

MULTIATTRIBUTE INDEXING

USING

MULTIDIMENSIONAL DATA STRUCTURES

By

YUSUF GARBA DAMBATTA

Submitted to the Institute of Graduate Studies in Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Mevlana (Rumi) University

2014

MULTIATTRIBUTE INDEXING

USING

MULTIDIMENSIONAL DATA STRUCTURES

Submitted by Yusuf Garba Dambatta in partial fulfillment of the requirements for the

degree of Master of Science in Computer Engineering, Mevlana (Rumi) University

APPROVED BY:

Examining Committee Members:

 Asst. Prof. Dr. Armagan Ozkaya

 Thesis Supervisor

 Asst. Prof. Dr. Mustafa Kaiiali

 Asst. Prof. Dr. Mesut Gündüz

Assoc. Prof. Dr. Halis Altun

Head, Department of Computer Engineering

Assoc. Prof. Dr. Ali Sebetci

Director, Institute of Graduate Studies in Science and Engineering

DATE OF APPROVAL (/ /2014):

DECLARATION

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not

original to this work.

 Yusuf Garba DAMBATTA

 Signature:

i

ABSTRACT

MULTIATTRIBUTE INDEXING

USING

MULTIDIMENSIONAL DATA STRUCTURES

By

Yusuf Garba Dambatta

 M.Sc. Thesis, 2014

Thesis Supervisor: Asst. Prof. Dr. Armagan Ozkaya

Keywords: Relational Database, Query, Attribute, Composite Key, Index, Multidimensional

Data Structure, R-tree.

Many applications involve searches using values of several of their attributes. Indexes are

well-known data structures utilized to improve the performance of searches for data. A

multiattribute index has advantages over several single-attribute indexes. First, the clustering

of index terms reduces the number of I/O access needed for the search. Second, multiattribute

index requires single update when new record is inserted.

Several data structures have been used for multiattribute key index. B+-tree is commonly used

as multiattribute key index, but has the disadvantage that it does not allow search on some of

the attributes from the multiattribute key. Grid File allows search on all the attributes from the

multiattribute key while restricting the keys in the index to only contain uniform values.

Insertion and deletion can also be difficult on grid files. There has been previous work that

uses R-trees for indexing purposes where the emphasis was on spatial data. The research in

this thesis focuses on the relational data which exploits relational databases and the use of

multidimensional data structures to perform multiattribute key indexing. It examines how to

employ R-trees to perform multiattribute indexing such that the order of attributes is no more

important for queries. Data records with multiattribute keys are modeled as multidimensional

ii

data to be indexed by means of a multidimensional data structure, specifically an R-tree. This

will enable a relational database system to perform queries using any one of the attributes or

any of their combination. It is hereby shown how a multiattribute key index implemented by

an R-tree facilitates retrieval of records from database in response to search conditions based

on any of the attributes forming the key or any combination thereof. An improvement on R-

tree is then presented where regions do not overlap and n-dimensional signatures are

incorporated into nodes of the tree for effective filtration of irrelevant tree nodes during

searches. Algorithms for search (point, range and similarity), insertion, and deletion

operations are also provided.

iii

DEDICATION

I dedicate this thesis to my able Governor Engr. (Dr.) Rabi‟u M. Kwankwaso whose

contribution toward this academic achievement will remain in my memory forever, along with

my encouraging parents, family and friends whose affection, encouragement and prayer led

me to this success.

iv

ACKNOWLEDGEMENT

All praises be to Allah, the exalted and the merciful. All His glory and blessing are upon our

noble Prophet. I wish to express my sincere gratitude and appreciation to God for keeping me

alive to attain this level in my professional career. Special appreciation goes to my supervisor

Asst. Prof. Dr. Armagan Ozkaya whose suggestions, recommendations and criticisms played

a vital role toward the successful completion of this thesis. I thank my parents for their

continuous support and prayers. I am also grateful to all the members of Garba Dambatta‟s

family, specifically my elder brother Dr. Auwal Garba. Finally, my special regards and thanks

go to all my friends who stood by me at all the time especially my dear friend Muzammil

Abdulrahman.

v

TABLE OF CONTENTS

ABSTRACT ...i

DEDICATION………………………………………………………………………………..iii

ACKNOWLEDGEMENT ...iv

LIST OF FIGURES .. vii

LIST OF SYMBOLS/ABBREVIATIONS ..ix

CHAPTER ONE: INTRODUCTION ... 1

1.1 Overview .. 1

1.2 Index ... 2

1.3 Multiattribute Key Index .. 3

1.4 Multiattribute Keys as n-dimensional Points ... 4

1.5 Query Types ... 4

1.6 Signature File Methods .. 4

1.7 Problem Definition ... 5

1.8 Thesis Organization .. 6

CHAPTER TWO: MULTIDIMENSIONAL DATA STRUCTURES 7

2.1 Overview .. 7

2.2 Multidimensional Data ... 8

2.3 Multidimensional Access Methods .. 8

2.4 Multidimensional Data Structures .. 9

2.5 Z-ordering and Z-regions ... 9

2.5.1 Z-address Definition .. 9

2.5.2 Z-regions Definition .. 10

2.6 BUB-trees ... 11

2.7 R-trees .. 12

2.8 Minimum Bounding Box (MBB) ... 13

2.9 Node Splitting Techniques ... 14

2.10 R-tree Index Structure .. 14

2.11 R-tree Operations ... 15

2.11.1 Search ... 15

2.11.2 Insertion ... 16

2.11.3 Deletion .. 19

2.11.4 Split Node .. 20

vi

2.12 Signature R-trees .. 21

2.13 Query Creation ... 22

2.14 Query Types ... 22

2.14.1 Point Query .. 23

2.14.2 Range Query .. 23

2.14.3 KNN Query .. 23

2.14.4 Narrow Range Query ... 23

2.14.5 Multiattribute Keys as n-dimensional Point .. 24

2.15 Narrow Range Query Processing in Multidimensional Data Structures 25

2.15.1 Intersect, Relevant Regions and Relevance Ratio ... 26

2.15.2 Range Query Processing with the n-dimensional Signature 27

CHAPTER THREE: MULTIATTRIBUTE KEY INDEXING .. 28

3.1 Multidimensional Approach to Multiattribute Key Indexing... 28

3.2 Indexing Multiattribute Key as a Multidimensional Problem .. 28

3.3 Minimum Bounding Boxes Creation ... 30

3.4 Description of Multidimensional Approach ... 31

3.5 Signature Creation .. 38

3.6 Tuples Indexing and Querying in R-trees .. 38

3.7 Cost Analysis .. 38

3.8 Searching .. 39

3.9 Insertion .. 39

3.10 Deletion .. 41

3.11 Range Search .. 41

CHAPTER FOUR: CONCLUSION AND FUTURE WORK .. 41

4.1 Conclusion .. 43

4.2 Future Work ... 44

REFERENCES .. 44

vii

LIST OF FIGURES

Figure 2.1 The interval of Z-curve and its corresponding regions ... 10

Figure 2.2 (a) The Z-curve filling the entire 2-dimensional space 8 × 8 10

 (b) 2-dimensional space 8 × 8 with tuples T1 – T8 ... 10

Figure 2.3 BUB-tree indexing tuples presented in Figure 2.2 ... 12

Figure 2.4 General structure of R-tree ... 13

Figure 2.5 Example of MBBs and R-tree created from them .. 14

Figure 2.6 (a) MBB search example .. 16

 (b) R-tree search example ... 16

Figure 2.7 Inserting a new rectangle .. 17

Figure 2.8 R-tree insert example .. 18

Figure 2.9 Splitting of a node ... 18

Figure 2.10 MBBs after insertion ... 18

Figure 2.11 R-tree delete example ... 20

Figure 2.12 R-tree after deletion of R10 (left) and reinsertion of R11, R3, R7, R8, R9 (right)

 .. 20

Figure 2.13 Types of split .. 20

Figure 2.14 Structure of the Signature R-tree .. 21

Figure 2.15 Examples of the narrow range queries in two and three dimensional spaces 24

Figure 2.16 Two-attribute tuples modeled in 2D space and a query box of (P,*).................... 25

Figure 2.17 Three-attribute tuples modeled in 3D space and a query box of (P,*) 25

Figure 2.18 Points T1, T2, and T3 in MBB and the narrow range query 26

Figure 3.1 Multiattribute key formed from two attributes ... 28

Figure 3.2 Multiattribute key formed from three attributes ... 29

Figure 3.3 Two-attribute tuples represented in two dimensional space 29

Figure 3.4 Three-attribute tuples represented in three dimensional space 29

Figure 3.5 How to create MBBs ... 30

Figure 3.6 R-tree built from previous MBBs and how MBBs change after insertion 30

Figure 3.7 How MBBs change after insertion .. 31

Figure 3.8 R-tree built from MBBs .. 31

Figure 3.9 Multiattribute keys formed from two attributes .. 31

Figure 3.10 Multiattribute tuples represented in a 2D space .. 34

Figure 3.11 2D 8x8 space with tuples T1-T8 ... 34

viii

Figure 3.12 BUB-tree created from Z-regions ... 34

Figure 3.13 Multiattribute keys formed from two attributes .. 34

Figure 3.14 Multiattribute tuples represented in a 2D space and MBBs created on it 34

Figure 3.15 R-tree created from the MBBs .. 35

Figure 3.16 Querying for A1 = e ... 36

Figure 3.17 Querying for A2 = 5 ... 36

Figure 3.18 Querying for A2 between 3 and 5 ... 37

ix

LIST OF SYMBOLS/ABBREVIATIONS

Symbol Explanation

δ n-dimensional discrete space

α Constant greater than or equal to min(domain M)

β Constant less than or equal to max(domain M)

τ Length of binary representation

n Dimensions

CR Relevance Ratio

N Node

NIR Number of Intersecting Regions

NRR Number of Relevant Regions

M Domain M

MBB Minimum Bounding Box

P Pointer

QB Query Box

QH Query High

QL Query Low

S Signature

1

CHAPTER ONE

1. INTRODUCTION

1.1 Overview

An index is any data structure that improves the search for a data. Indexing technique is

associated with most database applications as it enables sub-linear lookup and improves

performance because linear search is inefficient for large databases [1]. The other essential

database operations are insertion of a new record and deletion of a possibly existing record.

These operations also make use of searching as the insertion may require checking the

presence of a record and the deletion may need to determine the location of a record as well as

its presence. A cost of additional space overhead associated with using indexes.

