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ÖZ 

 

GRUP ASANSÖRLERİN DENETİMİNDE VE TRAFİK AKIŞININ 

YÖNLENDİRİLMESİNDE AKILLI YÖNTEMLERİN KULLANILMASI 

Ali Berkol 

Başkent Üniversitesi Fen Bilimleri Enstitüsü 

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

 

Günümüzde yüksek katlı binalarda çoklu asansörlerin devreye girmesi, kalabalık bina 

sakinlerinin en seri ve minimum enerji ile nasıl taşınabileceği problemini beraberinde 

getirmiştir. Grup Asansör Kontrol Sistemi, iki veya daha fazla sayıda asansör 

kabininin en uygun enerji, zaman ve talep dengesi gözetilerek sistematik olarak 

yönetilmesidir. Kabinin, katlardan gelen her bir çağrıya yanıt verirken bekleme 

zamanı, iniş-çıkış süreleri, enerji tüketimi, kullanıcı için kullanım kolaylığı vb. en ideal 

yönlendirme ile çalıştırılması amaçlanmıştır. Akıllı Sistemler, yukarıda bahsedilen 

parametrelerin en uygun değerlemelerini yapabilen esnek hesaplama yöntemi 

sunmaktadır. Mühendislik tasarım problemi olarak bakıldığında bekleme ve ulaşım 

süresinin ayarlanması, bu hizmet verilirken minimum enerji harcanması bir eniyileme 

problemidir. Bu problem karmaşık bir problem olduğu için çözüme yönelik akıllı 

sistem tabanlı yöntemlerin uygulanması uygun görülmüştür. Bu çalışmada genetik 

algoritma ve yapay sinir ağlarından oluşan hybrid bir yöntem uygulanarak sistemin 

performansını arttırmak amaçlanmıştır. Bu çalışma, 20 katlı binanın 4 kabinli asansör 

sisteminde simule edilmiş ve benzer çalışmalarla karşılaştırılmıştır.  

 

 

 

 

ANAHTAR SÖZCÜKLER: Asansör, Asansör Grup Kontörlü, Yapay Sinir Ağları, 

Genetik Algoritma, Optimizasyon 

Danışman: Doç.Dr. Hamit Erdem, Başkent Üniversitesi, Elektrik-Elektronik Mühendisliği 

Bölümü. 
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ABSTRACT 

 

USE OF ARTIFICIAL INTELLIGENCE SYSTEMS IN CONTROL AND TRAFFIC 

FLOW GUIDANCE OF THE GROUP ELEVATORS 

Ali Berkol 

Instıtute of Science Engineering 

Electrical and Electronics Department 

 

Nowadays highrise buildings with multicar elevator systems bring the question of 

optimal car movements as how to convey the big populations of residences in the 

most quickest and efficient way. The Elevator Group Controller is a control system 

that accomplishes the systematic management of two or more elevators so that the 

elevator system is operated at best balance of energy, time and demand. The 

objective is that, elevator cars shall be assigned correspondingly in response to hall 

calls, so as to optimize waiting time, travel time, power consumption, passengers’ 

comfort, etc. Artificial Intelligence presents soft computing options in designing a 

controller that capable of solving aforementioned numerous objectives. In the 

engineering design perspective, regulation of average waiting time and travel time 

with minimum energy consumption is an optimization problem. Since this is a 

complex problem, intelligent system based methods are chosen to be suitable for the 

solution of the same. This thesis aims to improve the system performance by 

applying a hybrid method that comprise of genetic algorithm and artificial neural 

network. This study simulates 20-floor building with a 4-multicar system and 

compares with the similiar studies. 

 

 

 

KEY WORDS: Elevator, Elevator Group Control, Neural Network, Genetic Algoritm, 

Artificial Intelligence, Optimization.   

Advisor: Associated Prof. Dr. Hamit Erdem, Başkent University, Electrical and 

Electronics Department. 
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1 Project Overview 

 
Today's urban life cannot be imagined without elevators. An elevator system is a 

system that transports passengers from one floor to another in a building. As vertical 

transportation vehicles, elevators were invented to ease the movement of people 

from one floor to another by shortening the time spent for the movement and by 

reducing the use of much human physical energy to climb up and down through the 

stairs. As many tall buildings with increasing number of floors were constructed in 

recent years, the need for better transportation services has become an important 

issue in the elevator industry. More elevators were installed, and a group control 

system was employed to coordinate the operation of individual elevators in a group 

manner. To enhance the effectiveness and efficiency of the Elevator Group Control 

Systems (EGCS) various control strategies and dispatching algorithms were 

developed over the years by using a variety of techniques. Passengers are 

transported in respond to their requests, which consists of hall calls and car calls. 

Passengers often have a long wait for the next elevator because they missed an 

elevator that left a few seconds previously; passengers often have to wait for the door 

to close even if no one is going to board. A passenger who wants to go to another 

floor from the current floor presses a direction button (hall call) and waits for an 

elevator to arrive, then enters the elevator and presses a floor button (car call) in the 

elevator. Basically, an elevator system is controlled by a two level control hierarchy 

that must solve two different control problems. The lower level task is to command 

each elevator to move up or down, to stop or start and to open and close the door. 

The higher level coordinates the movement of a group of elevators through a set of 

logical rules crafted to improve the system performance. This problem is solved by 

means of a group control system with the aid of a group supervisory control strategy. 

[3] 

 

Control systems comption problem the optimization of energy, travel time and waiting 

time. Related elevator problems, such as average waiting time, travel time, energy 
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consumption, traffic flow, enter into the engineering concern where engineers worked 

in seeking proper solutions addressing to it. 

Optimization of waiting time and energy consumption in particular is regarded as one 

of the basic problems of the elevator supervisory control and has been subject of 

miscellaneous studies so far. Multicar Elevator, MCE, systems introduce the idea of 

operating several elevator cars within a single shaft. This feature provides the 

advantage of saving space within the building while maintaining the transportation 

capacity level of conventional single-car elevators. ThyssenKrupp, a German elevator 

manufacturer, implemented the first MCE system, consisting of two elevator cars per 

shaft, at Stuttgart University in 2002. MCE group control method function to minimize 

the expected schedule completion time, and idle-car parking strategies to improve 

the call-allocation performance. With respect to the increase in the number of cars, 

algorithm achieved a greater reduction in the service completion time than the one of 

a method applying the direction coordination approach. [2] 

 

To apply high level solutions, many simple heuristic approaches have been 

developed, such as collective control in which a car stops to serve the nearest call in 

its current movement direction, the longest queue first, and the highest unanswered 

floor first. Advanced intelligent technologies such as expert system, fuzz logic, 

artificial neural network, and reinforcement learning have been used to develop 

intelligent elevator scheduling methods. [7] Genetic network programming (GNP), 

one of the evolutionary computations, can realize a rule-based MCES due to its 

directed graph structure of the individual, which makes the system more flexible. In a 

paper, they use “The destination floor guidance system” (DFGS). [4] Some studies 

with  Double-deck elevator system (DDES) is one of the solutions, where two cages 

are connected vertically in each shaft. [5] In an another study, the self-tuning FLC 

only exploits the waiting time for its tuning. [6] In another study, the multi-elevator 

system under consideration is an idealized system. It consists of k elevators traveling 

at unit speed. Stopping, entering, exiting, starting, and turning may take individual 

additional time, but we will not mention this in the sequel, for the ease of exposition. 

Each elevator has capacity one, i.e., it can only carry one request at a time. The 

difference in the literature between an online-algorithm and a (control) policy is that 

an online-algorithm has never any information about the input distribution, whereas a 

policy may know the input distribution. Moreover, online algorithms are usually 
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evaluated by competitive analysis, which measures their worst-case deviation from 

an a-posteriori offline-optimum solution on finite input sequences, whereas policies 

are usually evaluated by expected performance w.r.t. to an input distribution, an 

average measure. Nearest-Neighbor minimizes the length of the server’s empty 

move to the next request. For unit speed, this is the same as minimizing the start 

time of the next loaded move. [10]  For example, in figure 1.1 shows a typical 

elevator group control mechanism for an 8-floor building. 

 

Passenger arrivals are random events, where actual passenger arrival rates in 

buildings can be assumed to follow the Poisson distribution. 

Four criteria are used as performance measures; 

 

 Average waiting time (AWT) is the average time until the service elevator 

arrives at the floor after a passenger presses a hall call button. 

 Average Traveling Time (ATT) is the average time until a passenger drops off 

at the destination floor after he/she gets into the car. 

 Long Waiting Percentage (LWP) is the percentage of the passengers waiting 

over 60 s after a passenger presses a hall call button until he/she enters into a 

car. 

 Energy Consumption (EC) is the total energy of all the elevators during their 

operation. 

 

In the typical office buildings, the traffic is divided into three traffic patterns; 

 Regular Traffic: during the work time, passengers move up and down among 

several different floors. 

 Up-peak Traffic: typically in the morning when people arrive for work, most of 

the passengers travel from the lobby to the upper floors. 

 Down-peak Traffic: at the end of the day, most of the passengers leave the 

floors and travel primarily to the lobby in order to exit the building. 

 

Regarding this traffic follow a software has been expanded. 
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Figure 1.1: A typical EGC mechanism for an 8-floor building. 

 

In another study with reinforcement learning, therefore an intelligent elevator control 

system has been applied to solve this problem of optimization of multiple objectives. 

However, an optimum solution to this problem is not known yet, or perhaps not 

possible due to its stochastic nature. In Reinforcement Learning (RL) algorithms have 

been demonstrated to be powerful heuristic methods for addressing large-scale 

control problems and have been applied to elevator group control. A team of RL 

agents, each of which is responsible for controlling one elevator car was used. The 

team receives a global reward signal which appears noisy to each agent due to the 

effects of the actions of the other agents, the random nature of the arrivals and the 

incomplete observation of the state. The results demonstrated the power of multi-

agent RL on a very large scale stochastic dynamic optimization problem of practical 

utility. This study optimize the passenger waiting time.[18] 
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Along with the other studies, this thesis incorporates offline and online stages by 

using hybrid algorithms to improve to optimize average waiting time, total travel time, 

energy consumption. The algorithm shall be generated as such, the offline trained 

ANN shall select the online optimization algorithm which is capable of running in 

different conditions. Namely, the system comprises one classifier ANN structure and 

three optimization algorithm. 

 

Altered optimization techniques shall come into effect relative to different day time 

periods and various conditions encountered. Classifier ANN engages the applicable 

optimization algorithm. Clock time and population number are the inputs to this 

system, and optimized average waiting time, total travel time and energy 

consumption are the outputs. The first stage of this thesis is performed by using 

MATLAB. MATLAB based elevator optimization is carried out as per obtained results. 

This study simulates 20-floor building with a 4-multicar system. 

The thesis is organized as follows; chapter two provides elevator systems. Chapter 

three provides neural network and genetic algorithm, chapter four gives original work 

and simulations. 
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CHAPTER 2 

 

2. Elevator Systems 

 

An elevator system is a transportation mechanism that transfers passengers from 

one floor to another in a building. Elevators have been built throughout history but the 

first modern passenger elevators were developed no more than about 150 years ago. 

Steam and hydraulic elevators had already been introduced by 1852, when Elisha 

Otis made one of the most important elevator inventions, the clutch, which prevented 

the elevator from falling. Following this, in 1857, the first passenger elevator was 

installed in the store of E. Haughwout & Company, New York. With the advent of 

modern high-rise buildings, more elevator history than in any other single location 

was made in 1889, when the 321-meter-high Eiffel Tower was built for the Universal 

Exposition in Paris. In the Eiffel Tower, hydraulic double-deck elevators operated 

between ground level and the second platform. Between the second and third 

platforms two cars counterbalancing each other handled the traffic. The early 

hydraulic and steam-driven elevators functioned with pressurized water, which was 

either taken from the city water pipes or provided by steam engines. The elevator car 

was connected to a long piston that moved up when water was pumped into a 

cylinder, and came down when water was released by a hydraulic valve  In 1880 

Werner von Siemens introduced the utilization of electric power. Soon after, the 

geared or gearless traction electric elevators started to replace the hydraulic 

elevators. The development of electric elevators added impetus to high-rise 

construction. The fastest elevators today move at about 10 meters per second.  

