
BAŞKENT UNIVERSITY
INSTITUTE OF SCIENCE AND ENGINEERING

OPTIMIZED WEIGHTED ENSEMBLE CLASSIFIER FOR
INTRUSION DETECTION APPLICATION

ATİLLA ÖZGÜR

PhD THESIS
2017

OPTIMIZED WEIGHTED ENSEMBLE
CLASSIFIER FOR INTRUSION DETECTION

APPLICATION

ENİYİLENMİŞ AĞIRLIKLI SINIFLANDIRICI
TOPLULUĞU İLE SALDIRI TESPİT

UYGULAMASI

Atilla ÖZGÜR

Thesis Submitted
in Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy

in Department of Electrical and Electronics Engineering
at Başkent University

2017

This thesis, titled: ”OPTIMIZED WEIGHTED ENSEMBLE CLASSIFIER FOR
INTRUSION DETECTION APPLICATION”, has been approved in partial fulfillment
of the requirements for the degree of DOCTOROFPHILOSOPHY IN DEPARTMENT
ELECTRICAL AND ELECTRONICS ENGINEERING, by our jury, on 11/05/2017

Chairman:
Associated Professor Hasan Şakir BİLGE

Member:
Associated Professor Mustafa DOĞAN

Member (Supervisor):
Associated Professor Hamit ERDEM

Member:
Assistant Professor Fatih NAR

Member:
Assistant Professor Mustafa SERT

APPROVAL
../../2017

Prof. Dr. Emin AKATA
Institute of Science and Engineering

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS / DOKTORA TEZ ÇALIŞMASI ORİJİNALLİK

RAPORU

Tarih:30 /05/ 2017

Öğrencinin Adı, Soyadı : Atilla Özgür

Öğrencinin Numarası : 20820015

Anabilim Dalı : Elektrik Elektronik Mühendisliği

Programı : Doktora

Danışmanın Unvanı/Adı, Soyadı : Doç. Dr. Hamit Erdem

Tez Başlığı : Eniyilenmiş Ağırlıklı Sınıflandırıcı Topluluğu ile Saldırı Tespit Uygulaması

Yukarıda başlığı belirtilen Doktora tez çalışmamın; Giriş, Ana Bölümler ve Sonuç

Bölümünden oluşan, toplam 94 sayfalık kısmına ilişkin, 30 / 05/ 2017 tarihinde şahsım

tarafından turnitin adlı intihal tespit programından aşağıda belirtilen filtrelemeler

uygulanarak alınmış olan orijinallik raporuna göre, tezimin benzerlik oranı %4’tür.

Uygulanan filtrelemeler:

1. Kaynakça hariç

2. Alıntılar hariç

3. Beş (5) kelimeden daha az örtüşme içeren metin kısımları hariç

4. Tez çalışmasından çıkarılmış, yazarları (Atilla Özgür ve Hamit Erdem) olan preprint

(https://peerj.com/preprints/1954/) hariç

“Başkent Üniversitesi Enstitüleri Tez Çalışması Orijinallik Raporu Alınması ve

Kullanılması Usul ve Esaslarını” inceledim ve bu uygulama esaslarında belirtilen azami

benzerlik oranlarına tez çalışmamın herhangi bir intihal içermediğini; aksinin tespit edileceği

muhtemel durumda doğabilecek her türlü hukuki sorumluluğu kabul ettiğimi ve yukarıda

vermiş olduğum bilgilerin doğru olduğunu beyan ederim.

Öğrenci İmzası:………………….

Onay

30 /05 / 2017

Öğrenci Danışmanı Doç. Dr. Hamit Erdem

ACKNOWLEDGMENTS

I would like to dedicate this thesis to my late grandmother Reyhane Dereli and my
grandfather İbrahim Dereli. They taught me nothing is impossible if you put enough
effort.

My heartfelt appreciation goes to my family: My wife Funda and my daughter Duru.

I would like to express my deepest gratitude to my thesis advisor Hamit Erdem for
his guidance, advice, criticism, encouragement, and insight throughout the thesis.

Atilla ÖZGÜR

ABSTRACT

OPTIMIZED WEIGHTED ENSEMBLE CLASSIFIER FOR INTRUSION
DETECTION APPLICATION

Atilla ÖZGÜR

Başkent University

The Department of Electrical and Electronics Engineering

Computer and communication systems become the foundations of modern life. With
the advances in the Internet, usage of these systems increases and intrusions
against these systems increases too. Therefore, finding and preventing intrusions
against these systems becomes more and more important. To protect these
systems, Intrusion Detection Systems (IDS) are implemented. In recent years,
machine learning and optimization techniques are increasingly used in IDS. New
methods are implemented using KDD99 and its derivative NSL-KDD datasets based
on intelligent IDS systems in this thesis study. First, a detailed review is made on
studies that uses above mentioned datasets, and according to this review, detailed
statistics are derived on usage of these datasets. Next, two different methods are
proposed for IDS. These methods are based on principles of classifier ensemble
and hybrid IDS. In the first method, genetic algorithms (GA) are used for feature
selection (an important part for classification) and ensemble weight finding. The
proposed method is named as Genetic Algorithms based Feature Selection and
Weights Finding (GA-FS-WF). In the second method, hybrid ensemble classifier
subject re-visited again. In this method, convex optimization techniques are used for
finding weights for ensemble classifiers. Proposed method models weights finding
in ensemble as a mathematical objective function and solves it as an optimization
problem. In both proposed methods, full dataset NSL-KDD is used. Success of
proposed methods are measured with classifier performance metrics and compared
with similar methods in the literature.

KEYWORDS: Feature Selection, Classifier Fusion,Genetic Algorithms, Intrusion
Detection Systems, Machine Learning, Convex Optimization, Convex Relaxation.

Advisor: Assoc Prof. Hamit ERDEM, Başkent University, Department of Electrical
and Electronics Engineering.

i

ÖZ

ENİYİLENMİŞ AĞIRLIKLI SINIFLANDIRICI TOPLULUĞU İLE SALDIRI TESPİT
UYGULAMASI

Atilla ÖZGÜR

Başkent Üniversitesi

Elektrik Elektronik Mühendisliği Anabilim Dalı

Bilgisayar ve iletişim sistemleri modern hayatın temellerini oluşturmaktadır. Internet
ağının gelişmesiyle birlikte bu sistemlerin kullanımında büyük artışlar olmakta, ancak
bu sistemlere yönelik saldırılar da aynı oranda artmaktadır. Bu yüzden, söz
konusu sistemlerin saldırılara karşı korunması ve gelen saldırıların tespiti giderek
önem kazanmış ve bu amaçla Saldırı Tespit Sistemleri (STS) geliştirilmiştir. Son
yıllarda STS’lerde makine öğrenmesi ve eniyileme tekniklerinin kullanımı giderek
artmaktadır. Bu tez çalışmasında özgün STS yöntemleri önerilmiş ve önerilen
bu yöntemler KDD99 ve türevi NSL-KDD veri setleri kullanılarak doğrulanmıştır.
STS çalışmaları üzerinde yapılan detaylı literatür taraması sonucuna göre, bu
veri setlerinin makine öğrenmesi alanında kullanımına yönelik detaylı istatistikler
çıkarılmıştır. Çalışmanın devamında, STS için iki farklı sınıflandırıcı füzyon
yöntemi geliştirilmiştir. Genetik Algoritma tabanlı Nitelik Seçme ve Ağırlık Bulma
(GA-NS-AB) olarak adlandırılan ilk yöntemde, sınıflandırıcı çalışmaları için önemli bir
aşama olan nitelik çıkarma ve sınıflandırıcı füzyonu ağırlık bulma işlemleri, Genetik
Algoritmalar (GA) kullanılarak gerçekleştirilmiştir. İkinci yöntemde ise sınıflandırıcı
ağırlıklarını bulma problemi, eniyileme problemi olarak modellenmiş ve yeni bir
maliyet fonksiyonu tanımlanmıştır. Bu fonksiyonun çözümü için dışbükey gevşetme
ve dışbükey eniyileme yöntemleri kullanılmıştır. Geliştirilen her iki yöntemde de
NSL-KDD veri setinin tamamı kullanılırken, yöntemlerin başarısı benzer yöntemlerle
karşılaştırılmıştır.

ANAHTAR SÖZCÜKLER: Nitelik Seçme, Sınıflandırıcı Füzyonu, Genetik Algoritma,
Saldırı Tespit Sistemleri, Makine Öğrenmesi, Dışbükey Eniyileme, Dışbükey
Gevşeme.

Danışman: Doç. Dr. Hamit ERDEM, Başkent Üniversitesi, Elektrik Elektronik
Mühendisliği Bölümü.

ii

TABLE OF CONTENTS

Page

ABSTRACT i

ÖZ ii

TABLE OF CONTENTS iii

LIST OF FIGURES v

LIST OF TABLES vi

LIST OF ACRONYMS vii

1 INTRODUCTION 1
1.1 History of cyber attacks . 1
1.2 Why cyber attacks increase . 2
1.3 Intrusion detection systems . 2
1.4 Contributions of this thesis . 3

2 RELATED WORKS 6
2.1 Chapter introduction . 6
2.2 Related reviews about KDD99 and IDS 10
2.3 How review articles are selected? . 12
2.4 Datasets: DARPA, KDD99, and NSL-KDD 13

2.4.1 DARPA dataset . 14
2.4.2 KDD99 dataset . 14
2.4.3 NSL-KDD dataset . 15

2.5 General machine learning work flow using KDD99 17
2.6 KDD99 descriptive statistics . 18

2.6.1 Classification output Classes in the reviewed studies 19
2.6.2 Training and testing dataset usage 19
2.6.3 Cross validation . 20
2.6.4 Dataset sizes used in training and testing ML algorithms 20
2.6.5 Applied algorithms in proposed methods 20
2.6.6 Classifiers used for comparison 21
2.6.7 Software used in reviewed studies 23
2.6.8 Different datasets used in reviewed studies 23
2.6.9 Performance metrics used in reviewed studies 25

iii

2.6.10 Main IDS type according to reviewed Studies 26
2.6.11 IDS vs not IDS studies . 26

2.7 Suggested checklist for avoiding common mistakes 27
2.8 Chapter discussion . 28

3 GENETIC ALGORITHMS BASED FEATURE SELECTION AND
CLASSIFIER ENSEMBLE 30
3.1 Chapter introduction . 30
3.2 Materials and methods . 33

3.2.1 NSL-KDD and KDD99 datasets 33
3.2.2 Classifier performance . 34
3.2.3 Feature selection . 35
3.2.4 Classifier ensembles . 35
3.2.5 Genetic algorithms . 36
3.2.6 Proposed method . 36

3.3 Simulation study and results . 39
3.3.1 Comparison with literature . 42

3.4 Results and chapter discussion . 43

4 SPARSITY-DRIVEN WEIGHTED ENSEMBLE CLASSIFIER 45
4.1 Chapter Introduction . 45

4.1.1 Related works: ensembles that combine pre-trained classifiers 47
4.2 Sparsity-driven weighted ensemble classifier 50
4.3 Experimental results . 59

4.3.1 Experimental results: sparsity 59
4.3.2 Computational Complexity Analysis 62

4.4 Chapter discussion . 63

5 CONCLUSION 64

REFERENCES 65

iv

LIST OF FIGURES

Page

Figure 1.1 CVE common vulnerabilities and exposures by year 2
Figure 1.2 Most common IDS structure in literature 3
Figure 1.3 KDD99 dataset usage by years 4
Figure 1.4 NSL-KDD dataset usage by years 4
Figure 2.1 KDD99 dataset usage by years 8
Figure 2.2 Word cloud generated from titles of reviewed 8
Figure 2.3 The relation between main and extracted datasets 13
Figure 2.4 NSL-KDD dataset usage by years 16
Figure 2.5 General machine learning flow chart 16
Figure 2.6 KDD99 training usage sizes 21
Figure 2.7 KDD99 testing usage sizes 21
Figure 2.8 Article counts by methodology 26
Figure 2.9 IDS and Not IDS articles in 2010–2017 27
Figure 3.1 IDS and ML articles counts published in SCI indexed journals 31
Figure 3.2 Multi classifier ensemble 36
Figure 3.3 Proposed method flowchart 37
Figure 3.4 Binary genome . 37
Figure 3.5 Fitness functions of example GA runs 40
Figure 3.6 Accuracy of ensembles: classifier size vs regression lines 41
Figure 4.1 Sign function approximation using equation 4.3 53
Figure 4.2 Adaptive gamma (γ1) L1 Approximation with different ϵ values 55
Figure 4.3 Minimization of the cost function for 4 datasets 58
Figure 4.4 Datasets and their sparsity levels 60
Figure 4.5 Sparsity vs accuracy of SDWEC. 61

v

LIST OF TABLES

Page

Table 1.1 Survey of security tools used 3
Table 2.1 DARPA, KDD99, and NSL-KDD datasets information . . . 13
Table 2.2 KDD99 attack distribution 15
Table 2.3 Reviewed articles regarding to ML model Figure 2.5 18
Table 2.4 Comparison of reviewed studies on classification output . 19
Table 2.5 Confusion matrix for training and test set Usage 19
Table 2.6 Most used algorithms in the literature 22
Table 2.7 Classifiers used for comparison in the reviewed studies . . 23
Table 2.8 Software used in the reviewed articles 24
Table 2.9 Most used datasets . 24
Table 2.10 Performance metrics used 25
Table 2.11 Journals and article counts 29
Table 3.1 Methods used in IDS and machine learning 32
Table 3.2 Dataset information . 34
Table 3.3 Dataset information used in experiments 34
Table 3.4 Confusion matrix . 34
Table 3.5 Genetic algorithms hyper parameters 38
Table 3.6 Classifier ensemble performance values 40
Table 3.7 Effect of feature selection to classification accuracy 41
Table 3.8 Single classifiers accuracy values: effect of GA feature

selection . 42
Table 3.9 Effect of feature selection to training and testing time . . . 42
Table 3.10 ANOVA and t-test statistical tests results 43
Table 3.11 Comparison of proposed method with the literature 43
Table 3.12 Features and how many times they are selected in

experiments . 44
Table 4.1 Ensemble weights finding studies that use pre-trained

classifiers . 47
Table 4.2 Comparison of accuracies 61
Table 4.3 Computational complexity of SDWEC 62
Table 4.4 SDWEC training time on various datasets, 63

vi

LIST OF ACRONYMS and ABBREVIATIONS

ANOVA Analysis of variance
CPU Central Processing Unit
CRF Conditional Random Field
DARPA Defense Advanced Research Projects Agency
DOS Denial of Service
ELM Extreme Learning Machines
FN False Negative
FP False Positive
FPGA Field-programmable gate array
GA-FS-WF Genetic Algorithms based Feature Selection and Weights Finding
GA Genetic Algorithms
IDS Intrusion Detection Systems
IEEE Institute of Electrical and Electronics Engineers
ISCX An IDS dataset.
KDD99 An IDS dataset derived from DARPA dataset.
KDD Knowledge Discovery in Databases
KNN K-nearest Neighbor
ML Machine Learning
MLP Multi Layer Perceptron
MLR Machine Learning Research
MOA Massive Only Analysis, a data stream mining library
NI No Information
NP Non-deterministic Polynomial-time
NSL-KDD An IDS dataset derived from KDD99 dataset.
QFWEC Weighted Classifier Ensemble based on Quadratic Form
ROC Receiver operating characteristic
SCI Science Citation Index
SDWEC Sparsity Driven Weighted Ensemble Classifier
SMO Sequential Minimal Optimization
SVM Support Vector Machines
TCP Transmission Control Protocol
TN True Negative
TP True Positive
UCI University of California Irvine
WMV Weighted Majority Voting

vii

1. INTRODUCTION

1.1. History of cyber attacks

Theoretical background of computer viruses was introduced by Neumann in his
seminal paper [1], ”Theory of self-reproducing automata” in 1966. First practical
viruses are written in between 1970 to 1980. First viruses were mostly harmless
programs, written on a whim of programmers. Their developers were trying to
investigate the conceptual limits of computers. All of them were easily cleaned
[2]. First known computer virus is written by Bob Thomas. This virus copied itself
between nodes of Arpanet– forerunner of Internet. When this program was written,
the computer virus concept did not exist; nevertheless, it is generally accepted as
the first computer virus [3].

Between 1980 and 1990, first wave of computer viruses started. In 1983, Cohen
wrote the first article about computer viruses, giving both source code and theoretical
background [4]. Cohen performed a number of experiments in different operating
systems, and proved that virus concept is independent of programming language
and operating system. Given suitable conditions, a virus can propagate very easily.
Although first computer viruses and worms were written for mainframe and Unix
systems, they found their fertile grounds in MS-DOS and windows systems. Most of
these viruses were boot-sector viruses [3].

After 1990 to 2000, second wave of computer viruses started. Although viruses was
dominant in first wave, with the advent of Internet and email, worms become more
dominant [3].

After 2000 to today, attacks of viruses and worms become a common phenomena,
and malware infestations become very common. All types of malware use
vulnerabilities of applications and operating systems. Since writing programs and
applications become more and more complex, vulnerabilities in programs will not
decline. Recent numbers from Common Vulnerabilities and Exposures (CVE) in
Figure 1.1 support this.

1

Figure 1.1 CVE common vulnerabilities and exposures by year [5].
(Year 2017 values includes first 4 months only.)

1.2. Why cyber attacks increase

The increase in number of attacks and number of incidents are due to two reasons.
The first reason is that Technology favor attackers. Anderson showed that an
attacker needs to find only one bug to gain a more favorable position.

Even a very moderately resourced attacker can break anything that’s
at all large and complex. There is nothing that can be done to stop this, so
long as there are enough different security vulnerabilities to do statistics.
Anderson[6]

The second reason is that hacking and cracking became profitable businesses. That
is most computer crimes are professionalized. There are web sites [7] that offer
Distributed Denial of Services (DDOS) attacks. In some forums, you can buy DDOS
attacks as cheap as $5 per day [8] compared to $100 per day in 2009 [9].

1.3. Intrusion detection systems

As can be seen from above discussion, cyber attacks will not decline in foreseeable
future therefore security tools will gain more and more importance. Different security
tools can be seen in Table 1.1.

2

Table 1.1 Survey of security tools used [10]

Tool Used Percentage in Participants

Anti-virus software 86.0%
Firewalls 80.7%
Data encryption (data in transit) 64.0%
Audit logs of each access records 60.0%
Data encryption (data at rest) 58.7%
Patch and vulnerability management 57.3%
Intrusion detection systems (IDS) 54.0%
Network monitoring tools 52.7%
Mobile device management (MDM) 52.0%
User access controls 50.7%
Intrusion detection and prevention systems 48.0%
Access control lists 47.3%
Single sign on 47.3%
Web security gateway 41.3%
Multi-factor authentication 39.3%
Messaging security gateway 37.3%
Data loss prevention (DLP application) 36.0%

Intrusion Detection Systems (IDS) are increasingly used in enterprises. Most
common IDS structure in literature is given in Figure 1.2. According to this structure,
most used datasets in the IDS research is KDD99 and its derivative NSL-KDD.

Figure 1.2 Most common IDS structure in literature

1.4. Contributions of this thesis

As mention before, the most used IDS dataset in the literature is KDD99 and its
derivative NSL-KDD. Usage of KDD99 can be seen in Figure 1.3 and usage of

3

NSL-KDD can be seen in Figure 1.4. We review these datasets and derive detailed
statistics in their usage in intrusion detection and machine learning in Chapter 2. The
following descriptive statistics about the reviewed studies are given in Chapter 2:
main contribution of these articles, applied algorithms, compared classification
algorithms, software toolbox usage, the size and type of the used dataset for training
and testing, and classification output classes (binary, multi-class).

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

10

20

30

40

50

60

14
17

25 24 24

44

55

12

#
of
Ar
tic
le
s

Figure 1.3 KDD99 dataset usage by years. (Year 2017 values includes first 4
months only.)

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

5

10

15

1
2 2

8

14
15

4#
of
Ar
tic
le
s

Figure 1.4 NSL-KDD dataset usage by years. (Year 2017 values includes first
4 months only.)

The most used methods in IDS articles are hybrid methods, see Table 2.3. In the
following chapters, we propose two different hybrid methods for IDS. In the chapter 3,
we propose a method that combines classifier ensemble and feature selection using

4

genetic algorithms named ”GA-FS-CE: Genetic Algorithms based Feature Selection
and Classifier Ensemble”. In the chapter 4, another weighted classifier ensemble
that uses convex optimization methods for finding weights of classifier ensemble
are proposed. Problem of weights finding is formulated using objective function that
consists of data term, sparsity term and non-negativity constraint on the weights.
Both of these methods are tested on NSL-KDD dataset.

