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ABSTRACT 

VIDEO CONCEPT CLASSIFICATION AND RETRIEVAL 

HİLAL ERGÜN 

Başkent University Institute of Science and Engineering 

Computer Engineering Department 

Search and retrieval in video content is a trending topic in computer vision. 

Difficulties of this research topic is two folds; extracting semantic information from 

structure of video images is not a simple task and demanding nature of video 

content requires efficient algorithms. Semantic information extraction is challenged 

by researchers for more than two decades, yet new improvements are still 

welcome by the community. Recent burst of efficient computer hardware 

architectures has exploited both accuracy and complexity of many algorithms 

adding a new dimension to the efficient algorithm selection. In this thesis, our goal 

is to classify visual concepts in video data for content-based search and retrieval 

applications. To this end, we introduce a complete visual concept classification 

and retrieval system. We use two state-of-the-art methods, namely “Bag-of-Words” 

(BoW) and “Convolutional Neural Network” (CNN) architecture for visual concept 

classification. The performance of the classifiers is further improved by optimizing 

the processing pipeline steps. For retrieval, we provide concept- and content-

based querying of video data and perform evaluations on Oxford Buildings and 

Paris datasets. Results show that, a substantial performance gain is possible by 

optimizing processing pipelines of the classifiers and deep learning based 

methods outperform the BoW. 
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ÖZ 

VİDEO KAVRAM SINIFLANDIRMA VE GERİ ERİŞİMİ 

HİLAL ERGÜN 

Başkent Üniversitesi Fen Bilimleri Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

Video içerikleri içerisinde arama ve geri getirme bilgisayarlı görme alanında 

yükselen bir konudur. Bu alandaki zorluklar iki başlık altında toplanabilir; video 

imgeleri içerisindeki anlamsal bilginin çıkarımı kolay bir iş değildir ve video 

içeriklerini analiz edebilmek için yüksek verimlilikteki algoritmalara ihtiyaç 

duyulmaktadır. Bu alanda çalışan araştırmacılar anlamsal bilginin çıkarılması 

konusuna 20 yılı aşkın bir süredir eğilmektedir ve bu alandaki iyileştirmelere hala 

ihtiyaç duyulmaktadır. Son yıllarda bilgisayar mimarilerinin verimliliğinde yaşanan 

artışlar hem algoritmaların başarımlarını hem de karmaşıklıklarını artırmıştır ki bu 

da efektif algoritma seçimine yeni bir boyut kazandırmaktadır. Bu tez 

çalışmasında, amacımız video verileri içindeki görsel kavramların arama ve geri 

getirme uygulamalarına yönelik sınıflandırılmasıdır. Bu amaç doğrultusunda görsel 

kavram sınıflandırma ve geri getirme bazlı bir sistem öneriyoruz. Günümüzde 

çokça tercih edilen iki görsel sınıflandırma yaklaşımını sistemimize entegre 

ediyoruz; “Kelime Kümesi” yaklaşımı ve “Evrişimsel Sinir Ağları” yaklaşımı. Buna 

ek olarak, kelime kümesi temsili ve evrişimsel sinir ağları aşamalarında 

optimizasyonlar yaparak, öğrenme algoritmalarının başarımlarını artırıyoruz. Geri 

getirme için kavram ve örnek tabanlı sorgulama yöntemlerinin gösterimini 

yapıyoruz ve literatürde en çok tercih edilen Oxford Buildings ve Paris veri 

kümeleri üzerinde sonuçlarımızı görselliyoruz. Sonuçlar gösteriyor ki, kelime 

kümesi temsili ve evrişimsel sinir ağları aşamalarında yapılan optimizasyonlar 

yüksek performans artışlarını olası kılmaktadır ve derin öğrenme tabanlı metodlar 

kelime kümesi yaklaşımından daha iyi sonuçlar vermektedir. 

ANAHTAR SÖZCÜKLER: Video Kavram Sınıflandırma, Kelime Kümesi (BoW), 

Evrişimsel Sinir Ağları (CNN), İçerik Tabanlı Geri Erişim, SVM, Derin Öğrenme 

Danışman: Yrd. Doç. Dr. Mustafa SERT, Başkent Üniversitesi, Bilgisayar 

Mühendisliği Bölümü. 
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1 INTRODUCTION 

1.1 Video Concept Classification 

Videos are composed of images, and related images compose shots of a video 

clip. Related shots of a video clip constitutes video scenes and every scene 

carries a semantic concept. Semantic concept of a video scene is important for 

many tasks including, but not limited to video summarization, indexing, retrieval 

and search. Since annotation of video scenes manually is an expensive task, 

researchers constantly looking for automatic methods of annotating video data. 

We believe video concept classification is highly correlated to problem of 

recognizing semantic category of an image. Concept classification may be on the 

level of object recognition or scene recognition [68]. 

1.2 Problem Description 

Extracting semantic information from multimedia content has long been a 

challenging research area. Advances in the various fields of computer science in 

the last decade are offering us various solution alternatives for tackling semantic 

gap phenomenon. Developments in the human vision system understanding is 

letting computer researchers to design better algorithms for image understanding. 

Both hand-crafted features and deep feature learning architectures are developing 

with a constant pace and every new day computer scientists apply those 

improvements to previously un-solved image understanding problems [30] [84] 

[77] [23] [1]. With the advances in computer hardware it is easier to train bigger 

machine learning systems, especially easier accessibility of parallel architectures 

is the driving force of those systems under the hood. Thanks to vast availability of 

online multimedia content, we have more data to train and evaluate our algorithms 

which increases transferability of our solutions as well their application areas. 

On the other hand, our understanding of developed systems lack implementations. 

At a first glance, this may sound strange but it is more of a fact, unfortunately. For 

instance, since their introduction to image understanding domain in 2012, 

convolutional neural networks achieved state-of-the-art results almost in every 

field of computer vision, however, rationale behind this success is not understood 

completely yet. Moreover, our understanding of older feature encoding algorithms 

is still developing. This led us to investigate different aspects of image 
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understanding in a systematic manner in this thesis. Our aim is to understand 

strong and weak points in the various points of image processing pipelines and try 

to get rid of weak spots with proper merging of different pipelines. Finally, we apply 

our findings to the area of video scene classification. 

1.3 Definitions 

The general structure of a digital video is depicted in Figure 1.1. A digital video 

sequence consists of a sequence of still images taken at a certain rate. A video 

clip may contain many frames. Fortunately, video is normally made of a number of 

logical units or segments, namely video shots. Video scenes, on the other hand 

may contain a number of contigious video shots. In this study, we define video 

scene having high level semantics that are extracted from video data and also 

referred to as concept. 

 

Figure 1.1 General structure of a video segment 

1.4  Challenges 

Automatic annotation of images is a challenging task because of “semantic gap” 

phenomenon which is the difference between understanding of visual concepts 

and image appearances. Overcoming semantic gap limitations is even harder in 

the presence of clutter, occlusion, camera shaking, viewpoint changes and various 

other noise sources inherent in images and videos [33]. Seperating a foreground 
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object from its integrated background is much like a chicken-egg paradox, where 

classification of one implies identification of the other and vice versa. This further 

restrict us to use algorithms from vision areas other than background 

segmentation. In addition to visual challenges, heavy nature of image and video 

data causes demanding solutions in this line of field. Algorithms should be 

reaching optimum classification and recognition accuracy while keeping memory 

and computation resource usage at a minimum so that vasts amount of multimedia 

data can be better processed. With the introduction of big data into the picture, we 

believe requirements force use of more elegant solutions. For instance, hours of 

video content is uploaded to cloud services each day and even real-time 

performing applications may be classified as infeasible solutions. 

1.5  Thesis Statement and Claims 

In this thesis we assume that semantic content of a video scene can be anything; 

for instance it can be a very coarse classification like indoor and outdoor scenes, 

or it can be the determination of various human actions present in the videos, even 

it may be recognition of object categories. This forces us to discover relationships 

between low-level image features and high level semantics of a scene from a 

given dataset. Hence, we avoid crafting hand-made relationships or using rule-

based approaches for the sake of generalizability. 