 

Elevators were first distributed by Strömberg. The Kone corporation was registered in 

1910. In 1918 it started to design its own elevators, and the first four Kone elevators 

were delivered later that year. The first geared traction elevators from Kone were 

delivered to the Stockmann department store in 1928. Kone started to design its own 

AC and DC motors, and in the 1930's almost all the elevator components were being 

produced in-house. In electric elevators, the machinery for driving the elevator is 

usually located directly above the elevator hoistway in a machine room. After the 

middle of this century, hydraulic and ram elevators made a come-back, since it was 

cheaper to place the machine room at the bottom of the building. Modern hydraulic 
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elevators function with oil, which is pumped by electric power. Since the speed of 

hydraulic elevators is low, they became popular especially in residential buildings, 

and in installations where heavy loads are transported. A recent innovation that 

requires no oil is a new hoisting unit where a synchronous axial motor is installed in 

the elevator shaft. With this concept the control boards are situated at the highest 

landing floor and no separate machine room is required. In a single elevator system 

the elevator control handles all the equipment. In the case of several elevators where 

each elevator is in its own shaft, the transportation capacity can be increased by a 

common group control that delivers the hall calls to the elevators. The first electrical 

controls were realized by relay techniques, the same kind of relays that were used in 

telephone exchanges. In the 1970's the principles of relay equipment were applied to 

electronic controls. In Kone, the first completely microprocessor-based control 

system was developed in the beginning of the 1980's,and it was first tested with a 

hybrid traffic simulator. With microprocessors, mathematical methods and 

sophisticated call allocation algorithms are used to optimize hall calls to the elevators. 

The rapid development of processor technology has made it possible to distribute the 

"intelligence" from the machine room to the elevator components, even to the hall call 

buttons. In a modern group control, a huge amount of information is handled during 

the hall call allocation compared to the old relay controls.  

 

The average waiting times and queue lengths for a multi-car elevator system have 

been modelled with multi-bulk service queuing theory for the up-peak traffic. The up-

peak situation, where passengers arrive at one entrance floor, i.e. at the lobby, and 

travel to the upper floors, is the most demanding for the elevator transportation 

capacity. In an up-peak situation the average time it takes for an elevator to serve the 

car calls and return back to the lobby, i.e. round trip time, is calculated using 

probability theory. In conventional elevator planning the up-peak handling capacity 

and interval are calculated from the round trip time value. The elevator group is 

chosen using standardized handling capacity and interval values for different types of 

buildings. In a real building, passengers arrive at several floors at the same time. 

Then the group control has a great effect on the passenger service times. The impact 

of the group control decisions on the passenger service times in different traffic 

situations cannot be calculated analytically. Passenger service times and elevator 

performance can be determined by simulating the contribution between passenger 
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traffic flow and the elevator performance. Passengers arrive at an elevator system 

randomly and they are served in batches. The actual passenger arrival rates in a 

building can be assumed to follow the Poisson distribution. When a passenger 

arrives at a landing floor and gives a hall call, the group control allocates the call to 

the most suitable elevator. The time a hall call(landing call) stays on is called a hall 

call time. When a selected elevator starts to decelerate to the call floor, the hall call is 

cancelled. The system response time and call waiting time resemble the definition of 

the hall call time. Those times are measured from the moment of hall call registration 

until the car arrives to the floor and starts opening its doors.  

 

In figure 2.1 refers, the passenger waiting time starts when a passenger arrives at a 

landing floor, and ends when he enters the elevator. The passenger ride time starts 

when a passenger enters a car and gives a car call (destination call), and ends when 

he exits the car at the destination floor. The total time a passenger spends within an 

elevator system first by waiting and then by riding inside a car is called the journey 

time, also called the service time and the time to destination. Journey time is 

approximated by average time to destination transit time to destination or by 

maximum passenger transit time to the destination. The travel time from the bottom 

to top floor at full speed is used to define the elevator speed. In elevator planning, a 

theoretical up-peak situation where all the elevators leave the lobby with 80 per-cent 

load is normally used. The two most important planning parameters, the up-peak 

interval and handling capacity, are calculated from the round trip time. The round trip 

time starts when a car opens its doors at the lobby, and continues until an elevator 

has made a trip around the building and starts to open its doors after returning to the 

lobby. The interval is the average time between car departures from the lobby. The 

handling capacity gives the number of passengers the elevator system can transport 

in five minutes during up-peak. [15] 
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Figure 2.1: The Interval and the passenger service level parameters 

 

The first elevators were operated by simple mechanical devices, such as "hand-rope" 

control. A passenger could call an elevator by operating a rope on both sides of the 

car. Since the shafts were not fully closed, the operation of elevators was quite 

unsafe. A primitive form of elevator control in a single car was based on an attendant-

operated electrical car switch Using the switch, the attendant could manually drive 

the car up or down and decide at which floors to stop. The elevator efficiency and 

safety were increased with signaling devices at landings. Push-buttons were 

introduced in the 1920's to give the attendant information on the traffic demand, and 

the elevator shafts became closed. If no memory for the hall calls is provided, the 

calls are handled with a push-button control. With the non-collective controls the 

traffic demand is handled by serving each hall call at a time. A new hall call can be 

registered after the service of the previous call is completed. This control principle is 

used in freight elevators. When the registered calls are memorised, the elevator can 

pick several hall calls during the up or down trip. If there is only one call button at 

each floor, the calls can be arranged in a time queue according to the order they 

have been registered, or they can be served collectively. In the Interconnected 

Queue Selective (IQS) control system the hall calls are picked one at a time from the 
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time queue so that the oldest call is served first. This type of control is used, for 

instance, in hospitals, where the bed calls are served one at a time. In collective 

control the car stops in floor sequence at each hall call. The Interconnected Down 

Collective (IDC) control system is often used in buildings where the traffic is mostly 

two-way between the ground level and the upper floors. This kind of traffic occurs, for 

example, in residential buildings. The elevator collects the hall calls during the down 

trip, i.e. serves the calls in sequence, stopping always at the nearest call floor. The 

IQS and IDC controls can be used by one car only or they can be applied for a group 

of elevators.  

 

After automatic doors were developed in the 1950's, the traffic demand could be 

handled without attendants. In tall buildings, hall call buttons for both up and down 

directions were adapted. The most common call allocation principle, especially in the 

old relay controls, is the Interconnected Full Collective (IFC) control system. With two 

buttons at each floor, an elevator can pick the nearest hall call in front of the car in its 

direction of travel. The car calls given inside the elevator are always served in 

sequential order. After serving all the calls in the travel direction, the car moves to the 

furthest hall call in the opposite direction, where it reverses its direction. The 

efficiency of an elevator group was improved with a common central logic, the group 

control. The hall calls could be shared between several elevators where a common 

hall call button exists at every floor. The group control chooses the best elevator from 

a group of elevator cars to serve a given hall call. Group control dispatches cars to 

floors also for other reasons than hall calls, such as for parking, or if more than one 

elevator is needed at a busy floor. Elevators can be disconnected from the group for 

special service modes, such as emergency service, fireman's service or director/VIP 

service. 

 

A disconnected elevator operates independently of the other elevators. One 

drawback of the collective control principle is the bunching of elevators. During heavy 

traffic there are a lot of hall calls to serve and the elevators have a tendency to move 

side by side, i.e. they start to bunch. This happens because elevators always stop at 

the nearest call and by-pass hall calls only when fully loaded. One of the early 

methods of preventing the bunching of elevators was to dispatch cars from the lobby 

at proper time intervals. A bus-type schedule for the elevators was applied. Elevators 
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were delayed at the lobby for a certain time before they were sent to the upper floors. 

By delaying elevators at the lobby, part of the handling capacity was lost. In the 

1970's collective control was first adapted to electronic controls. With electronic 

controls, however, collective controls were improved by giving priorities for the long 

or timed-out hall calls. Hall calls that had been on for a short time, were bypassed to 

get faster service for the timed-out calls. To some extent the elevators were kept 

apart from each other with this control. Peak traffic situations were handled with 

separate operation modes. In up-peak operation modes, such as next car up, 

dispatching intervals, zoning of floors, and later a channeling option were used.  

 

The allocation principles of relay and electronic controls were brought to the 

microprocessor controls at the beginning of the 1980's. Hall calls were still prioritized 

according to the call service times. A slight but fundamental change was made in the 

philosophy. It was no longer expected that hall call times would become long before 

the "timed out" hall calls were given better service. The hall call times were forecast 

with mathematical calculations. When it was found that a hall call would become long 

with the normal service order, a car would bypass some hall calls to provide faster 

service to this call before it became long. When bypassing other hall calls, it was 

checked that the bypassed calls could be served by other cars within an acceptable 

time frame. On some occasions bonuses and penalties were used.  

 

For example, a bonus was given to an elevator with a car call coinciding with the hall 

call when estimating the service time to the hall call. On the other hand, a penalty 

was given to some elevators, such as parked cars, when choosing the best car to 

serve a hall call. One important feature in the modern group supervisory controls is 

the time when hall calls are finally reserved to the cars. The reservation moment can 

be seen in the signalization at the landing call floor. As soon as the hall call is finally 

designated to a car, an arrow above the car-door opening is illuminated. 

Simultaneously an audible gong signal is given to inform the passenger which car is 

going to serve the given hall call. The final reservation must be stable not to mislead 

the passenger. To get the best optimization result, the reservation is often made at 

the latest possible moment, i.e. when the elevator starts to decelerate to the hall call 

floor. The other extreme is to reserve hall calls finally to an elevator immediately the 

hall call is given. This shortens the psychological waiting time of the passengers. 
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Passengers have more time to gather around the arriving elevator, which shortens 

the loading time. When the hall calls are allocated at an early stage, the future traffic 

events change the situation so that the early reservations are not as optimal as if the 

allocation was made at a later instant. In the course of the fast development of 

microprocessor technology, the call allocation algorithms have become more 

sophisticated. Mathematical methods are applied in the elevator controls. The traffic 

in the building is measured and learned in statistical forecasts. Statistical forecasts 

are used when allocating new hall calls to the cars. Statistical traffic forecasts are 

also adapted to the controls with a late hall call reservation, even though the 

allocation principle is not critical to the future traffic events. The methods that learn 

and adapt to the traffic of a building, and use rules based on expertise are connected 

to artificial intelligence in the elevator technology. The uncertainties in the predictions 

and control actions are described by fuzzy rules. Neural networks can make the 

elevator controls completely autonomous so that the control parameters are tuned by 

the traffic of the building. Then the significance of pre-defined expert rules diminishes 

 

In the implementation of an elevator system, the following operating constraints must 

be met. 

1. An elevator car must stop at all floors requested by the passengers traveling 

inside it. 

2. An elevator car must not change its moving direction until all passengers 

traveling in the current direction have descended at their corresponding 

destination floors. 

 

As lots of buildings with more than 40 floors are being built recently, so the elevator 

traffic control has become very important in the design of such high rise buildings. In 

general, one elevator group could serve up to 15–20 floors in the buildings 

depending on the building population. [4] 

 

When a passenger arrives at a floor and gives a hall call, the system assigns the call 

to a suitable car. The passenger waiting time starts when a passenger arrives at a 

floor and presses a hall call button and it ends when the passenger enters into the 

car. Passenger traffic flow is conventionally classified into the following three 

patterns: 
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 Up-peak traffic: most passengers move up from the lobby to the upper floors 

and downward movements are rare (mostly in the early morning). 

 Down-peak traffic: most passengers leave the floors and move down to the 

lobby and upward movements are rare (mostly in the evening). 

 Regular traffic: passengers move up and down among several different floors 

(during the work time). 

Up-peak and down-peak traffic are not simply equivalent in the sense of opposite 

directions. Up-peak traffic has a single arrival floor and many destinations, while 

down-peak traffic has many arrival floors and a single destination. 