5

2. RELATED WORKS

Although KDD99 dataset is more than 17 years old, it is still widely used in Machine
Learning Research (MLR) and Intrusion Detection Systems (IDS). This study reviews
215 research articles from 90 journals indexed in Science Citation Index Expanded
between 2010 and 2016. If papers presented in other indexes and conferences are
included, number of studies would be much higher. The number of published studies
shows that KDD99 is the most used dataset in IDS and machine learning areas, and
it is the de facto dataset for these research areas. To show recent usage of KDD99
and the related sub-dataset (NSL-KDD) in IDS and MLR, the following descriptive
statistics about the reviewed studies are given: main contribution of articles, the
applied algorithms, compared classification algorithms, software toolbox usage, the
size and type of the used dataset for training and testing, and classification output
classes (binary, multi-class). All of the results are easily reproducible since they are
created from provided bibliography file using python scripts. These python scripts
and bibliography file are published in an open source repository. In addition to these
statistics, a checklist for future researchers has been provided.

2.1. Chapter introduction

Internet, mobile, e-commerce, communication, and information systems have
become essential parts of our daily life. Wide usage of these systems makes
communication easier, increases data transfer and information sharing, and
improves life quality. Although these systems are used in many fields, they
suffer from the various attacks such as viruses, worms, or Trojan horses. Due to
importance of these systems, these attacks must be identified and stopped as soon
as possible. Research about finding attacks and removing their effects have been
defined as Intrusion Detection Systems (IDS) [11].

IDS studies can be considered as classification tasks that separate normal behavior
of networks from attacks. After the first paper about IDS [12], thousands of studies
have been published in this domain. Machine learning and data mining algorithms
are widely used in IDS. Most of the machine learning and data mining algorithms
are based on the assumption that problem space does not change very fast. But in
IDS domain, attackers continuously change and improve their capabilities [13]. Due
to this reason, even though machine learning and data mining algorithms are very
successful in other domains, their performance degrades in IDS. Thus, IDS is an
unsolved problem since this domain is evolving continuously [13].

6

Similar to other classification and clustering problems, IDS algorithms need training
dataset. Although standard datasets are available for other fields, there is no
up-to-date standard dataset for IDS. Lack of an up-to-date standard dataset for IDS
research has been mentioned by numerous studies [14, 13, 15]. Recent reviews
[16, 17, 18, 19] also identify this problem as a research gap. Nonetheless, KDD99
is the most used dataset in IDS domain [20, 21, 22]. According to survey paper of
[19], more than 50% of reviewed papers used DARPA/KDD99 in their studies.

Created in 1999 [23], KDD99 has been widely used in many studies for the past
17 years and cited in many studies —Reference article for KDD99 preparation [23]
has been cited 943 times according to Google Scholar (May 2017). Moreover,
215 research articles that used KDD99 were published in Science Citation Index
Expanded journals from 2010 to present, Table 2.11. Interestingly, KDD99 usage
seems to increase in recent years, most probably due to increase in popularity of
IDS, Figure 2.1.

According to the results, KDD99 dataset is primarily used in IDS and machine
learning research. Additionally, this dataset also has been used for other purposes,
such as feature selection and data streams. Based on the 215 published studies,
171 of them has been applied to IDS and 44 of them has not been applied to IDS.
From these 215 published studies, 197 of them are machine learning studies. Of
these 197 studies, 161 of them are both machine learning and IDS, while 36 are
machine learning studies that do not claim to work on IDS. These numbers shows
that KDD99 dataset is the main intersection of machine learning research, IDS, and
information security.

Although KDD99 has been used in many IDS and machine learning studies, no
review study exists that evaluate and analyze the published research and answer
the following questions:

• Which machine learning algorithms and IDS methods are used mostly?

• What is the training and testing dataset usage in the published studies?

• What are the sizes of training and testing dataset in proposed studies?

• How many classes have been considered in IDS classification?

• Which performance metrics have been used to measure the results of the
classification?

7

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

10

20

30

40

50

60

14
17

25 24 24

44

55

12
#
of
Ar
tic
le
s

Figure 2.1 KDD99 dataset usage by years. (Year 2017 values includes first 4
months only.)

Figure 2.2 Word cloud generated from titles of reviewed 215 research articles.

• Which software tools have been used for implementation and comparison?

To answer these questions, the proposed study reviews 215 studies from 2010
to present focusing on KDD99 usage statistics. We think that the results of the
proposed study will be useful for the other researchers who plan to use this dataset
in IDS or machine learning studies. All of the results are derived from a bibliography
file using python scripts that are published in open source github repository (https:
//github.com/ati-ozgur/KDD99ReviewArticle).

8

https://github.com/ati-ozgur/KDD99ReviewArticle
https://github.com/ati-ozgur/KDD99ReviewArticle

This review differs from the previous review articles considering following aspects:
First, most of the reviews in this domain try to include critical papers and explain
major approaches. In contrast, our study tries to be comprehensive. Second,
only articles indexed in Science Citation Index are included, Table 2.11. No
conference articles or articles from other indexes are included in this study. If a
journal is removed from Science Citation Index in a year, only articles that are
indexed in Science Citation Index are included in this study. To show this aspect,
provided bibliography file contains Web of Science number (Accession Number or
WOS-number) for all of the articles. We believe that our study includes most of the
SCI-indexed studies that used KDD99. Third, comprehensive descriptive statistics
about KDD99, machine learning and IDS are given. Some of these statistics are as
follows:

1. KDD99 has been analyzed considering number of output classes, training and
testing datasets in reviewed studies, Table 2.4 and Table 2.5.

2. Main contribution that concerns on the applied method using KDD99. The
applied methods may be clustering, classification, feature selection/reduction
algorithms. All the applied methods in the focused period has been evaluated
and presented in Table 2.3.

3. The usage frequency of machine learning and IDS algorithms has been
presented in Table 2.6 and discussed in detail.

4. Proposed algorithms are implemented and compared with standard algorithms
using variety of software packages (Table 2.8).

5. Training and testing dataset sizes and classification types (binary, multi-class).

6. Most of the reviewed articles compare their proposed method with other
classifiers. These classifiers have been shown in Table 2.7 and discussed.

7. Although, KDD99 and derived sub-set NSL-KDD dataset have been used in
recent studies, some studies compared their results with other datasets. These
other datasets and their usage statistics are given in Table 2.9

8. Categorizing the main theme of the published article in three main groups as
Machine Learning, Anomaly Detection or Alert Correlation has been presented
in Figure 2.8.

Fourth, considering collected statistics, strengths and weaknesses of reviewed
articles, a checklist is provided. Fifth, comprehensive bibliography file about

9

reviewed articles are provided. This file can also be used other purposes. For
example: (a) Figure 2.2 word cloud from titles are generated from this bibliography
file, (b) which datasets are used in data stream studies in addition to KDD99, (c)
which algorithms are commonly used in artificial immune systems in KDD99. Finally,
the findings of this study would be useful for researchers whomaywant to use KDD99
or a similar big dataset in their research since KDD99 is one of the biggest datasets
in University of California Irvine (UCI) machine learning repository.

The remainder of the chapter is organized as follows: Section 2.2 considers similar
related reviews. Section 2.4 gives definitions and history of DARPA, KDD99 and
NSL-KDD datasets. Section 2.5 gives a general machine learning model that most
reviewed articles use with KDD99 and evaluates contribution of reviewed articles
considering the structure of the presented model. Section 2.6 gives descriptive
statistics about general KDD99 usage along with figures and tables. Section 2.7
suggests a checklist considering common mistakes and strengths of the reviewed
articles for further studies to improve the quality of similar studies. Finally, section
2.8 discusses the results of this chapter.

2.2. Related reviews about KDD99 and IDS

Most of the IDS reviews try to find prominent papers about the subject and summarize
them. This approach provides fast learning opportunity for the reader. In contrast to
previous review studies, this study follows a different approach. This study provides
descriptive statistics that would be useful to researchers whomaywant to use KDD99
in their research.

One of the most similar review to ours has been presented by Tsai et al.. Their study
evaluated 55 articles between 2000 and 2007 that focused on intersection of IDS
and machine learning. First, they give definition of the most used single classifiers
in machine learning for IDS containing k-nearest neighbor, support vector machines,
artificial neural networks, self-organizing maps, decision trees, naive bayes, genetic
algorithms, fuzzy logic, hybrid classifiers, and ensemble classifiers. Second, they
provide yearly statistics for these categories. Third, they investigate the used dataset
in the proposed period. According the study, KDD99 has been used nearly 60% of
the published studies. To expand the published review that included 55 articles, our
study reviews 215 articles (Section 2.6), and includes more statistics.

Kolias et al. [21] reviewed usage of swarm intelligence techniques in IDS. From

10

these methods, ant colony optimization, ant colony clustering and particle swarm
optimization have been compared in their review. Only descriptive statistic included
in their study was performance comparison of swarm intelligence techniques in IDS.

Liao et al. [25] categorized IDS systems according to detection approaches
(statistics, pattern, rule,state and heuristic based), detection methodology (anomaly
detection, signature based and stateful protocol analysis.) They also gave
information about whether IDS are time series based and used data source (network
or host based). Their taxonomy also included other characteristics of IDS in
their study. Instead of giving summary statistics about IDS characteristics, they
summarized all information about 30 IDS articles in a table. According to Liao et al.,
swarm intelligence, immune systems, data mining, genetic algorithms and other
machine learning techniques were widely used. Different from Liao et al., we give
precise statistics about used algorithms in IDS studies.

Ganapathy et al. [20] reviewed intersection of feature selection and intelligent
algorithms in Intrusion Detection. For feature selection, gradually feature removal
method, modified mutual information-based feature selection algorithm, CRF-based
feature selection, and wrapper based genetic feature selection methods have
been compared. Regarding to classification techniques, Ganapathy et al.
compared neural networks, genetic algorithms, fuzzy sets, rough sets, Neuro-Fuzzy,
fuzzy-genetic algorithms and particle swarm optimization. They did not give any
statistics about reviewed studies.

Modi et al. [26] reviewed cloud based IDS systems. According to their survey,
intelligent techniques (artificial neural networks, fuzzy logic, association rules,
support vector machines, genetic algorithms, hybrid techniques) were widely used
in cloud based IDS. Our study shows similar results as can be seen in Table 2.6.

Yang et al. [27] had surveyed artificial immune systems in IDS. They reviewed the
concepts antibody/antigen encoding, generation algorithm, evolution algorithm but
did not provide any statistics about the reviewed articles.

Elsayed et al. [28] had surveyed evolutionary and swarm intelligence algorithms in
network intrusion detection using DARPA and KDD99. They investigated usage
of genetic algorithms, genetic programming, ant colony optimization and swarm
optimization for different stages of IDS. They presented a few descriptive statistics for
evaluating the reviewed articles. First statistics is commonly used fitness functions,
second statistics is articles’ dataset usage, third statistics is the applied algorithm,

11

and the last statistics is detection rate of the applied algorithm.

Ahmed et al. [19] have surveyed network anomaly detection techniques. They
categorize techniques as classification, statistical based, information theory, and
clustering. Most of the reviewed papers, more than 50%, uses DARPA/KDD99.
Lack of recent dataset problem and problems of DARPA/KDD99 are given special
attention. Descriptions for other available datasets for network anomaly detection
domain are provided.

Folino and Sabatino [29] have reviewed ensemble based techniques in intrusion
detection. They provided following metrics: datasets used, main algorithms used,
ensemble method, and performance metrics. Most of the reviewed articles use
KDD99 in their studies.

The above mentioned studies show that intersection of IDS and Machine Learning is
actively researched and KDD99 is the most used dataset in this domain. However,
they do not provide enough statistics about this dataset. This study tries to present
more comprehensive study to find satisfactory answers to the mentioned questions
by giving more statistics and checklist for guidance.

2.3. How review articles are selected?

KDD99 is an old dataset and used in very different domains, in addition to Intrusion
Detection. To find relevant articles via primary search engines, the following key
words are used:

1. Intrusion Detection

2. KDD 99, KDD99

3. Anomaly Detection

4. Data Stream Learning

The names of the search engines used are the following:

1. Thomson Reuters (Web of Knowledge) http://apps.webofknowledge.com

2. Elsevier Science Direct http://www.sciencedirect.com/

12

http://apps.
http://www.sciencedirect.com/

3. Springer Link (Springer) http://link.springer.com/advanced-search

4. IEEE http://ieeexplore.ieee.org

5. Wiley http://onlinelibrary.wiley.com/advanced/search

6. Taylor and Francis Online http://www.tandfonline.com

The articles that use DARPA dataset, instead of KDD99 are ignored in this study. We
did not include any articles from conferences, book chapters or lecture notes, only
research articles. Every article’s journal is searched in Sci Expanded Database. We
know that some of the articles may be missed in this way, but we believe that 95% of
published articles are included in this review chapter. This shows that even though
KDD99 is very old, it is still very widely used. We have included some articles that
used KDD99 from different domains in this way. We have found total of 215 articles
in our study from 2010–2017.

2.4. Datasets: DARPA, KDD99, and NSL-KDD

Figure 2.3 and Table 2.1 give overall summary for related datasets (DARPA, KDD99,
and NSL-KDD) in this study. DARPA is a base raw dataset. KDD99 is the feature
extracted version of DARPA dataset. NSL-KDD is the duplicates removed and
size reduced version of KDD99 dataset. Dataset statistics extracted from reviewed
articles are given in Section 2.6.

Figure 2.3 The relation between main and extracted datasets. KDD99 is
created from DARPA, NSL-KDD is created from KDD99.

Table 2.1 DARPA, KDD99, and NSL-KDD datasets information

Name Training Size Testing Size Note

DARPA 99 6.591.458 kb (6.2gb) 3.853.522 kb (3.67gb) Base Dataset. Raw TCP/IP Dump files
KDD99 4898431 311029 Features extracted and preprocessed for machine learning
NSL-KDD 125973 22544 Duplicates removed, size reduced

13

http://link.springer.com/advanced-
http://ieeexplore.ieee.org
http://onlinelibrary.wiley.com/advanced/search
http://www.tandfonline.com

2.4.1. DARPA dataset

MIT Lincoln LAB hosted DARPA-sponsored IDS-event in 1998 [30]. In this DARPA
event, an attack scenario to an Air-Force base was simulated. One year later,
in 1999, this event was repeated [31] with improvements suggested by computer
security community [32]. DARPA dataset consists of host and network dataset files.
Host dataset, IDS bag, is small dataset that contains system calls and is less used
than its network counterpart. Network dataset consists of sevenweeks of raw TCP/IP
dump files. Since DARPA dataset consists of raw files, researchers need to extract
features from these files to use them in machine learning algorithms. First two weeks
were attack free; therefore, it is suitable for training anomaly detection algorithms.
In the remaining five weeks, various attacks were used against simulated Air-Force
base, [33]. KDD99 dataset was created from DARPA network dataset files by Lee
and Stolfo [23] for this DARPA sponsored event.

2.4.2. KDD99 dataset

Lee and Stolfo [23], one of the participating teams of the DARPA event, gave
their feature extracted and preprocessed data to Knowledge Discovery and Data
Mining (KDD) yearly competition [34]. Pfahringer [35] won KDD 99 competition using
mixture of bagging and boosting. Most articles compare their results with his result.
KDD99 can be easily used in machine learning studies; therefore, it is much more
used in IDS and MLR than DARPA dataset.

KDD99 has the following characteristics:

1. KDD99 has two week’s of attacks-free instances and five week’s of attack
instances, making it suitable for anomaly detection.

2. Output classes are divided into 5 main categories: DOS (Denial of Service),
Probe, R2L (Root 2 Local), U2R (User 2 Root), and Normal.

3. KDD99 Dataset contains 24 attack types in training and 14 more attack types
in testing for total of 38 attacks. These 14 new attacks theoretically test IDS
capability to generalize to unknown attacks. At the same time, it is hard for
machine learning based IDS to detect these 14 new attacks [36].

4. KDD99 is heavily imbalanced dataset to attack instances. Approximately 80%
percent of flow is attack traffic (3925650 attack instances in total 4898430

14

instances). Normally, typical network contains approximately 99.99% percent
of normal instances. KDD99 violates this principle. Most articles needs
to re-sample dataset to conform to typical network normality assumption,
particularly anomaly detection articles.

5. U2R and R2L attacks are very rare in KDD99 (Table 2.2).

6. Duplicate records in both training and testing datasets bias results for frequent
DOS attacks and normal instances.

7. KDD99 is a large dataset; therefore, most studies use a small percentage of it.
Following studies among reviewed articles [37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49] claim that KDD99 is a very large dataset for machine learning
algorithms; correspondingly, they use very small percentage of KDD99.

Table 2.2 KDD99 attack distribution

Training Size (%) Test Size (%)

Normal 972781 19.85 60593 19.48
DOS 3883390 79.27 231455 74.41
Probe 41102 00.83 4166 01.33
U2R 52 00.001 245 00.07
R2L 1106 00.02 14570 04.68

Total 4898431 100 311029 100

Numerous shortcomings of KDD99 with respect to IDS are well documented in
literature, [13, 50, 51, 52, 15].

2.4.3. NSL-KDD dataset

To reduce deficiencies of KDD99 dataset for machine learning algorithms, NSL-KDD
dataset is introduced by [22]. NSL-KDD has been generated by removing redundant
and duplicate instances; thus decreasing size of dataset. Since NSL-KDD is a
re-sampled version of KDD99, IDS deficiencies remain. NSL-KDD is a very popular
dataset in intersection of machine learning and IDS literature due to its small size
compared to full KDD99 dataset. Usage of NSL-KDD is increasing in recent years,
see Figure 2.4.

15

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

5

10

15

1
2 2

8

14
15

4#
of
Ar
tic
le
s

Figure 2.4 NSL-KDD dataset usage by years. (Year 2017 values includes first
4 months only.)

Figure 2.5 General machine learning flow chart. Almost all of the reviewed
articles make their contribution in steps 2a-2d and 3a-3d. Table 2.3
shows article counts for these contributions.

16

2.5. General machine learning work flow using KDD99

Figure 2.5 shows general machine learning work flow using any dataset. This work
flow contains 3 main steps relevant to our discussion. These are step (1) feature
extraction, step (2) preprocessing, and (step 3) training machine learning model.
Normally, feature extraction step (1) is the most important step in machine learning
[53]. As KDD99 is a feature extracted dataset, this step is unnecessary.

Most reviewed studies made their contributions to preprocessing step (2) or training
machine learning model step (3). For Step (2) preprocessing, reviewed articles used
4 different techniques: (2a) Feature Selection, (2b) Feature Reduction or Feature
Transformation, (2c) Clustering, and (2d) Hybrid Approaches. Feature selection
(2a) is using various algorithms to reduce number of existing 41 features. Feature
Transform/Reduction (2b) is to change feature space of dataset to another space,
then optionally reduce number of transformed features. For example, principal
component analysis is a popular choice among reviewed studies (Table 2.6).
Clustering (2c) is reduce features or instances using a clustering algorithm, for
example k-means clustering. Hybrid Approaches (2d-3a) is using combination of two
different algorithms for preprocessing or training machine learning model step. Most
of the time, a feature selection/reduction/machine learning algorithm is hybridized
with an optimization algorithm (for example: particle swarm optimization).

For Step (3) training machine learning model, reviewed articles can be categorized
using 4 different type of techniques: (3a) Hybrid Approaches, (3b) Ensemble, (3c)
Layered, and (3d) New Algorithm Classifier. An example of Step (3a) Hybrid
Approaches is training a neural networks with genetic algorithms instead of back
propagation. Ensemble approach, Step (3b), is a parallel combination of different
machine learning algorithms. Layering, Step (3c), is a serial combination of different
machine learning algorithms. New Algorithm Classifier, Step (3d), means the applied
algorithm may be entirely new or used the first time in IDS.

According to given work flow, contributions of the most reviewed articles may be
more than two. For example, using a new optimization algorithm for feature selection
and classification is counted as both feature selection and hybrid in this review.
Also, using principal component analysis for feature reduction and using optimization
algorithm to train a classifier is counted as both hybrid and feature reduction.
Table 2.3 shows categorization of articles according to the work flow.

17

Table 2.3 Evaluating the reviewed articles regarding to machine learning
model Figure 2.5

Contribution(Novelty) Article Count Figure 3

Hybrid 71 (2d,3a)
New Algorithm Classifier 66 (3d)
Feature Selection 55 (2a)
New Algorithm Anomaly Detection 54 (3d)
Layered(Cascaded) 35 (3c)
Feature Reduction 35 (2b)
New Algorithm Clustering 35 (2c)
New Optimization Algorithm 28 (2d,3a)
Ensemble 22 (3b)
Data Streams 20
Agent Based 16
Feature Transformation 11 (2b)

2.6. KDD99 descriptive statistics

Different from previous review studies, we present more descriptive statistics to
evaluate published studies in focused period (2010–2016). Other extracted statistics
are presented before such as Figure 2.1, Figure 2.4 and Table 2.3. In addition, the
following statistics have been extracted from the reviewed 215 studies:

1. Classification output classes

2. Training and Testing Dataset Usage

3. Use of Cross Validation

4. Dataset sizes used in training and testing machine learning algorithms

5. Applied algorithms in proposed method

6. Classifiers used for comparison

7. Software Toolbox Usage

8. Other Datasets used in Reviewed Studies

9. Performance Metrics used in Experiments

10. IDS vs Not IDS

11. Main IDS Type according to study

These descriptive statistics are presented using figures and tables and have been
discussed in detail.

