

MUSTAFA KEMAL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

ELASTİK ZEMİNE OTURAN DOĞRU VE DAİRE EKSENLİ ÇUBUKLARIN DİNAMİK ANALİZİ

FATMA GÜLHAN AKKURT

YÜKSEK LİSANS TEZİ

<u>Antakya / HATAY</u> Ocak–2011

MUSTAFA KEMAL ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

ELASTİK ZEMİNE OTURAN DOĞRU VE DAİRE EKSENLİ ÇUBUKLARIN DİNAMİK ANALİZİ

Fatma Gülhan AKKURT

YÜKSEK LİSANS TEZİ

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

Doç. Dr. Faruk Fırat ÇALIM danışmanlığında hazırlanan bu tez 27/01/2011 tarihinde aşağıdaki jüri tarafından oybirliği ile kabul edilmiştir.

Doç. Dr. Faruk Fırat ÇALIM	Yrd. Doç. Dr. Ali DOĞAN	Yrd. Doç. Dr. İbrahim KELEŞ
Başkan	Üye	Üye

Bu tez Enstitümüz İnşaat Mühendisliği Anabilim Dalında hazırlanmıştır.

Kod No:

Prof. Dr. Necat AĞCA Enstitü Müdürü

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu tarafından desteklenmiştir.

Proje No: TÜBİTAK-108M593

Not: Bu tezde kullanılan özgün ve başka kaynaktan yapılan bildirişlerin, çizelge, şekil ve fotoğrafların kaynak gösterilmeden kullanımı, 5846 sayılı Fikir ve Sanat Eserleri Kanunundaki hükümlere tabidir.

İÇİNDEKİLER

ÖZET	II
ABSTRACT	III
SİMGELER VE KISALTMALAR DİZİNİ	IV
ÇİZELGELER DİZİNİ	V
ŞEKİLLER DİZİNİ	VI
1. GİRİŞ	1
2. ÖNCEKİ ÇALIŞMALAR	2
3. MATERYAL VE YÖNTEM	4
3.1 Eğri Eksenli Uzaysal Çubuklar	4
3.1.1. Çubuk Geometrisi	4
3.1.2. Geometrik Uygunluk Denklemleri	6
3.1.3. Hareket Denklemleri	6
3.1.4. Elastik Bünye Denklemleri	7
3.2. Düzlemsel Çubuklar	10
3.2.1. Düzlemi İçinde Yüklü Doğru Eksenli Çubuklar	11
3.2.2. Düzlemine Dik Yüklü Doğru Eksenli Çubuklar	12
3.2.3. Düzlemi İçinde Yüklü Daire Eksenli Çubuklar	12
3.2.4. Düzlemine Dik Yüklü Daire Eksenli Çubuklar	13
3.3. Serbest ve Zorlanmış Titreşim İçin Hareket Denklemler	13
3.3.1. Zorlanmış Titreşim	13
3.3. 2. Serbest Titreşim	15
3.4. Tamamlayıcı Fonksiyonlar Yöntemi İle Diferansiyel Denklemlerin Çözümü	15
4. ARAŞTIRMA BULGULARI VE TARTIŞMA	17
4.1. Düzlemi İçinde Yüklü Doğru Eksenli Kiriş	18
4.2. Doğru Eksenli Kirişin Dinamik Davranışı	24
4.3. Elastik Zemine Oturan Daire Eksenli Kirişin Statik Analizi	50
4.4. Elastik Zemine Oturan Daire Eksenli Kirişin Dinamik Analizi	52
5. SONUÇ ve ÖNERİLER	58
KAYNAKLAR	60

	Sayfa
TEŞEKKÜR	
ÖZGEÇMİŞ	

ÖZET

Bu çalışmada elastik zemine oturan doğru ve daire eksenli çubukların dinamik davranışı Laplace uzayında teorik olarak incelenmiştir. Doğru ve daire eksenli çubukları idare eden denklemler Timosenko çubuk teorisi kullanarak elde edilmiştir. Formülasyonda, dönme ataleti, eksenel ve kayma deformasyonları göz önüne alınmıştır. Çubuk malzemesi homojen, lineer elastik ve izotropik kabul edilmiştir. Laplace uzayında elde edilen skaler formdaki adi diferansiyel denklemler, problemin dinamik rijitlik matrisini kesin olarak hesaplamak için tamamlayıcı fonksiyonlar yöntemi yardımıyla sayısal olarak çözülmektedir. Elde edilen çözümler, Durbin'in sayısal ters Laplace dönüşüm yöntemi kullanılarak zaman uzayına dönüştürülmektedir. Daha sonra Elastik zemine oturan doğru ve daire eksenli çubukların serbest ve zorlanmış titreşim analizi yapılmıştır. Serbest titreşim, zorlanmış titreşimin özel hali olarak incelenmiştir. Elastik zemine oturan doğru ve daire eksenli çubukların dinamik davranışını etkileyen faktörler incelenmiştir. Bu çalışmada elde edilen sonuçların ANSYS sonuçları ile uyum içinde olduğu görülmüştür.

Anahtar kelimeler: Doğru ve Daire Eksenli Çubuklar, Elastik Zemin, Serbest ve Zorlanmış Titreşim, Tamamlayıcı Fonksiyonlar Yöntemi.

ABSTRACT

The dynamic behavior of straight and circular rods on elastic foundation is theoretically investigated in the Laplace domain. The governing equations for straight and circular beams are obtained using Timoshenko beam theory. The effect of the rotary inertia, axial and shear deformations are considered in the formulations. The material of the rod is assumed to be homogeneous, linear elastic and isotropic. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method to calculated the dynamic stiffness matrix of the problem accurately. The solutions obtained are transformed to the real space using the Durbin's numerical inverse Laplace transform method. The free and forced vibrations of straight and circular rods on elastic foundation are analyzed. The free vibration is then taken into account as a special case of forced vibration. The effects of boundary conditions on free and forced vibrations are investigated. The results obtained in this study are found to be in good agreement with those obtained from ANSYS.

2011, 63 pages

Keywords: Straight and Circular Beams, Elastic Foundation, Free and Forced Vibrations, Complementary Functions Method.

SİMGELER VE KISALTMALAR DİZİNİ

t	: zaman
x_{1}, x_{2}, x_{3}	: Dik koordinat takımı
$\boldsymbol{\gamma}^{0}, \boldsymbol{\omega}^{0}$: Rölatif birim uzama ve rölatif birim dönme
$\mathbf{U}^{0}, \mathbf{\Omega}^{0}$: Yer değiştirme ve dönme vektörü
$\mathbf{T}^{0}, \mathbf{M}^{0}$: İç kuvvet ve moment vektörleri
$\mathbf{p}^{(ex)}, \mathbf{m}^{(ex)}$: Birim boya etkiyen yayılı dış kuvvet ve yayılı dış moment
$\mathbf{p}^{(in)}, \mathbf{m}^{(in)}$: Birim boya etkiyen kütlesel atalet kuvveti ve kütlesel atalet momenti
ρ	: Kütlesel yoğunluk
А	: Kesit alanı
I _i	: Atalet momenti
k	: Zemin katsayısı
\overline{k}	: Boyutsuz zemin katsayısı
L	: Doğru eksenli kirişin uzunluğu
R	: Dairesel kirişe ait yarıçap
В	: Kirişe ait kesit genişliği
h	: Kirişe ait kesit yüksekliği
Ε, G, ν	: Elastisite modülü, Kayma modülü ve Poisson oranı
Z	: Laplace dönüşüm parametresi
f(t)	: Zamana bağlı fonksiyon
α_n, α_b	: Kayma düzeltme faktörleri
В	: Sistemin yayılı dış yükleri
F	: Diferansiyel matris
Y	: Durum vektörü
ω	: Açısal frekans
$\overline{\omega}$: Boyutsuz frekans

ÇİZELGELER DİZİNİ

Çizelge 4.1. Elastik zemine oturan doğru eksenli kirişe ait serbest titreşim	
frekansları	19
Çizelge 4.2. AA sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları	25
Çizelge 4.3. SS sınır şartına sahip kirişin boyutsuz serbest titreşim frekanslar	27
Çizelge 4.4. AS ve AB sınır şartına sahip kirişin boyutsuz serbest	
titreşim frekansları	29
Çizelge 4.5. Bernoulli-Euler ve Timoshenko kiriş teorisine göre AA ve SS sınır	
şartına sahip kirişin boyutsuz serbest titreşim frekansları	37
Çizelge 4.6. Bernoulli-Euler ve Timoshenko kiriş teorisine göre AS ve AB sınır	
şartına sahip kirişin boyutsuz serbest titreşim frekansları	39
Çizelge 4.7. Elastik zemine oturan daire eksenli kirişe ait sayısal sonuçlar	51
Çizelge 4.8. Farklı dönüş açılarına sahip iki ucu ankastre dairesel kirişe ait	
serbest titreşim frekansları	53
Çizelge 4.9. İki ucu ankastre yarım dairesel kirişe ait serbest titreşim frekansları	54

ŞEKİLLER DİZİNİ

Şekil 3.1. Çubuk geometrisi	5
Şekil 3.2. Elastik zemine oturan Timoshenko kirişi	10
Sekil 3.3. Doğru eksenli cubuk	11
Sekil 3.4. Elastik zemine oturan daire eksenli cubuk	13
Sekil 4.1. Elastik zemine oturan doğru eksenli kiris ve	
uvgulanan dinamik vük	18
Sekil 4.2. SS sınır sartı icin kirisin orta noktasındaki deplasmanın (Uv)	
zamanla değişim	20
Sekil 4 3 SS sınır sartı için kirisin orta noktasındaki	
eğilme momentinin (Mz) zamanla değişimi	20
Sekil 4.4 A A sinir serti join kirisin orta noktasindaki denlasmanin (Uv)	
zamanla değişimi	21
Sakil 4.5 A A sınır sartı için ankaştra yetaki ağılma momentinin (Mz)	21
zemenle dežisim	21
Sakil 4.6 AS Sunr sarti join kirisin orta naktasındaki danlaşmanın (Uy)	21
Şekli 4.0 AS Sılılı şaltı için kirişin olta noktasındaki deplasınanın (Uy)	22
Saltil 4.7 AS Super garti join anlegetra vatali ačilma momentin (Mz)	
Şekli 4.7 AS Sılılı şaltı için ankasıle uçtaki eginne momentin (MZ)	22
Zamania degişimi.	
Şekli 4.8 AB sinir şartı için kirişin ucundaki deplasmanın (Uy)	22
Şekil 4.9 AB sınır şartı için ankastre uçtaki momentin (Mz)	
zamanla degişim.	
Şekil 4.10. AA sınır şartına sahip kırışın boyutsuz serbest titreşim	2.1
frekansları (L/h=5)	
Şekil 4.11. AA sınır şartına sahip kırışın boyutsuz serbest	
titreşim frekansları (L/h=15)	31
Şekil 4.12. AA sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları	
(L/h=120)	32
Şekil 4.13. SS sınır şartına sahip kirişin boyutsuz serbest	
titreşim frekansları (L/h=5)	32
Şekil 4.14. SS sınır şartına sahip kirişin boyutsuz serbest	
titreşim frekansları (L/h=15)	33
Şekil 4.15. SS sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları	
(L/h=120	33
Şekil 4.16. AS sınır şartına sahip kirişin boyutsuz serbest	
titreşim frekansları (L/h=5)	34
Şekil 4.17. AS sınır şartına sahip kirişin boyutsuz serbest titreşim	
frekansları (L/h=15)	34
Şekil 4.18. AS sınır şartına sahip kirişin boyutsuz serbest	
titreşim frekansları (L/h=120)	35
Şekil 4.19 AB sınır şartına sahip kirişin boyutsuz serbest	
titresim frekansları (L/h=5)	35
Sekil 4.20 AB sınır sartına sahip kirisin bovutsuz serbest	
titreşim frekansları (L/h=15)	36

Şekil 4.21 AB sınır şartına sahip kirişin boyutsuz serbest	
titreşim frekansları(L/h=120)	36
Şekil 4.22 AA Sınır şartı için kirişin orta noktadaki deplasmanın (Uy)	
zamanla değişimi (L/h=5)	41
Şekil 4.23 AA sınır şartına için ankastre uçtaki momentin (Mz)	
zamanla değişimi (L/h=5)	41
Şekil 4.24 AA Sınır şartı için kirişin orta noktadaki deplasmanın (Uy)	
zamanla değişimi (L/h=15)	42
Şekil 4.25. AA Sınır şartı için ankastre uçtaki momentin (Mz)	
zamanla değişimi (L/h=15)	42
Şekil 4.26 AA sınır şartı için kirişin orta noktadaki deplasmanın (Uy)	
zamanla değişimi (L/h=120)	43
Şekil 4.27. AA sınır şartı için ankastre uçdaki momentin (Mz)	
zamanla değişimi (L/h=120)	43
Şekil 4.28. SS sınır şartı için kirişin orta noktasındaki deplasmanın (Uy)	
zamanla değişimi (L/h=5	
Şekil 4.29. SS sınır şartı için kirişin orta noktasındaki eğilme momentin (Mz)	
zamanla değişimi (L/h=5)	44
Sekil 4.30. SS sınır şartı için kirişin orta noktadaki deplasmanın (Uy)	
zamanla değisimi (L/h=15)	
Sekil 4.31. SS sınır şartı için kirişin orta noktasındaki eğilme momentin (Mz)	
zamanla değişimi (L/h=15)	45
Sekil 4.32 SS sınır şartı için kirişin orta noktasındaki deplasmanın (Uy)	
zamanla değişimi (L/h=120)	46
Sekil 4.33 SS sınır şartı için kirişin orta noktasındaki eğilme momentin (Mz)	
zamanla değişimi (L/h=120	46
Sekil 4.34 AS sınır sartı için kirisin orta noktasındaki deplasmanın (Uy)	
zamanla değişimi (L/h=5)	47
Sekil 4.35. AS sınır şartı için ankastredeki eğilme momentinin (Mz)	
zamanla değişimi (L/h=5)	47
Şekil 4.36. AS sınır şartı için kirişin orta noktasındaki deplasmanın (Uy)	
zamanla değişimi (L/h=15	48
Sekil 4.37 AS sınır sartı için ankastredeki eğilme momentinin (Mz)	
zamanla değişimi (L/h=15)	48
Şekil 4.38. AS sınır şartı için kirişin orta noktasındaki deplasmanın (Uy)	
zamanla değişimi (L/h=120)	49
Şekil 4.39 AS sınır şartı için ankastredeki eğilme momentinin (Mz)	
zamanla değişimi (L/h=120)	49
Sekil 4.40. Elastik zemine oturan dairesel kiriş	50
Sekil 4.41. Orta noktasında dinamik tekil yüke maruz iki ucu ankastre elastik	
zemine oturan dairesel kiris ve dinamik yük tipi	52
Sekil 4.42 Dairesel kirişin orta noktasındaki deplaşmanın (Uz)	
zamanla değişimi	55
Sekil 4.43 Dairesel kirise ait ankastre uctataki eğilme momentin (Mv)	-
zamanla değişimi	56
Sekil 4.44 Dairesel kirişin orta noktasındaki deplasmanın (Uz)	
zamanla değişimi	56
<u>ل</u> ,	

1.GİRİŞ

Elastik zemine oturan kirişler ve plaklar mühendislik uygulamalarında yaygın olarak kullanılmaktadır. Elastik zemine oturan kirişlerin dinamik analizlerinde Winkler, Pasternak ve Vlasov gibi çeşitli zemin modelleri kullanılmaktadır.

