modulation of the digital signal that is generated by NCO.

Figure 4.1: Direct Digital Frequency Synthesizer Block

The counter which is called the Reference Counter is designed with VHDL (Appendix

A.1) and a configuration m-function (Appendix B.1) is prepared at MATLAB in order to

integrate this sub-block to the rest of system at Simulink. Reference Counter is a 27-bits

50MHz up-down counter which changes the counting direction as it reaches xAF0D48

or xA8F2C8. The NCO block is implemented by the DDS Compiler 4.0 Xilinx Intellectual

Property (IP) with 27-bits resolution in order to generate frequency steps at 0.372529

20

Figure 4.2: Numerically Oscillator Block

which is specified in Section 3.1. It is also calculated in Section 3.1 that the reference

signal should modulate between the frequencies 4.12471 MHz and 4.27372 MHz. Thus

moreover the Reference Counter upper and lower limits are specified, a Scale Block of

Xilinx System Generator is used in order to replace the binary point of the data which

will be the input of DDS. In hardware implementation, Scale block actually costs nothing.

Since only the phase generator of the DDS Compiler 4.0 is implemented, DDS output is a

periodic ramp signal. A Relation Block of Xilinx System Generator is used for generating

a two-state digital oscillation as the NCO output.

4.2 Improved Phase-Frequency Detector

Phase detection is consisting both the phase detectors and the Charge-Pumps. Phase

detector of this design is implemented with as a state machine in VHDL (Appendix A.2)

in a Phase-Frequency Detector architecture with the improved capabilities described in

Section 3.2. Charge-Pumps are implemented again in VHDL (Appendix A.3) as a 16-

bits 50MHz up-down counter and called Phase Counter. M-functions that are required for

Simulink integration are also given in Appendix B.2 and Appendix B.3 respectively. Also

a Constant Multiplier Block of Xilinx System Generator is used for modelling transistor

widths of the Charge-Pump.

Figure 4.3: Improved Phase-Frequency Detector Block

21

4.3 Kalman Filter

Figure 4.4: Kalman Filter Block

Kalman Filter implementation is completed according to the algorithm defined in Section

3.3.1.2. This block consists 2 Delay, 4 Add, 2 Sub, 1 Add/Sub, 1 Constant Multiplier and

2 Constant Blocks of Xilinx System Generator with a Divider Generator 3.0 Xilinx IP and

a Control Input sub-block written in VHDL. As it is shown in Figure 4.4, filter includes two

sub-blocks given in Figure 4.5 and Figure 4.6.

Figure 4.5: Kalman Gain Generator Block

22

Figure 4.6: Control Input Block

Even though the input of the filter is unsigned 27-bits with the binary point at bit 27,

operations with in the filter takes place at 32-bits and the output of filter is in signed

32-bits with the binary point at 30. But Division sub-block of Kalman Gain block is an

exception which inputs two 32-bits and outputs 64-bits for precision. This block has a

latency of 68 cycles while 2 Scale blocks are used in order to put the data in a form that

is available for Divider Generator 3.0 and there is an Add block for addition of quotient

and fractional outputs.

Figure 4.7: Divider Block

23

CHAPTER 5

SIMULATIONS

Simulations are done by the use of Mathworks Simulink and Xilinx ISE Simulator soft-

wares with Xilinx ML605 Evaluation Kit and Spartan-3E Starter Kit. Since the system

includes high frequency hardware components in addition to an FPGA, these parts are

simulated in Simulink. On the other hand, the controller design will operate on the FPGA

while feedbacks will come from Simulink instead of a real VCO. This hardware-software

integrated simulation with FPGA is called FPGA-In-the-Loop (FIL) simulation. While it

may be expected to complete simulations in real time, it is not correct since the normal

loop operation with a rate of 50 MHz is not possible during FIL simulation. For every

cycle FPGA output will be captured from the JTAG chain over USB and after simulating

microwave frequencies in Simulink, the software simulation outputs will be sent to FPGA

in the same way. For design verification and analysis more than a modulation cycle is

being captured and spectrogram of data is investigated. Since the sampling rate used

for data collection from VCO output is 1e10, the number of data that is being collected for

17 ms is 170e6. More over collecting this data takes a long time, computing the 214 point

FFT of the collected data requires a high end computer.

Designed controller architecture of the system is suitable for a Virtex-6 FPGA on the

ML605 Evaluation Board but it not possible to operate this Kalman Filter algorithm on

a Spartan-3E FPGA at 50 MHz as the one that Spartan-3E Started Kit includes. For

this reason, by using the advantages of the platform that is being worked on, Kalman

Filter design block is implemented on Simulink for Spartan-3E starter kit and by the rest

of controller FIL simulations are completed. The block diagrams of Simulink model of

Kalman Filter is given in Figure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4 which are

identical with FPGA implementation models except the Divider model. Since Divider

model implemented for FPGA includes the Divider Generator 3.0 IP which has 68 cycles

of latency, a Delay block is added to Simulink model.

24

Figure 5.1: Simulink Kalman Filter Block

Figure 5.2: Simulink Kalman Gain Generator Block

Figure 5.3: Simulink Control Input Block

Figure 5.4: Simulink Divider Block

25

5.1 VCO and Frequency Divider Simulink Models

The VCO that is modelled for simulations is highly non-linear inside the operational band-

width. Also phase noise is modelled with Gaussian noise as it is shown in Figure 5.5

VoG

H

Vi

HVo

Vi HV o

GVi

1-GH

Figure 5.5: Simulink VCO Model

The Frequency Divider model is a simple counter based divider but zero-cross detection

is included in order to avoid false frequency division.

Figure 5.6: Simulink Frequency Divider Model

26

5.2 Frequency Sweep Analysis of VCO

Figure 5.7 shows the block diagram for linear input sweep of a linear VCO model while

the control input of simulation is as given in Figure 5.8 and the output spectrogram of

VCO is shown in Figure 5.9.

Figure 5.7: Linear Input Sweep of Linear VCO

Figure 5.8: Control Input of Simulation shown in Figure 5.7

Figure 5.9: Output Spectrogram of VCO for Simulation shown in Figure 5.7

27

Figure 5.10 shows the block diagram for linear input sweep of a nonlinear VCO model

while the control input of simulation is as given in Figure 5.11 and the output spectrogram

of VCO is shown in Figure 5.12.

