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ABSTRACT 

 

DISCRETE WAVELET TRANSFORM-BASED ANT COLONY OPTIMIZATION 

FOR EDGE DETECTION 

 

Aminu Muhammad 

 

M.Sc. Thesis, 2014 

Thesis Supervisor: Assist. Prof. Dr. Mohammad Shukri Salman 

 

Keywords: Ant Colony Optimization, Artificial Bee Colony Optimization, Genetic 

Algorithm, Simulated Annealing, Discrete-Wavelet Transform, Travelling Salesman Problem, 

Edge Detection. 

Evolutionary Optimization has attracted many researchers to use it in solving many 

optimization problems that have no trivial solutions. Some of these techniques include; 

Genetic Algorithms (GA), Simulated Annealing (SA), Artificial Bee Colony (ABC), Ant 

Colony Optimization (ACO), etc. 

In this thesis, we first compare the performance of GA, SA, ABC and ACO algorithms in 

solving the well-known Travelling Salesman Problem (TSP). From the results obtained, the 

ACO algorithm has shown significant performance compared to the others. Hence, the 

performance of the ACO algorithm is tested in the 2-Dimensional (2-D) case for edge 

detection. 

In the last part of this work, the conventional 2-D ACO performance is tested in edge 

detection problem. It shows high performance. However, this performance can be improved 

further by transforming the input into different domain from the real time. Hence, we apply a 

Discrete-Wavelet Transform (DWT) at the input of the 2-D ACO algorithm which provides us 

denser and clearer images compared to the conventional ACO.  

Simulations show that the proposed 2-D DWT-based ACO provides very high performance 

compared to the conventional one, especially, when the input image is buried with noise. 
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CHAPTER ONE 

 

LITERATURE REVIEW 

 

 

1.1.   Evolutionary Algorithms 

Evolutionary Algorithms (EAs) have turned out to be well-known instruments for solving 

many complex optimization problems by the use of simulated Darwinian evolution processes 

[1]. In searching and optimization tasks, the use of EAs as a stochastic search method has 

been recently admired [2]. It has been applied as an all-purpose search method in areas like 

machine learning, process control, combinatorial optimization, etc. because of its parallelism, 

robustness and simplicity [3]. In EAs an amount of simulated individuals try to find out an 

optimal solution by exploring on the problem space to locate best areas [4]. The idea behind 

EAs is to generate children called offsprings during each iteration from the best part of the 

solutions by mutation or combination to produce even better solutions in the next generations 

[3]. An EA cycle can be shown in Fig. 1.1. The first stage is the initialization of individuals‟ 

population and is usually created randomly [5]. The fitness values which stand for the quality 

of the individuals are then calculated in the next stage. Parents are then selected from the 

individuals based on their fitness functions, the individuals with the higher quality are mostly 

selected to be the parents and the others are discarded. The parents selected are recombined to 

produce children called offsprings. These offsprings get certain characters of the parents they 

are made from. However, there are some evolutionary algorithms that do not use this method 

of recombination to produce new offsprings as we can see later in evolutionary strategy [5]. 

The children produced by recombination are then mutated in order to avoid having a solution 

that is similar to any of the solution in the initialization state. The mutation is done by adding 

a little bit randomness into the genes of the population. The next stage in the EA cycle after 

mutating the children produced is the evaluation. In this stage, the fitness values of the 

individuals recombined and mutated are computed using the objective function. The 

environmental pressure affects the individuals due to the environmental changes. Some of the 

individuals survive the environmental selection and some do not, this environmental selection 

usually eliminates the individuals with low quality. The ones with higher fitness values 

usually survive and become parents for the next generation. After the environmental 
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selection, the whole process is stopped if the termination criterion is met. Otherwise the next 

cycle starts. 

 

Initialization

Evaluation

Termination

   criterion

      met?

Yes

No

Yes

No

Parental

Selection

Recombination

Mutation

Evaluation

Environmental
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Termination
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      met?

Output Result

 

Figure 1.1: Evolutionary Algorithm Cycle, [5]. 