18

2.6.1. Classification output Classes in the reviewed studies

The output classes can be binary or multi classes when machine learning algorithms
are applied to the KDD99. Table 2.4 shows output classes in reviewed articles. Multi
class 5 are DOS, Probe, Normal, U2R and R2L as explained in Section 2.4.2. Multi
Class X selects subsets of 23 classes of KDD99, for example an output that consists
of 7 attacks and normal gives results for 8 output classes. Multi Class X studies are
not comparable to other studies.

Table 2.4 Comparison of the published studies based on classification
output classes. Experiments in articles may have more than one
output class such as Binary and Multiclass 5; therefore total article
count in this table is more than 215

Classification Output Article
Count

Binary (Attack/Normal) 197
Multiclass 5 (DOS/Probe/U2R/R2L/Normal) 73
Multiclass 23 (22 attacks/Normal) 4
No Binary: Gives other result 8
Multi Class X (Subset of 23) 21

2.6.2. Training and testing dataset usage

Table 2.5 Confusion matrix for training and test set usage. Normally, only
diagonal of matrix should have values, but most of the reviewed
studies use KDD99 training dataset for both testing and training
purposes.

KDD99

Training Test

Reviewed Study Training 212 8
Test 161 58

Normally, in machine learning studies, datasets should be divided into training
and testing datasets. Machine learning algorithms should be trained on training
dataset and be tested on test dataset that is entirely separate from training datasets.
Considering this usage, DARPA, KDD99 and NSL-KDD datasets contains two parts,
training and testing. As mentioned before these two parts have different attacks and
different probability distributions. Training amachine learning algorithm in a subset of
KDD99 training dataset; then, testing trainedmodel in another subset gives optimistic
results. Generally, machine learning algorithms should be trained on KDD99 training
dataset and tested on KDD99 testing dataset.

19

Table 2.5 shows training and testing dataset usage in the reviewed articles. Most
reviewed articles (212) used KDD99 training dataset for training; but, 8 articles
behaved differently. These 8 articles either merged training and testing dataset then
re-sampled or used training dataset for testing purposes. The main reason for this
type of dataset usage is to reduce difference between training and testing dataset.
Only about 26%of reviewed articles (58) used real testing dataset. Others (161) used
KDD99 training dataset as both testing and training purposes. This type of dataset
usage provides optimistic, thus non-realistic results for these studies. Table 2.5
shows that most of the literature have used re-sampled version of KDD99 training
dataset for both training and testing.

2.6.3. Cross validation

K-fold cross validation is one of the suggested techniques in training machine
learning models. Among the reviewed 215 studies, only 45 (%20) studies applied
cross validation, while 170 (%80) studies did not apply cross validation.

2.6.4. Dataset sizes used in training and testing ML algorithms

In this review, 12 articles claimed KDD99 is a large dataset for machine learning
research and used smaller subset of full dataset. Figure 2.6 and Figure 2.7 shows
that training and testing dataset usage is skewed to small sizes. That is, most
articles worked with small dataset sizes in reviewed studies. The smallest 20 training
datasets contain 100 to 1000 instances, while smallest 20 testing datasets contain
100 and 1112 instances. These numbers are small compared to full size (4.9 Million
instances) KDD99 dataset. Using very small dataset sizes may be unacceptable
from the viewpoint of statistical analysis.

Figure 2.7 shows testing dataset sizes used in reviewed articles. Figure 2.7 only
shows usages of testing dataset that are less than full size (311029 instances).

2.6.5. Applied algorithms in proposed methods

Various algorithms have been used in KDD99 based IDS research. Table 2.6 shows
algorithms that are used by the reviewed studies. If a classifier, for example support
vector machines, is used for comparison purposes, it is included in both Table 2.6
and Compared Classifiers Table 2.7.

20

1000
0

1000
00

5000
00

1000
000

2000
000

3000
000

4000
000

5000
000

0
10
20
30
40
50
60
70
80
90

Ti
m

es
us

ed

0 2000 4000 6000 8000 100000
2
4
6
8

10
12
14
16
18

Ti
m

es
us

ed

10000 20000 30000 40000 50000 60000 70000 80000 90000 1000000
5

10
15
20
25

Ti
m

es
us

ed

KDD99 Training Dataset is used 235 times for all sizes

KDD99 Training Dataset is used 67 times for sizes less than 10.000

KDD99 Training Dataset is used 75 times for sizes between 10.000 and 100.000

Figure 2.6 KDD99 training usage sizes. Most of the usage is with low sizes.

0 50000 100000 150000 200000 250000 300000 3500000

20

40

60

80

100

120

Ti
m

es
us

ed

Testing Usage Frequency (total of 197 times).

Figure 2.7 KDD99 testing usage sizes. Most of the low size usages comes
from resampling of KDD99 Training dataset.

2.6.6. Classifiers used for comparison

Generally, most studies compare their results with other methods in their
experiments. In KDD99 based machine learning research, most comparisons are
made against other classifiers. Table 2.7 shows classifiers used for comparison in

21

Table 2.6 Most used algorithms in the literature. Algorithms used less than
3 are not shown.

Name Article
Count

support vector machines 32
decision tree 26
genetic algorithm 17
k-means clustering 16
k-nearest neighbors 14
naive bayes 14
principal component analysis 14
neural networks (multilayerperceptron) 11
particle swarm optimization 10
rough sets 8
artificial immune system 7
genetic programming 6
neural networks (selforganizingmap) 5
mutual information 5
random forest 5
bayesian network 5
optimum-path forest 4
extreme learning machine 4
fuzzy rules mining 4
rule based learner 3
fuzzy clustering 3
adaboost 3
clustering 3
multivariate correlation analysis 3

the reviewed studies. Some rare articles in this review were not machine learning
articles, even though they use KDD99. These rare articles did not compare their
suggested approaches with other classifiers. Also, some articles that proposed new
methods for IDS, have not compared their proposed method with other classifiers.
For these two types of articles, Table 2.7 includes None. For Literature entries, some
articles did not compare their methods and their datasets using software toolboxes
but only reported literature results. In our opinion, all machine learning IDS articles
should use software toolboxes (Table 2.8) to compare their methods with common
methods instead of only reporting literature results. Main reason for this advice
is science reproducibility since every article is a bit different (sampling strategy,
randomize seed, and different sizes for datasets).

22

Table 2.7 Classifiers used for comparison in the experiments of reviewed
studies. Classifiers used less than 4 are not shown.

Classifier Article Count

support vector machines 48
naive bayes 44
literature(no experimental comparison) 37
decision tree(j48) 30
k-nearest neighbors 27
neural networks (multilayerperceptron) 26
none(Not compared with other methods) 24
decision tree 17
random forest 16
bayesian network 15
adaboost 9
k-means 9
neural networks (selforganizingmap) 7
neural networks (radialbasisfunction) 7
local outlier factor 6
decision tree(cart) 5
part 5
rule based learner(jripper) 4
naive bayes tree 4
random tree 4
one class support vector machines 4
decision tree(c4.5) 4

2.6.7. Software used in reviewed studies

Many software toolboxes has been used in IDS studies. Table 2.8 summarizes
software used to implement or compare algorithms in the articles. Most articles (78)
did not give any information about applied software. This restricts reproducibility of
applied method. Based on Table 2.8, Weka is widely used for classifier comparison
even if it is not used for implementation. Matlab and LibSVM are also used for
comparison. Most of the proposed methods are implemented using general purpose
programming languages. As a remarkable note, although Python (2) and R (1) are
thought as the languages of data science and machine learning [54], they were
among the least used tools.

2.6.8. Different datasets used in reviewed studies

In addition to KDD99, different datasets were also used in the reviewed articles,
Table 2.9. Non IDS datasets in this review show that KDD99 is used as just another
dataset in some studies. NSL-KDD is re-sampled version of KDD99 as explained
in Section 2.4.3. Some studies used both NSL-KDD and KDD99, while others used
only NSL-KDD dataset. Other IDS datasets are used rarely. For example, ISCX and

23

Table 2.8 Software used in the reviewed articles. Weka, Matlab, and
LibSVM are mostly used for comparison purposes. General purpose
programming languages are used for implementation. Software that
are used less than 2 are not shown.

Software Tool/Package Article Count

NoInformation 101
Weka 47
Matlab 42
Java 16
LibSVM 14
C++ 7
Hadoop 5
MOA 6
R 4
Pascal 3
CSharp 3
Liblinear 2
Python 2

Kyoto have been used only 6 times. These numbers show lack of recent IDS dataset
in the literature.

Table 2.9 Most used datasets. * denotes IDS datasets. Datasets that are used
less than 3 are not shown.

Dataset Name Article Count

KDD99* 183
NSL-KDD* 46
Iris 11
DARPA* 10
Glass 9
Shuttle 7
Kyoto* 6
ISCX* 6
Breast Cancer 6
Ionosphere 5
Poker Hand 5
Pima 5
Lymphography 5
Wine 5
Synthetic Data 5
Abalone 5
Synthetic 4

24

Table 2.10 Performance metrics used. Usage of performance metrics are
highly irregular. Some articles does not give any metrics (*). Metrics
used less than 3 are not shown.

Performance Metric Article Count

Detection Rate 186
False Positive (FalseAlarm) 95
Training Time 62
Testing Time 50
False Negative 30
Confusion Matrix Multi 5 General 29
Error Rate 28
ROC-Curve 28
True Positive 28
Precision 20
F-Measure 18
Number Of elected Features 16
True Positive (Sensitivity-Recall) 15
ROC-Area Under Curve 15
Recall 13
Cost Per Example 12
True Negative 12
Correlation Coefficient 9
Confusion Matrix Binary 9
Computational Complexity Time 7
Memory Usage 7
Root Mean Square Error 7
Specificity 6
Sensitivity 6
None* 6
Geometric Mean 5
Computational Complexity 5
CPU Usage 4
True Negative (Specificity) 4

2.6.9. Performance metrics used in reviewed studies

Various performance metrics can be used to evaluate to machine learning
algorithms. Table 2.10 summarizes which metrics are provided in the 215 articles
reviewed. Detection rate is most consistent metric provided; although some articles
fail to provide this metric. For example, some articles gave figures for their detection
rate but did not give an exact number; therefore, reader has to guess about its
value. Other articles gave 5-class detection rates but did not give overall detection
rate for comparison. If a researcher would like to compare the given results with
other articles, it is often impractical since dataset sizes differ greatly from article to
article. Some articles gave detection rate by class but failed to provide number of
class instances therefore it is impossible to get single detection rate for attack versus
normal.

Some articles did not present information about used testing dataset. Machine
learning algorithms get different results in KDD99 train and testing dataset as
mentioned in Section 2.4.2. Therefore; it is important for articles that use KDD99
to indicate that if they used training or testing dataset of KDD99.

25

Other performance metrics differ widely in our reviewed articles. Computational
Complexity metrics were not given in most articles. Also training time was given 63
(29%) times, and testing time was given 51 (23%) times. Considering importance
of these two metrics, their usage is not high.

Generally, authors suggest that following metrics should be given in the KDD99
research articles. (1) Detection Rate, (2) Confusion matrix, (3) Training Time, (4)
Testing Time and, (5) Computational Complexity for newly proposed methods.

2.6.10. Main IDS type according to reviewed Studies

Figure 2.8 shows which IDS methodologies are used in the collected articles. Total
count is more than 215, since most articles use more than one methodology. KDD99
is a popular choice for both machine learning and anomaly detection studies.

ML AD AL
0

50

100

150

200 197

87

18

Type of Article

C
ou
nt

Figure 2.8 Article counts by methodology (ML:Machine Learning,
AD:Anomaly Detection, AC:Alert Correlation)

2.6.11. IDS vs not IDS studies

Figure 2.9 shows how many articles claim that they are IDS studies among the
reviewed articles. Even though, IDS articles form the majority, number of Non IDS
articles shows that KDD99 is also widely used in other domains.

26

IDS

171

Not IDS

44

Figure 2.9 IDS and Not IDS articles in 2010–2017 for total of 215 articles.
KDD99 is mostly used in IDS studies; but, some studies use it also,
especially feature selection and data streams studies.

2.7. Suggested checklist for avoiding common mistakes

After evaluating 215 studies from the SCI-indexed 90 journals, we suggest a checklist
for researchers who want to apply a machine learning or IDS method using KDD99
or other large datasets. The suggested checklist has been provided considering
common mistakes and strengths points of the reviewed studies. This checklist could
be useful for future studies in a similar areas. The instructions in checklist are as
follows:

• Point out training and test dataset clearly.

• If the target dataset is KDD99, identify if full dataset or a portion of dataset is
used.

• Specify train, test and validation dataset sizes in a table.

• Increase reproducibility of the study by giving software package, re-sampling
strategy, and random seeds.

• To evaluate the classification result, provide confusion matrix, detection rate,
training time and testing time.

• Compare the result of the proposed approach with other most used methods.

• Determine the number of output classes. For KDD99 using 5 or 23 classes will
be preferred.

27

2.8. Chapter discussion

In this chapter, 215 recent studies that use KDD99 dataset between 2010 and 2016
have been reviewed. A different review process is followed from previous reviews
in the same area. Instead of finding the major contributions to the area, descriptive
statistics are extracted. Review results show the following findings: (1) Even though
KDD99 is an 17-years-old dataset, it is still widely used in IDS and machine learning
research. (2) Decision tree derivatives and support vector machines are the most
applied algorithms. (3)Weka andMatlab are themost used software toolboxes, even
thoughmost studies did not give any information about software usage. (4) Detection
rate is the most used performance metric to show classification quality. Additionally,
considering common errors and strengths of the reviewed works, a checklist has
been suggested to improve the research quality in similar areas.

28

Ta
bl
e
2.
11

Jo
ur
na

ls
an

d
ar
tic

le
co

un
ts

Jo
ur
na
lN

am
e

Ar
tic
le
C
ou
nt

Jo
ur
na
lN

am
e

Ar
tic
le
C
ou
nt

Ex
pe
rt
Sy
st
em

s
w
ith

Ap
pl
ic
at
io
ns

27
C
on
cu
rre

nc
y
an
d
C
om

pu
ta
tio
n:

Pr
ac
tic
e
an
d
Ex
pe
rie
nc
e

1
Se

cu
rit
y
an
d
C
om

m
un
ic
at
io
n
N
et
w
or
ks

14
IE
EE

Tr
an
sa
ct
io
ns

on
Pa

ra
lle
la
nd

D
is
tri
bu
te
d
Sy
st
em

s
1

In
fo
rm
at
io
n
Sc
ie
nc
es

8
C
om

m
un
ic
at
io
ns

in
St
at
is
tic
s
-S

im
ul
at
io
n
an
d
C
om

pu
ta
tio
n

1
Kn

ow
le
dg
e-
Ba

se
d
Sy
st
em

s
8

C
lu
st
er
C
om

pu
tin
g

1
Ap

pl
ie
d
So

ft
C
om

pu
tin
g

7
C
hi
na

C
om

m
un
ic
at
io
ns

1
N
eu
ro
co
m
pu
tin
g

7
Ar
tif
ic
ia
lI
nt
el
lig
en
ce

R
ev
ie
w

1
N
eu
ra
lC

om
pu
tin
g
an
d
Ap

pl
ic
at
io
ns

6
Ar
tif
ic
ia
lI
nt
el
lig
en
ce

1
IE
EE

Tr
an
sa
ct
io
ns

on
Kn

ow
le
dg
e
an
d
D
at
a
En

gi
ne
er
in
g

5
Ar
ab
ia
n
Jo
ur
na
lf
or
Sc
ie
nc
e
an
d
En

gi
ne
er
in
g

1
Ap

pl
ie
d
In
te
llig

en
ce

5
Ap

pl
ie
d
M
at
he
m
at
ic
s
an
d
In
fo
rm
at
io
n
Sc
ie
nc
es

1
Th
e
In
te
rn
at
io
na
lA
ra
b
Jo
ur
na
lo
fI
nf
or
m
at
io
n
Te
ch
no
lo
gy

5
Ap

pl
ie
d
Ar
tif
ic
ia
lI
nt
el
lig
en
ce

1
Pa

tte
rn
R
ec
og
ni
tio
n

5
Ac
ta
Po

ly
te
ch
ni
ca

H
un
ga
ric
a

1
In
te
rn
at
io
na
lJ
ou
rn
al
of
C
om

pu
ta
tio
na
lI
nt
el
lig
en
ce

Sy
st
em

s
4

IE
EE

Tr
an
sa
ct
io
ns

on
N
eu
ra
lN

et
w
or
ks

an
d
Le
ar
ni
ng

Sy
st
em

s
1

C
om

pu
te
rC

om
m
un
ic
at
io
ns

4
In
te
rn
at
io
na
lJ
ou
rn
al
of
C
om

m
un
ic
at
io
n
Sy
st
em

s
1

Th
e
Jo
ur
na
lo
fS

up
er
co
m
pu
tin
g

4
IE
EE

Tr
an
sa
ct
io
ns

on
Sm

ar
tG

rid
1

En
gi
ne
er
in
g
Ap

pl
ic
at
io
ns

of
Ar
tif
ic
ia
lI
nt
el
lig
en
ce

4
IE
EE

Tr
an
sa
ct
io
ns

on
Sy
st
em

s,
M
an
,a
nd

C
yb
er
ne
tic
s,
Pa

rt
C
:A

pp
lic
at
io
ns

an
d
R
ev
ie
w
s

1
Jo
ur
na
lo
fI
nt
el
lig
en
ta
nd

Fu
zz
y
Sy
st
em

s
3

Te
le
co
m
m
un
ic
at
io
n
Sy
st
em

s
1

M
ac
hi
ne

Le
ar
ni
ng

3
So

ft
C
om

pu
tin
g

1
Jo
ur
na
lo
fN

et
w
or
k
an
d
C
om

pu
te
rA

pp
lic
at
io
ns

3
Si
gn
al
,I
m
ag
e
an
d
Vi
de
o
Pr
oc
es
si
ng

1
In
te
rn
at
io
na
lJ
ou
rn
al
of
C
om

pu
te
rS

ci
en
ce

an
d
N
et
w
or
k
Se

cu
rit
y

3
Se

ns
or
s

1
IE
TE

Jo
ur
na
lo
fR

es
ea
rc
h

2
Pr
og
ra
m
m
in
g
an
d
C
om

pu
te
rS

of
tw
ar
e

1
IE
EJ

Tr
an
sa
ct
io
ns

on
El
ec
tri
ca
la
nd

El
ec
tro
ni
c
En

gi
ne
er
in
g

2
Pa

tte
rn
R
ec
og
ni
tio
n
Le
tte
rs

1
In
te
rn
at
io
na
lJ
ou
rn
al
of
In
no
va
tiv
e
C
om

pu
tin
g,
In
fo
rm
at
io
n
an
d
C
on
tro
l

2
PL

oS
O
N
E

1
Ts
in
gh
ua

Sc
ie
nc
e
an
d
Te
ch
no
lo
gy

2
N
eu
ra
lP
ro
ce
ss
in
g
Le
tte
rs

1
Th
e
Sc
ie
nt
ifi
c
W
or
ld
Jo
ur
na
l

2
M
ob
ile

N
et
w
or
ks

an
d
Ap

pl
ic
at
io
ns

1
EU

R
AS

IP
Jo
ur
na
lo
n
W
ire
le
ss

C
om

m
un
ic
at
io
ns

an
d
N
et
w
or
ki
ng

2
M
ob
ile

In
fo
rm
at
io
n
Sy
st
em

s
1

Th
e
C
om

pu
te
rJ
ou
rn
al

2
Kn

ow
le
dg
e
an
d
In
fo
rm
at
io
n
Sy
st
em

s
1

D
ef
en
ce

Sc
ie
nc
e
Jo
ur
na
l

2
Jo
ur
na
lo
ft
he

Fa
cu
lty

of
En

gi
ne
er
in
g
an
d
Ar
ch
ite
ct
ur
e
of
G
az
iU

ni
ve
rs
ity

1
D
at
a
M
in
in
g
an
d
Kn

ow
le
dg
e
D
is
co
ve
ry

2
Jo
ur
na
lo
fV

is
ua
lL
an
gu
ag
es

an
d
C
om

pu
tin
g

1
Jo
ur
na
lo
fI
nf
or
m
at
io
n
Sc
ie
nc
e
an
d
En

gi
ne
er
in
g

2
Jo
ur
na
lo
fP

ar
al
le
la
nd

D
is
tri
bu
te
d
C
om

pu
tin
g

1
Jo
ur
na
lo
fI
nt
el
lig
en
tI
nf
or
m
at
io
n
Sy
st
em

s
2

Jo
ur
na
lo
fN

et
w
or
k
an
d
Sy
st
em

s
M
an
ag
em

en
t

1
Si
m
ul
at
io
n
M
od
el
lin
g
Pr
ac
tic
e
an
d
Th
eo
ry

2
Jo
ur
na
lo
fA

dv
an
ce
d
R
es
ea
rc
h

1
G
en
et
ic
Pr
og
ra
m
m
in
g
an
d
Ev
ol
va
bl
e
M
ac
hi
ne
s

2
Ira
ni
an

jo
ur
na
lo
ff
uz
zy

sy
st
em

s
1

IE
EE

La
tin

Am
er
ic
a
Tr
an
sa
ct
io
ns

2
Ira
ni
an

Jo
ur
na
lo
fS

ci
en
ce

an
d
Te
ch
no
lo
gy
-T
ra
ns
ac
tio
ns

of
El
ec
tri
ca
lE
ng
in
ee
rin
g

1
C
om

pu
ta
tio
na
lI
nt
el
lig
en
ce

an
d
N
eu
ro
sc
ie
nc
e

2
In
te
rn
at
io
na
lJ
ou
rn
al
on

Ar
tif
ic
ia
lI
nt
el
lig
en
ce

To
ol
s

1
In
te
llig

en
tA

ut
om

at
io
n
an
d
So

ft
C
om

pu
tin
g

2
In
te
rn
at
io
na
lJ
ou
rn
al
of
Sy
st
em

s
Sc
ie
nc
e

1
IE
EE

Tr
an
sa
ct
io
ns

on
C
yb
er
ne
tic
s

2
In
te
rn
at
io
na
lJ
ou
rn
al
of
Pa

tte
rn
R
ec
og
ni
tio
n
an
d
Ar
tif
ic
ia
lI
nt
el
lig
en
ce

1
IE
EE

Tr
an
sa
ct
io
ns

on
C
om

pu
te
rs

2
In
te
rn
at
io
na
lJ
ou
rn
al
of
Fu
zz
y
Sy
st
em

s
1

M
at
he
m
at
ic
al
Pr
ob
le
m
s
in
En

gi
ne
er
in
g

2
In
te
rn
at
io
na
lJ
ou
rn
al
of
C
om

pu
te
rs
C
om

m
un
ic
at
io
ns

an
d
C
on
tro
l

1
IE
EE

Sy
st
em

s
Jo
ur
na
l

1
Tu
rk
is
h
Jo
ur
na
lo
fE

le
ct
ric
al
En

gi
ne
er
in
g
an
d
C
om

pu
te
rS

ci
en
ce
s

1
IE
EE

Tr
an
sa
ct
io
ns

on
D
ep
en
da
bl
e
an
d
Se

cu
re
C
om

pu
tin
g

1
In
te
llig

en
tD

at
a
An

al
ys
is

1
Fu
tu
re
G
en
er
at
io
n
C
om

pu
te
rS

ys
te
m
s

1
IE
TE

Te
ch
ni
ca
lR

ev
ie
w

1
W
ire
le
ss

Pe
rs
on
al
C
om

m
un
ic
at
io
ns

1
IE
T
In
fo
rm
at
io
n
Se

cu
rit
y

1
C
om

pu
tin
g
an
d
In
fo
rm
at
ic
s

1
IE
IC
E
Tr
an
sa
ct
io
ns

on
In
fo
rm
at
io
n
an
d
Sy
st
em

s
1

Fr
on
tie
rs
of
C
om

pu
te
rS

ci
en
ce

1
IE
IC
E
Tr
an
sa
ct
io
ns

on
Fu
nd
am

en
ta
ls
of
El
ec
tro
ni
cs
,C

om
m
un
ic
at
io
ns

an
d
C
om

pu
te
rS

ci
en
ce
s

1
D
is
cr
et
e
D
yn
am

ic
s
in
N
at
ur
e
an
d
So

ci
et
y

1
AC

M
Tr
an
sa
ct
io
ns

on
Au

to
no
m
ou
s
an
d
Ad

ap
tiv
e
Sy
st
em

s
1

3. GENETIC ALGORITHMS BASED FEATURE SELECTION AND
CLASSIFIER ENSEMBLE

Chapter abstract

As information systems develop, intrusion detection systems (IDS) become more
and more important. IDS can be considered as a classification problem. Nowadays,
to improve accuracy of classifiers, it is recommended to use classifier ensembles
instead of single classifiers. One of the important steps of classification applications
is feature selection step. The performance of classification depends on selected
features and applied classification approach. This study proposes to use genetic
algorithms for both feature selection and weight selection for weighted classifier
ensemble in IDS. Number of classifiers used in ensemble changes between 3
and 7 with weighted combination method. Following classifiers have been used:
Adaboost, Decision Tree, Logistic Regression, Naive Bayes, Random Forests,
Gradient Boosting, and K-Nearest Neighbor. Well-known intrusion detection dataset,
NSL-KDD, has been used in experiments. The results of the proposed method
have been compared with weighted vote, simple vote, and probability vote ensemble
methods, and also with single classifiers.

3.1. Chapter introduction

Computer-based systems are part of our daily life and are a fundamental part
of production systems and services. Billions of users connect to Internet using
computer based systems. This complex network makes it easy to get information
but it is vulnerable to attacks. Day by day, complexity and numbers of attacks
is increasing. Intrusion detection systems (IDS) are used to protect information
systems against those attacks[11].

Intrusion detection systems are categorized into two types according to detection
methodology[11]. Signature-based IDS keeps a signature database for every attack.
Every incoming request to system is compared with this database. According
to this comparison, request is labeled as either an attack or normal request.
Anomaly-based IDS starts with the definition of what normal is. This definition
normally is based on statistical or machine learning principles. Every incoming
request to system is compared with this normal definition. According to conformity
of the request to this definition, request is labeled as either an attack or normal[11].

30

General IDS and machine learning work has been studied well in related review
works [20, 21, 55]. According to Özgür and Erdem [55], 142 studies were published
in SCI indexed journals between 2010–2015 that were intrusion detection related.
Among these 142 studies, 118 of them use IDS and machine learning techniques
together, Table 3.1 and Figure 3.1.

Figure 3.1 IDS and ML articles counts published in SCI indexed journals

Feature selection step is a very important step in classification of high dimensional
datasets. Since feature selection is an NP-hard problem, different techniques have
been applied [53]. Yıldız et al. [56] used genetic algorithms for feature selection
in breast cancer classification problem. Similarly, evolutionary algorithms are used
for feature selection and finding feature weights[57]. Since datasets for IDS are
comparably large in feature and instance size, training and testing of machine
learning algorithms takes long time. To decrease training and testing times, the
feature selection step has been widely used in IDS applications [20, 55].

Single classifier machine learning algorithms are widely used in IDS studies. As
an example, Neural networks has been applied on KDD99 dataset [58] [59]. In
other studies [60] [61] [62], multiple machine learning algorithms have been fused.
According to Özgür and Erdem [55], 14 studies used classifier ensemble among
142 IDS and machine learning studies. When deciding ensemble outcome, single
classifier may use single vote or probabilistic vote. In addition to these two voting
methods, votes may be changed using weights. Normally, weights for ensemble can
be found empirically or using domain knowledge. Other studies have used heuristic
optimization techniques for the same purpose [63, 64, 65].

31

Table 3.1 Methods used in IDS and machine learning [55]

Method Article Count**

IDS 125
Machine Learning 135
Hybrid 50
Feature Selection 34
Ensemble 14
Genetic Algorithms 16

Total 142
**Note that if an article uses two techniques, it is counted twice.

In IDS and machine learning systems, hybrid algorithms started to become more
important. In recent 142 studies of IDS and machine learning, 50 studies applied
hybrid methods[55]. This number makes hybrid algorithms by far most popular
technique in machine learning and IDS, see Table 3.1. Hybrid methods combine
different algorithms in the same system. Usually, heuristic optimization techniques
have been used together with other machine learning methods. GA are among the
most used heuristic optimization techniques. GA is a global optimization algorithm
and applied to wide range of different NP-hard problems. Dener et al. [66] used
genetic algorithms on the well-known problem of shortest distance. Similarly, GA is
used in other engineering problems: Üstündağ et al. [67] used GA on de-noising
of radar signals, and Gürsü [68] used GA on estimation of high voltage problems.
Additionally, Yıldız et al. [56] used GA on breast cancer domain for feature selection
and data fusion.

Sylvester and Chawla [64] proposed GA-based method named EVEN, that find
weights of classifiers. Maghsoudi et al. [65] used GA to find classifier weights
in hyper spectral imaging. Besides, GA has been used for feature selection and
classifier ensemble weights finding in the literature. But, according to best of authors’
knowledge, there is no study that applies GA for selecting features and finding
weights of combined classifiers simultaneously.

In proposed method, feature selection and weights finding problem solved together
in one objective function. It is called Genetic Algorithms based Feature Selection and
Weights Finding, in short form GA-FS-WF. Effects of these two steps are given in the
previous studies. Feature selection reduces training and testing time of classifiers,
which are critical for IDS[69]. At the same time, single classifiers are combined via
different weights. Classifier combination improves accuracy of overall system. By
applying GA to these two steps together, error propagation from first step to other

32

steps is prevented. In short, GA-FS-WF improves accuracy of overall system while
reducing training and testing time.

To show effect of classifier size in the proposed classifier ensemble, 3 through
7 classifiers are combined in the experiments. Considering previous studies,
following single classifiers have been selected: Adaboost, Decision Tree, Logistic
Regression, Naive Bayes, Random Forests, Gradient Boosting and K-nearest
neighbor. Statistical tests of ANOVA and t-test are applied to show that proposed
system’s classification accuracy is statistically significant. In summary, GA-FS-WF
method has following contributions:

1. Feature selection and weights finding problem solved simultaneously.

2. Since NSL-KDD dataset is very large and problem is NP-Hard, GA that is a
heuristic optimization method is used.

3. Training and testing time reduced since both of these steps are solved
simultaneously.

4. Effect of classifier size in multiple classifier ensemble is investigated. (This
study combined 3–7 classifiers.)

5. Multiple classifier combination methods – simple vote, probability vote and
weighted vote– have been compared.

6. Classification accuracy of proposed method is shown using statistical tests of
ANOVA and t-test.

3.2. Materials and methods

3.2.1. NSL-KDD and KDD99 datasets

Relatively old datasets – DARPA,KDD99 and NSL-KDD – are still used in IDS
research [16, 17, 21, 55]. DARPA IDS dataset was created by MIT Lincoln
Labs in 1998 [30]. Feature extracted version of DARPA dataset [23] was used
in KDD99 competition. To improve machine learning algorithms performance on
KDD99, NSL-KDD was created [22]. NSL-KDD is a feature extracted and duplicate
records deleted version of KDD99. Even though deficiencies of these datasets are
well-known [13, 15], they are still the most used datasets in the IDSmachine learning
research [21, 55, 16, 17].

33

Table 3.2 Dataset information

Name Training Size Testing Size Note

DARPA 99 6.2GB 3.67GB Base dataset. Raw TCP/IP Files
KDD99 4898431 Instances 311029 Instances Feature extracted and preprocessed
NSL-KDD 125973 Instances 22544 Instances Duplicates removed and size reduced

Size and general attributes of these dataset are given in Table 3.2. In this study,
NSL-KDD dataset has been used for training, validation and test purposes, Table 3.3.
Training part of NSL-KDD has been used for training. Testing part of NSL-KDD has
been divided to two parts. First 10% has been used for validation, while remaining
90% part has been used for testing.

Table 3.3 Dataset information used in experiments

Training Validation Testing

% 100 10 90
Instance 125973 2254 20290

3.2.2. Classifier performance

Classifier performance can be measured with different metrics. Normally, IDS output
consists of two classes (normal and attack). Classifiers may make mistakes when
classifying instances. Sometimes normal instances can be classified as attack and
vice versa. All possible cases for this situation:

1. Attack instance is predicted as attack: True Positive (TP)

2. Attack instance is predicted as normal: False Negative (FN);

3. Normal instance is predicted as attack: False Positive (FP)

4. Normal instance is predicted as normal: True Negative (TN);

Table 3.4 Confusion matrix

Actual Class

Attack Normal

Predicted Class Attack True Positive False Positive
Normal False Negative True Negative

34

ClassificationAccuracy =
TP + TN

TP + TN + FP + FN
(3.1)

According to this four case Table 3.4 is created. The most used metric for classifier
performance, accuracy is defined in Equation 3.1.

3.2.3. Feature selection

In classification of large dataset, an important step is the feature selection [53], since
increasing number of features in a dataset will increase training and testing time
of machine learning algorithms. Additionally, some machine learning algorithms
are sensitive to redundant features and may loose accuracy while working with
them[53]. Therefore, feature selection is a widely used pre-processing step [20, 53].
Feature selection step aims to decrease number of features while preserving overall
performance of the classifier.

KDD99 and NSL-KDD dataset has 41 features and one class. Since these datasets
has large number of instances, training and testing times are longer. In these
datasets, feature selection step is widely used [55]. According to Table 3.1, 34 out
of 142 study has applied feature selection.

3.2.4. Classifier ensembles

To improve classification accuracy, more than one machine learning algorithm may
be combined. This process is knownwith different names in different domains. Some
of these names are: Classifier fusion, classifier ensemble, classifier combination,
mixture of experts, committees of neural networks, voting pool of classifiers, and
others [61]. Generally three methods are used to combine classifiers[70]. These
are: simple or majority voting, probability voting, and weighted voting. In simple
voting, each classifiers uses one vote and most voted class will be the output result.
In probability voting, each classifier uses its confidence in output as probability
vote. In weighted voting, probability output of each classifier will be multiplied with
weights,Figure 3.2.

35

Figure 3.2 Multi classifier ensemble

3.2.5. Genetic algorithms

Inspired by evolution theory, genetic algorithms (GA) codes the optimization problem
using a genome. Binary genome, as the first proposed genome, is widely used. All
genomes that are used in problem called population. While genomes change from
generation to generation, different areas in solution space are searched. Genomes
are evolved using crossover andmutation operations. Using crossover operation two
genome in population transfer part of their genomes to next generation. For selection
of genomes in crossover operation, different methods are used. In this study, roulette
wheel method is used since it increases chances for successful genomes. Mutation
operation is change of small part of genome with a probability. While crossover
allows that successful genomes will live in next generation, mutation operation
enable search of different areas in solution space; thus, GA will not converge to
a local minimum [71]. If only crossover operation is used, most successful genomes
in population will be lost; therefore, elitism principle is used. Elitism transfers some
of the most successful genomes to next generation without change.

3.2.6. Proposed method

Proposed method is called as GA-FS-WF (Genetic Algorithms based Feature
Selection and Weights Finding). GA-FS-WF’s general flow chart is given in
Figure 3.3. To select features and to find weights, a two part genome is defined

36

Figure 3.3 Proposed method flowchart

in Figure 3.3.

Most important part of genetic algorithms is coding of problem as a genome. In this
study, binary two part genome (FEATURES + WEIGHTS) is used, see Figure 3.4.

Figure 3.4 Binary genome

Features genome part consists of 41 bit that comes from NSL-KDD data set’s 41
features. If a bit is 0 in feature genome part, corresponding feature is not selected;
but, if that bit is 1, then that feature is selected. For example genome string 1100..,
in this 41 bit length genome string, 0. feature (duration) and 1. (protocol_type) are
selected.

Weights genome part size depends on classifier ensemble size. Weight of each

37

classifier is coded as four bits. This 4-bit value affects decision of ensemble. For
example 1010 bit string will multiply probability vote of classifier with 10. If 5 classifier
is combined, then weights genome part will be 5x4 = 20 bit. Then, in 5 classifier
ensemble, genome size is 61 bit total. For features, 41 bit are used. For weights 20

bit, 5 classifiers x 4 bit, are used.

Table 3.5 Genetic algorithms hyper parameters

Name Value

Genome Type Binary
Genome Length 53-69 bit
Population Size 80
Crossover rate 0.9
Mutation Rate 0.02
Generation Number 100
Elitism 1
Selection Roulette Wheel

Proposedmethod is GA-based optimization problem. Ensemble classifier’s accuracy
value on validation dataset, Equation 3.1, has been chosen as fitness function.
Genome values were given as input to fitness functions. These genome values were
divided into two parts; features and weights. Using feature genome part, features
were selected from training and testing dataset. After this step, using training dataset
single classifiers were trained. Trained classifiers affect output result according to
the weights genome part. At last, ensemble classifier applied to validation dataset.
Accuracy value (Equation 3.1) of ensemble classifier on validation dataset has been
returned as fitness score. This flow has been shown in Figure 3.3. In addition,
pseudo code for full system has been given in listing 3.1. Following programs have
been used in the experiments: python, scikit-learn, matplotlib, and pyevolve. Other
GA hyper parameters has been given in Table 3.5.

38

Pseudo Code 3.1 Proposed Method (GA-FS-WF) Pseudocode
1THRESHOLD_VALUE <− 0.90
2MAX_ITERATION <− 100
3

4popu la t ion <− create popu la t ion randomly
5t r a i n i n g_ds_a l l _ f ea t u r e s <− read t r a i n i n g dataset fea tu res
6t r a i n i n g_c l a s s <− read t r a i n i n g dataset class
7va l i d a t i o n_ds_a l l _ f ea t u r e s <− read v a l i d a t i o n dataset fea tu res
8va l i d a t i o n_c l a s s <− read v a l i d a t i o n dataset class
9c l a s s i f i e r s <− create c l a s s i f i e r l i s t
10best_gen <− n u l l
11

12for i =1 to MAX_ITERATION
13for j =0 to leng th (popu la t ion)
14gen = popu la t ion (j)
15(gen_features , gen_weight) = p a r t i t i o n (gen)
16t r a i n i ng_ds = fea t u re_se l ec t i on (gen_features
17, t r a i n i n g_ds_a l l _ f ea t u r e s)
18va l i da t i on_ds = fea t u re_se l ec t i on (gen_features
19, v a l i d a t i o n_ds_a l l _ f ea t u r e s)
20c l a s s i f i e r s = t r a i n _ c l a s s i f i e r s (t r a i n i ng_ds)
21combined = Combination (c l a s s i f i e r s , gen_weight)
22accu racy_va l i da t i on = combined . score (va l i da t i on_ds , va l i d a t i o n_c l a s s)
23gen . skor = accu racy_va l i da t i on
24i f (accu racy_va l i da t i on > THRESHOLD_VALUE)
25best_gen = gen
26goto end
27end i f
28end for
29sor ted_popu la t ion <− Sor t Popula t ion according to score .
30new_populat ion <− se l ec t gen wi th e l i t i zm (sor ted_popu la t ion)
31best_gen <− f ind_best_gen (sor ted_popu la t ion)
32new_populat ion <− crossover and mutat ion (sor ted_popu la t ion)
33popu la t ion <− new_populat ion
34end for
35end :
36return best_gen

3.3. Simulation study and results

GA-FS-WF was tested on the NSL-KDD dataset. Following combination methods
were tested: Simple voting, probability voting, and weighted voting. Ensemble sizes
of 3–7 classifiers were used. For every ensemble size, 16 experiments, totally
80 experiments were conducted. Change of fitness function from generation to

39

generation has been given in Figure 3.5. As can be seen in this figure, fitness value
increases regularly from generation to generation.

Figure 3.5 Fitness functions of example GA runs

Results of the experiments has been given Figure 3.6. Simple voting, probability
voting, and weighted voting combination method’s performance has been shown in
Figure 3.6. Classification accuracy decreases with the increase of ensemble size in
Figure 3.6. This result is independent of combination method used in ensemble.
According to results, 3-4 classifier ensemble has best classification accuracy.
Weighted combination method has better results compared to other combination
methods (Simple voting and probability voting) when classifier ensemble size is low
(3-4 classifiers). Best result among 3-4 classifiers is 3 classifier ensemble.

Generally, with the increase of classifier size in ensemble, accuracy results
decrease. The reason of this phenomena is that diverse classifier should be used
in classifier ensembles [61, 63, 72]. Classifier diversity has no accepted definition
[72], nonetheless it affects ensemble accuracy. When ensemble size increases,
classification diversity reduces; thus, classification accuracy decreases [70, 72].

Table 3.6 Classifier ensemble performance values
Classifier Count

Maximum, Mean, Standard Deviation and Minimum Values
Ensemble 3 4 5 6 7

max mean(std) min max mean (std) min max mean(std) min max mean(std) min max mean(std) min
Single Vote 0.90 0.84 (0.034) 0.77 0.85 0.81 (0.015) 0.78 0.83 0.80 (0.018) 0.76 0.81 0.78 (0.022) 0.74 0.83 0.79 (0.021) 0.76
Probability Vote 0.91 0.82 (0.038) 0.77 0.90 0.86 (0.025) 0.82 0.84 0.78 (0.021) 0.76 0.86 0.79 (0.034) 0.75 0.83 0.78 (0.020) 0.75
Weighted Vote 0.90 0.89 (0.011) 0.87 0.91 0.88 (0.027) 0.80 0.91 0.76 (0.065) 0.71 0.90 0.80 (0.118) 0.45 0.81 0.73 (0.053) 0.57

Maximum, mean, standard deviation, and minimum classification accuracy values
has been given in Table 3.6. As can be seen in Table 3.6, 3-4 classifier ensembles
have best accuracy values. To show effects of proposed GA-based feature selection,

40

Figure 3.6 Accuracy of ensembles according to classifier size and regression
lines. As ensemble classifier size increases accuracy values
decreases. Fastest to decrease is weighted ensemble

classifier ensemble with all features and classifier ensemble with selected features
have been compared. These results are given in Table 3.7.