In addition to mentioned assumption of concept classification, with this thesis we 

aim to show effectiveness of two state-of-the-art methods, namely the              

bag-of-words (BoW) based representations and deep learning for image and video 

concept classification and image retrieval. We show efficient vector quantization 

(VQ) encoding practices along recent deep learning techniques. 

1.6  Organization 

Organization of this thesis is as follows; Chapter 2 presents related work on our 

field of research. Chapter 3 presents details of our BoW framework as well as 

obtained empirical results. In Chapter 4, we describe our deep learning method 

and present its applications to visual concept classification. In Chapter 5, we 

investigate content-based image retrieval as well as concept-based retrieval. We 

conclude in the Chapter 6. 
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1.7  Original Contributions 

In this thesis, we introduce a very efficient BoW processing pipeline and show how 

to optimize each different step. We also show how convolutional neural networks 

(CNNs) can be combined with BoW paradigm to further push classification 

accuracy. We present state-of-the-art results on various benchmark datasets. 

Specifically, the contributions of this thesis are three folds: 

 We compare BoW and CNN architectures on common dataset and use 

identical processing pipelines. 

 We analyze the effects of parameter selection to the overall classification 

accuracy. 

 We also offer best practices for reaching state-of-the-art results on various 

benchmark datasets both in terms of computation efficiency and 

classification accuracy. 

The work presented in this thesis has been published or submitted to following 

conferences: 

 Chapter 3 is published in Signal Processing and Communications 

Applications Conference in 2014. 

 Chapter 4 is submitted to The Second IEEE International Conference on 

Multimedia Big Data 2016. 

 Chapter 5 is published in Flexible Query Answering Systems Conference in 

2015. 

1.8  Software Libraries Used 

Through out thesis study, we used various open-source libraries in our 

implementations. Our software packages use OpenCV [6] heavily, in many 

different places. We use Support Vector Machine (SVM) libraries provided by [7] 

and [18]. We use VLFeat both for feature mapping and extraction [73], as well 

Oxford VGG groups encoder evaluation software kit [8]. Our CNN implementations 

are using Caffe framework [26]. Last but not the least, we use Matlab more than 

often in our implementations [47]. 
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2 LITERATURE REVIEW 

2.1 Related Works on BoW Representation 

Normally we would like to present a review of published studies under different 

sections for classification and retrieval as they are totally different problem 

domains. We still do this in the following sub-sections, however, we think it is more 

appropriate to start from common ancestors of both fields. Without such an 

introduction, we believe it is inevitable to loose some precise information about the 

history of these vision tasks. This is not only valid for classification and retrieval 

but also other fields of computer vision applications. For instance, both 

classification and retrieval algorithms find their early applications in texture 

recognition. 

At this point we should emphasize that from a purely theoretical point of view, one 

can categorize vision applications into a wide selection of different topics with 

different requirements. There are many grifted categorizations present in the 

literature. Figure 2.1 shows results from our scan of existing literature and we 

believe this list is far from being complete. As it can be seen, many concepts are 

closely related to each other although solutions may be totally different. This grift 

relationship between different application areas forces us to treat these concepts 

as a single entity up to some point. We aggregate all these concept under the 

name of “Image understanding” wherever necessary throughout this study. 

One of the very early object recognition approaches is to use direct pixel 

intensities or color at each pixel. This technique inherently assumes that images 

are cropped to region of interest and aligned in terms of pose and orientation 

which is not the case most of the time. Pixel intensity and color histograms can be 

viewed as global representations of an image [20]. Many object recognition studies 

employed parts-and-shapes models which uses spatial relationships between 

object components [85]. On the other hand, category wise object recognition or 

image classification enjoyed great success with the introduction of BoW paradigm 

which clearly become the choice of state-of-the-art methods in the literature. 
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Figure 2.1 Image understanding 

In 2004, CSurka et. al. first proposed BoW for the visual categorization or image 

classification [10]. However, this was not the first application of BoW paradigm to 

the image understanding. In 1999, Leung et. al. applied [38] BoW to texture 

recognition. They create a vocabulary of outputs of a filter bank using k-means 

clustering. In their study, they ignore spatial information and use histogram 

representation of image textons. In a later study, Cula et. al. used BoW descriptors 

again for texture recognition. Like Leung, they create texton libraries by k-means 

clustering a set of image features. In 2002, Varma and Zisserman improved Leung 

with the addition of rotationally invariant filters [72]. In 2002, Zhu et. al. [87] applied 

it to image retrieval. They create a dictionary using generalized Lloyd’s algorithm 

which can be thought of a k-means variant. They use so called “keyblocks” of a 

given image instead of local image features. Naturally, their method is neither 

translation nor rotation invariant [10]. In 2003, Sivic et. al. applied BoW model to 

the video level object retrieval [63]. 

Following demonstration of success of BoW descriptors, many authors enhanced 

BoW representations for different image understanding tasks. Nister et. al. applied 

BoW representation to image retrieval from large selection of image dataset 

relatively using a higher number of dictionary dimension [49]. Laptev et. al. applied 
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BoW model to the video classification especially targeting human action categories 

[32]. Lazebnik et al. improved BoW classification by introducing spatial pyramids 

which incorporates lost spatial information into the BoW pipeline [33]. Yang et. al. 

replaced vector quantization step of BoW model with sparse coding and 

demonstrated state-of-the-art results on many image benchmark datasets [81]. In 

a similar study, Wang et. al. improved encoding performance of sparse coding 

using feature locality both in terms of performance and accuracy [76]. Van De 

Sande et. al. showed how color information can be inserted into BoW methodology 

[69]. Perronnin and Dance showed effectiveness of Fisher kernel (FK) encoding 

image category detection [51]. In order to improve quantization step of BoW, 

Philbin et al. introduced a method that uses soft assignment of image features to 

multiple visual codewords [54]. Gemert el. al. introduced a different way of soft 

assignment both addressing visual word plausibility and uncertainty [71] [70]. 

Jegou et al. introduced Hamming embedding for representing images with binary 

encodings [25]. 

2.2 Related Works on Deep Learning 

In the recent years, CNNs have demonstrated excellent performance in plethora of 

computer vision applications. Most of this success is mainly attributed to two 

factors; recent availability of parallel processing architectures and larger image 

datasets [83] [62] [28]. Recent arrival of annotated and bigger sized datasets like 

ILSVRC [12], LabelMe [56] and MIT Places [86], made it possible to train deep 

convolutional networks for the task in hand without hitting the barrier of overfitting. 

Furthermore, accessibility of higher computational resources allowed researchers 

to design deeper networks with more parameters. For instance, top performer 

networks in ILSVRC challenge 2014 utilized more than 100 million parameters. 

Fusion of these two factors with better training algorithms [83] resulted in highly 

successful architectures performing state-of-the-art results in almost every field of 

computer vision. 

One very important property of CNNs is their generalization ability. It is possible to 

apply a pre-trained network to a totally different dataset or application domain and 

achieve near state-of-the-art results. Moreover, with very little training effort they 

can beat most of other state-of-the-art approaches. This raises the question 
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whether they can be applied to application domains where diversity of data is a 

challenge. Recent studies indeed show that this is perfectly possible [55] [13]. 

CNNs adapted to various image understanding tasks including but not limited to 

image classification, object detection, localization, human pose estimation, event 

detection, action recognition, face detection, traffic sign recognition, street number 

recognition and handwritten digit classification. They have gained much attention 

in recent years, albeit they were introduced in the late 80s [36]. Krizhevsky et. al. 

applied CNNs to the task of image classification and demonstrated excellent 

results [31]. Zeiler showed how CNN models can be further developed using 

visualization techniques [83]. In the following years deeper architectures surfaced 

further pushing classification accuracies. Winners of classification and localization 

tasks of ILSVRC 2014 challenge [12] employed deeper architectures [65] [62]. 

Sermanet et. al. showed that CNNs can be trained to fulfill multiple image tasks 

like classification and localization together [58]. Latest studies reveal that much 

deeper architectures are expected to surface in the very near future [23]. 

