

BASKENT UNIVERSITY

INSTITUTE OF SCIENCE ENGINEERING

USE OF ARTIFICIAL INTELLIGENCE SYSTEMS

IN

CONTROL AND TRAFFIC FLOW GUIDANCE OF THE

GROUP ELEVATORS

ALI BERKOL

MASTER OF SCIENCE, THESIS

2013

GRUP ASANSÖRLERİN DENETİMİNDE VE TRAFİK

AKIŞININ YÖNLENDİRİLMESİNDE AKILLI SİSTEMLERİN

KULLANILMASI

USE OF ARTIFICIAL INTELLIGENCE SYSTEMS

IN

 CONTROL AND TRAFFIC FLOW GUIDANCE OF THE

GROUP ELEVATORS

ALİ BERKOL

Thesis Submitted
in Partial Fulfillment of the Requirements

For the Degree of Master of Science
in Department of Electrical and Electronics Engineering

at Başkent University

2013

This thesis, titled: “Use of Artificial Intelligence Systems in Control and Traffic Flow

Guidance of the Group Elevators”, has been approved in partial fulfillment of the

requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL AND

ELECTRONICS ENGINEERING, by our jury, on 21/06/2013.

Chairman :

 Assoc. Prof Dr. Hasan OĞUL

Member (Supervisor) :

 Assoc. Prof. Dr. Hamit ERDEM

Member :

 Asst. Prof Dr. Derya YILMAZ

 APPROVAL

 …./06/2013

 Prof. Dr. Emin AKATA
 Director

 Institute of Science and Engineering

This thesis is dedicated to;

 My Mother; Füsun Berkol
 My Father; Atilla Berkol

 My Fiance; Lale Deniz Çokbilen
And

 More than an advisor; Dr. Hamit Erdem

 i

ÖZ

GRUP ASANSÖRLERİN DENETİMİNDE VE TRAFİK AKIŞININ

YÖNLENDİRİLMESİNDE AKILLI YÖNTEMLERİN KULLANILMASI

Ali Berkol

Başkent Üniversitesi Fen Bilimleri Enstitüsü

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Günümüzde yüksek katlı binalarda çoklu asansörlerin devreye girmesi, kalabalık bina

sakinlerinin en seri ve minimum enerji ile nasıl taşınabileceği problemini beraberinde

getirmiştir. Grup Asansör Kontrol Sistemi, iki veya daha fazla sayıda asansör

kabininin en uygun enerji, zaman ve talep dengesi gözetilerek sistematik olarak

yönetilmesidir. Kabinin, katlardan gelen her bir çağrıya yanıt verirken bekleme

zamanı, iniş-çıkış süreleri, enerji tüketimi, kullanıcı için kullanım kolaylığı vb. en ideal

yönlendirme ile çalıştırılması amaçlanmıştır. Akıllı Sistemler, yukarıda bahsedilen

parametrelerin en uygun değerlemelerini yapabilen esnek hesaplama yöntemi

sunmaktadır. Mühendislik tasarım problemi olarak bakıldığında bekleme ve ulaşım

süresinin ayarlanması, bu hizmet verilirken minimum enerji harcanması bir eniyileme

problemidir. Bu problem karmaşık bir problem olduğu için çözüme yönelik akıllı

sistem tabanlı yöntemlerin uygulanması uygun görülmüştür. Bu çalışmada genetik

algoritma ve yapay sinir ağlarından oluşan hybrid bir yöntem uygulanarak sistemin

performansını arttırmak amaçlanmıştır. Bu çalışma, 20 katlı binanın 4 kabinli asansör

sisteminde simule edilmiş ve benzer çalışmalarla karşılaştırılmıştır.

ANAHTAR SÖZCÜKLER: Asansör, Asansör Grup Kontörlü, Yapay Sinir Ağları,

Genetik Algoritma, Optimizasyon

Danışman: Doç.Dr. Hamit Erdem, Başkent Üniversitesi, Elektrik-Elektronik Mühendisliği

Bölümü.

 ii

ABSTRACT

USE OF ARTIFICIAL INTELLIGENCE SYSTEMS IN CONTROL AND TRAFFIC

FLOW GUIDANCE OF THE GROUP ELEVATORS

Ali Berkol

Instıtute of Science Engineering

Electrical and Electronics Department

Nowadays highrise buildings with multicar elevator systems bring the question of

optimal car movements as how to convey the big populations of residences in the

most quickest and efficient way. The Elevator Group Controller is a control system

that accomplishes the systematic management of two or more elevators so that the

elevator system is operated at best balance of energy, time and demand. The

objective is that, elevator cars shall be assigned correspondingly in response to hall

calls, so as to optimize waiting time, travel time, power consumption, passengers’

comfort, etc. Artificial Intelligence presents soft computing options in designing a

controller that capable of solving aforementioned numerous objectives. In the

engineering design perspective, regulation of average waiting time and travel time

with minimum energy consumption is an optimization problem. Since this is a

complex problem, intelligent system based methods are chosen to be suitable for the

solution of the same. This thesis aims to improve the system performance by

applying a hybrid method that comprise of genetic algorithm and artificial neural

network. This study simulates 20-floor building with a 4-multicar system and

compares with the similiar studies.

KEY WORDS: Elevator, Elevator Group Control, Neural Network, Genetic Algoritm,

Artificial Intelligence, Optimization.

Advisor: Associated Prof. Dr. Hamit Erdem, Başkent University, Electrical and

Electronics Department.

 iii

TABLE OF CONTENTS

Page

ÖZ…………......………………………………………………………………………………i

ABSTRACT.....……………………………………………………………………………....ii

TABLE OF CONTENTS…..………………………………………………………………..iii

LIST OF ABBREVIATIONS………………………………………………………………..v

LIST OF FIGURES………………………………………………………………………….vi

LIST OF TABLES…………………………………………………………………………..viii

1 INTRODUCTION..………………………………………………………………………..1

 1.1 PROJECT OVERVİEW………………………………..…………………………1

2 ELEVATOR SYSTEMS..…………………………………………………………….....6

3 ARTIFICIAL INTELLIGENCE AND GENETIC ALGORITHM………………….....17

3.1. ARTIFICIAL NEURAL NETWORK SYSTEMS.……………...................17

3.1.1 TYPE OF LEARNING………………………………………………..22

 3.1.1.1 SUPERVISED LEARNING………………………………..22

 3.1.1.2 REINFORCEMENT LEARNING………………………….23

 3.1.1.3 UNSUPERVISED LEARNING…………………………….24

3.1.2 TYPES OF ARTIFICIAL NEURAL NETWORKS………………….25

 3.1.2.1 SINGLE LAYER FEED FORWARD NETWORK…….….25

 3.1.2.2 MULTI LAYER FEED FORWARD NETWORK……….…26

 3.2 GENETIC ALGORITHM…….……………………………………………..27

 3.2.1 METHODOLOGY……………………………………………………..30

 3.2.2 SELECTION……………………………………………………………31

 3.2.2.1 FITNESS PROPORTIONATE SELECTION……………...31

 3.2.2.2 ORDINAL SELECTION……………………………………..32

 3.2.2.3 ALTERATION TO IMPROVE GOOD SOLUTIONS……...32

 3.2.3 CROSSOVER………………………………………………………….32

 3.2.3.1 K-POINT CROSSOVER…………………………………….33

 3.2.3.2 UNIFORM CROSSOVER…………………………………..33

 3.2.3.3 UNIFORM ORDER BASED CROSSOVER……………....33

 3.2.3.4 ORDER BASED CROSSOVER……………………………34

 3.2.3.5 PARTIALLY MATCHED CROSSOVER…………………..35

 3.2.4 MUTATION……………………………………………………………..36

 3.2.5 LIMITATIONS…………………………………………………….…….37

 iv

4 APPLICATION OF HYBRID METHOD TO GROUP ELEVATOR CONTROL.....41

 4.1 ANN FOR THE SELECTION OF OPTIMIZATION ALGORIHTM..……42

 4.2 GENETIC ALGORITHM AS OPTIMIZATION ALGORITHM..…….……49

 4.2.1 GENETIC ALGORITHM PART-1: AVERAGE WAITING TIME….49

 4.2.2 GENETIC ALGORITHM PART-2: TOTAL TRAVEL TIME………..57

5 SIMULATION…………………………………………………………………………….65

6 EXAMPLES OF THE APPLIED METHOD AND COMPARISE RESULTS........ 67

7 CONCLUSION………………………………………………………………………….71

REFERENCES...………………………………..………………………………………....72

 v

LIST OF ABBREVIATIONS

MCES Multicar Elevator Systems

EGCS Elevator Group Control Systems

GNP Genetic Network Programming

DFGS Destination Floor Guidance System

DDES Double Deck Elevator Systems

GA Genetic Algorithm

GP Genetic Programming

EC Energy Consumption

AWT Average Waiting Time

LWP Long Waiting Percentage

ATT Average Travel Time

IQS Interconnected Queue Selective

IDC Interconnected Down Collective

IFC Interconnected Full Collective

RL Reinforcement Learning

ANN Artificial Neural Network

 vi

LIST OF FIGURES

Figure 1.1: A typical EGC mechanism for an 8-floor building………………………...14

Figure 2.1: The Interval and the passenger service level parameters…………….….19

Figure 2.2: Possible movements of elevator A from every floor……………………….23

Figure 2.3: Combined possible paths on an elevator system with three elevators….24

Figure 2.4: A general structure of an elevator group control system………………….25

Figure 3.1: Neural Network Block Diagram……………………………………………...32

Figure 3.2: Supervised Learning………………………………………………………….33

Figure 3.3: Reinforcement Learning……………………………………………………..34

Figure 3.4: Unsupervised Learning……………………………………………………….35

Figure 3.5: A Single Layer-Feedforward Network………………………………………35

Figure 3.6: A Multi Layer-Feedforward Network………………………………………...36

Figure 3.7: Genetic Algorithm Evolutionary Cycle…………………………………..….39

Figure 3.8: Crossover & Mutation…………………………………………………..…….43

Figure 3.9: Illustration of Uniform order crossover ……………………………………..44

Figure 3.10: Illustration of Order-Based crossover………………………………..……45

Figure 3.11: Illustration of Partially Matched Crossover…………………………….....45

Figure 3.12: Illustration of Cycle Crossover…………………………………………..…46

Figure 4.1: Block Diagram of the Project…………………………………………….…..51

Figure 4.2: Training performance for Neural Network Part…………………….………58

Figure 4.3: Elevator is stopped or going up……………………………………………...60

Figure 4.4: Elevator is going down……………………………………………………..…61

Figure 4.5: Example of a chromosome for an elevator for a 20-floor building………62

Figure 4.6: The result after 1000 iterations and 6 chromosomes………………….….63

Figure 4.7: The result after 1000 iterations and 2 chromosomes………………..……63

Figure 4.8: The result after 1000 iterations and 4 chromosomes……………………..64

Figure 4.9: The result after 6 chromosomes and 0.8 crossover %.............................64

Figure 4.10: The result after 6 chromosomes and 0.9 crossover %...........................65

Figure 4.11 The result after 6 chromosomes and 0.1 mutation %.............................65

Figure 4.12: The result after 6 chromosomes and 0.01 mutation %..........................66

Figure 4.13: Elevator is stopped or going up…………………………………...………68

Figure 4.14: Elevator is going down……………………………………………….…….69

Figure 4.15: The result after 1000 iterations and 6 chromosomes………………..….70

 vii

Figure 4.16: The result after 1000 iterations and 2 chromosomes……………………71

Figure 4.17: The result after 1000 iterations and 4 chromosomes……………………72

Figure 5.1: Simulation view for Inputs…………………………………………………...75

Figure 5.2: Simulation view 20 Floor and 4 elevator structure …………………….....76

 viii

LIST OF TABLES

Table 4.1: Neural Netwok Coefficients…………………………………………………..59

Table 6.1: Constants……………………………………………………………………….78

Table 6.2: Cars Trip Time…….……………………………………………………………79

Table 6.3: Car Stops……………………………………………………………………….79

Table 6.4: Waiting Time Analysis…………………………………………………………79

Table 6.5: Waiting Time Analysis…………………………………………………………80

Table 6.6: Floor Trip Analysis……………………………………………………………..80

 1

CHAPTER 1

1. INTRODUCTION

1.1 Project Overview

Today's urban life cannot be imagined without elevators. An elevator system is a

system that transports passengers from one floor to another in a building. As vertical

transportation vehicles, elevators were invented to ease the movement of people

from one floor to another by shortening the time spent for the movement and by

reducing the use of much human physical energy to climb up and down through the

stairs. As many tall buildings with increasing number of floors were constructed in

recent years, the need for better transportation services has become an important

issue in the elevator industry. More elevators were installed, and a group control

system was employed to coordinate the operation of individual elevators in a group

manner. To enhance the effectiveness and efficiency of the Elevator Group Control

Systems (EGCS) various control strategies and dispatching algorithms were

developed over the years by using a variety of techniques. Passengers are

transported in respond to their requests, which consists of hall calls and car calls.

Passengers often have a long wait for the next elevator because they missed an

elevator that left a few seconds previously; passengers often have to wait for the door

to close even if no one is going to board. A passenger who wants to go to another

floor from the current floor presses a direction button (hall call) and waits for an

elevator to arrive, then enters the elevator and presses a floor button (car call) in the

elevator. Basically, an elevator system is controlled by a two level control hierarchy

that must solve two different control problems. The lower level task is to command

each elevator to move up or down, to stop or start and to open and close the door.