Elastik zemin üzerine oturan çubuk problemleri uygulamada çok kullanılan bir yapı elamanıdır. Çubuklar, kullanılan yapı tipine göre çeşitli geometrilere sahip olabilirler. Bu çubuklar, doğru ve daire eksenli olarak ele alınır ve uygulamalarda rastlanmaktadır. Farklı eksenlere sahip olmaları uygulama alanlarının da artmasına neden olmuştur. Çok farklı uygulama alanları olmakla beraber bir veya iki doğrultudaki sürekli temeller, palplanşlar ve yatay kuvvete maruz düşey kazıklar doğru eksenli çubuklara; su tankı ve siloların betonarme temelleri de daire eksenli çubuklara örnek olarak gösterilebilir.

Bu çalışmada, elastik zemine oturan doğru ve daire eksenli kirişlerin serbest ve zorlanmış titreşimleri incelenmiştir. Serbest titreşim zorlanmış titreşimin özel hali olarak ele alınmıştır. Laplace uzayında kanonik formda elde edilen adi diferansiyel denklemler, dinamik rijitlik matrisini hesaplayabilmek için tamamlayıcı fonksiyonlar yöntemi yardımıyla sayısal olarak çözülmektedir. Laplace uzayında elde edilen çözümler Durbin'in sayısal ters Laplace dönüşüm yöntemi kullanılarak zaman uzayına dönüştürülmüştür. Sonlu elemanlar ile analizlerde yüzlerce eleman alınması gerekirken bu çalışmada önerilen çözüm yöntemi ile bir veya birkaç elemanla istenilen hassasiyette sonuçlara ulaşılabilmektedir. Değişken katsayılı adi diferansiyel denklemler uygun integrasyon adım aralığı seçilerek tamamlayıcı fonksiyonlar yöntemi ile Laplace uzayında istenilen hassasiyette kesin olarak çözülebilmektedir. Bu ve benzeri çalışmalar da genel sınır şartlarına sahip problemlerin çözünde büyük kolaylıklar sağlamaktadır.

2.ÖNCEKİ ÇALIŞMALAR

Elastik zemine oturan kirişler ve plaklar mühendislik uygulamalarında yaygın olarak kullanılmaktadır. Elastik veya viskoelastik zemine oturan kirişlerin dinamik analizlerinde Winkler, Pasternak ve Vlasov gibi çeşitli zemin modelleri kullanılmaktadır. Literatürde, elastik zemine oturan kirişlerin statik ve dinamik analizleri ile ilgili birçok çalışma vardır.

Kerr (1964), diğer zemin modellerine karşın Pasternak modelinin avantajlarını göstermiştir. Aynı zamanda elastik zemin modelini viskoelastik zemin modeline genişletmiştir. Kıral ve Ertepınar (1974) statik yükleme altında elastik zemine oturan kirişlerin davranışını incelemişlerdir. Wang ve Brannen (1982) elastik zemine oturan eğri eksenli çubukların doğal frekanslarını araştırmışlardır. Eğri eksenli çubuğa ait dönüş açısının ve zemin katsayısının doğal frekansa etkilerini göstermişlerdir. Issa (1988) ve Issa ve ark. (1990) Winkler ve Pasternak tipi elastik zemine oturan eğri eksenli kirişlerin serbest titreşimini çalışmışlardır. Dasgupta ve Sengupta (1988) elastik zemine oturan eğri eksenli çubukların çözümü için üç düğümlü izoparametrik kiriş elemanı kullanarak bir sonlu eleman modeli geliştirmiştir. Formülasyonda, kayma deformasyonu etkisini dahil etmişlerdir. Banan ve ark. (1989) elastik zemine oturan eğri eksenli kirişler için bir sonlu eleman formülasyonu geliştirmişlerdir. Celep (1990) elastik zemine oturan daire eksenli kiriş problemini çalışmıştır. Kukla (1991) ve Wang (1991) kademeli elastik zemine oturan kirişlerin serbest titreşimini incelemiştir. Haktanır ve Kıral (1993) elastik ve izotropik malzemeden yapılmış helisel çubukların statik taşıma matrisi yöntemine dayalı rijitlik matrisi yöntemi ile çalışmışlardır. Eisenberger (1994), bir ve iki parametreli elastik zemine oturan kirişlerin serbest titreşimini çalışmıştır. Kadıoğlu (1994) ve Erim (1994) Winkler tipi elastik zemine oturan doğru ve daire eksenli çubukların statik analizini incelemişlerdir. Aköz ve Kadıoğlu (1996), karışık sonlu eleman formülasyonu kullanarak elastik zemine oturan değişken kesite sahip daire eksenli çubukların keyfi yükler altında statik analizini incelemişlerdir. Thambiratnam ve Zhuge (1998), elastik zemine oturan kirişlerin serbest titreşim analizi için basit bir sonlu eleman metodu geliştirmişlerdir. De Rosa ve Maurizi (1998) Pasternak tipi zemine oturan bir kirişin serbest titreşim analizini çalışmışlardır. Yang ve ark. (2001) düşey yükler altındaki eğri eksenli çubuklar için analitik çözümler

sunmuşlardır. Ayvaz ve Özgen (2002), modifiye edilmiş Vlasov modelini kullanarak elastik zemine oturan kirişlerin serbest titreşimini incelemişlerdir. Chen ve ark. (2004) Pasternak tipi elastik zemine oturan yüksek kirişlerin serbest titreşim analizini karışık bir yöntem kullanarak incelemişlerdir. Wu ve Parker (2006) elastik zemine oturan dairesel kirişleri serbest titreşimini çalışmışlardır. Kim ve ark. (2007) elastik zemine oturan eğri eksenli çubukların serbest titreşimi için dinamik rijitlik matrisi sunmuşlardır. Friswell ve ark. (2007), sonlu elemanlar yöntemini kullanarak farklı sınır şartlarına sahip viskoelastik zemine oturan kirişlerin dinamik analizini incelemişlerdir. Çalım (2009), viskoelastik zemine oturan doğru eksenli kirişlerin serbest ve zorlanmış titreşimini incelemiştir. Çalım ve Akkurt (2009) elastik zemine oturan doğru eksenli çubukların serbest ve zorlanmış titreşimini incelemişlerdir. Daha sonraları, Çalım ve Akkurt (2011) elastik zemine oturan doğru ve daire eksenli çubukların serbest titreşimini incelemişlerdir.

3. MATERYAL VE YÖNTEM

3.1. Eğri Eksenli Uzaysal Çubuklar

3.1.1. Çubuk Geometrisi

Bir boyutu diğer iki boyutunun yanında çok büyük olan taşıyıcı elemanlara çubuk denir. Çubuğun belirli olabilmesi için iki elemanın bilinmesi gereklidir. Bunlar çubuk ekseni ve dik kesittir. Çubuğun ekseni genel olarak uzaysal bir eğri olup ardışık dik kesitlerin ağırlık merkezlerinin geometrik yeridir. Dik kesit ise sınırlı bir düzlem parçasıdır. Dik kesitin kendi ağırlık merkezinde çubuk ekseni olan bir uzay eğrisine daima dik kalacak şekilde hareketinden çubuk meydana gelir.

Tabii olarak eğilmiş ve burulmuş uzaysal bir çubuk göz önüne alalım. Çubuk ekseni, geometrik merkezi G'nin yörüngesi olarak tanımlanır ve eksen üzerinde keyfi olarak seçilen s=0 noktasından ölçülen, t=0 anındaki durum vektörü $\mathbf{r}^{o}=\mathbf{r}^{o}(s, 0)$ olarak verilir (Şekil 3.1a). Eğri eksenli çubuklarda, eksene bağlı hareketli bir koordinat takımının seçilmesi, problemin tanımlanmasında büyük kolaylıklar sağlamaktadır. Herhangi bir t anında, çubuk ekseninin orijininde **t**, **n**, **b** birim vektörleri olarak tanımlanan bir hareketli koordinat takımı seçilmiştir.

$$\mathbf{t} = \frac{\partial \mathbf{r}^{0}(\mathbf{s}, \mathbf{t})}{\partial \mathbf{s}} \tag{3.1}$$

Burada t, n ve b sırasıyla teğet, normal ve binormal birim vektörleri olarak adlandırılmaktadır. t artan s yönünde, n teğet birim vektöre dik ve yönü eğrilik merkezine doğrudur. Binormal birim vektör $\mathbf{b} = \mathbf{txn}$ olup, t ve n birim vektörlerinin oluşturdukları düzleme diktir.

Şekil 3.1. Çubuk geometrisi

Bu şekilde tarif edilen **t**, **n**, **b** birim vektörlerinin teşkil ettiği takım sağ el kuralı ile temsil edilir ve aralarında Frenet formülleri denilen türevsel bağıntılar mevcuttur.

$$\frac{\partial \mathbf{t}}{\partial s} = \chi \mathbf{n} , \quad \frac{\partial \mathbf{n}}{\partial s} = \tau \mathbf{b} - \chi \mathbf{t} , \quad \frac{\partial \mathbf{b}}{\partial s} = -\tau \mathbf{n}$$
(3.2)

Burada χ ve τ , sırasıyla eksenin eğriliği ve tabii burulmasıdır. χ , eğrilik daima pozitiftir. τ ise, artan s yönünde eğri üzerindeki **n**, **b** normal düzlemi **t** ekseni etrafında pozitif yönde dönerse pozitif, aksi halde negatif olmaktadır. χ ve τ ifadeleri yer vektörü **r**^o(s, t) nin türevleri cinsinden aşağıdaki gibi yazılabilmektedir.

$$\chi = \left| \frac{\partial^2 \mathbf{r}^{\mathrm{o}}}{\partial \mathrm{s}^2} \right|, \quad \tau = -\frac{\frac{\partial \mathbf{r}^{\mathrm{o}}}{\partial \mathrm{s}} \cdot \frac{\partial^2 \mathbf{r}^{\mathrm{o}}}{\partial \mathrm{s}^2} \times \frac{\partial^3 \mathbf{r}^{\mathrm{o}}}{\partial \mathrm{s}^3}}{\chi^2} \tag{3.3}$$

Düzlemsel çubuklar için $\tau=0$ ve doğru eksenli çubuklar için $\chi=\tau=0$ alınmaktadır.

Kesitin tabii burulmasını göz önüne almak için, x_1 ekseni kesitin **t** doğrultusu ve x_2, x_3 kesitin asal eksenleri olmak üzere, ikinci bir dik takım (x_1, x_2, x_3) seçilmektedir (Şekil 3.1b). **i**₁, **i**₂ ve **i**₃ birim vektörleri sırasıyla x_1, x_2 ve x_3 eksenleri üzerinde tanımlanmaktadır. (Şekil 3.1b)'den (3.4) ifadesi yazılabilir.

$$\mathbf{t} = \mathbf{i}_1$$
, $\mathbf{n} = \mathbf{i}_2 \cos\theta - \mathbf{i}_3 \sin\theta$, $\mathbf{b} = \mathbf{i}_2 \sin\theta + \mathbf{i}_3 \cos\theta$ (3.4)

3.1.2. Geometrik Uygunluk Denklemleri

Çubuk ekseni üzerinde herhangi bir s noktasında yer değiştirme U^o(s, t) ve kesitin G ağırlık merkezinden geçen eksen etrafındaki dönme $\Omega^{o}(s, t)$ vektörleri ile gösterilmektedir. Ayrıca, çubuk ekseni üzerinde birim boyun rölatif uzaması $\gamma^{o}(s, t)$ ve rölatif dönmesi $\omega^{o}(s, t)$ vektörleri ile tarif edilmektedir. Geometrik uygunluk denklemleri (3.5) eşitlikleri ile verilmektedir.

$$\gamma^{o} = \frac{\partial U^{o}}{\partial s} + t \times \Omega^{o}, \quad \omega^{o} = \frac{\partial \Omega^{o}}{\partial s}$$
(3.5)

3.1.3. Hareket Denklemleri

T(s, t) ile t anında s noktasındaki kesite etkiyen iç kuvvetlerin vektörel toplamı ve M(s, t) ile bunların ağırlık merkezi olan G noktasına indirgendikleri zaman elde edilen kuvvet çifti olarak gösterilsin. Çubuk ekseninin birim boyuna etkiyen yayılı dış kuvvet $p^{ex}(s, t)$ ve yayılı moment $m^{ex}(s, t)$ olsun. Yer ve şekil değiştirmelerin çok küçük olduğu kabulü ile hareket denklemleri:

$$\frac{\partial \mathbf{T}^{o}}{\partial s} + \mathbf{p}^{(ex)} = \mathbf{p}^{(in)}, \quad \frac{\partial \mathbf{M}^{o}}{\partial s} + \mathbf{t} \times \mathbf{T}^{o} + \mathbf{m}^{(ex)} = \mathbf{m}^{(in)}$$
(3.6)

şeklinde verilmektedir. $\mathbf{p}^{(in)}$ ve $\mathbf{m}^{(in)}$ çubuk ekseninin birim uzunluğundaki kütlesel atalet kuvveti ve kütlesel atalet momentidir. Kesit çarpılmasının ihmal edildiği veya kesitin çift simetriye sahip olduğu durumlar için t, n, b dik koordinat takımında $\mathbf{p}^{(in)}$ ve $\mathbf{m}^{(in)}$ vektörlerinin bileşenleri

$$\mathbf{p}_{i}^{(in)} = -\rho \mathbf{A} \frac{\partial^{2} \mathbf{U}_{i}^{o}}{\partial t^{2}}, \quad \mathbf{m}_{i}^{(in)} = -\rho \mathbf{I}_{i} \frac{\partial^{2} \Omega_{i}^{o}}{\partial t^{2}} \quad (i = t, n, b)$$
(3.7)

şeklinde yazılmaktadır. Burada, ρ kütlesel yoğunluğu, A kesit alanını, I_i ise atalet momentlerini göstermektedir.