There are several different data structures used for indexing purposes [2,3,4,5]. The design

and analysis of such data structures has been a major subject of discussion in the field of

computer science. B-tree and its B+-tree variation are among the most popular and efficient

index structures proposed. Several access algorithms have been devised on these with the aim

of increasing the concurrency in accessing the index and the data items and minimizing

average access delay [6,7,8,9]. Though B+-tree index structure has been proved to be efficient

on traditional database systems, it cannot be successfully applied to multiattribute keys. A

multiattribute key index created on a B+-tree indexes the attributes forming the key as if it

were a single attribute [10]. The order of attributes specified when creating such an index is

important and needs to be considered when using this kind of index in queries. A B+-tree is

then essentially a single attribute index. It indexes one attribute or concatenation of attributes

in case of a multiattribute key index and that is why it can be thought of as a one dimensional

index structure. The order of attributes in multiattribute key index is important because the

data is sorted on a single dimension (i.e. the first attribute). If for instance a multiattribute key

index has two attributes forming the key, a search can only be made based on the first

attribute or on both attributes together. A search using the index based on the second attribute

alone is impossible due to the ordering of the attributes in the B+-tree index structure.

The main objective of this research is to propose a multiattribute key index structure

supporting not only simple but complex queries on any of the attributes forming the

multiattribute key irrespective of their order in the key. To achieve the stated objective, a

2

multidimensional approach is introduced for data retrieval. The basic idea involves modeling

the tuples of a key formed by multiple attributes as n-dimensional points. The

multidimensional approach allows processing queries such as point and range queries

regardless of the order of the individual attributes. Because multiattribute keys are to be

represented by points in a multidimensional space in proposed scheme here, a

multidimensional data structure will be used. A number of approaches to indexing data based

on multiple attributes are reported in the literature and we shall review some of them.

The data structure chosen for the approach proposed herein is the R-tree which is nowadays

used for multidimensional data in both theoretical and applied context [11]. The focus,

however, is on the relational data which exploits relational databases. The R-tree structure

will have non-overlapping minimum bounding boxes and will be augmented with the use of

signatures created from key attributes in an effort to speed up the search procedure by

prohibiting unnecessary visits to sub-trees, especially for processing of narrow range queries

[12]. Hence, we end up with employing “Signature R-tree” data structure, whose regions do

not overlap and which allows execution of multidimensional data queries, such as point and

range queries, to index relational data with multiattribute keys.

1.2 Index

A database index is a data structure that speeds up retrieval of records from database at the

cost of additional storage space for keeping the extra index file. Indexes are used to locate

data quickly without scanning each and every row in the database table whenever query is

executed. They are built from one or more table columns from the database which provides

rooms for efficient access of records and fast random searches [10,13].

Indexes are generally stored in separate files on disk and records are accessed using index

fields in the file. They do not alter the record placement in the main data file. Ultimately, an

index can be created on any field of the data file while multiple indexes can also be created on

multiple fields on the same file. Several indexes can be created for a single database table

with each using a specific data structure to speed up searching for records. When a query is

submitted to search for a record, first an index is searched based on the search condition on an

indexing field. The index has pointers to one or more disk blocks in the data file where

records are placed. The most common indexes are those based on the ordered file (also called

single-level indexes) and tree data structures like B+-trees [13].

3

1.3 Multiattribute Key Index

While a relational database system can create index for a primary key automatically, it is also

possible to change the keys manually when the key is made up from multiple columns. In

such situations database creates a single index for all primary key columns which is also

known as concatenated or multiattribute key index. A multiattribute key is a key that uniquely

identifies occurrence of an entity including two or more attributes in a database. There are two

types of multiattribute keys:

 Compound key where each and every attribute that makes up the key is a simple

key in its own right.

 Composite key where at least one attribute that makes up the key is not a simple

key in its own right.

A multiattribute key index created using B-tree structure indexes the attributes as if they were

a single one. Indexed data are kept in a sorted list. The database uses the position of the

attributes to categorize index entries. The first attribute is the main sort criterion while the

second attribute is only used to determine the order when two entries have the same value on

the first attribute and the so forth [13]. The ordering of two attributes in such a multiattribute

index is like ordering of a telephone directory: It is first sorted by surname, then by first name

which means that a two attribute index does not support search on the second attribute alone

(i.e. searching telephone directory based on first name alone).

Whenever a query involving the complete primary key is executed, the database uses index

scan to answer such queries. But, it refuses to use the index for queries involving some of the

columns that formed the primary key. Instead, the database does a full table scan to answer

the query. It reads the entire column evaluating each and every row against the “where”

clause. The execution time for this type of query increases with an increase in table size. This

kind of operation might be adequately fast in a small development environment, but becomes

slow in a large environment which greatly affects system performance. The ability of an SQL

statement to use a multiattribute index depends on the attributes contained in its “where”

clause. A query uses a multiattribute index only if it references the leading portion of the

index in its “where” clause. A leading portion of the index means the first attribute or

attributes mentioned in the “create index” statement. The order of columns in such an index

plays a vital role on its usage so it must not be chosen arbitrarily [14]. A multiattribute key

index with three attributes can only be used to efficiently execute queries on the first attribute,

4

first two attributes together, or all the three attributes. A popular approach in many

commercial database systems to handle general multiattribute search queries is by the

consecutive application of single-attribute indexes. This approach, unfortunately, can be very

inefficient. Since each index is traversed independently of the others, we cannot exploit the

possibly high selectivity in one dimension for narrowing down the search in remaining

dimensions. Several single-attribute indexes require many updates of its index when new

record is inserted and also have higher numbers of I/O processes than a multiattribute index.

In general, there is no easy and obvious way to extend single key structures, such as B+-trees,

to handle multidimensional data. A single index is preferable, however, because it will save

space and result in less maintenance overhead. If a database table has fewer indexes on it,

operations that change the data set such as insertion, deletion, update, etc. perform better

because these operations may require reorganizing the index data structure [15].

1.4 Multiattribute Keys as n-dimensional Points

In the approach presented here, a multiattribute key obtained from the relational data is

modeled as n-dimensional points in n-dimensional vector space, where n is the number of

attributes forming the key. The n-dimensional vector space is called multiattribute key space

where multiattribute keys are distinctively denoted by tuples of attributes as their co-ordinate

values that may be obtained from a fixed alphabet like ASCII code character [16].

1.5 Query Types

The most common application of data structures in a database is the query, which enables the

user to specify the desired data, leaving the database management system to perform the

physical operations necessary to produce the result. Different data structures support different

types of queries. In the case of R-tree data structure, it supports the following types of queries

[16]:

 Point

 Range

 K-Nearest-Neighborhood (KNN)

1.6 Signature File Methods

This is a commonly used access method employed in applications requiring large storage

space of document databases like medical information and office information systems [17,

18]. For that reason, signature file methods became famous for executing retrieval operations

5

on data files. It was later expanded to carry multi-media data like video and images [19].

Several of the DBMS that are used nowadays support multimedia data and hence need a

dynamic data structure that supports insertion, deletion, update, and retrieval operations

efficiently. Among the dynamic data structures proposed are the S-Tree [20] and quick filter

[21].

The signature file is a generalized concept that is used as a filter to minimize disk block

access and processing time when a query is executed. A signature is a bit string formed from

multiattribute keys that are used to index records in a data file. Signature file methods mostly

use a superimposed coding technique to create record signatures [22]. The method works by

dividing n-dimensional space into regions with each region containing points or tuples

representing multiattribute keys. Each point of the n-dimensional space produces bit strings

that are OR‟ed together to form block signatures. Assuming the record consists of m

multiattribute keys and the multiattribute keys formed from n attributes, each attribute is

converted into bit strings called the attributes‟ signatures that are combined to form the

multiattribute keys signature. The record signature is formed by superimposing (inclusive

OR‟ing) the n multiattribute keys‟ signatures. The number of 1s in a signature is called the

weight of the signature.

To process a query, we first examine the signature file instead of the data file in order to reject

the non-qualifying records. In order to achieve that, a set of terms in a query are hashed in the

same way we did for record signature to form a query signature. If a record signature contains

ones in the same positions as query signature, it would be regarded as a possible match and

can be used for the query. A bitwise AND operation is utilized for the above decision.

Nevertheless, there can be a situation where a particular record qualifies for a query signature,

but still does not satisfy the query. This condition is referred to as a false drop.

1.7 Problem Definition

Indexing is a method that involves the use of a particular data structure to improve the speed

of data retrieval operations on database tables as the linear search is inefficient for large

databases. Multiattribute key indexing is an indexing where multiple attributes that form the

primary or a unique key of a table are used for indexing data records. Many data structures

have been used for multiattribute key indexing, a popular one of which is the B
+
-tree data

structure. If a B+-tree index is formed on a multiattribute key, the database does not use the

index to perform look up involving attributes arbitrarily. B
+

-tree keeps attributes in a sorted

6

list, thus the order of attributes is important and should be considered when writing queries. A

B+-tree multiattribute key index does not allow search on some of the attributes from the

multiattribute key. Grid File allows search on all the attributes from the multiattribute key, but

it restricts the keys in the index to only contain uniform values. Insertion and deletion can also

be difficult on grid files [25].

This research will focus on the use of R-tree data structure to perform multiattribute key

indexing on relational data that is stored in relational database. A multiattribute key index

based on the R-tree data structure allows retrieval of records from database in response to

certain search conditions based on any of the attributes forming the primary key or any

combination thereof. This R-tree structure will utilize non-overlapping minimum bounding

boxes and signatures created from key attributes in an effort to speed up the search procedure

by prohibiting unnecessary visits to sub-trees.

1.8 Thesis Organization

Chapter 1 introduces this research and contains the overview of the topic, explicit description

of the problem, explanation of the purpose and types of indexing, and the proposed approach

to multiattribute key indexing.

In Chapter 2, we review related literature and R-trees data structure is described together with

one of its types called Signature R-trees which is the data structure selected for use in this

research. Operations on these structures, query construction, and query types are also

discussed in this chapter.

Chapter 3 describes multidimensional approach to multiattribute key indexing for query

processing. It also contains information on indexing data as a multidimensional problem,

multiattribute key as n-dimensional point, indexing and querying tuples in R-trees and cost

analysis. It also contains algorithms to perform operations/queries such as search, insertion

and deletion in the Signature R-trees.