The higher level coordinates the movement of a group of elevators through a set of

logical rules crafted to improve the system performance. This problem is solved by

means of a group control system with the aid of a group supervisory control strategy.

[3]

Control systems comption problem the optimization of energy, travel time and waiting

time. Related elevator problems, such as average waiting time, travel time, energy

 2

consumption, traffic flow, enter into the engineering concern where engineers worked

in seeking proper solutions addressing to it.

Optimization of waiting time and energy consumption in particular is regarded as one

of the basic problems of the elevator supervisory control and has been subject of

miscellaneous studies so far. Multicar Elevator, MCE, systems introduce the idea of

operating several elevator cars within a single shaft. This feature provides the

advantage of saving space within the building while maintaining the transportation

capacity level of conventional single-car elevators. ThyssenKrupp, a German elevator

manufacturer, implemented the first MCE system, consisting of two elevator cars per

shaft, at Stuttgart University in 2002. MCE group control method function to minimize

the expected schedule completion time, and idle-car parking strategies to improve

the call-allocation performance. With respect to the increase in the number of cars,

algorithm achieved a greater reduction in the service completion time than the one of

a method applying the direction coordination approach. [2]

To apply high level solutions, many simple heuristic approaches have been

developed, such as collective control in which a car stops to serve the nearest call in

its current movement direction, the longest queue first, and the highest unanswered

floor first. Advanced intelligent technologies such as expert system, fuzz logic,

artificial neural network, and reinforcement learning have been used to develop

intelligent elevator scheduling methods. [7] Genetic network programming (GNP),

one of the evolutionary computations, can realize a rule-based MCES due to its

directed graph structure of the individual, which makes the system more flexible. In a

paper, they use “The destination floor guidance system” (DFGS). [4] Some studies

with Double-deck elevator system (DDES) is one of the solutions, where two cages

are connected vertically in each shaft. [5] In an another study, the self-tuning FLC

only exploits the waiting time for its tuning. [6] In another study, the multi-elevator

system under consideration is an idealized system. It consists of k elevators traveling

at unit speed. Stopping, entering, exiting, starting, and turning may take individual

additional time, but we will not mention this in the sequel, for the ease of exposition.

Each elevator has capacity one, i.e., it can only carry one request at a time. The

difference in the literature between an online-algorithm and a (control) policy is that

an online-algorithm has never any information about the input distribution, whereas a

policy may know the input distribution. Moreover, online algorithms are usually

 3

evaluated by competitive analysis, which measures their worst-case deviation from

an a-posteriori offline-optimum solution on finite input sequences, whereas policies

are usually evaluated by expected performance w.r.t. to an input distribution, an

average measure. Nearest-Neighbor minimizes the length of the server’s empty

move to the next request. For unit speed, this is the same as minimizing the start

time of the next loaded move. [10] For example, in figure 1.1 shows a typical

elevator group control mechanism for an 8-floor building.

Passenger arrivals are random events, where actual passenger arrival rates in

buildings can be assumed to follow the Poisson distribution.

Four criteria are used as performance measures;

 Average waiting time (AWT) is the average time until the service elevator

arrives at the floor after a passenger presses a hall call button.

 Average Traveling Time (ATT) is the average time until a passenger drops off

at the destination floor after he/she gets into the car.

 Long Waiting Percentage (LWP) is the percentage of the passengers waiting

over 60 s after a passenger presses a hall call button until he/she enters into a

car.

 Energy Consumption (EC) is the total energy of all the elevators during their

operation.

In the typical office buildings, the traffic is divided into three traffic patterns;

 Regular Traffic: during the work time, passengers move up and down among

several different floors.

 Up-peak Traffic: typically in the morning when people arrive for work, most of

the passengers travel from the lobby to the upper floors.

 Down-peak Traffic: at the end of the day, most of the passengers leave the

floors and travel primarily to the lobby in order to exit the building.

Regarding this traffic follow a software has been expanded.

 4

Figure 1.1: A typical EGC mechanism for an 8-floor building.

In another study with reinforcement learning, therefore an intelligent elevator control

system has been applied to solve this problem of optimization of multiple objectives.

However, an optimum solution to this problem is not known yet, or perhaps not

possible due to its stochastic nature. In Reinforcement Learning (RL) algorithms have

been demonstrated to be powerful heuristic methods for addressing large-scale

control problems and have been applied to elevator group control. A team of RL

agents, each of which is responsible for controlling one elevator car was used. The

team receives a global reward signal which appears noisy to each agent due to the

effects of the actions of the other agents, the random nature of the arrivals and the

incomplete observation of the state. The results demonstrated the power of multi-

agent RL on a very large scale stochastic dynamic optimization problem of practical

utility. This study optimize the passenger waiting time.[18]

 5

Along with the other studies, this thesis incorporates offline and online stages by

using hybrid algorithms to improve to optimize average waiting time, total travel time,

energy consumption. The algorithm shall be generated as such, the offline trained

ANN shall select the online optimization algorithm which is capable of running in

different conditions. Namely, the system comprises one classifier ANN structure and

three optimization algorithm.

Altered optimization techniques shall come into effect relative to different day time

periods and various conditions encountered. Classifier ANN engages the applicable

optimization algorithm. Clock time and population number are the inputs to this

system, and optimized average waiting time, total travel time and energy

consumption are the outputs. The first stage of this thesis is performed by using

MATLAB. MATLAB based elevator optimization is carried out as per obtained results.

This study simulates 20-floor building with a 4-multicar system.

The thesis is organized as follows; chapter two provides elevator systems. Chapter

three provides neural network and genetic algorithm, chapter four gives original work

and simulations.

 6

CHAPTER 2

2. Elevator Systems

An elevator system is a transportation mechanism that transfers passengers from

one floor to another in a building. Elevators have been built throughout history but the

first modern passenger elevators were developed no more than about 150 years ago.

Steam and hydraulic elevators had already been introduced by 1852, when Elisha

Otis made one of the most important elevator inventions, the clutch, which prevented

the elevator from falling. Following this, in 1857, the first passenger elevator was

installed in the store of E. Haughwout & Company, New York. With the advent of

modern high-rise buildings, more elevator history than in any other single location

was made in 1889, when the 321-meter-high Eiffel Tower was built for the Universal

Exposition in Paris. In the Eiffel Tower, hydraulic double-deck elevators operated

between ground level and the second platform. Between the second and third

platforms two cars counterbalancing each other handled the traffic. The early

hydraulic and steam-driven elevators functioned with pressurized water, which was

either taken from the city water pipes or provided by steam engines. The elevator car

was connected to a long piston that moved up when water was pumped into a

cylinder, and came down when water was released by a hydraulic valve In 1880

Werner von Siemens introduced the utilization of electric power. Soon after, the

geared or gearless traction electric elevators started to replace the hydraulic

elevators. The development of electric elevators added impetus to high-rise

construction. The fastest elevators today move at about 10 meters per second.

Elevators were first distributed by Strömberg. The Kone corporation was registered in

1910. In 1918 it started to design its own elevators, and the first four Kone elevators

were delivered later that year. The first geared traction elevators from Kone were

delivered to the Stockmann department store in 1928. Kone started to design its own

AC and DC motors, and in the 1930's almost all the elevator components were being

produced in-house. In electric elevators, the machinery for driving the elevator is

usually located directly above the elevator hoistway in a machine room. After the

middle of this century, hydraulic and ram elevators made a come-back, since it was

cheaper to place the machine room at the bottom of the building. Modern hydraulic

 7

elevators function with oil, which is pumped by electric power. Since the speed of

hydraulic elevators is low, they became popular especially in residential buildings,

and in installations where heavy loads are transported. A recent innovation that

requires no oil is a new hoisting unit where a synchronous axial motor is installed in

the elevator shaft. With this concept the control boards are situated at the highest

landing floor and no separate machine room is required. In a single elevator system

the elevator control handles all the equipment. In the case of several elevators where

each elevator is in its own shaft, the transportation capacity can be increased by a

common group control that delivers the hall calls to the elevators. The first electrical

controls were realized by relay techniques, the same kind of relays that were used in

telephone exchanges. In the 1970's the principles of relay equipment were applied to

electronic controls. In Kone, the first completely microprocessor-based control

system was developed in the beginning of the 1980's,and it was first tested with a

hybrid traffic simulator. With microprocessors, mathematical methods and

sophisticated call allocation algorithms are used to optimize hall calls to the elevators.

The rapid development of processor technology has made it possible to distribute the

"intelligence" from the machine room to the elevator components, even to the hall call

buttons. In a modern group control, a huge amount of information is handled during

the hall call allocation compared to the old relay controls.

The average waiting times and queue lengths for a multi-car elevator system have

been modelled with multi-bulk service queuing theory for the up-peak traffic. The up-

peak situation, where passengers arrive at one entrance floor, i.e. at the lobby, and

travel to the upper floors, is the most demanding for the elevator transportation

capacity. In an up-peak situation the average time it takes for an elevator to serve the

car calls and return back to the lobby, i.e. round trip time, is calculated using

probability theory. In conventional elevator planning the up-peak handling capacity

and interval are calculated from the round trip time value. The elevator group is

chosen using standardized handling capacity and interval values for different types of

buildings. In a real building, passengers arrive at several floors at the same time.

Then the group control has a great effect on the passenger service times. The impact

of the group control decisions on the passenger service times in different traffic

situations cannot be calculated analytically. Passenger service times and elevator

performance can be determined by simulating the contribution between passenger

 8

traffic flow and the elevator performance. Passengers arrive at an elevator system

randomly and they are served in batches. The actual passenger arrival rates in a

building can be assumed to follow the Poisson distribution. When a passenger

arrives at a landing floor and gives a hall call, the group control allocates the call to

the most suitable elevator. The time a hall call(landing call) stays on is called a hall

call time. When a selected elevator starts to decelerate to the call floor, the hall call is

cancelled. The system response time and call waiting time resemble the definition of

the hall call time. Those times are measured from the moment of hall call registration

until the car arrives to the floor and starts opening its doors.

In figure 2.1 refers, the passenger waiting time starts when a passenger arrives at a

landing floor, and ends when he enters the elevator. The passenger ride time starts

when a passenger enters a car and gives a car call (destination call), and ends when

he exits the car at the destination floor. The total time a passenger spends within an

elevator system first by waiting and then by riding inside a car is called the journey

time, also called the service time and the time to destination. Journey time is

approximated by average time to destination transit time to destination or by

maximum passenger transit time to the destination. The travel time from the bottom

to top floor at full speed is used to define the elevator speed. In elevator planning, a

theoretical up-peak situation where all the elevators leave the lobby with 80 per-cent

load is normally used. The two most important planning parameters, the up-peak

interval and handling capacity, are calculated from the round trip time. The round trip

time starts when a car opens its doors at the lobby, and continues until an elevator

has made a trip around the building and starts to open its doors after returning to the

lobby. The interval is the average time between car departures from the lobby. The

handling capacity gives the number of passengers the elevator system can transport

in five minutes during up-peak. [15]

 9

Figure 2.1: The Interval and the passenger service level parameters

The first elevators were operated by simple mechanical devices, such as "hand-rope"

control. A passenger could call an elevator by operating a rope on both sides of the

car. Since the shafts were not fully closed, the operation of elevators was quite

unsafe. A primitive form of elevator control in a single car was based on an attendant-

operated electrical car switch Using the switch, the attendant could manually drive

the car up or down and decide at which floors to stop. The elevator efficiency and

safety were increased with signaling devices at landings. Push-buttons were

introduced in the 1920's to give the attendant information on the traffic demand, and

the elevator shafts became closed. If no memory for the hall calls is provided, the

calls are handled with a push-button control. With the non-collective controls the

traffic demand is handled by serving each hall call at a time. A new hall call can be

registered after the service of the previous call is completed. This control principle is

used in freight elevators. When the registered calls are memorised, the elevator can

pick several hall calls during the up or down trip. If there is only one call button at

each floor, the calls can be arranged in a time queue according to the order they

have been registered, or they can be served collectively. In the Interconnected

Queue Selective (IQS) control system the hall calls are picked one at a time from the

 10

time queue so that the oldest call is served first. This type of control is used, for

instance, in hospitals, where the bed calls are served one at a time. In collective

control the car stops in floor sequence at each hall call. The Interconnected Down

Collective (IDC) control system is often used in buildings where the traffic is mostly

two-way between the ground level and the upper floors. This kind of traffic occurs, for

example, in residential buildings. The elevator collects the hall calls during the down

trip, i.e. serves the calls in sequence, stopping always at the nearest call floor. The

IQS and IDC controls can be used by one car only or they can be applied for a group

of elevators.

After automatic doors were developed in the 1950's, the traffic demand could be

handled without attendants. In tall buildings, hall call buttons for both up and down

directions were adapted. The most common call allocation principle, especially in the

old relay controls, is the Interconnected Full Collective (IFC) control system. With two

buttons at each floor, an elevator can pick the nearest hall call in front of the car in its

direction of travel. The car calls given inside the elevator are always served in

sequential order. After serving all the calls in the travel direction, the car moves to the

furthest hall call in the opposite direction, where it reverses its direction. The

efficiency of an elevator group was improved with a common central logic, the group

control. The hall calls could be shared between several elevators where a common

hall call button exists at every floor. The group control chooses the best elevator from

a group of elevator cars to serve a given hall call. Group control dispatches cars to

floors also for other reasons than hall calls, such as for parking, or if more than one

elevator is needed at a busy floor. Elevators can be disconnected from the group for

special service modes, such as emergency service, fireman's service or director/VIP

service.