3.1.4. Elastik Bünye Denklemleri

Çubuk kesitinin kayma merkezi ile geometrik merkezinin çakıştığı, kesit çarpılmasının ihmal edildiği kabul edilmektedir. Çubuk malzemesi homojen, izotropik ve lineer elastiktir. Bu durumda, rölatif birim uzama $\gamma^{\circ}(s, t)$ ve rölatif birim dönme $\omega^{\circ}(s, t)$ t) ile **T**(s, t) ve **M**(s, t) arasında aşağıdaki bünye denklemlerini yazmak mümkündür.

$$T_i^o = A_{ij} \gamma_j^o, \quad M_i^o = D_{ij} \omega_j^o \qquad (i, j = t, n, b)$$
 (3.8)

Burada A_{tt} kesitin uzama rijitliğini, A_{nn} ve A_{bb} de kayma rijitliklerini, D_{tt} ise kesitin burulma rijitliğini, D_{nn} ve D_{bb} de eğilme rijitliklerini göstermektedir.

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{bmatrix} EA & 0 & 0 \\ 0 & GA/\alpha_n & 0 \\ 0 & 0 & GA/\alpha_b \end{bmatrix}, \begin{bmatrix} \mathbf{D} \end{bmatrix} = \begin{bmatrix} GI_t & 0 & 0 \\ 0 & EI_n & 0 \\ 0 & 0 & EI_b \end{bmatrix}$$
(3.9)

Burada *A* kesit alanı, *E* ve *G* elastik sabitler, α_n ve α_b kayma düzeltme faktörleridir. **[A]** ve **[D]** matrisleri, çubuk malzemesi ve kesit geometrisine bağlı olup, $\gamma^{o}(s, t)$ ve $\omega^{o}(s, t)$ değişkenlerinden bağımsızdır.

Kesitin kayma merkezi ile ağırlık merkezinin üst üste düştüğü ve kesit çarpılmasının ihmal edildiği kabul edilirse **n**, **b** eksenleri asal eksenler olmaktadır. Eğri eksenli çubukların davranışını idare eden diferansiyel denklemler **t**, **n**, **b** hareketli eksen takımında aşağıdaki şekilde yazılabilmektedir.

$$\frac{\partial U_t}{\partial s} = \chi U_n + \frac{1}{EA} T_t \tag{3.10a}$$

$$\frac{\partial U_n}{\partial s} = -\chi U_t + \tau U_b + \Omega_b + \frac{\alpha_n}{GA} T_n$$
(3.10b)

$$\frac{\partial U_b}{\partial s} = -\tau U_n - \Omega_n + \frac{\alpha_b}{GA} T_b$$
(3.10c)

$$\frac{\partial \Omega_t}{\partial s} = \chi \Omega_n + \frac{1}{GI_t} M_t$$
(3.10d)

$$\frac{\partial \Omega_n}{\partial s} = -\chi \Omega_t + \tau \Omega_b + \frac{1}{EI_n} M_n$$
(3.10e)

$$\frac{\partial \Omega_b}{\partial s} = -\tau \,\Omega_n + \frac{1}{EI_b} M_b \tag{3.10f}$$

$$\frac{\partial T_t}{\partial s} = \rho A \frac{\partial^2 U_t}{\partial t^2} + \chi T_n - p_t^{(ex)}$$
(3.10g)

$$\frac{\partial T_n}{\partial s} = \rho A \frac{\partial^2 U_n}{\partial t^2} + \tau T_b - \chi T_t - p_n^{(ex)}$$
(3.10h)

$$\frac{\partial T_b}{\partial s} = \rho A \frac{\partial^2 U_b}{\partial t^2} - \tau T_n - p_b^{(ex)}$$
(3.10i)

$$\frac{\partial M_t}{\partial s} = \rho I_t \frac{\partial^2 \Omega_t}{\partial t^2} + \chi M_n - m_t^{(ex)}$$
(3.10j)

$$\frac{\partial M_n}{\partial s} = \rho I_n \frac{\partial^2 \Omega_n}{\partial t^2} + \tau M_b - \chi M_t + T_b - m_n^{(ex)}$$
(3.10k)

$$\frac{\partial M_b}{\partial s} = \rho I_b \frac{\partial^2 \Omega_b}{\partial t^2} - \tau M_n - T_n - m_b^{(ex)}$$
(3.101)

Zamana bağlı bir f(t) fonksiyonunun Laplace dönüşümü, t>0 için, $L[f(t)] = \overline{F}(z)$ ise,

$$\overline{F}(z) = \int_{0}^{\infty} f(t) e^{-zt} dt$$
(3.11)

şeklinde tanımlanmaktadır. Burada z, Laplace dönüşüm parametresini göstermektedir. Zamana göre birinci ve ikinci mertebeden türevlerin Laplace dönüşümleri kapalı olarak aşağıdaki gibi yapılmaktadır.

$$L[\mathbf{f}(t)] = z \,\overline{F}(z) - f(0), L[\mathbf{f}(t)] = z^2 \,\overline{F}(z) - z \,f(0) - \mathbf{f}(0) \tag{3.12}$$

Hareketli koordinat takımında elde edilen (3.10a-l) denklemlerinin (3.12) tarifleri yardımıyla Laplace dönüşümü alınır, kısmi diferansiyel denklemler dönüşmüş uzayda adi diferansiyel denklem takımı haline dönüşmektedir. Böylece, Laplace uzayında eğri eksenli çubukların dinamik davranışını idare eden adi diferansiyel denklemler kanonik formda aşağıdaki şekilde elde edilmektedir.

$$\frac{d\overline{U}_t}{ds} = \chi \overline{U}_n + \frac{1}{EA}\overline{T}_t$$
(3.13a)

$$\frac{dU_n}{ds} = -\chi \overline{U}_t + \tau \overline{U}_b + \overline{\Omega}_b + \frac{\alpha_n}{GA} \overline{T}_n$$
(3.13b)

$$\frac{d\overline{U}_{b}}{ds} = -\tau \overline{U}_{n} - \overline{\Omega}_{n} + \frac{\alpha_{b}}{GA}\overline{T}_{b}$$
(3.13c)

$$\frac{d\,\overline{\Omega}_t}{d\,s} = \chi\,\overline{\Omega}_n + \frac{1}{GI_t}\overline{M}_t \tag{3.13d}$$

$$\frac{d\,\overline{\Omega}_n}{d\,s} = -\chi\,\overline{\Omega}_t + \tau\,\overline{\Omega}_b + \frac{1}{EI_n}\overline{M}_n \tag{3.13e}$$

$$\frac{d\,\Omega_b}{d\,s} = -\tau\,\overline{\Omega}_n + \frac{1}{EI_b}\overline{M}_b \tag{3.13f}$$

$$\frac{dT_t}{ds} = z^2 \rho \, A \overline{U}_t + \chi \, \overline{T}_n - \overline{p}_t^{(ex)} \tag{3.13g}$$

$$\frac{d\overline{T}_n}{ds} = z^2 \rho A \overline{U}_n + \tau \overline{T}_b - \chi \overline{T}_t - \overline{p}_n^{(ex)}$$
(3.13h)

$$\frac{d\,\overline{T}_b}{d\,s} = z^2 \rho \, A \overline{U}_b - \tau \,\overline{T}_n - \overline{p}_b^{(ex)} \tag{3.13i}$$

$$\frac{dM_t}{ds} = z^2 \rho I_t \overline{\Omega}_t + \chi \overline{M}_n - \overline{m}_t^{(ex)}$$
(3.13j)

$$\frac{d\,\overline{M}_n}{d\,s} = z^2 \rho \,I_n\,\overline{\Omega}_n + \tau\,\overline{M}_b - \chi\,\overline{M}_t + \overline{T}_b - \overline{m}_n^{(ex)} \tag{3.13k}$$

$$\frac{d\,\overline{M}_{b}}{d\,s} = z^{2}\rho I_{b}\,\overline{\Omega}_{b} - \tau\,\overline{M}_{n} - \overline{T}_{n} - \overline{m}_{b}^{(ex)}$$
(3.131)

Bu çalışmada iki parametreli Winkler tipi elastik zemin modeli ele alınmaktadır (Şekil 3.2). Elastik zemine oturan kirişlerde sisteme uygulanan yayılı kuvvet ve moment \mathbf{p}^{ex} ile \mathbf{m}^{ex} aşağıdaki gibi iki parçadan oluşturulabilir.

$$p^{(ex)} = p^e - p^f, \qquad m^{(ex)} = m^e - m^f$$
(3.14)

Buradaki e ve f indisleri, sırasıyla yüklemeyi ve zeminin kirişe göstermiş olduğu reaksiyondur. Böylece kirişin zamanla değişen deplasman ve dönmesine elastik zeminin tepkisi aşağıdaki şekilde

$$p_i^f = k_i U_i^o, \qquad m_i^f = (k_i)_i \Omega_i^o \qquad (i = t, n, b)$$
 (3.15)

oluşturulabilir. Burada k ve k_1 yay sabitlerini ifade etmektedir.

Şekil 3.2. Elastik zemine oturan Timoshenko kirişi

3.2. Düzlemsel Çubuklar

Daha önce belirtildiği gibi, düzlemsel çubuklar için tabii burulma $\tau = 0$ ve doğru eksenli çubuklar için $\chi = \tau = 0$ alınmaktadır. Ayrıca yukarıda verilen on iki adet birinci mertebeden diferansiyel denklemleri (3.13a-l) iki gruba ayırabiliriz. Birinci grup büyüklükler olarak, çubuk ekseninin bulunduğu düzlemdir ve yükler çubuk düzlemi içinde etkimektedir. Bunlar 3.13a, 3.13b, 3.13f, 3.13g, 3.13h ve 3.13l denklemleridir. İkinci grup büyüklükler, çubuk düzlemine dik doğrultuda ve yükler düzleme dik etkimektedir. Bunlar ise, 3.13c, 3.13d, 3.13e, 3.13i, 3.13j ve 3.13k denklemleridir.

3.2.1. Düzlemi İçinde Yüklü Doğru Eksenli Çubuklar

Doğru ekseni çubuklar, tabii burulması ve eğriliği (τ , χ) sıfır olan eğrilerdir (Şekil 3.3). Düzlemi içinde yüklenmiş bir çubukta meydana gelen deplasman ve dönmeler U_t, U_n, Ω_b ve iç kuvvetler ise T_t, T_n ve M_b' dir.

Şekil 3.3. Doğru eksenli çubuk

Böylece, elastik zemine oturan düzlemi içinde yüklü doğru eksenli çubuğu idare eden diferansiyel denklemler aşağıda verilmektedir.

$$\frac{d\overline{U}_{t}}{ds} = \frac{1}{EA}\overline{T}_{t}$$
(3.16a)

$$\frac{dU_n}{ds} = \overline{\Omega}_b + \frac{\alpha_n}{GA}\overline{T}_n \tag{3.16b}$$

$$\frac{d\,\overline{\Omega}_b}{d\,s} = \frac{1}{EI_b}\,\overline{M}_b \tag{3.16c}$$

$$\frac{d\overline{T}_{t}}{ds} = \left[z^{2}\rho A + k_{t}\right]\overline{U}_{t} - \overline{p}_{t}^{(ex)}$$
(3.16d)

$$\frac{d\overline{T}_n}{ds} = \left[z^2 \rho A + k_n\right] \overline{U}_n - \overline{p}_n^{(ex)}$$
(3.16e)

$$\frac{d\,\overline{M}_{b}}{d\,s} = \left[z^{2}\rho\,I_{b} + \left(k_{1}\right)_{b}\right]\overline{\Omega}_{b} - \overline{T}_{n} - \overline{m}_{b}^{(ex)}$$
(3.16f)

3.2.2. Düzlemine Dik Yüklü Doğru Eksenli Çubuklar

Düzlemine dik yüklenmiş bir çubukta meydana gelen deplasman ve dönmeler U_b , Ω_t , Ω_n ve iç kuvvetler ise T_b , M_t ve M_n ' dir. Elastik zemine oturan düzlemi dik yüklü doğru eksenli çubuğu idare eden diferansiyel denklemler aşağıda verilmektedir.

$$\frac{dU_b}{ds} = -\overline{\Omega}_n + \frac{\alpha_b}{GA}\overline{T}_b$$
(3.17a)

$$\frac{d\,\overline{\Omega}_t}{d\,s} = \frac{1}{GI_t}\,\overline{M}_t \tag{3.17b}$$

$$\frac{d\,\overline{\Omega}_n}{d\,s} = \frac{1}{EI_n}\overline{M}_n \tag{3.17c}$$

$$\frac{d\overline{T}_{b}}{ds} = \left[z^{2}\rho A + k_{b}\right]\overline{U}_{b} - \overline{p}_{b}^{(ex)}$$
(3.17d)

$$\frac{d\,\overline{M}_t}{d\,s} = \left[z^2\rho\,I_t + \left(k_1\right)_t\right]\overline{\Omega}_t - \overline{m}_t^{(ex)} \tag{3.17e}$$

$$\frac{d\overline{M}_{n}}{ds} = \left[z^{2}\rho I_{n} + (k_{1})_{n}\right]\overline{\Omega}_{n} + \overline{T}_{b} - \overline{m}_{n}^{(ex)}$$
(3.17f)

3.2.3. Düzlemi İçinde Yüklü Daire Eksenli Çubuklar

Düzlemsel daire eksenli çubuklarda tabi burulma sıfır ($\tau = 0$) ve eğrilik ise sabittir ($\chi = 1/R$). Dairesel bir çubukta ds uzunluk elemanı ds = R d ϕ olarak ifade edilmektedir (Şekil3.4). Elastik zemine oturan düzlemi içinde yüklü daire eksenli çubuğu idare eden diferansiyel denklemler aşağıda verilmektedir.

$$\frac{dU_t}{d\phi} = \overline{U}_n + \frac{R}{EA}\overline{T}_t$$
(3.18a)

$$\frac{dU_n}{d\phi} = -\overline{U}_t + R\overline{\Omega}_b + R\frac{\alpha_n}{GA}\overline{T}_n$$
(3.18b)

$$\frac{d\,\Omega_b}{d\,\phi} = \frac{R}{EI_b}\,\overline{M}_b \tag{3.18c}$$

$$\frac{d\overline{T}_{t}}{d\phi} = R \left[z^{2} \rho A + k_{t} \right] \overline{U}_{t} + \overline{T}_{n} - R \overline{p}_{t}^{(ex)}$$
(3.18d)

$$\frac{d\overline{T}_n}{d\phi} = R \left[z^2 \rho A + k_n \right] \overline{U}_n - \overline{T}_t - R \overline{p}_n^{(ex)}$$
(3.18e)

$$\frac{d\,\overline{M}_{b}}{d\,\phi} = R \Big[z^{2} \rho I_{b} + (k_{1})_{b} \Big] \overline{\Omega}_{b} - R\,\overline{T}_{n} - R\,\overline{m}_{b}^{(ex)}$$
(3.18f)

Şekil 3.4. Elastik zemine oturan daire eksenli çubuk

3.2.4 Düzlemine Dik Yüklü Daire Eksenli Çubuklar

Elastik zemine oturan düzlemine dik yüklü daire eksenli çubuğun dinamik davranışını idare eden diferansiyel denklemler aşağıda verilmektedir.

$$\frac{dU_b}{d\phi} = -R\,\overline{\Omega}_n + R\,\frac{\alpha_b}{GA}\overline{T}_b \tag{3.19a}$$

$$\frac{d\overline{\Omega}_{t}}{d\phi} = \overline{\Omega}_{n} + \frac{R}{GI_{t}}\overline{M}_{t}$$
(3.19b)

$$\frac{d\,\overline{\Omega}_n}{d\,\phi} = -\overline{\Omega}_t + \frac{R}{EI_n}\overline{M}_n \tag{3.19c}$$

$$\frac{d\overline{T}_b}{d\phi} = R \left[z^2 \rho A + k_b \right] \overline{U}_b - R \overline{p}_b^{(ex)}$$
(3.19d)

$$\frac{d\overline{M}_{t}}{d\phi} = R \left[z^{2} \rho I_{t} + (k_{1})_{t} \right] \overline{\Omega}_{t} + \overline{M}_{n} - R \overline{m}_{t}^{(ex)}$$
(3.19e)

$$\frac{d\overline{M}_n}{d\phi} = R \left[z^2 \rho I_n + (k_1)_n \right] \overline{\Omega}_n - \overline{M}_t + R\overline{T}_b - R\overline{m}_n^{(ex)}$$
(3.19f)

3.3. Serbest ve Zorlanmış Titreşim İçin Hareket Denklemleri

Serbest titreşim, zorlanmış titreşimin özel hali olarak incelenecektir. Bu yüzden, zorlanmış titreşim analizi önce sunulacaktır.