Availability of massively parallel GPU architectures is enabling researchers for 

trying plethora of configuration options. One of the most common techniques is the 

fusion of different approaches. Wang et al. demonstrated how multiple CNN 

architectures trained on different datasets can be employed for increasing event 

recognition accuracy in images. Guo and Gould applied fusion of different 

networks to the object detection [22]. Chatfield et al. showed ensemble of CNN 

architectures with Fisher vectors, albeit their gain was marginal. 

Application of CNN architectures to video domain is also extensive. Karpathy et al. 

showed how CNN models can be enriched with temporal information present in 

videos using several fusion techniques [30]. Simonyan et al. improved general 

approach to video action recognition using two stream convolutional networks [61]. 

Ye and friends further analyzed two stream architectures for video classification 

[82]. Wang et al. outlined good practices for action recognition in videos [78]. Zha 

et al. applied CNNs along with shallow architectures to video classification [84]. 
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3 VIDEO CONCEPT CLASSIFICATION USING BoW REPRESENTATION 

3.1 Methodology 

3.1.1 Overview of Bag of Words 

Bag of words (BoW) model is originally a document classification methodology 

later applied to image classification in early 2000s and up to recently it has been 

the mostly established image classification method in the literature due to its ability 

to fill semantic gap phenomenon to some extent. In its very basic form, BoW 

creates histograms of local image features counting occurrence of image features 

in the given image. It is an orderless representation of those features which 

discards spatial information. While loss of inherent spatial information of image 

content seems like inappropriate, this gives BoW representation some sort of 

invariance to image layout. 

For creating histograms of local patches or features, BoW model employs a family 

of dictionary coding algorithms. Extracted local features of image are encoded to a 

more suitable representation in this coding step for later operations. Standing on 

this descripton, BoW based image classification can be best described in three 

different distinct phases; dictionary creation, training and testing. We need a 

suitable visual dictionary for training and testing phases. For visual dictionary 

creation, variations of well-known k-means clustering algorithms are mostly 

employed. A corpus is generated from training features and clustered into desired 

number of visual codewords. We investigate this process in more detail in section 

3.1.2. 

After visual dictionary creation phase, we train a classifier for the task in hand. We 

begin by extracting local features of training images. Later we encode extracted 

features using vector quantization (VQ) using visual dictionary. After this step, we 

count appearance of each codeword in the training image which becomes our 

BoW descriptor for the given image. As a final step, we train a suitable classifier 

using training data and corresponding labels. In the testing phase, we almost 

follow the same steps of training phase. We first extract local features and encode 

extracted features. After creating image histograms and BoW descriptors, we 

predict final category of the given image using the previously generated classifier. 

All of the mentioned phases are constituted of some common processing steps 
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which we name as the general BoW processing pipeline. This pipeline is 

composed of four operations; feature extraction, quantization, histogram 

generation and classification. These steps are visualized in Figure 3.1. 

 

Figure 3.1 BoW pipeline 

Several extensions exist to this paradigm in the literature. We investigate some of 

those extensions in the following sections but we need to mention some of them 

here for the sake of completeness. One of the possible extensions to classical 

BoW model is to use of spatial pyramids. In this approach, image is divided into 

smaller images and BoW model is independently applied to each smaller image. 

Later, these finer-grained image histograms are concatenated to create final 

image representation. Spatial pyramids provide a good cover for the spatial space 

and many state-of-the-art classification implementations use them directly or 

modified versions. 

Some authors propose to overcome limitations VQ using better feature 

quantization techniques like sparse coding, Fisher encodings as well as employing 

soft assignment techniques instead of hard vector quantization. We further 

investigate various encoding schemes in section 3.1.4. 

3.1.2 Visual dictionary creation 

K-means clustering is by far the mostly employed technique for dictionary creation 

in the literature [75]. It is basically an unsupervised learning technique which finds 

desired number of cluster centers for a given data. It is an iterative algorithm, with 

each iteration new cluster centers are computed and each data point is assigned 
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to their closest center. While it is possible to use many distance metrics, Euclidean 

(or L2 distances) is the most obvious choice. 

Let’s assume we’re given set of ”N” data points where each sample is “D” 

dimensional: 

                                           

k-means aims to cluster these “N” data points into “K” clusters by minimizing the 

distance of each data point to their belonging cluster center: 

                                              

After clustering operation, we export cluster centers for obtaining our so called 

visual dictionary composed of “K” visual codewords as modeled in Equation 3.3. 

                                     

Minimizing objection function of Equation 3.2 is NP hard in practical use cases [45] 

which is overcome by using heuristic approaches like Lloyd’s algorithm [43] or 

Elkan’s algorithm [14]. One of the shortcomings of standard k-means algorithm is 

that it has run-time complexity of O(NK). Thus, it becomes hard to reach 

stabilization when dictionary size and number of samples increases. One 

alternative is to use hierarchical k-means clustering (HKM) introduced by [49] 

which has a complexity of O(NlogN) [75]. Another alternative is to use 

approximate k-means (AKM) algorithm of Philbin et. al. [53]. AKM has a run-time 

complexity of O(MNlogN) where “M” is the number nearest clusters accessed. 

Use of more advanced algorithms is not the only way for creation of more efficient 

dictionary generation. One other technique is to sub-sample input feature samples. 

This operation not only reduces both memory constraints and running times for 

clustering, it also helps to eliminate outliers in the input data. 

Although k-means is the most widely used method of dictionary generation [80], 

there are several alternatives have been investigated in the literature. Jurie et. al. 

explored a mean-shift algorithm to overcome k-means favoring of most frequent 
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descriptors against rarely seen ones [29]. Some authors tried to come up with 

information theoretic semantic dictionaries using supervised learning methods [41] 

[34]. Tuytelaars et. al. divided feature space into regular grids instead clustering 

[67]. Wu et. al. [80] offered an alternative distance metric in place of Euclidean 

distance based on the histogram intersection kernel of Maji et. al [46]. Gaussian 

mixture models (GMMs) are also used to form dictionaries [50] [79]. 

3.1.3 Feature extraction 

Feature extraction can be performed in two different approaches. One can use an 

interest point detector for detecting important points in image regions called 

keypoints. This scheme is called as sparse sampling as image features are 

extracted, relatively, from a set of sparse points. Various interest point detectors 

are present in the literature. Just to name a few we can say Laplacian of 

Gaussian, Difference of Gaussians, Harris detector, Hessian detector as well as 

their affine variant versions. Review of interest point detectors are beyond the 

scope of this study but additional information can be found in the literature [66] [57] 

[48]. Figure 3.2 visualizes a sparse sampling based feature detection. 

Another alternative to interest point-based sampling is to dense sampling. In this 

scheme, features are extracted along a regular grid of points from the given 

image. Compared to sparse sampling, dense sampling produces much more 

image features. There is another alternative mentioned in the literature as random 

sampling where image features are extracted at randomly selected points from a 

given image. However, we believe this is only another form of dense sampling. 

Figure 3.3 visualizes a dense sampling based feature detection. 



 13 

 

 

Figure 3.2 Feature extraction with Sparse Sampling 

Many studies show the effectiveness of dense feature extraction over interest 

point based extraction on visual classification tasks [33], [27]. On the other hand, 

sparse sampling is employed in retrieval applications. 

 

Figure 3.3 Feature extraction with Dense Sampling 
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Scale-Invariant Feature descriptor 

Our local image feature of choice is scale-invariant feature transform (SIFT) of 

[44]. SIFT is an image descriptor for image-based matching and recognition 

developed by David Lowe (1999, 2004). SIFT algorithm contains two distinct 

operations, keypoint detection and descriptor extraction. SIFT searches a given 

image for keypoints in a multi-scale fashion. Each detected keypoint has various 

attributes like position in scale space and orientation. SIFT is a said to detect 

‘blobs’ in an image in contrast to edges. It uses Difference of Gaussian’s (DoG’s) 

image detector under the hood. SIFT descriptor, on the other hand, is a 3-D spatial 

histogram of the image gradients around a given keypoint, which is visualized in 

Figure 3.4. Due to its construction principles, SIFT image descriptor is invariant to 

translations, rotations and scaling transformations in the image space. It is also 

invariant, up to some degree, to moderate perspective transformations and 

illumination variations. Many studies in the literature shows the excellence of SIFT 

feature for image matching, object recognition and retrieval tasks. 