 

In an elevator system, many combinations of movements are possible. For an 

instance, in an elevator system with N floors, there are N-1 possible serviceable 

floors. an elevator from floor 1, can pass N-1 floors in respond to hall calls or car 

calls. Combining all the possible movements of an elevator from every floor, an 

elevator path for a building with 6 floors as shown at figure 2.2. 

 

 

Figure2.2: Possible movements of elevator A from every floor. 

 

In Figure 2.2, the path from A1 to A2 depicts the movement of elevator A from floor 1 

to floor 2 (upward movement), and the path from A2’ to A1’ illustrates the movement 

from floor 2 to floor 1 (downward movement). 
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In high rise buildings, it is essential that the elevator systems comprise more than 

one elevator car for efficient transportation. For an elevator system that consists of 

three elevator cars, figure 2.3 can be obtained to demonstrate the paths. 

 

 

 

Figure 2.3: Combined possible paths on an elevator system with three elevators 

 

The elevator group control system is a control system that manages systematically 

three of more elevators in a group to increase the service for passengers, and reduce 

the cost such as power consumption. Most of the elevator group control systems 

have used the hall call assignment method which assigns elevators in response to a 

passenger’s call. The hall call assignment method assigns a new hall call to an 

elevator having the smallest evaluation function value among all the elevators. 
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Elevator group control systems are control systems that manage multiple elevators in 

a building in order to efficiently transport the passengers. The main requirements of 

an elevator group control system in serving both, car and hall calls are to provide 

even service to every floor in a building, to minimize the time spent by passengers 

waiting for service, to minimize the time spent by passengers to travel from one floor 

to another, to serve as many passengers as possible in a given time, to optimize 

power consumption, etc. Flow chart of the system is at figure 2.4  [19] 

 

 

 

Figure 2.4: A general structure of an elevator group control system 

 

Numerous conventional algorithms have been used to realize the elevator group 

controller which are listed as follow:  

1. Hall call assignment method  

2. Minimum long wait algorithm  

3. Area-based control algorithm  

4. Car-attribute based evaluation  

5. Floor-attribute based evaluation  
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These conventional algorithms are based on evaluation functions which are 

calculated each time a hall call is made. An elevator group control system manages 

elevators so as to minimize the evaluation criteria; it is, however, difficult to satisfy all 

criteria or to take the actual situation of a building into account. Therefore, it is 

challenging for the elevator group controller to select a suitable elevator since an 

elevator system can very complex for the following reasons: 

1. If a group controller manages n elevators and assigns p hall calls to the 

elevators, the controller considers np cases.  

2. The controller must consider hall calls which will be generated in the near 

future.  

3. It must consider many uncertain factors, such as number of passengers at the 

floors where hall calls and car calls are generated.  

4. It must be possible for a system manager to change the control strategy. 

Some managers want to operate the system to minimize passengers’ waiting 

time while others want to reduce the power consumption.  
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CHAPTER 3 

 

3. ARTIFICIAL INTELLIGENCE AND GENETIC ALGORITHM 

 

3.1 ARTIFICIAL NEURAL NETWORK SYSTEMS 

 

The term neural network was traditionally used to refer to a network or circuit of 

biological neurons. The modern usage of the term often refers to artificial neural 

networks, which are composed of artificial neurons or nodes. Thus the term may refer 

to either biological neural networks are made up of real biological neurons or artificial 

neural networks for solving artificial intelligence problems. 

 

Unlike von Neumann model computations, artificial neural networks do not separate 

memory and processing and operate via the flow of signals through the net 

connections, somewhat akin to biological networks.These artificial networks may be 

used for predictive modeling, adaptive control and applications where they can be 

trained via a dataset. 

 

A biological neural network is composed of a group or groups of chemically 

connected or functionally associated neurons. A single neuron may be connected to 

many other neurons and the total number of neurons and connections in a network 

may be extensive. Connections, called synapses, are usually formed from axons to 

dendrites, though dendrodendritic microcircuits and other connections are possible. 

Apart from the electrical signaling, there are other forms of signaling that arise from 

neurotransmitter diffusion. 

 

Artificial intelligence, cognitive modelling, and neural networks are information 

processing paradigms inspired by the way biological neural systems process data. 

Artificial intelligence and cognitive modeling try to simulate some properties of 

biological neural networks. In the artificial intelligence field, artificial neural networks 

have been applied successfully to speech recognition, image analysis and adaptive 

control, in order to construct software agents (in computer and video games) or 

autonomous robots. 
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Historically, digital computers evolved from the von Neumann model, and operate via 

the execution of explicit instructions via access to memory by a number of 

processors. On the other hand, the origins of neural networks are based on efforts to 

model information processing in biological systems. Unlike the von Neumann model, 

neural network computing does not separate memory and processing. 

 

Neural network theory has served both to better identify how the neurons in the brain 

function and to provide the basis for efforts to create artificial intelligence. The 

preliminary theoretical base for contemporary neural networks was independently 

proposed by Alexander Bain (1873) and William James (1890). In their work, both 

thoughts and body activity resulted from interactions among neurons within the brain. 

 

For Bain, every activity led to the firing of a certain set of neurons. When activities 

were repeated, the connections between those neurons strengthened. According to 

his theory, this repetition was what led to the formation of memory. The general 

scientific community at the time was skeptical of Bain’s theory because it required 

what appeared to be an inordinate number of neural connections within the brain. It is 

now apparent that the brain is exceedingly complex and that the same brain “wiring” 

can handle multiple problems and inputs. 

James’s theory was similar to Bain’s, however, he suggested that memories and 

actions resulted from electrical currents flowing among the neurons in the brain. His 

model, by focusing on the flow of electrical currents, did not require individual neural 

connections for each memory or action. 

 

C. S. Sherrington (1898) conducted experiments to test James’s theory. He ran 

electrical currents down the spinal cords of rats. However, instead of demonstrating 

an increase in electrical current as projected by James, Sherrington found that the 

electrical current strength decreased as the testing continued over time. Importantly, 

this work led to the discovery of the concept of habituation. 

 
McCulloch and Pitts (1943) created a computational model for neural networks based 

on mathematics and algorithms. They called this model threshold logic. The model 

paved the way for neural network research to split into two distinct approaches. One 
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approach focused on biological processes in the brain and the other focused on the 

application of neural networks to artificial intelligence. 

 

In the late 1940s psychologist Donald Hebb created a hypothesis of learning based 

on the mechanism of neural plasticity that is now known as Hebbian learning. 

Hebbian learning is considered to be a 'typical' unsupervised learning rule and its 

later variants were early models for long term potentiation. These ideas started being 

applied to computational models in 1948 with Turing's B-type machines. 

 

Farley and Clark (1954) first used computational machines, then called calculators, to 

simulate a Hebbian network at MIT. Other neural network computational machines 

were created by Rochester, Holland, Habit, and Duda (1956). 

 

Rosenblatt (1958) created the perceptron, an algorithm for pattern recognition based 

on a two-layer learning computer network using simple addition and subtraction. With 

mathematical notation, Rosenblatt also described circuitry not in the basic 

perceptron, such as the exclusive-or circuit, a circuit whose mathematical 

computation could not be processed until after the backpropagation algorithm was 

created by Werbos (1975). 

 

Neural network research stagnated after the publication of machine learning research 

by Minsky and Papert (1969). They discovered two key issues with the computational 

machines that processed neural networks. The first issue was that single-layer neural 

networks were incapable of processing the exclusive-or circuit. The second 

significant issue was that computers were not sophisticated enough to effectively 

handle the long run time required by large neural networks. Neural network research 

slowed until computers achieved greater processing power. Also key in later 

advances was the backpropogation algorithm which effectively solved the exclusive-

or problem (Werbos 1975).  

 
The parallel distributed processing of the mid-1980s became popular under the name 

connectionism. The text by Rumelhart and McClelland (1986) provided a full 

exposition on the use of connectionism in computers to simulate neural processes. 

Neural networks, as used in artificial intelligence, have traditionally been viewed as 
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simplified models of neural processing in the brain, even though the relation between 

this model and brain biological architecture is debated, as it is not clear to what 

degree artificial neural networks mirror brain function. 

 

A neural network (NN), in the case of artificial neurons called artificial neural network 

(ANN) or simulated neural network (SNN), is an interconnected group of natural or 

artificial neurons that uses a mathematical or computational model for information 

processing based on a connectionistic approach to computation. In most cases an 

ANN is an adaptive system that changes its structure based on external or internal 

information that flows through the network. 

 

In more practical terms neural networks are non-linear statistical data modeling or 

decision making tools. They can be used to model complex relationships between 

inputs and outputs or to find patterns in data. However, the paradigm of neural 

networks - i.e., implicit, not explicit , learning is stressed - seems more to correspond 

to some kind of natural intelligence than to the traditional symbol-based Artificial 

Intelligence, which would stress, instead, rule-based learning. 

 

An artificial neural network involves a network of simple processing elements 

(artificial neurons) which can exhibit complex global behavior, determined by the 

connections between the processing elements and element parameters. Artificial 

neurons were first proposed in 1943 by Warren McCulloch, a neurophysiologist, and 

Walter Pitts, a logician, who first collaborated at the University of Chicago. One 

classical type of artificial neural network is the recurrent Hopfield net. 

 

In a neural network model simple nodes (which can be called by a number of names, 

including "neurons", "neurodes", "Processing Elements" (PE) and "units"), are 

connected together to form a network of nodes — hence the term "neural network". 

While a neural network does not have to be adaptive per se, its practical use comes 

with algorithms designed to alter the strength (weights) of the connections in the 

network to produce a desired signal flow. 

 

http://en.wikipedia.org/wiki/Connectionism
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The concept of a neural network appears to have first been proposed by Alan Turing 

in his 1948 paper Intelligent Machinery in which called them "B-type unorganised 

machines". 

 

The utility of artificial neural network models lies in the fact that they can be used to 

infer a function from observations and also to use it. Unsupervised neural networks 

can also be used to learn representations of the input that capture the salient 

characteristics of the input distribution, e.g., see the Boltzmann machine (1983), and 

more recently, deep learning algorithms, which can implicitly learn the distribution 

function of the observed data. Learning in neural networks is particularly useful in 

applications where the complexity of the data or task makes the design of such 

functions by hand impractical. [20] 

 

The tasks to which artificial neural networks are applied tend to fall within the 

following broad categories; 

 Function approximation, or regression analysis, including time series 

prediction and modeling. 

 

 Classification, including pattern and sequence recognition, novelty detection 

and sequential decision making. 

 

 Data processing, including filtering, clustering, blind signal separation and 

compression. 

 

Application areas of ANNs include system identification and control (vehicle control, 

process control), game-playing and decision making (backgammon, chess, racing), 

pattern recognition (radar systems, face identification, object recognition), sequence 

recognition (gesture, speech, handwritten text recognition), medical diagnosis, 

financial applications, data mining (or knowledge discovery in databases, "KDD"), 

visualization and e-mail spam filtering. 

 

Neuron consisits of three basic components; weights, thresholds and a single 

activation function. Neural network block diagram is at figure 3.1 [21] 
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Figure 3.1: Neural Network Block Diagram 

 

 

3.1.1 Type of Learning 

 

3.1.1.1 Supervised Learning  

 

In supervised training (Figure 3.2), both the inputs and the outputs are provided. The 

network then processes the inputs and compares its resulting outputs against the 

desired outputs. Errors are then propagated back through the system, causing the 

system to adjust the weights, which control the network. This process occurs over 

and over as the weights are continually tweaked. The set of data, which enables the 

training, is called the "training set." During the training of a network, the same set of 

data is processed many times, as the connection weights are ever refined. 

Sometimes a network may never learn. This could be because the input data does 

not contain the specific information from which the desired output is derived. 

Networks also don't converge if there is not enough data to enable complete learning. 