Figure 5.10: Linear Input Sweep of Nonlinear VCO

Figure 5.11: Control Input of Simulation shown in Figure 5.10

Figure 5.12: Output Spectrogram of VCO for Simulation shown in Figure 5.10

28

Figure 5.13 shows the block diagram for nonlinear input sweep of a linear VCO model

while the control input of simulation is as given in Figure 5.14 and the output spectrogram

of VCO is shown in Figure 5.15.

Figure 5.13: Nonlinear Input Sweep of Linear VCO

Figure 5.14: Control Input of Simulation shown in Figure 5.13

Figure 5.15: Output Spectrogram of VCO for Simulation shown in Figure 5.13

29

Figure 5.16 shows the block diagram for nonlinear input sweep of a nonlinear VCO model

while the control input of simulation is as given in Figure 5.17 and the output spectrogram

of VCO is shown in Figure 5.18.

Figure 5.16: Nonlinear Input Sweep of Nonlinear VCO

Figure 5.17: Control Input of Simulation shown in Figure 5.16

Figure 5.18: Output Spectrogram of VCO for Simulation shown in Figure 5.16

30

5.3 Frequency Sweep Linearization

Figure 5.19, Figure 5.20, Figure 5.21 and Figure 5.22 show the system block diagrams

for the linear sweep controller that is being designed as the output of this thesis.

Figure 5.19: System Block Diagram of Complete Controller Implementation

Figure 5.20: FPGA-In-the-Loop Simulation for ML605

Figure 5.21: System Block Diagram of Partial Controller Implementation

31

Figure 5.22: FPGA-In-the-Loop Simulation for Spartan-3E Starter Kit

Figure 5.23 shows the control input generated by the designed controller, for the nonlin-

ear VCO model that is analysed in Section 5.2.

Figure 5.23: Generated Control Input by Controller

Figure 5.24 shows the linearized output spectrogram of nonlinear VCO model that is

analysed in Section 5.2 by the use of designed controller.

Figure 5.24: Linearized Spectrogram

32

5.4 Parameter Tuning

During the design verification several simulations conducted for parameter tuning. Figure

5.25 shows the control input generated by the controller as well as the phase detector

output signals for the linear VCO model at the early stage of tuning when the Kalman

Filter is not integrated yet.

Figure 5.25: Linear VCO Control Input and Phase Detector Outputs Without Kalman
Filter, Not Tuned Charge-Pump

Figure 5.26 shows same signals, for the linear VCO model after Charge-Pump tuning by

increasing channel width in order to increase the low pass filter effect of this parameter.

Figure 5.26: Linear VCO Control Input and Phase Detector Outputs Without Kalman
Filter, Tuned Charge-Pump (Channel Width = W)

Figure 5.27 shows output signals for the nonlinear VCO model with the same parameters

of the controller. As shown in Figure 5.28, increasing channel width is not adequate for

more filtration since decreasing the fixed bandwith of the system makes it impossible

to track the fast sweep of reference signal. At this point Kalman Filter is integrated to

the system, which results control input signal as shown in Figure 5.29 while the system

model was as given below in the same figure.

33

Figure 5.27: Nonlinear VCO Control Input and Phase Detector Outputs Without Kalman
Filter, Charge-Pump Channel Width = W

Figure 5.28: Nonlinear VCO Control Input and Phase Detector Outputs Without Kalman
Filter, Charge-Pump Channel Width > W

Figure 5.29: Nonlinear VCO Control Input and System Model With Kalman Filter (Q,R),
Charge-Pump Channel Width = W

34

Figure 5.30 shows the VCO spectrogram of the system by these parameters. Due to the

high phase noise seen in the spectrogram, Kalman parameters and Charge-Pump are

tuned which resulted as given in Figure 5.31 and Figure 5.32.

Figure 5.30: Nonlinear VCO Output Spectrogram With Kalman Filter (Q ′,R′), Charge-
Pump Channel Width = W ′

Figure 5.31: Nonlinear VCO Control Input and System Model With Tuned Kalman Filter
(Q′,R′), Tuned Charge-Pump (Channel Width = W ′)

35

Figure 5.32: Nonlinear VCO Output Spectrogram With Tuned Kalman Filter (Q ′,R′),
Tuned Charge-Pump (Channel Width = W ′)

Figure 5.33 shows the comparison of the frequency sweep of nonlinear VCO with and

without the controller, from left to right respectively.

Figure 5.33: Spectrogram Comparison

36

CHAPTER 6

RESULTS AND CONCLUSIONS

Simulations presented in Chapter 5 prove the method for the linearization of frequency

sweep that is proposed in this thesis. Both software based simulations and FPGA-In-the-

Loop Hardware co-simulations give satisfactory results for linearization of a VCO model

even with high phase noise. Simulation results also show that this method has a better

phase noise performance due to the agile behaviour of Loop Filter by the use of Kalman

Filtering.

It is shown that, Charge-Pump implementation introduces low pass filter effect. But as it

is indicated in Section 3.3, this fixed bandwidth filtering in not adequate for most cases.

Loop Filter implementation of this thesis proved that, Kalman Filter is appropriate for PLL

applications, regardless the bandwidth requirements.

This thesis shows that, the described method of embedded PLL implementation is ap-

plicable for practical usage. Benefiting the advantages of model based design, several

modularly implemented sub-blocks of the system that are designed with some new ideas,

are also applicable for different applications.

37

CHAPTER 7

DISCUSSION AND FUTURE WORKS

Since PLL structure is a well known and a conventional method for frequency sweep

linearization, it is not obligatory to make a discussion on the main structure of the system,

but it is possible to discuss on improved designed blocks which are original to this work.

Due to the digital implementation of the entire system, reference signal generation by a

DDS may bring some defects. In this thesis, it is proposed to eliminate these deficiencies

by the use of Kalman Filter. Since the implemented filter requires a well described con-

trol input related with the system model, the performance of a system designed in this

manner depends on the reliability of the model. It is also indicated that the phase detec-

tion algorithm is an improved form of conventional phase-frequency detector behaviour.

Since this improvement arise in lower frequency reference signal applications, for this

work, the contribution of this design is limited. But relying on the experimental results,

this thesis suggests this implementation for the cases with higher frequency divider ratio

for a better performance.

This thesis was concentrated on developing an embedded implementation of a method.

As a future work, digital implementation of a conventional passive Loop Filter, that is

deeply analysed in Appendix C, will be compared with the Kalman Filter. Also the Kalman

Filter algorithm that is implemented in this work is to be improved in the future works by

including time varying parameters of the model. As a side output, this thesis will serve

as a base for further research on phase-frequency detection algorithms.