 

Figure 3.4 SIFT feature descriptor representation 

3.1.4 Feature encoding 

Feature encoding is the process of re-coding local features to a more suitable 

notation for classification. Encoding doesn’t alter the local nature of the feature as 

it is pair-wise transform operation most of the time. There are many different 

encoding types present in the literature used with BoW. Hard vector quantization is 

one of the frequently used encodings which compares each feature with 

codewords in dictionary and assigns to the closest one. Soft assignment, improves 

this process by assigning to ‘k’ nearest neighbours instead of one. Sparse coding 
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is based on the relaxation of sparsity condition in vector quantization. Fisher 

vectors and super-vector encodings uses Gaussian Mixture Models and try to 

capture high-level relations of local features. 

Now assuming we have our visual dictionary modeled by Equation 3.2, we extract 

our local image features in a dense fashion to obtain our image features: 

                                        

where each si is a “D” dimensional feature vector. We note that “D” is 128 for SIFT 

descriptors. Standard BoW model assigns every feature to the closest entry in our 

codebook, or dictionary: 

          

Here d(.) represents a similarity measure and we use Euclidean distance to 

measure closeness of two vectors. This operation often is called a quantization 

operation since it discretizes a feature vectors. Equation 3.5 is also known as 

vector quantization and one of the most frequently used feature encodings, 

sometimes it is called hard assignment. Careful readers should notice that S’(𝜔) is 

an extremely sparse vector, i.e. only one entry of it is different than zero. 1/M  term 

is present for normalization purposes, it cancels out the effect of different 

cardinalities of unevenly scaled images. Figure 3.5 visualizes this operation. 



 16 

 

 

Figure 3.5 Vector coding visualization 

Soft assignment is the process of quantizing local features in a soft manner, i.e. 

every feature contributes to more than one codeword in the dictionary. Soft 

assignment can modeled like: 

                                    

According to Gemert et. al. [71], this type soft assignment deals with codeword 

uncertainty which indicates that one local feature may distribute probability mass 

to more than one codeword. With increasing size of dictionary size, soft 

assignment converges to hard assignment and soft assignment may help to 

improve accuracy for relatively small dictionary sizes. However, soft assignments 

gains can be marginal depending on the pipeline parameters and may not worth 

the waste of additional computational power. We call this type of coding scheme 

as KCB following the original author’s notation from now on. 

Sparse coding is another alternative to vector quantization and poses some 

resemblance to soft assignment coding. It is based on the relaxation of sparsity 

condition in Equation 3.5. It encodes a local feature with a linear combination of a 
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sparse set of basis vectors [42]. Sparse coding can be represented as in   

Equation 3.7: 

                                  

Wang et. al. [76] introduced feature space locality into sparse coding and further 

improved its computational efficiency. Their implementation is known as locality 

constrained linear coding, or LLC, in the literature. In addition to better 

representation of local image features, sparse coding encodings works well with 

linear classifiers which we mention about their importance more in detail in section 

3.1.6. According to Yang et. al., this success can be mainly attributed to the much 

less quantization errors of sparse coding compared to vector quantization [81]. 

Fisher vector encoding uses Gaussian Mixture Model’s to learn higher order 

statistics of distributions of local features. Unlike BoW, it is not restricted by the 

occurrences of each visual word [52]. It can be tought of an extension of BoW as 

well as an soft encoding approach. 

3.1.5 Spatial Pyramids 

As we noted previously, BoW approach discards spatial layout of image features. 

Although this brings invariance to pose and geometric changes, to some degree, it 

also looses previous spatial information. Lazebnik et. al [33] introduced spatial 

pyramids method to take into account of rough scene geometry [52]. Spatial 

pyramids starts by dividing image into smaller grids which can either be regular or 

some irregular patterns. Then it calculates BoW descriptor for each sub-region of 

image. Grids can be created in multiple layers where going down the layers 

causing more fine-grained grid layouts. In the final representation, all histograms 

coming from all regions of all layers contribute to the final BoW descriptor, with 

some scheme of weight assignment taking in place. We re-depicted a well known 

visualization of spatial pyramids in Figure 3.6 where three different types of local 

features extracted from an image is shown. Level-0 refers to the whole image 

without any spatial partitioning. When we pass down to the Level-1, we create four 

different sub-regions of the image and calculate all corresponding histograms. We 

repeat same procedure with Level-2, but this time with a finer partitioning. Final 

image representation can be formed by concatenating all histograms into one 
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feature vector. We should emphasize that Level-0 representation belongs to the 

BoW representation without any spatial pyramid extension. 

 

Figure 3.6 Spatial Pyramid visualization 

One handicap of SPM extension is that it exploits feature dimensionality. Taking 

Level-2 into account, one ends up 21 (16 + 4 + 1) image regions. For Level-3, 

which is not depicted in Figure 3.6, this number rises to 85. Given that dictionary 

size is “K”, this results in final image feature size of 21 x K for Level-2. Although 

final descriptor size is bloated, SPM calculation is very efficient. Regardless of 

SPM level, nearest neighbours of each feature is searched only once due to the 

fact that location of a local feature in feature space is independent of its location in 

spatial space. With efficient programming practices, overhead of SPM generation 

is one of the fastest operations in whole processing pipeline. 

We should mention that SPM layout depicted is here taken from original authors’ 

[33] papers. Later studies also investigated different layouts like horizontal and 

vertical binning. For different datasets where object layouts differ significantly it 

may be more efficient to adapt such layouts. For instance, instead of dividing 

images into 16 square regions one may employ 3x1 horizontal binning or 4x1 

vertical binning. Figure 3.7 visualizes different binning strategies. 
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Figure 3.7 Spatial Pyramid binning visualization 

3.1.6 Classifier design 

Machine learning is the art of learning structure from data and classifiers are the 

key components for linking data to its structure. In this regard, Support Vector 

Machines (SVMs) are among the most successful implementations. They were 

introduced in early 90s [5] [9] and gained much attention since then. They are 

designed as binary classifiers, several extensions exist for multi-class 

classification. SVMs are linear classifiers but they can be extended to non-linear 

cases by the use of a so called “kernel trick”. 

Although non-linear SVMs are quite successful in many visual classification tasks, 

their performance comes at a high cost. Training of non-linear SVMs has a runtime 

complexity between O(N
2

) and O(N
3

) whereas linear SVMs have a complexity of 

O(N), where “N” is the number of training images [60] [27] [81]. This makes use 

of non-linear SVMs impractical in case we have more than tens of thousands 

training data. On the other hand, linear SVMs are inferior to non-linear ones on 

many image processing tasks [52]. To overcome this drawback, many researchers 

seek for better encoders suitable for large-scale image and video classification 

tasks. Sparse coding and Fisher Vector encodings are just fruits of two of the 

many such research directions. We head towards a different route though. We 

choose to apply kernel mappings to our data prior to classification using 

homogeneous kernel maps [74]. These algorithms scale linearly with respect to 

training data while providing the same accuracy as the original non-linear SVM 

classifiers [52]. They are implemented for histogram intersection and X2 kernels 

which are the two most successful kernel types for our encoding operations [35] 

[59]. 
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3.2 Datasets In Use 

3.2.1 Caltech-101 dataset 

Caltech-101 dataset [19] contains 101 categories of different objects and one 

background which we use as a normal category in our experiments. Caltech-101 

contains a total of 9,144 images and has 31 to 800 images per category. 

Moreover, most of the categories have more than 50 images. Average image 

resolution is around 300x200 pixels and each image contains only a single object. 

Caltech-101 is one of the most widely adapted datasets by computer vision 

community, for object recognition and classification tasks; as of this writing it has 

more than 800 citations in the literature making it one of the most important 

benchmark datasets for object recognition. Figure 3.8 shows some samples 

images taken from this dataset and summary of concepts present in the dataset is 

listed in Table 3.1. 

 

Figure 3.8 Some examples from Caltech-101 dataset 

Caltech-101 doesn’t provide any image lists for train and test case splitting. 

Common practice used in the literature is to randomly split dataset into two and 

then using one for training and the other one for testing. To prevent favorization 

effects of random splitting, results are reported on at least three different splits. 