Finally, Chapter 4 concludes the work by summarizing its contribution and provides possible

areas for future work.

7

CHAPTER TWO

2. MULTIDIMENSIONAL DATA STRUCTURES

2.1 Overview

With an increase in computer applications that depend greatly on managing multidimensional

data, spatial data management has now become an important research area among database

community. The applications range from CAD, VLSI, geographical databases to multi media

management system. Complete information about multidimensional indexing and data

structures can be found in [23,24,25]. Bounding Universal B-Tree (BUB) offers good

performance for indexing spatial data. It is a paged and balanced multidimensional index

structure utilizing the Z-ordering and B+-Tree [26]. This study avoids using BUB-Tree in

work, because it is inefficient for range queries. Instead, R-tree data structure augmented with

signatures and non-overlapping regions to improve searches is used for indexing

multidimensional data in this study. R-tree has become the most widely used data structure,

since the time when Antonin Guttman proposed this dynamic index structure for spatial

searching. This data structure supports the usual point queries, some form of spatial joins, and

also KNN queries to some degree [27,28]. The focus was made on the appropriate placement

of index records in the tree, in order to reduce the number of paths needed to be traversed

when searching for or deleting data object. Later in [29,32], concurrency control is

considered. These are variations of R-tree in which several parallel processes can run at the

same time.

R-tree index structures improve access efficiency for spatial data. It is popularly employed

nowadays as an index structure in many applications involving spatial data. For example, in

[34], a new approach to creating a spatial index with R-tree was proposed, and in [35], an

improvement of index method based on R-tree was proposed to boost query efficiency with

the strategy of increasing the space to reduce the time. As it happens in most trees, the

searching algorithms (e.g. intersection, nearest neighbor search, etc.) are considerably simple.

The key idea is to use the minimum bounding boxes to decide whether or not to search inside

a sub tree. In this way, unnecessary nodes in the tree are not visited during a search operation.

Like B-trees, R-trees are suitable for large data sets and databases, where nodes can be paged

to memory when needed, and the whole tree being kept in main memory.

http://en.wikipedia.org/wiki/Intersection_%28set_theory%29
http://en.wikipedia.org/wiki/Nearest_neighbor_search
http://en.wikipedia.org/wiki/Database

8

Though good worst-case performance is not assured in R-trees, it usually performs well with

real-world data [36]. The Priority R-tree, which is a variant of the R-tree, is worst-case

optimal, but due to the increased complexity it has not attracted much attention in practical

applications up to now [37].

When the multidimensional data structures are applied for multiattribute index, they suffer

from one problem or the other. A B+-tree multiattribute index does not allow search on some

of the attributes forming the key. Even though Grid File allows search on all attributes from

the multiattribute key, it restricts attribute values to contain only uniform values. Insertion and

deletion can be also difficult in this kind of structure [25]. A KD-tree requires special

procedure for insertion and deletion. It is also an unbalanced tree structure [30]. Bitmap Index

has advantage of space and performance, but not efficient for columns whose data is

frequently updated [31]. Partitioned Hashing Index cannot be used for range queries [33].

2.2 Multidimensional Data

This is any data broken down into dimensions. The dimensions are broken down into

categories that may be composed of points in space. In this work, the multiattribute key to be

indexed is considered as multidimensional data represented by points in multidimensional

space. That is why multidimensional data structures are used for indexing data with multiple

attributes in this work.

2.3 Multidimensional Access Methods

The basic aim of a database management system is to return a set of records from the database

as requested by the user. Some systems try to read the database into the memory in order to

find the data that is requested. Most systems try to read directly from the disk and how they

achieve this is referred to as their access method. Multidimensional access method deals with

reading multidimensional data off disk. The essential part of access methods is the data

structure and design for indexes that point to the data structure.

Requirements of multidimensional access methods are summarized as follows [39]:

 Time and space efficiency (performance).

 Support for dynamically changing data.

 Integration with secondary and tertiary storage as it is not possible to store the

complete data in main memory.

 Support for broad range of operations.

http://en.wikipedia.org/wiki/Worst-case_performance
http://en.wikipedia.org/wiki/Priority_R-tree

9

 Efficiency independent of the nature of input data and insertion sequence.

 Simplicity and scalability.

 Support for concurrent users and transactions.

 Minimum impact on integration to an existing system.

2.4 Multidimensional Data Structures

These are data structures specifically designed to store and manage multidimensional data.

They are best suited for applications involving multidimensional data such as those used in

areas like robotics, medical imaging, geoscience, etc. [39] and used for indexing such data.

There are many variations of such specialized data structures as KD-Trees, UB-trees, BUB-

trees, R-trees, etc. In this thesis, we chose R-tree to use for the proposed indexing scheme.

2.5 Z-ordering and Z-regions

Using a mathematical transformation, multidimensional data spaces can be made linear.

Some of the methods used for the transformations are space filling curves, and the linear order

of the multidimensional keys is the order of the points on that curve. An example of this curve

is the Z-curve. The order defined by the Z-curve is called Z-order. Points in multidimensional

space are transformed to their one dimensional Z-coordinates. The position of a tuple in the Z-

ordering is called Z-address. An interval of the Z-curve covers a multidimensional subspace, a

so called Z-region [16] (Figure 2.1).

2.5.1 Z-address Definition

Let δ be a discrete finite n-dimensional vector space, δ = Mn, where M = {0, 1, . . . , 2
τD

− 1},

|M| = 2
τD

. For a tuple T ∈ δ of the length n, T = (a1, a2, . . . , an) and a binary representation of

the coordinate (attribute) value ai = ai,τD−1ai,τD−2 . . . ai,0, where ai ∈ D, is the bit-length of

the value ai, ai,j is j-th bit value of ai, 1 ≤ i ≤ n, 0 ≤ j < τD, the function Z(T) (Z-address) is

defined by:

 Z(T) = ∑
 ∑

If we calculate the Z-addresses for all the points of n-dimensional space δ, we will get a Z-

curve filling the entire space δ [16].

2.5.2 Z-region Definition

A Z-region [x:y] is the space covered by an interval of the Z-curve and is defined by two

10

Z-addresses x and y, x ≤ y.

Figure 2.1 shows the interval [4:20] of the Z-curve (numbering starts with 0 in the left upper

corner) in a two-dimensional 8x8 space and the region covered by it with its characteristic

shape [40]. In Figure 2.2(b), four Z-regions in 2-dimensional space 8×8 are depicted.

Figure 2.1 The interval of Z-curve and its corresponding regions [44].

(a) (b)

Figure 2.2 (a) The Z-curve filling the entire 2-dimensional space 8 × 8.

(b) 2-dimensional space 8 × 8 with tuples T1 – T8.

11

2.6 (B)UB-trees

The B-tree is a dynamic high performance tree data structure to organize and manage

collections of data which are stored on random access devices like disks. The UB-tree is a

multidimensional generalization of the B-tree [40]. Traditional B-trees were designed for one

dimensional, linearly ordered key spaces. In this case, B-trees perform well for one

dimensional point queries and interval queries. But, there are many applications using

multidimensional data such as geographic maps. Range queries in such situations resemble

multidimensional rectangles, and the multidimensional points in those rectangles must also be

read.

(B)UB-trees exploit the Z-ordering. When a multidimensional data space is made linear using

Z-ordering and is then represented in ordinary B-trees, the resulting data structure is called

UB-tree (Universal B-tree). Points in a node of a UB-tree correspond to an interval on the Z-

curve, hence to a Z-region.

UB-tree and BUB-tree establish Z-regions for clustering spatial neighbors onto disk pages.

Tuples from regions are placed into a single B-tree page. The regions are mapped onto disk

pages. Thus, it ensures minimal disk accesses upon getting spatial neighbors.

Bounding Universal B-tree (BUB-tree) is also a paged and balanced multidimensional index

structure. It uses the Z-ordering and B+-tree. Each node in the BUB-tree contains hierarchy of

the Z-region stored in a single disk page. The BUB-tree hierarchy is depicted in Figure 2.3.

The leafs contain indexed tuples while the inner nodes contain Z-regions. In the case of UB-

tree, the Z-regions define an ordered disjunctive partitioning of the entire n-dimensional

space. The BUB-tree does not index the ”dead space” (contiguous empty space) due to the

shapes of Z-regions evolving during the tuples insertion. This is an improvement over the UB-

tree which indexes the entire space, and it makes the range query processing more efficient in

the BUB-tree [41].

For example, the tuples in Figure 2.2(b) define the BUB-tree Z-regions partitioning [0:2],

[7:11], [25:30] and [57:62] with the node capacity of two. The empty interval (31:56) between

Z-regions [25:30] and [57:62] is not indexed by the BUB-tree as shown in Figure 2.3.

12

Figure 2.3 BUB-tree indexing tuples presented in Figure 2.2 [16].

2.7 R-trees

R-tree is a straightforward extension of B-trees in n-dimensional space. This data structure is

balanced in terms of depth and made up of intermediate and leaf nodes. The data objects

(tuples in the case of this research) are stored in leaf nodes. Intermediate nodes are formed by

grouping lower level nodes, hence its associated rectangles also called minimum bounding

boxes (MBB) enclose associated rectangles for lower level nodes [42].

R-tree resembles a hierarchy of two n-dimensional points formed from minimum bounding

boxes that are grouped together. If N is interior node of the R-tree, it contains pairs (Ri, Pi)

where Pi represents a pointer to the child of node N. If R is the MBB of N, then box Ri

encloses children Ni of N. If N is a leaf node, the Pi represents pointer to a disk block

containing data object (e.g. tuples). In Figure 2.4, a general structure of R-tree for indexing

point data from n-dimensional space is shown.

Properties of the R-tree are as follows [42]:

 It is height balanced.

 The root node has at least two children unless it is a leaf.

 Every non-leaf node has between m and M children unless it is the root node.

 In each non-leaf node, the entries are in the form of <MBB, Pc> where Pc is the

pointer to the child node.

 Each leaf node contain between m and M entries if it is not the root node.

 In each leaf node, the entries are in the form of <T, Pd> where T is the tuple

identifying the record and Pd is a pointer to the record in disk.

13

Figure 2.4 General structure of R-tree.

2.8 Minimum Bounding Box (MBB)

A minimum bounding box (MBB) also known as minimum bounding rectangle (MBR) is the

least surrounding rectangle of points associated with an object. It is denoted by two (x, y)

coordinates in space where x defines lower left and y defines upper right corners of the

rectangle. The MBB is commonly used as an approximation item in spatial indexes like R-

trees and its variations and in areas of object intersection.