 

1.1.1. Paradigms 

Evolutionary Algorithms (EAs) have many types, and they all differ a little bit but, in this 

thesis, we will be interested in three types, namely: 
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1. Genetic Algorithm  

2. Evolution Strategy and  

3. Evolutionary Programming  

 

1.1.1.1.  Genetic Algorithm  

Genetic Algorithm (GA) was first introduced in United States by John Holland and his 

students in 1960s and 1970s [1]. GA is inspired by the natural selection theory of Charles 

Darwin based on biological evolution. In the field of artificial and adaptive systems, the use 

of genetic operators that includes; selection, crossover and mutation, and recombination as a 

basic of GA for solving problems were first used by John Holland [6]. Since the introduction 

of this algorithm, a lot of optimization problems like travelling salesman, data clustering, 

graph coloring, path planning in robotic system, etc. have been successfully tackled [6]. GA 

steps can be summarized as the following [7]: 

1. Initialization: Here usually the initial populations of solution are generated randomly. 

The population can be large or small depending on the size needed. 

2. Evaluation: Each individual of the population is then evaluated and its corresponding 

fitness is computed. 

3. Selection: This process involves selecting the best individuals and discarding the bad 

ones. The selection is made based on the fitness values. The individuals with higher 

fitness values are more probable to be selected than the ones with low fitnesses. The 

fitter individuals selected are used for the next subsequent generations. 

4. Crossover: This stage involves crossing the selected individuals (called parents) to 

form new individuals (called children). The impression behind crossover is that, the 

children produced inherit the best bits of the individuals. These children are then 

added to the populations. Crossover increases, in average, the quality of the solution 

[8]. 

5. Mutation: In order to avoid repetition of a solution, a little bit randomness is added 

into the genes of the populations otherwise each solution produced will be in the 

initial population. Mutation helps the algorithms to find out new states and this 

reduces the chances of converging to local optima [8].  

6. Repeat: The process is repeated from step two until termination criterion is met. 

GA has many advantages over other conventional optimization algorithms. Some of these 

important advantages include; parallelism and its ability to handle complex optimization 
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problems. Despite its ability to handle optimization problems where the objective fitness 

function is either; linear, continuous, stationary, non-linear, discontinuous, non-stationary, 

etc. [9], GA it still has some disadvantages in selecting the right parameters for the 

algorithms like rate of crossover and mutation, fitness function population, etc. It needs 

careful selection of these parameters for the algorithm to converge [6]. 

1.1.1.2. Evolution Strategy 

Evolution Strategy (ES) was first established by Ingo Rechenberg, Hans-Paul Schwefel and 

other co-workers in the late 1960s and early 1970s in Germany [1]. Traditionally, ES was 

invented for parameter optimization problems [4]. As from the name implies, this algorithm 

is also inspired from the Darwinian evolution of natural selection [10]. In ES, not like GA, 

new individuals are generated without using crossover or any method alike, but instead a 

number of samples with the higher fitness values are selected. The samples with higher 

fitness values are selected and others with less are discarded. The successful of these 

individuals are used for the subsequent generation as parents, and the process continues. ES 

algorithms are simple, heuristic naturally and show very good performance [10]. ES usually 

uses a very low size of population (1 20)  unlike GA and is normally put in use to real-

valued optimization problems [1]. 

In General, ES procedure can be summarized as follows: 

1. Initialization: Here we initialize a population of individuals and each of the 

individuals is associated with an object parameter, a solution and a fitness value. 

However, a population in some instances may only contain one individual [11]. 

2. Selection: After the populations are initialized, one or more individuals called parents 

are selected and are duplicated and recombined to produce new individuals of 

population called children or offsprings. 

3. Mutation: The children called offsprings produced in step 2  are then allowed to go 

through mutation and afterward become new population members. 

4. The original size of the population is regained by the environmental selection [11]. 

 

1.1.1.3. Evolutionary Programming 

Evolutionary Programming (EP) also aims to attain intelligent behavior by means of 

simulated evolution and fits for real-valued function and combinatorial optimization [12]. 

This form of EAs was initially introduced in the United States in the year 1960 by Laurence 
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J. Fogel for the evolution of finite state machine [1]. In Fogel‟s work, mutation operators play 

very vital role in alternating the finite state machines that were being evolved for a particular 

job [1]. In EP no recombination is applied among the individuals, every individual of the 

population precisely produce one offspring through mutation, so the number of parents is 

equal to the number of children. The children combined with the parents produce the total 

number of individuals, and the successful individuals are selected based on a probabilistic 

tournament [13].  