A disconnected elevator operates independently of the other elevators. One

drawback of the collective control principle is the bunching of elevators. During heavy

traffic there are a lot of hall calls to serve and the elevators have a tendency to move

side by side, i.e. they start to bunch. This happens because elevators always stop at

the nearest call and by-pass hall calls only when fully loaded. One of the early

methods of preventing the bunching of elevators was to dispatch cars from the lobby

at proper time intervals. A bus-type schedule for the elevators was applied. Elevators

 11

were delayed at the lobby for a certain time before they were sent to the upper floors.

By delaying elevators at the lobby, part of the handling capacity was lost. In the

1970's collective control was first adapted to electronic controls. With electronic

controls, however, collective controls were improved by giving priorities for the long

or timed-out hall calls. Hall calls that had been on for a short time, were bypassed to

get faster service for the timed-out calls. To some extent the elevators were kept

apart from each other with this control. Peak traffic situations were handled with

separate operation modes. In up-peak operation modes, such as next car up,

dispatching intervals, zoning of floors, and later a channeling option were used.

The allocation principles of relay and electronic controls were brought to the

microprocessor controls at the beginning of the 1980's. Hall calls were still prioritized

according to the call service times. A slight but fundamental change was made in the

philosophy. It was no longer expected that hall call times would become long before

the "timed out" hall calls were given better service. The hall call times were forecast

with mathematical calculations. When it was found that a hall call would become long

with the normal service order, a car would bypass some hall calls to provide faster

service to this call before it became long. When bypassing other hall calls, it was

checked that the bypassed calls could be served by other cars within an acceptable

time frame. On some occasions bonuses and penalties were used.

For example, a bonus was given to an elevator with a car call coinciding with the hall

call when estimating the service time to the hall call. On the other hand, a penalty

was given to some elevators, such as parked cars, when choosing the best car to

serve a hall call. One important feature in the modern group supervisory controls is

the time when hall calls are finally reserved to the cars. The reservation moment can

be seen in the signalization at the landing call floor. As soon as the hall call is finally

designated to a car, an arrow above the car-door opening is illuminated.

Simultaneously an audible gong signal is given to inform the passenger which car is

going to serve the given hall call. The final reservation must be stable not to mislead

the passenger. To get the best optimization result, the reservation is often made at

the latest possible moment, i.e. when the elevator starts to decelerate to the hall call

floor. The other extreme is to reserve hall calls finally to an elevator immediately the

hall call is given. This shortens the psychological waiting time of the passengers.

 12

Passengers have more time to gather around the arriving elevator, which shortens

the loading time. When the hall calls are allocated at an early stage, the future traffic

events change the situation so that the early reservations are not as optimal as if the

allocation was made at a later instant. In the course of the fast development of

microprocessor technology, the call allocation algorithms have become more

sophisticated. Mathematical methods are applied in the elevator controls. The traffic

in the building is measured and learned in statistical forecasts. Statistical forecasts

are used when allocating new hall calls to the cars. Statistical traffic forecasts are

also adapted to the controls with a late hall call reservation, even though the

allocation principle is not critical to the future traffic events. The methods that learn

and adapt to the traffic of a building, and use rules based on expertise are connected

to artificial intelligence in the elevator technology. The uncertainties in the predictions

and control actions are described by fuzzy rules. Neural networks can make the

elevator controls completely autonomous so that the control parameters are tuned by

the traffic of the building. Then the significance of pre-defined expert rules diminishes

In the implementation of an elevator system, the following operating constraints must

be met.

1. An elevator car must stop at all floors requested by the passengers traveling

inside it.

2. An elevator car must not change its moving direction until all passengers

traveling in the current direction have descended at their corresponding

destination floors.

As lots of buildings with more than 40 floors are being built recently, so the elevator

traffic control has become very important in the design of such high rise buildings. In

general, one elevator group could serve up to 15–20 floors in the buildings

depending on the building population. [4]

When a passenger arrives at a floor and gives a hall call, the system assigns the call

to a suitable car. The passenger waiting time starts when a passenger arrives at a

floor and presses a hall call button and it ends when the passenger enters into the

car. Passenger traffic flow is conventionally classified into the following three

patterns:

 13

 Up-peak traffic: most passengers move up from the lobby to the upper floors

and downward movements are rare (mostly in the early morning).

 Down-peak traffic: most passengers leave the floors and move down to the

lobby and upward movements are rare (mostly in the evening).

 Regular traffic: passengers move up and down among several different floors

(during the work time).

Up-peak and down-peak traffic are not simply equivalent in the sense of opposite

directions. Up-peak traffic has a single arrival floor and many destinations, while

down-peak traffic has many arrival floors and a single destination.

In an elevator system, many combinations of movements are possible. For an

instance, in an elevator system with N floors, there are N-1 possible serviceable

floors. an elevator from floor 1, can pass N-1 floors in respond to hall calls or car

calls. Combining all the possible movements of an elevator from every floor, an

elevator path for a building with 6 floors as shown at figure 2.2.

Figure2.2: Possible movements of elevator A from every floor.

In Figure 2.2, the path from A1 to A2 depicts the movement of elevator A from floor 1

to floor 2 (upward movement), and the path from A2’ to A1’ illustrates the movement

from floor 2 to floor 1 (downward movement).

 14

In high rise buildings, it is essential that the elevator systems comprise more than

one elevator car for efficient transportation. For an elevator system that consists of

three elevator cars, figure 2.3 can be obtained to demonstrate the paths.

Figure 2.3: Combined possible paths on an elevator system with three elevators

The elevator group control system is a control system that manages systematically

three of more elevators in a group to increase the service for passengers, and reduce

the cost such as power consumption. Most of the elevator group control systems

have used the hall call assignment method which assigns elevators in response to a

passenger’s call. The hall call assignment method assigns a new hall call to an

elevator having the smallest evaluation function value among all the elevators.

 15

Elevator group control systems are control systems that manage multiple elevators in

a building in order to efficiently transport the passengers. The main requirements of

an elevator group control system in serving both, car and hall calls are to provide

even service to every floor in a building, to minimize the time spent by passengers

waiting for service, to minimize the time spent by passengers to travel from one floor

to another, to serve as many passengers as possible in a given time, to optimize

power consumption, etc. Flow chart of the system is at figure 2.4 [19]

Figure 2.4: A general structure of an elevator group control system

Numerous conventional algorithms have been used to realize the elevator group

controller which are listed as follow:

1. Hall call assignment method

2. Minimum long wait algorithm

3. Area-based control algorithm

4. Car-attribute based evaluation

5. Floor-attribute based evaluation

 16

These conventional algorithms are based on evaluation functions which are

calculated each time a hall call is made. An elevator group control system manages

elevators so as to minimize the evaluation criteria; it is, however, difficult to satisfy all

criteria or to take the actual situation of a building into account. Therefore, it is

challenging for the elevator group controller to select a suitable elevator since an

elevator system can very complex for the following reasons:

1. If a group controller manages n elevators and assigns p hall calls to the

elevators, the controller considers np cases.

2. The controller must consider hall calls which will be generated in the near

future.

3. It must consider many uncertain factors, such as number of passengers at the

floors where hall calls and car calls are generated.

4. It must be possible for a system manager to change the control strategy.

Some managers want to operate the system to minimize passengers’ waiting

time while others want to reduce the power consumption.

 17

CHAPTER 3

3. ARTIFICIAL INTELLIGENCE AND GENETIC ALGORITHM

3.1 ARTIFICIAL NEURAL NETWORK SYSTEMS

The term neural network was traditionally used to refer to a network or circuit of

biological neurons. The modern usage of the term often refers to artificial neural

networks, which are composed of artificial neurons or nodes. Thus the term may refer

to either biological neural networks are made up of real biological neurons or artificial

neural networks for solving artificial intelligence problems.

Unlike von Neumann model computations, artificial neural networks do not separate

memory and processing and operate via the flow of signals through the net

connections, somewhat akin to biological networks.These artificial networks may be

used for predictive modeling, adaptive control and applications where they can be

trained via a dataset.

A biological neural network is composed of a group or groups of chemically

connected or functionally associated neurons. A single neuron may be connected to

many other neurons and the total number of neurons and connections in a network

may be extensive. Connections, called synapses, are usually formed from axons to

dendrites, though dendrodendritic microcircuits and other connections are possible.

Apart from the electrical signaling, there are other forms of signaling that arise from

neurotransmitter diffusion.

Artificial intelligence, cognitive modelling, and neural networks are information

processing paradigms inspired by the way biological neural systems process data.

Artificial intelligence and cognitive modeling try to simulate some properties of

biological neural networks. In the artificial intelligence field, artificial neural networks

have been applied successfully to speech recognition, image analysis and adaptive

control, in order to construct software agents (in computer and video games) or

autonomous robots.

 18

Historically, digital computers evolved from the von Neumann model, and operate via

the execution of explicit instructions via access to memory by a number of

processors. On the other hand, the origins of neural networks are based on efforts to

model information processing in biological systems. Unlike the von Neumann model,

neural network computing does not separate memory and processing.

Neural network theory has served both to better identify how the neurons in the brain

function and to provide the basis for efforts to create artificial intelligence. The

preliminary theoretical base for contemporary neural networks was independently

proposed by Alexander Bain (1873) and William James (1890). In their work, both

thoughts and body activity resulted from interactions among neurons within the brain.

For Bain, every activity led to the firing of a certain set of neurons. When activities

were repeated, the connections between those neurons strengthened. According to

his theory, this repetition was what led to the formation of memory. The general

scientific community at the time was skeptical of Bain’s theory because it required

what appeared to be an inordinate number of neural connections within the brain. It is

now apparent that the brain is exceedingly complex and that the same brain “wiring”

can handle multiple problems and inputs.

James’s theory was similar to Bain’s, however, he suggested that memories and

actions resulted from electrical currents flowing among the neurons in the brain. His

model, by focusing on the flow of electrical currents, did not require individual neural

connections for each memory or action.

C. S. Sherrington (1898) conducted experiments to test James’s theory. He ran

electrical currents down the spinal cords of rats. However, instead of demonstrating

an increase in electrical current as projected by James, Sherrington found that the

electrical current strength decreased as the testing continued over time. Importantly,

this work led to the discovery of the concept of habituation.

McCulloch and Pitts (1943) created a computational model for neural networks based

on mathematics and algorithms. They called this model threshold logic. The model

paved the way for neural network research to split into two distinct approaches. One

 19

approach focused on biological processes in the brain and the other focused on the

application of neural networks to artificial intelligence.

In the late 1940s psychologist Donald Hebb created a hypothesis of learning based

on the mechanism of neural plasticity that is now known as Hebbian learning.

Hebbian learning is considered to be a 'typical' unsupervised learning rule and its

later variants were early models for long term potentiation. These ideas started being

applied to computational models in 1948 with Turing's B-type machines.

Farley and Clark (1954) first used computational machines, then called calculators, to

simulate a Hebbian network at MIT. Other neural network computational machines

were created by Rochester, Holland, Habit, and Duda (1956).

Rosenblatt (1958) created the perceptron, an algorithm for pattern recognition based

on a two-layer learning computer network using simple addition and subtraction. With

mathematical notation, Rosenblatt also described circuitry not in the basic

perceptron, such as the exclusive-or circuit, a circuit whose mathematical

computation could not be processed until after the backpropagation algorithm was

created by Werbos (1975).

Neural network research stagnated after the publication of machine learning research

by Minsky and Papert (1969). They discovered two key issues with the computational

machines that processed neural networks. The first issue was that single-layer neural

networks were incapable of processing the exclusive-or circuit. The second

significant issue was that computers were not sophisticated enough to effectively

handle the long run time required by large neural networks. Neural network research

slowed until computers achieved greater processing power. Also key in later

advances was the backpropogation algorithm which effectively solved the exclusive-

or problem (Werbos 1975).

The parallel distributed processing of the mid-1980s became popular under the name

connectionism. The text by Rumelhart and McClelland (1986) provided a full

exposition on the use of connectionism in computers to simulate neural processes.

Neural networks, as used in artificial intelligence, have traditionally been viewed as

 20

simplified models of neural processing in the brain, even though the relation between

this model and brain biological architecture is debated, as it is not clear to what

degree artificial neural networks mirror brain function.

A neural network (NN), in the case of artificial neurons called artificial neural network

(ANN) or simulated neural network (SNN), is an interconnected group of natural or

artificial neurons that uses a mathematical or computational model for information

processing based on a connectionistic approach to computation. In most cases an

ANN is an adaptive system that changes its structure based on external or internal

information that flows through the network.

In more practical terms neural networks are non-linear statistical data modeling or

decision making tools. They can be used to model complex relationships between

inputs and outputs or to find patterns in data. However, the paradigm of neural

networks - i.e., implicit, not explicit , learning is stressed - seems more to correspond

to some kind of natural intelligence than to the traditional symbol-based Artificial

Intelligence, which would stress, instead, rule-based learning.