MBB was first seen in Guttman‟s work [42] as an approximation tool to perform spatial

indexing. His idea was to have each index record in leaf node of R-tree represented by the

smallest enclosing rectangle that contains n-dimensional data points in n-dimensional space

and a pointer to a file containing the actual object‟s representation. Since then, MBB becomes

one of the most widely used approximation technique for spatial indexes.

It is also one of the most common methods used for approximation in spatial access methods.

Its simple representation is the main reason behind its popularity. It needs just 2 points to

denote the minimum bounding box, while the data object it is representing may be of many

orders of magnitude which are more complicated. The advantage of minimum bounding box

has resulted in the development of many data structures among which are the R-trees and its

variations.

 B1:Bh ………………………. B1:Bh

 B1:Bh ………………………. B1:Bh B1:Bh ……………………… B1:Bh ……

…

… …

Super-region

Region (MBB)

Index

Hierachy

of MBBs

… T …… T T …… T T …… T T …… T … …
Indexed

tuple

…

…
Tuples in the region

14

Figure 2.5 Example of MBBs and R-tree created from them.

R-tree is concerned more with reducing the overall area of the minimum bounding boxes of

the parent nodes, it is not concerned with reducing the overlap of parent nodes. To insert a

new node into R-tree, the tree is traversed to find the leaf node requiring the least amount of

expansion to accommodate new node. This action provides us with a tree of minimum

bounding box nested together.

A search algorithm is provided to perform a search on the tree, with a box representing the

range to be searched. Boxes that are completely outside the query rectangle are eliminated to

shorten the result space while those that are completely inside the query rectangle are

automatically submitted. Boxes that intersect the query box, i.e. those that are neither inside

nor outside the query rectangle, are studied more using the actual object representation and

those that are discovered to intersect the query box are later submitted. Several spatial access

techniques have been created on this structure put down by Guttman, which increase the

popularity of the minimum bounding box as approximation tool.

2.9 Node Splitting Techniques

There are various techniques for redistributing tuples of a node into two nodes. In the

traditional R-tree, Guttman proposed two such techniques: Quadratic Split and Linear Split

[27]. The goal of the split is how to partition the M entries already contained in a node and

one new entry to be inserted into two nodes such that the total area and the overlapping of the

two resulting nodes is minimized. In quadratic split which tries to minimize the area of the

two nodes, the algorithm searches the pair of rectangles that is the worst combination to have

15

in the same node, and puts them into the two new nodes. It then searches the entry that would

bring the smallest area increase into one of two nodes and assigns it to this node until all

objects are assigned satisfying the minimum fill [43].

2.10 R-tree Index Structure

R-tree index structure contains pairs of the form (N, P) representing regular nodes where N

corresponds to MBB and P represents pointers to a child node. In the case of leaf nodes, the

pointer P points to the tuples [11].

Important Parameters for R-tree index are:

 M is the maximum number of entries in one node.

 Parameter m ≤ M/2 specifies the minimum number of entries in a node.

2.11 R-tree Operations

Below is the description of operations that can be performed on R-trees.

2.11.1 Search

A search operation in R-tree resembles B-tree search. It is simple and straightforward and it

involves traversing the whole tree, beginning from the root node.

The complexity of the R-tree search algorithm is O(n) under the worst case when the query

box overlaps all MBBs in the tree (i.e. all MBBs overlapping the search area), where n is the

number of nodes overlapping the search area. The best case occurs when there is at most one

overlap at each tree level. Here, the complexity becomes O (logM n), where M is the number

of entries in a node and n is the number of nodes overlapping search area.

Example 2.1: In the Figure 2.6(a) below, the long narrow rectangle shows the search

rectangle (query box). The algorithm is looking for qualified records in the query box‟s area.

In Figure 2.6(b), the paths chosen by the algorithm can be seen [44]. The long narrow MBB

representing the QB intersects the root entries R1 and R2, so the algorithm checks these

entries. In R1 there is just R4 which intersects the query MBB. Its entries are also checked.

The algorithm arrives at the leaf node level. The entries of the leaf node are checked for

qualifying records. R11 is the only one and so the first search result. In R2, there are two

rectangles that overlap with the query MBB: R5 and R6. Both of them are checked and the

algorithm recognizes that in the leaf node level the entries R13, R15 and R16 overlap with the

search rectangle. Therefore, the search result is R11, R13, R15 and R16.

16

Figure 2.6 (a) MBB search example.

Figure 2.6 (b) R-tree search example

2.11.2 Insertion

This operation is similar to insertion in B-Trees. It involves adding new data into the leaves.

Nodes that overflow are split and the split causes adjustment to the nodes which is propagated

up to the root. It basically consists of 3 stages [11]:

1. Choose Leaf: Insert operation initially traverses the tree from root until leaf node is

reached where data is to be placed. It selects the leaf node to place the new data entry.

 2. Insert: Insert the new data object into the leaf node.

3. Adjust Tree: If the leaf node has an overflow after insert operation, the tree should be

adjusted by splitting the affected node into two and the split propagated upward.

17

The complexity of the R-tree insert algorithm is O(n) under the worst case when the query

box overlaps all MBBs in the tree, where n is the number of nodes overlapping the search

area. It is 2nh in all other cases, where n and h are the number of entries in each node and the

tree height, respectively.

Example 2.2: Supposing a rectangle R21 is to be inserted into the tree shown in Figure 2.8.

To find the best position for the new rectangle, the algorithm starts with Choose Leaf. Figure

2.8 also shows the path of Choose Leaf. The first step is clear because R21 is in R1. Next, R3

is chosen because this rectangle needs fewer enlargements than R4. At the last step, the

algorithm finds the leaf node, however, all entries are full. Thus, it comes to a node split

which is also shown in Figure 2.9 and 2.10 below. Node splitting tries to minimize rectangles

as much as possible. That is the reason why the algorithm puts R21 and R9 in rectangle R3.

R8 and R10 are put in the new parent rectangle R3
+
. R3

+
 is conveyed to Adjust Tree where it

is propagated upward. Since there is enough room to include R3
+
, it's not necessary to split

this node again. R3 must be adjusted as well because it only points to R9 and to the new

rectangle R21. At last, root node R1 is also adjusted because it includes a new entry R3
+
. So

the structure of the tree is saved. The insertion is now finished and Figure 3.8 shows the

newly included rectangle.

Figure 2.7 Inserting a new rectangle.

R21

18

Figure 2.8 R-tree insert example.

Figure 2.9 Splitting of a node.

Figure 2.10 MBBs after insertion.

19

2.11.3 Deletion

The Deletion operation is unlike deletion in B-Tree. It is complicated because it needs to treat

the underflow. It consists of the following 3 basic steps [11]:

1. Choose Leaf: Delete operation first traverses the tree to find the leaf node containing

the data to be deleted.

2. Delete: Delete the entry from node.

3. Condense Tree: If a node has its entry removed and there is an underflow, the few

remaining entries are reallocated while recursively checking its parent until the root is

reached. All the MBBs are updated to remove all underflow nodes. All entries deleted

from the removed nodes are reinserted according to the INSERT algorithm.

The complexity of the R-tree deletion algorithm is O(n) under the worst case when the query

box overlap all MBBs in the tree, where n is the number of nodes overlapping the search area.

It is 2nh in all other cases, where n is the number of entries in each node and h is the tree

height.

Example 2.3: In the following example we describe deletion of R11 from a tree with m = 2

and M = 3. At first, the delete algorithm starts Choose Leaf to get the position of R11. R11 is

returned as result of the query. After that R11 is removed from the tree. Now, Condense Tree

is started. Figure 2.11 shows the first procedures of this algorithm. With the new value m = 1,

R4 has an underflow. It is eliminated from the tree but the last entry R12 of R4 is saved in list

Q. Through the deletion of R4, R1 has an underflow as well and thus R1 is eliminated. Its

entry R3 is saved in the list. Next, all entries of the list Q (highlighted in red) are reinserted in

the tree (Figure 2.12).

Firstly, the node R3 has to be placed in the same level again where it was before having been

set in Q. After that leaf node R11 is reinserted in R5 supposing R5 is the nearest rectangle

which has to enlarge least. Condense Tree is finished. The root node has only one child and

thus the child is the new root. The following Figure 2.12 shows the new structure of the tree

after deletion.

20

Figure 2.11 R-tree delete example

Figure 2.12 R-tree after deletion of R10 (left) and reinsertion of R11, R3, R7, R8, R9 (right)

2.11.4 Split Node

This operation is necessary to save the tree structure whenever there is an underflow as a

result of deletion or overflow as a result of insertion. Insertion uses this method to divide

entries into two nodes when adding a new entry into a full node [11]. The two new nodes

obtained as a result of split should be distinct to allow them to be checked on subsequent

searches. The ultimate goal of split operation is to minimize the resulting node‟s MBBs.

Figure 2.11 shows an example of good and bad splits.

Figure 2.13 Types of split

 R2

 R5

R6

 R12

R13

 R14

R15

R16

 R5

R6

R3

 R12

R13

 R11 R14

R15

R16

 R7

R8 R9

21

2.12 Signature R-trees

Signature R-tree is the combination of R-tree with n-dimensional signatures for effective

filtration of irrelevant tree nodes. Figure 2.9 shows the general structure of Signature R-tree.

Leaf nodes contain indexed tuples that are clustered into regions, also called minimum

bounding boxes (MBBs). The MBBs can be arranged to form another MBBs again called

super regions.

The description of regions and super regions (formed in the n-dimensional space) are stored in

the tree nodes. An n-dimensional signature is assigned to each region (MBB). Any node

containing a super region also holds an n-dimensional signature, superimposed with

signatures of immediate children of the node. As a result, Signature R-tree has two

hierarchies: hierarchy of MBBs and hierarchy of n-dimensional signatures [16].

The operations of R-tree data structures are maintained and n-dimensional signatures are

applied for effective filtration of irrelevant nodes during narrow range query processing. With

the help of signatures, intersection algorithm determines which among the nodes are relevant

or not to the user‟s query. Enlargement of this data structure is small, because the n-

dimensional signatures are only inserted into inner tree nodes.