38

REFERENCES

[1] E. Hegazi and A.A. Abidi. Varactor characteristics, oscillator tuning curves, and
am-fm conversion. Solid-State Circuits, IEEE Journal of, 38(6):1033 – 1039, june
2003.

[2] A. Buonomo. Nonlinear analysis of voltage-controlled oscillators: A systematic ap-
proach. Circuits and Systems I: Regular Papers, IEEE Transactions on, 55(6):1659
–1670, july 2008.

[3] J. Fuchs, K.D. Ward, M.P. Tulin, and R.A. York. Simple techniques to correct for vco
nonlinearities in short range fmcw radars. In Microwave Symposium Digest, 1996.,
IEEE MTT-S International, volume 2, pages 1175 –1178 vol.2, jun 1996.

[4] M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek. Frequency-
sweep linearization for fmcw sensors with high measurement rate. In Microwave
Symposium Digest, 2005 IEEE MTT-S International, page 4 pp., june 2005.

[5] A. Stelzer, S. Scheiblhofer, S. Schuster, and M. Brandl. Multi reader/multi-tag saw
rfid systems combining tagging, sensing, and ranging for industrial applications.
In Frequency Control Symposium, 2008 IEEE International, pages 263 –272, may
2008.

[6] M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek. Phase-error
measurement and compensation in pll frequency synthesizers for fmcw sensors
mdash;i: Context and application. Circuits and Systems I: Regular Papers, IEEE
Transactions on, 54(5):1006 –1017, may 2007.

[7] M.A. Borucek. Design and implementation of low phase noise phase lock loop
based local oscillator. Master’s thesis, Middle East Technical University, 2009.

[8] F. Jonsson. Design and calibration of integrated phase lock loop frequency synthe-
sizers. Master’s thesis, KTH - Royal Institute of Technology, 2008.

[9] L. Ping. Improving tracking performans of phase lock loop in high dynamic applica-
tions. Master’s thesis, The University of Calgary, 2004.

[10] Zahir M.H. Saleh, R.A. and A.A. Mahmoud. Digital Phase Lock Loops - Architec-
tures and Applications. Springer, 2006.

[11] T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto. A 77 ghz 90
nm cmos transceiver for fmcw radar applications. Solid-State Circuits, IEEE Journal
of, 45(4):928 –937, april 2010.

[12] G. Welch and G. Bishop. An Introduction to Kalman Filtering, chapter Course 8.
SIGGRAPH 2001. University of North Carolina at Chapel Hill, Los Angeles, CA,
August 12-17 2001.

[13] D. Simon. Optimal State Estimation: Kalman, H-Infinity, and Non Linear Ap-
proaches. John Wiley and Sons, 2006.

[14] H. Ruser and V. Magori. Sweep linearization of a microwave fmcw doppler sensor
by an ultrasonic reference. In Frequency Control Symposium, 1997., Proceedings
of the 1997 IEEE International, pages 201 –206, may 1997.

39

[15] T. Musch, I. Rolfes, and B. Schiek. Fractional divider concepts with phase-lock-
control for the generation of precise linear frequency ramps. In Microwave Confer-
ence, 1998. 28th European, volume 1, pages 451 –456, oct. 1998.

[16] T. Musch and B. Schiek. A fractional ramp generator with improved linearity and
phase-noise performance for the use in heterodyne measurement systems. Ad-
vances in Radio Science, 3:75 –81, 2005.

[17] T. Musch, B. Schulte, and B. Schiek. A fast heterodyne network analyzer based on
precision linear frequency ramps. In Microwave Conference, 2001. 31st European,
pages 1 –4, sept. 2001.

[18] A. Stelzer, E. Kolmhofer, and S. Scheiblhofer. Fast 77 ghz chirps with direct digital
synthesis and phase locked loop. In Microwave Conference Proceedings, 2005.
APMC 2005. Asia-Pacific Conference Proceedings, volume 3, page 4 pp., dec.
2005.

[19] Yun-Taek Im, Jee-Hoon Lee, and Seong-Ook Park. A dds and pll-based x-band
fmcw radar system. In Intelligent Radio for Future Personal Terminals (IMWS-
IRFPT), 2011 IEEE MTT-S International Microwave Workshop Series on, pages
1 –2, aug. 2011.

[20] P.V. Brennan, Y. Huang, M. Ash, and K. Chetty. Determination of sweep linearity
requirements in fmcw radar systems based on simple voltage-controlled oscillator
sources. Aerospace and Electronic Systems, IEEE Transactions on, 47(3):1594
–1604, july 2011.

[21] C.J. Kikkert. Two novel phase-frequency detectors. In Circuits and Systems, 2006.
APCCAS 2006. IEEE Asia Pacific Conference on, pages 712 –715, dec. 2006.

[22] M. Kozak and E.G. Friedman. Design and simulation of fractional-n pll frequency
synthesizers. In Circuits and Systems, 2004. ISCAS ’04. Proceedings of the 2004
International Symposium on, volume 4, pages IV – 780–3 Vol.4, may 2004.

[23] P.J. Burke. Ultra-linear chirp generation via vco tuning predistortion. In Microwave
Symposium Digest, 1994., IEEE MTT-S International, pages 957 –960 vol.2, may
1994.

[24] Guangming Yu, Yu Wang, Huazhong Yang, and Hui Wang. A fast-locking all-digital
phase-locked loop with a novel counter-based mode switching controller. In TEN-
CON 2009 - 2009 IEEE Region 10 Conference, pages 1 –5, jan. 2009.

[25] K. De Brabandere, T. Loix, K. Engelen, B. Bolsens, J. Van den Keybus, J. Driesen,
and R. Belmans. Design and operation of a phase-locked loop with kalman
estimator-based filter for single-phase applications. In IEEE Industrial Electronics,
IECON 2006 - 32nd Annual Conference on, pages 525 –530, nov. 2006.

[26] J.I. Statman and W.J. Hurd. An estimator-predictor approach to pll loop filter design.
Communications, IEEE Transactions on, 38(10):1667 –1669, oct 1990.

[27] G.A. Hirchoren and D.S. Arantes. Optimal phase-locked loop design with kalman
predictors for synchronous networks. In Acoustics, Speech, and Signal Processing,
1997. ICASSP-97., 1997 IEEE International Conference on, volume 3, pages 1917
–1920 vol.3, apr 1997.

[28] M.H. Izadi and B. Leung. Pll-based frequency discriminator using the loop filter as
an estimator. Circuits and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on, 49(11):721 – 727, nov 2002.