Cross validation is not utilized at all. Most frequently used split regime is to use 30 

train samples and rest for testing. Since results are presented using class-wise 

mean accuracy, un-even image sizes selected in testing phase is cancelled out. 
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Table 3.1 Summarization of concepts for Caltech-101 dataset 

 

3.2.2 Caltech-256 dataset 

Caltech-256 dataset [21] is an extension of Caltech-101 and it contains 256 object 

categories spanning total of 30607 images. Caltech-256 has the same structure as 
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Caltech-101 but with a better image distribution. When compared to Caltech-101, 

minimum number of images in any category is increased from 31 to 80. Like 

Caltech-101, Caltech-256 is also associated with object categorization and 

recognition and is cited by more than 1100 papers in the literature. Figure 3.9 

shows some samples images taken from this dataset. 

 

Figure 3.9 Some examples from Caltech-256 dataset 

Validation procedure is much like Caltech101, only common choice for train split is 

to use 60 training images and rest for testing. 

3.2.3 Pascal VOC 2007 dataset 

The Pascal VOC 2007 [17] dataset is another benchmark dataset for image 

classification and localization. Pascal VOC 2007 contains 20 classes and a total of 

9,963 images and 24,640 annotated objects. It is the predecessor of ILSVRC 

challenge. It has been cited more than 2800 papers in the literature. It is a harder 

dataset when compared to Caltech variations although has much less object 

classes. This is due to clutter and occulasion in the images as well as objects’ low 

spatial spanning in the training images. Another difference from Caltech datasets 

is that Pascal VOC supplies a training list so everyone uses same training and 

testing data for presenting their results. Pascal VOC also uses mean         

average-precision (mAP) measure instead of a simple accuracy measure used in 

Caltech datasets. Once again we present dataset structure in Table 3.2. 
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Table 3.2 Summarization of concepts for Pascal VOC 2007 dataset 

 

3.3 Results 

In this section, we investigate various aspects of BoW methodology. We start with 

effects of dictionary size on classification performance. We compare performance 

of different dictionary creation techniques on Caltech-101 dataset mentioned in 

section 3.1.2. We evaluate hierarchical clustering (HKM) with a corpus size of   

six-hundered thousands and three millions and normal k-means clustering with 

six-hundered thousands and we choose the most simple encoding scheme, vector 

coding without any extensions. However, we choose x2 SVM for best classification 

accuracy. Our results are depicted in Figure 3.10 which uses a logarithmic scale to 

better represent diverse cluster range. We see that HKM yields almost same 

results with full k-means clustering which only has in edge over HKM for very small 

cluster sizes. With the increase of target dictionary sizes, HKM starts grasping the 

representation of corpus as well as full k-means. This tells us to favor HKM in 

place of full k-means in our classification pipelines. We once again emphasize that 

HKM has a run-time complexity of O(NlogN) and when compared to full k-means 

with complexity O(NK), it is a more suitable choice for large datasets. 

Our second observation regarding Figure 3.10 is that increasing dictionary size 

effectively increases classification accuracy. This is especially true with higher 

dictionary sizes which can be marked as debatable deduction given the different 

observations present in the literature. For instance, Lazebnik et. al. shows that 

there is a limiting effect of increasing dictionary size beyond a certain limit [33]. 

This is in par with our previous studies presented in SIU 2014 [59]. We should 
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note that in both studies full k-means clustering is the choice dictionary generation 

algorithm. On the other hand, Chatfield et. al. [8] argues that increasing dictionary 

size always help to increase classification accuracy provided that feature encoding 

is not too lossy. We know that they use approximate k-means clustering (AKM) 

which is similar to HKM in terms of performance. These results suggests us to 

conclude that advanced clustering techniques like HKM and AKM are better at 

discriminating visual corpus compared to standard k-means algorithm even for big 

dictionary sizes. Given that they also have lower complexity than standard           

k-means algorithm they should be favored wherever possible. 

Again [49] shows that using a larger corpus helps to cluster discriminatively better 

dictionaries when using large vocabularies. We observe same effect in our 

experiments. When using HKM clustering with more than three million feature 

corpus size, we observe higher classification accuracies than the previous         

six-hundered thousands case. Due to higher complexity of standard k-means 

algorithm, it is not feasible to increase corpus size for it above certain point. Given 

that HKM is both effective and discriminative with large a corpus, it is beneficial to 

increase corpus size up to a point where memory requirements is the limiting 

factor. 

Next we investigate effects of different spatial pyramid level extensions on 

Caltech-101 dataset. We look into case of Spatial Pyramid (SPM) extension before 

investigating different feature encodings because SPM can be implemented 

regardless of the encoding choice. For SPM experiments we use VQ with HKM 

clustering for dictionary generation and same x2 SVM as in the previous dictionary 

experiments. Figure 3.11 shows our results and Table 3.3 summarizes our 

numerical findings. 
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Figure 3.10 Classification accuracy with different dictionaries on Caltech-101 

We observe that effects of SPMs is most dramatical with lower dictionary sizes. 

This implies that even if our visual dictionary is not discriminative enough to 

properly classify our dataset images, spatial information incorporated with SPMs 

adds up to classification accuracy. This adds some degree of robustness to our 

classification pipeline with respect to inadequate dictionary choices. Our second 

observation is that while using SPMs, increasing dictionary size beyond a certain 

limits results in almost no accuracy increase. For example taking two cases from 

Table 3.3, with L2 SPMs, 1000k dictionary size is only 1% worse than 5000k 

dictionary size. 

 

Figure 3.11 Classification accuracy with different dictionaries and pyramid levels  

                     on Caltech-101 
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Table 3.3 Effects of SPM with different dictionaries sizes on Caltech-101 

 

Next we investigate performances of different encoding types. This time we 

investigate feature encodings on more challenging Pascal VOC 2007 dataset. We 

fix dictionary size for all encodings as 4000k except for Fisher vector coding which 

we set-up to use 256 mixture models. For all encodings we fix feature extraction 

steps as pixel wide, both for horizontal and vertical resolutions. We extract SIFT 

features at multiple scales, also known as PHOW features [4]. We mix L1 spatial 

pyramids with three horizontal regions, totaling eight spatial regions. We use x2 

SVM for VQ and KCB encodings since they are reported to be work better with 

those SVM types [8]. We also verified this in our SVM experiments. For FK and 

LLC encodings we use linear SVMs as those encodings get along with linear 

SVMs and don’t need non-linear kernels. For all our experiments, we select our 

SVM parameters either using grid search with 5-fold cross-validation in case of 

multiple parameters for non-linear SVM or using simple train-test validation for 

linear SVMs. 
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Table 3.4 lists our results. First thing striking us is the fact that VQ is reaching 

competitive results when compared to more advanced encodings, FK being the 

only exception. There are superior results for both LLC and KCB encodings when 

compared VQ encoding in the literature, however our results clearly states that this 

is not the case. Furthermore, there are other studies showing parallel results to our 

findings [8]. This can be attributed to various different phenomenon. First of all, 

unlike many studies, we follow a very aggressive feature extraction procedure. 

Both dense feature extraction step and images scales are used at limits. We 

believe this pushes performance of VQ further up whereas LLC and KCB is not 

taking advantage of denser feature extraction since they are already capable of 

coding image features at their optimum level. Another factor adding to this 

conclusion is that dictionary size can be increased further to make use of 

effectiveness of LLC and KCB encodings, as we believe they may further increase 

their performance with higher dictionary sizes. However, this increase is not be 

dramatic. For instance, [8] tested LLC with 25k dictionary sizes and they report 

57.60% mAP on Pascal VOC 2007. 