An artificial neural network involves a network of simple processing elements

(artificial neurons) which can exhibit complex global behavior, determined by the

connections between the processing elements and element parameters. Artificial

neurons were first proposed in 1943 by Warren McCulloch, a neurophysiologist, and

Walter Pitts, a logician, who first collaborated at the University of Chicago. One

classical type of artificial neural network is the recurrent Hopfield net.

In a neural network model simple nodes (which can be called by a number of names,

including "neurons", "neurodes", "Processing Elements" (PE) and "units"), are

connected together to form a network of nodes — hence the term "neural network".

While a neural network does not have to be adaptive per se, its practical use comes

with algorithms designed to alter the strength (weights) of the connections in the

network to produce a desired signal flow.

http://en.wikipedia.org/wiki/Connectionism

 21

The concept of a neural network appears to have first been proposed by Alan Turing

in his 1948 paper Intelligent Machinery in which called them "B-type unorganised

machines".

The utility of artificial neural network models lies in the fact that they can be used to

infer a function from observations and also to use it. Unsupervised neural networks

can also be used to learn representations of the input that capture the salient

characteristics of the input distribution, e.g., see the Boltzmann machine (1983), and

more recently, deep learning algorithms, which can implicitly learn the distribution

function of the observed data. Learning in neural networks is particularly useful in

applications where the complexity of the data or task makes the design of such

functions by hand impractical. [20]

The tasks to which artificial neural networks are applied tend to fall within the

following broad categories;

 Function approximation, or regression analysis, including time series

prediction and modeling.

 Classification, including pattern and sequence recognition, novelty detection

and sequential decision making.

 Data processing, including filtering, clustering, blind signal separation and

compression.

Application areas of ANNs include system identification and control (vehicle control,

process control), game-playing and decision making (backgammon, chess, racing),

pattern recognition (radar systems, face identification, object recognition), sequence

recognition (gesture, speech, handwritten text recognition), medical diagnosis,

financial applications, data mining (or knowledge discovery in databases, "KDD"),

visualization and e-mail spam filtering.

Neuron consisits of three basic components; weights, thresholds and a single

activation function. Neural network block diagram is at figure 3.1 [21]

 22

Figure 3.1: Neural Network Block Diagram

3.1.1 Type of Learning

3.1.1.1 Supervised Learning

In supervised training (Figure 3.2), both the inputs and the outputs are provided. The

network then processes the inputs and compares its resulting outputs against the

desired outputs. Errors are then propagated back through the system, causing the

system to adjust the weights, which control the network. This process occurs over

and over as the weights are continually tweaked. The set of data, which enables the

training, is called the "training set." During the training of a network, the same set of

data is processed many times, as the connection weights are ever refined.

Sometimes a network may never learn. This could be because the input data does

not contain the specific information from which the desired output is derived.

Networks also don't converge if there is not enough data to enable complete learning.

Ideally, there should be enough data so that part of the data can be held back as a

test. Many layered networks with multiple nodes are capable of memorizing data. To

monitor the network to determine if the system is simply memorizing its data in some

non-significant way, supervised training needs to hold back a set of data to be used

to test the system after it has undergone its training. If a network simply can't solve

the problem, the designer then has to review the input and outputs, the number of

layers, the number of elements per layer, the connections between the layers, the

 23

summation, transfer, and training functions, and even the initial weights themselves.

Another part of the designer's creativity governs the rules of training. There are many

laws (algorithms) used to implement the adaptive feedback required to adjust the

weights during training. The most common technique is known as back-propagation.

The training is not just a technique, but a conscious analysis, to insure that the

network is not over trained. Initially, an artificial neural network configures itself with

the general statistical trends of the data. Later, it continues to ‘learn’ about other

aspects of the data, which may be spurious from a general viewpoint. When finally

the system has been correctly trained and no further learning is needed, the weights

can, if desired, be ‘frozen’. In some systems, this finalized network is then turned into

hardware so that it can be fast. Other systems don't lock themselves in but continue

to learn while in production use.

Figure 3.2: Supervised Learning

3.1.1.2 Reinforcement Learning

This type of learning may be considered as an intermediate form of the above two

types of learning. Here the learning machine does some action on the environment

and gets a feedback response from the environment. The learning system grades its

action good (rewarding) or bad (punishable) based on the environmental response

and accordingly adjusts its parameters. Generally, parameter adjustment is continued

until an equilibrium state occurs, following which there will be no more changes in its

parameters. The selforganizing neural learning (Figure 3.3) may be categorized

under this type of learning.

 24

Figure 3.3: Reinforcement Learning

3.1.1.3 Unsupervised Learning

The other type is the unsupervised training (learning) (Figure 3.4). In this type, the

network is provided with inputs but not with desired outputs. The system itself must

then decide what features it will use to group the input data. This is often referred to

as self-organization or adaption. These networks use no external influences to adjust

their weights. Instead, they internally monitor their performance. These networks look

for regularities or trends in the input signals, and makes adaptations according to the

function of the network. Even without being told whether it's right or wrong, the

network still must have some information about how to organize itself. This

information is built into the network topology and learning rules. An unsupervised

learning algorithm might emphasize cooperation among clusters of processing

elements. In such a scheme, the clusters would work together. If some external input

activated any node in the cluster, the cluster's activity as a whole could be increased.

Likewise, if external input to nodes in the cluster was decreased, that could have an

inhibitory effect on the entire cluster. Competition between processing elements

could also form a basis for learning. Training of competitive clusters could amplify the

responses of specific groups to specific stimuli. As such, it would associate those

groups with each other and with a specific appropriate response. Normally, when

competition for learning is in effect, only the weights belonging to the winning

processing element will be updated. Presently, the unsupervised learning is not well

understood and there continues to be a lot of research in this aspect.

 25

Figure 3.4: Unsupervised Learning

3.1.2 TYPES OF ARTIFICIAL NEURAL NETWORKS

3.1.2.1 SINGLE-LAYER FEED FORWARD NETWORK

A neural network in which the input layer of source nodes projects into an output

layer of neurons but not vice-versa is known as single feed-forward or acyclic

network. In single layer network, ‘single layer’ refers to the output layer of

computation nodes as shown at figure 3.5.

Figure 3.5: A Single Layer-Feedforward Network

 26

3.1.2.2 MULTI-LAYER FEED FORWARD NETWORK

This type of network consists of one or more hidden layers, whose computation

nodes are called hidden neurons or hidden units as shown at figure 3.6. The function

of hidden neurons is to interact between the external input and network output in

some useful manner and to extract higher order statistics. The source nodes in input

layer of network supply the input signal to neurons in the second layer (First hidden

layer). The output signals of second. layer are used as inputs to the third layer and so

on. The set of output signals of the neurons in the output layer of network constitutes

the overall response of network to the activation pattern supplied by source nodes in

the input first layer.

Figure 3.6: A Multi Layer-Feedforward Network

Short characterization of feedforward networks

1. Typically, activation is fed forward from input to output through ‘hidden layers’,

though many other architectures exist.

2. Mathematically, they implement static input-output mappings.

3. Most popular supervised training algorithm: backpropagation algorithm

4. Have proven useful in many practical applications as approximators of

nonlinear functions and as pattern classificators.

 27

3.2 GENETIC ALGORITHM

Computer simulations of evolution started as early as in 1954 with the work of Nils

Aall Barricelli, who was using the computer at the Institute for Advanced Study in

Princeton, New Jersey. His 1954 publication was not widely noticed. Starting in 1957,

the Australian quantitative geneticist Alex Fraser published a series of papers on

simulation of artificial selection of organisms with multiple loci controlling a

measurable trait. From these beginnings, computer simulation of evolution by

biologists became more common in the early 1960s, and the methods were

described in books by Fraser and Burnell (1970) and Crosby (1973). Fraser's

simulations included all of the essential elements of modern genetic algorithms. In

addition, Hans-Joachim Bremermann published a series of papers in the 1960s that

also adopted a population of solution to optimization problems, undergoing

recombination, mutation, and selection. Bremermann's research also included the

elements of modern genetic algorithms. Other noteworthy early pioneers include

Richard Friedberg, George Friedman, and Michael Conrad. Many early papers are

reprinted by Fogel (1998).

Although Barricelli, in work he reported in 1963, had simulated the evolution of ability

to play a simple game, artificial evolution became a widely recognized optimization

method as a result of the work of Ingo Rechenberg and Hans-Paul Schwefel in the

1960s and early 1970s – Rechenberg's group was able to solve complex engineering

problems through evolution strategies. Another approach was the evolutionary

programming technique of Lawrence J. Fogel, which was proposed for generating

artificial intelligence. Evolutionary programming originally used finite state machines

for predicting environments, and used variation and selection to optimize the

predictive logics. Genetic algorithms in particular became popular through the work of

John Holland in the early 1970s, and particularly his book Adaptation in Natural and

Artificial Systems (1975). His work originated with studies of cellular automata,

conducted by Holland and his students at the University of Michigan. Holland

introduced a formalized framework for predicting the quality of the next generation,

known as Holland's Schema Theorem. Research in GAs remained largely theoretical

until the mid-1980s, when The First International Conference on Genetic Algorithms

was held in Pittsburgh, Pennsylvania.

http://en.wikipedia.org/wiki/Nils_Aall_Barricelli
http://en.wikipedia.org/wiki/Nils_Aall_Barricelli
http://en.wikipedia.org/wiki/Institute_for_Advanced_Study
http://en.wikipedia.org/wiki/Princeton,_New_Jersey
http://en.wikipedia.org/wiki/Alex_Fraser_(scientist)
http://en.wikipedia.org/wiki/Artificial_selection
http://en.wikipedia.org/wiki/Hans-Joachim_Bremermann
http://en.wikipedia.org/wiki/David_B._Fogel
http://en.wikipedia.org/wiki/Artificial_evolution
http://en.wikipedia.org/wiki/Ingo_Rechenberg
http://en.wikipedia.org/wiki/Hans-Paul_Schwefel
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Lawrence_J._Fogel
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/John_Henry_Holland
http://en.wikipedia.org/wiki/Cellular_automata
http://en.wikipedia.org/wiki/John_Henry_Holland
http://en.wikipedia.org/wiki/University_of_Michigan
http://en.wikipedia.org/wiki/Holland%27s_Schema_Theorem
http://en.wikipedia.org/wiki/Pittsburgh,_Pennsylvania

 28

As academic interest grew, the dramatic increase in desktop computational power

allowed for practical application of the new technique. In the late 1980s, General

Electric started selling the world's first genetic algorithm product, a mainframe-based

toolkit designed for industrial processes. In 1989, Axcelis, Inc. released Evolver, the

world's first commercial GA product for desktop computers. The New York Times

technology writer John Markoff wrote about Evolver in 1990.

Genetic algorithms (GAs) are search methods based on principles of natural

selection and genetics (Fraser, 1957; Bremermann, 1958; Holland, 1975). GAs

encode the decision variables of a search problem into finite-length strings of

alphabets of certain cardinality. The strings which are candidate solutions to the

search problem are referred to as chromosomes, the alphabets are referred to as

genes and the values of genes are called alleles. For example, in a problem such as

the traveling salesman problem, a chromosome represents a route, and a gene may

represent a city. In contrast to traditional optimization techniques, GAs work with

coding of parameters, rather than the parameters themselves. To evolve good

solutions and to implement natural selection, we need ameasure for distinguishing

good solutions from bad solutions. The measure could be an objective function that is

a mathematical model or a computer simulation, or it can be a subjective function

where humans choose better solutions over worse ones. In essence, the fitness

measure must determine a candidate solution’s relative fitness, which will

subsequently be used by the GA to guide the evolution of good solutions. Another

important concept of GAs is the notion of population. Unlike traditional search

methods, genetic algorithms rely on a population of candidate solutions. The

population size, which is usually a user-specified parameter, is one of the important

factors affecting the scalability and performance of genetic algorithms. For example,

small population sizes might lead to prematüre. A genetic algorithm is a probabilistic

search technique that computationally simulates the process of biological evolution. It

mimics evolution in nature by repeatedly altering a population of candidate solutions

until an optimal solution is found.

The GA evolutionary cycle starts with a randomly selected initial population. The

changes to the population occur through the processes of selection based on fitness,

and alteration using crossover and mutation. The application of selection and

http://en.wikipedia.org/wiki/Evolver_(software)
http://en.wikipedia.org/wiki/The_New_York_Times
http://en.wikipedia.org/wiki/John_Markoff

 29

alteration leads to a population with a higher proportion of better solutions. The

evolutionary cycle (at figure 3.7) continues until an acceptable solution is found in the

current generation of population, or some control parameter such as the number of

generations is exceeded.

The smallest unit of a genetic algorithm is called a gene, which represents a unit of

information in the problem domain. A series of genes, known as a chromosome,

represents one possible solution to the problem. Each gene in the chromosome

represents one component of the solution pattern.

The most common form of representing a solution as a chromosome is a string of

binary digits. Each bit in this string is a gene. The process of converting the solution

from its original form into the bit string is known as coding. The specific coding

scheme used is application dependent. The solution bit strings are decoded to

enable their evaluation using a fitness measure. [21]

Population

Alteration
(Mutation &
Crossover)

Selection

Figure 3.7: Genetic Algorithm Evolutionary
Cycle.