Ideally, there should be enough data so that part of the data can be held back as a 

test. Many layered networks with multiple nodes are capable of memorizing data. To 

monitor the network to determine if the system is simply memorizing its data in some 

non-significant way, supervised training needs to hold back a set of data to be used 

to test the system after it has undergone its training. If a network simply can't solve 

the problem, the designer then has to review the input and outputs, the number of 

layers, the number of elements per layer, the connections between the layers, the 
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summation, transfer, and training functions, and even the initial weights themselves. 

Another part of the designer's creativity governs the rules of training. There are many 

laws (algorithms) used to implement the adaptive feedback required to adjust the 

weights during training. The most common technique is known as back-propagation. 

The training is not just a technique, but a conscious analysis, to insure that the 

network is not over trained. Initially, an artificial neural network configures itself with 

the general statistical trends of the data. Later, it continues to ‘learn’ about other 

aspects of the data, which may be spurious from a general viewpoint. When finally 

the system has been correctly trained and no further learning is needed, the weights 

can, if desired, be ‘frozen’. In some systems, this finalized network is then turned into 

hardware so that it can be fast. Other systems don't lock themselves in but continue 

to learn while in production use. 

 

Figure 3.2: Supervised Learning 

 

3.1.1.2 Reinforcement Learning 

 

This type of learning may be considered as an intermediate form of the above two 

types of learning. Here the learning machine does some action on the environment 

and gets a feedback response from the environment. The learning system grades its 

action good (rewarding) or bad (punishable) based on the environmental response 

and accordingly adjusts its parameters. Generally, parameter adjustment is continued 

until an equilibrium state occurs, following which there will be no more changes in its 

parameters. The selforganizing neural learning (Figure 3.3) may be categorized 

under this type of learning. 
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Figure 3.3: Reinforcement Learning 

 

3.1.1.3 Unsupervised Learning 

 

The other type is the unsupervised training (learning) (Figure 3.4). In this type, the 

network is provided with inputs but not with desired outputs. The system itself must 

then decide what features it will use to group the input data. This is often referred to 

as self-organization or adaption. These networks use no external influences to adjust 

their weights. Instead, they internally monitor their performance. These networks look 

for regularities or trends in the input signals, and makes adaptations according to the 

function of the network. Even without being told whether it's right or wrong, the 

network still must have some information about how to organize itself. This 

information is built into the network topology and learning rules. An unsupervised 

learning algorithm might emphasize cooperation among clusters of processing 

elements. In such a scheme, the clusters would work together. If some external input 

activated any node in the cluster, the cluster's activity as a whole could be increased. 

Likewise, if external input to nodes in the cluster was decreased, that could have an 

inhibitory effect on the entire cluster. Competition between processing elements 

could also form a basis for learning. Training of competitive clusters could amplify the 

responses of specific groups to specific stimuli. As such, it would associate those 

groups with each other and with a specific appropriate response. Normally, when 

competition for learning is in effect, only the weights belonging to the winning 

processing element will be updated. Presently, the unsupervised learning is not well 

understood and there continues to be a lot of research in this aspect. 
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Figure 3.4: Unsupervised Learning 

 

 

3.1.2 TYPES OF ARTIFICIAL NEURAL NETWORKS 

 

3.1.2.1 SINGLE-LAYER FEED FORWARD NETWORK 

 

A neural network in which the input layer of source nodes projects into an output 

layer of neurons but not vice-versa is known as single feed-forward or acyclic 

network. In single layer network, ‘single layer’ refers to the output layer of 

computation nodes as shown at figure 3.5. 

 

 

Figure 3.5: A Single Layer-Feedforward Network 
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3.1.2.2 MULTI-LAYER FEED FORWARD NETWORK 

 

This type of network consists of one or more hidden layers, whose computation 

nodes are called hidden neurons or hidden units as shown at figure 3.6. The function 

of hidden neurons is to interact between the external input and network output in 

some useful manner and to extract higher order statistics. The source nodes in input 

layer of network supply the input signal to neurons in the second layer (First hidden 

layer). The output signals of second. layer are used as inputs to the third layer and so 

on. The set of output signals of the neurons in the output layer of network constitutes 

the overall response of network to the activation pattern supplied by source nodes in 

the input first layer. 

 

Figure 3.6: A Multi Layer-Feedforward Network 

 

Short characterization of feedforward networks  

 

1. Typically, activation is fed forward from input to output through ‘hidden layers’, 

though many other architectures exist.  

2. Mathematically, they implement static input-output mappings. 

3. Most popular supervised training algorithm: backpropagation algorithm 

4. Have proven useful in many practical applications as approximators of 

nonlinear functions and as pattern classificators. 
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3.2 GENETIC ALGORITHM 

 
Computer simulations of evolution started as early as in 1954 with the work of Nils 

Aall Barricelli, who was using the computer at the Institute for Advanced Study in 

Princeton, New Jersey. His 1954 publication was not widely noticed. Starting in 1957, 

the Australian quantitative geneticist Alex Fraser published a series of papers on 

simulation of artificial selection of organisms with multiple loci controlling a 

measurable trait. From these beginnings, computer simulation of evolution by 

biologists became more common in the early 1960s, and the methods were 

described in books by Fraser and Burnell (1970) and Crosby (1973). Fraser's 

simulations included all of the essential elements of modern genetic algorithms. In 

addition, Hans-Joachim Bremermann published a series of papers in the 1960s that 

also adopted a population of solution to optimization problems, undergoing 

recombination, mutation, and selection. Bremermann's research also included the 

elements of modern genetic algorithms. Other noteworthy early pioneers include 

Richard Friedberg, George Friedman, and Michael Conrad. Many early papers are 

reprinted by Fogel (1998).  

 

Although Barricelli, in work he reported in 1963, had simulated the evolution of ability 

to play a simple game, artificial evolution became a widely recognized optimization 

method as a result of the work of Ingo Rechenberg and Hans-Paul Schwefel in the 

1960s and early 1970s – Rechenberg's group was able to solve complex engineering 

problems through evolution strategies. Another approach was the evolutionary 

programming technique of Lawrence J. Fogel, which was proposed for generating 

artificial intelligence. Evolutionary programming originally used finite state machines 

for predicting environments, and used variation and selection to optimize the 

predictive logics. Genetic algorithms in particular became popular through the work of 

John Holland in the early 1970s, and particularly his book Adaptation in Natural and 

Artificial Systems (1975). His work originated with studies of cellular automata, 

conducted by Holland and his students at the University of Michigan. Holland 

introduced a formalized framework for predicting the quality of the next generation, 

known as Holland's Schema Theorem. Research in GAs remained largely theoretical 

until the mid-1980s, when The First International Conference on Genetic Algorithms 

was held in Pittsburgh, Pennsylvania. 

http://en.wikipedia.org/wiki/Nils_Aall_Barricelli
http://en.wikipedia.org/wiki/Nils_Aall_Barricelli
http://en.wikipedia.org/wiki/Institute_for_Advanced_Study
http://en.wikipedia.org/wiki/Princeton,_New_Jersey
http://en.wikipedia.org/wiki/Alex_Fraser_(scientist)
http://en.wikipedia.org/wiki/Artificial_selection
http://en.wikipedia.org/wiki/Hans-Joachim_Bremermann
http://en.wikipedia.org/wiki/David_B._Fogel
http://en.wikipedia.org/wiki/Artificial_evolution
http://en.wikipedia.org/wiki/Ingo_Rechenberg
http://en.wikipedia.org/wiki/Hans-Paul_Schwefel
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Lawrence_J._Fogel
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/John_Henry_Holland
http://en.wikipedia.org/wiki/Cellular_automata
http://en.wikipedia.org/wiki/John_Henry_Holland
http://en.wikipedia.org/wiki/University_of_Michigan
http://en.wikipedia.org/wiki/Holland%27s_Schema_Theorem
http://en.wikipedia.org/wiki/Pittsburgh,_Pennsylvania
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As academic interest grew, the dramatic increase in desktop computational power 

allowed for practical application of the new technique. In the late 1980s, General 

Electric started selling the world's first genetic algorithm product, a mainframe-based 

toolkit designed for industrial processes. In 1989, Axcelis, Inc. released Evolver, the 

world's first commercial GA product for desktop computers. The New York Times 

technology writer John Markoff wrote about Evolver in 1990. 

 

Genetic algorithms (GAs) are search methods based on principles of natural 

selection and genetics (Fraser, 1957; Bremermann, 1958; Holland, 1975). GAs 

encode the decision variables of a search problem into finite-length strings of 

alphabets of certain cardinality. The strings which are candidate solutions to the 

search problem are referred to as chromosomes, the alphabets are referred to as 

genes and the values of genes are called alleles. For example, in a problem such as 

the traveling salesman problem, a chromosome represents a route, and a gene may 

represent a city. In contrast to traditional optimization techniques, GAs work with 

coding of parameters, rather than the parameters themselves. To evolve good 

solutions and to implement natural selection, we need ameasure for distinguishing 

good solutions from bad solutions. The measure could be an objective function that is 

a mathematical model or a computer simulation, or it can be a subjective function 

where humans choose better solutions over worse ones. In essence, the fitness 

measure must determine a candidate solution’s relative fitness, which will 

subsequently be used by the GA to guide the evolution of good solutions. Another 

important concept of GAs is the notion of population. Unlike traditional search 

methods, genetic algorithms rely on a population of candidate solutions. The 

population size, which is usually a user-specified parameter, is one of the important 

factors affecting the scalability and performance of genetic algorithms. For example, 

small population sizes might lead to prematüre. A genetic algorithm is a probabilistic 

search technique that computationally simulates the process of biological evolution. It 

mimics evolution in nature by repeatedly altering a population of candidate solutions 

until an optimal solution is found.   

 

The GA evolutionary cycle starts with a randomly selected initial population.  The 

changes to the population occur through the processes of selection based on fitness, 

and alteration using crossover and mutation. The application of selection and 

http://en.wikipedia.org/wiki/Evolver_(software)
http://en.wikipedia.org/wiki/The_New_York_Times
http://en.wikipedia.org/wiki/John_Markoff
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alteration leads to a population with a higher proportion of better solutions. The 

evolutionary cycle (at figure 3.7) continues until an acceptable solution is found in the 

current generation of population, or some control parameter such as the number of 

generations is exceeded.  

 
 
The smallest unit of a genetic algorithm is called a gene, which represents a unit of 

information in the problem domain. A series of genes, known as a chromosome, 

represents one possible solution to the problem. Each gene in the chromosome 

represents one component of the solution pattern.  

 

The most common form of representing a solution as a chromosome is a string of 

binary digits. Each bit in this string is a gene. The process of converting the solution 

from its original form into the bit string is known as coding. The specific coding 

scheme used is application dependent. The solution bit strings are decoded to 

enable their evaluation using a fitness measure. [21] 
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Figure 3.7: Genetic Algorithm Evolutionary 
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3.2.1 Methodology 

 

In a genetic algorithm, a population of candidate solutions (called individuals, 

creatures, or phenotypes) to an optimization problem is evolved toward better 

solutions. Each candidate solution has a set of properties (its chromosomes or 

genotype) which can be mutated and altered; traditionally, solutions are represented 

in binary as strings of 0s and 1s, but other encodings are also possible. 

 

The evolution usually starts from a population of randomly generated individuals and 

is an iterative process, with the population in each iteration called a generation. In 

each generation, the fitness of every individual in the population is evaluated; the 

fitness is usually the value of the objective function in the optimization problem being 

solved. The more fit individuals are stochastically selected from the current 

population, and each individual's genome is modified (recombined and possibly 

randomly mutated) to form a new generation. The new generation of candidate 

solutions is then used in the next iteration of the algorithm. Commonly, the algorithm 

terminates when either a maximum number of generations has been produced, or a 

satisfactory fitness level has been reached for the population. 

 

A typical genetic algorithm requires: 

 
1. A genetic representation of the solution domain, 

2. A fitness function to evaluate the solution domain. 

 
A standard representation of each candidate solution is as an array of bits. Arrays of 

other types and structures can be used in essentially the same way. The main 

property that makes these genetic representations convenient is that their parts are 

easily aligned due to their fixed size, which facilitates simple crossover operations. 