40

[29] Wei-Tsen Lin and Dah-Chung Chang. The extended kalman filtering algorithm for
carrier synchronization and the implementation. In Circuits and Systems, 2006.
ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, page 4 pp.,
may 2006.

[30] Weibin Li, Shanjian Liu, Chunhui Zhou, Shidong Zhou, and Tingchang Wang. High
dynamic carrier tracking using kalman filter aided phase-lock loop. In Wireless
Communications, Networking and Mobile Computing, 2007. WiCom 2007. Inter-
national Conference on, pages 673 –676, sept. 2007.

[31] A. Gothandaraman and S.K. Islam. An all-digital frequency locked loop (adfll) with
a pulse output direct digital frequency synthesizer (ddfs) and an adaptive phase
estimator. In Radio Frequency Integrated Circuits (RFIC) Symposium, 2003 IEEE,
pages 303 – 306, june 2003.

[32] M.Z. Straayer, A.V. Messier, and W.G. Lyons. Ultra-linear superwideband chirp gen-
erator using digital compensation. In Microwave Symposium Digest, 2006. IEEE
MTT-S International, pages 403 –406, june 2006.

[33] A. Meta, P. Hoogeboom, and L.P. Ligthart. Range non-linearities correction in fmcw
sar. In Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE
International Conference on, pages 403 –406, 31 2006-aug. 4 2006.

[34] S.O. Piper. Fmcw linearizer bandwidth requirements. In Radar Conference, 1991.,
Proceedings of the 1991 IEEE National, pages 142 –146, mar 1991.

[35] S. Scheiblhofer, S. Schuster, and A. Stelzer. Signal model and linearization for non-
linear chirps in fmcw radar saw-id tag request. Microwave Theory and Techniques,
IEEE Transactions on, 54(4):1477 – 1483, june 2006.

[36] S. Scheiblhofer, S. Schuster, and A. Stelzer. High-speed fmcw radar frequency
synthesizer with dds based linearization. Microwave and Wireless Components
Letters, IEEE, 17(5):397 –399, may 2007.

[37] Ting Wu, P.K. Hanumolu, K. Mayaram, and Un-Ku Moon. Method for a constant loop
bandwidth in lc-vco pll frequency synthesizers. Solid-State Circuits, IEEE Journal
of, 44(2):427 –435, feb. 2009.

[38] Hong Zhang, Guican Chen, and Ning Li. A 2.4-ghz linear-tuning cmos lc voltage-
controlled oscillator. In Design Automation Conference, 2005. Proceedings of the
ASP-DAC 2005. Asia and South Pacific, volume 2, pages 799 – 802 Vol. 2, jan.
2005.

[39] T. Musch. A high precision 24-ghz fmcw radar based on a fractional-n ramp-pll.
Instrumentation and Measurement, IEEE Transactions on, 52(2):324 – 327, april
2003.

[40] T. Musch, I. Rolfes, and B. Schiek. A highly linear frequency ramp generator based
on a fractional divider phase-locked-loop. Instrumentation and Measurement, IEEE
Transactions on, 48(2):634 –637, april 1999.

[41] M. Christmann, M. Vossiek, M. Smith, and G. Rodet. Saw based delay locked
loop concept for vco linearization in fmcw radar sensors. In Microwave Conference,
2003. 33rd European, volume 3, pages 1135 – 1138 Vol.3, oct. 2003.

41

[42] M. Pichler, A. Stelzer, P. Gulden, and M. Vossiek. Influence of systematic
frequency-sweep non-linearity on object distance estimation in fmcw/fscw radar
systems. In Microwave Conference, 2003. 33rd European, volume 3, pages 1203 –
1206 Vol.3, oct. 2003.

42

APPENDIX A

VHDL Codes

A.1 VHDL Code for Reference Counter

--
-- Company: YILDIRIM Elektronik R&D Department
-- Engineer: Burak Dursun
--
-- Create Date: 20:59:09 02/06/2012
-- Design Name: Linear Sweep Controller
-- Module Name: ref_counter - Reference Counter
-- Project Name: MSc Thesis Study - VCO Sweep Linearization for FMCW Radar
-- Target Devices: Spartan-3E starter kit & Spartan-6 co-processing kit
-- Tool versions: ISE Design Suite 13.3 System Edition & MATLAB R2011b
-- Description: Preliminary Work for Surveillance Radar Project
--
-- Dependencies: RF-DSP\Research\Implementation\desktop\x61
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments: Revision after desktop\x60 and laptop\xCA
--
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

use ieee.std_logic_unsigned.all;

entity ref_counter is
Port (clk : in STD_LOGIC;

ce : in STD_LOGIC := ’1’;
ref_count : out STD_LOGIC_VECTOR (26 downto 0));

end ref_counter;

architecture Behavioral of ref_counter is

type state is (up,down);
signal direction: state;
signal count: std_logic_vector (26 downto 0) := "000101010001111001011001000";

begin

process (clk)
begin

if (clk’event and clk=’1’) then
case direction is

when up =>
if (count="000101011110000110101001000") then

count <= count - 1;

43

direction <= down;
else

count <= count + 1;
end if;

when down =>
if (count="000101010001111001011001000") then

count <= count + 1;
direction <= up;

else
count <= count - 1;

end if;
when others =>

count <= "000101010001111001011001000";
direction <= up;

end case;
end if;

end process;

ref_count <= count;

end Behavioral;

44

A.2 VHDL Code for Phase Frequency Detector

--
-- Company: YILDIRIM Elektronik R&D Department
-- Engineer: Burak Dursun
--
-- Create Date: 19:44:27 02/06/2012
-- Design Name: Linear Sweep Controller
-- Module Name: pdf - Phase Frequency Detector
-- Project Name: MSc Thesis Study - VCO Sweep Linearization for FMCW Radar
-- Target Devices: Spartan-3E starter kit & Spartan-6 co-processing kit
-- Tool versions: ISE Design Suite 13.3 System Edition & MATLAB R2011b
-- Description: Preliminary Work for Surveillance Radar Project
--
-- Dependencies: RF-DSP\Research\Implementation\desktop\x61
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments: Revision after desktop\x60 and laptop\xCA
--
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

use ieee.std_logic_unsigned.all;

entity pdf is
Port (clk : in STD_LOGIC;

ce : in STD_LOGIC := ’1’;
ref : in STD_LOGIC;
vco : in STD_LOGIC;
up : out STD_LOGIC;
down : out STD_LOGIC);

end pdf;

architecture Behavioral of pdf is

type state is (idle,add,sub);
signal direction: state := idle;
signal ref_ps: std_logic := ’0’;
signal vco_ps: std_logic := ’0’;

begin

process (clk)
begin

if (clk’event and clk=’1’) then
if (ref/=ref_ps and vco/=vco_ps) then

if (ref=’1’ and vco=’1’) then
direction <= idle;

elsif (ref=’1’ and vco=’0’) then
case direction is

when idle =>
direction <= add;