1.2. Metaheuristic Algorithms 

Metaheuristic Algorithms (MAs) are mostly nature-simulated algorithms as they are usually 

based on Darwin‟s theory of evolution [6]. In MAs, selection of solution and randomization 

are the two main important parts. Enough randomization helps the algorithm to keep away 

from being trapped into the local optima as it will search many minima including the global 

optima. Selection of the best solution guarantees the convergence of the system to the global 

minima [6]. 

 

1.2.1. Classifications of Metaheuristic Algorithms 

Metaheuristic Algorithms can be classified depending on which criterion is taken into 

consideration in classifying them. Below are some of the major ways of classifying them. 

1. Nature-inspired and non-nature inspired: Some of the metaheuristic algorithms are 

derived from nature and some are not. Bee Colony Algorithms, Ant Colony 

Algorithms and Genetic Algorithms are some of the algorithms derived from nature 

and hence classified as nature inspired algorithms. On the other hand, Tabu Search is 

a non-nature inspired algorithm. However, to some researches, this method of 

classification is not very vital in the sense that some algorithms hardly be put in one 

of the classes or can be put in both [14]. 

2. Population-based and Trajectory-based: Population-based algorithms are algorithms 

that operate on a population of solution at any time. Genetic Algorithm and Particle 

Swarm Optimization are good example of population based algorithms as they use a 

set of strings and multiple agents or particles, respectively. On the other hand, 

Trajectory-based algorithms work on a single solution at any time and includes; 

Simulated Annealing, Tabu Search, etc. [6]. 
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3. Memory and Memory-less: Some metaheuristic algorithms have memory and make 

use of their search history and some have no memory. The memory-less algorithms 

only apply the current knowledge of the search process in order to ascertain the 

subsequent action. They do Markov Chain process [14].  

 

1.2.2. Major Metaheuristic Algorithms 

Since the advent of EAs around 1970s, a lot of metaheuristic algorithms are being introduced 

in order to overcome the shortcomings associated with the present numerical algorithms in 

finding the solution of difficult optimization problems [15]. Major algorithms include GA, 

ant colony algorithms (ACO), artificial bee colony algorithm (ABC), simulated annealing 

(SA), harmony search (HS), firefly algorithm (FA), particle swarm optimization (PSO), and 

so on. In this work, four of these metaheuristic algorithms which include; GA, SA, ABC and 

ACO will be discussed in the remaining part of this thesis and the process of their 

implementation in 1-D setting will be presented later in the report.  

1.2.2.1. Genetic Algorithm 

GA is inspired by the natural selection theory of Charles Darwin based on biological 

evolution. In the field of artificial and adaptive systems, the use of genetic operators that 

includes; selection, crossover and mutation, and recombination as a basic of GA for solving 

problems was first used by John Holland [6]. GA has been used in solving many optimization 

problems [6]. The whole ideas behind GA involve encoding the optimization functions to 

signify chromosomes, maneuver these chromosomes which can be either bits arrays or 

character arrays by the use of GA operators, and uses selection techniques to obtain good 

solutions to the optimization problems. However, after a termination criteria is met the final 

result is decoded to obtain the result.  

In GA, good choice of fitness function is very vital for deciding the selection criterion to be 

utilized. In GA for function minimization, fitness values can be obtained using Eq. (1.1).  

( ),F A f x                                                                                                                         (1.1) 

where A  is a constant value that leads F to be positive if selected to be greater than ( )f x . 

Usually, if A  is selected to be zero then, the aim is to maximize ( )f x  and afterwards 

minimize the function .F  Fitness functions are not only defined in this way, there are many 
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other ways [6]. One frequently used of them is to use individual fitness in relation to the total 

population given in Eq. (1.2). 

1

( )
( ) ,

( )

i
i N

ii

f
F x

f









                                                                                                              (1.2) 

where i  represents the individual chromosome solutions and N  is the total population size 

[6]. 

Crossover and mutation are two important operators. Crossover is having the higher 

probability and is done by swapping the segments positions of the two chromosomes 

interchangeably at random. Crossover can be at various points in a chromosome. Fig. 1.2 

shows a single point crossover [6].   