3.3.1. Zorlanmış Titreşim

Uzaysal halde zorlanmış titreşim durumu için, $\mathbf{Y}(s, t)$ kolon matrisi olarak tanımlanmaktadır.

$$\mathbf{Y}(s,t) = \left\{ U_{\iota}^{\circ}, \quad U_{n}^{\circ}, \quad U_{b}^{\circ}, \quad \Omega_{\iota}^{\circ}, \quad \Omega_{n}^{\circ}, \quad \Omega_{b}^{\circ}, \quad T_{\iota}^{\circ}, \quad T_{n}^{\circ}, \quad T_{b}^{\circ}, \quad M_{\iota}^{\circ}, \quad M_{n}^{\circ}, \quad M_{b}^{\circ} \right\}^{T}$$
(3.20)

(3.20) ifadesinin zamana göre Laplace dönüşümü, t>0 için, $L[\mathbf{Y}(s,t)] = \overline{\mathbf{Y}}(s,z)$ ise

$$\overline{\mathbf{Y}}(s,z) = \int_{0}^{\infty} \mathbf{Y}(s,t) e^{-zt} dt$$
(3.21)

olup burada Laplace dönüşüm parametresi z kompleks bir sayıdır. Laplace dönüşüm uzayında elde edilen birinci mertebeden on iki adet adi diferansiyel denklem takımı matris notasyonunda aşağıdaki gibi ifade edilebilir.

$$\frac{\mathrm{d}\overline{\mathbf{Y}}(s,z)}{\mathrm{d}s} = \overline{\mathbf{F}}(s,z)\overline{\mathbf{Y}}(s,z) + \overline{\mathbf{B}}(s,z)$$
(3.22)

 $\overline{\mathbf{F}}(s, z)$ katsayılar matrisinin bazı elemanlarında bulunan ikinci türev ifadelerinin zamana göre Laplace dönüşümleri alınırsa

$$L\left[\rho A \frac{\partial^2 U_k^{o}}{\partial t^2}\right] = \rho A\left[z^2 \overline{U}_k^{o} - z U_k^{o}(s,0) - \frac{\partial U_k^{o}(s,0)}{\partial t}\right] (k=t, n, b)$$

$$L\left[\rho I_k \frac{\partial^2 \Omega_k^{o}}{\partial t^2}\right] = \rho I_k\left[z^2 \overline{\Omega}_k^{o} - z \Omega_k^{o}(s,0) - \frac{\partial \Omega_k^{o}(s,0)}{\partial t}\right]$$
(3.23)

olur. (3.23) eşitliğinin sağ tarafındaki ikinci ve üçüncü terimler t=0 anında verilen başlangıç şartlarıdır. $\overline{\mathbf{B}}(s,z)$ kolon matrisinin elemanları (3.24) denkleminde verilmiştir.

$$\overline{B}_{i}(s,z) = 0 \qquad (i=1, 2, ..., 6)$$

$$\overline{B}_{6+j}(s,z) = -\left(\overline{p}_{k}^{(ex)}\right) - \rho A \left[z U_{k}^{o}(s,0) + \frac{\partial U_{k}^{o}(s,0)}{\partial t} \right] \qquad (j=1, 2, 3) \qquad (3.24)$$

$$\overline{B}_{9+j}(s,z) = -\left(\overline{m}_{k}^{(ex)}\right) - \rho I_{k} \left[z \Omega_{k}^{o}(s,0) + \frac{\partial \Omega_{k}^{o}(s,0)}{\partial t} \right] \qquad (k=t, n, b)$$

(3.23) ifadesinde görülen başlangıç şartları, $\overline{\mathbf{B}}(s,z)$ yük vektörüne dahil edilmektedir.

3.3.2. Serbest Titreşim

Serbest titreşim durumunda, sistem yük vektörü sıfıra eşitlenerek çözüm yapılmaktadır. Ayrıca, sistem dinamik rijitlik matrisi de Laplace parametresi z yerine $i\omega$ yazılmaktadır.

Serbest titreșim analizi için, $p_i^{(ex)} = 0$ ve $m_i^{(ex)} = 0$ (i = t, n, b) alınmaktadır. Harmonik titreșim kabulü ile U^o, Ω^o , T^o ve M^o vektörleri aşağıda verilmektedir.

$$\mathbf{U}^{\mathrm{o}}(s,t) = \mathbf{U}^{*}(s)\mathbf{e}^{i\omega t}, \quad \mathbf{\Omega}^{\mathrm{o}}(s,t) = \mathbf{\Omega}^{*}(s)\mathbf{e}^{i\omega t},$$

$$\mathbf{T}^{\mathrm{o}}(s,t) = \mathbf{T}^{*}(s)\mathbf{e}^{i\omega t}, \quad \mathbf{M}^{\mathrm{o}}(s,t) = \mathbf{M}^{*}(s)\mathbf{e}^{i\omega t}$$
(3.25)

(3.25) ifadesi (3.5) ve (3.6) denkleminde yerine konulduğunda, birinci mertebeden on iki adet adi diferansiyel denklem takımı elde edilir. Eğer, genelleştirilmiş deplasmanlar U_{ι}^{*} , U_{n}^{*} , U_{b}^{*} , Ω_{ι}^{*} , Ω_{n}^{*} , Ω_{b}^{*} ve bunlara karşılık gelen kuvvetler T_{ι}^{*} , T_{n}^{*} , T_{b}^{*} , M_{ι}^{*} , M_{n}^{*} , M_{b}^{*} , $\mathbf{Y}^{*}(s)$ kolon matrisinin bileşenleri olarak düşünülürse, bu on iki adet denklem matris formunda aşağıdaki şekilde yazılabilir.

$$\frac{\mathrm{d}\mathbf{Y}^{*}(s)}{\mathrm{d}\,s} = \mathbf{F}(s,\omega)\mathbf{Y}^{*}(s) \tag{3.26}$$

Sistem dinamik rijitlik matrisinin determinantını sıfır yapan ω değerleri problemin doğal frekanslarını vermektedir. Hem dinamik rijitlik matrisi hem de elaman yük vektörü tamamlayıcı fonksiyonlar yöntemi uygulanarak elde edilmektedir.

3.4. Tamamlayıcı Fonksiyonlar Yöntemi İle Diferansiyel Denklemlerin Çözümü

Eğri eksenli uzaysal çubukların idare eden sabit katsayılı on iki adet diferansiyel denklem (3.13a-l) eşitliklerinde verilmiştir. Bu denklemlerin her biri yere göre birinci mertebe türevleri içermektedir. (3.13a-l) denklemleri matris notasyonunda aşağıdaki gibi ifade edilebilir.

$$\frac{\mathrm{d}\,\overline{\mathbf{Y}}(s,z)}{\mathrm{d}s} = \overline{\mathbf{F}}(s,z)\,\overline{\mathbf{Y}}(s,z) + \overline{\mathbf{B}}(s,z) \tag{3.27}$$

Uzaysal çubuklar için, durum vektörünün elemanları (3.28) ifadesinde tanımlanmaktadır.

$$\overline{\mathbf{Y}}(\mathbf{s}, \mathbf{z}) = \left\{ \overline{\mathbf{U}}(\mathbf{s}, \mathbf{z}), \ \overline{\mathbf{\Omega}}(\mathbf{s}, \mathbf{z}), \ \overline{\mathbf{T}}(\mathbf{s}, \mathbf{z}), \ \overline{\mathbf{M}}(\mathbf{s}, \mathbf{z}) \right\}^{\mathrm{T}}$$
(3.28)

Tamamlayıcı fonksiyonlar yöntemi, başlangıç şartları yardımı ile (3.27) denkleminin çözümüne dayanmaktadır. Bu yöntem ile sınır değer problemi başlangıç değer problemine indirgenmektedir. (3.28) denkleminin genel çözümü

$$\overline{\mathbf{Y}}(\mathbf{s}, \mathbf{z}) = \sum_{m=1}^{12} C_m(\overline{\mathbf{U}}^{(m)}(\mathbf{s}, \mathbf{z})) + \overline{\mathbf{V}}(\mathbf{s}, \mathbf{z})$$
(3.29)

şeklindedir. $\overline{\mathbf{U}}^{(m)}(\mathbf{s}, \mathbf{z})$ *m*'inci bileşenine 1, diğerlerine sıfır değeri verilerek elde edilen homojen çözümdür. $\overline{\mathbf{V}}(\mathbf{s}, \mathbf{z})$ ise, başlangıç şartları sıfır alınarak elde edilen özel çözümdür. Burada C_m integrasyon sabitleri sınır şartlarından elde edilmektedir.

4. ARAŞTIRMA BULGULARI VE TARTIŞMA

Elastik zemine oturan doğru ve daire eksenli kirişlerin serbest ve zorlanmış titreşimini analiz etmek için genel amaçlı Fortran dilinde bilgisayar programı hazırlanmıştır. Bu programda, dinamik rijitlik matrisi ve yük vektörleri tamamlayıcı fonksiyonlar yöntemi yardımı ile elde edilmektedir. Bu matrisler, kanonik formda verilen, elastik zemine oturan düzleminde yüklü doğru eksenli çubuklar için (3.16a-f), elastik zemine oturan düzlemine dik yüklü doğru eksenli çubuklar için (3.17a-f), elastik zemine oturan düzlemine dik yüklü daire eksenli çubuklar için (3.18a-f) ve elastik zemine oturan düzlemine dik yüklü daire eksenli çubuklar için (3.19a-f) numaralı diferansiyel denklemlerin çözümünden elde edilmektedirler. Tamamlayıcı fonksiyonlar yöntemine dayalı başlangıç değer probleminin çözümü için beşinci mertebe Runge-Kutta algoritması kullanılmıştır. Özel olarak, elastik zemine oturan döğru ve daire eksenli kirişlerlerin serbest titreşim frekansları, sistem yük vektörü sıfıra eşitlenip sistem dinamik rijitlik matrisindeki Laplace parametresi "z" yerine " $i\omega$ " yazılarak hesaplanmaktadır.

Bu bölümde, çeşitli problemlerin statik, serbest titreşim ve zorlanmış titreşim analizleri sunulacaktır. İlk olarak sunulan modelin geçerliliğini test etmek için, literatürde bulunan elastik zemine oturan kirişlerin serbest titreşim analizleri incelenecektir. Ayrıca, serbest titreşim analizinden sonra sisteme dinamik tekil kuvvet uygulayarak zorlanmış titreşim analizi de yapılacaktır. Elastik zemine oturan doğru ve daire eksenli kirişlerin dinamik davranışını etkileyen parametreler ayrıntılı bir şekilde incelenecektir. Çözülen örneklerde sınır şartları olarak; ankastre uç-ankastre uç (AA), sabit uç-sabit uç (SS), ankastre uç-sabit uç (AS) ve ankastre uç-boş uç (AB) kullanılmaktadır.

Bazı örneklerde hem Bernoulli-Euler (BE) hem de Timoshenko (T) kiriş teorisi kullanılarak çözümler elde edilmiştir. Yüksek kirişlerde kayma deformasyonu etkisi önemli rol oynamaktadır. Burada α_n ve α_b kayma düzeltme faktörleridir. Dikdörtgen kesite sahip kirişlerde kayma düzeltme faktörü 6/5 olarak alınmıştır.

4.1. Düzlemi İçinde Yüklü Doğru Eksenli Kiriş

Farklı sınır şartlarına sahip Winkler tipi elastik zemine oturan doğru eksenli kiriş problemi incelenmiştir (Şekil 4.1). Kiriş uzunluğu L = 6.096 m ve yay katsayısı k = 16.55 MN/m² olarak alınmıştır. Malzeme özelikleri ise elastisite modülü E = 24.82 GPa, malzeme yoğunluğu $\rho = 3387$ kg/m³, Poisson oranı v = 0.3 ve atalet momenti $I = 144 \times 10^{-5}$ m⁴ 'dir. Bu problem, çeşitli araştırmacılar tarafından iki ucu sabit mesnetli hal için incelenmiştir. ANSYS programı ile çözüm yapılırken elastik zemine oturan doğru eksenli kiriş olan BEAM54 tipi elaman kullanılmıştır. Problem iki elemanla modellenmiştir.

Şekil 4.1. Elastik zemine oturan doğru eksenli kiriş ve uygulanan dinamik yük

Farklı sınır şartlarına sahip elastik zemine oturan kirişe ait serbest titreşim frekansları Çizelge 4.1'de verilmektedir. Çizelge 4.1 incelendiğinde, önerilen yöntemle elde edilen sonuçlar ile literatürde farklı yöntemler ve sonlu elemanlar yöntemine dayalı ANSYS programı kullanarak elde edilen sonuçların uyumlu oldukları gözlenmektedir.