45

when add =>
direction <= add;

when sub =>
direction <= idle;

when others =>
direction <= idle;

end case;
elsif (ref=’0’ and vco=’1’) then

case direction is
when idle =>

direction <= sub;
when add =>

direction <= idle;
when sub =>

direction <= sub;
when others =>

direction <= idle;
end case;

end if;
ref_ps <= ref;
vco_ps <= vco;

elsif (ref/=ref_ps) then
if (ref=’1’) then

if (vco=’0’) then
direction <= add;

else
case direction is

when idle =>
direction <= add;

when add =>
direction <= add;

when sub =>
direction <= idle;

when others =>
direction <= idle;

end case;
end if;

end if;
ref_ps <= ref;

elsif (vco/=vco_ps) then
if (vco=’1’) then

if (ref=’0’) then
direction <= sub;

else
case direction is

when idle =>
direction <= sub;

when add =>
direction <= idle;

when sub =>
direction <= sub;

when others =>
direction <= idle;

end case;
end if;

end if;
vco_ps <= vco;

end if;
end if;

end process;

process (direction)
begin

case direction is

46

when add =>
up <= ’1’;
down <= ’0’;

when sub =>
up <= ’0’;
down <= ’1’;

when idle =>
up <= ’0’;
down <= ’0’;

when others =>
up <= ’0’;
down <= ’0’;

end case;
end process;

end Behavioral;

47

A.3 VHDL Code for Phase Counter

--
-- Company: YILDIRIM Elektronik R&D Department
-- Engineer: Burak Dursun
--
-- Create Date: 20:32:32 02/06/2012
-- Design Name: Linear Sweep Controller
-- Module Name: p_counter - Phase Counter
-- Project Name: MSc Thesis Study - VCO Sweep Linearization for FMCW Radar
-- Target Devices: Spartan-3E starter kit & Spartan-6 co-processing kit
-- Tool versions: ISE Design Suite 13.3 System Edition & MATLAB R2011b
-- Description: Preliminary Work for Surveillance Radar Project
--
-- Dependencies: RF-DSP\Research\Implementation\desktop\x61
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments: Revision after desktop\x60 and laptop\xCA
--
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

use ieee.std_logic_unsigned.all;

entity p_counter is
Port (clk : in STD_LOGIC;

ce : in STD_LOGIC := ’1’;
up : in STD_LOGIC;
down : in STD_LOGIC;
phase : out STD_LOGIC_VECTOR (15 downto 0));

end p_counter;

architecture Behavioral of p_counter is

signal counter: std_logic_vector (15 downto 0) := (others => ’0’);

begin

process (clk)
begin

if (clk’event and clk=’1’) then
if (up=’1’) then

if (counter="1111111111111111") then
counter <= counter;

else
counter <= counter + 1;

end if;
elsif (down=’1’) then

if (counter="0000000000000000") then
counter <= counter;

else
counter <= counter - 1;

48

end if;
else

counter <= counter;
end if;

end if;
end process;

phase <= counter;

end Behavioral;

49

A.4 VHDL Code for Control Input Counter

--
-- Company: YILDIRIM Elektronik R&D Department
-- Engineer: Burak Dursun
--
-- Create Date: 21:31:05 02/06/2012
-- Design Name: Linear Sweep Controller
-- Module Name: u_counter - Control Input Counter
-- Project Name: MSc Thesis Study - VCO Sweep Linearization for FMCW Radar
-- Target Devices: Spartan-3E starter kit & Spartan-6 co-processing kit
-- Tool versions: ISE Design Suite 13.3 System Edition & MATLAB R2011b
-- Description: Preliminary Work for Surveillance Radar Project
--
-- Dependencies: RF-DSP\Research\Implementation\desktop\x61
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments: Revision after desktop\x60 and laptop\xCA
--
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

use ieee.std_logic_unsigned.all;

entity u_counter is
Port (clk : in STD_LOGIC;

ce : in STD_LOGIC := ’1’;
u_count : out STD_LOGIC_VECTOR (18 downto 0);
sign : out STD_LOGIC);

end u_counter;

architecture Behavioral of u_counter is

type state is (up,down);
signal direction: state := down;
signal count: std_logic_vector (18 downto 0) := (others=>’0’);

begin

process (clk)
begin

if (clk’event and clk=’1’) then
case direction is

when up =>
if (count="1100001101001111111") then

count <= count;
sign <= ’1’;
direction <= down;

else
count <= count + 1;
sign <= ’0’;

end if;

50

when down =>
if (count="0000000000000000000") then

count <= count;
sign <= ’0’;
direction <= up;

else
count <= count - 1;
sign <= ’1’;

end if;
when others =>

count <= "0000000000000000000";
sign <= ’0’;

end case;
end if;

end process;

u_count <= count;

end Behavioral;

51

APPENDIX B

MATLAB Codes

B.1 MATLAB Code for Reference Counter

function ref_counter_config(this_block)

% Revision History:
%
% 06-Feb-2012 (22:43 hours):
% Original code was machine generated by Xilinx’s System Generator after parsing
% D:\School\tez\RF-DSP\Research\Implementation\desktop\x61\ref_counter.vhd

this_block.setTopLevelLanguage(’VHDL’);

this_block.setEntityName(’ref_counter’);

% System Generator has to assume that your entity has a combinational feed through;
% if it doesn’t, then comment out the following line:
this_block.tagAsCombinational;

this_block.addSimulinkOutport(’ref_count’);

ref_count_port = this_block.port(’ref_count’);
ref_count_port.setType(’UFix_27_0’);

% Since the block has no inputs, assuming output runs at system rate:
outputRate = 1;
this_block.addClkCEPair(’clk’,’ce’,outputRate);
% (!) You may wish to modify this behavior.
% It is possible to create a black box from which the
% output rate is set from the block parameterization GUI;
% consult the System Generator documentation for details.
for i = 1:this_block.numSimulinkOutports
this_block.outport(i).setRate(outputRate);

end
% (!) Set the inout port rate to be the same as the first input
% rate. Change the following code if this is untrue.
uniqueInputRates = unique(this_block.getInputRates);