Table 3.7 Effect of feature selection to classification accuracy

Ensemble Type 41 Features Feature Selection with GA

Simple Vote 0.76 0.89
Probability Vote 0.79 0.91
Weighted Vote 0.79 0.91

In the feature selection step, 19 average features, 14 minimum, and 28 maximum
features have been selected among 41 features in 80 experiments. Feature service
has been selected in all experiments (80/80); thus, it is the most informative feature
in this dataset. After that, features (num_compromised, num_root) have been
selected in 59/80 experiments. Selection count for other features can be seen
in Table 3.12. According to the results, GA-based feature selection improves
classification accuracy compared to full feature classification.

Testing dataset accuracy of single classifiers has been shown in Table 3.8. Feature
selection step improves accuracy of single and ensemble classifiers. The most
successful classifiers are decision tree, gradient boosting and k-nearest neighbor
(5 neighbors are chosen empirically). Classification ensemble has better accuracy
(0.9) compared to single classifiers, Table 3.8 and Table 3.7.

41

Table 3.8 Single classifiers accuracy values: effect of GA feature selection.
All features vs GA feature selection

Single Classifiers Mean (Standard Deviation)
Classifiers AdaBoost Decision

Tree
Gradient
Boosting

KNN Logistic
Regression

Naive
Bayes

Random
Forests

Feature Count
All (41) 0.77(0) 0.79(0.02) 0.83(0) 0.77(0) 0.69(0) 0.45(0) 0.77(0.01)
GA (19) 0.79(0.02) 0.83(0.04) 0.83(0.03) 0.83(0.02) 0.64(0.08) 0.46(0.05) 0.79(0.02)

GA-based feature selection reduces training and testing time, Table 3.9. Training
time reduction was about 51% and testing time reduction was about 33-39%.

Table 3.9 Effect of feature selection to training and testing time

Training Time (Sec) Testing Time (Sec)

All Features Feature
Selected

Decrease
%

All Features Feature
Selected

Decrease
%

Simple Vote 30.67 14.88 51.47 2.36 1.58 33.15
Probability
Vote

30.82 14.83 51.87 2.00 1.23 38.35

Weighted 30.94 14.82 52.09 2.00 1.22 39.18

To show statistical significance of results, classifier ensemble results have been
tested using statistical tests: ANOVA and t-test, Table 3.10. ANOVA statistical test
shows statistically significant differences between groups. Small p-values (* < 0.05)
show that differences between group members are statistically significant. Smaller
p-values (** < 0.001) show that statistical significance is more stronger. ANOVA
test results in Table 3.10 show that differences of accuracy values for 3,4 and 7
classifier ensemble are statistically significant. In other classifier ensemble sizes
(5 and 6), this statistical difference becomes nil or very low for both ANOVA and
t-test results. T-test results in Table 3.10 show that weighted combination accuracy
values are statistically different from simple voting and probabilistic voting. Then,
for 3-4 classifier ensemble, high accuracy values are statistically significant. For
7 classifier ensemble, weighted voting has low accuracy values, and this result is
statistically significant. In summary, 3-4 classifier ensemble with weighted voting
should be used.

3.3.1. Comparison with literature

Results of the GA-FS-WF is compared with 10 different study from the literature,
Table 3.11 Most of the studies that use NSL-KDD use training dataset as test dataset
in their results since NSL-KDD training dataset and test dataset are statistically
different. Using similar dataset for both training and testing purposes gives optimistic

42

Table 3.10 ANOVA and t-test statistical tests results

p-value * <0.05 significant ** <0.001 more significant

ANOVA t-test t-test t-test
Classifier
Size

Weighted
Simple Vote

Weighted
Probability
Vote

Simple
Probability
Vote

3 ** ** ** 0.2015
4 ** ** ** **
5 0.042* 0.036* 0.16 0.07
6 0.626 0.42 0.76 0.15
7 ** ** 0.002* 0.011*

Table 3.11 Comparison of proposed method with the literature. All of the
results are on the NSL-KDD dataset.

Study Year Feature Selection Test Database Detection Rate

Rastegari et al. [44] 2015 Yes Training 0.7800
Kang and Kim [73] 2016 Yes Training 0.9693
Pereira et al. [74] 2012 Yes Training 0.9661
Seresht and Azmi [75] 2014 No Training 0.8831
Farid et al. [76] 2014 No Training 0.8344
Singh et al. [77] 2015 Yes Training 0.9867
Bhattacharya and Selvakumar [78] 2015 Yes Testing 0.8314
Mohammadi et al. [79] 2012 Yes Testing 0.8014
Liu et al. [80] 2016 Yes Testing 0.7460
la Hoz et al. [81] 2015 Yes Testing 0.8800
GA-FS-WF (3 Classifier Ensemble) 2017 Yes Testing 0.9088

results. Therefore, in Table 3.11 those results that use NSL-KDD Training dataset as
test dataset have better results. For example, results of Kang and Kim [73] (0.9693)
and Pereira et al. [74] (0.9661) are on the training dataset. GA-FS-WF has better
results compared with other results that use NSL-KDD test dataset.

3.4. Results and chapter discussion

In this chapter, feature selection and weights finding in classifier ensemble
problem have been investigated using genetic algorithms in intrusion detection and
classification applications. Proposed method has been tested on the NSL-KDD
dataset using three different ensemble combination methods. The results can be
summarized as follows:

1. Multiple classifier ensemble is more successful compared to single classifiers.

43

Table 3.12 Features and how many times they are selected in experiments

Feature Name Selection Count Feature Name Selection Count

service 80 num_shells 38
num_compromised 59 num_file_creations 38
num_root 59 srv_rerror_rate 37
src_bytes 53 is_guest_login 37
duration 52 srv_serror_rate 35
dst_host_rerror_rate 51 dst_host_same_src_port_rate 33
num_access_files 50 diff_srv_rate 32
is_host_login 50 num_failed_logins 31
dst_host_srv_rerror_rate 50 dst_host_srv_diff_host_rate 30
su_attempted 48 dst_host_serror_rate 29
rerror_rate 46 serror_rate 26
urgent 45 dst_host_srv_serror_rate 25
num_outbound_cmds 45 same_srv_rate 23
dst_bytes 44 dst_host_same_srv_rate 22
srv_count 43 wrong_fragment 22
hot 43 dst_host_diff_srv_rate 22
srv_diff_host_rate 43 flag 20
dst_host_count 43 logged_in 18
root_shell 40 count 6
land 40 dst_host_srv_count 0
protocol_type 39

2. When effect of classifier size in multiple classifier ensemble has been
investigated, it is found that 3-4 classifier ensemble is more successful on the
NSL-KDD dataset.

3. GA-based simultaneous feature selection and ensemble weights finding
improve classification accuracy and reduce training and testing time.

4. Generally, weighted classifier combination is better than simple voting and
probability voting, and these results are statistically significant.

Proposed method, GA-FS-WF, can be applied to other large datasets. Also using
GA or another optimization algorithm, GA-FS-WF should also be applicable to other
domains.

44

4. SPARSITY-DRIVEN WEIGHTED ENSEMBLE CLASSIFIER

In this chapter, a novel sparsity-driven weighted ensemble classifier (SDWEC)
that improves classification accuracy and minimizes the number of classifiers is
proposed. Using pre-trained classifiers, an ensemble in which base classifiers votes
according to assigned weights is formed. These assigned weights directly affect
classifier accuracy. In the proposed method, ensemble weights finding problem is
modeled as a cost function with the following terms: (a) a data fidelity term aiming to
decrease misclassification rate, (b) a sparsity term aiming to decrease the number
of classifiers, and (c) a non-negativity constraint on the weights of the classifiers.
As the proposed cost function is non-convex thus hard to solve, convex relaxation
techniques and novel approximations are employed to obtain a numerically efficient
solution. Sparsity term of cost function allows trade-off between accuracy and
testing time when needed. The efficiency of SDWEC was tested on 11 datasets
and compared with the state-of-the art classifier ensemble methods. The results
show that SDWEC provides better or similar accuracy levels using fewer classifiers
and reduces testing time for ensemble.

4.1. Chapter Introduction

The accuracy of classification can be improved by using more than one classifier.
This process is known by different names in different domains such as classifier
fusion, classifier ensemble, classifier combination, mixture of experts, committees of
neural networks, or voting pool of classifiers, and others [61].

Ensembles can be categorized as weak or strong depending on the used classifier
type [82]. The weak classifiers use machine learning algorithms with fast training
times and lower classification accuracy. Due to fast training times, weak classifier
ensembles contain high number of classifiers, such as 50–200 classifiers. On
the other hand, strong classifiers have slow training times and high generalization
accuracy individually. Due to slow training times, strong classifier ensembles contain
as low as 3–7 classifiers.

Although using more classifiers increases generalization performance of ensemble
classifier, this degrades after a while. To put it in another way, similar classifiers
do not contribute to overall accuracy very much. This deficiency can be removed
by increasing the classifier diversity [61, 63, 72]. Therefore, finding new diversity
measurements [83] and improving existing ones [72] are an ongoing research effort

45

in ensemble studies.

Research in the ensembles can be categorized into two groups according to their
construction methods: (a) Combining pre-trained classifiers. (b) Constructing
classifiers and ensemble together.

Methods in the first group (a) are the easiest to understand and the mainly used
methods to create ensembles. The classifiers are trained using training set and
combined in an ensemble. The simplest method to ensemble classifiers is majority
(plurality) voting. In the majority voting method, every classifier in an ensemble
gets a single vote for result. The output is the most voted result. A well-known
approach that uses majority voting in its decision stage is Bootstrap aggregating
algorithm (Bagging) [84]. Bagging trains weak classifiers from same dataset using
uniform sampling with replacement, then classifiers are combined using simple
majority voting [70]. Instead of using a single vote for every classifier, weighted
voting might be used [70]. Standard Weighted majority voting (WMV) algorithm
[70] uses accuracy of individual classifiers for finding weights. Classifiers that have
better accuracies in training step get higher weights for their votes, and become
more effective in voting. Kuncheva and Rodriguez [85] proposed a probabilistic
framework for classifier ensembles. This framework shows relationships between
four combiners: majority voting, weighted voting, recall voting, and naive bayes
voting. According to the experiments of Kuncheva and Rodríguez [85] on 73
benchmark datasets, there is no definite best combiner among those four. These
results conform to “no free lunch theorem” [86, 87]. No universal classifier exists
that is suitable for every problem. Numerous other methods has been proposed for
finding weights to combine pre-trained classifiers, Table 4.1. Methods in Table 4.1
are also summarized in Section 4.1.1. Similar to approaches in Table 4.1, main focus
of this study is to present a new approach for finding weights in an ensemble that
uses pre-trained classifiers using convex optimization techniques.

In the second categorization (b), ensemble construction and classifier construction
affect each other. Adaboost [88] is a well known example for this categorization that
trains weak classifiers iteratively and adds them to ensemble. Different from bagging,
subset creation is not randomized in boosting. At each iteration, subsets are obtained
using results of previous iterations. That is miss classified data in previous subsets
are more likely included. In ensemble, standard weighted majority voting is used.

Gurram and Kwon [89] used similar approach to classify remote sensing images.
Randomly selected features were used to train weak SVM classifiers. Optimization

46

process of training and combination of these classifiers were done together. Lee
et al. [90] combined neural network weak classifiers in their ensemble. Genetic
algorithms were used for finding weights for neural network neurons and increase
diversity among neural networks. Then, these diverse neural networks were
combined using negative correlation rule. Neural networks were trained and
combined in one step. Tian and Fend [91] proposed an approach that combines
feature sub-selection and ensemble optimization. They proposed three-term cost
function: a classification accuracy term, a diversity term and a feature size
term. They solved this ensemble cost function using population based heuristics
optimization. Zhang et al. [92] used Kernel sparse representation based classifiers
for ensemble in face recognition domain. Features were projected to higher
dimensions using kernels, then sparse representation of these features were found
using optimization techniques. Similarly, Kim et al. [93] proposed ensemble
approach for biological data. Their approach were similar to boosting but they
selected sparse features in their weak classifiers.

Table 4.1 Ensemble weights finding studies that use pre-trained classifiers
Study Year Classifiers Method Size Sparse Cost Function Regularizer Notes
Sylvester and Chawla [64] 2006 12 Different Classifiers Genetic Algorithms 120 No No Information No Information
Li and Zhou [94] 2009 Decision Tree Quadratic Programming 100 Yes Hinge Loss L1

Kim et al. [95] 2011 Decision Tree Matrix Decomposition 64 No Indicator Loss No Regularization
Mao et al. [96] 2011 Decision Tree,SVM Matching Pursuit 100 Yes Sign Loss No Regularization
Zhang and Zhou [97] 2011 K-Nearest Neighbor Linear Programming 100 Yes Hinge Loss L1

Goldberg and Eckstein [98] 2012 NI Linear Programming NI Yes Indicator Loss L0
a

Santos et al. [99] 2012 SVM,MLP Genetic Algorithms 6 No No Cost Function No Regularization
Yin et al. [100] 2012 Neural Networks Genetic Algorithms 100 Yes Square Loss L1

b

Meng and Kwok [101] 2013 Decision Tree,SVM,KNN Domain Heuristic 3 No No Cost Function No Regularization
Tinoco et al. [102] 2013 SVM,MLP Linear Programming 6 Yes Hinge Loss L1

d

Hautamaki et al. [103] 2013 Logistic Regression Nelder–Mead 12 Yes cross-entropy [104] L1, L2, L1 + L2
c

Şen and Erdoğan [105] 2013 13 Different Classifiers Convex Opt. 130 Yes Hinge Loss L1 , Group Sparsity
Mao et al. [106] 2013 Decision Tree Singular Value Decomposition 10 No Absolute Loss No Regularization
Yin et al. [107] 2014 Neural Networks Genetic Algorithms 100 Yes Square Loss L1

e

Yin et al.[108] 2014 Neural Networks Quadratic Programming 100 Yes Square Loss L1
f

Zhang et al. [63] 2014 5 Different Classifiers Differential Evolution 5 No No Cost Function No Regularization
Mao et al. [109] 2015 Decision Tree Quadratic Form 200 No Square Loss L1

a No experimental results.
b Diversity Term Yule’s Q Statistic is used
c Improved version of [99]
d 3 regularizers are compared
e Journal version of [100]
f Convex Quadratic model of [107] and [100]

4.1.1. Related works: ensembles that combine pre-trained classifiers

Focus of this study is to combine pre-trained classifiers so that combined accuracy of
the ensemble is better than individual classifiers. This study aims to accomplish this
objective in a sparse manner so that not all of the classifiers are used in ensemble.
Although some of the other sparse approaches [89, 92, 93, 110] are mentioned
before, in this section, only ensemble classifiers that proposes methods to find
weights for base classifiers are investigated.

Sylvester and Chawla [64] proposed differential evolution to find suitable weights
for ensemble base classifiers. Similar to most heuristic solution techniques, they

47

did not explicitly define cost function, but use classification accuracy for fitness
function. ID3 decision trees, J48 decision trees (C4.5), JRIP rule learner (Ripper),
Naive Bayes, NBTree (Naive Bayes trees), One Rule, logistic model trees, logistic
regression, decision stumps, multi-layer perceptron (MLP), SMO (support vector
machine), and 1BK (k-nearest neighbor) classifiers from Weka toolbox [111] were
used in the experiments.

Li and Zhou [94] modeled ensemble weights finding problem using cost function that
consists of hinge loss and L1 regularization. This cost function were minimized using
Quadratic programming. Decision tree weak classifiers and UCI datasets were used
for experiments. A semi-supervised version was also suggested.

Zhang and Zhou [97] formulated weights finding problem using three different cost
functions: LP1, LP2, LP3. LP1 uses a cost function that consists of Hinge loss only.
LP2 uses a cost function that consists of Hinge loss and L1 regularization. LP3
allows weights to be negative. These cost functions were minimized using linear
programming. They used K-Nearest neighbor algorithm as base classifiers and UCI
datasets in their experiments.

Kim et al. [95] proposed an approach similar to boosting. They considered two
weight vectors, one for classifier and one for instances. Hard to classify instances
get more weight and correspondingly they affect weight vector more. Different from
boosting, their approach works with pre-trained classifiers. Weights for ensemble
was found using matrix decomposition and an iterative algorithm. Decision weak
classifiers and UCI datasets were used for experiments.

Mao et al. [96] proposed matching pursuit algorithm to find weights for ensemble
base classifiers. Since matching pursuit is a sparse approximation algorithm [112],
their approach include sparsity. Decision Tree and SVM weak classifiers and UCI
datasets were used for experiments.

Goldberg and Eckstein[98] modeled weights finding problem with indicator loss
function and L0 regularization function. According to Goldberg and Eckstein[98],
this problem is NP-hard in special cases. They gave different relaxation strategies
to solve this problem and gave their relaxation bounds. Different from other studies,
this study was purely theoretical.

Santos et al. [99] combined multi-layer perceptrons (MLP) and SVM algorithms to
classify remote sensing images. They did not give any explicit cost function but

48

used genetic algorithms for finding weights. An improved version of their studies
[102] modelled weights finding problem using hinge loss and L1 regularization. This
cost function were minimized using linear programming. In both versions, remote
sensing images were classified using ensemble of MLP and SVM classifiers.

Mong and Kwok [101] combined Decision Tree(J48), K-Nearest Neighbor and SVM
classifiers. They suggest using following domain heuristic for weights of classifiers:
”...weighted ranking (precision of false alarm > recall of false alarm > classification
accuracy) is an appropriate and correct way to decide the weight values with high
confidence in ensemble selection...”[101]

Hautamaki et al. [103] investigated using sparse ensemble in speaker verification
domain. Ensemble weights finding problem were modeled using cross-entropy loss
function and three different regularization functions, L1,L2, and L1 + L2. These
cost functions were minimized using Nelder–Mead method. Logistic regression
classifiers were used in experiments.

Yin et al. [100] modeled ensemble weights finding problem with a cost function
that consists of the terms a square loss, L1 regularization and a diversity based-on
Yule’s Q statistics. They used neural network classifiers on 6 UCI datasets in their
experiments. In their first study [100], the proposed cost function were minimized
using genetic algorithms. In their second study [107], the Pascal 2008 webspam
dataset were added to their experiments. Finally, convex optimization techniques
[108] were used to minimize the same cost function.

Sen and Erdogan [105] modeled ensemble weights finding problem using a cost
function that consists Hinge loss and two different regularization functions, L1

and group sparsity. This cost function were minimized using convex optimization
techniques. In their experiments, 13 different classifiers were compared on 12 UCI
datasets and 3 other datasets using CVX Toolbox [113, 114].

Zhang et al. [63] proposed Differential Evolution for finding suitable weights for
ensemble base classifiers. Similar to most heuristic solution techniques, they did
not explicitly define cost function, but use classification accuracy for fitness function.
Decision Tree (J4.8), Naive Bayes, Bayes Net, k-Nearest Neighbor, and ZeroR
classifiers from Weka toolbox [111] were used in the experiments.

Mao et al. [106] modeled ensemble weights finding problem using a cost function
that consists of absolute loss only. Proposed cost function was minimized using 0–1

49

matrix decomposition. In a later study [109], Mao et al. proposed a cost function
that consists of square loss and L1 regularization function. This cost function was
minimized using quadratic form approximation. Both studies used decision tree weak
classifiers and UCI datasets in experiments.

As can be seen from Table 4.1, numerous approaches exist for finding weights in
ensemble classification. Inspired from studies of [97, 106, 109, 115], sparsity-driven
weighted ensemble classifier (SDWEC) has been proposed. Proposed cost function
consists of the following terms: (1) a data fidelity term with sign function aiming
to decrease misclassification rate, (2) L1-norm sparsity term aiming to decrease
the number of classifiers, and (3) a non-negativity constraint on the weights of
the classifiers. Cost function proposed in SDWEC is hard to solve since it is
non-convex and non-differentiable; thus, (a) the sign operation is convex relaxed
using a novel approximation, (b) the non-differentiable L1-norm sparsity term and
the non-negativity constraint are approximated using log-sum-exp and Taylor series.
Contributions of SDWEC can be summarized as follows:

1. A new cost function is proposed for ensemble weights finding problem.

2. This cost function is minimized using novel convex relaxation and
approximation techniques for sign function and absolute value function.