Variable length representations may also be used, but crossover implementation is 

more complex in this case. Tree-like representations are explored in genetic 

programming and graph-form representations are explored in evolutionary 

programming; a mix of both linear chromosomes and trees is explored in gene 

expression programming. 

 

http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Genotype
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Stochastics
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Genetic_representation
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Bit_array
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Gene_expression_programming
http://en.wikipedia.org/wiki/Gene_expression_programming
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Once the genetic representation and the fitness function are defined, a GA proceeds 

to initialize a population of solutions and then to improve it through repetitive 

application of the mutation, crossover, inversion and selection operators. 

 

3.2.2 Selection 

 

In biological evolution, only the fittest survive and their gene pool contributes to the 

creation of the next generation. Selection in GA is also based on a similar process. In 

a common form of selection, known as fitness proportional selection, each 

chromosome’s likelihood of being selected as a good one is proportional to its fitness 

value. 

 

3.2.2.1 Fitness Proportionate Selection  

 

This includes methods such as roulette-wheel selection (Holland, 1975; Goldberg, 

1989b) and stochastic universal selection (Baker, 1985; Grefenstette and Baker, 

1989). In roulette-wheel selection, each individual in the population is assigned a 

roulette. Wheel slot sized in proportion to its fitness. That is, in the biased roulette 

wheel, good solutions have a larger slot size than the less fit solutions. The roulette 

wheel is spun to obtain a reproduction candidate. The roulettewheel selection 

scheme can be implemented as follows: 

1. Evaluate the fitness, fi, of each individual in the population. 

2. Compute the probability (slot size), pi, of selecting each member of the 

population:  

3. Calculate the cumulative probability, qi , for each individual 

4. Generate a uniform random number, r ∈  (0, 1]. 

5. If r < q1 then select the first chromosome, x1, else select the individual xi such 

that qi−1 < r ≤ qi . 

6. Repeat steps 4–5 n times to create n candidates in the mating pool. 
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3.2.2.2 Ordinal Selection  

 

This includes methods such as tournament selection (Goldberg et al., 1989b), and 

truncation selection (M¨uhlenbein and Schlierkamp-Voosen, 1993). In tournament 

selection, s chromosomes are chosen at random (either with or without replacement) 

and entered into a tournament against each other. The fittest individual in the group 

of k chromosomes wins the tournament and is selected as the parent. The most 

widely used value of s is 2. Using this selection scheme, n tournaments are required 

to choose n individuals. In truncation selection, the top (1/s)th of the individuals get s 

copies each in the mating pool. 

 

3.2.2.3 Alteration to improve good solutions 

 

The alteration step in the genetic algorithm refines the good solution from the current 

generation to produce the next generation of candidate solutions. It is carried out by 

performing crossover and mutation. 

 

3.2.3 Crossover  

 

Crossover (figure 3.8) may be regarded as artificial mating in which chromosomes 

from two individuals are combined to create the chromosome for the next generation. 

This is done by splicing two chromosomes from two different solutions at a crossover 

point and swapping the spliced parts. The idea is that some genes with good 

characteristics from one chromosome may as a result combine with some good 

genes in the other chromosome to create a better solution represented by the new 

chromosome. 
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             Figure 3.8: Crossover & Mutation 

 

3.2.3.1 K-Point Crossover  

 

One-point, and two-point crossovers are the simplest and most widely applied 

crossover methods. In one-point crossover, , a crossover site is selected at random 

over the string length, and the alleles on one side of the site are exchanged between 

the individuals. In two-point crossover, two crossover sites are randomly selected. 

The alleles between the two sites are exchanged between the two randomly paired 

individuals.. The concept of one-point crossover can be extended to k-point 

crossover, where k crossover points are used, rather than just one or two. 

 

3.2.3.2 Uniform Crossover  

 

Another common recombination operator is uniform crossover (Syswerda, 1989; 

Spears and De Jong, 1994). In uniform crossover, every allele is exchanged between 

the a pair of randomly selected chromosomes with a certain probability, pe, known as 

the swapping probability. Usually the swapping probability value is taken to be 0.5. 

 

3.2.3.3 Uniform Order-Based Crossover  

 

The k-point and uniform crossover (Figure 3.9) methods described above are not well 

suited for search problems with permutation codes such as the ones used in the 

0 

1 0 0 0 1 1 0 1 

0 1 1 0 1 0 1 

Crossover 
point 

0 1 1 0 1 1 0 1 

1 0 0 0 0 1 0 1 

0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 

Mutation 
point 
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traveling salesman problem. They often create offspring that represent invalid 

solutions for the search problem.  

 
        Figure 3.9: Illustration of Uniform order crossover       

 

 

3.2.3.4 Order-Based Crossover  

 

The order-based crossover operator (Davis, 1985) at figure 3.10 and 3.11 is a variation of the 

uniform order-based crossover in which two parents are randomly selected and two random 

crossover sites are generated. The genes between the cut points are copied to the children. 

Starting from the second crossover site copy the genes that are not already present in the 

offspring from the alternative parent (the parent other than the one whose genes are copied 

by the offspring in the initial phase) in the order they appear.  for offspring C1, since alleles 

C, D, and E are copied from the parent P1, we get alleles B, G, F, and A from the parent P2. 

Starting from the second crossover site, which is the sixth gene, we copy alleles B and G as 

the sixth and seventh genes respectively. We then wrap around and copy alleles F and A as 

the first and second genes. 
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Figure 3.10: Illustration of Order-Based crossover 

 

 
Figure 3.11: Illustration of Partially Matched Crossover 

                    

 

3.2.3.5 Partially Matched Crossover (PMX)  

 

Apart from always generating valid offspring, the PMX operator (Goldberg and Lingle, 

1985) also preserves orderings within the chromosome. In PMX, two parents are 

randomly selected and two random crossover sites are generated. Alleles within the 

two crossover sites of a parent are exchanged with the alleles corresponding to those 

mapped by the other parent. For example at figure 3.12 looking at parent P1, the first 

gene within the two crossover sites, 5, maps to 2 in P2. Therefore, genes 5 and 2 are 
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swapped in P1. Similarly we swap 6 and 3, and 10 and 7 to create the offspring C1. 

After all exchanges it can be seen that we have achieved a duplication of the 

ordering of one of the genes in between the crossover point within the opposite 

chromosome, and vice versa. 

 
                         Figure 3.12: Illustration of Cycle Crossover             
 

 

3.2.4 Mutation 

 

Mutation is a random adjustment in the genetic composition. It is useful for 

introducing new characteristics in a population – something not achieved through 

crossover alone. Crossover only rearranges existing characteristics to give new 

combinations. For example, if the first bit in every chromosome of a generation 

happens to be a 1, any new chromosome created through crossover will also have 1 

as the first bit. 

The mutation operator changes the current value of a gene to a different one. For bit 

string chromosome this change amounts to flipping a 0 bit to a 1 or vice versa.  
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Although useful for introducing new traits in the solution pool, mutations can be 

counterproductive, and applied only infrequently and randomly. 

 

The steps in the typical genetic algorithm for finding a solution to a problem are listed 

below: 

 

1. Create an initial solution population of a certain size randomly 

 

2. Evaluate each solution in the current generation and assign it a fitness value. 

 

3. Select “good” solutions based on fitness value and discard the rest.  

 

4. If acceptable solution(s) found in the current generation or maximum number 

of generations is exceeded then stop. 

 

5. Alter the solution population using crossover and mutation to create a new 

generation of solutions. 

 

6. Go to step 2. 

 
 

3.2.5 Limitations 

 

There are several limitations of the use of a genetic algorithm compared to alternative 

optimization algorithms: 

 

 Repeated fitness function evaluation for complex problems is often the most 

prohibitive and limiting segment of artificial evolutionary algorithms. Finding 

the optimal solution to complex high dimensional, multimodal problems often 

requires very expensive fitness function evaluations. In real world problems 

such as structural optimization problems, one single function evaluation may 

require several hours to several days of complete simulation. Typical 

optimization methods can not deal with such types of problem. In this case, it 

may be necessary to forgo an exact evaluation and use an approximated 

http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_approximation
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fitness that is computationally efficient. It is apparent that amalgamation of 

approximate models may be one of the most promising approaches to 

convincingly use GA to solve complex real life problems. 

 

 Genetic algorithms do not scale well with complexity. That is, where the 

number of elements which are exposed to mutation is large there is often an 

exponential increase in search space size. This makes it extremely difficult to 

use the technique on problems such as designing an engine, a house or 

plane. In order to make such problems tractable to evolutionary search, they 

must be broken down into the simplest representation possible. Hence we 

typically see evolutionary algorithms encoding designs for fan blades instead 

of engines, building shapes instead of detailed construction plans, airfoils 

instead of whole aircraft designs. The second problem of complexity is the 

issue of how to protect parts that have evolved to represent good solutions 

from further destructive mutation, particularly when their fitness assessment 

requires them to combine well with other parts. It has been suggested by 

some[citation needed] in the community that a developmental approach to 

evolved solutions could overcome some of the issues of protection, but this 

remains an open research question. 

 

 The "better" solution is only in comparison to other solutions. As a result, the 

stop criterion is not clear in every problem. 

 
 

 In many problems, GAs may have a tendency to converge towards local 

optima or even arbitrary points rather than the global optimum of the problem. 

This means that it does not "know how" to sacrifice short-term fitness to gain 

longer-term fitness. The likelihood of this occurring depends on the shape of 

the fitness landscape: certain problems may provide an easy ascent towards a 

global optimum, others may make it easier for the function to find the local 

optima. This problem may be alleviated by using a different fitness function, 

increasing the rate of mutation, or by using selection techniques that maintain 

a diverse population of solutions, although the No Free Lunch theorem proves 

that there is no general solution to this problem. A common technique to 

http://en.wikipedia.org/wiki/Fitness_approximation
http://en.wikipedia.org/wiki/Fitness_approximation
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Local_optimum
http://en.wikipedia.org/wiki/Local_optimum
http://en.wikipedia.org/wiki/Global_optimum
http://en.wikipedia.org/wiki/Fitness_landscape
http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization
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maintain diversity is to impose a "niche penalty", wherein, any group of 

individuals of sufficient similarity (niche radius) have a penalty added, which 

will reduce the representation of that group in subsequent generations, 

permitting other (less similar) individuals to be maintained in the population. 

This trick, however, may not be effective, depending on the landscape of the 

problem. Another possible technique would be to simply replace part of the 

population with randomly generated individuals, when most of the population 

is too similar to each other. Diversity is important in genetic algorithms (and 

genetic programming) because crossing over a homogeneous population does 

not yield new solutions. In evolution strategies and evolutionary programming, 

diversity is not essential because of a greater reliance on mutation. 

 

 Operating on dynamic data sets is difficult, as genomes begin to converge 

early on towards solutions which may no longer be valid for later data. Several 

methods have been proposed to remedy this by increasing genetic diversity 

somehow and preventing early convergence, either by increasing the 

probability of mutation when the solution quality drops (called triggered 

hypermutation), or by occasionally introducing entirely new, randomly 

generated elements into the gene pool (called random immigrants). Again, 

evolution strategies and evolutionary programming can be implemented with a 

so-called "comma strategy" in which parents are not maintained and new 

parents are selected only from offspring. This can be more effective on 

dynamic problems. 

 

 GAs cannot effectively solve problems in which the only fitness measure is a 

single right/wrong measure (like decision problems), as there is no way to 

converge on the solution (no hill to climb). In these cases, a random search 

may find a solution as quickly as a GA. However, if the situation allows the 

success/failure trial to be repeated giving (possibly) different results, then the 

ratio of successes to failures provides a suitable fitness measure. 