% Add addtional source files as needed.
% |-------------
% | Add files in the order in which they should be compiled.
% | If two files "a.vhd" and "b.vhd" contain the entities
% | entity_a and entity_b, and entity_a contains a
% | component of type entity_b, the correct sequence of
% | addFile() calls would be:
% | this_block.addFile(’b.vhd’);
% | this_block.addFile(’a.vhd’);
% |-------------

% this_block.addFile(’’);
% this_block.addFile(’’);
this_block.addFile(’ref_counter.vhd’);

return;

52

B.2 MATLAB Code for Phase Frequency Detector

function pdf_config(this_block)

% Revision History:
%
% 06-Feb-2012 (22:45 hours):
% Original code was machine generated by Xilinx’s System Generator after parsing
% D:\School\tez\RF-DSP\Research\Implementation\desktop\x61\pdf.vhd
%
%

this_block.setTopLevelLanguage(’VHDL’);

this_block.setEntityName(’pdf’);

% System Generator has to assume that your entity has a combinational feed through;
% if it doesn’t, then comment out the following line:
this_block.tagAsCombinational;

this_block.addSimulinkInport(’ref’);
this_block.addSimulinkInport(’vco’);

this_block.addSimulinkOutport(’up’);
this_block.addSimulinkOutport(’down’);

up_port = this_block.port(’up’);
up_port.setType(’UFix_1_0’);
up_port.useHDLVector(false);
down_port = this_block.port(’down’);
down_port.setType(’UFix_1_0’);
down_port.useHDLVector(false);

% -----------------------------
if (this_block.inputTypesKnown)
% do input type checking, dynamic output type and generic setup in this code block.

if (this_block.port(’ref’).width ~= 1);
this_block.setError(’Input data type for port "ref" must have width=1.’);

end

this_block.port(’ref’).useHDLVector(false);

if (this_block.port(’vco’).width ~= 1);
this_block.setError(’Input data type for port "vco" must have width=1.’);

end

this_block.port(’vco’).useHDLVector(false);

end % if(inputTypesKnown)
% -----------------------------

% -----------------------------
if (this_block.inputRatesKnown)
setup_as_single_rate(this_block,’clk’,’ce’)

end % if(inputRatesKnown)
% -----------------------------

% (!) Set the inout port rate to be the same as the first input
% rate. Change the following code if this is untrue.
uniqueInputRates = unique(this_block.getInputRates);

53

% Add addtional source files as needed.
% |-------------
% | Add files in the order in which they should be compiled.
% | If two files "a.vhd" and "b.vhd" contain the entities
% | entity_a and entity_b, and entity_a contains a
% | component of type entity_b, the correct sequence of
% | addFile() calls would be:
% | this_block.addFile(’b.vhd’);
% | this_block.addFile(’a.vhd’);
% |-------------

% this_block.addFile(’’);
% this_block.addFile(’’);
this_block.addFile(’pdf.vhd’);

return;

% --

function setup_as_single_rate(block,clkname,cename)
inputRates = block.inputRates;
uniqueInputRates = unique(inputRates);
if (length(uniqueInputRates)==1 & uniqueInputRates(1)==Inf)
block.addError(’The inputs to this block cannot all be constant.’);
return;

end
if (uniqueInputRates(end) == Inf)
hasConstantInput = true;
uniqueInputRates = uniqueInputRates(1:end-1);

end
if (length(uniqueInputRates) ~= 1)
block.addError(’The inputs to this block must run at a single rate.’);
return;

end
theInputRate = uniqueInputRates(1);
for i = 1:block.numSimulinkOutports
block.outport(i).setRate(theInputRate);

end
block.addClkCEPair(clkname,cename,theInputRate);
return;

% --

54

B.3 MATLAB Code for Phase Counter

function p_counter_config(this_block)

% Revision History:
%
% 06-Feb-2012 (22:45 hours):
% Original code was machine generated by Xilinx’s System Generator after parsing
% D:\School\tez\RF-DSP\Research\Implementation\desktop\x61\p_counter.vhd
%
%

this_block.setTopLevelLanguage(’VHDL’);

this_block.setEntityName(’p_counter’);

% System Generator has to assume that your entity has a combinational feed through;
% if it doesn’t, then comment out the following line:
this_block.tagAsCombinational;

this_block.addSimulinkInport(’up’);
this_block.addSimulinkInport(’down’);

this_block.addSimulinkOutport(’phase’);

phase_port = this_block.port(’phase’);
phase_port.setType(’UFix_16_0’);

% -----------------------------
if (this_block.inputTypesKnown)
% do input type checking, dynamic output type and generic setup in this code block.

if (this_block.port(’up’).width ~= 1);
this_block.setError(’Input data type for port "up" must have width=1.’);

end

this_block.port(’up’).useHDLVector(false);

if (this_block.port(’down’).width ~= 1);
this_block.setError(’Input data type for port "down" must have width=1.’);

end

this_block.port(’down’).useHDLVector(false);

end % if(inputTypesKnown)
% -----------------------------

% -----------------------------
if (this_block.inputRatesKnown)
setup_as_single_rate(this_block,’clk’,’ce’)

end % if(inputRatesKnown)
% -----------------------------

% (!) Set the inout port rate to be the same as the first input
% rate. Change the following code if this is untrue.
uniqueInputRates = unique(this_block.getInputRates);

% Add addtional source files as needed.
% |-------------
% | Add files in the order in which they should be compiled.
% | If two files "a.vhd" and "b.vhd" contain the entities
% | entity_a and entity_b, and entity_a contains a

55

% | component of type entity_b, the correct sequence of
% | addFile() calls would be:
% | this_block.addFile(’b.vhd’);
% | this_block.addFile(’a.vhd’);
% |-------------

% this_block.addFile(’’);
% this_block.addFile(’’);
this_block.addFile(’p_counter.vhd’);

return;

% --

function setup_as_single_rate(block,clkname,cename)
inputRates = block.inputRates;
uniqueInputRates = unique(inputRates);
if (length(uniqueInputRates)==1 & uniqueInputRates(1)==Inf)
block.addError(’The inputs to this block cannot all be constant.’);
return;

end
if (uniqueInputRates(end) == Inf)
hasConstantInput = true;
uniqueInputRates = uniqueInputRates(1:end-1);

end
if (length(uniqueInputRates) ~= 1)
block.addError(’The inputs to this block must run at a single rate.’);
return;

end
theInputRate = uniqueInputRates(1);
for i = 1:block.numSimulinkOutports
block.outport(i).setRate(theInputRate);

end
block.addClkCEPair(clkname,cename,theInputRate);
return;