111 1

1 1 11

1000

000 0

Parent gene pair (before crossover)

111 1

1 1 10

0100

000 1

Child gene pair (after crossover)
 

Figure 1.2: Genetic Algorithm single-point random point crossover. 

 

Mutation is operated by a randomly selected one of the chromosomes bit and flipped. 

Probability of mutation, unlike crossover, is usually selected to be very small. Fig. 1.3 shows 

a simple mutation technique by flipping. 
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111 11000

011 11000

Original gene (before mutation)

New gene (after mutation)  

Figure 1.3: Genetic Algorithm mutation technique by selecting a bit randomly. 

 

GA utilizes parallelism and has the ability to handle many complex optimization problems 

where the objective fitness function is either; linear, continuous, stationary, non-linear, 

discontinuous, non-stationary, etc. [9].  GA has some disadvantages as well in selecting the 

right parameters for the algorithms like rate of crossover and mutation, fitness function 

population, etc. It needs careful selection of these parameters for the algorithm to converge 

[6]. 

1.2.2.2.  Simulated Annealing 

SA is inspired by the annealing process of metal [16]. SA concerns the situation happening in 

metal when heated to a very high temperature and then allow the temperature to drop. This 

process usually causes the physical properties of the metal to change due to the change in the 

structure of the metal internally. The metal after gets cooled attains its new structure [17]. SA 

algorithm, for solving optimization problem was first introduced by Kirkpatrick and 

colleagues in 1983 to solve optimization problems. The main advantage of this algorithm is 

to overcome the shortcomings of some of the search methods, like gradient based, of 

converging to the local optima [6]. SA algorithm usually converges to global minima if 

sufficient randomness is utilized with a good cooling schedule. In SA algorithm, the idea of 

Markov chain is adopted by accepting any change that causes improvement in the objective 

function and some do not [17]. In an optimization problem, dealing with minimizing, any 

adjustment that reduces the objective function is accepted and those cause increase are also 

accepted based on the probability derived from Eq. (1.3). 

,B

E

k Tp e




                                                                                                                              (1.3) 
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where E is the change in energy, Bk  is the Boltzmann‟s constant and for simplicity is set to 

1, and T is the temperature for controlling the annealing process. In order to relate E  with 

f  which is the change in objective function, Eq. (1.4) is used. 

,E f                                                                                                                                (1.4) 

where  is a real constant and is set to be 1. Therefore, Eq. (1.3) becomes: 

.
f

Tp e




                                                                                                                                (1.5) 

This is the probability for accepting any adjustment that causes change in the objective 

function and is also called transition probability [6]. In summary, SA can be described below 

[17]: 

1. Stating the initial temperature: From Eq. (1.5), we can easily analyze the following: 

 as T   then 1P  . 

 as 0T   then 0P .  

So, at higher temperature, the probability of accepting any change in the objective 

function is very high, which means any worth solution is accepted but as the 

temperature approaches zero, so as the probability also, and under this condition 

rarely worth solutions will be accepted. Care should be taken in stating the initial 

temperature in order not to make the algorithm very slow or converge to the local 

optima [6]. 

2. Defining final temperature: The final temperature is stated to be very low

10 5(10 10 ) 
, so that no any worth change can be accepted [6]. 

3. Generate initial random solution. 

4. Then looping continues until the stopping requirement is satisfied. It usually holds 

when the system gets cooled, that is when the final temperature is reached or when a 

very good fitness is obtained. 

5. Then a neighbor solution is obtained from the current solution. 

6. Decision is made on the new solution, if it could be accepted or not. 

7. The temperature of the system is then reduced. 

8. Examining the condition for the system to converge, if not repeat from step 4 

9. Stop. 
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1.2.2.3. Artificial Bee Colony Algorithm 

Exactly thirteen years after ACO algorithm was proposed by M. Dorigo, another important 

stochastic, population-based evolutionary algorithm was proposed in 2005 by Karaboga, 

called ABC algorithm. This algorithm is stimulated by the honey bee foraging behavior [18]. 

ABC algorithm is simple, robust and very flexible. In ABC, three components are important 

and they include: food source, employed and unemployed forager [19]. 