Figure 2.14 Structure of the Signature R-tree

 B1:Bh S ………………………. B1:Bh S ……

…

… …

Super-region

Region (MBB)

Index

Hierachy

of MBBs

… T …… T
 T …… T T …… T T …… T … …

Indexed

Tuple

…

… Tuples in the region

 B1:Bh S ………………………. B1:Bh S

 B1:Bh S ………………………. B1:Bh S

n-dimensional signatures

of tuples in the region

n-dimensional signatures of

tuples in the super region

22

2.13 Query Creation

Regular expression queries are created by a combination of numerous range queries. The

maximal number of attributes in the multiattribute key indexing is used during query

construction [16].

Let us now demonstrate how to create 3 forms of regular expression queries. An additional

regular expression query is based on these 3 forms of regular expression queries. Let k be the

length of string, n be the dimension of the attribute space δ, and max Mi be the maximal value

of the domain Mi.

A right extension query (expression <string>*) is achieved by a single range query:

QB = (c1 , c2 , . . . , ck , 0, . . . , 0) : (c1 , c2 , . . . , ck , max Mk+1 , . . . , max Mn).

A left extension query (expression *<string>) is achieved by a single range query:

 QB = (0, . . . , 0, c1 , c2 , . . . , ck) : (Mk+1, . . . , max Mn, c1 , c2 , . . . , ck).

A left-right extension query (expression *<string>*) is processed by a range query of the

form:

 QB = (0,…0 ,c1 , c2 , . ., ck , 0, . ., 0) : (Mk+1, .. , max Mn, c1 , c2 ,. . , ck , max

Mk+1,…,max Mn).

In [12], range query processing is described. The result of these queries is made up of all

relevant tuples. Tuples retrieved from multiattribute key index are returned to the user as a

query result.

2.14 Query Types

The most common application of data structures is the query, which enables the user to

specify the desired data, leaving the database management system to perform the physical

operations necessary to produce the desired result. Different data structures support different

types of queries. In the case of Signature R-trees data structures, it supports the following

types of queries [16]:

 Point

 Range

 K-Nearest-Neighbor

23

2.14.1 Point Query

This is one of the query types supported by R-trees. It involves searching the tree‟s MBBs

intersecting the point to find a tuple corresponding to this point.

Given a point p ϵ δ, find a tuple corresponding to P.

2.14.2 Range Query

R-trees support this kind of query that is sometimes called window or box query. It is

processed from the given query window. It involves searching the tree to find MBBs

intersecting the QB. The result of this query is all tuples that falls within the query box.

Let δ be an n-dimensional discrete space, δ = Mn , D = {0, 1, . . . , 2
τD

− 1}, and points (tuples)

T 1 , T 2 , . . . , T m ∈ δ. T i = (t1, t2. . . tn), τD is the chosen length of a binary representation of

a number ti from domain M. The range query RQ is defined by a query box QB which is

determined by two points QL = (ql1, . . . , qln) and QH = (qh1 , . . . , qhn), QL and QH ∈ δ, qli

and qhi ∈ M, where ∀i ∈ {1, . . . , n} : qli ≤ qhi [16].

Given a query box QB = QL x QH where QL = (ql1, . . . , qln) and QH = (qh1 , . . . , qhn), find

all tuples intersecting QB.

2.14.3 KNN Query

R-trees support this type of query also. It involves finding k-most similar objects/points to the

objects/points obtained from the query definition.

Given a tuple T, find all tuples having a minimum distance from T. Distance function like

Euclidean distance is used to determine the nearness of points [42].

2.14.4 Narrow Range Query

Let δ be an n-dimensional discrete space, δ = Mn . The query hyper-box is defined by two

points QL = (ql1, . . . , qln) and QH = (qh1 , . . . , qhn), where ∀i : qli ≤ qhi . Let α and β be

constants: min (M) ≤ α ∨ β ≤ max (M). The range query is called the narrow one if:

1. ∀i : qhi − qli ≤ α ∨ qhi − qli ≥ β.

2. Let nα and nβ be the number of dimensions for which formulas qhi − qli ≤ α and

qhi − qli ≥ β, respectively, hold. Furthermore, in the case of the narrow range query it

holds 1 < nα < n ∧ 1 < nβ < n [16].

24

Figure 2.15 Examples of the narrow range queries in two and three dimensional

spaces [12].

2.14.5 Multiattribute Keys as n-dimensional Points

Supposing we have a domain, M = {0, 1, 2…………….2
τd

-1} and a discrete finite n-

dimensional vector space, δ = Mn. Let C represents ASCII code character and tuple, T = c1, c2,

c3 ……cn, of length n, where ci ∈ C with 1 ≤ i ≤ n. Now, the n-dimensional tuple representing

the multiattribute key is defined as T s = (code(c1),code(c2), code(c3),……… code(cn)), T s ∈

δ, code(ci) ∈ M, where code : C → M is a function that encodes character ci into binary of

length τd [16].

When the tuple length is not complete, blank values (zero in this case) are used to complete it.

The tuples, as a set of multidimensional points, are indexed using a spatial access method. R-

tree supports range query algorithms that are applicable for regular expression queries. This

proposed approach, therefore, allows such queries.

Supposing we have a regular expression query p*, its corresponding range query in 2

dimensional space will be (code(p),0) × (code(p), max M) and in 3-dimensional space will be

(code(p),0,0) × (code(p), max M, max M). The execution of this query will retrieve all tuples

beginning with p. These queries marked as 1 and 2 are shown in the Figures 2.14 and 2.15

below. The first query will retrieve tuple (P, 2) while the second query will retrieve tuples (P,

A, 2) and (P, K, 8).

25

Figure 2.16 Two-attribute tuples modeled in 2D space and a query box of (P,*).

Figure 2.17 Three-attribute tuples modeled in 3D space and a query box of (P*).

2.15 Narrow Range Query Processing in Multidimensional Data Structures

Usually, multidimensional data structures like R-trees divide n-dimensional space into sub-

spaces called regions. The R-trees used for the sake of this research cluster tuples into MBBs

accordingly. The index is formed from regions (also called super regions) with each region

 P R A
tt

ri
b
u
te

 2

Attribute 1

 (P, A, 2)

 (R, C, 6)

 (P, K, 8)

Query Box 2

 A

 C

 K

Query Box 1

Attribute 1

A
tt

ri
b
u
te

 2

2

4

1
2

C P X

 (P, 2)

 (X, 4)

 (C, 12)

26

containing tuples stored in one leaf node. The inner nodes define the outer super regions, also

known as MBB in R-trees. A range query algorithm filters out the irrelevant tree nodes

(regions) by searching only the leaf nodes intersecting the query box [12].

Example 2.3: This example illustrates the reason for inefficiency of the narrow range query

in R-tree. Supposing we have a two dimensional space that contains 3 points: (4, 7), (4, 4) and

(5, 7). These points define MBB of (3, 3): (5, 7) as shown in Figure 2.16 below. A range

query defined by (1, 5): (4, 5) query box would lead to searching of the above MBB. Though

the region is relevant to the query box, because it has intersected the query box, it contains no

point of the query box.

Figure 2.18 Points T1, T2, and T3 in MBB and the narrow range query.

2.15.1 Intersect, Relevant Regions and Relevance Ratio

Let RQ be the range query defined by the box QB. Regions that intersect a query box during

the processing of a range query are called intersect regions and regions that contain at least

one point of the query box are called relevant regions. We denote their number by NIR and

NRR, respectively [16]. The relevance ratio is CR

 0 1 2 3 4 5 6 7

 QB

(1,5):(4,5)

0

1

2

3

4

5

6

7

 T1

 T2 T3

 MBB

(3,3):(5,7)

27

Example 2.4: This example illustrates the use of n-dimensional signatures for filtration of

irrelevant nodes. Let us express how to create and apply a simple n-dimensional signature for

better filtration of irrelevant tree nodes in the R-tree, using points from the previous example.

The first coordinate of the n-dimensional signature contains superimposed first coordinates of

the points: 4 (100) OR 4 (100) OR 5 (101). The second coordinate equals: 7 (110) OR 4 (100)

OR 7 (100). In this way, the n-dimensional signature (101,110) is created. Since the second

coordinates of both query box points contain the same values (the number 5) then all relevant

points contain value 5 in their second coordinate. Consequently, the n-dimensional signature

of the query hyper box is (101,101). The region (MBB (3, 3):(5, 7)) is recognized as irrelevant

by the signature operation (101,110) AND (101,101). Since (101) AND (110) ≠ (101) then the

region is irrelevant, in spite of the query box intersecting the region which is searched during

the narrow range query processing in the classical R-tree.

2.15.2 Range Query processing with the n-dimensional Signature

Let us take the range query defined by two points of an n-dimensional space QL = (ql1, . . . ,

qln) and QH = (qh1, . . . , qhn).

Then, let us create the n-dimensional signature of the query box S
n

QB = (SQB1, . . . ,S QBn):

If qli = qhi, and qhi−qli ≥ β, then SQBi= F(qli) =F(qhi) and SQBi = F(qli) OR F(qhi), respectively.

If qli ≠ qhi and qhi−qli ≤ α , then SQBi = 2
lS

 −1 (the number with only true bits).

Let us take the n-dimensional signature S
n

= (S1 . . . Sn) of points T
1
, T

2
… T

m
. The points

generating the n-dimensional signature can belong to the query box if all partial signatures Si

and SQBi , 1 ≤ i ≤ n, are matched by the AND operation [16]. A partial signatures Si and SQBi

are matched if:

 For qli = qhi, and qhi−qli ≥ β it holds Si and SQBi = SQBi.

 For qli ≠ qhi and qhi−qli ≤ α, it holds γ (Si and SQBi) ≥ 1.

As a result of which we can conclude that the n-dimensional signatures S
n
i and S

n
QB are

matched by the AND operation if all partial signatures Si and SQBi, 1 ≤ i ≤ n, are matched [16].

Certainly, if SQBi contains only ones, then the AND operation can be omitted. If γ(S QBi) → lS

a probability of the false drop is close to one.

28

CHAPTER THREE

3. MULTIATTRIBUTE KEY INDEXING

3.1 Multidimensional Approach to Multiattribute Key Indexing

The idea of multidimensional approach to multiattribute keys indexing is that attributes can be

represented as points of multidimensional space. Multidimensional data structures are

employed to index these points. In this research, attributes forming the multiattribute keys are

represented by points in n-dimensional space, and BUB-tree and Signature R-tree are used to

indexing such points. R-tree and variations have proven to work perfectly at a space with low

dimensionality but their performance decrease when the number of dimensions is greater than

6. In practice, however, multiattribute keys made up of 6 attributes are very rare. In OLTP

applications, multiattribute indexes usually contain 2 or 3, at most 4 attributes.