Sınır Şartları Mod		Timeshenko ve ark. (1974)	Lai ve ark. (1992)	Thambiratnam ve Zhuge (1996)	Friswell ve ark. (2007)	ANSYS	Bu çalışma
SS	1	32.903	32.905	32.903	32.898	32.862	32.863
	2	56.814	56.822	56.819	56.808	56.589	56.597
	3	112.91	111.97	111.96	111.90	110.739	110.76
	4	-	-	-	193.76	189.901	189.94
	5	-	-	-	-	222.043	222.08
	1	-	-	-	-	40.891	40.894
	2	-	-	-	-	80.407	80.421
AA	3	-	-	-	-	147.90	147.93
	4	-	-	-	-	222.04	222.08
	5	-	-	-	-	238.76	238.80
	1	-	-	-	-	35.858	35.860
	2	-	-	-	-	67.574	67.584
AS	3	-	-	-	-	128.532	128.56
	4	-	-	-	-	213.595	213.64
	5	-	-	-	-	222.043	222.08
	1	-	-	-	-	30.923	30.923
AB	2	-	-	-	-	40.499	40.503
	3	-	-	-	-	80.070	80.084
	4	-	-	-	-	111.02	111.04
	5	-	-	-	-	146.98	147.01

Çizelge 4.1. Elastik zemine oturan doğru eksenli kirişe ait serbest titreşim frekansları (Hz)

Çizelgede görüldüğü gibi, sınır şartlarına bağlı olarak serbest titreşim frekansları etkilenmektedir. Bu probleme ait en düşük serbest titreşim frekansı AB sınır şartına sahipken en yüksek frekans AA sınır şartında meydana gelmiştir.

Serbest titreşim analizinden sonra zorlanmış titreşim analizi için $Po = 100 \ kN$ şiddetinde adım tipi dinamik tekil yük uygulanmıştır (Şekil 4.1). Ankastre-ankastre (AA), sabit-sabit (SS) ankastre-sabit (AS) sınır şartında kirişin orta noktasına, ankastreboş sınır şartında ise serbest uca adım tipi dinamik tekil yük uygulanmıştır. Farklı sınır şartları için deplasman (Uy) ve eğilme momentinin (Mz) zamanla değişimleri Şekil 4.24.9'da verilmektedir. Sabit-sabit (SS) sınır şartına ait grafikler Şekil 4.2-4.3, ankastreankastre (AA) sınır şartına ait grafikler Şekil 4.4-4.5, ankastre-sabit (AS) sınır şartına ait grafikler Şekil 4.6-4.7 ve ankastre-boş (AB) sınır şartına ait grafikler Şekil 4.8-4.9'da verilmektedir.

Şekil 4.2. SS sınır şartı için kirişin orta noktasındaki deplasmanın (Uy) zamanla değişimi

Şekil 4.3. SS sınır şartı için kirişin orta noktasındaki eğilme momentinin (Mz) zamanla değişimi

Şekil 4.4. AA sınır şartı için kirişin orta noktasındaki deplasmanın (Uy) zamanla değişimi

Şekil 4.5. AA sınır şartı için ankastre uçtaki eğilme momentinin (Mz) zamanla değişimi

Şekil 4.6. AS sınır şartı için kirişin orta noktasındaki deplasmanın (Uy) zamanla değişimi

Şekil 4.7. AS sınır şartı için ankastre uçtaki eğilme momentin (Mz) zamanla değişimi

Şekil 4.8. AB sınır şartı için kirişin ucundaki deplasmanın (Uy) zamanla değişimi

Şekil 4.9. AB sınır şartı için ankastre uçtaki momentin (Mz) zamanla değişimi

Grafiklerden de görüleceği gibi, önerilen yöntemle elde edilen sonuçlar ile sonlu elamanlar yöntemine dayalı ANSYS programından elde edilen sonuçların uyumlu oldukları görülmektedir (Şekil 4.2-4.9). Bilindiği gibi mesnet şartlarının değişmesi elastik zemine oturan kirişlerin dinamik davranışlarını etkilemektedir.

4.2. Doğru Eksenli Kirişin Dinamik Davranışı

Literatürde çeşitli araştırmacılar tarafından incelenmiş olan, farklı sınır şartlarına sahip Winkler tipi elastik zemine oturan doğru eksenli kiriş problemi incelenmiştir. Tablo ve şekillerde gösterilen serbest titreşim frekansları boyutsuz olarak elde edilmiştir. Boyutsuzlaştırma parametreleri aşağıdaki gibi tanımlanmaktadır.

$$\overline{\omega} = \sqrt{\omega} \left(\frac{\rho \,\mathrm{A} \,\mathrm{L}^4}{\mathrm{EI}}\right)^{0.25}, \ \overline{\mathrm{k}} = \frac{\mathrm{k} \,\mathrm{L}^4}{\mathrm{EI}} \tag{4.1}$$

Burada, *A* kesit alanı, ρ yoğunluk, *L* kiriş uzunluğu, *k* zemin katsayısı, *E* elastisite modülü ve *I* atalet momentidir. Poisson oranı v = 0,3 olarak alınmıştır. Ayrıca $\overline{\omega}$ ve \overline{k} sırası ile boyutsuz frekans ve boyutsuz zemin katsayısıdır.

Hem Bernoulli-Euler (BE) kiriş teorisi hem de Timoshenko (T) kiriş teorisine göre çözümler yapılmıştır. Böylece, kayma deformasyonunun elastik zemine oturan kirişin serbest titreşim frekanslarına etkileri araştırılmıştır. Elastik zemine oturan doğru eksenli çubuklar için, sınır şartları, L/h oranı ve zemin katsayısının (\overline{k}) serbest titreşim frekanslarına etkileri araştırılmıştır. Farklı sınır şartlarına sahip elastik zemine oturan kirişe ait boyutsuz serbest titreşim frekansları Çizelge 4.2.-4.3-4.4'de verilmektedir. Ankastre-ankastre (AA) sınır şartına ait serbest titreşimler Çizelge 4.2'de, sabit-sabit (SS) sınır şartına ait serbest titreşimler Çizelge 4.3'de, ankastre-sabit (AS) ve ankastreboş (AB) sınır şartlarına ait serbest titreşim frekansları Çizelge 4.4'de verilmektedir. Çizelgeler incelendiğinde, önerilen yöntemle elde edilen sonuçlar ile literatürde farklı yöntemler ve sonlu elemanlar yöntemine dayalı ANSYS programı kullanarak elde edilen sonuçların uyumlu oldukları gözlemlenmektedir. Problem BEAM54 tipi eleman kullanılarak ANSYS'de modellenmiştir. Problem iki elemanla tanımlanmıştır.

			Chen ve	ANSYS		Bu çalışma	
L /h	k	ve ark. (1998)	ark. (2004)	BE	Т	BE	Т
		-	4.263	4.684	4.243	4.684	4.243
		-	6.465	7.376	6.419	7.377	6.419
	0	-	7.401	7.579	7.376	7.579	7.377
		-	-	10.240	8.287	10.241	8.286
		-	-	10.432	9.906	10.432	9.905
		_	4.542	4.901	4.533	4.902	4.533
		-	6.547	7.376	6.507	7.377	6.507
5	100	-	7.402	7.628	7.376	7.629	7.377
		-	-	10.258	8.327	10.259	8.327
		-	-	10.432	9.930	10.432	9.928
		-	7.405	7.376	7.376	7.377	7.377
		-	8.546	10.016	10.014	10.016	10.014
	10000	-	10.113	10.432	10.258	10.432	10.258
		-	-	10.453	10.432	10.453	10.432
		-	-	11.663	10.861	11.664	10.861
15		_	4.666	4.722	4.658	4.725	4.660
		-	7.610	7.816	7.594	7.820	7.597
	0	-	10.427	10.892	10.399	10.897	10.403
		-	-	12.777	12.777	12.777	12.777
		-	-	13.915	13038	13.921	13.042
		-	4.893	4.943	4.887	4.945	4.889
		-	7.665	7.867	7.621	7.871	7.653
	100	-	10.448	10.911	10.421	10.916	10.425
		-	-	12.777	12.777	12.777	12.777
		-	-	13.923	13.049	13.930	13.053
	10000	-	10.049	10.118	10.112	10.113	10.108
		-	10.703	10.797	10.722	10.795	10.719
		-	12.082	12.414	12.104	12.415	12.104

Çizelge 4.2. AA sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları
14.717 14.012 14.721 14.730 4.730 4.731 4.730 4.728 4.730 44.730 7.854 7.853 7.852 7.848 7.853 7 0 10.996 10.991 10.993 10.984 10.994 10.994	4.013 4.729 7.849 0.985 4.116 7.241
4.730 4.731 4.730 4.728 4.730 4 7.854 7.853 7.852 7.848 7.853 7 0 10.996 10.991 10.993 10.984 10.994 10	4.729 7.849 0.985 4.116 7.241
7.854 7.853 7.852 7.848 7.853 7 0 10.996 10.991 10.993 10.984 10.994 1	7.849 0.985 4.116 7.241
0 10.996 10.991 10.993 10.984 10.994 1	0.985 4.116 7.241
	4.116 7.241
14.132 14.114 14.134 14	7.241
17.270 17.239 17.272 1	
4.950 4.952 4.950 4.949 4.950 4	4.949
7.904 7.904 7.903 7.899 7.904 7	7.900
120 100 11.014 11.010 11.012 11.003 11.013 1	1.004
14.140 14.123 14.143 14	4.124
17.275 17.244 17.277 1	7.246
10.123 10.123 10.123 10.123 10.123 10.123	0.123
10.839 10.838 10.839 10.837 10.839 1	0.837
10000 12.526 12.522 12.524 12.517 12.524 1	2.518
14.944 14.929 14.946 14	4.930
17.736 17.707 17.658 1	7.709

ТЛ	<u>.</u>	De Rosa	Chen ve	ANS	SYS	Bu ça	lışma
L/n	K	ve ark. (1998)	ark. (2004)	BE	Т	BE	Т
		3.048	3.050	3.117	3.046	3.117	3.046
		-	-	6.093	5.673	6.094	5.673
	0	-	-	7.376	7.376	7.377	7.377
		-	-	8.834	7.841	8.835	7.841
		-	-	10.432	9.660	10.432	9.658
		3.671	3.671	3.718	3.679	3.718	3.680
		-	-	6.188	5.796	6.189	5.797
5	100	-	-	7.376	7.376	7.377	7.377
		-	-	8.862	7.888	8.863	7.888
		-	-	10.432	9.685	10.432	9.684
		7.341	7.341	7.376	7.376	7.377	7.377
		-	-	9.940	9.923	9.940	9.923
	10000	-	-	10.050	10.047	10.050	10.047
		-	-	10.432	10.432	10.432	10.432
		-	-	10.837	10.629	10.838	10.629
15		3.130	3.130	3.138	3.130	3.139	3.130
		-	-	6.260	6.192	6.260	6.193
	0	-	-	9.348	9.135	9.349	9.136
		-	-	12.388	11.927	12.389	11.927
		-	-	12.776	12.776	12.777	12.777
		3.739	3.739	3.745	3.740	3.745	3.740
		-	-	6.358	6.294	6.359	6.248
	100	-	-	9.377	9.167	9.378	9.168
		-	-	12.400	11.941	12.401	11.941
		-	-	12.776	12.776	12.777	12.777
	10000	9.986	9.986	10.017	10.017	10.017	10.017
		-	-	10.333	10.320	10.333	10.320
		-	-	11.473	11.369	11.473	11.369

Çizelge 4.3. SS sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları

		-	-	12.776	12.776	12.777	12.777
		-	-	13.478	13.142	13.479	13.142
		3.142	3.141	3.141	3.141	3.142	3.141
		-	-	6.282	6.281	6.283	6.282
	0	-	-	9.423	9.419	9.424	9.420
		-	-	12.562	12.553	12.564	12.555
		-	-	15.701	15.683	15.702	15.685
		3.748	3.748	3.748	3.748	3.748	3.748
		-	-	6.381	6.380	6.381	6.380
120	100	-	-	9.452	9.449	9.453	9.450
		-	-	12.575	12.566	12.576	12.567
		-	-	15.707	15.690	15.709	15.691
		10.024	10.024	10.025	10.024	10.024	10.024
		-	-	10.368	10.368	10.368	10.368
	10000	-	-	11.563	11.561	11.564	11.562
		-	-	13.668	13.661	13.669	13.662
		-	-	16.309	16.294	16.311	16.295

	•								
			Α	S			AB		
L/h	k	AN	SYS	Bu ça	lışma	ANS	SYS	Bu ça	lışma
		BE	Т	BE	Т	BE	Т	BE	Т
		3.891	3.666	3.891	3.667	1.868	1.847	1.869	1.846
		6.838	6.074	6.838	6.074	4.576	4.286	4.576	4.285
	0	7.376	7.376	7.377	7.377	5.216	5.216	5.216	5.216
		9.539	8.076	9.540	8.075	7.419	6.612	7.420	6.611
-		10.432	9.789	10.432	9.787	9.034	8.520	9.034	8.519
		4.247	4.084	4.247	4.084	3.242	3.239	3.242	3.240
		6.905	6.176	6.905	6.176	4.795	4.554	4.795	4.554
5	100	7.376	7.376	7.377	7.377	5.216	5.216	5.216	5.216
		9.561	8.119	9.562	8.119	7.467	6.688	7.468	6.687
		10.432	9.813	10.432	9.812	9.034	8.555	9.034	8.553
-		7.377	7.377	7.377	7.377	5.216	5.216	5.216	5.216
		9.957	9.949	9.957	9.949	9.034	9.034	9.034	9.034
	10000	10.223	10.162	10.223	10.162	9.765	9.680	9.765	9.680
		10.432	10.432	10.432	10.432	9.988	9.985	9.988	9.985
		11.226	10.749	11.226	10.749	10.269	10.194	10.269	10.194
15		3.922	3.892	3.922	3.892	1.873	1.871	1.874	1.872
		7.040	6.906	7.041	6.907	4.678	4.636	4.680	4.637
	0	10.122	9.782	10.123	9.782	7.796	7.638	7.798	7.641
		12.776	12.497	12.777	12.497	9.034	9.034	9.034	9.034
		13.154	12.776	13.155	12.777	10.850	10.473	10.854	10.477
-		4.282	4.259	4.283	4.260	3.258	3.256	3.256	3.258
		7.110	6.980	7.110	6.980	4.919	4.917	4.919	4.918
	100	10.145	9.807	10.146	9.808	7.904	7.901	7.905	7.902
		12.776	12.509	12.777	12.509	10.876	11.004	11.012	11.005
		13.164	12.776	13.166	12.777	14.140	14.126	14.141	14.127
•	10000	10.050	10.049	10.050	10.049	9.034	9.034	9.034	9.034
		10.533	10.498	10.533	10.499	10.005	10.005	10.000	10.000
		11.917	11.725	11.918	11.725	10.095	10.092	10.091	10.088

Çizelge 4.4. AS ve AB sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları

		12.776	12.776	12.777	12.777	10.767	10.716	10.765	10.713
		14.086	13.579	14.087	13.580	12.366	12.131	12.366	12.131
		3.926	3.926	3.926	3.926	1.875	1.875	1.875	1.874
		7.067	7.065	7.068	7.066	4.693	4.693	4.694	4.693
	0	10.208	10.202	10.209	10.203	7.853	7.851	7.853	7.850
		13.347	13.334	13.349	13.335	10.992	10.985	10.993	10.985
_		16.486	16.462	16.487	16.463	14.133	14.118	14.133	14.117
_		4.287	4.286	4.287	4.286	3.256	3.256	3.256	3.256
		7.137	7.135	7.138	7.136	4.919	4.917	4.919	4.918
120	100	10.231	10.225	10.232	10.226	7.904	7.901	7.904	7.901
		13.358	13.345	13.359	13.346	11.012	11.005	11.012	11.004
_		16.491	16.468	16.493	16.469	14.140	14.126	14.141	14.126
_		10.059	10.059	10.059	10.059	10.003	10.003	10.003	10.003
		10.572	10.572	10.573	10.572	10.119	10.119	10.119	10.119
	10000	12.017	12.013	12.018	12.014	10.839	10.838	10.839	10.838
		14.293	14.282	14.294	14.283	12.523	12.518	12.524	12.519
		17.017	16.995	17.018	16.997	14.943	14.931	14.944	14.931

Bütün sınır şartlarına ait ilgili çizelgeler incelendiğinde, L/h oranı ve zemin yay katsayısı arttıkça serbest titreşim frekanslarının arttığı görülmektedir. Bütün sınır şartlarındaki serbest titreşim frekanslarını elde ederken kullanılan Bernoulli-Euler (BE) kiriş teorisi ile Timoshenko (T) kiriş teorisi arasındaki fark yüksek kirişlerde daha belirgin şekilde görülmektedir. Bilindiği gibi, yüksek kirişlerde kayma deformasyonu etkisinin dikkate alınması gerekir. Aynı zamanda bütün sınır şartlarında, boyutsuz zemin katsayısı arttıkça kayma deformasyonu etkisinin azaldığı ve zemin katsayısının çok yüksek olduğu durumda ise kayma deformasyonu etkisi olmadığı görülmektedir.