1. Food source: Each of the forager bees will choose a food source based on the 

properties it examines on the food source. These properties include; proximity to the 

hive, the amount of energy it contains, nectar taste, and simplicity of exploiting the 

energy. All these factors are represented by a single magnitude called quality or 

fitness. 

2. Employed forager: These bees are sent to the food sources which are already explored 

to exploit. They communicate with the remaining bees in the hive about the distance, 

profitability and direction of the food source. 

3. Unemployed forager: The bees staying in the hive are called unemployed bees and are 

divided into onlookers and scouts. A scout bee searches food source randomly in the 

surroundings. Onlooker bee‟s exploration is guided by the information received from 

the employed bee. 

In ABC algorithms, the food sources are initialized randomly using Eq. (1.6) below. 

min max min(0,1)( ),i j j jx x rand x x  
                                                                                        

(1.6) 

where 1,.....,i NF and 1,......, .j D NF  is the number of food source and D is the number 

of parameter to be optimized, minx   and maxx  represent the minimum and maximum range of 

the search space, respectively [18]. Each of the employed bees is directed to one source and 

carries the information about the quality of that source to the remaining bees in the hive. Each 

of the employed bees goes back to the neighborhood of its current source and checks for 

another source using Eq. (1.7) and evaluates its nectar [20]. 

( ),ij ij ij ij kjv x x x                                                                                                               (1.7) 

where j  stands for a random integer ranges between 1 to D , i.e. 1,...,j D and k j  

always and is a randomly chosen index, ( 1,1)ij rand   . However, after finding the second 

solution, a greedy selection is now applied between the two solutions in order to have a better 
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solution for the following generation. These better positions for each employed bee are 

selected by the onlooker in the hive based on their fitness values. The probability of selecting 

each position is stated in Eq. (1.8) below [20]: 

1

,i
i NF

i

i

fit
p

fit





                                                                                                                         (1.8) 

where ifit is the fitness value of the food source which assigns the quality of the solution. 

In general ABC stages can be summarized below: 

1. State the values of control parameters which include; limit of the scout and the 

number of employed bees which is always equal to number of food sources.  

2. Initialization: Here the position of the food sources are initialized which are the 

probable solutions of the optimization problem. 

3. The employed bees are positioned on the food sources initialized and they evaluate 

their nectar. 

4. The onlooker bees are positioned on the food source initialized and they evaluate their 

nectar. 

5. The scout bees are then directed to randomly search for food sources. 

6. Memorize the best food sources. 

7. Stop. 

 

1.2.2.4. Ant Colony Algorithm 

In the year 1992, the ideas of ACO were put forward by the Italian researcher, Marco Dorigo 

and his colleagues as part of partial fulfillment for the award of his PhD thesis. Since then 

many difficult optimization problems are successfully being tackled by the use of this multi-

agent ant-based approach [21]. ACO algorithms as the name implies has been stimulated by 

the actions of real living ants, especially by their foraging behavior, particularly their ability 

to determine from many the shortest path between their food sources and nest [22].  

As the same time as the ants travel from their food sources to the nest and from the nest back 

to their food sources, they form on their way a trail by putting down on the ground a chemical 

substance called pheromone. Ants have the ability to sense pheromone and in probability 

choose the way to follow with the higher concentration of pheromone. The pheromone trail 

laid can guide the other ants for locating the food sources found by their mates and they 
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mostly stop searching at random, but instead going along the trail, strengthening the 

pheromone trail while going back if subsequently they find source of food [21]. Fig. 1.4 

shows a typical example of how ants finds shortest route from their nest to food source. Ants 

coming from their food source separate at decision point A , randomly choose the upper path 

and some choose the lower [23]. The ants on the lower path, which is shorter, reach the food 

source and return to the colony before the ants that follow the upper and hence the 

pheromone on their way becomes more accumulated. The following ants from the colony at 

junction A will sense the pheromone from both ways and tend to follow the way that has 

more pheromone which is the lower path. Gradually, majority of the ants will be following 

the lower path since it is the shorter path. 

 

Ant

A B

Pheromone

Colony Food source

 

Figure 1.4: Ants find a shortest route. 