3.2 Indexing Multiattribute Key as a Multidimensional Problem

In order to index multiattribute keys, the attributes forming the multiattribute keys are first

modeled as points in n-dimensional space where n represents number of attributes in the key.

If, for example, the multiattribute keys are formed from three attributes, it would be

represented by a 2-dimensional space. Let us demonstrate this method with examples.

Attribute 1 Attribute 2

 P 2

X 4

C 12

Figure 3.1 Multiattribute key formed from two attributes .

29

Figure 3.2 Multiattribute key formed from three attributes.

Figure 3.3 Two-attribute tuples represented in two dimensional space .

Figure 3.4 Three-attribute tuples represented in three dimensional space .

Attribute 1 Attribute 2 Attribute 3

A P 2

C R 6

K P 8

Attribute 1

A
tt

ri
b
u
te

 2

2

4

1
2

C P X

 (P, 2)

 (X, 4)

 (C, 12)

 P R A
tt

ri
b

u
te

 2

Attribute 1

 (P, A, 2)

 (R, C, 6)

 (P, K, 8)

 A

 C

 K

30

3.3 Minimum Bounding Boxes Creation

We choose bisection method to build the spatial R-tree. The method works by bisecting any

box B containing d points into smaller boxes containing at most (d/2) points using a straight

line.

The idea is as follows: Let B correspond to the root of the tree and let the 2 halves correspond

to the children of the root after bisection. Thus, the constructed tree has 2 children

corresponding to non-overlapping subsets of B. The bisection is recursively repeated on the

individual children nodes taking into account the threshold which is the number of points

allowable within a partition. The example shown in the following figures, demonstrate how to

create MBB from points in n-dimensional space. We use a threshold of 1 (1 point per

partition) in this example.

Figure 3.5 How to create MBBs.

Figure 3.6 R-tree built from previous MBBs and how MBBs change after

insertion.

 Box

 Right Left

 Box

 R LU

 Box

 LD

 Box

 Right Left

31

Figure 3.7 How MBBs change after insertion.

Figure 3.8 R-tree built from MBBs.

3.4 Description of the Multidimensional Approach

Using Figure 3.9 below, we will show how a multiattribute key index can be implemented on

BUB-tree and how queries are processed on the attributes forming the key.

Attribute 1 Attribute 2

A 2

B 5

C 6

D 4

E 7

F 3

G 6

H 5

Figure 3.9 Multiattribute keys formed from two attributes .

 RU LU

 Box

 LD RD

 Box

 Right Left

 LD LU

 Box

 Right Left

 LD RU LU RD

32

Supposing we have the following tuples of the form T = (Y, X):

T1= (a, 2), T2 = (b, 5), T3 = (c, 6), T4 = (d, 4), T5 = (e, 7), T6 = (f, 3), T7 = (g, 6), T8 = (h, 5).

T1 = (a, 2), S/T1 = (000, 001)

T2 = (b, 5) S/T2 = (001, 100)

T3 = (c, 6), S/T3 = (010, 101)

T4 = (d, 4), S/T4 = (011, 011)

T5 = (e, 7), S/T5 = (100, 110)

T6 = (f, 3), S/T6 = (101, 010)

T7 = (g, 6), S/T7 = (110, 101)

T8 = (h, 5), S/T8 = (111, 100)

Figure 3.10 Multiattribute tuples represented in a 2D space

Let us now calculate the Z-addresses of the above tuples which serve as a clustering technique

for BUB-tree.

 000001

T1 = (000001)2 = 1 T5 = (110100)2 = 52

T2 = (010010)2 = 18 T6 = (100110)2 = 38

T3 = (011001)2 = 25 T7 = (111001)2 = 57

T4 = (001111)2 = 15 T8 = (111010)2 = 58

These tuples define the BUB-tree Z-regions partitioning [1:15], [18:25],[38:52] and [57:58]

for a BUB-tree with the node capacity of 2.

Y

h

g

f

e

d

c

b

a

1 2 3 4 5 6 7 8

T8

T7

T6

T4

T2

T1

T3

T5

X

33

 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1

 T1

4 5 16 17 20 21

2

3 6 7 18

 T2

19 22 23

8 9 12 13 24 25

 T3
28 29

10 11 14 15

 T4
26 27 30 31

32 33

36 37 48 49 52

 T5

53

34 35 38

 T6

39 50 51 54 55

40 41 44 45 56

57

 T7

60 61

42 43 46 47 58

 T8
59 62 63

Figure 3.11 2D 8×8 space with tuples T1–T8. These tuples define the BUB-tree Z-regions

partitioning.

Figure 3.12 BUB-tree created from Z-regions.

Sample queries:

Q.1 Select from T where Y = „4‟

The query is defined by the query box QB = (a,4) X (h,4) Z (a,4) = 5 and Z (h,4) = 47. Select

x and y such that: x ≤ Z (T) ≤ y. This corresponds to [1:15] and [38:52]

Q.2 Select from T where X = g

The query is defined by the query box QB = (g,1) X (g,7) Z (g,1) = 40 and Z (g,7) = 61.

Select x and y such that: x ≤ Z (T) ≤ y. This corresponds to [38:52] and [57:58].

Even though the multiattribute key index on BUB-tree supports queries on both attributes

from the key regardless of their order, it suffers from one problem which is visiting nodes that

T1 T4

 (1:25) (38:58)

 (1:15) (18:25)

(f,3) (b,5)
 T6 T2

(c,6) (e,7)
 T3 T5

(a,2) (d,4) (g,6) (h,5)
T7 T8

 (38:52) (57:58)

34

are not relevant to the query. This increases the cost of operations in the BUB-tree. To solve

this problem, we employ Signature R-tree.

Again using Figure 3.13 below, we will now demonstrate how to use multidimensional

approach to perform indexing on two attributes and how queries get processed on Signature

R-trees.

Attribute 1 Attribute 2

A 5

B 2

C 5

D 3

e 6

f 4

g 6

h 3

Figure 3.13 Multiattribute keys formed from two attributes

Figure 3.14 Multiattribute tuples represented in a 2D space and MBBs created on it.

Supposing we have the following tuples of the form T = (A1, A2):

T1 = (a, 5), T2 = (b, 2), T3 = (c, 5), T4 = (d, 3), T5 = (e, 6), T6 = (f, 4), T7 = (g, 6), T8 = (h, 3).

A1

h

g

f

e

d

c

b

a

1 2 3 4 5 6 7 8

T8

T7

T6

T4

T2

T1

T3

T5

R4

R1

R3

R2

R6 R5

A2

35

Let us now express the creation and application of n-dimensional signature for filtering

irrelevant tree nodes. Transforming tuples (points) from the n-dimensional space into points

and assuming we have 3-bit long binary characters as signatures of these tuples. We obtain:

T1 = (a, 5), S/T1 = (000, 100)

T2 = (b, 2) S/T2 = (001, 001)

T3 = (c, 5), S/T3 = (010, 100)

T4 = (d, 3), S/T4 = (011, 010)

T5 = (e, 6), S/T5 = (100, 101)

T6 = (f, 4), S/T6 = (101, 011)

T7 = (g, 6), S/T7 = (110, 101)

T8 = (h, 3), S/T8 = (111, 010)

The signatures of regions are obtained by ORing signatures of the tuples contained in the

region.

S/R3 = S/T2 + S/T4 = (001, 001) + (011, 010) = (011, 011)

S/R4 = S/T1 + S/T3 = (000, 100) + (010, 100) = (010, 100)

S/R5 = S/T6 + S/T8 = (101, 011) + (111, 010) = (111, 011)

S/R6 = S/T5 + S/T7 = (100, 101) + (110, 101) = (110, 101)

Whenever SQB AND SREGION = SQB, then that region is relevant to the query (i.e. it contains

tuple relevant to that query), unless if it is a false drop.

Figure 3.15 R-tree created from the MBBs

Sample queries:

Q.1 Select from T where A1 = e

The query is defined by the query box QB = (e, 1) X (e, 7) and SQB = (100, 110)

Use SQB AND SREGION = SQB to determine regions that are relevant to the query.

SQB AND SR3 = 100 AND 011 ≠ 100 (Irrelevant to the query)

SQB AND SR4 = 100 AND 010 ≠ 100 (Irrelevant to the query)

SQB AND SR5 = 100 AND 111 = 100 (Relevant to the query)

T2 T4

qwaddadaddSSZDw (a,1):(d,7) (d,1):(h,7)

(a,1):(d,4) (a,4):(d,7) (d,1):(h,5) (d,5):(h,7)

(a,5) (c,5)
T1 T3

(f,4) (h,3)
T6 T8

(b,2) (d,3) (e,6) (g,6)
T5 T7

36

SQB AND SR6 = 100 AND 110 = 100 (Relevant to the query)

Thus, region R5 and R6 are relevant to the query based on the above signature operation. The

tuple satisfying this query is in R6, thus R5 is a false drop.

Figure 3.16 Querying for A1 = e

Q.2 Select from T where A2 = 5

The query is defined by the query box QB = (a, 5) X (h, 5) and SQB = (111, 100)

Use SQB AND SREGION = SQB to determine regions that are relevant to the query.

SQB AND SR3 = 100 AND 011 ≠ 100 (Irrelevant to the query)

SQB AND SR4 = 100 AND 100 = 100 (Relevant to the query)

SQB AND SR5 = 100 AND 011 ≠ 100 (Irrelevant to the query)

SQB AND SR6 = 100 AND 101 = 100 (Relevant to the query)

Thus, region R4 and R6 are relevant to the query based on the above signature operation. The

tuples satisfying the query are in R4 while R6 is a false drop.

Figure 3.17 Querying for A2 = 5

Q.3 Select from T where A2 = 6 AND A1 = g

T2 T4

qwaddadaddSSZDw
(a,1):(d,7) (d,1):(h,7)

(a,1):(d,4) (a,4):(d,7) (d,1):(h,5) (d,5):(h,7)

(a,5) (c,5)

T1 T3

(f,4) (h,3)

T6 T8

(b,2) (d,3) (e,6) (g,6)

T5 T7

T2 T4

qwaddadaddSSZDw
(a,1):(d,7) (d,1):(h,7)

(a,1):(d,4) (a,4):(d,7) (d,1):(h,5) (d,5):(h,7)

(a,5) (c,5)

T1 T3

(f,4) (h,3)

T6 T8

(b,2) (d,3) (e,6) (g,6)

T5 T7

37

The query is defined by the query box QB = (g, 6) which is a point query; it would only

intersect the region that is relevant to the query. Region R6 is the one intersected and also

relevant to the query.