Elastik zemine oturan doğru eksenli kirişlerde, zemin katsayısının serbest titreşim frekanslarına etkisi ayrıntılı bir şekilde araştırılmıştır. Timoshenko kiriş teorisi kullanarak, farklı sınır şartları ve L/h oranına sahip elastik zemine oturan doğru eksenli kirişlerin boyutsuz zemin katsayısının $\overline{k} = 0 - 1000$ arasındaki boyutsuz ilk beş frekansın değişimleri grafikler halinde Şekil 4.10-4.21'de verilmektedir. AA sınır şartına ait frekansların değişimi Şekil 4.10-4.12, SS sınır şartına ait frekansların

değişimi Şekil 4.13-4.15, AS sınır şartına ait frekans değişimi Şekil 4.16-4.18 ve AB sınır şartına ait frekansların değişimi Şekil 4.19-4.21'de verilmektedir.

Şekil 4.10. AA sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları (L/h=5)

Şekil 4.11. AA sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları (L/h=15)

Şekil 4.12. AA sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları (L/h=120)

Şekil 4.13. SS sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları (L/h=5)

Şekil 4.14. SS sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları (L/h=15)

Şekil 4.15. SS sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları (L/h=120)

Şekil 4.16. AS sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları (L/h=5)

Şekil 4.17. AS sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları (L/h=15)

Şekil 4.18. AS sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları (L/h=120)

Şekil 4.19. AB sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları (L/h=5)

Şekil 4.20. AB sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları (L/h=15)

Şekil 4.21. AB sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları (L/h=120)

Tüm sınır şartlarına ait boyutsuz zemin katsayısının arttığı durumda boyutsuz temel frekansın arttığı görülmektedir.

Ayrıca yukarda grafikler halinde sunulan ilk beş frekans değerlerinin bir kısmı tablolar halinde verilmektedir (Çizelge 4.5-4.6). Elastik zemine oturan kirişlerdeki kayma deformasyonu etkisini incelemek amacıyla Bernoulli-Euler (BE) kiriş teorisine kullanarak da çözümler yapılmıştır. Böylece, kayma deformasyonunun elastik zemine oturan kirişin serbest titreşim frekanslarına etkileri araştırılmıştır. Farklı sınır şartlarına sahip elastik zemine oturan kirişe ait boyutsuz serbest titreşim frekansları Çizelge 4.5 – 4.6'da verilmektedir. Önerilen yöntemle elde edilen sonuçlar, ANSYS programı ile elde edilen sonuçların uyum içinde oldukları görülmektedir.

Bütün sınır şartlarına ait çizelgeler incelendiğinde, L/h oranı ve zemin yay katsayısı arttıkça serbest titreşim frekanslarının arttığı görülmektedir. Kirişlerdeki kayma deformasyonunun etkisi yüksek kirişlerde belirgin şekilde görülmektedir. Bütün sınır şartlarında, boyutsuz zemin katsayısı arttıkça kayma deformasyonun etkisinin azaldığı görülmektedir.

			A	A		SS				
T/L	1	AN	SYS	Bu ça	lışma	ANS	YS	Bu çal	ışma	
L/N	K -	BE	Т	BE	Т	BE	Т	BE	Т	
5		4.6837	4.2427	4.6842	4.2429	3.117	3.046	3.117	3.046	
		7.3760	6.4188	7.3766	6.4189	6.093	5.673	6.094	5.673	
	0	7.5786	7.3760	7.5793	7.3766	7.376	7.376	7.377	7.377	
		10.2404	8.2867	10.2414	8.2863	8.834	7.841	8.835	7.841	
		10.4319	9.9062	10.4321	9.9046	10.432	9.660	10.432	9.658	
		5.0934	4.7756	5.0938	4.7758	4.119	4.092	4.119	4.092	
		7.3760	6.5915	7.3766	6.5916	6.279	5.912	6.280	5.913	
	200	7.6760	7.3760	7.6767	7.3766	7.376	7.376	7.377	7.377	
		10.2751	8.3674	10.2762	8.3670	8.890	7.934	8.891	7.934	
		10.4319	9.9530	10.4321	9.9514	10.432	9.710	10.432	9.708	
		5.5695	5.3443	5.5698	5.3444	4.924	4.912	4.906	4.893	
		7.3760	6.8287	7.3766	6.8287	6.539	6.235	6.533	6.227	
	500	7.8162	7.3760	7.8170	7.3766	7.376	7.376	7.377	7.377	
		10.3269	8.4848	10.3279	8.4844	8.974	8.072	8.972	8.068	
		10.4319	10.0223	10.4321	10.0207	10.432	9.786	10.432	9.783	
	1000	6.1604	6.0095	6.1606	6.0096	5.707	5.702	5.707	5.702	
		7.3760	7.1734	7.3766	7.1734	6.895	6.660	6.896	6.660	
		8.0328	7.3760	8.0334	7.3772	7.376	7.376	7.377	7.377	

Çizelge 4.5. Bernoulli-Euler ve Timoshenko kiriş teorisine göre AA ve SS sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları

		10.4108	8.6687	10.4118	8.6682	9.101	8.277	9.102	8.277
		10.4319	10.1336	10.4321	10.1321	10.432	9.903	10.432	9.901
		4.724	4.659	4.725	4.660	3.130	3.138	3.139	3.130
		7.819	7.597	7.820	7.597	6.192	6.260	6.260	6.193
	0	10.896	10.403	10.897	10.403	9.135	9.348	9.349	9.136
		12.776	12.776	12.777	12.777	11.927	12.388	12.389	11.927
		13.920	13.920	13.921	13.042	12.776	12.776	12.777	12.777
		5.138	5.088	5.139	5.089	4.149	4.145	4.149	4.145
		7.920	7.707	7.921	7.707	6.452	6.390	6.452	6.391
	200	10.933	10.446	10.934	10.446	9.407	9.198	9.407	9.199
		12.776	12.776	12.777	12.777	12.413	11.955	12.414	11.955
15		13.937	13.064	13.938	13.064	12.776	12.776	12.777	12.777
15		5.616	5.579	5.617	5.579	4.937	4.935	4.938	4.935
		8.064	7.863	8.065	7.863	6.710	6.656	6.711	6.657
	500	10.988	10.509	10.989	10.510	9.492	9.291	9.493	9.291
		12.776	12.776	12.777	12.777	12.449	11.996	12.451	11.997
		13.963	13.096	13.964	13.096	12.776	12.776	12.777	12.777
		6.217	6.190	6.218	6.190	5.751	5.750	5.751	5.750
		8.290	8.106	8.290	8.106	7.086	7.041	7.087	7.041
	1000	11.078	10.613	11.079	10.613	9.631	9.439	9.632	9.440
		12.776	12.776	12.777	12.777	12.510	12.066	12.512	12.066
		14.006	13.149	14.007	13.149	12.776	12.776	12.777	12.777
		4.730	4.728	4.730	4.729	3.141	3.141	3.142	3.141
		7.852	7.848	7.853	7.849	6.282	6.281	6.283	6.282
	0	10.993	10.984	10.994	10.985	9.423	9.419	9.424	9.420
		14.132	14.114	14.134	14.116	12.562	12.553	12.564	12.555
		17.270	17.239	17.272	17.241	15.701	15.683	15.702	15.685
		5.145	5.144	5.145	5.145	3.762	3.762	4.154	4.154
		7.953	7.950	7.954	7.950	4.575	4.575	6.476	6.475
	200	11.030	11.021	11.032	11.022	7.205	7.204	9.483	9.479
		14.150	14.132	14.151	14.133	10.254	10.250	12.589	12.580
120		17.280	17.249	17.282	17.251	13.367	13.357	15.715	15.698
120		5.624	5.623	5.624	5.624	4.944	4.944	4.944	4.944
		8.098	8.095	8.099	8.095	6.735	6.734	6.735	6.735
	500	11.086	11.077	11.087	11.078	9.568	9.565	9.569	9.566
		14.176	14.158	14.178	14.160	12.625	12.616	12.626	12.617
		17.295	17.264	17.296	17.265	15.733	15.716	15.735	15.717
		6.224	6.223	6.224	41.384	5.755	5.755	5.756	5.756
		8.324	8.321	8.325	73.987	7.111	7.111	7.112	7.111
	1000	11.176	11.168	11.177	133.280	9.708	9.705	9.709	9.706
		14.220	14.202	14.221	215.556	12.609	12.678	12.688	12.679
		17.319	17.288	17.320	319.397	15.765	15.748	15.766	15.749

			A	AS		AB				
L/h	$\overline{\mathbf{k}}$	ANSYS Bu çalışma			lışma	ANS	SYS	Bu ça	alışma	
1.// 11	K	BE	Т	BE	Т	BE	Т	BE	Т	
		3.8906	3.6663	3.8910	3.6665	1.868	1.847	1.869	1.847	
		6.8375	6.0736	6.8382	6.0738	4.576	4.286	4.576	4.286	
	0	7.3760	7.3760	7.3766	7.3766	5.216	5.216	5.216	5.216	
		9.5387	8.0758	9.5397	8.0755	7.419	6.612	7.420	6.612	
		10.4319	9.7887	10.4321	9.7872	9.034	8.520	9.034	8.520	
		4.5309	4.4018	4.5311	4.4020	3.801	3.800	3.801	3.800	
		6.9702	6.2739	6.9709	6.2741	4.987	4.782	4.987	4.782	
	200	7.3760	7.3760	7.3766	7.3766	5.216	5.216	5.216	5.216	
		9.5822	8.1621	9.5832	8.1618	7.515	6.762	7.515	6.762	
5		10.4319	9.8371	10.4321	9.8356	9.034	8.589	9.034	8.589	
3		5.1643	5.0856	5.1645	5.0857	4.740	4.740	4.740	4.740	
		7.1570	6.5437	7.1576	6.5439	5.216	5.216	5.216	5.216	
	500	7.3760	7.3760	7.3766	7.3766	5.462	5.322	5.462	5.322	
		9.6467	8.2872	9.6476	8.2869	7.652	6.969	7.653	6.969	
		10.4319	9.9087	10.4321	9.9073	9.034	8.691	9.034	8.690	
		5.8740	5.8282	5.8741	5.8282	5.216	5.216	5.216	5.216	
		7.3760	6.9274	7.3766	6.9276	5.615	5.614	5.615	5.614	
	1000	7.4370	7.3760	7.4375	7.3766	6.049	5.961	6.049	5.961	
		9.7505	8.4821	9.7514	8.4819	7.865	7.276	7.865	7.276	
		10.4319	10.0236	10.4321	10.0222	9.034	8.850	9.034	8.850	
15		3.922	3.892	3.922	3.892	1.874	1.872	1.882	1.872	
		7.040	6.906	7.041	6.907	4.680	4.637	4.680	4.638	
	0	10.122	9.782	10.123	9.782	7.799	7.641	7.800	7.641	
		12.776	12.497	12.777	12.497	9.034	9.034	9.034	9.034	
		13.154	12.776	13.155	12.777	10.854	10.477	10.855	10.477	
		4.569	4.550	4.569	4.547	3.815	3.815	3.815	3.815	
		7.177	7.051	7.178	7.052	5.101	5.069	5.101	5.069	
	200	10.168	9.833	10.169	9.834	7.899	7.748	7.900	7.748	
		12.776	12.521	12.777	12.522	9.034	9.034	9.034	9.034	
		13.175	12.776	13.176	12.777	10.891	10.518	10.892	10.519	
		5.204	5.192	5.192	5.192	4.754	4.753	4.753	4.753	
		7.368	7.253	7.253	7.253	5.585	5.560	5.561	5.561	
	500	10.236	9.909	9.910	9.910	8.043	7.900	7.901	7.901	
		12.776	12.558	12.558	12.558	9.034	9.034	9.034	9.034	
		13.205	12.776	12.777	12.777	10.945	10.579	10.580	10.580	
	1000	4.282	4.259	5.926	5.918	5.639	5.639	5.639	5.639	

Çizelge 4.6. Bernoulli-Euler ve Timoshenko kiriş teorisine göre AS ve AB sınır şartına sahip kirişin boyutsuz serbest titreşim frekansları