Discarded
Solutions

 30

3.2.1 Methodology

In a genetic algorithm, a population of candidate solutions (called individuals,

creatures, or phenotypes) to an optimization problem is evolved toward better

solutions. Each candidate solution has a set of properties (its chromosomes or

genotype) which can be mutated and altered; traditionally, solutions are represented

in binary as strings of 0s and 1s, but other encodings are also possible.

The evolution usually starts from a population of randomly generated individuals and

is an iterative process, with the population in each iteration called a generation. In

each generation, the fitness of every individual in the population is evaluated; the

fitness is usually the value of the objective function in the optimization problem being

solved. The more fit individuals are stochastically selected from the current

population, and each individual's genome is modified (recombined and possibly

randomly mutated) to form a new generation. The new generation of candidate

solutions is then used in the next iteration of the algorithm. Commonly, the algorithm

terminates when either a maximum number of generations has been produced, or a

satisfactory fitness level has been reached for the population.

A typical genetic algorithm requires:

1. A genetic representation of the solution domain,

2. A fitness function to evaluate the solution domain.

A standard representation of each candidate solution is as an array of bits. Arrays of

other types and structures can be used in essentially the same way. The main

property that makes these genetic representations convenient is that their parts are

easily aligned due to their fixed size, which facilitates simple crossover operations.

Variable length representations may also be used, but crossover implementation is

more complex in this case. Tree-like representations are explored in genetic

programming and graph-form representations are explored in evolutionary

programming; a mix of both linear chromosomes and trees is explored in gene

expression programming.

http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Genotype
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Stochastics
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Genetic_representation
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Bit_array
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Gene_expression_programming
http://en.wikipedia.org/wiki/Gene_expression_programming

 31

Once the genetic representation and the fitness function are defined, a GA proceeds

to initialize a population of solutions and then to improve it through repetitive

application of the mutation, crossover, inversion and selection operators.

3.2.2 Selection

In biological evolution, only the fittest survive and their gene pool contributes to the

creation of the next generation. Selection in GA is also based on a similar process. In

a common form of selection, known as fitness proportional selection, each

chromosome’s likelihood of being selected as a good one is proportional to its fitness

value.

3.2.2.1 Fitness Proportionate Selection

This includes methods such as roulette-wheel selection (Holland, 1975; Goldberg,

1989b) and stochastic universal selection (Baker, 1985; Grefenstette and Baker,

1989). In roulette-wheel selection, each individual in the population is assigned a

roulette. Wheel slot sized in proportion to its fitness. That is, in the biased roulette

wheel, good solutions have a larger slot size than the less fit solutions. The roulette

wheel is spun to obtain a reproduction candidate. The roulettewheel selection

scheme can be implemented as follows:

1. Evaluate the fitness, fi, of each individual in the population.

2. Compute the probability (slot size), pi, of selecting each member of the

population:

3. Calculate the cumulative probability, qi , for each individual

4. Generate a uniform random number, r ∈ (0, 1].

5. If r < q1 then select the first chromosome, x1, else select the individual xi such

that qi−1 < r ≤ qi .

6. Repeat steps 4–5 n times to create n candidates in the mating pool.

 32

3.2.2.2 Ordinal Selection

This includes methods such as tournament selection (Goldberg et al., 1989b), and

truncation selection (M¨uhlenbein and Schlierkamp-Voosen, 1993). In tournament

selection, s chromosomes are chosen at random (either with or without replacement)

and entered into a tournament against each other. The fittest individual in the group

of k chromosomes wins the tournament and is selected as the parent. The most

widely used value of s is 2. Using this selection scheme, n tournaments are required

to choose n individuals. In truncation selection, the top (1/s)th of the individuals get s

copies each in the mating pool.

3.2.2.3 Alteration to improve good solutions

The alteration step in the genetic algorithm refines the good solution from the current

generation to produce the next generation of candidate solutions. It is carried out by

performing crossover and mutation.

3.2.3 Crossover

Crossover (figure 3.8) may be regarded as artificial mating in which chromosomes

from two individuals are combined to create the chromosome for the next generation.

This is done by splicing two chromosomes from two different solutions at a crossover

point and swapping the spliced parts. The idea is that some genes with good

characteristics from one chromosome may as a result combine with some good

genes in the other chromosome to create a better solution represented by the new

chromosome.

 33

 Figure 3.8: Crossover & Mutation

3.2.3.1 K-Point Crossover

One-point, and two-point crossovers are the simplest and most widely applied

crossover methods. In one-point crossover, , a crossover site is selected at random

over the string length, and the alleles on one side of the site are exchanged between

the individuals. In two-point crossover, two crossover sites are randomly selected.

The alleles between the two sites are exchanged between the two randomly paired

individuals.. The concept of one-point crossover can be extended to k-point

crossover, where k crossover points are used, rather than just one or two.

3.2.3.2 Uniform Crossover

Another common recombination operator is uniform crossover (Syswerda, 1989;

Spears and De Jong, 1994). In uniform crossover, every allele is exchanged between

the a pair of randomly selected chromosomes with a certain probability, pe, known as

the swapping probability. Usually the swapping probability value is taken to be 0.5.

3.2.3.3 Uniform Order-Based Crossover

The k-point and uniform crossover (Figure 3.9) methods described above are not well

suited for search problems with permutation codes such as the ones used in the

0

1 0 0 0 1 1 0 1

0 1 1 0 1 0 1

Crossover
point

0 1 1 0 1 1 0 1

1 0 0 0 0 1 0 1

0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1

Mutation
point

 34

traveling salesman problem. They often create offspring that represent invalid

solutions for the search problem.

 Figure 3.9: Illustration of Uniform order crossover

3.2.3.4 Order-Based Crossover

The order-based crossover operator (Davis, 1985) at figure 3.10 and 3.11 is a variation of the

uniform order-based crossover in which two parents are randomly selected and two random

crossover sites are generated. The genes between the cut points are copied to the children.

Starting from the second crossover site copy the genes that are not already present in the

offspring from the alternative parent (the parent other than the one whose genes are copied

by the offspring in the initial phase) in the order they appear. for offspring C1, since alleles

C, D, and E are copied from the parent P1, we get alleles B, G, F, and A from the parent P2.

Starting from the second crossover site, which is the sixth gene, we copy alleles B and G as

the sixth and seventh genes respectively. We then wrap around and copy alleles F and A as

the first and second genes.

 35

Figure 3.10: Illustration of Order-Based crossover

Figure 3.11: Illustration of Partially Matched Crossover

3.2.3.5 Partially Matched Crossover (PMX)

Apart from always generating valid offspring, the PMX operator (Goldberg and Lingle,

1985) also preserves orderings within the chromosome. In PMX, two parents are

randomly selected and two random crossover sites are generated. Alleles within the

two crossover sites of a parent are exchanged with the alleles corresponding to those

mapped by the other parent. For example at figure 3.12 looking at parent P1, the first

gene within the two crossover sites, 5, maps to 2 in P2. Therefore, genes 5 and 2 are

 36

swapped in P1. Similarly we swap 6 and 3, and 10 and 7 to create the offspring C1.

After all exchanges it can be seen that we have achieved a duplication of the

ordering of one of the genes in between the crossover point within the opposite

chromosome, and vice versa.

 Figure 3.12: Illustration of Cycle Crossover

3.2.4 Mutation

Mutation is a random adjustment in the genetic composition. It is useful for

introducing new characteristics in a population – something not achieved through

crossover alone. Crossover only rearranges existing characteristics to give new

combinations. For example, if the first bit in every chromosome of a generation

happens to be a 1, any new chromosome created through crossover will also have 1

as the first bit.

The mutation operator changes the current value of a gene to a different one. For bit

string chromosome this change amounts to flipping a 0 bit to a 1 or vice versa.

 37

Although useful for introducing new traits in the solution pool, mutations can be

counterproductive, and applied only infrequently and randomly.

The steps in the typical genetic algorithm for finding a solution to a problem are listed

below:

1. Create an initial solution population of a certain size randomly

2. Evaluate each solution in the current generation and assign it a fitness value.

3. Select “good” solutions based on fitness value and discard the rest.

4. If acceptable solution(s) found in the current generation or maximum number

of generations is exceeded then stop.

5. Alter the solution population using crossover and mutation to create a new

generation of solutions.

6. Go to step 2.

3.2.5 Limitations

There are several limitations of the use of a genetic algorithm compared to alternative

optimization algorithms:

 Repeated fitness function evaluation for complex problems is often the most

prohibitive and limiting segment of artificial evolutionary algorithms. Finding

the optimal solution to complex high dimensional, multimodal problems often

requires very expensive fitness function evaluations. In real world problems

such as structural optimization problems, one single function evaluation may

require several hours to several days of complete simulation. Typical

optimization methods can not deal with such types of problem. In this case, it

may be necessary to forgo an exact evaluation and use an approximated

http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_approximation

 38

fitness that is computationally efficient. It is apparent that amalgamation of

approximate models may be one of the most promising approaches to

convincingly use GA to solve complex real life problems.

 Genetic algorithms do not scale well with complexity. That is, where the

number of elements which are exposed to mutation is large there is often an

exponential increase in search space size. This makes it extremely difficult to

use the technique on problems such as designing an engine, a house or

plane. In order to make such problems tractable to evolutionary search, they

must be broken down into the simplest representation possible. Hence we

typically see evolutionary algorithms encoding designs for fan blades instead

of engines, building shapes instead of detailed construction plans, airfoils

instead of whole aircraft designs. The second problem of complexity is the

issue of how to protect parts that have evolved to represent good solutions

from further destructive mutation, particularly when their fitness assessment

requires them to combine well with other parts. It has been suggested by

some[citation needed] in the community that a developmental approach to

evolved solutions could overcome some of the issues of protection, but this

remains an open research question.

 The "better" solution is only in comparison to other solutions. As a result, the

stop criterion is not clear in every problem.

 In many problems, GAs may have a tendency to converge towards local

optima or even arbitrary points rather than the global optimum of the problem.

This means that it does not "know how" to sacrifice short-term fitness to gain

longer-term fitness. The likelihood of this occurring depends on the shape of

the fitness landscape: certain problems may provide an easy ascent towards a

global optimum, others may make it easier for the function to find the local

optima. This problem may be alleviated by using a different fitness function,

increasing the rate of mutation, or by using selection techniques that maintain

a diverse population of solutions, although the No Free Lunch theorem proves

that there is no general solution to this problem. A common technique to

http://en.wikipedia.org/wiki/Fitness_approximation
http://en.wikipedia.org/wiki/Fitness_approximation
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Local_optimum
http://en.wikipedia.org/wiki/Local_optimum
http://en.wikipedia.org/wiki/Global_optimum
http://en.wikipedia.org/wiki/Fitness_landscape
http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization

 39

maintain diversity is to impose a "niche penalty", wherein, any group of

individuals of sufficient similarity (niche radius) have a penalty added, which

will reduce the representation of that group in subsequent generations,

permitting other (less similar) individuals to be maintained in the population.

This trick, however, may not be effective, depending on the landscape of the

problem. Another possible technique would be to simply replace part of the

population with randomly generated individuals, when most of the population

is too similar to each other. Diversity is important in genetic algorithms (and

genetic programming) because crossing over a homogeneous population does

not yield new solutions. In evolution strategies and evolutionary programming,

diversity is not essential because of a greater reliance on mutation.

 Operating on dynamic data sets is difficult, as genomes begin to converge

early on towards solutions which may no longer be valid for later data. Several

methods have been proposed to remedy this by increasing genetic diversity

somehow and preventing early convergence, either by increasing the

probability of mutation when the solution quality drops (called triggered

hypermutation), or by occasionally introducing entirely new, randomly

generated elements into the gene pool (called random immigrants). Again,

evolution strategies and evolutionary programming can be implemented with a

so-called "comma strategy" in which parents are not maintained and new

parents are selected only from offspring. This can be more effective on

dynamic problems.

 GAs cannot effectively solve problems in which the only fitness measure is a

single right/wrong measure (like decision problems), as there is no way to

converge on the solution (no hill to climb). In these cases, a random search

may find a solution as quickly as a GA. However, if the situation allows the

success/failure trial to be repeated giving (possibly) different results, then the

ratio of successes to failures provides a suitable fitness measure.

 For specific optimization problems and problem instances, other optimization

algorithms may find better solutions than genetic algorithms (given the same

amount of computation time). Alternative and complementary algorithms

http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Decision_problem

 40

include evolution strategies, evolutionary programming, simulated annealing,

Gaussian adaptation, hill climbing, and swarm intelligence (e.g.: ant colony

optimization, particle swarm optimization) and methods based on integer linear

programming. The question of which, if any, problems are suited to genetic

algorithms (in the sense that such algorithms are better than others) is open

and controversial.

http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Gaussian_adaptation
http://en.wikipedia.org/wiki/Hill_climbing
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Ant_colony_optimization
http://en.wikipedia.org/wiki/Ant_colony_optimization
http://en.wikipedia.org/wiki/Particle_swarm_optimization
http://en.wikipedia.org/wiki/Integer_linear_programming
http://en.wikipedia.org/wiki/Integer_linear_programming

 41

CHAPTER 4

4. APPLICATION OF HYBRID METHOD TO GROUP ELEVATOR CONTROL

The Elevator Group Controller is a control system that accomplishes the systematic

management of two or more elevators so that the elevator system is operated at best

balance of energy, time and demand. Neural Network and Artificial Intelligence

presents convenient options in designing a controller that capable of solving

aforementioned numerous objectives. However, since in this particular problem,

multiple inputs and and outputs have to be considered, complications might arise in

forming neural networks and genetic algorithms. Remedy to this problem is that,

ordinal structured neural network shall classify the inputs and then allocates these

inputs to related genetic algoritm codes to optimize the selected variables. Block

diagram showed as figure 4.1;

 Figure 4.1: Block Diagram of the Suggested Method

 42

4.1 ANN FOR THE SELECTION OF OPTIMIZATION ALGORIHTM

In this project; we used Neural Network for classificate the inputs to select one of the

optimization algorithm. These inputs are the human population and time data.