Our second observation is that none of these encodings are complementary. In 

Table 3.4 we listed winners and runners-up on a per-category basis. We see that 

FK encoding is the winner of all categories, and KCB is the runner-up in most of 

the categories. This makes us believe that success of any encoding is not 

dependant on any category, i.e. they get as discriminative as they can regardless 

of scene content. One other fact backing-up this theory is that categories with 

higher number of positive samples are always classified with higher accuracy. For 

instance, when we look into Table 3.2 we see that “Person” category has the 

highest number of positive samples and it is the category with highest AP in our 

results. This leads us to conclude that fusing different encodings types may not be 

a good candidate for multi-model image classification. 
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Table 3.4 Pascal VOC 2007 results for different encodings 
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4 VIDEO CONCEPT CLASSIFICATION USING DEEP LEARNING 

4.1 Methodology 

4.1.1 Convolutional Neural Networks overview 

Due to their recent success on many of the image processing tasks, we decide to 

import Convolutional Neural Networks (CNNs) into our processing pipelines. CNNs 

poses some unique properties for image understanding. First of all, they are highly 

transferable, i.e. one network trained on a given dataset may achieve             

state-of-the-art results on other datasets provided that overfitting is overcome by a 

suitable selection of training techniques. Secondly, they are highly parallel 

algorithms so vastly parallel architectures like graphical processing units (GPUs) 

can be utilized. 

CNNs are biologically inspired feed-forward type artificial neural network 

architectures and they may be categorized as variants of multilayer perceptrons 

(MLP). Hubel and Wiesel [24] showed that biological visual cortex is composed of 

small cells sensitive to some part of visual field called receptive field. Receptive 

fields cover a portion of input image in a tiled arrangement of subregions which 

cover entire spatial correlations present in an image. There are two basic types 

revealed; simple cells responding maximally to edge like patterns in their receptive 

field and more complex cells, which have larger receptive fields, locally invariant to 

exact positions of input patterns. Early CNN architectures like LeNet [37] modelled 

this behaviour inherent in animal visual cortex. They found wide applications in 

image and video classification, natural language processing and many more 

computer vision tasks. 

We investigate four different and popular CNN architectures in this part of our 

thesis. These CNN architectures are mostly winners or runners-up the famous 

image classification challenge ILSVRC [31] during their introduction time. CNN 

architectures are composed of a number of convolutional layers followed by 

subsampling layers. They may have additional fully-connected layers as well. CNN 

architectures all work with fixed input sizes but number of input color channels 

may vary from model to model. Given an image with resolution with size W x H 

and it is first resized to input resolution of the network, let’s say M x M. Assuming 



 30 

 

we have an convolution layer at the input with kernel size “k”, stride “s” and 

padding “p”, this convolution layer produces “N” feature maps with size: 

                                 

where “N” is fixed by network design. Each feature map then is subsampled using 

an average or max layers called pooling layers. After a stack of these multiple 

layers some fully-connected layers, which creates the vectoral outputs of a CNN, 

may follow. Figure 4.1 visualizes a generic CNN architecture layout. 

 

Figure 4.1 CNN architecture visualization 

Our first CNN architecture is AlexNet, first introduced by Krizhevsky et.al in 2012 

[31]. AlexNet consists of eight layers, five of them being convolutional layers and 

three layers are being fully-connected layers. They have a last softmax layer which 

is not included in this layer list. Softmax layer is tuned for semantic classification of 

1000 ImageNet, or ILSVRC, classes. In addition to softmax layer, there are 

various other max-pooling layers present in the architecture which is not counted 

in the layer list as well. In addition to those, there are hidden rectified linear units 

(RELU) following each of the convolution and fully-connected layers. This 

architecture is important in many ways, for instance it is the first demonstration of 

success of CNNs at such large scale. Moreover, it is not only successful in image 

classification tasks, for instance state-of-the-art results are reported for real-time 

pedesterian detection using a slightly modified version of AlexNet, recently [1]. 
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We show details of AlexNet architecture in Table 4.1. All output dimensions are 

calculated by using Equation 4.1 

Table 4.1 AlexNet network architecture 

 

Our second CNN model of choice is the winner of 2014 ILSVRC challenge by 

Szegedy et, al. [65]. This network derives from a so called Network-in-Network 

architecture of Lin et. al. [39] and called GoogleNet. GoogleNet is deeper network 

than AlexNet, consisting of twenty-two layers if pooling layers are not counted. If 

all the independent blocks are counted, their architecture is said to have 

approximately 100 layers. Although being four times deeper than AlexNet, 

GoogleNet is only 2x times less-efficient during inference time compared to 

AlexNet. They reach this efficient while utilizing larger networks by the help of 

filter-level sparsity concept first stated by Arora et. al. [3]. Table 4.2 summarizes 

the general layout of GoogleNet. Please note that whole GoogleNet architecture 

has almost 100 layers which we don’t show all in detail in this table. 
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Table 4.2 GoogleNet network architecture 

 

Our third and forth models are closely related to each other and introduced by 

Simonyan et. al. [62]. They secured second place of 2014 ILSVRC classification 

challenge, and won the same years localization challenge. They are code-named 

as VGG16 and VGG19 in the literature, latter being three layers deeper than the 

former. Their design is based on smaller convolutional filters in all layers of 

networks whereever possible. Smaller convolution steps permit them to increase 

network depth without too much increase in complexity. We show details of VGG 

networks in Table 4.3. 

One of very important metrics for differentiating CNNs is their depth and number of 

parameters. Deeper networks with more parameters is harder to design and train, 

but often yield better results when compared shallower architectures. In Table 4.4 

we provide various statistics about our CNN architectures. 
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Table 4.3 VGG19 network architecture 

 

Table 4.4 Comparison of different network architectures 

 

4.1.2 Classification strategies 

We have various classification strategies using CNNs: 

1. We can train a CNN end-to-end on our target datasets. 

2. We can fine-tune pre-trained CNN on our target datasets. 
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3. We can use lower layers of CNNs as feature extractors and develop further 

encoding schemes. 

4. We can use higher layers of CNNs and combine them with simpler 

classifiers like SVMs. 

First item is not suitable for our case, mainly due to two reasons. One is training 

end-to-end networks requires high-end computational resources which we don’t 

have access through-out our thesis duration, secondly they require ultra-large 

scale datasets for achieving acceptable classification performance. For instance, 

GoogleNet was trained on a high-end distributed supercomputer of Google [11] 

and authors state that architecture can be trained on a few high-end GPUs in a 

week. VGG networks are not different than GoogleNet either in this regard, 

training one VGG network took three weeks using four top-notch GPUs in parallel 

[62]. 

Training CNNs end-to-end may cause severe overfitting if they are not trained with 

enough data. We extract some facts from literature [61] [30] to show 

ineffectiveness of end-to-end training on relatively small datasets and list those in 

Table 4.5. 

Our second option of using CNNs for image classification is to fine-tune a         

pre-trained CNN for our datasets in hand. This is in fact an efficient way of 

performing classification as seem in Table 4.5, however, we don’t prefer this route 

as this step involves CNN training which is something we don’t have too much 

experience about.  

Our third option is a new research are in the literature and we investigate this 

option in our thesis. In this type of classification, we extract feature maps from 

lower layers network architectures and treat them as local image features. Later 

we run our BoW pipeline on those feature maps. We present our findings in the 

results section with our personal comments. 

Our forth option is to combine CNNs with simple classifiers, SVMs in our case. 

Unlike third method, we use upper layers of networks for feature extraction without 

any encoding taking in between feature extraction and SVM classification. This 

type classification is examined by various studies in the literature as well. 
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Table 4.5 End-to-end CNN training on UCF-101 video dataset 

 

4.2 Datasets In Use 

We report our findings on Caltech datasets which we mention on sections 3.2.1 

and 3.2.2. In addition to Caltech datasets, we make use of UCF101 dataset [64]. 

UCF-101 is an action recognition dataset of realistic action videos, collected from 

YouTube. It consists of 101 action classes, over 13k clips and 27 hours of video 

data. UCF-101 currently the largest dataset of human actions. As most of the 

available action recognition datasets are not realistic and are staged by actors, 

UCF-101 aims to encourage further research into action recognition by learning 

and exploring new realistic action categories. 

4.3 Results 

We first investigate effects using lower layers of CNN architectures as local 

features and apply BoW methodology for image classification purposes. We 

choose AlexNet as our CNN model. For each of the CNN layers, we first extract 

local image features using feature maps of receptive fields in the CNN layers. 