		7.110	6.980	7.660	7.558	6.190	6.173	6.190	6.173
		10.145	9.807	10.349	10.033	8.267	8.137	8.268	8.138
		12.776	12.509	12.777	12.619	9.034	9.034	9.034	9.034
		13.164	12.776	13.258	12.777	11.035	10.680	11.036	10.680
		3.926	3.926	3.926	3.926	1.875	1.874	1.875	1.875
		7.067	7.065	7.068	7.066	4.693	4.693	4.694	4.693
	0	10.208	10.202	10.209	10.203	7.853	7.850	7.854	7.851
		13.347	13.334	13.349	13.335	10.992	10.985	10.993	10.986
		16.486	16.462	16.487	16.463	14.131	14.117	14.133	14.118
		4.575	4.575	4.575	4.575	4.758	3.820	3.819	3.819
		7.205	7.203	7.206	7.204	5.602	5.117	5.117	5.117
	200	10.255	10.249	10.256	10.249	8.099	7.952	7.955	7.953
		13.368	13.355	13.370	13.357	11.085	11.023	11.030	11.024
120		16.497	16.473	16.498	16.475	14.175	14.134	14.150	14.136
120		5.211	5.211	5.212	5.211	5.640	4.758	4.758	4.758
		7.398	7.396	7.398	7.396	6.209	5.602	5.603	5.602
	500	10.323	10.317	10.324	10.318	8.325	8.097	8.100	8.098
		13.399	13.386	13.401	13.388	11.176	11.078	11.086	11.079
		16.513	16.490	16.515	16.491	14.219	14.161	14.177	14.162
		5.932	5.931	5.931	5.931	5.640	5.640	5.641	5.641
		7.689	7.687	7.689	7.688	6.209	6.207	6.208	6.208
	1000	10.435	10.429	10.436	10.430	8.325	8.323	8.326	8.323
		13.451	13.438	13.452	13.440	11.176	11.169	11.177	11.170
		16.541	16.518	16.543	16.519	14.219	14.205	14.220	14.206

Literatürde bulunan bu uygulama sadece serbest titreşim analizi için incelenmiştir. Zorlanmış titreşim analizinde kullanmak için bu uygulamaya ait geometrik ve malzeme özellikleri bir önceki çalışmayla aynı değerler kullanılarak çalışma yapılmıştır. Ayrıca zorlanmış titreşim analizi için çubuk elemanın orta noktasına Po = 100 N şiddetinde adım tipi dinamik tekil yük uygulanmıştır (Şekil 4.1). Ankastre-ankastre (AA), sabit-sabit (SS) ve ankastre-sabit (AS) sınır şartında kirişin orta noktasına adım tipi dinamik tekil yük uygulanmıştır (Şekil 4.1). Elastik zemine oturan doğru eksenli çubukların farklı sınır şartı, narinlik oranı (L/h) ve zemin katsayısının zorlanmış titreşime etkisi araştırılmaktadır. Elastik zemine oturan doğru eksenli çubuklar için, deplasman ve eğilme momentinin (Mz) zamanla değişimleri Şekil 4.22-39'da verilmektedir. Farklı narinlik oranlarını (L/h) ve zemin katsayılarını içeren ankastre-ankastre (AA) sınır şartına ait grafikler Şekil 4.22-4.27, sabit-sabit (SS) sınır

şartına ait grafikler Şekil 4.28-4.33, ankastre-sabit (AS) sınır şartına ait grafikler Şekil 4.34-4.39'de verilmektedir.

Şekil 4.22. AA sınır şartı için kirişin orta noktadaki deplasmanın (Uy) zamanla değişimi (L/h=5)

Şekil 4.23. AA sınır şartına için ankastre uçtaki momentin (Mz) zamanla değişimi (L/h=5)

Şekil 4.24. AA Sınır şartı için kirişin orta noktadaki deplasmanın (Uy) zamanla değişimi (L/h=15)

Şekil 4.25. AA Sınır şartı için ankastre uçtaki momentin (Mz) zamanla değişimi (L/h=15)

Şekil 4.26. AA sınır şartı için kirişin orta noktadaki deplasmanın (Uy) zamanla değişimi (L/h=120)

Şekil 4.27. AA sınır şartı için ankastre uçtaki momentin (Mz) zamanla değişimi (L/h=120)

Şekil 4.28. SS sınır şartı için kirişin orta noktasındaki deplasmanın (Uy) zamanla değişimi (L/h=5)

Şekil 4.29. SS sınır şartı için kirişin orta noktasındaki eğilme momentin (Mz) zamanla değişimi (L/h=5)

Şekil 4.30. SS sınır şartı için kirişin orta noktadaki deplasmanın (Uy) zamanla değişimi (L/h=15)

Şekil 4.31. SS sınır şartı için kirişin orta noktasındaki eğilme momentin (Mz) zamanla değişimi (L/h=15)

Şekil 4.32. SS sınır şartı için kirişin orta noktasındaki deplasmanın (Uy) zamanla değişimi (L/h=120)

Şekil 4.33. SS sınır şartı için kirişin orta noktasındaki eğilme momentin (Mz) zamanla değişimi (L/h=120)

Şekil 4.34. AS sınır şartı için kirişin orta noktasındaki deplasmanın (Uy) zamanla değişimi (L/h=5)

Şekil 4.35. AS sınır şartı için ankastredeki eğilme momentinin (Mz) zamanla değişimi (L/h=5)

Şekil 4.36. AS sınır şartı için kirişin orta noktasındaki deplasmanın (Uy) zamanla değişimi (L/h=15)

Şekil 4.37. AS sınır şartı için ankastredeki eğilme momentinin (Mz) zamanla değişimi (L/h=15)

Şekil 4.38. AS sınır şartı için kirişin orta noktasındaki deplasmanın (Uy) zamanla değişimi (L/h=120)

Şekil 4.39. AS sınır şartı için ankastredeki eğilme momentinin (Mz) zamanla değişimi (L/h=120)

Grafiklerden de görüleceği gibi, önerilen yöntemle elde edilen sonuçlar ile sonlu elamanlar yöntemine dayalı ANSYS programından elde edilen sonuçların uyumlu oldukları görülmektedir. Bütün sınır şartlarında; zemin katsayısı arttıkça deplasman genliği ve titreşim periyodu azalırken, L/h oranı arttıkça deplasman genliği ve titreşim periyodu artmaktadır.

4.3. Elastik Zemine Oturan Daire Eksenli Kirişin Statik Analizi

Dört adet tekil yüke maruz elastik zemine oturan daire eksenli kirişin statik analizi incelenmiştir (Şekil 4.40). Simetri nedeni ile problemin dörtte biri sekiz elemana bölerek analiz yapılmıştır. Probleme ait malzeme ve kesit özellikleri; tekil yük P = 150K (1524 kN), dairenin yarıçapı R = 25.031 ft (7.63 m), kesit genişliği ve yüksekliği b =h = 30 in (0.762 m), elastisite modülü $E = 3000 \text{ K/in}^2 (47.24 \text{ GPa})$, kayma modülü G = $1250 \text{ K/in}^2 (19.68 \text{ GPa})$, yay katsayısı $k_b = 216 \text{ K/ft}^2 (23.623 \text{ MPa})$ ve yayın dönme katsayısı $(k_I)_t = 112.5 \text{ K ft/ft} (1143 \text{ kNm/m})$ olarak verilmiştir. Örneğe ait sayısal sonuçlar Çizelge 4.7'de verilmektedir. Çizelge 4.7 incelendiğinde, önerilen yöntemle elde edilen sonuçlar ile literatürde farklı yöntemler kullanarak elde edilen sonuçların uyumlu oldukları gözlemlenmektedir.

Şekil 4.40. Elastik zemine oturan dairesel kiriş

(°)		Ub (ft)	Ωt (rad)	Ωn (rad)	Tb (K)	Mt (K-ft)	Mn (K-ft)
	Aköz ve Kadıoğlu $(1996) [(k_1)_t \neq 0]$	-0.026740	0.000770	0	75	0	-437.763
0	$\begin{array}{c} \text{Haktanin} \text{ve Kiral} \\ (1993) \left[(k_1)_t = 0 \right] \\ \text{Haktanin} \text{ve Kiral} \end{array}$	-0.026456	-	-	75	0	-440.066
U	(1993) $[(k_1)_t \neq 0]$	-0.026454	-	-	75	0	-439.988
	Bu çalışma [(k ₁) _t =0]	-0.026739	0.000705	0	75	0	-439.525
	Bu çalışma [(k₁)t≠0]	-0.026730	0.000702	0	75	0	-439.202
11.05	Aköz ve Kadıoğlu (1996) [(k₁)t≠0]	-0.023281	0.000486	-0.001089	47.990	-53.811	-130.801
11.25	Bu çalışma [(k ₁) _t =0]	-0.023291	0.000445	-0.001083	48.199	-54.053	-131.567
	Bu çalışma [(k₁) _t ≠0]	-0.023287	0.000443	-0.001082	48.209	-53.698	-131.535
	Aköz ve Kadıoğlu (1996) $[(k_1)_t \neq 0]$	-0.017087	0.000048	-0.00122	26.517	-58.926	-61.258
	Haktanır ve Kıral (1993) $[(k_1)_t=0]$ Haktanır ve Kıral	-0.017053	-	-	26.838	-59.580	-62.114
22.50	(1993) $[(k_1)_t \neq 0]$	-0.017053	-	-	26.841	-59.233	-62.112
	Bu çalışma [(k ₁) _t =0]	-0.017136	0.000044	-0.00122	26.693	-59.216	-61.411
	Bu çalışma [(k₁)t≠0]	-0.017136	0.000044	-0.00122	26.703	-58.765	-61.411
	Aköz ve Kadıoğlu (1996) [(k₁)t≠0]	-0.011948	0.000492	-0.000755	11.319	-35.753	161.603
37.75	Bu çalışma [(k ₁) _t =0]	-0.012034	0.000451	-0.000749	11.417	-35.949	162.450
	Bu çalışma [(k₁)t≠0]	-0.012037	0.000449	-0.000748	11.427	-35.627	162.385
	Aköz ve Kadıoğlu (1996) [(k₁)t≠0]	-0.010007	- 0.000660	0	0	0	192.176
15	Haktanır ve Kıral (1993) $[(k_1)_t=0]$	-0.010220	-	-	0	0	195.433
43	(1993) $[(k_1)_t \neq 0]$	-0.010223	-	-	0	0	195.369
	Bu çalışma [(k ₁) _t =0]	-0.010108	0.000604	0	0	0	193.268
	Bu çalışma [(k₁)t≠0]	-0.010115	0.000601	0	0	0	193.204
	Aköz ve Kadıoğlu (1996) [(k₁) _t ≠0]	-0.017087	0.000048	0.001224	-26.517	58.926	61.258
67.50	Bu çalışma [(k ₁) _t =0]	-0.017136	0.000044	0.001215	-26.693	59.216	61.411
	Bu çalışma [(k₁)t≠0]	-0.017136	0.000044	0.001214	-26.703	58.765	61.411
0.0	Aköz ve Kadıoğlu (1996) [(k₁)t≠0]	-0.026740	0.000770	0	-75	0	-437.763
90	Bu çalışma [(k ₁) _t =0]	-0.023291	0.000710	0	-75	0	-439.525
	Bu çalışma [(k₁) _t ≠0]	-0.026732	0.000710	0	-75	0	-439.202

Çizelge 4.7. Elastik zemine oturan daire eksenli kirişe ait sayısal sonuçlar

Bu örnek, Dasgupta ve Sengupta tarafından yayın dönme katsayısını ihmal edilerek çözülmüştür. Araştırmacılar elde ettikleri deplasman, dönme, kuvvet ve değerlerini grafik formda verdiklerinden dolayı Çizelge moment 4.7'de değerlendirmeye alınamamıştır. Ancak, grafikten yaklaşık olarak okunan değerler ile çizelgede verilen değerlerin uyumlu oldukları gözlemlenmektedir. Çizelge 4.7 incelendiğinde, zeminin dönmeye karşı etkisinin sonuçları değiştirmediği görülmektedir.

4.4. Elastik Zemine Oturan Daire Eksenli Kirişin Dinamik Analizi

Farklı dönüş açılarına sahip elastik zemine oturan iki ucu ankastre daire eksenli kiriş problemi incelenmiştir. Elastik zemine oturan daire eksenli kirişe ait geometrik ve malzeme özellikleri bir önceki statik örnekle aynıdır. Sadece farklı olarak malzeme yoğunluğu $\rho = 5000 \text{ kg/m}^3$ olarak alınmıştır. Elastik zemine oturan kirişe ait ilk beş serbest titreşim frekansı Çizelge 4.8'de verilmektedir. Çizelge 4.8 incelendiğinde, önerilen yöntemle elde edilen sonuçlar ile sonlu elemanlar yöntemine dayalı ANSYS programı ile elde edilen sonuçların uyumlu oldukları gözlemlenmektedir. Problem BEAM44 tipi eleman kullanılarak ANSYS'de modellenmiştir. Problem yüz elemanla tanımlanmıştır.

Şekil 4.41. Orta noktasında dinamik tekil yüke maruz iki ucu ankastre elastik zemine oturan dairesel kiriş ve dinamik yük tipi

Dönüş Açısı ()		ω ₁	ω ₂	W ₃	ω ₄	ω ₅
45°	ANSYS	61.359	151.069	171.479	267.241	333.911
	Bu Çalışma	61.378	151.114	180.680	267.310	351.806
900	ANSYS	20.785	44.037	81.389	94.262	128.673
	Bu Çalışma	20.790	44.051	81.416	99.330	128.713
135°	ANSYS	15.662	23.045	38.969	61.499	71.320
	Bu Çalışma	15.665	22.972	38.982	61.519	75.161
180°	ANSYS	14.722	17.220	24.490	36.534	52.432
	Bu Çalışma	14.724	17.224	24.498	36.546	52.449
225°	ANSYS	14.487	15.403	18.770	25.427	35.109
	Bu Çalışma	14.488	15.406	18.775	25.435	35.120
270°	ANSYS	14.412	14.776	16.371	20.067	26.081
270	Bu Çalışma	14.413	14.779	16.374	20.073	26.088

Çizelge 4.8. Farklı dönüş açılarına sahip iki ucu ankastre dairesel kirişe ait serbest titreşim frekansları (Hz)

Elastik zemine oturan iki ucu ankastre (AA) yarım dairesel probleme ait ilk beş serbest titreşim frekansı Çizelge 4.9'da verilmektedir. Geometrik ve malzeme özellikleri bir önceki örnekle aynı ve malzeme yoğunluğu $\rho = 5000 \text{ kg/m}^3$ yay katsayısı $k_b = 216$ K/ft^2 (23.623 MPa) ve yayın dönme katsayısı (k_l)_t = 112.5 K/ft² (1143 kNm/m) ve kayma düzeltme faktörü 6/5 olarak alınmıştır. Çizelge 4.8 incelendiğinde, iki ucu ankastre dairesel kirişin dönüş açısı artıkça serbest titreşim frekansları azalmaktadır.