Input Parameters;

 Time (D1)

o From 00:00 to 23:59 (Whole 24 hours)

 00:00 – 07:59 -> Less Traffic

 08:00 – 08:59 -> Morning Peak

 09:00 – 11:59 -> Less Traffic

 12:00 – 13:29 -> Lunch Peak

 13:30 – 17:59 ->Less Traffic

 18:00 – 18:29 ->Evening Peak

 18:30 – 23:59 -> Less Traffic

o With 5 minutes intermittently (Own coefficients 0.1 intermittently)

 Crowdedness (D2)

o 0-7 people called “Solitary” (Coefficent: 0.3)

o 7-11 people called “Middle Crowded” (Coefficent: 0.5)

o 11-16 people called “Overcrowded” (Coefficent: 0.3)

Output Parameters;

 Passenger Average Waiting Time (A1)

 Passenger Travel Time and Energy Consumption (A2)

And some examples from a 864 sample neural network table as;

INPUT PARAMETERS
OUTPUT

PARAMETERS

Coefficient of
D1 D1 Coefficient of D2 D2 A1 A2

0,1 00:00 - 00:04 0.5 Solitary 0 1

0,2 00:05 - 00:09 0.5 Solitary 0 1

0,3 00:10 - 00:14 0.5 Solitary 0 1

0,4 00:15 - 00:19 0.5 Solitary 0 1

0,5 00:20 - 00:24 0.5 Solitary 0 1

0,6 00:25 - 00:29 0.5 Solitary 0 1

0,7 00:30 - 00:34 0.5 Solitary 0 1

0,8 00:35 - 00:39 0.5 Solitary 0 1

0,9 00:40 - 00:44 0.5 Solitary 0 1

1 00:45 - 00:49 0.5 Solitary 0 1

1,1 00:50 - 00:54 0.5 Solitary 0 1

1,2 00:55 - 00:59 0.5 Solitary 0 1

1,3 01:00 - 01:04 0.5 Solitary 0 1

 43

1,4 01:05 - 00:09 0.5 Solitary 0 1

1,5 01:10 - 01:14 0.5 Solitary 0 1

1,6 01:15 - 01:19 0.5 Solitary 0 1

1,7 01:20 - 01:24 0.5 Solitary 0 1

1,8 01:25 - 01:29 0.5 Solitary 0 1

1,9 01:30 - 01:34 0.5 Solitary 0 1

2 01:35 - 01:39 0.5 Solitary 0 1

2,1 01:40 - 01:44 0.5 Solitary 0 1

2,2 01:45 - 01:49 0.5 Solitary 0 1

2,3 01:50 - 01:54 0.5 Solitary 0 1

2,4 01:55 - 01:59 0.5 Solitary 0 1

2,5 02:00 - 02:04 0.5 Solitary 0 1

2,6 02:05 - 02:09 0.5 Solitary 0 1

2,7 02:10 - 02:14 0.5 Solitary 0 1

2,8 02:15 - 02:19 0.5 Solitary 0 1

2,9 02:20 - 02:24 0.5 Solitary 0 1

3 02:25 - 02:29 0.5 Solitary 0 1

3,1 02:30 - 02:34 0.5 Solitary 0 1

3,2 02:35 - 02:39 0.5 Solitary 0 1

3,3 02:40 - 02:44 0.5 Solitary 0 1

3,4 02:45 - 02:49 0.5 Solitary 0 1

3,5 02:50 - 02:54 0.5 Solitary 0 1

3,6 02:55 - 02:59 0.5 Solitary 0 1

3,7 03:00 - 03:04 0.5 Solitary 0 1

3,8 03:05 - 03:09 0.5 Solitary 0 1

3,9 03:10 - 03:14 0.5 Solitary 0 1

4 03:15 - 03:19 0.5 Solitary 0 1

4,1 03:20 - 03:24 0.5 Solitary 0 1

4,2 03:25 - 03:29 0.5 Solitary 0 1

4,3 03:30 - 03:34 0.5 Solitary 0 1

4,4 03:35 - 03:39 0.5 Solitary 0 1

4,5 03:40 - 03:44 0.5 Solitary 0 1

4,6 03:45 - 03:49 0.5 Solitary 0 1

4,7 03:50 - 03:54 0.5 Solitary 0 1

4,8 03:55 - 03:59 0.5 Solitary 0 1

4,9 04:00 - 04:04 0.5 Solitary 0 1

5 04:05 - 04:09 0.5 Solitary 0 1

5,1 04:10 - 04:14 0.5 Solitary 0 1

5,2 04:15 - 04:19 0.5 Solitary 0 1

5,3 04:20 - 04:24 0.5 Solitary 0 1

5,4 04:25 - 04:29 0.5 Solitary 0 1

5,5 04:30 - 04:34 0.5 Solitary 0 1

5,6 04:35 - 04:39 0.5 Solitary 0 1

…. ……. ….. …… ….. …..