3. SDWEC improves classification accuracy, while minimizing the number of
classifiers used in the ensemble.

4. According to sparsity level of SDWEC, number of classifiers used in the
ensemble decreases; thus, the testing time for whole ensemble decreases.

5. The sparsity level of SDWEC allows trade-off between testing accuracy and
testing time when needed.

6. Computational Complexity of SDWEC is analyzed theoretically and
experimentally, which is linear in number of data rows, number of classifiers
and number of algorithm iterations.

4.2. Sparsity-driven weighted ensemble classifier

An ensemble consists of l number of classifiers. Classifiers are trained using training
dataset. We aim to increase ensemble accuracy on test dataset by finding suitable

50

weights for classifiers using validation dataset. Ensemble weights finding problem is
modeled with the following matrix equation.

sgn(



−1 −1 . . . +1

+1 −1 . . . −1
...
−1 +1

+1 −1


︸ ︷︷ ︸

Hmxl



w1

w2

...
wl−1

wl


︸ ︷︷ ︸

wlx1

) ≈



y1

y2
...

ym−1

ym


︸ ︷︷ ︸

ymx1

In this matrix equation, classifiers predictions are weighted so that obtained
prediction for each data row becomes approximately equal to expected results.
Matrix H consists of l classifier predictions for m data rows that are drawn from
validation dataset. Our aim is to find suitable weights for w in a sparse manner while
preserving condition of sgn(Hw) ≈ y (sign function). For this model, the following
cost function is proposed:

J(w) =
λ

m

m∑
s=1

(sgn(Hsw)− ys)
2 +

1

l
||w||11

subject to w ≥ 0

(4.1)

m number of samples
w classifier weights
H classifiers results {−1, 1}mxl

l number of individual classifiers
λ data fidelity coefficient
y true labels {−1, 1}mx1

Hs sth row vector of matrix H

In equation 4.1, the first term acts as a data fidelity term and minimizes the difference
between true labels and ensemble predictions. Base classifiers of ensemble give
binary predictions (−1 or 1) and these predictions are multiplied with weights through
sign function which leads to {−1, 0, 1} as an ensemble result. To make this term
independent from data size, it is divided to m (number of data rows). The second
term is sparsity term [116] that forces weights to be sparse [115]; therefore, minimum
number of classifiers are utilized. In sparsity term, any Lp-norm (0 ≤ p ≤ 1) can be
used. Weights become more sparse as p gets closer to 0. However, when (0 ≤

51

p < 1), sparsity term becomes non-convex and thus the problem becomes harder to
solve. When p is 0 (L0-norm) then problem becomes NP-hard [117]. Here, L1-norm
is used as a convex relaxation of Lp-norm [116, 118]. Similar to the data fidelity term,
this term is also normalized with division by l (number of individual classifiers). The
third term is used as a non-negativity constraint. Since base binary classifiers use
values in interval (−1, 1) for class labels, negative weights change sign of prediction;
thus they change class label of prediction. To avoid this problem, the constraint
term is added to force weights to be non-negative. Using the method of Lagrange
multipliers and the definition of |x| = max(−x, x), cost function is transformed into
equation 4.2.

J(w) =
λ

m

m∑
s=1

(sgn(Hsw)− ys)
2

+
1

l

l∑
r=1

max(−wr, wr)

+
β

l

l∑
r=1

max(−wr, 0)

(4.2)

In equation 4.2, the constraint w ≥ 0 is better satisfied as β becomes larger.
Equation 4.2 is non-convex function, since sgn function creates jumps on cost
function surface. In addition, max function is non-differentiable. Functions max and
sgn in Equation 4.2 are hard to minimize. Therefore, we propose a novel convex
relaxation for sgn as given in equation 4.3. Figure 4.1 shows approximation of sign
function using Equation 4.3.

sgn(Hsw) ≈
Hsw

|Hsŵ|+ ϵ
= SsHsw (4.3)

where

Ss = (|Hsŵ|+ ϵ)−1 (4.4)

52

-10 -8 -6 -4 -2 0 2 4 6 8 10
x

-1

-0.5

0

0.5

1
sg

n(
x)

Figure 4.1 Sign function approximation using equation 4.3. Dotted Lines are
approximations using Equation 4.3 at various points.

In this equation, ϵ is a small positive constant. We also introduce a new constant ŵ
as a proxy for w. Therefore, Ss = (|Hsŵ| + ϵ)−1 is also a constant. However, this
sgn approximation is only accurate around introduced constant ŵ. Therefore, the
approximated cost function needs to be solved iteratively. Additionally, max function
is approximated with log-sum-exp [119] as follows:

max(−wr, wr) ≈
1

γ
log(e−γwr + eγwr) (4.5)

Accuracy of log-sum-exp approximation becomes better as γ, a positive constant,
increases. In double-precision floating-point format [120], values up to 10308 in
magnitude can be represented. This means that γ|wr| should be less than 710 where
exp(709) ≈ 10308, otherwise exponential function will produce infinity (∞). At wr = 0,
there is no danger of numerical overflow in exponential terms of a log-sum-exp
approximation; thus, large γ values can be used. But as |wr| gets larger, there is
a danger of numerical overflow in exponential terms of log-sum-exp approximation,
since eγ|wr| may be out of double precision floating point upper limit.

To remedy this numerical overflow problem, a novel adaptive γ approximation is
proposed, where γr is adaptive form of γ and defined as γr = γ(|ŵr| + ϵ)−1.
The accuracy of approximation can be improved by decreasing ϵ or increasing γ.
Figure 4.2 shows proposed adaptive γ and resulting approximations for two different
set of values (γ = 10, ϵ = 0.1) and (γ = 10, ϵ = 1).)

53

Validity of the approximation can be checked by taking the limits at −∞, 0, and
+∞ with respect to wr. These limits are −x, ϵ

√
2

λr
, and x when wr goes to

−∞, 0, and +∞. As |x| gets larger, dependency to γ decreases; thus, proposed
adaptive γ approximation is less prone to numerical overflow compared to standard
log-sum-exp approximation.

Application of adaptive γ approximation leads to the following equations:

max(−wr, wr) ≈
1

γr
log(e−γrwr + eγrwr) (4.6)

βmax(−wr, 0) ≈
β

γr
log(e−γrwr + 1) = P (wr) (4.7)

This approximation leads to the cost function shown in equation 4.8, where n is the
number of iterations.

J (n)(w) =
λ

m

m∑
s=1

(SsHsw − ys)
2

+
1

l

l∑
r=1

1

γr
log(e−γrwr + eγrwr)

+
1

l

l∑
r=1

β

γr
log(e−γrwr + 1)

(4.8)

In order to achieve a second-order accuracy and to obtain a linear solution, after
taking the derivative of the cost function, equation 4.8 is expanded as a second-order
Taylor series centered on ŵr, leading to equation 4.9.

J (n)(w) =
λ

m

m∑
s=1

(SsHsw − ys)
2

+
1

l

l∑
r=1

(Ar +Brwr + Crw
2
r)

(4.9)

54

-10 -5 0 5 10

x

0

20

40

60

80

100

A
da

pt
iv

e
ga

m
m

a

(A1) gamma 10.0 , epsilon 0.1

-10 -5 0 5 10

x

0

2

4

6

8

10

12

L
1
 a

pp
ro

xi
m

at
io

n

(A2) L1 approximation using adaptive gamma

-0.1 -0.05 0 0.05 0.1

x (zoomed)

0

0.02

0.04

0.06

0.08

0.1

0.12

L
1
 a

pp
ro

xi
m

at
io

n
zo

om
ed

(A3) Same approximation of A2, zoomed

-10 -5 0 5 10

x

0

2

4

6

8

10

A
da

pt
iv

e
ga

m
m

a

(B1) gamma 10.0 , epsilon 1.0

-10 -5 0 5 10

x

0

2

4

6

8

10

12

L
1
 a

pp
ro

xi
m

at
io

n

(B2) L1 approximation using adaptive gamma

-0.1 -0.05 0 0.05 0.1

x (zoomed)

0

0.02

0.04

0.06

0.08

0.1

0.12

L
1
 a

pp
ro

xi
m

at
io

n
zo

om
ed

(B3) Same approximation of B2, zoomed

Figure 4.2 Adaptive gamma (γ1) L1 Approximation with different ϵ values

55

In equation 4.9, Ar represents constants terms whileBr and Cr are the coefficients of
the terms wr and w2

r , respectively. This approximation is accurate around ŵr where
Taylor series is centered. Since ŵr values change at each iteration, if wr values differ
significantly from constant point, ŵr, approximation diverges from true cost function.
To ensure that wr changes slowly, a new regularization term, (wr − ŵr)

2, is added
into the cost function. Refined cost function is given in Equation 4.10.

J (n)(w) =
λ

m

m∑
s=1

(SsHsw − ys)
2

+
1

l

l∑
r=1

(Ar +Brwr + Crw
2
r)

+
1

l

l∑
r=1

(wr − ŵr)
2

(4.10)

Equation 4.10 can be written in a matrix-vector form as follows:

J (n)(w) =
λ

m
(SHw − y)T (SHw − y)

+
1

l
(vTA1⃗ + vTBw + wTCw)

+
1

l
(w − ŵ)T (w − ŵ)

(4.11)

S matrix form of Ss

vA vector form of Ar

1⃗ vector of ones
vB vector form of Br

C diagonal matrix form of Cr

Equation 4.11 is strictly convex and positive definite thus it has a unique global
minimum. Therefore, tominimize J (n)(w) in Equation 4.11, the derivative with respect
to w is taken and is equalized to zero.

This leads to system of linear equations:

56

Mw = b

where

M =
2λ

m
(SH)T (SH) + 2C + 2

l

b =
2λ

m
(SH)Ty + 2ŵ −Br

l

(4.12)

Final model is solved using algorithm 1 iteratively.

Due to the employed numerical approximations, small negative weights may occur
around zero. Since our feasible set is w ≥ 0, back projection to this set is
performed after solving linear system at each iteration in algorithm 1. This kind
of back-projection to feasible domain is commonly used [121]. Additionally, small
weights in ensemble do not contribute to overall accuracy; therefore, these small
weights are thresholded after iterations are completed.

Algorithm 1 SDWEC Pseudo code
1: H, y, λ, β, γ, ϵ are initialized
2: w ← 1⃗

3: m, l ← sizeHmxl

4: k ← 25 ◃ Maximum Iteration
5: for n = 1 to k do
6: ŵ ← w

7: γr ← γ
|ŵ|+ϵ

8: construct S of diagonal form of Ss

9: construct vB and C

10: M ← 2λ
m
(SH)T (SH) + 2C+2

l

11: b← 2λ
m
(SH)Ty + 2ŵ−VB

l

12: solve Mw = b

13: w = max(w, 0) ◃ Back projection to w ≥ 0 domain
14: end for
15: wthreshold = argminwr(P (wr)− 10−3)2

16: w =

{
w if w > wthreshold

0 otherwise

An example run of Algorithm 1 can be seen in Figure 4.3, where cost values for
equations 4.2 and 4.11 decrease steadily. As seen in Figure 4.3, the difference

57

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6
ionosphereP

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6
wine

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
heartC

0 5 10 15 20 25

iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

co
st

 v
al

ue

NSL-KDD

Non-convex (Equation 2)
Convex-relaxed (Equation 10)

Figure 4.3 Minimization of the cost function for 4 datasets (Non-convex
equation 4.2 vs convex relaxed equation 4.11).

58

between non-convex cost function and its convex relaxation is minimal especially in
the final iterations. This shows that two functions converge to very similar values.
Since non-convex Equation 4.2 and convex Equation 4.11 are converged to similar
points, this converged points are within close proximity of the global minimum.

Non-convex Equation 4.2 and convex-relaxed Equation 4.11 are close to each other
due to the term (w − ŵ)2 and employed iterative approach for minimization. These
results show success of the proposed approximations.

4.3. Experimental results

The performance of SDWEC has been tested on 11 datasets; 10 UCI datasets and
NSL-KDD [22]. NSL-KDD is a popular database for intrusion detection [122, 123].
SDWEC has been compared with the following algorithms : Single tree classifier
(C4.5), bagging [84], WMV [70], and state-of-the-art ensemble QFWEC [109]. In all
ensemble methods, 200 base classifiers (C4.5) are used. Each dataset is divided to
training (80%), validation (10%), and testing (10%) datasets. This process has been
repeated 10 times for cross validation. Mean values have been used in Table 4.2.
The accuracy values for QFWEC in Table 4.2 are higher than original publication
[109] since weights are found using validation dataset instead of training dataset,
which provides better generalization.

4.3.1. Experimental results: sparsity

The principle of parsimony (sparsity) states that simple explanation should be
preferred to complicated ones [116]. Sparsity mostly used for feature selection in
machine learning. In our study, principle of sparsity is used for selecting among weak
classifiers. According to dataset and hyper-parameters used, SDWEC achieves
different sparsity levels. When SDWEC applied to 11 different datasets, sparsity
levels between 0.80 and 0.88 has been achieved (Figure 4.4). This means that
among 200 weak classifiers, 24 (sparsity level of 0.88) to 40 (sparsity level of 0.80)
classifiers were used in ensemble.

Two different results with different sparsity values (A and B), chosen from Figure 4.5
have been provided in Table 4.2. SDWEC-A has no sparsity, all 200 base classifiers
have been used in ensemble; thus, it has superior performance at the cost of testing
time. SDWEC-A has best accuracy values in 4 out of 10 datasets and it is very
close to top performing ones in others. SDWEC-B has 0.90 sparsity, 20/200 base

59

0 50 100 150 200 250

classifiers

0

0.2

0.4

0.6

0.8

1

1.2

w
ei

gh
ts

ionosphereP sparsity 0.89

0 50 100 150 200 250

classifiers

0

0.2

0.4

0.6

0.8

w
ei

gh
ts

wine sparsity 0.87

0 50 100 150 200 250

classifiers

0

0.2

0.4

0.6

0.8

1

1.2

w
ei

gh
ts

heartC sparsity 0.88

0 50 100 150 200 250

classifiers

0

0.2

0.4

0.6

0.8

w
ei

gh
ts

NSL-KDD sparsity 0.8

Figure 4.4 4 Datasets and their sparsity levels (λ = 1, β = 10, γ = 20, ϵ = 0.1)

60

classifiers have been used in ensemble; nonetheless, it has best accuracy values in
2 out of 10 datasets. Besides, its accuracy values are marginally lower (about 2%)
but its testing time is significantly better (90%) than the other approaches.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
sparsity

0.8

0.82

0.84

0.86

0.88

0.9

0.92

a
c
c
u
ra
c
y
te
st

SDWEC-A SDWEC-B

Figure 4.5 Sparsity vs accuracy of SDWEC. The sparsity and accuracy values
come from the mean of 11 datasets. Corresponding values can be
seen in Table 4.2

Table 4.2 Comparison of accuracies (sparsity values are given in
parentheses)

Datasets QFWEC SDWEC-A SDWEC-B WMV bagging singleC

breast 0.9736 0.9737 (0) 0.9532 (0.90) 0.9355 0.9722 0.9400
heartC 0.8085 0.8186 (0) 0.8279 (0.90) 0.8118 0.8118 0.7268

ionosphere 0.9344 0.9371 (0) 0.9427 (0.92) 0.9371 0.9342 0.8799
sonarP 0.8088 0.8136 (0) 0.8126 (0.88) 0.7893 0.8088 0.7367

vehicleP 0.9788 0.9693 (0) 0.9539 (0.91) 0.9681 0.9670 0.9634
voteP 0.9576 0.9703 (0) 0.9525 (0.84) 0.8509 0.9703 0.9533

waveform 0.8812 0.8652 (0) 0.8600 (0.93) 0.8634 0.8620 0.8220
wdbcP 0.9595 0.9507 (0) 0.9418 (0.88) 0.9489 0.9507 0.9138
wine 0.9722 0.9722 (0) 0.9605 (0.89) 0.7514 0.9719 0.9500

wpbcP 0.7989 0.8036 (0) 0.7477 (0.91) 0.7850 0.7750 0.6911
NSL-KDD 0.9828 0.9766 (0) 0.9849 (0.88) 0.9610 0.9613 0.9976

SDWEC-A λ = 0.1 β = 35 γ = 5 ϵ = 0.1 , Mean sparsity 0.00
SDWEC-B λ = 10 β = 15 γ = 15 ϵ = 1.0, Mean sparsity 0.90

61

4.3.2. Computational Complexity Analysis

In this section, Computational Complexity of SDWEC has been analyzed.
Computation complexity of every line is given in Table 4.3 and and final computational
complexity is determined. In Table 4.3,m stands for the number of data, l stands for
the number of classifiers, and k stands for the iteration count.

Table 4.3 Computational complexity of SDWEC

Line # and Code in Alg 1 Complexity Notes

6 ŵ ← w O(l)

7 γr ← γ
|ŵ|+ϵ

O(l)

8 construct S as diagonal form
of Ss

O(ml) S ← Ss sparse diagonal
matrix (m×m) (Eq 4.4)

9 vB O(l)

9 C O(l) C sparse diagonal matrix

10 SH O(ml) X
m×l

= S
m×m

× H
m×l

10 XTX O(l3) X ← SH ,XT : O(l2) ,XTX :

O(l3)

10 2λ
m
[XTX] + 2C+2

l
O(l2)

10 M ← 2λ
m
XTX + 2C+2

l
O(l3) +O(l2) +O(l3)

11 XTy O(l2)

11 2ŵ−VB

l
O(l)

11 b← 2λ
m
XTy + 2ŵ−VB

l
O(l2) +O(l)

12 solve Mw = b O(l3) M dense, symmetric, real,
positive definite → cholesky
solver→ O(2

3
l3)

13 w = max(w, 0) O(l)

Computational complexity of for loop is O(ml) + C1O(l3) + C2O(l2) + C3O(l).
Since l ≪ m, dominant term is O(ml) for the SH multiplication in line 10 of
the Algorithm 1, where S is a diagonal matrix. Our iteration count is k, then
final computational complexity of SDWEC is O(kml), that is linear in k, m, and l.
This computational complexity analysis shows the computational efficiency of the
proposed minimization.

Table 4.4 shows training time of SDWEC on various datasets. NSL-KDD (100778)
dataset has 25 times more rows than waveform (4000) dataset. And training time
of NSL-KDD (25.95) is about 25 times of waveform (0.96). These results show that

62

practical execution times are in alignment with theoretical computational complexity
analysis. Slight differences between theoretical analysis and actual execution times
are due to implementation issues and caching in CPU architectures.

Table 4.4 SDWEC training time on various datasets,

Dataset Features Rows Time (sec.) l classifier count
l = 100 l = 200 l = 500 l = 1000

breast-cancer 9 547 0.05 0.10 0.48 1.63
ionosphereP 34 280 0.04 0.07 0.31 1.01
wpbcP 33 155 0.03 0.06 0.26 0.89
wdbcP 30 456 0.05 0.09 0.44 1.34
wine 13 143 0.03 0.05 0.23 0.91
waveform 21 4000 0.43 0.96 3.01 7.78
voteP 16 186 0.03 0.07 0.24 0.97
vehicleP 18 667 0.06 0.18 0.73 1.83
sonarP 60 167 0.03 0.06 0.23 0.83
heartC 13 239 0.03 0.07 0.25 1.02
NSL-KDD 39 100778 12.73 25.95 80.23 204.59

4.4. Chapter discussion

In this chapter, a novel sparsity driven ensemble classifier method, SDWEC,
has been presented. An efficient and accurate solution for original cost function
(hard to minimize, non-convex, and non-differentiable) has been developed.
Proposed solution uses a novel convex relaxation technique for sign function, and
a novel adaptive log-sum-exp approximation that reduces numerical overflows.
Computational complexity of SDWEC has been investigated theoretically and
experimentally. SDWEC has a linear computational complexity in number of
classifier used (l), number of instances in data (m), and number of algorithm
iterations (k). SDWEC has been compared with other ensemble methods in
well-known UCI and NSL-KDD datasets. According to the experiments, SDWEC
decreases number of classifiers used in ensemble without significant loss of
accuracy. By tuning parameters of SDWEC, a more sparse ensemble –thus, better
testing time– can be obtained with a small decrease in accuracy.

63

5. CONCLUSION

In this thesis study, two different method for classifier ensembles were proposed and
implemented in machine learning based intrusion detection systems. First method
(GA-FS-WF) used heuristic optimization technique genetic algorithms to find best
weights and features for IDS dataset NSL-KDD. Second method (SDWEC) used
convex optimization techniques to find weights for pre-trained classifiers. Different
from GA-FS-WF, second method SDWEC is tested on other datasets to show its
generality to other domains. Even though both methods are suitable for use in IDS
and other domains, SDWEC is faster to use and it gives guarantees that it converges
near global optimal point. In addition, computational complexity of SDWEC is also
given. Full dataset of NSL-KDDwas used in bothmethods (GA-FS-WF and SDWEC)
and compared with latest methods in the literature. According to our results in
measured classifier performance metrics (accuracy, training and testing time and
others), both methods are viable methods in machine learning based intrusion
detection systems.