 

 For specific optimization problems and problem instances, other optimization 

algorithms may find better solutions than genetic algorithms (given the same 

amount of computation time). Alternative and complementary algorithms 

http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Decision_problem
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include evolution strategies, evolutionary programming, simulated annealing, 

Gaussian adaptation, hill climbing, and swarm intelligence (e.g.: ant colony 

optimization, particle swarm optimization) and methods based on integer linear 

programming. The question of which, if any, problems are suited to genetic 

algorithms (in the sense that such algorithms are better than others) is open 

and controversial. 
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CHAPTER 4 

 

4. APPLICATION OF HYBRID METHOD TO GROUP ELEVATOR CONTROL 

 

The Elevator Group Controller is a control system that accomplishes the systematic 

management of two or more elevators so that the elevator system is operated at best 

balance of energy, time and demand. Neural Network and Artificial Intelligence 

presents convenient options in designing a controller that capable of solving 

aforementioned numerous objectives. However, since in this particular problem, 

multiple inputs and and outputs have to be considered, complications might arise in 

forming neural networks and genetic algorithms. Remedy to this problem is that, 

ordinal structured neural network shall classify the inputs and then allocates these 

inputs to related genetic algoritm codes to optimize the selected variables. Block 

diagram showed as figure 4.1; 

 

 

                         Figure 4.1: Block Diagram of the Suggested Method 
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4.1 ANN FOR THE SELECTION OF OPTIMIZATION ALGORIHTM 

 

In this project; we used Neural Network for classificate the inputs to select one of the 

optimization algorithm. These inputs are the human population and time data.  

 

Input Parameters; 

 Time (D1) 

o From 00:00 to 23:59 (Whole 24 hours) 

 00:00 – 07:59 -> Less Traffic 

 08:00 – 08:59 -> Morning Peak 

 09:00 – 11:59 -> Less Traffic 

 12:00 – 13:29 -> Lunch Peak 

 13:30 – 17:59 ->Less Traffic 

 18:00 – 18:29 ->Evening Peak 

 18:30 – 23:59 -> Less Traffic 

o With 5 minutes intermittently (Own coefficients 0.1 intermittently) 

 Crowdedness (D2) 

o 0-7 people called  “Solitary” (Coefficent: 0.3) 

o 7-11 people called “Middle Crowded” (Coefficent: 0.5) 

o 11-16 people called “Overcrowded” (Coefficent: 0.3) 

Output Parameters; 

 Passenger Average Waiting Time (A1) 

 Passenger Travel Time and Energy Consumption  (A2) 

And some examples from a 864 sample neural network table as;  

INPUT PARAMETERS 
OUTPUT 

PARAMETERS 

Coefficient of 
D1 D1 Coefficient of D2 D2 A1 A2 

0,1 00:00 - 00:04 0.5 Solitary 0 1 

0,2 00:05 - 00:09 0.5 Solitary 0 1 

0,3 00:10 - 00:14 0.5 Solitary 0 1 

0,4 00:15 - 00:19 0.5 Solitary 0 1 

0,5 00:20 - 00:24 0.5 Solitary 0 1 

0,6 00:25 - 00:29 0.5 Solitary 0 1 

0,7 00:30 - 00:34 0.5 Solitary 0 1 

0,8 00:35 - 00:39 0.5 Solitary 0 1 

0,9 00:40 - 00:44 0.5 Solitary 0 1 

1 00:45 - 00:49 0.5 Solitary 0 1 

1,1 00:50 - 00:54 0.5 Solitary 0 1 

1,2 00:55 - 00:59 0.5 Solitary 0 1 

1,3 01:00 - 01:04 0.5 Solitary 0 1 
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1,4 01:05 - 00:09 0.5 Solitary 0 1 

1,5 01:10 - 01:14 0.5 Solitary 0 1 

1,6 01:15 - 01:19 0.5 Solitary 0 1 

1,7 01:20 - 01:24 0.5 Solitary 0 1 

1,8 01:25 - 01:29 0.5 Solitary 0 1 

1,9 01:30 - 01:34 0.5 Solitary 0 1 

2 01:35 - 01:39 0.5 Solitary 0 1 

2,1 01:40 - 01:44 0.5 Solitary 0 1 

2,2 01:45 - 01:49 0.5 Solitary 0 1 

2,3 01:50 - 01:54 0.5 Solitary 0 1 

2,4 01:55 - 01:59 0.5 Solitary 0 1 

2,5 02:00 - 02:04 0.5 Solitary 0 1 

2,6 02:05 - 02:09 0.5 Solitary 0 1 

2,7 02:10 - 02:14 0.5 Solitary 0 1 

2,8 02:15 - 02:19 0.5 Solitary 0 1 

2,9 02:20 - 02:24 0.5 Solitary 0 1 

3 02:25 - 02:29 0.5 Solitary 0 1 

3,1 02:30 - 02:34 0.5 Solitary 0 1 

3,2 02:35 - 02:39 0.5 Solitary 0 1 

3,3 02:40 - 02:44 0.5 Solitary 0 1 

3,4 02:45 - 02:49 0.5 Solitary 0 1 

3,5 02:50 - 02:54 0.5 Solitary 0 1 

3,6 02:55 - 02:59 0.5 Solitary 0 1 

3,7 03:00 - 03:04 0.5 Solitary 0 1 

3,8 03:05 - 03:09 0.5 Solitary 0 1 

3,9 03:10 - 03:14 0.5 Solitary 0 1 

4 03:15 - 03:19 0.5 Solitary 0 1 

4,1 03:20 - 03:24 0.5 Solitary 0 1 

4,2 03:25 - 03:29 0.5 Solitary 0 1 

4,3 03:30 - 03:34 0.5 Solitary 0 1 

4,4 03:35 - 03:39 0.5 Solitary 0 1 

4,5 03:40 - 03:44 0.5 Solitary 0 1 

4,6 03:45 - 03:49 0.5 Solitary 0 1 

4,7 03:50 - 03:54 0.5 Solitary 0 1 

4,8 03:55 - 03:59 0.5 Solitary 0 1 

4,9 04:00 - 04:04 0.5 Solitary 0 1 

5 04:05 - 04:09 0.5 Solitary 0 1 

5,1 04:10 - 04:14 0.5 Solitary 0 1 

5,2 04:15 - 04:19 0.5 Solitary 0 1 

5,3 04:20 - 04:24 0.5 Solitary 0 1 

5,4 04:25 - 04:29 0.5 Solitary 0 1 

5,5 04:30 - 04:34 0.5 Solitary 0 1 

5,6 04:35 - 04:39 0.5 Solitary 0 1 

…. ……. ….. …… ….. ….. 

0,1 00:00 - 00:04 0.5 Middle Crowded 0 1 
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0,2 00:05 - 00:09 0.5 Middle Crowded 0 1 

0,3 00:10 - 00:14 0.5 Middle Crowded 0 1 

0,4 00:15 - 00:19 0.5 Middle Crowded 0 1 

0,5 00:20 - 00:24 0.5 Middle Crowded 0 1 

0,6 00:25 - 00:29 0.5 Middle Crowded 0 1 

0,7 00:30 - 00:34 0.5 Middle Crowded 0 1 

0,8 00:35 - 00:39 0.5 Middle Crowded 0 1 

0,9 00:40 - 00:44 0.5 Middle Crowded 0 1 

1 00:45 - 00:49 0.5 Middle Crowded 0 1 

1,1 00:50 - 00:54 0.5 Middle Crowded 0 1 

1,2 00:55 - 00:59 0.5 Middle Crowded 0 1 

1,3 01:00 - 01:04 0.5 Middle Crowded 0 1 

1,4 01:05 - 00:09 0.5 Middle Crowded 0 1 

1,5 01:10 - 01:14 0.5 Middle Crowded 0 1 

1,6 01:15 - 01:19 0.5 Middle Crowded 0 1 

1,7 01:20 - 01:24 0.5 Middle Crowded 0 1 

1,8 01:25 - 01:29 0.5 Middle Crowded 0 1 

1,9 01:30 - 01:34 0.5 Middle Crowded 0 1 

2 01:35 - 01:39 0.5 Middle Crowded 0 1 

2,1 01:40 - 01:44 0.5 Middle Crowded 0 1 

2,2 01:45 - 01:49 0.5 Middle Crowded 0 1 

2,3 01:50 - 01:54 0.5 Middle Crowded 0 1 

2,4 01:55 - 01:59 0.5 Middle Crowded 0 1 

2,5 02:00 - 02:04 0.5 Middle Crowded 0 1 

2,6 02:05 - 02:09 0.5 Middle Crowded 0 1 

2,7 02:10 - 02:14 0.5 Middle Crowded 0 1 

2,8 02:15 - 02:19 0.5 Middle Crowded 0 1 

2,9 02:20 - 02:24 0.5 Middle Crowded 0 1 

3 02:25 - 02:29 0.5 Middle Crowded 0 1 

3,1 02:30 - 02:34 0.5 Middle Crowded 0 1 

3,2 02:35 - 02:39 0.5 Middle Crowded 0 1 

3,3 02:40 - 02:44 0.5 Middle Crowded 0 1 

3,4 02:45 - 02:49 0.5 Middle Crowded 0 1 

3,5 02:50 - 02:54 0.5 Middle Crowded 0 1 

3,6 02:55 - 02:59 0.5 Middle Crowded 0 1 

3,7 03:00 - 03:04 0.5 Middle Crowded 0 1 

3,8 03:05 - 03:09 0.5 Middle Crowded 0 1 

3,9 03:10 - 03:14 0.5 Middle Crowded 0 1 

4 03:15 - 03:19 0.5 Middle Crowded 0 1 

4,1 03:20 - 03:24 0.5 Middle Crowded 0 1 

4,2 03:25 - 03:29 0.5 Middle Crowded 0 1 

4,3 03:30 - 03:34 0.5 Middle Crowded 0 1 

4,4 03:35 - 03:39 0.5 Middle Crowded 0 1 

4,5 03:40 - 03:44 0.5 Middle Crowded 0 1 

4,6 03:45 - 03:49 0.5 Middle Crowded 0 1 
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4,7 03:50 - 03:54 0.5 Middle Crowded 0 1 

4,8 03:55 - 03:59 0.5 Middle Crowded 0 1 

4,9 04:00 - 04:04 0.5 Middle Crowded 0 1 

5 04:05 - 04:09 0.5 Middle Crowded 0 1 

5,1 04:10 - 04:14 0.5 Middle Crowded 0 1 

5,2 04:15 - 04:19 0.5 Middle Crowded 0 1 

5,3 04:20 - 04:24 0.5 Middle Crowded 0 1 

5,4 04:25 - 04:29 0.5 Middle Crowded 0 1 

5,5 04:30 - 04:34 0.5 Middle Crowded 0 1 

5,6 04:35 - 04:39 0.5 Middle Crowded 0 1 

5,7 04:40 - 04:44 0.5 Middle Crowded 0 1 

5,8 04:45 - 04:49 0.5 Middle Crowded 0 1 

5,9 04:50 - 04:54 0.5 Middle Crowded 0 1 

6 04:55 - 04:59 0.5 Middle Crowded 0 1 

6,1 05:00 - 05:04 0.5 Middle Crowded 0 1 

6,2 05:05 - 05:09 0.5 Middle Crowded 0 1 

6,3 05:10 - 05:14 0.5 Middle Crowded 0 1 

6,4 05:15 - 05:19 0.5 Middle Crowded 0 1 

6,5 05:20 - 05:24 0.5 Middle Crowded 0 1 

6,6 05:25 - 05:29 0.5 Middle Crowded 0 1 

6,7 05:30 - 05:34 0.5 Middle Crowded 0 1 

6,8 05:35 - 05:39 0.5 Middle Crowded 0 1 

6,9 05:40 - 05:44 0.5 Middle Crowded 0 1 

7 05:45 - 05:49 0.5 Middle Crowded 0 1 

7,1 05:50 - 05:54 0.5 Middle Crowded 0 1 

7,2 05:55 - 05:59 0.5 Middle Crowded 0 1 

7,3 06:00 - 06:04 0.5 Middle Crowded 0 1 

7,4 06:05 - 06:09 0.5 Middle Crowded 0 1 

7,5 06:10 - 06:14 0.5 Middle Crowded 0 1 

7,6 06:15 - 06:19 0.5 Middle Crowded 0 1 

7,7 06:20 - 06:24 0.5 Middle Crowded 0 1 

7,8 06:25 - 06:29 0.5 Middle Crowded 0 1 

7,9 06:30 - 06:34 0.5 Middle Crowded 0 1 

8 06:35 - 06:39 0.5 Middle Crowded 0 1 

8,1 06:40 - 06:44 0.5 Middle Crowded 0 1 

8,2 06:45 - 06:49 0.5 Middle Crowded 0 1 

8,3 06:50 - 06:54 0.5 Middle Crowded 0 1 

8,4 06:55 - 06:59 0.5 Middle Crowded 0 1 

8,5 07:00 - 07:04 0.5 Middle Crowded 0 1 

8,6 07:05 - 07:09 0.5 Middle Crowded 0 1 

8,7 07:10 - 07:14 0.5 Middle Crowded 0 1 

8,8 07:15 - 07:19 0.5 Middle Crowded 0 1 

8,9 07:20 - 07:24 0.5 Middle Crowded 0 1 

….. …….. ….. ……. …… …… 

0,1 00:00 - 00:04 0.7 Overcrowded 1 0 
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0,2 00:05 - 00:09 0.7 Overcrowded 1 0 