Q.4 Select from T where A2 is BETWEEN 3 AND 5

The query is defined by the query box QB = (a, 3) X (h, 5) and SQB = (111, 110).

Use γ (SQB AND SREGION) ≥ 1 to determine regions that are relevant to the query.

SQB AND SR3 = 110 AND 011 = 010 γ = 1 (Relevant to the query)

SQB AND SR4 = 110 AND 100 = 100 γ1 = 1 (Relevant to the query)

SQB AND SR5 = 110 AND 011 = 010 γ = 1 (Relevant to the query)

SQB AND SR6 = 110 AND 101 = 100 γ = 1 (Relevant to the query)

Thus, the regions R3, R4 and R5 are relevant to the query based on the above signature

operation. R6 is a false drop.

Figure 3.18 Querying for A2 between 3 and 5

Q.5 Select from T where A1 is BETWEEN „b‟ AND „d‟

The query is defined by the query box QB = (b, 1) X (d, 7) and SQB = (011, 110).

Use γ (SQB AND SREGION) ≥ 1 to determine regions that are relevant to the query.

SQB AND SR3 = 011 AND 011 = 011 γ = 2 (Relevant to the query)

SQB AND SR4 = 011 AND 010 = 010 γ = 1 (Relevant to the query)

SQB AND SR5 = 011 AND 111 = 011 γ = 2 (Relevant to the query)

SQB AND SR6 = 011 AND 110 = 010 γ = 1 (Relevant to the query)

Thus, all the regions R3, R4, R5 and R6 are relevant to the query based on the above signature

operation. R5 and R6 are false drops because they do not contain tuples related to the query.

Any co-ordinate that has all ones as its value cannot be used to filter irrelevant nodes, because

it would always give a false drop.

T2 T4

qwaddadaddSSZDw (a,1):(d,7) (d,1):(h,7)

(a,1):(d,4) (a,4):(d,7) (d,1):(h,5) (d,5):(h,7)

(a,5) (c,5)

T1 T3

(f,4) (h,3)

T6 T8

(b,2) (d,3) (e,6) (g,6)

T5 T7

38

3.5 Signature Creation

Let us now describe a method to generate n-dimensional signature responsible for narrow

range query processing.

In this research, we select ASCII character encoding scheme to obtain the signatures used to

filter irrelevant tree nodes. Suppose we choose to use C programming language for the

implementation of algorithms, 64bits long data type in C would be used to represent the

attribute values forming the multiattribute key. Because ASCII has 7bits per character, the

maximum number of characters for an attribute would be 9 (from 64/7). The signature of an

attribute is determined by its encoded ASCII equivalent. For any attribute that is shorter than

the specified character (i.e. 9), it would be appended with zero (s) to ensure uniformity in the

length of the bits.

3.6 Tuples Indexing and Querying in R-trees

Tuples are indexed in leaf nodes which are also clustered into regions called minimum

bounding box (MBB). The MBBs can be made hierarchical again to create super regions (two

points in n-dimensional space). The definitions of regions and super regions are stored in

inner tree nodes with n-dimensional signature assigned to each region. As a result of which,

the tree contains 2 hierarchies: the MBB hierarchy and n-dimensional signature hierarchy. A

query is done on this tree by using the definition of the query box to traverse the tree looking

for regions intersecting the query box and at the same time making use of signatures to reject

irrelevant regions. A query is processed by retrieving those tree regions that intersect a query

box. Tuples relevant to the query box are found in the disk page pointed to by R-tree leaf

nodes.

3.7 Cost Analysis

The Signature R-tree complexity for basic operations like find, insert and delete is not

modified. A node splitting policy depends on the type of R-tree chosen while the complexity

of the splitting algorithm depends on the complexity of the selected splitting algorithm. In

Signature R-trees, a change of tuples in leaf nodes transcends to changes of the signatures in

the existing path, hence the complexity is maintained.

Assuming NIR to be the number of regions that intersect a given query box (regions to be

retrieved when a range query is submitted) and m to be the number of indexed tuples, then the

range query complexity is O (logc (m) x NIR), where c is the fixed node capacity and NIR is

the number of regions intersecting the i-th query box.

39

3.8 Searching

The search algorithm in Signature R-trees is almost similar to the one in B-Trees. The input is

the MBB representing the query box. The searching starts from the root node downward to

the leaf nodes. The query box is compared with the nodes‟ MBBs, if there is intersection, the

search proceeds to its children nodes, otherwise it stops there. Each node‟s MBB corresponds

to a rectangle of points in the n-dimensional space representing multi-attribute keys. Each

node in the tree has 2 co-ordinates, one for the MBB and the other for the pointer to the

node‟s children except for the leaf nodes that have pointers to the tuples of attributes from the

n-dimensional space.

__

Algorithm Search(N, QB)

__

Input: Tuple, T which defines the query box QB.

Output: a set of tree tuples in the query box stored in an array A

/* Finds all MBBs that are stored in the Signature R-tree with root node N, which are

intersected by a query box QB. Resulting tuples are stored in an array A */

If N! = L

then for each entry (P, MBB) of N, check if MBB∩QB

If SQB AND SMBB = SQB

 Search (CHILD, MBB∩QB), where CHILD is the node pointed to by P

 End if

Else if N = L

Check all tuples in leaf’s MBBs

Return Tn ∩ QB

End if

3.9 Insertion

To insert a new MBB into the Signature R-tree, the tree is searched and the new MBB is

added to the leaf nodes. The MBB is added to the leaf node requiring least expansion. If it

overflows, it would be split and the split propagated to the parent nodes up to the root node.

Overflowing nodes are split and the splits are broadcasted to both their parents and children

nodes. Any root node that overflows would lead to the creation of a new root which makes the

previous root a child to the newly created node. In this way, the height of the tree is

increased. The discussion on the split algorithm comes up in the subsequent section.

40

__

Algorithm Insert(N, QB)

__

Input: A tuple, T defining the query box QB

Output: The resulting Signature R-tree after the insertion of T

/* Inserts a new Tuple, T in Signature R-tree with root node N */

If N! = L

then for each entry (P,MBB) of N, check if MBB∩QB

If SQB AND SMBB = SQB

Insert (CHILD,QB)where CHILD is a node pointed to by P

Update all MBBs in the path up to N

 End if

If new MBB > M

Invoke the split algorithm

 End if

Else if N = L

Add T into N

If new MBB > M

Invoke the split algorithm

 End if

End if

__

__

Algorithm SplitNode(N)

__

Input: a node N (leaf or intermediate)

Output: The resulting new Signature R-Tree

If N! = R

 Create n1 = (P1, MBB1) and n2 = (P2, MBB2) where MBBi = MBB ∩ ni, for i=1,2.

 Assign all entries (Pk, MBBk) of N into ni, for i=1,2.

 For worst pairs of MBBk

 If N = L

 place each MBBk into n1 and n2.

 place the remaining entries to least enlarge ni

 Else

 use SplitNode to repeatedly split the children nodes along the partition

Else if N = R

 Create a new root NP with two children, n1 and n2.

 Replace N in PN with n1 and n2

 If PN > M, invoke SplitNode on PN again

End if

__

3.10 Deletion

To delete any MBB form Signature R-tree, the tree is searched first to find the MBB that

should be deleted and removed from the leaf nodes. When node underflows as a result of

41

MBB‟s deletion, the node would be dissolved and all its children would be reinserted. In this

way, the tree height decreased.

__

Algorithm Delete(N, T)

__

Input: A tuple, T defining the query box QB

Output: The resulting Signature R-tree after the deletion of T

/* Delete a tuple, T from Signature R-tree with root node N */

If N! = L

then for each entry (P,MBB) of N, check if MBB∩QB

If SQB AND SMBB = SQB

Delete(CHILD, T), where CHILD is the node pointed to by P

End if

If new MBB < m

Invoke the merge algorithm

 End if

Else if N = L

Delete T from N

If new MBB < m

Invoke the merge algorithm

End if

End if

__

3.11 Range Search

Range search in Signature R-tree is almost similar to the search algorithm described in section

3.8. While the query box defines a point in the search algorithm, it defines a range or a box in

the range search. Range search involves searching the Signature R-tree to determine those

tuples or points which intersect with query box defining the range. The query box is compared

with the nodes‟ MBBs, if there is intersection, the search proceeds to its children nodes,

otherwise it stops there. The result of this query is the set of tuples that intersect our range.

42

__

Algorithm Merge

__

Input: a node N (leaf or intermediate)

Output: The resulting new Signature R-tree

/* Given L from which a tuple T has been deleted, if after the deletion of T, L has

 fewer than m entries, then remove the entire node and reinsert all its entries. Updates

 are propagated upwards and all MBBs along the path up to the root (R) are modified */

Y = Node that underflow

Let M be the set of nodes that are going to be removed from the tree (Initially empty)

While Y! = R

Let Parent y be the father node of Y

Let MBBY be the entry of Y in Parent y

If Y < m

Remove MBBY from Parent y

Insert Y into M

 End if

If Y has not been removed

Adjust its corresponding MBB, so as to enclose all MBBs in Y

End if

Set Y = Parent y

End while

Reinsert all tuples of nodes that are in the set M

__

__

Algorithm RangeSearch

__

Input: tuples A1,A2 which define the query box

Output: a set of tree tuples in the query box stored in an array A

Variables: a node N, a stack S which contains a current path in the tree

while (!S.Empty())

if N ≠ L

if there is the next MBB, in N that MBB ∩ QB

 Check SQB AND SMBB = SQB

 if it is matched

 S.Push(N)

 else

 N = S.Pop()

else if N = L

 for any point overlapping query box

 add such points into A

N = S.Pop()

__

43

CHAPTER FOUR

4. CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this thesis, a multidimensional approach to multiattribute key indexing was described.