Then we create a visual vocabulary. Later using this vocabulary, we encode local 

image features. As a final step, we apply level two spatial pyramids and map 

features using homogenous kernel mapping of type x2. We use linear classifiers 

for classification, with cost parameter of SVMs set to 10. 

Figure 4.2 summarizes our findings. By looking at the numbers we see that 

convolution layers should be choice for feature extraction as outputs of pooling 

and normalization layers perform worse significantly. Second of all, as we go 

deeper in the network layers, accuracy consistently increases. This can be 

attributed to learning ability of CNNs. In the very first layers, learned features are 

weak and less invariant to changes in the image structure. As we go deeper, with 
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the effects of more convolutions, learned features become stronger and with the 

effects of max-pooling layers they gain invariance to various imaging operations. 

 

Figure 4.2 BoW methodology applied to CNN features on Caltech-101 

Our most interesting finding is, though, features learned by network is almost 

better than hand-crafted features like SIFT for classification tasks. This leads to 

one another observation but we hold-on to that until we investigate other 

classification method of ours. In our second group of experiments, instead of 

extracting features from early layers and encoding them with BoW, we extract 

features from higher levels of our CNN architecture. We specifically choose final 

fully-connected layers for such a comparison. At a first glance, this is somehow 

expected to perform worse because we know that CNNs learn generic image 

features in the lower layers and more high-level semantics of images in the upper 

layers. Since our models are trained on an un-correlated and totally different 

dataset then we are using, we expect these semantics to be dataset specific. 

However, by looking our results shown in Table 4.6, we see this is not the case 

and CNNs achieve state-of-the-art results on our benchmark Caltech datasets. 

These unexpected results can be attributed to two distinct concepts. First, learned 

semantic features are more like mid-level image features rather than high-level 

image semantics. Secondly, CNNs are not only good at learning low-level image 

features, they are good at learning better encodings for those features as well. We 

must emphasize that CNN features perform equally well with linear SVMs. 
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Table 4.6 CNN classification performance on Caltech datasets 

 

Finally we investigate effects model fusion of different CNN models. Given that 

CNNs are learning image features and related encodings, it is highly possible that 

different architectures may learn different representations which may be 

complementary to each other. We use seven different CNN models: 

1. Model 1: AlexNet architecture trained on ImageNet dataset. 

2. Model 2: Re-shaped AlexNet architecture for higher input resolutions. 

3. Model 3: VGG16 architecture trained on ImageNet dataset. 

4. Model 4: VGG19 architecture trained on ImageNet dataset. 

5. Model 5: GoogleNet architecture trained on ImageNet dataset. 

6. Model 6: AlexNet architecture trained on MIT places dataset [86]. 

7. Model 7: Re-shaped VGG16 architecture for higher input resolutions. 

Our purpose for the selection of such a mix is to use insert diversity into our CNN 

selection. We operate on two CNNs, namely AlexNet and VGG16, and change 

their internal structure so that they can work with higher resolution images. We 

apply net surgery in a way that all the pre-trained parameters of the networks stay 

the same and we do not perform any model training. We also use a model        

pre-trained on a different dataset which we think may add some unique 

information to our final model. Fusing operation is performed on fully-connected 

layers of CNN models, i.e. we do not apply any re-coding. We fuse extracted 

features in two fashions, using early and late fusion strategies. Early fusion is the 

merging of features before presenting them to classifier. Late fusion is the merging 

of results of different SVMs using a proper voting scheme. Table 4.7 summarizes 

our findings, which we also shared in a submitted paper of ours for BigMM 2016 

conference [15]. By looking at the results, we can say that early fusion consistently 

outperforms late fusion. For Caltech datasets, our results are better than current 

state-of-the-art results with a strong margin of 4-5%. For UCF101 dataset, our 
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results still perform better than results demonstrated in literature using only static 

image features. Since we haven’t employed any motion features, we are not 

compatiple with studies using motion features like STIP [32]. 

We show cardinality of each fusion in the “Dim” column of Table 4.7. Even fusion 

of seven different architectures generates smaller feature sizes than various BoW 

encodings. They are even much smaller than Fisher Vector encoding which is the 

most successful feature encoding presented in BoW results. Please note that FK 

dimensionality can be as high as 800k for a reasonable accuracy. Finally we 

compare run-time performance of various encodings in Table 4.8 which clearly 

states superiority CNN architectures. Please note that our CNN architectures are 

running on highly optimized GPU architectures, we show their CPU-only 

performance as well which is still far better than FK encoding. 

Table 4.7 Fusion performance of different network architectures 
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Table 4.8 Running-Time performance of various architectures in use 
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5 CONTENT AND CONCEPT BASED RETRIEVAL 

Due to recent burst of multimedia data availability in 21th century, searching and 

retrieving aspects multimedia content is gaining more and more attention 

everyday. Tera-bytes of audio and video content is generated day-by-day and 

waiting to be indexed for further processing. 

There can be many different query types for multimedia retrieval. On the other 

hand, image and video retrieval can classified down to two alternatives; text-based 

and content-based queries [40]. Content-based approaches or content-based 

image retrieval (CBIR) permits users to search their multimedia databases with the 

help of an example query item. In contrast, text-based approaches associate video 

shots or images with multiple semantic labels which once again can be queries by 

users. 

As in image classification, BoW methodology is once again one of the most 

frequently assessed alternatives for retrieval applications. BoW offers most 

successful results in terms of retrieval accuracy and query running time. In this 

part of our study, we are investigating running efficient retrieval of image queries 

towards large scale video retrieval. We propose a processing pipeline similar to 

classification case with some modifications for running example based queries. 

Block diagram of our proposed pipeline architecture is depicted in Figure 5.1. 

 

Figure 5.1 Overall view of the proposed search and retrieval system 
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5.1 Content-Based Retrieval 

We use a very similar pipeline in retrieval as well. We first extract SIFT features of 

a query image. However, we use sparse sampling in place of dense sampling. 

Then we encode extracted features using VQ with a much higher dictionary 

codeword size compared to classification case. We apply spatial pyramids 

depending on the query type; content-based queries do not use SPM. In the final 

step, unlike image classification, simpler similarity measures are used in place of 

SVM classification for comparison of different image descriptors. We look into 

details of different distance metrics in the section 5.4. 

5.2 Query Types 

We implement two types of queries for demonstration purposes;                    

query-by-example (QBE) and keyword queries. 

QBE is the search of a given sample image in our local image database for 

matching pairs. This can be translated to a text query of “Find all images which are 

similar to this one”. QBE removes the difficulties rising from the description of 

image content using words. 

Keyword queries, or semantic queries, permits user to query local image database 

with the use of high-level semantic keywords. User supplies a query keyword and 

retrieval systems scans tags of local images for matching descriptions. Here we 

assume that relevant tags are attached to images during indexing time. 

5.3 Inverted Index 

Inverted index is a very effective technique for reducing both memory 

requirements and time complexity of retrieval operations. An inverted index keeps 

a look-up table which contains associated codewords or dictionary entries for a 

corresponding image present in our database. 

In order to reduce time complexity of underlying retrieval operations. We build 

inverted index in a way to benefit sparse structure of image descriptors. It keeps a 

look-up table of all images in database which contains specific codeword. i.e. 

dictionary entry. Figure 5.2 shows a graphical interpretation of our inverted index 

structure. 
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Figure 5.2 Overall view of the proposed search and retrieval system 

This representation is effective in case of sparse image descriptors. In other 

words, inverted index exploits sparsity present in our image representations. Let’s 

assume average number of features per image is M and suppose we have 

dictionary of size K. Recalling BoW representation give in previously, we can 

represent an image descriptor with a K-sized vector: 

                                         

For practical applications, M << K resulting in a very sparse descriptor D, i.e. many 

elements of D vector is zero. Since inverted index only keeps non-zero codewords 

coefficients of D in our database both memory requirements and similarity 

comparison time complexity is greatly reduced. This reduction is more dramatic in 

case where more than one image feature is quantized into the same dictionary 

codeword entry, which is a valid case for many practical applications. Keeping 

BoW descriptors as is results in linear increase both in dictionary size and number 

of images which is clearly avoided by the use of an inverted index. 