0,1 00:00 - 00:04 0.5 Middle Crowded 0 1

 44

0,2 00:05 - 00:09 0.5 Middle Crowded 0 1

0,3 00:10 - 00:14 0.5 Middle Crowded 0 1

0,4 00:15 - 00:19 0.5 Middle Crowded 0 1

0,5 00:20 - 00:24 0.5 Middle Crowded 0 1

0,6 00:25 - 00:29 0.5 Middle Crowded 0 1

0,7 00:30 - 00:34 0.5 Middle Crowded 0 1

0,8 00:35 - 00:39 0.5 Middle Crowded 0 1

0,9 00:40 - 00:44 0.5 Middle Crowded 0 1

1 00:45 - 00:49 0.5 Middle Crowded 0 1

1,1 00:50 - 00:54 0.5 Middle Crowded 0 1

1,2 00:55 - 00:59 0.5 Middle Crowded 0 1

1,3 01:00 - 01:04 0.5 Middle Crowded 0 1

1,4 01:05 - 00:09 0.5 Middle Crowded 0 1

1,5 01:10 - 01:14 0.5 Middle Crowded 0 1

1,6 01:15 - 01:19 0.5 Middle Crowded 0 1

1,7 01:20 - 01:24 0.5 Middle Crowded 0 1

1,8 01:25 - 01:29 0.5 Middle Crowded 0 1

1,9 01:30 - 01:34 0.5 Middle Crowded 0 1

2 01:35 - 01:39 0.5 Middle Crowded 0 1

2,1 01:40 - 01:44 0.5 Middle Crowded 0 1

2,2 01:45 - 01:49 0.5 Middle Crowded 0 1

2,3 01:50 - 01:54 0.5 Middle Crowded 0 1

2,4 01:55 - 01:59 0.5 Middle Crowded 0 1

2,5 02:00 - 02:04 0.5 Middle Crowded 0 1

2,6 02:05 - 02:09 0.5 Middle Crowded 0 1

2,7 02:10 - 02:14 0.5 Middle Crowded 0 1

2,8 02:15 - 02:19 0.5 Middle Crowded 0 1

2,9 02:20 - 02:24 0.5 Middle Crowded 0 1

3 02:25 - 02:29 0.5 Middle Crowded 0 1

3,1 02:30 - 02:34 0.5 Middle Crowded 0 1

3,2 02:35 - 02:39 0.5 Middle Crowded 0 1

3,3 02:40 - 02:44 0.5 Middle Crowded 0 1

3,4 02:45 - 02:49 0.5 Middle Crowded 0 1

3,5 02:50 - 02:54 0.5 Middle Crowded 0 1

3,6 02:55 - 02:59 0.5 Middle Crowded 0 1

3,7 03:00 - 03:04 0.5 Middle Crowded 0 1

3,8 03:05 - 03:09 0.5 Middle Crowded 0 1

3,9 03:10 - 03:14 0.5 Middle Crowded 0 1

4 03:15 - 03:19 0.5 Middle Crowded 0 1

4,1 03:20 - 03:24 0.5 Middle Crowded 0 1

4,2 03:25 - 03:29 0.5 Middle Crowded 0 1

4,3 03:30 - 03:34 0.5 Middle Crowded 0 1

4,4 03:35 - 03:39 0.5 Middle Crowded 0 1

4,5 03:40 - 03:44 0.5 Middle Crowded 0 1

4,6 03:45 - 03:49 0.5 Middle Crowded 0 1

 45

4,7 03:50 - 03:54 0.5 Middle Crowded 0 1

4,8 03:55 - 03:59 0.5 Middle Crowded 0 1

4,9 04:00 - 04:04 0.5 Middle Crowded 0 1

5 04:05 - 04:09 0.5 Middle Crowded 0 1

5,1 04:10 - 04:14 0.5 Middle Crowded 0 1

5,2 04:15 - 04:19 0.5 Middle Crowded 0 1

5,3 04:20 - 04:24 0.5 Middle Crowded 0 1

5,4 04:25 - 04:29 0.5 Middle Crowded 0 1

5,5 04:30 - 04:34 0.5 Middle Crowded 0 1

5,6 04:35 - 04:39 0.5 Middle Crowded 0 1

5,7 04:40 - 04:44 0.5 Middle Crowded 0 1

5,8 04:45 - 04:49 0.5 Middle Crowded 0 1

5,9 04:50 - 04:54 0.5 Middle Crowded 0 1

6 04:55 - 04:59 0.5 Middle Crowded 0 1

6,1 05:00 - 05:04 0.5 Middle Crowded 0 1

6,2 05:05 - 05:09 0.5 Middle Crowded 0 1

6,3 05:10 - 05:14 0.5 Middle Crowded 0 1

6,4 05:15 - 05:19 0.5 Middle Crowded 0 1

6,5 05:20 - 05:24 0.5 Middle Crowded 0 1

6,6 05:25 - 05:29 0.5 Middle Crowded 0 1

6,7 05:30 - 05:34 0.5 Middle Crowded 0 1

6,8 05:35 - 05:39 0.5 Middle Crowded 0 1

6,9 05:40 - 05:44 0.5 Middle Crowded 0 1

7 05:45 - 05:49 0.5 Middle Crowded 0 1

7,1 05:50 - 05:54 0.5 Middle Crowded 0 1

7,2 05:55 - 05:59 0.5 Middle Crowded 0 1

7,3 06:00 - 06:04 0.5 Middle Crowded 0 1

7,4 06:05 - 06:09 0.5 Middle Crowded 0 1

7,5 06:10 - 06:14 0.5 Middle Crowded 0 1

7,6 06:15 - 06:19 0.5 Middle Crowded 0 1

7,7 06:20 - 06:24 0.5 Middle Crowded 0 1

7,8 06:25 - 06:29 0.5 Middle Crowded 0 1

7,9 06:30 - 06:34 0.5 Middle Crowded 0 1

8 06:35 - 06:39 0.5 Middle Crowded 0 1

8,1 06:40 - 06:44 0.5 Middle Crowded 0 1

8,2 06:45 - 06:49 0.5 Middle Crowded 0 1

8,3 06:50 - 06:54 0.5 Middle Crowded 0 1

8,4 06:55 - 06:59 0.5 Middle Crowded 0 1

8,5 07:00 - 07:04 0.5 Middle Crowded 0 1

8,6 07:05 - 07:09 0.5 Middle Crowded 0 1

8,7 07:10 - 07:14 0.5 Middle Crowded 0 1

8,8 07:15 - 07:19 0.5 Middle Crowded 0 1

8,9 07:20 - 07:24 0.5 Middle Crowded 0 1

….. …….. ….. ……. …… ……

0,1 00:00 - 00:04 0.7 Overcrowded 1 0

 46

0,2 00:05 - 00:09 0.7 Overcrowded 1 0

0,3 00:10 - 00:14 0.7 Overcrowded 1 0

0,4 00:15 - 00:19 0.7 Overcrowded 1 0

0,5 00:20 - 00:24 0.7 Overcrowded 1 0

0,6 00:25 - 00:29 0.7 Overcrowded 1 0

0,7 00:30 - 00:34 0.7 Overcrowded 1 0

0,8 00:35 - 00:39 0.7 Overcrowded 1 0

0,9 00:40 - 00:44 0.7 Overcrowded 1 0

1 00:45 - 00:49 0.7 Overcrowded 1 0

1,1 00:50 - 00:54 0.7 Overcrowded 1 0

1,2 00:55 - 00:59 0.7 Overcrowded 1 0

1,3 01:00 - 01:04 0.7 Overcrowded 1 0

1,4 01:05 - 00:09 0.7 Overcrowded 1 0

1,5 01:10 - 01:14 0.7 Overcrowded 1 0

1,6 01:15 - 01:19 0.7 Overcrowded 1 0

1,7 01:20 - 01:24 0.7 Overcrowded 1 0

1,8 01:25 - 01:29 0.7 Overcrowded 1 0

1,9 01:30 - 01:34 0.7 Overcrowded 1 0

2 01:35 - 01:39 0.7 Overcrowded 1 0

2,1 01:40 - 01:44 0.7 Overcrowded 1 0

2,2 01:45 - 01:49 0.7 Overcrowded 1 0

2,3 01:50 - 01:54 0.7 Overcrowded 1 0

2,4 01:55 - 01:59 0.7 Overcrowded 1 0

2,5 02:00 - 02:04 0.7 Overcrowded 1 0

2,6 02:05 - 02:09 0.7 Overcrowded 1 0

2,7 02:10 - 02:14 0.7 Overcrowded 1 0

2,8 02:15 - 02:19 0.7 Overcrowded 1 0

2,9 02:20 - 02:24 0.7 Overcrowded 1 0

3 02:25 - 02:29 0.7 Overcrowded 1 0

3,1 02:30 - 02:34 0.7 Overcrowded 1 0

3,2 02:35 - 02:39 0.7 Overcrowded 1 0

3,3 02:40 - 02:44 0.7 Overcrowded 1 0

3,4 02:45 - 02:49 0.7 Overcrowded 1 0

3,5 02:50 - 02:54 0.7 Overcrowded 1 0

3,6 02:55 - 02:59 0.7 Overcrowded 1 0

3,7 03:00 - 03:04 0.7 Overcrowded 1 0

3,8 03:05 - 03:09 0.7 Overcrowded 1 0

3,9 03:10 - 03:14 0.7 Overcrowded 1 0

4 03:15 - 03:19 0.7 Overcrowded 1 0

4,1 03:20 - 03:24 0.7 Overcrowded 1 0

4,2 03:25 - 03:29 0.7 Overcrowded 1 0

4,3 03:30 - 03:34 0.7 Overcrowded 1 0

4,4 03:35 - 03:39 0.7 Overcrowded 1 0

4,5 03:40 - 03:44 0.7 Overcrowded 1 0

4,6 03:45 - 03:49 0.7 Overcrowded 1 0

 47

4,7 03:50 - 03:54 0.7 Overcrowded 1 0

4,8 03:55 - 03:59 0.7 Overcrowded 1 0

4,9 04:00 - 04:04 0.7 Overcrowded 1 0

5 04:05 - 04:09 0.7 Overcrowded 1 0

5,1 04:10 - 04:14 0.7 Overcrowded 1 0

5,2 04:15 - 04:19 0.7 Overcrowded 1 0

5,3 04:20 - 04:24 0.7 Overcrowded 1 0

5,4 04:25 - 04:29 0.7 Overcrowded 1 0

5,5 04:30 - 04:34 0.7 Overcrowded 1 0

5,6 04:35 - 04:39 0.7 Overcrowded 1 0

5,7 04:40 - 04:44 0.7 Overcrowded 1 0

5,8 04:45 - 04:49 0.7 Overcrowded 1 0

5,9 04:50 - 04:54 0.7 Overcrowded 1 0

6 04:55 - 04:59 0.7 Overcrowded 1 0

6,1 05:00 - 05:04 0.7 Overcrowded 1 0

6,2 05:05 - 05:09 0.7 Overcrowded 1 0

6,3 05:10 - 05:14 0.7 Overcrowded 1 0

6,4 05:15 - 05:19 0.7 Overcrowded 1 0

6,5 05:20 - 05:24 0.7 Overcrowded 1 0

6,6 05:25 - 05:29 0.7 Overcrowded 1 0

6,7 05:30 - 05:34 0.7 Overcrowded 1 0

6,8 05:35 - 05:39 0.7 Overcrowded 1 0

6,9 05:40 - 05:44 0.7 Overcrowded 1 0

7 05:45 - 05:49 0.7 Overcrowded 1 0

7,1 05:50 - 05:54 0.7 Overcrowded 1 0

7,2 05:55 - 05:59 0.7 Overcrowded 1 0

7,3 06:00 - 06:04 0.7 Overcrowded 1 0

7,4 06:05 - 06:09 0.7 Overcrowded 1 0

7,5 06:10 - 06:14 0.7 Overcrowded 1 0

7,6 06:15 - 06:19 0.7 Overcrowded 1 0

7,7 06:20 - 06:24 0.7 Overcrowded 1 0

7,8 06:25 - 06:29 0.7 Overcrowded 1 0

7,9 06:30 - 06:34 0.7 Overcrowded 1 0

8,2 06:45 - 06:49 0.7 Overcrowded 1 0

….. …….. ….. ……. ….. …..

27,1 22:30 - 22:34 0.7 Overcrowded 1 0

27,2 22:35 - 22:39 0.7 Overcrowded 1 0

27,3 22:40 - 22:44 0.7 Overcrowded 1 0

27,4 22:45 - 22:49 0.7 Overcrowded 1 0

27,5 22:50 - 22:54 0.7 Overcrowded 1 0

27,6 22:55 - 22:59 0.7 Overcrowded 1 0

27,7 23:00 - 23:04 0.7 Overcrowded 1 0

27,8 23:05 - 23:09 0.7 Overcrowded 1 0

27,9 23:10 - 23:14 0.7 Overcrowded 1 0

28 23:15 - 23:19 0.7 Overcrowded 1 0

 48

28,1 23:20 - 23:24 0.7 Overcrowded 1 0

28,2 23:25 - 23:29 0.7 Overcrowded 1 0

28,3 23:30 - 23:34 0.7 Overcrowded 1 0

28,4 23:35 - 23:39 0.7 Overcrowded 1 0

28,5 23:40 - 23:44 0.7 Overcrowded 1 0

28,6 23:45 - 23:49 0.7 Overcrowded 1 0

28,7 23:50 - 23:54 0.7 Overcrowded 1 0

28,8 23:55 - 23:59 0.7 Overcrowded 1 0

Neural network table is called out by below mentioned code. Software selects

random rows and trains so until system ensures the completion of learning process

regarding minimize of learning error then apllys test process with unselected data.

The weights of the neural network is calculated and presented at table table 4.1;

W1 0.007

W2 0.6

W3 0.2

Table 4.1: Neural Netwok Weights

And the graphs for the perfomance is at figure 4.2;

Figure 4.2: Training performance for Neural Network Part

 49

4.2 GENETIC ALGORITHM AS OPTIMIZATION ALGORITHM

After classifying the inputs, system selects one of the GAs to optimize AWT and TTT

to the two genetic algoritms;

4.2.1 GENETIC ALGORITHMS PART-1: OPTIMIZING AVERAGE WAITING TIME

With respect to figure 4.1, the algorithm allocates hall calls to perform the elevator

group controller in N floors building. The received hall calls are stored into a list

according to the moment of the request.

The updated service list of a car consists of the preload condition and the adding

stops from the current solution. Define the following parameters to be able to

estimate the waiting time of hall call’s as following:

 HC; Hall Call Floor

 CF; Car Current Floor

 NF; Number of Building Floors

 TF; Inter-Floor Trip Time

The waiting time of a hall call depends on the direction of hall call up or down, the car

trip direction, and also the relative position of hall call related to the current car floor.

As shown in figure 4.3 thru cases are as follows;

Case (I): If Hall Call Floor is up and less than Car Current Floor, the car trip consists

of three segments: from Car Current Floor to Top Floor, from Top Floor to 1st floor,

and from 1st floor to Hall Call Floor.

Case (II): If Hall Call Floor is down, the car trip consists of two segments: from Car

Current Floor to Top Floor and from Top Floor to Hall Call Floor.

Case (III): If Hall Call Floor is up and greater than or equal Car Current Floor, the car

trip consists of only one segment: from Car Current Floor to Hall Call Floor.

 50

Therefore, the waiting time Ti of the hall call is given by:

 (4.1)

 Figure 4.3: Elevator is stopped or going up.

As shown in figure 4.4 thru cases are as follows;

Case (I): If Hall Call Floor is down and greater than Car Current Floor, The car trip of

a going down car consists of three segments: from Car Current Floor to 1st floor,

from 1st floor to Top Floor, and from Top Floor to Hall Call Floor.

Case (II): If Hall Call Floor is up, the car trip consists of two segments: from Car

Current Floor to 1st floor and from 1st floor to Hall Call Floor.

Case (III): If Hall Call Floor is down and less than or equal Car Current Floor, the car

trip consists of only one segment: from Car Current Floor to Hall Call Floor.

 51

Therefore, the waiting time Ti of the hall call is given by:

 (4.2)

Figure 4.4: Elevator is going down.

 52

Considering optimization algorithm a suitable chromosome must be defined in figure

4.5 presents the main chromosome structure.

Figure 4.5: Example of a chromosome for an elevator for a 20-floor building

Within the above mentioned chromosome structure, the one chormose has 160

genes for all four elevator gropus. The first 40 genes belonging the first lift is split up

from a random 20 genes for up calls and the second 20 genes for down calls

following the receipt of hall call information. We choose to generate 6 chromosomes

beczues of at least one chromosome converges the intended solution. Randomly

splitting chromosome is subjected to crossover process with 0.7 probability and

mutation process with 0.2 probability by means of the indigenously designed code. In

consequence of these processes, the optimal result of average waiting time is

determined. The graphics of the results as shown at figures 4.6, 4.7, 4.8, 4.9, 4.10,

4.11 and 4.12.

 53

Figure 4.6: The result after 1000 iterations and 6 chromosomes

Figure 4.7: The result after 1000 iterations and 2 chromosomes

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

 Iteration

 Iteration

WT

WT

 54

 Figure 4.8: The result after 1000 iterations and 4 chromosomes

Figure 4.9: The result after 6 chromosomes and 0.8 crossover %

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

 Iteration

 Iteration

WT

WT

 55

Figure 4.10: The result after 6 chromosomes and 0.9 crossover %

Figure 4.11 The result after 6 chromosomes and 0.1 mutation %

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

 Iteration

 Iteration

WT

WT

 56

Figure 4.12: The result after 6 chromosomes and 0.01 mutation %

Above graphics show the average waiting time and related calculations with respect

to changing chromosome number, crossover and mutation percentages. Increase in

the chromosome number and in the probability of crossover and mutation would

enable us yielding the positive conclusion in shorter times.

Owing this increase is an optimization problem, optimal chromosome number must

be determined. Graphics reveal that the structure of 6-chromosoms with 0.7

crossover and 0.2 mutation probability gives the best result.

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

 Iteration

WT

 57

4.2.2 GENETIC ALGORITHMS PART-2: OPTIMIZING TOTAL TRAVEL TIME AND

ENERGY CONSUMPTION

The fitness function of GA to optimize travel time regarding defined cases which are

as follows in figure 4.13;

Case (I): If Hall Call Floor is up and less than Car Current Floor, the car trip consists

of three segments: from Car Current Floor to Top Floor, from Top Floor to 1st floor,

and from 1st floor to Hall Call Floor.

Case (II): If Hall Call Floor is down, the car trip consists of two segments: from Car

Current Floor to Top Floor and from Top Floor to Hall Call Floor.

Case (III): If Hall Call Floor is up and greater than or equal Car Current Floor, the car

trip consists of only one segment: from Car Current Floor to Hall Call Floor.

Therefore, the travel time CTj of the hall call is given by:

𝐶𝑇𝑗 =

{

[𝐶𝐴R_DF − 𝐶𝐹]𝑇𝐹 𝐼𝑓 𝑛𝑜 𝐻𝐶 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑

[𝑁𝐹 − 𝐶𝐹]𝑇𝐹 𝐴 𝐻𝐶 ≥ 𝐶𝐹 𝑎𝑛𝑑 𝐻𝐶 𝑖𝑠 𝑢𝑝

[2𝑁𝐹 − 𝐶𝐹 − 1]𝑇𝐹 𝐴 𝐻𝐶 𝑖𝑠 𝑑𝑜𝑤𝑛

[3𝑁𝐹 − 𝐶𝐹 − 2]𝑇𝐹 𝐴 𝐻𝐶 < 𝐶𝐹 𝑎𝑛𝑑 𝐻𝐶 𝑖𝑠 𝑢𝑝 }

 58

 Figure 4.13: Elevator is stopped or going up.

In figure 4.14;

Case (I): If Hall Call Floor is down and greater than Car Current Floor, The car trip of

a going down car consists of three segments: from Car Current Floor to 1st floor,

from 1st floor to Top Floor, and from Top Floor to Hall Call Floor.

Case (II): If Hall Call Floor is up, the car trip consists of two segments: from Car

Current Floor to 1st floor and from 1st floor to Hall Call Floor.

Case (III): If Hall Call Floor is down and less than or equal Car Current Floor, the car

trip consists of only one segment: from Car Current Floor to Hall Call Floor.

 59

Therefore, the travel time of CTj of the hall call is given by:

Figure 4.14: Elevator is going down.

.