Traditional approach employs B+-tree data structure to perform multiattribute key indexing

whereby queries for values of attributes are processed taking into consideration the order of

the attributes. For instance, if the multiattribute key has two attributes, only queries on the

first attribute or first and second attributes are processed efficiently. In proposed approach,

queries on first attribute second attribute or their combination (i.e. 1
st
 and 2

nd
 attributes) can

be processed on such a multiattribute key.

The multidimensional approach represents multi-dimensional keys with points in n-

dimensional space. Such points are indexed by multidimensional data structures, specifically

the Signature R-tree that was chosen for the purpose of this work. Various query types, such

as the point, range, and similarity queries, using the chosen data structure are applied to

process queries on the multiattribute keys. Queries on the first attribute, on the second

attribute or on both attributes were described for a two-attribute key. Techniques for creating

signatures from the attributes in addition to the techniques for creating the minimum bounding

boxes were explained. Consequently, the approach is hopeful for implementation on

databases. An important problem of multiattribute key indexing is the order of attributes

considered during query processing, as a result of which this novel approach was proposed.

This approach makes it possible to execute queries on attributes regardless of their order.

Initially, we tried to use multidimensional lattice on this problem. It was not successful,

because in lattice the attributes are sorted based on the first attribute which makes it

impossible to search on the second attribute. Consequently, it has failed the main objective of

this thesis. A straightforward application of multidimensional data structures like R-tree is not

too effective because query processing in R-trees has large overhead. A specific type of range

query encountered in the multidimensional approach to indexing multiattribute key is called

the narrow range query. Processing this query in the existing multidimensional data structures

is inefficient as well. As a result, signature multidimensional data structures (e.g. Signature R-

tree) were employed for better processing of narrow range queries.

44

4.2 Future Work

In our future work, we would especially like to implement the algorithm in code and run

simulations to make comparisons with multiattribute keys index on B-Trees. In addition to

main database operations, we desire to make the execution of other types of queries such as

“like” queries and logical operators‟ queries possible and to improve more on the efficiency

of this multidimensional approach. Finally, we would like to compare the performance of this

approach using different split algorithms for MBBs and memory requirement of this approach

to that of B+-trees.

45

REFERENCES

[1] “Database Index” from Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Database_index, March. 9, 2014 [May 12, 2014].

[2] H. Lu, Y. Yeung and Z. Tian. “T-tree or B-tree- main memory database index

structure revisited,” in 11
th

 Proceedings of the Database Conference, 2000.

[3] W. Lin, X. Tan and Y. Yu. “An Improvement of Index Method and Structure Based on

R-tree,” International Conference on Computer Science and Software Engineering,

2008.

[4] S. Harikumar and A. Vinay. “NSB-TREE for an efficient multidimensional indexing in

non-spatial databases,” Recent Advances in Intelligent Computational Systems

(RAICS), IEEE, 2013.

[5] L. Tao, F.R. Xie and Y. Jia. “HVA-Index: An efficient indexing method for similarity

search in high-dimensional vector spaces,” International Conference on Information

Networking and Automation (ICINA), 2010.

[6] R. Bayer and M. Schkolnick. “Concurrency of Operations on B-Trees,” Acta

Informatica, 1977.

[7] P. Lehman and S. Yao. “Efficient Locking for Concurrent Operations on B-trees,”

ACM Transactions on Database Systems, 1981.

[8] C. Mohan and F. Levine. “ARIES/IM- An Efficient and High Concurrency Index

Management Method Using Write-Ahead Logging,” ACM SIGMOD Conference, 1992.

[9] Y. Mond and Y. Raz. “Concurrency Control in B+-trees Databases Using Preparatory

Operations,” VLDB, 1985.

[10] R. Elmasri and S. Navathe, Fundamentals of Database Systems, Pearson Education,

Limited, 2013.

[11] Y. Manolopoulos, A. Nanopoulos and Y. Theodoridis. R-trees: Theory and

Applications. Springer, 2012.

[12] M. Kratky, V. Snasel, J. Pokorny, P. Zezula and T. Skopal. “Efficient processing of

narrow range queries in R-tree,” ARG Technical report, 2004.

[13] A. Silberschatz and H. Korth, Database System Concept, McGraw-Hill Companies,

2011.

http://en.wikipedia.org/wiki/Database_index
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yuet%20Yeung%20Ng.QT.&searchWithin=p_Author_Ids:37447333800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zengping%20Tian.QT.&searchWithin=p_Author_Ids:37440061300&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6646
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Weihua%20Lin.QT.&searchWithin=p_Author_Ids:37403858800&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4722692&queryText%3Dr-tree+index
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4722692&queryText%3Dr-tree+index
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6732240
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6732240
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5636970&queryText%3Dlinked+list+index
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5636970&queryText%3Dlinked+list+index
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5636970&queryText%3Dlinked+list+index

46

[14] IBM Solid DB Information Centre Home, Concatenated Index,

http://publib.boulder.ibm.com/infocenter/soliddb/v6r3/index.jsp?topic=/com.ibm.swg.i

m.soliddb.sql.doc/doc/concatenated.indexes.html, Nov. 01, 2013 [May. 01, 2014].

[15] Oracle Documentation on Indexes, http://docs.oracle.com/cd/B19306/server.102/

b14231/indexes.html, Mar. 04, 2013 [May. 01, 2014].

[16] M. Karatky. “Multidimensional Approach to Indexing XML Data,” PhD. Thesis,

Technical University of Ostrava, 2004.

[17] J. Chang, J. H. Lee and Y. Lee. “Multi-key access methods based on term

discrimination and signature clustering,” Proceedings of 12th International Conference

on Research and Development in Information Retrieval, 1989, pp.176–185.

[18] W. Walter Chang and H. Schek. “A signature access method for the starburst database

system,” Proceedings of the 15th International Conference on Very Large Data Bases,

1989, pp. 145–153.

[19] N. Beckmann, H. Kriegel, R. Schneider,and B. Seeger. “The R-tree: An efficient and

robust access method for points and rectangles.” Proceedings of the International

Conference on Management of Data, 1990, pp. 322–331.

[20] U. Deppisch. “S-tree- A dynamic balanced signature index for office retrieval.”

Proceedings of 9th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, 1986, pp. 77–87.

[21] P. Zezula, F. Rabitti and P. Tiberio. Dynamic Partitioning of Signature Files. ACM

Transactions on Information Systems, 1991, pp. 336–369.

[22] C. Faloutsos and S. Christodoulakis. “Signature Files- An Access Method for

Documents and its Analytic Performance Evaluation.” ACM Transactions on

Information Systems, 1984.

[23] B. Christian, B. Berchtold and A. Daniel. “Searching in High dimensional Spaces

Index Structures for Improving the Performance of Multimedia Databases,” ACM

Computing Surveys, 2001.

[24] Y. Manolopoulos, Y. Theodoridis and J. Vassilis. Advanced Database Indexing.

Kluwer Academic Publisher, 2001.

[25] C. Yu. High-Dimensional Indexing, Lecture Notes in Computer Science, Springer–

Verlag, 2002.

[26] F. Robert. “The BUB-Tree,” Proceedings of 28rd VLDB International Conference on

Very Large Data Bases, 2002.

[27] R-Tree, from Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/R-Tree

47

[28] A. Guttman. “R-trees- A Dynamic Index Structure for Spatial Searching,” Proceedings

of the International Conference on Management of Data, 1984, pp. 47–57.

[29] M. Kornacker and D. Banks. “High-Concurrency Locking in R-trees,” Proceedings of

the 21st International Conference on Very Large Data Bases, 1995, pp. 34-145.

[30] T. John "The KDB-tree: a search structure for large multidimensional dynamic

indexes." Proceedings of the 1981 ACM SIGMOD international conference on

Management of data. ACM, 1981.

[31] C. Chee-Yong and E. Ioannidis. "Bitmap index design and evaluation." ACM SIGMOD

Record. vol. 27. No. 2. ACM, 1998.

[32] K.V. Ravi Kanth, D. Serena and A.K. Singh. “Improved Concurrency Control

Techniques for Multidimensional Index Structures,” Proceedings of the 12th

International Parallel Processing Symposium / Ninth Symposium Parallel and

Distributed Processing, 1998, pp. 580-586.

[33] D. Mun-Hien and C. Mohan. "Method for generating a multi-tiered index for

partitioned data." U.S. Patent No.5,960,194. 28 Sep. 1999.

[34] N. Vincent and T. Kamada. “The R-Link Tree- A Recoverable Index Structure for

Spatial Data,” Proceedings of the Fifth International Conference on Database and

Expert Systems Applications, 1994, pp. 163-172.

[35] Z. Zhange, J. Yang and Y. Yang. “A new approach to creating spatial index with R-

tree,”IEEE Proceedings of the International Conference on Machine Learning and

Cybernetics, 2007.

[36] W. Lin, X. Tan, and Y. Yu. “An improvement of index method and structure based on

R-tree” IEEE International Conference on Computer Science and Software

Engineering, 2008.

[37] S. Hwang, K. Cha Kwon and B.S. Lee. “Performance Evaluation of Main Memory R-

tree Variants,” Advances in Spatial and Temporal Databases, 2003.

[38] L. Arge, M. De Berg, H.J. Haverkort and K. Yi. “The Priority R-tree,” Proceedings of

the International Conference on Management of Data, 2004, pp. 347.

[39] Advanced Database Concept: http://www.smckearney.com/adb/notes/lecture.multi.

attribute.pdf [02,04,2014]

[40] V. Gaede and O. Gunther. “Multidimensional Access Methods,” ACM Computing

Survey, Vol. 30 pp. 170-231, June 1998.

[41] The Wikipedia: http://en.wikipedia.org/wiki/UB-tree,Jun. 17, 2013 [May. 11, 2014].

http://www.win.tue.nl/~mdberg/Papers/prtree.pdf
http://www.smckearney.com/adb/notes/lecture.multi.%20attribute.pdf
http://www.smckearney.com/adb/notes/lecture.multi.%20attribute.pdf
http://en.wikipedia.org/wiki/UB-tree

48

[42] The scholarpedia: http://www.scholarpedia.org/article/B-tree_and_UB-tree, Jul. 11,

2011 [May. 11, 2014].

[43] T. Sellis, R. Nick and F. Christos. “R+ tree- A dynamic index for multidimensional

trees,” Proceedings of the 13th International Conference on Very Large Database,

1987.

[44] A. Kemper. “Pro seminar: Algorithms and Data Structures for Database Systems.”

University of Passau, 2003.

http://www.scholarpedia.org/article/B-tree_and_UB-tree