 

ACO will be discussed in detail in the next chapter 
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CHAPTER TWO 

 

PROBLEM STATEMENT 

 

 

2.1. Introduction 

With the advent of evolutionary algorithms as alternative approaches for solving many 

optimization problems, great achievements have been recorded to the solutions of many non-

linear programming (NP) hard problems [24]. These algorithms include, but not limited to, 

the algorithms we explained before. These algorithms are being applied for solving 1-D 

optimization problems like: Travelling Salesman Problem (TSP) [21], quadratic assignment 

problem (QAP), sequential ordering problem (SOP) [21], etc. as well as 2-D problems that 

include Image Edge detection, Image clustering, etc.  

 

In this thesis work, the performance of the four algorithms discussed in Chapter one which 

comprises GA, SA, ABC and ACO Algorithms will be implemented in TSP which is a 1-D 

problem and ACO will be applied for Edge Detection problem which is a 2-D problem. 

 

TSP is a 1-D optimization problem that belongs to the class of Non-Linear Programming 

(NP-hard) problem of a salesman who wants to find the shortest closed tour of visiting all the 

cities exactly once and returning back to the starting point. TSP has many applications that 

include planning, logistics and manufacture of microchips. It can also be used in many areas 

such as; DNA sequencing as a sub-problem [21]. TSP is widely regarded problem according 

to the literature and has been considered by a lot of research works. TSP is selected to test the 

performance of these algorithms because of the following reasons: 

1. It is being considered by researchers as one of the most important NP-hard problems 

that happen to be in various areas of application. 

2. It is a problem in which the algorithms are not confused by many technicalities.  

3. TSP is regarded by researches to be a standard laboratory for testing new algorithms. 

The performance of any new algorithms in TSP is used to measure its usefulness. 

 

On the other hand, edge detection problem is a 2-D problem of finding areas where there are 

sudden changes in intensity which can be used in illustrating border lines in images. This 

important property, therefore, enables edge detection to be very important in many areas 
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including object or pattern recognition, image analysis, computer vision, and image 

processing [25]. ACO among the four algorithms, applied for 1-D case, is selected to be 

applied for 2-D case and the reason for that because it provides the best performance among 

the others in the 1-D case. 

 

The remaining part of this chapter is devoted to the explanation of the two optimization 

problems to be considered for our work which are TSP and Edge Detection. 

 

2.2. Travelling Salesman Problem                                 

TSP is a 1-D NP-hard problem of finding the shortest closed tour of a visit for a set of cities 

given, and each city is visited exactly once. This problem is consort with distances between 

cities, or sometimes called costs. The salesman is expected to build a closed tour with 

minimum cost. The closed tour signifies a round-trip where by the salesman starts from a 

particular city and finally returns to that starting city after visiting all the cities and each city 

is visited once [26]. TSP is one of the discrete combinatorial optimization problems and can 

be represented using a weighted graph that connects all the cities, given as ( , ),G V A  where 

V  stands for the set of n  cities, i.e.  1, , ,nV v v  and A  is the set of all paths (edges) or 

arcs that connects all cities. The set, A can be donated as  ( , ) : ,A s t s t V  and each of the 

edges ( , )s t A  is given a distance ,s td  as the distance between two cities s  and t . If in any 

given TSP and in at least one of the arcs , ,s t t sd d , the problem is asymmetric TSP. Else if 

for all arcs , ,s t t sd d  the problem is called symmetrical TSP. Generally, TSP is aimed to 

compute the permutation   of the node indices  1,2,3, , n
 
which minimizes the equation 

given in Eq. (2.1) below: 

1

( ), ( 1) ( ), (1)

1

( ) .
n

i i n

i

f d d   






                                                                                                (2.1) 

TSP has been solved using numerous methods which are usually of two categories; 

approximation and exact algorithms [27]. Approximation methods use heuristics and iterative 

improvement processes, unlike exact algorithms that use mathematical models. Exact 

algorithms attempt to find a good solution of an optimization problem and attest their 

optimality when tested for small instances. Approximation algorithms have the advantage of 

producing satisfactorily good solutions within short time [28].  Approximation algorithms can 

be divided into constructive heuristics and improvement heuristics. Solving TSP using 
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Insertion heuristic, Greedy heuristic, nearest neighbor, etc. are all constructive heuristic 

methods, while optk  , EAs, and metaheuristic based algorithms like SA, ABC, ACO, etc. 

are all belong to improvement heuristics. On the other hand, exact methods based instances 

include: Lagrangian Relaxation, Integer Linear Programming, etc. [26]. 