𝐶𝑇𝑗 =

{

[𝐶𝐹 − 𝐶𝐴𝑅_𝐷𝐹]𝑇𝐹 𝐼𝑓 𝑛𝑜 𝐻𝐶 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑

[𝐶𝐹 − 1]𝑇𝐹 𝐴 𝐻𝐶 ≤ 𝐶𝐹 𝑎𝑛𝑑 𝐻𝐶 𝑖𝑠 𝑑𝑜𝑤𝑛

[𝐶𝐹 + 𝑁𝐹 − 2]𝑇𝐹 𝐴 𝐻𝐶 𝑖𝑠 𝑢𝑝

[𝐶𝐹 − 2𝑁𝐹 − 3]𝑇𝐹 𝐴 𝐻𝐶 < 𝐶𝐹 𝑎𝑛𝑑 𝐻𝐶 𝑖𝑠 𝑑𝑜𝑤𝑛}

 60

Randomly splitting chromosome is subjected to crossover process with 0.7

probability and mutation process with 0.2 probability by means of the indigenously

designed code. In consequence of these processes, the optimal result of travel time

is determined. The graphics of the results as shown at figures 4.15, 4.16, 4.17, 4.18,

4.19, 4.20 and 4.21.

Figure 4.15: The result after 1000 iterations and 6 chromosomes

0 100 200 300 400 500 600 700 800 900 1000
40

60

80

100

120

140

160

 Iteration

TT

 61

Figure 4.16: The result after 1000 iterations and 2 chromosomes

 Figure 4.17: The result after 1000 iterations and 4 chromosomes

0 100 200 300 400 500 600 700 800 900 1000
40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000
40

60

80

100

120

140

160

 Iteration

 Iteration

TT

TT

 62

Figure 4.18: The result after 6 chromosomes and 0.7 crossover %

Figure 4.19: The result after 6 chromosomes and 0.9 crossover %

0 100 200 300 400 500 600 700 800 900 1000
40

60

80

100

120

140

160

0 100 200 300 400 500 600 700 800 900 1000
40

60

80

100

120

140

160

 Iteration

 Iteration

TT

TT

 63

Figure 4.20: The result after 6 chromosomes and 0.2 mutation %

Figure 4.21: The result after 6 chromosomes and 0.01 mutation %

0 100 200 300 400 500 600 700 800 900 1000
40

50

60

70

80

90

100

110

120

130

0 100 200 300 400 500 600 700 800 900 1000
40

60

80

100

120

140

160

 Iteration

 Iteration

TT

TT

 64

Above graphics show the total travel time & energy consumption and related

calculations with respect to changing chromosome number, crossover and mutation

percentages. Increase in the chromosome number and in the probability of crossover

and mutation would enable us yielding the positive conclusion in shorter times.

Owing this increase is an optimization problem, optimal chromosome number must

be determined. Graphics reveal that the structure of 6-chromosoms with 0.7

crossover and 0.2 mutation probability gives the best result.

In genetic algorithm parts, firstly we guided from a study [8] for average waiting time.

But this algorithm works all 24 hour in same way and we choose to improve these

study for a travel time and energy consumption algorithm. The type of this work is

that, after classifying the inputs with artificial neural network our two algorithms works

in different conditions. And this type of work makes our project more efficient.

 65

5. SIMULATION

In this project we have two inputs, which are human population and time data. We

can select these parameters from our GUI screen which is below at figures at 5.1 and

5.2. By using this GUI, user can select time data, human population and hall calls.

Figure 5.1: Simulation view for Inputs

 66

Figure 5.2: Simulation view 20 Floor and 4 elevator structure

Simulation screen is composed of two displays. Input display is used to make day

time entries (morning, lunch, evening, night) and the human population (solitary,

middle-crowded, over-crowded) which shall draw the program for selection of proper

algorithm.

Second screen allows making the hall call entries for a building of 20 floors and 4

cars. Hall call allocations and results are shown by MATLAB screen.

 67

6. EXAMPLES OF THE APPLIED METHOD AND COMPARISE RESULTS

Let us evaluate the observations made after the Average Waiting Time algorithm;

The parameters such as each hall calls, travel directions and population have

influence on simulation results.

In order to test the performance of the applied hybrid algorithm a senerio has benn

developed for optimazing average waiting time (GA1). The necessary parameters

has been selected similiar to [8] which are shown in table 6.2. This senario is as

follows;

The values set in that study are applicable for a building of 20 flats with 4 elevators.

In this case, floor numbers 7, 11, 13 and 15 claim hall calls to “down” and floor

numbers 9 and 12 claim hall calls to “up”.

This indigenous Genetic Algorithm method must allocate 1st car to hall calls at floors

9, 12 and 2nd car to hall calls at floors 7, 11, 13, 15 but must not assign any hall call

to 3rd and 4th cars. Our study proves to be in compliance with this requirement.

Due to mechanical constraints (table 6.1), default waiting time of the cars in motion is

50sec/car. Below tables 6.2, 6.3 and 6.4 depict the improvement of average waiting

time by the help of this study.

Door Opening 2 sec

Door Closing 3 sec

Passenger Transfer 2 sec

Inter-Floor Trip Time 2 sec

Table 6.1: Constants

 68

Algorithm Average
trip time

(sec)

Car1
trip
time
(sec)

Car2
trip
time
(sec)

Car3
trip
time
(sec)

Car4
trip
time
(sec)

GA [8] 64,5 65 95 48 50

GA 64,5 65 91 48 50

Table 6.2: Cars Trip Time

Algorithm Total Stops Car1
Stops

Car2
Stops

Car3
Stops

Car4
Stops

GA [8] 18 5 9 2 2

GA 18 5 9 2 2

Table 6.3: Car Stops

Hall Calls Waiting Time
(sec)

H7 55

H9 22

H11 33

H12 35

H13 22

H15 11

Average
Waiting Time

29.7

Table 6.4: Waiting Time Analysis

Comparision of the applied algorithm and previous study for travel time is presented

in table 6.2. This table gives the same results similiar to table 6.3. The similarity of

the obtained reultmatches with the previous study. Additionally the proposed

algorithm calculates waiting time regarded the diffirent hall calls. (Table 6.4)

 69

In a second senario for GA1;

In this case, floor numbers 3, 6, 17 and 18 claim hall calls to “up” and floor numbers

7, 5 and 11 claim hall calls to “up”. This indigenous Genetic Algorithm method must

allocate 1st car to hall calls at floors 5, 11, 2nd car to hall calls at floors 3and 6, 4th

car to hall calls at floors 17, 18 but must not assign any hall call to 3rd car. Our study

proves to be in compliance with this requirement as shown at table 6.5.

And the waiting time analysis;

Hall Calls Waiting Time
(sec)

H3 49

H5 14

H6 36

H11 33

H17 25

H18 16

Average
Waiting Time

28.83

Table 6.5: Waiting Time Analysis

Secondly, let us evaluate the observations made after the Total Travel Time and

Energy Consumption algorithm;

For case I; Floor numbers 7, 11, 13 and 15 claim hall calls to “down” and floor

numbers 9 and 12 claim hall calls to “up”.

Total Floors with
Algorithm AWT

Total Floors with
Algorithm TTT&EC

67 47

Table 6.6: Floor Trip Analysis

 70

If we use first algorithm all cars goes 67 total floors. But this algoritm (GA2) makes

this number to 47 as shown at table 6.6. First and third cars are just maket he job

from hall calls, and the second and fourth cars take all other hallcalls. With this

algorithm, the total car floors for trip decreases and consequently the consumed

energy is reduced.

 71

7. CONCLUSION

This study employs Hybrid Algorithm in the optimization of average waiting time,

average travel time and energy consumption in multi-car elevator systems. Hybrid

Algorithm is composed of two sections. At the entrance, offlined trained Artificial

Neural Network selects one of the optimization algorithm. Second section is the

Genetic Algorithm based optimization algorithms that work on-line to optimize

parameters. Each optimization algorithms are taken from separate studies. Selection

of this algorithm is performed by ANN by taking into account of certain day time

intervals and passenger bulge. As the results obtained by single algorithm is

compared with the results by hybrid algorithm at the same conditions, it is observed

that hybrid algorithm yields better results at different conditions. The main contribute

of this study is the selection of the one of the two optimization algorithm with respect

to daily conditions and additionaly reducing energy consumption in compare with

previous study. The study can be improved by implementing the Fuzzy Logic in lieu

of ANN structure, increasing the number of entries and by forming a different

simulation structure by using yet developed GUI in C#.

 72

REFERENCES

[1] Bolat Berna, Cortes Pablo, Genetic and tabu search approaches for optimizing the

hall call - Car allocation problem in elevator group systems, Applied Soft Computing

11, (2011) 1792–1800.

[2] Alex Valdivielso, Toshiyuki Miyamoto, “Multicar-Elevator Group Control Algorithm for

Interference Prevention and Optimal Call Allocation”, IEEE Transactions on Systems, Man,

and Cybernetics—Part A: Systems and Humans, Vol. 41, No. 2, March 2011.

[3] Jafferi Jamaludin, Nasrudin Abd. Rahim and Wooi Ping Hew “An Elevator Group Control

System With a Self-Tuning Fuzzy Logic Group Controller”, IEEE Transactions on Industrial

Electronics, Vol. 57, No. 12, December 2010.

[4] Lu Yu, Shingo Mabu, Kotaro Hirasawa “Multicar Elevator Group Supervisory Control

System using Genetic Network Programming”, IEEJ Transactions on Electrical and

Electronic Engineering IEEJ Trans 2011; 6(S1): S65–S73.

[5] Jin Zhou, Lu Yu, Shingo Mabu, Kotaro Hirasawa, Kotaro Hirasawa, Sandor Markon, “A

Traffic-Flow-Adaptive Controller of Double-Deck Elevator Systems using Genetic Network

Programming”, IEEJ Transactions on Electrical and Electronic Engineering IEEJ Trans 2008;

3: 703–714.

[6] J. Jamaludin, N.A.Rahim, W.P.Hew, “Development of a Self-tuning Fuzzy Logic Controller

for Intelligent Control of Elevator Systems”, Engineering Applications of Artificial Intelligence

22 (2009) 1167–1178.

[7] Jin Sun, Qian-Chuan Zhao, Peter B. Luh, “Optimization of Group Elevator Scheduling

With Advance Information”, IEEE Transactions on Automation Science and Engineering, Vol.

7, No. 2, April 2010.

[8] W. GHARIEB, “Optimal Elevator Group Control Using Genetic Algorithms”, Computer and

Systems Engineering Dept., Faculty of Engineering Ain Shams University.

 73

[9] Janne S. Sorsa, Harri Ehtamo, Marja-Liisa Siikonen, Tapio Tyni, Jari Ylinen, “The

Elevator Dispatching Problem”, KONE Corporation, Submitted to Transportation Science

Manuscript 1, September 2009.

[10] Philipp Friese, Jörg Rambau, “Online-Optimization of Multi-Elevator Transport Systems

with Reoptimization Algorithms Based on Set-Partitioning Models”, KONE Corporation,

Submitted to Transportation Science Manuscript 1, September 2009 Zuse-Institute Berlin,

Takustr. 7, 14195 Berlin, Germany.

[11] Lu Yu, Shingo Mabu, Kotaro Hirasawa, Tsuyoshi Ueno, “Analysis of Energy

Consumption of Elevator Group Supervisory Control System Based on Genetic Network

Programming”, IEEJ Transactions on Electrical and Electronic Engineering IEEJ Trans 2011;

6: 414–423.

[12] Bo Xiong, Peter B. Luh, Shi Chung Chang, “Group Elevator Scheduling with Advanced

Traffic Information for Normal Operations and Coordinated Emergency Evacuation”,

Proceedings of the 2005 IEEE International Conference on Robotics and Automation

Barcelona, Spain, April 2005.

[13] Thomas Beielstein, Sandor Markon, Mike Preuss, “A Parallel Approach to Elevator

Optimization Based on Soft Computing”, MIC2003: The Fifth Metaheuristics International

Conference Kyoto, Japan, August 25–28, 2003.

[14] Thomas Bartz-Beielstein, Mike Preuss, Sandor Markon, “Validation and Optimization of

an Elevator Simulation Model with Modern Search Heuristics”, Metaheuristics: Progress as

Real Problem Solvers.

[15] Marja-Liisa Siikonen, “Planning and Control Models for Elevators in High-Rise Buildings

”, Helsinki University of Technology Systems Analysis Laboratory Research Reports A68

October 1997.

[16] Mirko Ruokokoski, Harri Ehtamo, Janne Sorsa, Marja-Liisa Siikonen , “Elevator

Dispatching as Mixed Integer Linear Optimization Problem”, INFORMS Annual Meeting

October 2008.

 74

[17] Pablo Cortés, Jesús Muñuzuri, Luis Onieva , “Design and Analysis of a Tool for Planning

and Simulating Dynamic Vertical Transport”, SIMULATION 2006 82: 255 DOI:

10.1177/0037549706066986 Aug 7, 2006.

[18] Saw Soon King, Omrane Bouketir, “Simulation of a Four-Car Elevator Operation Using

MATLAB ”, Modern Applied Science Vol. 2, No. 6 November, 2008.

[19] Kumeresan A. Danapalaasıngam, “ Design of a Simulator for Elevator Supervisory

Group Controller Using Ordinal Structure Fuzzy Reasoning with Context Adaptation” Faculty

of Electrical Engineering, Universiti Teknologi Malaysia, November,2005

[20] http://en.wikipedia.org/wiki/Neural_network

[21] RC Chakraborty, “Fundamentals of Neural Networks: AI Course Lecture”, June 01,2010.

[22] http://en.wikipedia.org/wiki/Genetic_algorithm

http://en.wikipedia.org/wiki/Neural_network