% --

56

B.4 MATLAB Code for Control Input Counter

function u_counter_config(this_block)

% Revision History:
%
% 06-Feb-2012 (22:47 hours):
% Original code was machine generated by Xilinx’s System Generator after parsing
% D:\School\tez\RF-DSP\Research\Implementation\desktop\x61\u_counter.vhd
%

this_block.setTopLevelLanguage(’VHDL’);

this_block.setEntityName(’u_counter’);

% System Generator has to assume that your entity has a combinational feed through;
% if it doesn’t, then comment out the following line:
this_block.tagAsCombinational;

this_block.addSimulinkOutport(’u_count’);
this_block.addSimulinkOutport(’sign’);

u_count_port = this_block.port(’u_count’);
u_count_port.setType(’UFix_19_0’);
sign_port = this_block.port(’sign’);
sign_port.setType(’Bool’);
sign_port.useHDLVector(false);

% Since the block has no inputs, assuming output runs at system rate:
outputRate = 1;
this_block.addClkCEPair(’clk’,’ce’,outputRate);
% (!) You may wish to modify this behavior.
% It is possible to create a black box from which the
% output rate is set from the block parameterization GUI;
% consult the System Generator documentation for details.
for i = 1:this_block.numSimulinkOutports
this_block.outport(i).setRate(outputRate);

end
% (!) Set the inout port rate to be the same as the first input
% rate. Change the following code if this is untrue.
uniqueInputRates = unique(this_block.getInputRates);

% Add addtional source files as needed.
% |-------------
% | Add files in the order in which they should be compiled.
% | If two files "a.vhd" and "b.vhd" contain the entities
% | entity_a and entity_b, and entity_a contains a
% | component of type entity_b, the correct sequence of
% | addFile() calls would be:
% | this_block.addFile(’b.vhd’);
% | this_block.addFile(’a.vhd’);
% |-------------
% this_block.addFile(’’);
% this_block.addFile(’’);
this_block.addFile(’u_counter.vhd’);

return;

57

APPENDIX C

Passive Loop Filter Transfer Function

C.1 Topology-I

Figure C.1: Original Circuit

Due to equations in (C.1), we can represent the original circuit as a thevenin equivalent

circuit.

Figure C.2: Thevenin Equivalent of the Original Circuit

Ci = C1 and C + Co = C2 (C.1)

Vth =
XC1 Vi

XC1 + RS
Zth =

XC1 RS

XC1 + RS
(C.2)

58

Vo =
RLXC2Vth

RLXC2 + RLZth + RLR + XC2Zth + XC2R
(C.3)

By substituting (C.1) and (C.2) into (C.3), it is possible to obtain (C.4)

Vo =
RLXC2

XC1 Vi

XC1+ RS

RLXC2 + RL
XC1 RS

XC1+ RS
+ RLR + XC2

XC1 RS

XC1+ RS
+ XC2R

(C.4)

by simplification (C.4) becomes (C.5)

Vo =
RLXC1 XC2Vi

RLXC2(XC1+ RS)+ RLXC1 RS+RLR(XC1+ RS)+XC2 XC1 RS+XC2 R(XC1+ RS)
(C.5)

After dividing both sides by Vi, it is possible to obtain the transfer function in the form of

(C.6).

Vo

Vi
=

RLXC1 XC2

RLXC2 XC1+RLXC2 RS+ RLXC1 RS+RLRXC1+RLRRS + XC2 XC1 RS+XC2 RXC1+ XC2 RRS

(C.6)

XCi =
1

jωCi
→ L{XCi} = 1

sCi
, i = 1, 2, 3 . . . (C.7)

Substitute the corresponding (C.7) equivalents into (C.6) and then take the Laplace

Transform of (C.6) to obtain (C.8).

Vo

Vi
=

RL

s2C1C2

RL

s2C1C2
+

RLRS

sC2
+

RLRS

sC1
+ RLR

sC1
+ RLRRS +

RS

s2C1C2
+ R

s2C1C2
+

RRS

sC2

(C.8)

By simplification it is possible to obtain (C.9) from (C.8).

Vo

Vi
=

RL

RL + sC1RLRS + sC2RLRS + sC2RLR + s2C1C2RLRRS + RS + R + sC1RRS
(C.9)

Finally, it is possible to rewrite (C.9) as (C.10) by grouping the terms in addition due to

the order of sn type coefficients.

59

Vo

Vi
=

RL

s2(C1C2RLRRS) + s(C1RRS +C2RLR +C2RLRS +C1RLRS) + (RS + R + RL)
(C.10)

Equ(C.10) = Equ(C.10) · 1/RL

1/RL
(C.11)

Moving from (C.11) it is possible to rewrite (C.10) as (C.12).

Vo

Vi
=

1

s2(C1C2RRS) + s(C1RRS

RL
+C2R +C2RS + C1RS) + (RS

RL
+ R

RL
+ 1)

(C.12)

We assume that;

0 < RS 	 1 and RL
 1 (C.13)

Thus, the final state of the transfer function is actually an approximation of (C.13), in

accordance with the aforementioned magnitudes of RS and RL. The final version of the

transfer function is shown as (C.14).

Vo

Vi
=

1
sRC2 + 1

(C.14)

60

C.2 Topology-II

Figure C.3: Original Circuit

Figure C.4: Thevenin Equivalent of the Original Circuit

Zth =
RS R2XC1 + RS XC1XC2

RS R2 + RS XC2 + RS XC1 + R2XC1 + XC1XC2
(C.15)

Vth = Vin
(R2XC1 + XC1XC2)

RS R2 + RS XC2 + RS XC1 + R2XC1 + XC1XC2
(C.16)

Vout =
RLXC3Vth

XC3RL + RLZth + RLR3 + XC3Zth + XC3R3
(C.17)

61

Substitute (D.1) and (D.2) into (D.11) and obtain (D.4).

Vout = Vin

RLR2XC1XC3+RLXC1XC2XC3
RS R2+RS XC2+RS XC1+R2XC1+XC1XC2

XC3RL+
RLRS R2XC1+RLRS XC1XC2

RS R2+RS XC2+RS XC1+R2XC1+XC1XC2
+ RLR3+

RS R2XC1XC3+RS XC1XC2XC3
RS R2+RS XC2+RS XC1+R2XC1+XC1XC2

+XC3R3

(C.18)

Divide both sides of (D.4) by Vin and then simplify the right side to obtain (D.13).