0,3 00:10 - 00:14 0.7 Overcrowded 1 0 

0,4 00:15 - 00:19 0.7 Overcrowded 1 0 

0,5 00:20 - 00:24 0.7 Overcrowded 1 0 

0,6 00:25 - 00:29 0.7 Overcrowded 1 0 

0,7 00:30 - 00:34 0.7 Overcrowded 1 0 

0,8 00:35 - 00:39 0.7 Overcrowded 1 0 

0,9 00:40 - 00:44 0.7 Overcrowded 1 0 

1 00:45 - 00:49 0.7 Overcrowded 1 0 

1,1 00:50 - 00:54 0.7 Overcrowded 1 0 

1,2 00:55 - 00:59 0.7 Overcrowded 1 0 

1,3 01:00 - 01:04 0.7 Overcrowded 1 0 

1,4 01:05 - 00:09 0.7 Overcrowded 1 0 

1,5 01:10 - 01:14 0.7 Overcrowded 1 0 

1,6 01:15 - 01:19 0.7 Overcrowded 1 0 

1,7 01:20 - 01:24 0.7 Overcrowded 1 0 

1,8 01:25 - 01:29 0.7 Overcrowded 1 0 

1,9 01:30 - 01:34 0.7 Overcrowded 1 0 

2 01:35 - 01:39 0.7 Overcrowded 1 0 

2,1 01:40 - 01:44 0.7 Overcrowded 1 0 

2,2 01:45 - 01:49 0.7 Overcrowded 1 0 

2,3 01:50 - 01:54 0.7 Overcrowded 1 0 

2,4 01:55 - 01:59 0.7 Overcrowded 1 0 

2,5 02:00 - 02:04 0.7 Overcrowded 1 0 

2,6 02:05 - 02:09 0.7 Overcrowded 1 0 

2,7 02:10 - 02:14 0.7 Overcrowded 1 0 

2,8 02:15 - 02:19 0.7 Overcrowded 1 0 

2,9 02:20 - 02:24 0.7 Overcrowded 1 0 

3 02:25 - 02:29 0.7 Overcrowded 1 0 

3,1 02:30 - 02:34 0.7 Overcrowded 1 0 

3,2 02:35 - 02:39 0.7 Overcrowded 1 0 

3,3 02:40 - 02:44 0.7 Overcrowded 1 0 

3,4 02:45 - 02:49 0.7 Overcrowded 1 0 

3,5 02:50 - 02:54 0.7 Overcrowded 1 0 

3,6 02:55 - 02:59 0.7 Overcrowded 1 0 

3,7 03:00 - 03:04 0.7 Overcrowded 1 0 

3,8 03:05 - 03:09 0.7 Overcrowded 1 0 

3,9 03:10 - 03:14 0.7 Overcrowded 1 0 

4 03:15 - 03:19 0.7 Overcrowded 1 0 

4,1 03:20 - 03:24 0.7 Overcrowded 1 0 

4,2 03:25 - 03:29 0.7 Overcrowded 1 0 

4,3 03:30 - 03:34 0.7 Overcrowded 1 0 

4,4 03:35 - 03:39 0.7 Overcrowded 1 0 

4,5 03:40 - 03:44 0.7 Overcrowded 1 0 

4,6 03:45 - 03:49 0.7 Overcrowded 1 0 
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4,7 03:50 - 03:54 0.7 Overcrowded 1 0 

4,8 03:55 - 03:59 0.7 Overcrowded 1 0 

4,9 04:00 - 04:04 0.7 Overcrowded 1 0 

5 04:05 - 04:09 0.7 Overcrowded 1 0 

5,1 04:10 - 04:14 0.7 Overcrowded 1 0 

5,2 04:15 - 04:19 0.7 Overcrowded 1 0 

5,3 04:20 - 04:24 0.7 Overcrowded 1 0 

5,4 04:25 - 04:29 0.7 Overcrowded 1 0 

5,5 04:30 - 04:34 0.7 Overcrowded 1 0 

5,6 04:35 - 04:39 0.7 Overcrowded 1 0 

5,7 04:40 - 04:44 0.7 Overcrowded 1 0 

5,8 04:45 - 04:49 0.7 Overcrowded 1 0 

5,9 04:50 - 04:54 0.7 Overcrowded 1 0 

6 04:55 - 04:59 0.7 Overcrowded 1 0 

6,1 05:00 - 05:04 0.7 Overcrowded 1 0 

6,2 05:05 - 05:09 0.7 Overcrowded 1 0 

6,3 05:10 - 05:14 0.7 Overcrowded 1 0 

6,4 05:15 - 05:19 0.7 Overcrowded 1 0 

6,5 05:20 - 05:24 0.7 Overcrowded 1 0 

6,6 05:25 - 05:29 0.7 Overcrowded 1 0 

6,7 05:30 - 05:34 0.7 Overcrowded 1 0 

6,8 05:35 - 05:39 0.7 Overcrowded 1 0 

6,9 05:40 - 05:44 0.7 Overcrowded 1 0 

7 05:45 - 05:49 0.7 Overcrowded 1 0 

7,1 05:50 - 05:54 0.7 Overcrowded 1 0 

7,2 05:55 - 05:59 0.7 Overcrowded 1 0 

7,3 06:00 - 06:04 0.7 Overcrowded 1 0 

7,4 06:05 - 06:09 0.7 Overcrowded 1 0 

7,5 06:10 - 06:14 0.7 Overcrowded 1 0 

7,6 06:15 - 06:19 0.7 Overcrowded 1 0 

7,7 06:20 - 06:24 0.7 Overcrowded 1 0 

7,8 06:25 - 06:29 0.7 Overcrowded 1 0 

7,9 06:30 - 06:34 0.7 Overcrowded 1 0 

8,2 06:45 - 06:49 0.7 Overcrowded 1 0 

….. …….. ….. ……. ….. ….. 

27,1 22:30 - 22:34 0.7 Overcrowded 1 0 

27,2 22:35 - 22:39 0.7 Overcrowded 1 0 

27,3 22:40 - 22:44 0.7 Overcrowded 1 0 

27,4 22:45 - 22:49 0.7 Overcrowded 1 0 

27,5 22:50 - 22:54 0.7 Overcrowded 1 0 

27,6 22:55 - 22:59 0.7 Overcrowded 1 0 

27,7 23:00 - 23:04 0.7 Overcrowded 1 0 

27,8 23:05 - 23:09 0.7 Overcrowded 1 0 

27,9 23:10 - 23:14 0.7 Overcrowded 1 0 

28 23:15 - 23:19 0.7 Overcrowded 1 0 
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28,1 23:20 - 23:24 0.7 Overcrowded 1 0 

28,2 23:25 - 23:29 0.7 Overcrowded 1 0 

28,3 23:30 - 23:34 0.7 Overcrowded 1 0 

28,4 23:35 - 23:39 0.7 Overcrowded 1 0 

28,5 23:40 - 23:44 0.7 Overcrowded 1 0 

28,6 23:45 - 23:49 0.7 Overcrowded 1 0 

28,7 23:50 - 23:54 0.7 Overcrowded 1 0 

28,8 23:55 - 23:59 0.7 Overcrowded 1 0 

 

Neural network table is called out by below mentioned code. Software selects 

random rows and trains so until system ensures the completion of learning process 

regarding minimize of learning error then apllys test process with unselected data. 

The weights of the neural network is calculated and presented at table table 4.1; 

 

W1 0.007 

W2 0.6 

W3 0.2 

 

Table 4.1: Neural Netwok Weights 

 

And the graphs for the perfomance is at figure 4.2; 

 

 

Figure 4.2: Training performance for Neural Network Part 
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4.2 GENETIC ALGORITHM AS OPTIMIZATION ALGORITHM 

 

After classifying the inputs, system selects one of the GAs to optimize AWT and TTT 

to the two genetic algoritms; 

 

4.2.1 GENETIC ALGORITHMS PART-1: OPTIMIZING AVERAGE WAITING TIME  

 

With respect to figure 4.1, the algorithm allocates hall calls to perform the elevator 

group controller in N floors building. The received hall calls are stored into a list 

according to the moment of the request. 

 

The updated service list of a car consists of the preload condition and the adding 

stops from the current solution. Define the following parameters to be able to 

estimate the waiting time of hall call’s as following: 

 

 HC; Hall Call Floor 

 CF; Car Current Floor 

 NF; Number of Building Floors 

 TF; Inter-Floor Trip Time 

 

The waiting time of a hall call depends on the direction of hall call up or down, the car 

trip direction, and also the relative position of hall call related to the current car floor.  

 

As shown in figure 4.3 thru cases are as follows;  

 

Case (I): If Hall Call Floor is up and less than Car Current Floor, the car trip consists 

of three segments: from Car Current Floor to Top Floor, from Top Floor to 1st floor, 

and from 1st floor to Hall Call Floor. 

 

Case (II): If Hall Call Floor is down, the car trip consists of two segments: from Car 

Current Floor to Top Floor and from Top Floor to Hall Call Floor.  

 

Case (III): If Hall Call Floor is up and greater than or equal Car Current Floor, the car 

trip consists of only one segment: from Car Current Floor to Hall Call Floor.  
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Therefore, the waiting time Ti of the hall call is given by: 

 

   (4.1) 

 

 
    Figure 4.3: Elevator is stopped or going up. 
 

 

As shown in figure 4.4 thru cases are as follows; 

  

Case (I): If Hall Call Floor is down and greater than Car Current Floor, The car trip of 

a going down car consists of three segments: from Car Current Floor to 1st floor, 

from 1st floor to Top Floor, and from Top Floor to Hall Call Floor.  

 

Case (II): If Hall Call Floor is up, the car trip consists of two segments: from Car 

Current Floor to 1st floor and from 1st floor to Hall Call Floor.  

 

Case (III): If Hall Call Floor is down and less than or equal Car Current Floor, the car 

trip consists of only one segment: from Car Current Floor to Hall Call Floor.  
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Therefore, the waiting time Ti of the hall call is given by: 

 

 
 

 (4.2) 

 

 

 

 

 
Figure 4.4: Elevator is going down. 
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Considering optimization algorithm a suitable chromosome must be defined in figure 

4.5 presents the main chromosome structure. 