In the future studies, using other optimization techniques are planned to apply in
this domain. For example ant colony optimization algorithms is very suitable to find
suitable number of base classifiers and their weights while also selecting features
in the dataset. Different ants will carry different classifiers and use different paths
(features) to reach their destination. Those ants (classifiers) that use same paths
to use same destination will combine to reach best solution. In this way, finding
optimum number of classifiers to ensemble will be solved too.

As can be seen from Chapter 2, wide variety of base machine learning algorithms are
applied on KDD99 and its derivative NSL-KDD and wide variety of hybrid algorithms
are proposed on this datasets. Different from most studies, ours was one of the rare
studies that proposed using convex optimization techniques in this dataset. Since
convex optimization techniques are very popular in other domains, such as image
processing and computer vision, we think that their usage will increase in intrusion
detection in the future.

64

REFERENCES

[1] John Von Neumann. Theory of Self-Reproducing Automata. University of
Illinois Press, Champaign, IL, USA, 1966.

[2] Wikipedia. Timeline of computer viruses and worms. Web, 2010. URL http:
//en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms.

[3] T.M. Chen and J.M. Robert. The evolution of viruses and worms. Statistical
methods in computer security, 2004.

[4] Fred Cohen. Computer viruses : Theory and experiments. Computers
and Security, 6(1):22 – 35, 1987. ISSN 0167-4048. doi: DOI:10.1016/
0167-4048(87)90122-2. URL http://www.sciencedirect.com/science/
article/pii/0167404887901222.

[5] MITRE. Cve common vulnerability exposure list, 2017. URL https://cve.
mitre.org/data/downloads/index.html.

[6] R. Anderson. Why information security is hard-an economic perspective.
In Computer Security Applications Conference, 2001. ACSAC 2001.
Proceedings 17th Annual, pages 358–365. IEEE, 2001.

[7] ICQ407-235. Ddos black web site, 2017. URL https://ddos-black.info.

[8] Graham Cluley. Hire a ddos attack for as little as five dollars,
2016. URL https://www.tripwire.com/state-of-security/featured/
hire-a-ddos-attack-for-as-little-as-5/.

[9] Robert McMillan. With botnets everywhere, ddos attacks get cheaper. PC
World-News, 2009.

[10] Joyce Lofstrom. Himss cybersecurity survey. Technical report, HIMSS, 2016.

[11] Karen Scarfone and Peter Mell. Guide to intrusion detection and prevention
systems (IDPS). NIST, 2007.

[12] Dorothy E. Denning. An intrusion-detection model. IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, 13(2):222–232, 1987.

[13] Robin Sommer and Vern Paxson. Outside the closed world: On using machine
learning for network intrusion detection. In Proceedings of the 2010 IEEE
Symposium on Security and Privacy, SP ’10, pages 305–316, Washington,
DC, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4035-1.

65

http://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms
http://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms
http://www.sciencedirect.com/science/article/pii/0167404887901222
http://www.sciencedirect.com/science/article/pii/0167404887901222
https://cve.mitre.org/data/downloads/index.html
https://cve.mitre.org/data/downloads/index.html
https://ddos-black.info
https://www.tripwire.com/state-of-security/featured/hire-a-ddos-attack-for-as-little-as-5/
https://www.tripwire.com/state-of-security/featured/hire-a-ddos-attack-for-as-little-as-5/

[14] William H. Allen. Mixing wheat with the chaff: Creating useful test data for ids
evaluation. IEEE Security and Privacy, 5:65–67, July 2007. ISSN 1540-7993.
doi: 10.1109/MSP.2007.92. URL http://portal.acm.org/citation.cfm?
id=1308457.1309257.

[15] S.T. Brugger. Kdd cup 99 dataset (network intrusion) considered harmful,
2007.

[16] Carlos A. Catania and Carlos García Garino. Automatic network intrusion
detection: Current techniques and open issues. Computers & Electrical
Engineering, 38(5):1062 – 1072, 2012. ISSN 0045-7906. doi: http://dx.doi.
org/10.1016/j.compeleceng.2012.05.013. URL http://www.sciencedirect.
com/science/article/pii/S0045790612001073. Special issue on Recent
Advances in Security and Privacy in Distributed Communications and Image
processing.

[17] Neminath Hubballi and Vinoth Suryanarayanan. False alarm minimization
techniques in signature-based intrusion detection systems: A survey.
Computer Communications, 49:1 – 17, 2014. ISSN 0140-3664. doi: http://dx.
doi.org/10.1016/j.comcom.2014.04.012. URL http://www.sciencedirect.
com/science/article/pii/S0140366414001480.

[18] Zakira Inayat, Abdullah Gani, Nor Badrul Anuar, Muhammad Khurram Khan,
and Shahid Anwar. Intrusion response systems: Foundations, design,
and challenges. Journal of Network and Computer Applications, 62:
53 – 74, 2016. ISSN 1084-8045. doi: http://dx.doi.org/10.1016/j.jnca.
2015.12.006. URL http://www.sciencedirect.com/science/article/pii/
S1084804515002994. Key:Review.

[19] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of
network anomaly detection techniques. Journal of Network and Computer
Applications, 60:19 – 31, 2016. ISSN 1084-8045. doi: http://dx.doi.org/
10.1016/j.jnca.2015.11.016. URL http://www.sciencedirect.com/science/
article/pii/S1084804515002891.

[20] Sannasi Ganapathy, Kanagasabai Kulothungan, Sannasy Muthurajkumar,
Muthusamy Vijayalakshmi, Palanichamy Yogesh, and Arputharaj Kannan.
Intelligent feature selection and classification techniques for intrusion detection
in networks: a survey. EURASIP Journal on Wireless Communications and
Networking, 2013(1):271, 2013. doi: 10.1186/1687-1499-2013-271. URL
http://dx.doi.org/10.1186/1687-1499-2013-271.

66

http://portal.acm.org/citation.cfm?id=1308457.1309257
http://portal.acm.org/citation.cfm?id=1308457.1309257
http://www.sciencedirect.com/science/article/pii/S0045790612001073
http://www.sciencedirect.com/science/article/pii/S0045790612001073
http://www.sciencedirect.com/science/article/pii/S0140366414001480
http://www.sciencedirect.com/science/article/pii/S0140366414001480
http://www.sciencedirect.com/science/article/pii/S1084804515002994
http://www.sciencedirect.com/science/article/pii/S1084804515002994
http://www.sciencedirect.com/science/article/pii/S1084804515002891
http://www.sciencedirect.com/science/article/pii/S1084804515002891
http://dx.doi.org/10.1186/1687-1499-2013-271

[21] C. Kolias, G. Kambourakis, and M. Maragoudakis. Swarm intelligence in
intrusion detection: A survey. Computers and Security, 30(8):625–642,
November 2011. ISSN 0167-4048. doi: 10.1016/j.cose.2011.08.009. URL
http://dx.doi.org/10.1016/j.cose.2011.08.009.

[22] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. A
detailed analysis of the kdd cup 99 data set. In Proceedings of the Second
IEEE international conference on Computational intelligence for security and
defense applications, CISDA’09, pages 53–58, 2009.

[23] Wenke Lee and Salvatore J. Stolfo. A framework for constructing features and
models for intrusion detection systems. ACM Transactions on Information and
System Security, 3:227–261, November 2000. ISSN 1094-9224. doi: http:
//doi.acm.org/10.1145/382912.382914. URL http://doi.acm.org/10.1145/
382912.382914.

[24] Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang Lin. Intrusion
detection by machine learning: A review. Expert Systems with Applications,
36(10):11994 – 12000, 2009. ISSN 0957-4174. doi: DOI:10.1016/j.eswa.
2009.05.029. URL http://www.sciencedirect.com/science/article/pii/
S0957417409004801.

[25] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan
Tung. Intrusion detection system: A comprehensive review. Journal
of Network and Computer Applications, 36(1):16 – 24, 2013. ISSN
1084-8045. doi: http://dx.doi.org/10.1016/j.jnca.2012.09.004. URL http:
//www.sciencedirect.com/science/article/pii/S1084804512001944.
Key:Review.

[26] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel,
and Muttukrishnan Rajarajan. A survey of intrusion detection techniques
in cloud. Journal of Network and Computer Applications, 36(1):42
– 57, 2013. ISSN 1084-8045. doi: http://dx.doi.org/10.1016/j.jnca.
2012.05.003. URL http://www.sciencedirect.com/science/article/pii/
S1084804512001178. Key:Review.

[27] Hua Yang, Tao Li, Xinlei Hu, Feng Wang, and Yang Zou. A survey of artificial
immune system based intrusion detection. The Scientific World Journal, 2014:
11, 2014. doi: 10.1155/2014/156790. URL http://dx.doi.org/10.1155/
2014/156790.

[28] Saber Elsayed, Ruhul Sarker, and Daryl Essam. Survey of uses
of evolutionary computation algorithms and swarm intelligence for

67

http://dx.doi.org/10.1016/j.cose.2011.08.009
http://doi.acm.org/10.1145/382912.382914
http://doi.acm.org/10.1145/382912.382914
http://www.sciencedirect.com/science/article/pii/S0957417409004801
http://www.sciencedirect.com/science/article/pii/S0957417409004801
http://www.sciencedirect.com/science/article/pii/S1084804512001944
http://www.sciencedirect.com/science/article/pii/S1084804512001944
http://www.sciencedirect.com/science/article/pii/S1084804512001178
http://www.sciencedirect.com/science/article/pii/S1084804512001178
http://dx.doi.org/10.1155/2014/156790
http://dx.doi.org/10.1155/2014/156790

network intrusion detection. International Journal of Computational
Intelligence and Applications, 14(04):1550025, 2015. doi: 10.1142/
S146902681550025X. URL http://www.worldscientific.com/doi/
abs/10.1142/S146902681550025X.

[29] Gianluigi Folino and Pietro Sabatino. Ensemble based collaborative and
distributed intrusion detection systems: A survey. Journal of Network and
Computer Applications, 66:1 – 16, 2016. ISSN 1084-8045. doi: http://dx.
doi.org/10.1016/j.jnca.2016.03.011. URL http://www.sciencedirect.com/
science/article/pii/S1084804516300248. Key:Review.

[30] R. K. Cunningham, R. P. Lippmann, D. J. Fried, S. L. Garfinkel, I. Graf, K. R.
Kendall, S. E. Webster, D. Wyschogrod, and M. A. Zissman. Evaluating
intrusion detection systems without attacking your friends: The 1998 darpa
intrusion detection evaluation. Technical report, MASSACHUSETTS INST OF
TECH LEXINGTON LINCOLN LAB, 1999.

[31] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D. McClung,
D. Weber, S.E. Webster, D. Wyschogrod, R.K. Cunningham, and M.A.
Zissman. Evaluating intrusion detection systems: the 1998 darpa off-line
intrusion detection evaluation. In DARPA Information Survivability Conference
and Exposition, 2000. DISCEX ’00. Proceedings, volume 2, pages 12 –26
vol.2, 2000. doi: 10.1109/DISCEX.2000.821506.

[32] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and
Kumar Das. The 1999 darpa off-line intrusion detection evaluation. Computer
Networks, 34:579–595, October 2000. ISSN 1389-1286. doi: 10.1016/
S1389-1286(00)00139-0. URL http://portal.acm.org/citation.cfm?id=
361116.361124.

[33] K. Kendall. A database of computer attacks for the evaluation of intrusion
detection systems. Master’s thesis, MIT - Massachusetts Institute of
Technology, 1999.

[34] KDD. Intrusion detector learning, 1999.

[35] Bernhard Pfahringer. Winning the kdd99 classification cup: bagged boosting.
SIGKDD Explor. Newsl., 1:65–66, January 2000. ISSN 1931-0145. doi: http:
//doi.acm.org/10.1145/846183.846200. URL http://doi.acm.org/10.1145/
846183.846200.

[36] Maheshkumar Sabhnani and Gursel Serpen. Why machine learning
algorithms fail in misuse detection on kdd intrusion detection data set. Intell.

68

http://www.worldscientific.com/doi/abs/10.1142/S146902681550025X
http://www.worldscientific.com/doi/abs/10.1142/S146902681550025X
http://www.sciencedirect.com/science/article/pii/S1084804516300248
http://www.sciencedirect.com/science/article/pii/S1084804516300248
http://portal.acm.org/citation.cfm?id=361116.361124
http://portal.acm.org/citation.cfm?id=361116.361124
http://doi.acm.org/10.1145/846183.846200
http://doi.acm.org/10.1145/846183.846200

Data Anal., 8:403–415, September 2004. ISSN 1088-467X. URL http:
//portal.acm.org/citation.cfm?id=1293805.1293811.

[37] Adel Sabry Eesa, Zeynep Orman, and Adnan Mohsin Abdulazeez Brifcani.
A novel feature-selection approach based on the cuttlefish optimization
algorithm for intrusion detection systems. Expert Systems with Applications,
42(5):2670 – 2679, 2015. ISSN 0957-4174. doi: http://dx.doi.org/10.
1016/j.eswa.2014.11.009. URL http://www.sciencedirect.com/science/
article/pii/S0957417414006952.

[38] Shi-Jinn Horng, Ming-Yang Su, Yuan-Hsin Chen, Tzong-WannKao, Rong-Jian
Chen, Jui-Lin Lai, and Citra Dwi Perkasa. A novel intrusion detection system
based on hierarchical clustering and support vector machines. Expert Systems
with Applications, 38(1):306 – 313, 2011. ISSN 0957-4174. doi: http://dx.
doi.org/10.1016/j.eswa.2010.06.066. URL http://www.sciencedirect.com/
science/article/pii/S0957417410005701.

[39] Feng Jiang, Yuefei Sui, and Lin Zhou. A relative decision entropy-based
feature selection approach. Pattern Recognition, 48(7):2151 – 2163,
2015. ISSN 0031-3203. doi: http://dx.doi.org/10.1016/j.patcog.2015.
01.023. URL http://www.sciencedirect.com/science/article/pii/
S0031320315000424.

[40] Feng Jiang, Yuefei Sui, and Cungen Cao. An incremental decision tree
algorithm based on rough sets and its application in intrusion detection.
Artificial Intelligence Review, 40(4):517–530, 2013. ISSN 0269-2821.
doi: 10.1007/s10462-011-9293-z. URL http://dx.doi.org/10.1007/
s10462-011-9293-z.

[41] Wafa Alsharafat. Applying artificial neural network and extended classifier
system for network intrusion detection. The International Arab Journal of
Information Technology, 10(3), May 2013.

[42] Gulshan Kumar and Krishan Kumar. Design of an evolutionary approach for
intrusion detection. The Scientific World Journal, 2013:14, 2013. doi: 10.1155/
2013/962185. URL http://dx.doi.org/10.1155/2013/962185.

[43] Tieming Chen, Xu Zhang, Shichao Jin, and Okhee Kim. Efficient classification
using parallel and scalable compressed model and its application on intrusion
detection. Expert Systems with Applications, 41(13):5972 – 5983, 2014. ISSN
0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.2014.04.009. URL http:
//www.sciencedirect.com/science/article/pii/S0957417414002048.

69

http://portal.acm.org/citation.cfm?id=1293805.1293811
http://portal.acm.org/citation.cfm?id=1293805.1293811
http://www.sciencedirect.com/science/article/pii/S0957417414006952
http://www.sciencedirect.com/science/article/pii/S0957417414006952
http://www.sciencedirect.com/science/article/pii/S0957417410005701
http://www.sciencedirect.com/science/article/pii/S0957417410005701
http://www.sciencedirect.com/science/article/pii/S0031320315000424
http://www.sciencedirect.com/science/article/pii/S0031320315000424
http://dx.doi.org/10.1007/s10462-011-9293-z
http://dx.doi.org/10.1007/s10462-011-9293-z
http://dx.doi.org/10.1155/2013/962185
http://www.sciencedirect.com/science/article/pii/S0957417414002048
http://www.sciencedirect.com/science/article/pii/S0957417414002048

[44] Samaneh Rastegari, Philip Hingston, and Chiou-Peng Lam. Evolving
statistical rulesets for network intrusion detection. Applied Soft Computing,
33:348 – 359, 2015. ISSN 1568-4946. doi: http://dx.doi.org/10.1016/j.asoc.
2015.04.041. URL http://www.sciencedirect.com/science/article/pii/
S1568494615002689.

[45] Yang Yi, Jiansheng Wu, and Wei Xu. Incremental svm based on reserved set
for network intrusion detection. Expert Systems with Applications, 38(6):7698
– 7707, 2011. ISSN 0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.2010.
12.141.

[46] Wenying Feng, Qinglei Zhang, Gongzhu Hu, and Jimmy Xiangji Huang.
Mining network data for intrusion detection through combining svms with
ant colony networks. Future Generation Computer Systems, 37:127 –
140, 2014. ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.
2013.06.027. URL http://www.sciencedirect.com/science/article/pii/
S0167739X13001416. Special Section: Innovative Methods and Algorithms for
Advanced Data-Intensive ComputingSpecial Section: Semantics, Intelligent
processing and services for big dataSpecial Section: Advances in
Data-Intensive Modelling and SimulationSpecial Section: Hybrid Intelligence
for Growing Internet and its Applications.

[47] Wathiq Laftah Al-Yaseen, Zulaiha Ali Othman, and Mohd Zakree Ahmad
Nazri. Multi-level hybrid support vector machine and extreme learningmachine
based on modified k-means for intrusion detection system. Expert Systems
with Applications, 67:296 – 303, 2017. ISSN 0957-4174. doi: http://dx.
doi.org/10.1016/j.eswa.2016.09.041. URL http://www.sciencedirect.com/
science/article/pii/S0957417416305310.

[48] Fatemeh Amiri, MohammadMahdi Rezaei Yousefi, Caro Lucas, Azadeh
Shakery, and Nasser Yazdani. Mutual information-based feature selection for
intrusion detection systems. Journal of Network and Computer Applications,
34(4):1184 – 1199, 2011. ISSN 1084-8045. doi: http://dx.doi.org/10.1016/j.
jnca.2011.01.002. URL http://www.sciencedirect.com/science/article/
pii/S1084804511000038. Advanced Topics in Cloud Computing.

[49] Salma Elhag, Alberto Fernández, Abdullah Bawakid, Saleh Alshomrani, and
Francisco Herrera. On the combination of genetic fuzzy systems and pairwise
learning for improving detection rates on intrusion detection systems. Expert
Systems with Applications, 42(1):193 – 202, 2015. ISSN 0957-4174. doi: http:
//dx.doi.org/10.1016/j.eswa.2014.08.002. URL http://www.sciencedirect.
com/science/article/pii/S0957417414004783.

70

http://www.sciencedirect.com/science/article/pii/S1568494615002689
http://www.sciencedirect.com/science/article/pii/S1568494615002689
http://www.sciencedirect.com/science/article/pii/S0167739X13001416
http://www.sciencedirect.com/science/article/pii/S0167739X13001416
http://www.sciencedirect.com/science/article/pii/S0957417416305310
http://www.sciencedirect.com/science/article/pii/S0957417416305310
http://www.sciencedirect.com/science/article/pii/S1084804511000038
http://www.sciencedirect.com/science/article/pii/S1084804511000038
http://www.sciencedirect.com/science/article/pii/S0957417414004783
http://www.sciencedirect.com/science/article/pii/S0957417414004783

[50] J. McHugh. Testing intrusion detection systems: A critique of the 1998 and
1999 darpa intrusion detection system evaluations as performed by lincoln
laboratory. ACM Transactions on Information and System Security, 3(4):
262–294, 2000.

[51] M.V. Mahoney and P.K. Chan. An analysis of the 1999 darpa/lincoln laboratory
evaluation data for network anomaly detection. In Recent Advances in
Intrusion Detection, pages 220–237. Springer, 2003.

[52] S Terry Brugger and Jedadiah Chow. An assessment of the darpa ids
evaluation dataset using snort, 2005.

[53] Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. Journal of Machine Learning Research, 3:1157–1182, March
2003. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=944919.
944968.

[54] kdnuggets. New poll: Primary programming language for analytics, data
mining, data science. http://goo.gl/ESGonu, 2015.

[55] Atilla Özgür and Hamit Erdem. A review of kdd99 dataset usage in intrusion
detection and machine learning between 2010 and 2015. PeerJ Preprints,
2016. doi: 4:e1954v1https://doi.org/10.7287/peerj.preprints.1954v1.

[56] Oktay Yıldız, Mesut Tez, H. Şakir Bilge, M. Ali Akcayol, and İnan Güler.
Meme kanseri sınıflandırması İçin veri füzyonu ve genetik algoritma tabanlı
gen seçimi. Journal of the Faculty of Engineering and Architecture of Gazi
University, 27(3), 2012. ISSN 1304-4915. URL http://www.mmfdergi.gazi.
edu.tr/article/view/1061000567.