Vout

Vin
=

RLR2XC1XC3 + RLXC1XC2XC3

RS RLR2XC3 + RS RLXC2XC3 + RS RLXC1XC3 + R2RLXC1XC3 + RLXC1XC2XC3 + RS RLR2XC1 + RS RLXC1XC2

+ RS RLR2R3 + RS RLR3XC2 + RS RLR3XC1 + RLR2R3XC1 + RLR3XC1XC2 + RS R2XC1XC3 + RS XC1XC2XC3

+ RS R2R3XC3 + RS R3XC2XC3 + RS R3XC1XC3 + R2R3XC1XC2 + R3XC1XC2XC3

(C.19)

XCi =
1

jωCi
→ L{XCi} = 1

sCi
, i = 1, 2, 3 . . . (C.20)

Substitute the corresponding (C.20) equivalents into (D.13) and then take the Laplace

Transform of (D.13) to obtain (D.14).

Vout

Vin
=

RLR2
s2C1C2

+ RL

s3C1C2C3

RS RLR2
sC3

+
RS RL

s2C2C3
+

RS RL
s2C1C3

+
R2RL

s2C1C3
+

RL
s3C1C2C3

+
RS RLR2

sC1
+

RS RL
s2C1C2

+ RS RLR2R3 +
RS RLR3

sC1

+
RLR2R3

sC1
+

RLR3
s2C1C2

+
RS R2

s2C1C3
+

RS
s3C1C2C3

+
RS R2R3

sC3
+

RS R3
s2C2C3

+
RS R3

s2C1C3
+

R2R3
s2C1C3

+
R3

s3C1C2C3

(C.21)

Simplify the right side of (D.14) to obtain (C.22).

Vout

Vin
=

sRLR2C3 + RL

s2RS RLR2C1C2 + sRS RLC1 + sRS RLC2 + sRLR2C2 + RL + s2RS RLR2C2C3 + sRS RLC3 + s3RS RLR2R3C1C2C3

+s2RS RLR3C2C3 + s2RLR2R3C2C3 + sRLR3C3 + sRS R2C2 + RS + s2RS R2R3C1C2 + sRS R3C1 + sRS R3C2

+sR2R3C2 + R3

(C.22)

Equ(C.22) = Equ(C.22)
1/RL

1/RL
(C.23)

Moving from (C.23) it is possible to rewrite (C.22) as (C.24).

Vout

Vin
=

sR2C3 + 1

s2 RS R2C1C2 + sRS C1 + sRS C2 + sR2C2 + 1 + s2 RS R2C2C3 + sRS C3 + s3RS R2R3C1C2C3

+ s2 RS R3C2C3 + s2 R2R3C2C3 + sR3C3 +
sRS R2C2

RL
+

RS
RL
+

s2 RS R2R3C1C2
RL

+
sRS R3C1

RL
+

sRS R3C2
RL

+
sR2R3C2

RL
+

R3
RL

(C.24)

62

Finally, it is possible to rewrite (C.24) as (C.25) by grouping the terms in addition due to

the order of sn type coefficients.

Vout

Vin
=

s (R2C3) + 1

s3 (RS R2R3C1C2C3) + s2
(
RS R2C1C2 + RS R2C2C3 + RS R3C2C3 + R2R3C2C3 +

RS R2R3C1C2
RL

)
+

s
(
RS C1 + RS C2 + R2C2 + RS C3 + R3C3 +

RS R2C2
RL

+
RS R3C1

RL
+

RS R3C2
RL

+
R2R3C2

RL

)
+

(
RS
RL
+

R3
RL
+ 1

)
(C.25)

We assume that;

0 < RS 	 1 and RL
 1 (C.26)

Thus, the final state of the transfer function is actually an approximation of (C.25), in

accordance with the aforementioned magnitudes of RS and RL. The final version of the

transfer function is shown as (C.27).

Vout

Vin
=

s (R2C3) + 1
s2 (R2R3C2C3) + s (R2C2 + R3C3) + 1

(C.27)

63

APPENDIX D

PLL Transfer Function

Øout
Kvco

s
K PD G (s)LPFØin

PD

Figure D.1: Linear Model of a PLL

V

t ΔØΔØ

PHASE
DETECTOR

out

Vout

Figure D.2: Characteristic of an Ideal Phase Detector

Vout = KPDΔφ (D.1)

The open-loop transfer function of the PLL is therefore equal to:

Ho(s) = KPDGLPF(s)
KVCO

s
(D.2)

yielding the following close-loop transfer function:

H(s) =
Φout(s)
Φin(s)

(D.3)

=
KPDKVCOGLPF(s)

s + KPDKVCOGLPF(s)
(D.4)

In its simplest form, a low-pass filter is implemented as in Figure (D.3), with

64

GLPF(s) =
1

1 +
s
ωLPF

(D.5)

where ωLPF = 1/(RC). Equation (D.4) then reduces to

H(s) =
KPDKVCO

s2

ωLPF
+ s + KPDKVCO

(D.6)

The quantity K = KPDKVCO is called the loop gain.

V outV in

R
C

Figure D.3: Simple Low-Pass Filter

ζ is the damping factor and ωn is the natural frequency

H(s) =
ω2

n

s2 + 2ζωns + ω2
n

, (D.7)

where

ωn =
√
ωLPFK, (D.8)

ζ =
1
2

√
ωLPF

K
. (D.9)

Phase error transfer function defined as He(s) = Φe(s)/Φin(s)

He(s) = 1 − H(s) (D.10)

=
s2 + 2ζωns

s2 + 2ζωns + ω2
n

The output excess phase is given by

65

Φout(s) = H(s)Φin(s) (D.11)

=
ω2

n

s2 + 2ζωns + ω2
n

Δω

s2

which is the response of a second-order system to a ramp input.

Phase error is:

Φe = Φin −Φout (D.12)

therefore in frequency domain, the phase error is:

Φe(s) = He(s)Φin(s) (D.13)

=
s2 + 2ζωns

s2 + 2ζωns + ω2
n

Δω

s2

whose final value is given by

Φe(t = ∞) = lim
s→0

sΦe(s) (D.14)

= Δω
2ζ
ωn

=
Δω

K

t

Ø Δωe
K

ωout

ω
Δωin

Δω

Figure D.4: Response of a PLL to a Frequency Step

66

	1
	2