 

 

Figure 4.5: Example of a chromosome for an elevator for a  20-floor building 

 
 

 

Within the above mentioned chromosome structure, the one chormose has 160 

genes for all four elevator gropus. The first 40 genes belonging the first lift is split up 

from a random 20 genes for up calls and the second 20 genes for down calls 

following the receipt of hall call information. We choose to generate 6 chromosomes 

beczues of at least one chromosome converges the intended solution. Randomly 

splitting chromosome is subjected to crossover process with 0.7 probability and 

mutation process with 0.2 probability by means of the indigenously designed code. In 

consequence of these processes, the optimal result of average waiting time is 

determined. The graphics of the results as shown at figures 4.6, 4.7, 4.8, 4.9, 4.10, 

4.11 and 4.12.  
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Figure 4.6: The result after 1000 iterations and 6 chromosomes 
 

  
 

Figure 4.7: The result after 1000 iterations and 2 chromosomes 
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          Figure 4.8: The result after 1000 iterations and 4 chromosomes 
 

 

 

 

Figure 4.9: The result after 6 chromosomes and 0.8 crossover % 
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Figure 4.10: The result after 6 chromosomes and 0.9 crossover % 
 
 
 

 
 
Figure 4.11 The result after 6 chromosomes and 0.1 mutation % 
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Figure 4.12: The result after 6 chromosomes and 0.01 mutation % 
 
 
 

 

Above graphics show the average waiting time and related calculations with respect 

to changing chromosome number, crossover and mutation percentages. Increase in 

the chromosome number and in the probability of crossover and mutation would 

enable us yielding the positive conclusion in shorter times.  

 

Owing this increase is an optimization problem, optimal chromosome number must 

be determined. Graphics reveal that the structure of 6-chromosoms with 0.7 

crossover and 0.2 mutation probability gives the best result. 
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4.2.2 GENETIC ALGORITHMS PART-2: OPTIMIZING TOTAL TRAVEL TIME AND 

ENERGY CONSUMPTION 

 
The fitness function of GA to optimize travel time regarding defined cases which are 

as follows in figure 4.13; 

 

Case (I): If Hall Call Floor is up and less than Car Current Floor, the car trip consists 

of three segments: from Car Current Floor to Top Floor, from Top Floor to 1st floor, 

and from 1st floor to Hall Call Floor. 

 

Case (II): If Hall Call Floor is down, the car trip consists of two segments: from Car 

Current Floor to Top Floor and from Top Floor to Hall Call Floor.  

 

Case (III): If Hall Call Floor is up and greater than or equal Car Current Floor, the car 

trip consists of only one segment: from Car Current Floor to Hall Call Floor.  

 
 
 

Therefore, the travel time CTj of the hall call is given by: 

 

 

 

 

 

 

 

𝐶𝑇𝑗 =

{
 
 

 
 
[𝐶𝐴R_DF − 𝐶𝐹]𝑇𝐹                      𝐼𝑓 𝑛𝑜 𝐻𝐶 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑

[𝑁𝐹 − 𝐶𝐹]𝑇𝐹                      𝐴 𝐻𝐶 ≥ 𝐶𝐹 𝑎𝑛𝑑 𝐻𝐶 𝑖𝑠 𝑢𝑝

[2𝑁𝐹 − 𝐶𝐹 − 1]𝑇𝐹            𝐴  𝐻𝐶 𝑖𝑠 𝑑𝑜𝑤𝑛

[3𝑁𝐹 − 𝐶𝐹 − 2]𝑇𝐹           𝐴 𝐻𝐶 < 𝐶𝐹 𝑎𝑛𝑑 𝐻𝐶 𝑖𝑠 𝑢𝑝 }
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    Figure 4.13: Elevator is stopped or going up. 
 
 

 

In figure 4.14; 

  

Case (I): If Hall Call Floor is down and greater than Car Current Floor, The car trip of 

a going down car consists of three segments: from Car Current Floor to 1st floor, 

from 1st floor to Top Floor, and from Top Floor to Hall Call Floor.  

 

Case (II): If Hall Call Floor is up, the car trip consists of two segments: from Car 

Current Floor to 1st floor and from 1st floor to Hall Call Floor.  

 

Case (III): If Hall Call Floor is down and less than or equal Car Current Floor, the car 

trip consists of only one segment: from Car Current Floor to Hall Call Floor.  
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Therefore, the travel time of CTj of the hall call is given by: 

 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.14: Elevator is going down. 

 

 

 

 

. 

 

𝐶𝑇𝑗 =

{
 
 

 
 
[𝐶𝐹 − 𝐶𝐴𝑅_𝐷𝐹]𝑇𝐹                      𝐼𝑓 𝑛𝑜 𝐻𝐶 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑

[𝐶𝐹 − 1]𝑇𝐹                      𝐴 𝐻𝐶 ≤ 𝐶𝐹 𝑎𝑛𝑑 𝐻𝐶 𝑖𝑠 𝑑𝑜𝑤𝑛

[𝐶𝐹 + 𝑁𝐹 − 2]𝑇𝐹                                          𝐴 𝐻𝐶 𝑖𝑠 𝑢𝑝

[𝐶𝐹 − 2𝑁𝐹 − 3]𝑇𝐹           𝐴 𝐻𝐶 < 𝐶𝐹 𝑎𝑛𝑑 𝐻𝐶 𝑖𝑠 𝑑𝑜𝑤𝑛}
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Randomly splitting chromosome is subjected to crossover process with 0.7 

probability and mutation process with 0.2 probability by means of the indigenously 

designed code. In consequence of these processes, the optimal result of travel time 

is determined. The graphics of the results as shown at figures 4.15, 4.16, 4.17, 4.18, 

4.19, 4.20 and 4.21.  

 
 

 

 

Figure 4.15: The result after 1000 iterations and 6 chromosomes 
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Figure 4.16: The result after 1000 iterations and 2 chromosomes 

 

          Figure 4.17: The result after 1000 iterations and 4 chromosomes 
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Figure 4.18: The result after 6 chromosomes and 0.7 crossover % 
 

 

Figure 4.19: The result after 6 chromosomes and 0.9 crossover % 
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Figure 4.20: The result after 6 chromosomes and 0.2 mutation % 
 

 

Figure 4.21: The result after 6 chromosomes and 0.01 mutation % 
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Above graphics show the total travel time & energy consumption and related 

calculations with respect to changing chromosome number, crossover and mutation 

percentages. Increase in the chromosome number and in the probability of crossover 

and mutation would enable us yielding the positive conclusion in shorter times.  

 

Owing this increase is an optimization problem, optimal chromosome number must 

be determined. Graphics reveal that the structure of 6-chromosoms with 0.7 

crossover and 0.2 mutation probability gives the best result. 

 

 

In genetic algorithm parts, firstly we guided from a study [8] for average waiting time. 

But this algorithm works all 24 hour in same way and we choose to improve these 

study for a travel time and energy consumption algorithm. The type of this work is 

that, after classifying the inputs with artificial neural network our two algorithms works 

in different conditions. And this type of work makes  our project more efficient.  
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5. SIMULATION 

In this project we have two inputs, which are human population and time data.  We 

can select these parameters from our GUI screen which is below at figures at 5.1 and 

5.2. By using this GUI, user can select time data, human population and hall calls. 

 

 

Figure 5.1: Simulation view for Inputs 
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Figure 5.2: Simulation view 20 Floor and 4 elevator structure  
 

Simulation screen is composed of two displays. Input display is used to make day 

time entries (morning, lunch, evening, night) and the human population (solitary, 

middle-crowded, over-crowded)  which shall draw the program for selection of proper 

algorithm. 

 

Second screen allows making the hall call entries for a building of 20 floors and 4 

cars. Hall call allocations and results are shown by MATLAB screen. 
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6. EXAMPLES OF THE APPLIED METHOD AND COMPARISE RESULTS 

 

Let us evaluate the observations made after the Average Waiting Time algorithm; 

 

The parameters such as each hall calls, travel directions and population have 

influence on simulation results. 

In order to test the performance of the applied hybrid algorithm a senerio has benn 

developed for optimazing average waiting time (GA1). The necessary parameters 

has been selected similiar to [8] which are shown in table 6.2. This senario is as 

follows;  

 

The values set in that study are applicable for a building of 20 flats with 4 elevators. 

In this case, floor numbers 7, 11, 13 and 15 claim hall calls to “down” and floor 

numbers  9 and 12 claim hall calls to “up”. 

 

This indigenous Genetic Algorithm method must allocate 1st car to hall calls at floors 

9, 12 and 2nd car to hall calls at floors 7, 11, 13, 15 but must not assign any hall call 

to 3rd and 4th cars. Our study proves to be in compliance with this requirement. 

 

Due to mechanical constraints (table 6.1), default waiting time of the cars in motion is 

50sec/car. Below tables 6.2, 6.3 and 6.4 depict the improvement of average waiting 

time by the help of this study.  

 

Door Opening 2 sec 

Door Closing 3 sec 

Passenger Transfer 2 sec 

Inter-Floor Trip Time 2 sec 

 

Table 6.1: Constants 
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Algorithm Average 
trip time 

(sec) 

Car1 
trip 
time 
(sec) 

Car2 
trip 
time 
(sec) 

Car3 
trip 
time 
(sec) 

Car4 
trip 
time 
(sec) 

GA [8] 64,5 65 95 48 50 

GA 64,5 65 91 48 50 

 

Table 6.2: Cars Trip Time 

 

Algorithm Total Stops Car1 
Stops 

Car2 
Stops 

Car3 
Stops 

Car4 
Stops 

GA [8] 18 5 9 2 2 

GA 18 5 9 2 2 

 

Table 6.3: Car Stops 

 

 

Hall Calls Waiting Time 
(sec) 

H7 55 

H9 22 

H11 33 

H12 35 

H13 22 

H15 11 

Average 
Waiting Time 

29.7 

 

Table 6.4: Waiting Time Analysis 

 

Comparision of the applied algorithm and previous study for travel time is presented 

in table 6.2. This table gives the same results similiar to table 6.3. The similarity of 

the obtained reultmatches with the previous study. Additionally the proposed 

algorithm calculates waiting time regarded the diffirent hall calls. (Table 6.4) 

 

 

 
 
 
 
 
 



 69 

In a second senario for GA1;  
 

In this case, floor numbers 3, 6, 17 and 18 claim hall calls to “up” and floor numbers 

7, 5 and 11 claim hall calls to “up”. This indigenous Genetic Algorithm method must 

allocate 1st car to hall calls at floors 5, 11,  2nd car to hall calls at floors 3and 6, 4th 

car to hall calls at floors 17, 18 but must not assign any hall call to 3rd car. Our study 

proves to be in compliance with this requirement as shown at table 6.5.  

 

And the waiting time analysis; 

 

Hall Calls Waiting Time 
(sec) 

H3 49 

H5 14 

H6 36 

H11 33 

H17 25 

H18 16 

Average 
Waiting Time 

28.83 

 

Table 6.5: Waiting Time Analysis 

 

 

Secondly, let us evaluate the observations made after the Total Travel Time and 

Energy Consumption algorithm; 

For case I; Floor numbers 7, 11, 13 and 15 claim hall calls to “down” and floor 

numbers  9 and 12 claim hall calls to “up”.  

 

Total Floors with 
Algorithm AWT 

Total Floors with 
Algorithm TTT&EC 

67 47 

 

Table 6.6: Floor Trip Analysis 
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If we use first algorithm all cars goes 67 total floors. But this algoritm (GA2) makes 

this number to 47 as shown at table 6.6. First and third cars are just maket he job 

from hall calls, and the second and fourth cars take all other hallcalls. With this 

algorithm, the total car floors for trip decreases and consequently the consumed 

energy is reduced. 
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7. CONCLUSION 

 

This study employs Hybrid Algorithm in the optimization of average waiting time, 

average travel time and energy consumption in multi-car elevator systems. Hybrid 

Algorithm is composed of two sections. At the entrance, offlined trained Artificial 

Neural Network selects one of the optimization algorithm. Second section is the 

Genetic Algorithm based optimization algorithms that work on-line to optimize 

parameters. Each optimization algorithms are taken from separate studies. Selection 

of this algorithm is performed by ANN by taking into account of certain day time 

intervals and passenger bulge. As the results obtained by single algorithm is 

compared with the results by hybrid algorithm at the same conditions, it is observed 

that hybrid algorithm yields better results at different conditions.  The main contribute 

of this study is the selection of the one of the two optimization algorithm with respect 

to daily conditions and additionaly reducing energy consumption in compare with 

previous study. The study can be improved by implementing the Fuzzy Logic in lieu 

of ANN structure, increasing the number of entries and by forming a different 

simulation structure by using yet developed GUI in C#. 
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