To put in numbers, for Oxford Buildings database we have 9000 images, hence   

N = 9000. With a dictionary of size K = 1 million and empirical value of M = 3000, 

without use of inverted index we would have K x N = 9 billions of                 
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multiply-accumulate operations in case of L1 distance metric. Number of 

operations are much higher with the use of more advanced distance metrics. With 

the use of an inverted index, number of multiply-accumulate cycles reduces to     

M x N = 30 millions. This is a reduction factor of 0.3%. 

Use of an inverted index with different distance metrics in not a trivial task due to 

layout of data structure in database. Since all elements of image descriptor vectors 

are not kept in database and are not accessible during query time, direct 

computation of similarity is not possible. However, it is possible to decompose 

most of the distance metrics, if not all, into two distinct summation terms. One of 

the terms only depends on the query vector, and the other term depends only on 

the database vectors. Then we can calculate both terms separately since only 

non-zero database elements contribute to final similarity measure. This permits us 

to reach almost constant time distance comparison, even for heavy similarity 

measures. 

Our image classification pipeline steps employed in example based queries is in 

depicted in Figure 5.3. As a first step, we extract local SIFT features for every 

image using DoG detector. After local feature extraction, local features are hard 

vector quantized to create image feature histograms. Following vector 

quantization, we L1 normalize created histogram so that effect of unequal feature 

cardinalities in different images are neutralized. Spatial pyramid extension is not 

used for running queries due to use of sparse sampling. We rely on feature 

detectors so relevant spatial information is not discarded. Following this step, to 

suppress frequently used visual codewords we insert inverse document 

frequencies (idf) into extracted feature histograms. In the final step we compare 

our query image descriptor to the ones present in our database using different 

distance metrics. 

 

Figure 5.3 Retrieval pipeline overview 
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5.4 Distance Metrics 

For comparing different image BoW descriptors, a suitable distance comparison 

should be employed. There are various alternatives, we evaluate performances of 

following metrics in our study. 

5.4.1 L1 distance 

L1 distance or norm, is defined in Equation 5.2. 

                                                   

5.4.2 L2 distance 

L2 distance or norm, is defined in Equation 5.3. 

                                                   

5.4.3 Histogram Intersection 

Histogram intersection is a special metric used to compare histogram-like features. 

Histogram intersection can be formulated as in Equation 5.4. 

                                             

5.4.4 Hellinger distance 

Hellinger distance, or Bhattacharyya’s distance, is used to compare similarity 

between two probability distributions. It is defined as in Equation 5.5 or 5.6 if 

vectors are L2 normalized. 

                                      

                                       

5.4.5 Chi-Squared 

Chi-Squared can be represented with Equation 5.7. 
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5.4.6 Cosine distance 

Cosine distance can be seen in Equation 5.8. 

                                                

5.5 Datasets 

The Oxford Buildings dataset [53] consists of 5062 images extracted from Flickr by 

searching known Oxford landmarks. The collection had been manually annotated 

to generate a comprehensive ground truth for 11 different landmarks, each 

represented by 5 possible queries. This gives a set of 55 queries over which an 

object retrieval system can be evaluated. Figure 5.4 shows some examples from 

the dataset and Table 5.1 lists structure of the dataset. 

Table 5.1 Summarization of concepts for Oxford dataset 

 

The Paris Dataset [54] is composed of 6412 images collected from Flickr by 

searching for particular Paris landmarks. It includes 55 different queries on 12 

different Paris buildings, much like Oxford buildings dataset. Figure 5.5 shows 

some examples from the dataset and Table 5.2 lists structure of the dataset. 
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Figure 5.4 Some samples from Oxford dataset 

 

Figure 5.5 Some samples from Paris dataset 

In addition to Oxford and Paris datasets, we use Pascal VOC 2007 dataset for 

reporting our keyword query results. We mention details of Pascal VOC dataset in 

Section 3.2.3. 

Table 5.2 Summarization of concepts for Paris dataset 
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5.6 Results 

We present our results from a recent study of our [16] in Figure 5.6 and Table 5.3. 

We investigate CBIR performance on Oxford Buildings and Paris datasets, then 

we conduct experiments with aformentioned comparison metrics on both datasets. 

We also investigate effects of L1 and L2 normalizations. Table 5.3 summarizes our 

results. 

We also evaluate different metrics on Oxford Buildings dataset without IDF 

weighting scheme applied. Applying IDF weighting adds approximately 2 percent 

to average precision. 

 

Figure 5.6 Precision and recall (PR) curves. The best, average, and worst 

                        queries/concepts are considered for each dataset using the 

                        proposed scheme: (a) Oxford Buildings dataset, (b) Paris dataset,  

                        (c) Pascal VOC 2007 dataset 

Among all distances, Hellinger distance performs the best and this is in-line with 

results presented by [2]. Although Hellinger distance is heavier to compute 

compared to most of the other distances it was shown that it can be computed 

very efficiently with an additional normalization step to SIFT descriptor calculation 
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[2]. This normalization step doesn’t even need a modification in SIFT extraction 

routines, it is possible to apply normalization during quantization of image features. 

Histogram intersection based distance comparison (min) is consistently second 

after Hellinger distance. This is en expected outcome for 2 reasons, one is that it 

has been shown to be superior for object classification tasks. [33] and, second, 

BoW descriptors are merge histograms. It should be noted that histogram 

intersection performs better with L1 on some datasets while it is performing better 

with L2 normalization on some other datasets with very slight changes so we can 

comment that it is normalization agnostic. 

Table 5.3 Comparison of different distance metrics on Oxford Buildings and Paris 

                 datasets 
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6 CONCLUSIONS 

6.1 Main Findings 

In this thesis, we investigate many parameters and various extensions of BoW 

paradigm. We show the effectiveness of VQ versus different encodings. We show 

that it is fast, robust and scalable. Although it performs worse in accuracy when 

compared to FK, we believe extra overhead of FK should be avoided due to high 

memory requirements and relatively slower encoding timings. Repeating findings 

in Table 4.8, FK is more than twenty times slower than VQ in coding step. It also 

generates ten times larger feature vectors compared to VQ which increases 

inference time and memory usage. We believe deep learning algorithms should be 

used in place of FK, and VQ can be used jointly to further push classification 

accuracy. 

In addition to feature encoding, we show that visual dictionary can be created 

using approximate k-means algorithms which make it possible to create more 

discriminative vocabulary with lower complexity of O(NlogN) vs O(NK). 

Another important point is use of linear classifiers. Even our VQ encoding is 

performing better with nonlinear kernels, we show that kernel mapping can be 

applied prior to classification and linear SVMs can be used in place of nonlinear 

SVMs. 

Finally, we evaluated our best selection of implementation parameters on two 

benchmark datasets of Caltech-101 and Caltech-256 showing state-of-the-art 

results among BoW implementations. 

In addition to BoW methodology, we analyze deep learning in the context of visual 

concept classification. We investigate various CNN architectures show 

effectiveness of deeper architectures. We combine CNN architectures with BoW 

encoding, surprisingly, we achieve worse results when compared to CNN models 

alone but better or identical results using BoW encodings with hand-crafted 

features. This shows that CNN architectures are both able to learn effective image 

features and optimal encodings for learned image features, although proving this 

optimality is somehow impossible. But we can say that they are able to saturate 

results on benchmark datasets which gives us some clues about their optimality. 
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We also show that proposed BoW architectures perform well in retrieval 

applications. We show how Hellinger’s distance can be employed in L2 distance 

for better retrieval precision. We also show advanced distance metrics can be 

used with inverted index database structures. 

6.2 Limitations and Future Work 

Due to shortcomings in our computer hardware resources we haven’t investigated 

effects of CNN training in our thesis. Furthermore, we somehow lack proper 

understanding of CNN architectures’ advanced performances which prevents us 

from further pushing their classification accuracies with the integration of more 

advanced encodings. Another limitation of our thesis is that we discard valuable 

audio information present in the video which can definetely help us to improve 

classification accuracies. Being parallel to that, video specific motion features are 

discarded in our thesis. However, integrating audio and motion information into our 

classification pipeline would certainly boost our classification performance. We 

wish to address these shortcomings in our future studies.  
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