D/h	ANSYS	Bu ça	ılışma	D/h	ANSYS	Bu ça	lışma
K/II	$(k_1)_t = 0$	(k ₁) _t =0	(k₁) _t ≠0	K/11	(k ₁) _t =0	(k ₁) _t =0	(k₁) _t ≠0
	9.727	9.730	9.733		24.432	24.433	24.444
	19.765	19.783	19.786		24.987	24.990	25.019
5	37.847	37.888	37.889	17	27.074	27.077	27.111
	61.068	61.378	61.380		31.673	31.676	31.709
	61.309	64.345	64.400		39.217	39.221	39.248
	11.088	11.090	11.094		27.258	27.260	27.272
	16.800	16.808	16.815		27.656	27.658	27.691
7	29.481	29.498	29.503	19	29.190	29.193	29.232
	47.386	47.416	47.419		32.708	32.711	32.749
	61.218	64.510	64.720		38.760	38.764	38.798
	13.406	13.408	13.414		30.168	30.169	30.182
	16.675	16.680	16.693		30.458	30.460	30.495
9	25.473	25.482	25.492	21	31.604	31.606	31.650
	39.247	39.263	39.270		34.307	34.310	34.355
	56.924	56.948	56.953		39.140	39.144	39.185
	16.038	16.039	16.047		32.972	32.973	32.987
	17.987	17.990	18.007		33.192	33.194	33.231
11	24.028	24.034	24.050	23	34.076	34.078	34.125
	34.586	34.596	34.608		36.201	36.204	36.254
	48.942	48.955	48.964		40.110	40.112	40.160
	18.799	18.800	18.809		35.882	35.883	35.897
	20.021	20.024	20.046		36.051	36.052	36.090
13	24.179	24.183	24.205	25	36.739	36.741	36.791
	32.198	32.204	32.223		38.418	38.421	38.475
	43.834	43.843	43.857		41.575	41.578	41.631
	21.595	21.596	21.606				
	22.402	22.405	22.431				
15	25.317	25.321	25.349				
	31.389	31.394	31.419				
	40.788	40.794	40.814				

Çizelge 4.9. İki ucu ankastre yarım dairesel kirişe ait serbest titreşim frekansları (Hz)

Çizelge 4.9 incelendiğinde, elde edilen tüm frekans değerlerinin birbirleri ile uyum içinde olduğu gözlenmektedir. R/h değeri arttıkça frekans değerlerinin arttığı görülmektedir. Ayrıca, zeminin dönmeye karşı etkisinin sonuçları değiştirmediği görülmektedir.

Serbest titreşim analizinden sonra düzlemine dik yüklü elastik zemin üzerine oturan daire eksenli çubuğun zorlanmış titreşim analizi yapılmıştır. Elastik zemine oturan daire eksenli çubuğun orta noktasına z doğrultusunda Po = 100 kN şiddetinde adım tipi dinamik tekil yük uygulanmıştır (Şekil 4.41). Elastik zemine oturan iki ucu ankastre daire eksenli çubuk farklı dönüş açılarının zorlanmış titreşime etkisi incelenmiştir. Problemde farklı dönüş açısı olarak = 45°, 90°, 180° alınmıştır. Ankastre-ankastre (AA) sınır şartına sahip dairesel kirişe ait deplasman (Uz) ve eğilme momentinin (My) zamanla değişimleri Şekil 4.42-4.45'de verilmektedir.

Şekil 4.42. Dairesel kirişin orta noktasındaki deplasmanın (Uz) zamanla değişimi (R/h = 5, 15, 25)

Şekil 4.43. Dairesel kirişin ankastre uçtaki eğilme momentinin (My) zamanla değişimi (R/h = 5, 15, 25)

Şekil 4.44. Dairesel kirişin orta noktasındaki deplasmanın (Uz) zamanla değişimi ($= 45^{\circ}, 90^{\circ}, 180^{\circ}$)

Şekil 4.45. Dairesel kirişe ait ankastre uçtaki eğilme momentinin (My) zamanla değişimi ($=45^{\circ}, 90^{\circ}, 180^{\circ}$)

İlgili şekillerden de görüleceği gibi, önerilen yöntemle elde edilen sonuçlar ile sonlu elemanlar yöntemine dayalı ANSYS programı kullanarak elde edilen sonuçların uyumlu oldukları gözlenmektedir. R/h oranı arttıkça, deplasman genliği artarken titreşim periyodu azalmaktadır. Ayrıca, dönüş açısı arttıkça () hem deplasman genliği hem de titreşim periyodu artmaktadır.

5. SONUÇ VE ÖNERİLER

Bu tezde, elastik zemine oturan doğru ve daire eksenli çubukların dinamik davranısları teorik olarak incelenmiştir. Elaştik zemine oturan doğru ve daire eksenli çubukların serbest ve zorlanmış titreşimleri Laplace uzayında incelenmiştir. Doğru ve daire eksenli çubukları idare eden denklemler Timoshenko çubuk teorisi kullanarak elde edilmiştir. Serbeşt titreşim zorlanmış titreşimin özel hali olarak ele alınmıştır. Formülasyonda, dönme ataleti, eksenel ve kayma deformasyonu etkileri göz önüne alınmıştır. Laplace uzayında kanonik formda elde edilen adi diferansiyel denklemler, problemin dinamik rijitlik matrisini hesaplayabilmek için tamamlayıcı fonksiyonlar yöntemi yardımıyla sayısal olarak çözülmektedir. Bu, genel sınır şartlarına sahip problemlerin çözümünde büyük kolaylıklar sağlayacaktır. Tamamlayıcı fonksiyonlar yöntemine dayalı başlangıç değer probleminin çözümü için beşinci mertebe Runge-Kutta algoritması kullanılmıştır. Laplace uzayında elde edilen çözümler, etkin bir sayısal ters Laplace tekniği ile zaman uzayına dönüştürülmüştür. Değişken katsayılı adi diferansiyel denklemler, uygun integrasyon adım aralığı seçilerek tamamlayıcı fonksiyonlar yöntemi ile Laplace uzayında istenildiği kadar kesin olarak cözülebilmektedir.

Elastik zemine oturan doğru ve daire eksenli çubukların serbest ve zorlanmış titreşimini hesaplamak için Fortran dilinde genel amaçlı bilgisayar programları hazırlanmıştır. Hazırlanan bilgisayar programı ile literatürde verilen çeşitli örnekler çözülmüş ve sonlu elemanlar yöntemine dayalı ANSYS programı sonuçları ile karşılaştırmalar yapılmıştır. Bulunan sonuçların hem literatür hem de ANSYS sonuçları ile uyum içinde olduğu gösterilmiştir.

Doğru ve daire eksenli çubukların serbest ve zorlanmış titreşimlerini etkileyen faktörler incelenmiştir. Farklı sınır şartlarına, zemin katsayısı, L/h ve R/h oranının elastik zemine oturan doğru ve daire eksenli çubukların dinamik davranışına etkileri ayrıntılı bir şekilde araştırılmıştır.

Bilindiği üzere, yukarıda bahsedilen parametreler elastik zemine oturan kirişlerin dinamik davranışını etkilemektedir. Elastik zemine oturan doğru eksenli çubuklara ait örneklerde, bütün sınır şartlarında L/h oranı ve zemin yay katsayısı arttıkça serbest titreşim frekanslarının arttığı görülmektedir. Kirişlerdeki kayma deformasyonunun etkisi yüksek kirişlerde belirgin şekilde görülmektedir. Bütün sınır şartlarında, boyutsuz zemin katsayısı arttıkça kayma deformasyonun etkisinin azaldığı görülmektedir. Zorlanmış titreşim durumu için, bütün sınır şartlarında zemin katsayısı arttıkça deplasman genliği ve titreşim periyodu azalırken, L/h oranı arttıkça deplasman genliği ve titreşim periyodu azalırken, L/h oranı arttıkça deplasman genliği ve titreşim periyodu azalırken, L/h oranı arttıkça deplasman genliği ve titreşim periyodu azalırken, L/h oranı arttıkça deplasman genliği ve titreşim periyodu azalırken, L/h oranı arttıkça deplasman genliği ve titreşim periyodu azalırken, L/h oranı arttıkça deplasman genliği ve titreşim periyodu artmaktadır.

Elastik zemine oturan daire eksenli çubukların serbest titreşim durumunda, R/h oranı attıkça frekans değerlerinin arttığı, dönüş açısı () artarken, frekans değerlerinin azaldığı görülmektedir. İlgili şekillerden de görüleceği gibi, önerilen yöntemle elde edilen sonuçlar ile sonlu elemanlar yöntemine dayalı ANSYS programı kullanarak elde edilen sonuçların uyumlu oldukları gözlenmektedir. R/h oranı arttıkça, deplasman genliği artarken titreşim periyodu azalmaktadır. Ayrıca, dönüş açısı arttıkça () hem deplasman genliği hem de titreşim periyodu artmaktadır.

Daha sonra yapılacak araştırmalar içinde, bu çalışma farklı yapılara ve zemin tiplerine uygulanarak genişletilebilir.

KAYNAKLAR

- Aköz, A.Y., and Kadıoğlu, F., 1996. The mixed finite element solution of circular beam on elastic foundation. **Computers&Structures**, 60(4): 643-651.
- ANSYS Swanson Analysis System, Inc., 201 Johnson Road, Houston, PA 15342-1300, U.S.A.
- Ayvaz, Y., and Özgen, K., 2002. Application on modified Vlasov model to free vibration analysis of beams resting on elastic foundation. Journal of Sound and Vibration, 255(1): 111-127.
- Banan, M.R., Karami G., and Farshad M., 1989. Finite element analysis of curved beams on elastic foundations. **Computers&Structures**, 32: 45-53.
- Celep, Z., 1990. In-plane vibrations of circular rings on a tensionless foundation. **Journal of Sound and Vibration**,143: 461-471.
- Chen, W.Q., Lü, C.F., and Bian, Z.G., 2004. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Applied Mathematical Modelling, 28: 877-890.
- Çalım, F.F., ve Akkurt, F.G., 2009. Elastik zemine oturan kirişlerin dinamik analizi'' **XVI. Ulusal Mekanik Kongresi**, 365-374, Kayseri.
- Çalım, F.F., and Akkurt, F.G., 2011. Static and free vibration analysis of straight and circular beams on elastic foundation. Mechanics Research Communication, doi:10.1016/j.mechrescom. 2011. 01.003.
- Çalım, F.F., 2009. Dynamic analysis of beams on viscoelastic foundation. European Journal of MechanicsA/Solids, 28: 469-476.
- Çalım, F.F., 2003. Viskoelastik, anizotropik eğri eksenli uzaysal çubuk sistemlerin dinamik analizi" ÇÜ Fen Bilimleri Enstitüsü, Doktora Tezi, Adana.
- Dasgupta, S., and Sengupta, D., 1988. Horizantally curved isoparametric beam element with or without elastic foundation including effect of shear deformation. **Computers & Structures**, 29(6): 967-973.
- De Rosa, M.A., and Maurizi, M.J., 1998. The influence of concentrated masses and Pasternak soil on the free vibrations of Euler beams-exact solution. Journal of Sound and Vibration, 212(4): 573-581.
- Durbin, F., 1974. Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method. **Computer Journal**, 17: 371-376.
- Eisenberger, M., 1994. Vibration frequencies for beams on variable one or two parameter elastic foundations. Journal of Sound and Vibration, 176(5): 577-584.
- Erim, Y., 1994. Elastik zemine oturan doğru ve daire eksenli çubuklar. İTÜ Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.
- Friswell, M.I., Adhikari, S., and Lei, Y., 2007. Vibration analysis of beams with nonlocal foundations using the finite element method. International Journal for Numerical Methods in Engineering, 71(11): 1365-1386.
- Haktanır, V., and Kıral, E., 1993. Statical analysis of elastically and continuously supported helicoidal structures by the transfer and stiffness matrix methods. **Computers & Structures**, 49(4): 663-677.
- Issa, M.S., Nasr, M.E., and Naiem, M.A., 1988. Free vibrations of curved Timoshenko beams on Pasternak fondations. Journal of Sound and Vibration, 127: 291-301.
- Kadıoğlu, F., 1994. Elastik zemine oturan doğru ve daire eksenli çubuklar. İTÜ Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul.

- Kerr, A.D., 1964. Elastic and viscoelastic foundation models. Journal of Applied Mechanics- Transaction of the ASME, 31: 491-498.
- Kıral, E., and Ertepinar, A., 1974. Studies on elastic rods subject to diverse external agencies- Part II- Planar rods on an elastic foundation. METU Journal of Pure and Applied Sciences, 7(1): 41-53.
- Kukla, S., 1991. Free vibration of a beam supported on a stepped elastic foundation. **Journal of Sound and Vibration**, 149(2): 259-265.
- Lai, Y.C., Ting, B.Y., Lee, W.S., and Becker, W.R., 1992. Dynamic response of beams on elastic foundation. Journal of Structural Engineering - ASCE, 118: 853-858.
- Thambiratnam, D., and Zhuge, Y., 1996. Free vibration analysis of beams on elastic foundation. **Computers&Structures**, 60(6): 971-980.
- Timoshenko, S., Young, D.H., and Weaver W., 1974. Vibration Problems in Engineering" New York: 4th ed., Wiley.
- Wang, J., 1991. Vibration of stepped beams on elastic foundations. Journal of Sound and Vibration, 149(2): 315-322.
- Wang,T.M., and Brannen, W.F., 1982. Natural freguencies for out-of-plane vibrations of curved beams on elastic foundations. Journal of Sound and Vibration, 84: 241-246.
- Yang, Y.B., Wu, C.M., and Yau, J.D., 2001. Dynamic response of a horizontally curved beams subjected to vertical and horizontal moving loads. Journal of Sound and Vibration, 242: 519-537.
TEŞEKKÜR

Tez çalışmamın her aşamasında büyük bir titizlik, sabır ve özveriyle bana destek olan, yol gösteren ve iyi bir bilimsel çalışma ortamı sağlayan danışman hocam sayın Doç. Dr. Faruk Fırat ÇALIM'a sonsuz teşekkürlerimi sunarım.

Çalışmalarım sırasında değerli görüş, katkı ve bilgilerini esirgemeyen inşaat mühendisliği bölümü hocalarıma ve ayrıca değerli hocamız Yrd. Doç. Dr. İbrahim KELEŞ'e teşekkürlerimi sunarım

Tez çalışmalarım sırasında maddi manevi desteğini esirgemeyen hayatımın her aşamasında bana tam destek olan aileme ve hayat arkadaşım Sancak KURT'a sonsuz teşekkürlerimi sunarım.

ÖZGEÇMİŞ

1984 yılında Antalya'da doğdu. İlköğrenimini Manavgat Çağlayan İlköğretim Okulunda, lise öğrenimini ise Manavgat Anadolu Lisesinde tamamladı. 2003 yılında girdiğim Mustafa Kemal Üniversitesi Mühendislik – Mimarlık Fakültesi İnşaat Mühendisliği Bölümünden 2008 yılında inşaat mühendisi olarak mezun oldu. Eylül 2008 tarihinde Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Mekanik Anabilim Dalında Yüksek Lisans öğrenimine başladı. Yüksek lisans döneminde TUBİTAK projesinde bursiyer öğrenci olarak görev aldı. 22-26 Haziran 2009 tarihinde yapılan XVI. Ulusal Mekanik Kongresi'nde "Elastik Zemine Oturan Kirişlerin Dinamik Analizi" konu başlıklı makalenin sunumunu yaptı. 2009-2010 öğretim yılı bahar döneminde Su Ürünleri Fakültesinde Statik ve Mukavemet dersini anlattı.