[57] Javier Pérez-Rodríguez, Alexis Germán Arroyo-Peña, and Nicolás
García-Pedrajas. Simultaneous instance and feature selection and
weighting using evolutionary computation: Proposal and study.
Applied Soft Computing, 37:416 – 443, 2015. ISSN 1568-4946.
doi: http://dx.doi.org/10.1016/j.asoc.2015.07.046. URL http://www.
sciencedirect.com/science/article/pii/S1568494615005062.

[58] Şeref Sağıroğlu, Esra Nergis Yolaçan, and Uraz Yavanoğlu. Zeki saldırı tespit
sistemi tasarımı ve gerçekleştirilmesi. Journal of the Faculty of Engineering
and Architecture of Gazi University, 26(2):325–340, 2011.

[59] Taner Tuncer and Yetkin Tatar. Fpga tabanlı programlanabilir gömülü saldırı
tespit sistemi gerçekleştirilmesi. Journal of the Faculty of Engineering and

71

http://dl.acm.org/citation.cfm?id=944919.944968
http://dl.acm.org/citation.cfm?id=944919.944968
http://goo.gl/ESGonu
http://www.mmfdergi.gazi.edu.tr/article/view/1061000567
http://www.mmfdergi.gazi.edu.tr/article/view/1061000567
http://www.sciencedirect.com/science/article/pii/S1568494615005062
http://www.sciencedirect.com/science/article/pii/S1568494615005062

Architecture of Gazi University, 27(1), 2012. ISSN 1304-4915. URL http:
//www.mmfdergi.gazi.edu.tr/article/view/1061000504.

[60] Tim Bass. Intrusion detection systems and multisensor data fusion.
Communications of the ACM, 43:99–105, April 2000. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/332051.332079. URL http://doi.acm.org/10.
1145/332051.332079.

[61] Ludmila I. Kuncheva, James C. Bezdek, and Robert P.W. Duin. Decision
templates for multiple classifier fusion: an experimental comparison. Pattern
Recognition, 34(2):299 – 314, 2001.

[62] Yong Wang, Huihua Yang, Xingyu Wang, and Ruixia Zhang. Distributed
intrusion detection system based on data fusion method. In Intelligent Control
and Automation, 2004. WCICA 2004. Fifth World Congress on, volume 5,
pages 4331–4334 Vol.5, June 2004. doi: 10.1109/WCICA.2004.1342330.

[63] Yong Zhang, Hongrui Zhang, Jing Cai, and Binbin Yang. A weighted voting
classifier based on differential evolution. Abstract and Applied Analysis, 2014:
6, 2014.

[64] J. Sylvester and N. V. Chawla. Evolutionary ensemble creation and
thinning. In The 2006 IEEE International Joint Conference on Neural Network
Proceedings, pages 5148–5155, 2006.

[65] Y. Maghsoudi, A. Alimohammadi , M.J. Valadan Zoej, and B. Mojaradi.
Weighted combination of multiple classifiers for the classification of
hyperspectral images using a genetic algorithm. In ISPRS Commission I
Symposium ”From Sensors to Imagery”, 2006.

[66] Murat Dener, M. Ali Akcayol, Sinan Toklu, and Ömer Bay. Zamana bağlı
dinamik en kısa yol problemi İçin genetik algoritma tabanlı yeni bir algoritma.
Journal of the Faculty of Engineering and Architecture of Gazi University,
26(4), 2013. ISSN 1304-4915. URL http://www.mmfdergi.gazi.edu.tr/
article/view/1061000687.

[67] Mehmet Üstündağ, Engin Avcı, Muammer Gökbulut, and Fikret Ata. Dalgacık
paket dönüşümü ve genetik algoritma kullanarak zayıf radar sinyallerinin
gürültüden arındırılması. Journal of the Faculty of Engineering and
Architecture of Gazi University, 29(2), 2014. ISSN 1304-4915. URL http:
//www.mmfdergi.gazi.edu.tr/article/view/1061001387.

72

http://www.mmfdergi.gazi.edu.tr/article/view/1061000504
http://www.mmfdergi.gazi.edu.tr/article/view/1061000504
http://doi.acm.org/10.1145/332051.332079
http://doi.acm.org/10.1145/332051.332079
http://www.mmfdergi.gazi.edu.tr/article/view/1061000687
http://www.mmfdergi.gazi.edu.tr/article/view/1061000687
http://www.mmfdergi.gazi.edu.tr/article/view/1061001387
http://www.mmfdergi.gazi.edu.tr/article/view/1061001387

[68] Barış Gürsu. Ceza fonksiyonuyla durdurmalı genetik algoritmalar ile
transformatör merkezlerinde optimum aşırı akım röle koordinasyonu. Journal
of the Faculty of Engineering and Architecture of Gazi University, 29(4), 2014.
ISSN 1304-4915. URL http://www.mmfdergi.gazi.edu.tr/article/view/
1061001785.

[69] Christopher Kruegel, Fredrik Valeur, Giovanni Vigna, and Richard Kemmerer.
Stateful intrusion detection for high-speed network’s. In Security and Privacy,
2002. Proceedings. 2002 IEEE Symposium on, pages 285–293. IEEE, 2002.

[70] Ludmila I Kuncheva. Combining pattern classifiers: methods and algorithms.
John Wiley & Sons, 2005.

[71] Adem Kalınlı and Özgür Aksu. Baskın gen seçimi operatörüne dayalı genetik
algoritma modeli. Journal of the Faculty of Engineering and Architecture of
Gazi University, 26(4), 2013. ISSN 1304-4915. URL http://www.mmfdergi.
gazi.edu.tr/article/view/1061000682.

[72] Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity
in classifier ensembles and their relationship with the ensemble accuracy.
Machine Learning, 51(2):181–207, 2003.

[73] Seung-Ho Kang and Kuinam J. Kim. A feature selection approach
to find optimal feature subsets for the network intrusion detection
system. Cluster Computing, 19(1):325–333, 2016. ISSN 1573-7543.
doi: 10.1007/s10586-015-0527-8. URL http://dx.doi.org/10.1007/
s10586-015-0527-8.

[74] Clayton R. Pereira, Rodrigo Y.M. Nakamura, Kelton A.P. Costa, and João P.
Papa. An optimum-path forest framework for intrusion detection in computer
networks. Engineering Applications of Artificial Intelligence, 25(6):1226 –
1234, 2012. ISSN 0952-1976. doi: http://dx.doi.org/10.1016/j.engappai.
2012.03.008. URL http://www.sciencedirect.com/science/article/pii/
S0952197612000644.

[75] Neda Afzali Seresht and Reza Azmi. Mais-ids: A distributed intrusion detection
system using multi-agent ais approach. Engineering Applications of Artificial
Intelligence, 35:286 – 298, 2014. ISSN 0952-1976. doi: http://dx.doi.
org/10.1016/j.engappai.2014.06.022. URL http://www.sciencedirect.com/
science/article/pii/S0952197614001444.

[76] Dewan Md. Farid, Li Zhang, Chowdhury Mofizur Rahman, M.A. Hossain,
and Rebecca Strachan. Hybrid decision tree and naïve bayes classifiers for

73

http://www.mmfdergi.gazi.edu.tr/article/view/1061001785
http://www.mmfdergi.gazi.edu.tr/article/view/1061001785
http://www.mmfdergi.gazi.edu.tr/article/view/1061000682
http://www.mmfdergi.gazi.edu.tr/article/view/1061000682
http://dx.doi.org/10.1007/s10586-015-0527-8
http://dx.doi.org/10.1007/s10586-015-0527-8
http://www.sciencedirect.com/science/article/pii/S0952197612000644
http://www.sciencedirect.com/science/article/pii/S0952197612000644
http://www.sciencedirect.com/science/article/pii/S0952197614001444
http://www.sciencedirect.com/science/article/pii/S0952197614001444

multi-class classification tasks. Expert Systems with Applications, 41(4, Part
2):1937 – 1946, 2014. ISSN 0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.
2013.08.089. URL http://www.sciencedirect.com/science/article/pii/
S0957417413007100.

[77] Raman Singh, Harish Kumar, and R.K. Singla. An intrusion detection
system using network traffic profiling and online sequential extreme learning
machine. Expert Systems with Applications, 42(22):8609 – 8624, 2015. ISSN
0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.2015.07.015. URL http:
//www.sciencedirect.com/science/article/pii/S0957417415004753.

[78] Sangeeta Bhattacharya and Subramanian Selvakumar. Lawra: a layered
wrapper feature selection approach for network attack detection. Security and
Communication Networks, 8(18):3459–3468, 2015. ISSN 1939-0122. doi:
10.1002/sec.1270. URL http://dx.doi.org/10.1002/sec.1270.

[79] Mehdi Mohammadi, Bijan Raahemi, Ahmad Akbari, and Babak Nassersharif.
New class-dependent feature transformation for intrusion detection systems.
Security and Communication Networks, 5(12):1296–1311, 2012. ISSN
1939-0122. doi: 10.1002/sec.403. URL http://dx.doi.org/10.1002/sec.
403.

[80] Qiang Liu, Jianping Yin, Victor C. M. Leung, Jun-Hai Zhai, Zhiping
Cai, and Jiarun Lin. Applying a new localized generalization error
model to design neural networks trained with extreme learning machine.
Neural Computing and Applications, 27(1):59–66, 2016. ISSN 1433-3058.
doi: 10.1007/s00521-014-1549-5. URL http://dx.doi.org/10.1007/
s00521-014-1549-5.

[81] Eduardo De la Hoz, Emiro De La Hoz, Andrés Ortiz, Julio Ortega, and Beatriz
Prieto. Pca filtering and probabilistic som for network intrusion detection.
Neurocomputing, 164:71 – 81, 2015. ISSN 0925-2312. doi: http://dx.doi.
org/10.1016/j.neucom.2014.09.083. URL http://www.sciencedirect.com/
science/article/pii/S0925231215002982.

[82] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of
on-line learning and an application to boosting. In European conference on
computational learning theory, pages 23–37. Springer, 1995.

[83] Bartosz Krawczyk and Michał Woźniak. Diversity measures for one-class
classifier ensembles. Neurocomputing, 126:36 – 44, 2014.

74

http://www.sciencedirect.com/science/article/pii/S0957417413007100
http://www.sciencedirect.com/science/article/pii/S0957417413007100
http://www.sciencedirect.com/science/article/pii/S0957417415004753
http://www.sciencedirect.com/science/article/pii/S0957417415004753
http://dx.doi.org/10.1002/sec.1270
http://dx.doi.org/10.1002/sec.403
http://dx.doi.org/10.1002/sec.403
http://dx.doi.org/10.1007/s00521-014-1549-5
http://dx.doi.org/10.1007/s00521-014-1549-5
http://www.sciencedirect.com/science/article/pii/S0925231215002982
http://www.sciencedirect.com/science/article/pii/S0925231215002982

[84] Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, August
1996.

[85] Ludmila I. Kuncheva and Juan J. Rodríguez. A weighted voting framework for
classifiers ensembles. Knowledge and Information Systems, 38(2):259–275,
2014.

[86] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization.
Evolutionary Computation, IEEE Transactions on, 1(1):67 –82, apr 1997. ISSN
1089-778X. doi: 10.1109/4235.585893.

[87] David H. Wolpert. The Supervised Learning No-Free-Lunch Theorems, pages
25–42. Springer London, London, 2002.

[88] Y. Freund, R. Schapire, and N. Abe. A short introduction to boosting.
JOURNAL-JAPANESE SOCIETY FOR ARTIFICIAL INTELLIGENCE, 14:
771–780, 1999.

[89] P. Gurram and H. Kwon. Sparse kernel-based ensemble learning with fully
optimized kernel parameters for hyperspectral classification problems. IEEE
Transactions on Geoscience and Remote Sensing, 51(2):787–802, Feb 2013.
ISSN 0196-2892. doi: 10.1109/TGRS.2012.2203603.

[90] Heesung Lee, Euntai Kim, andWitold Pedrycz. A new selective neural network
ensemble with negative correlation. Applied Intelligence, 37(4):488–498,
2012.

[91] Jin Tian and Nan Feng. Adaptive generalized ensemble construction with
feature selection and its application in recommendation. International Journal
of Computational Intelligence Systems, 7(sup2):35–43, 2014.

[92] Li Zhang, Wei-Da Zhou, and Fan-Zhang Li. Kernel sparse
representation-based classifier ensemble for face recognition. Multimedia
Tools and Applications, 74(1):123–137, 2015.

[93] Sunghan Kim, Fabien Scalzo, Donatello Telesca, and Xiao Hu. Ensemble of
sparse classifiers for high-dimensional biological data. International Journal
of Data Mining and Bioinformatics, 12(2):167–183, 2015.

[94] Nan Li and Zhi-Hua Zhou. Selective ensemble under regularization framework.
In Multiple Classifier Systems: 8th International Workshop, MCS 2009, pages
293–303, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

75

[95] Hyunjoong Kim, Hyeuk Kim, Hojin Moon, and Hongshik Ahn. A
weight-adjusted voting algorithm for ensembles of classifiers. Journal of the
Korean Statistical Society, 40(4):437 – 449, 2011.

[96] Shasha Mao, L.C. Jiao, Lin Xiong, and Shuiping Gou. Greedy optimization
classifiers ensemble based on diversity. Pattern Recognition, 44(6):1245 –
1261, 2011.

[97] Li Zhang and Wei-Da Zhou. Sparse ensembles using weighted combination
methods based on linear programming. Pattern Recognition, 44(1):97 – 106,
2011.

[98] Noam Goldberg and Jonathan Eckstein. Sparse weighted voting classifier
selection and its linear programming relaxations. Information Processing
Letters, 112(12):481 – 486, 2012.

[99] A. B. Santos, A. de A. Araújo, and D. Menotti. Combiner of classifiers using
genetic algorithm for classification of remote sensed hyperspectral images. In
2012 IEEE International Geoscience and Remote Sensing Symposium, 2012.

[100] Xu-Cheng Yin, Kaizhu Huang, Hong-Wei Hao, Khalid Iqbal, and Zhi-BinWang.
Classifier ensemble using a heuristic learning with sparsity and diversity. In
Neural Information Processing: 19th International Conference, ICONIP 2012,
Berlin, Heidelberg, 2012.

[101] Yuxin Meng and Lam-For Kwok. Enhancing false alarm reduction using
voted ensemble selection in intrusion detection. International Journal of
Computational Intelligence Systems, 6(4):626–638, 2013.

[102] S. L. J. L. Tinoco, H. G. Santos, D. Menotti, A. B. Santos, and J. A. dos Santos.
Ensemble of classifiers for remote sensed hyperspectral land cover analysis:
An approach based on linear programming and weighted linear combination.
In 2013 IEEE International Geoscience and Remote Sensing Symposium -
IGARSS, 2013.

[103] V. Hautamäki, T. Kinnunen, F. Sedlák, K. A. Lee, B. Ma, and H. Li. Sparse
classifier fusion for speaker verification. IEEE Transactions on Audio, Speech,
and Language Processing, 21(8):1622–1631, Aug 2013. ISSN 1558-7916.
doi: 10.1109/TASL.2013.2256895.

[104] Christopher Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag New York, 2006.

76

[105] Mehmet Umut Sen and Hakan Erdogan. Linear classifier combination
and selection using group sparse regularization and hinge loss. Pattern
Recognition Letters, 34(3):265 – 274, 2013.

[106] S. Mao, L. Xiong, L. C. Jiao, S. Zhang, and B. Chen. Weighted ensemble
based on 0-1 matrix decomposition. Electronics Letters, 49(2):116–118,
January 2013. ISSN 0013-5194. doi: 10.1049/el.2012.3528.

[107] Xu-Cheng Yin, Kaizhu Huang, Hong-Wei Hao, Khalid Iqbal, and Zhi-Bin
Wang. A novel classifier ensemble method with sparsity and diversity.
Neurocomputing, 134:214 – 221, 2014.

[108] Xu-Cheng Yin, Kaizhu Huang, Chun Yang, and Hong-Wei Hao. Convex
ensemble learning with sparsity and diversity. Information Fusion, 20:49 –
59, 2014.

[109] Shasha Mao, Licheng Jiao, Lin Xiong, Shuiping Gou, Bo Chen, and Sai-Kit
Yeung. Weighted classifier ensemble based on quadratic form. Pattern
Recognition, 48(5):1688 – 1706, 2015.

[110] S. Shukla, J. Sharma, S. Khare, S. Kochkar, and V. Dharni. A novel
sparse ensemble pruning algorithm using a new diversity measure. In 2015
IEEE International Conference on Computational Intelligence and Computing
Research (ICCIC), pages 1–4, Dec 2015. doi: 10.1109/ICCIC.2015.7435815.

[111] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten.
The weka data mining software: an update. ACM SIGKDD Explorations
Newsletter, 11(1):10–18, 2009.

[112] S. G. Mallat and Zhifeng Zhang. Matching pursuits with time-frequency
dictionaries. IEEE Transactions on Signal Processing, 41(12):3397–3415, Dec
1993. ISSN 1053-587X. doi: 10.1109/78.258082.

[113] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex
programming, version 2.1. http://cvxr.com/cvx, March 2014.

[114] Michael Grant and Stephen Boyd. Graph implementations for nonsmooth
convex programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent
Advances in Learning and Control, Lecture Notes in Control and Information
Sciences, pages 95–110. Springer-Verlag Limited, 2008. http://stanford.
edu/~boyd/graph_dcp.html.

77

http://cvxr.com/cvx
http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html

[115] Fatih Nar, Atilla Ozgur, and A. Nurdan Saran. Sparsity-driven change detection
in multitemporal SAR images. IEEE Geoscience and Remote Sensing Letters,
13(7), 2016.

[116] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski.
Optimization with sparsity-inducing penalties. Foundations and Trends® in
Machine Learning, 4(1):1–106, 2012.

[117] Dongdong Ge, Xiaoye Jiang, and Yinyu Ye. A note on the complexity of l p
minimization. Mathematical programming, 129(2):285–299, 2011.

[118] J. A. Tropp. Just relax: convex programming methods for identifying sparse
signals in noise. IEEE Transactions on Information Theory, 52(3):1030–1051,
March 2006.

[119] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[120] IEEE standard for binary floating-point arithmetic, 1985. Note: Standard
754–1985.

[121] Thomas Pock, Daniel Cremers, Horst Bischof, and Antonin Chambolle. An
algorithm for minimizing the mumford-shah functional. In 2009 IEEE 12th
International Conference on Computer Vision, pages 1133–1140. IEEE, 2009.

[122] Mohanad Albayati and Biju Issac. Analysis of intelligent classifiers
and enhancing the detection accuracy for intrusion detection system.
International Journal of Computational Intelligence Systems, 8(5):841–853,
2015. doi: 10.1080/18756891.2015.1084705. URL http://dx.doi.org/10.
1080/18756891.2015.1084705.

[123] Jamal Hussain, Samuel Lalmuanawma, and Lalrinfela Chhakchhuak. A
two-stage hybrid classification technique for network intrusion detection
system. International Journal of Computational Intelligence Systems, 9(5):
863–875, 2016. ISSN 1875-6891. doi: {10.1080/18756891.2016.1237186}.

http://dx.doi.org/10.1080/18756891.2015.1084705
http://dx.doi.org/10.1080/18756891.2015.1084705

79

	ABSTRACT
	ÖZ
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS
	INTRODUCTION
	History of cyber attacks
	Why cyber attacks increase
	Intrusion detection systems
	Contributions of this thesis

	RELATED WORKS
	Chapter introduction
	Related reviews about KDD99 and IDS
	How review articles are selected?
	Datasets: DARPA, KDD99, and NSL-KDD
	DARPA dataset
	KDD99 dataset
	NSL-KDD dataset

	General machine learning work flow using KDD99
	KDD99 descriptive statistics
	Classification output Classes in the reviewed studies
	Training and testing dataset usage
	Cross validation
	Dataset sizes used in training and testing ML algorithms
	Applied algorithms in proposed methods
	Classifiers used for comparison
	Software used in reviewed studies
	Different datasets used in reviewed studies
	Performance metrics used in reviewed studies
	Main IDS type according to reviewed Studies
	IDS vs not IDS studies

	Suggested checklist for avoiding common mistakes
	Chapter discussion

	GENETIC ALGORITHMS BASED FEATURE SELECTION AND CLASSIFIER ENSEMBLE
	Chapter introduction
	Materials and methods
	NSL-KDD and KDD99 datasets
	Classifier performance
	Feature selection
	Classifier ensembles
	Genetic algorithms
	Proposed method

	Simulation study and results
	Comparison with literature

	Results and chapter discussion

	SPARSITY-DRIVEN WEIGHTED ENSEMBLE CLASSIFIER
	Chapter Introduction
	Related works: ensembles that combine pre-trained classifiers

	Sparsity-driven weighted ensemble classifier
	Experimental results
	Experimental results: sparsity
	Computational Complexity Analysis

	Chapter discussion

	CONCLUSION
	REFERENCES