 

2.2.1. Genetic Algorithm for Travelling Salesman Problem 

GA has been applied for solving many optimization problems. TSP is one of the common 

problems where such algorithm has been applied [29]. The way we applied it for TSP is 

summarized below: 

Populations of individuals‟ solutions are initially created randomly which are regarded as our 

tours and their codification is called chromosome. This chromosome is an arrangement of 

symbols that represent cities. These tours are our initial solutions and each one signifies a 

closed path of visiting all the cities. Two of these tours which have the minimum distance 

(highest fitness) were selected to be the parent-tours and crosses together to produce another 

two solutions called children-tours, which expectantly will be better that the two parents 

solutions. The selection criteria used is similar to Eq. (1.2). The crossover used in our 

analysis is a single point crossover explained in Section 1.2.2.1 of Chapter One because it is 

simple and gives good results. In order to avoid generating a solution that is identical to any 

of the parents, the new solutions produced were mutated. The mutation used is swap 

mutation; where by the sequence of the two cities codified in the chromosome were 

interchanged. The two longer tours in the population were substituted by the two children 

tours produced. The process is repeated by continually generating new children tours until 

termination criterion is met. 

 

Even though, this algorithm shows ability to solve TSP but the results obtained (as shown in 

Chapter 4) are not satisfactory and hence another algorithm called SA, which is inspired by 

the annealing process of metal, was tested to solve the same problem. The implementation 

process is detailed below. 

 

2.2.2. Simulated Annealing for Travelling Salesman Problem 

SA is also another metaheuristic algorithm which, if implemented properly and took care of 

all the parameters selection, can ensure near optimal solution of the TSP. Below, the 

summary of procedure we used in applying SA to solution of TSP is given. 
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The initial temperature of the system was stated to be the same as the maximum cost (worth 

cost) and allowed to drop quickly until 50%  of the worth solutions were accepted, and then 

the temperature was used as our initial temperature. The solution was represented as a series 

of nodes and these nodes are arranged in the order they were visited. Each node is written 

once in the list. In this solution representation node 1 always comes the first but is usually not 

stated in the list but is assumed to be. The last node is also1. For example if the solution is 

represented by the order: “ 4, 5, 3, 6, 2,1” it means the tour is started from city 1 to city 

4, 5, 3, 6, 2  and lastly go back to city1. A feasible solution to the TSP was found using 

greedy method; it begins the tour with the first node and to the most nearest node until the 

tour is completed. At each node find the closest node to it and not visited before, until a 

closed tour is formed. This solution obtained is the initial solution. From this solution, a 

neighbor solution is produced by randomly interchanging two pairs of nodes. Node 1 is not 

among the nodes to be interchange always. For example, if position 3  and 2  are randomly 

selected to swap, then the new tour will be “ 4, 5, 2, 6, 3,1”. This neighbor solution, which is 

the new route produced (“ 4, 5, 2, 6, 3,1”), is compared with the current route (“ 4, 5, 3, 6, 2,1

”). If the length of the new route is shorter than the current route, the new route becomes the 

current route and is checked whether it is shorter than the previous routes found so far. The 

new route is saved as the best route if it is shorter than all the routes found so far. If the length 

of the new route is higher than the old route, the difference in length between the two tours is 

used to calculate the transition probability explained in (1.5) for accepting or rejecting the 

new route. A random number generated between „ 0 ‟ and „1‟ is compared with this transition 

probability. If the probability value is greater than the random number, the change is accepted 

and the new route becomes the current one, otherwise, it is rejected and the old route is 

maintained. The temperature of the system is then updated using *T alpha T where alpha  

is the geometric annealing factor. The algorithm continues until the temperature approaches 

zero.  

 

The results obtained using this algorithm show significant improvement when compared with 

those of the GA, but since ABC algorithm was also successfully implemented for various 

instances in solving TSP problem and was found to be robust in many optimization problems, 

it is also introduced to solve the same data sets of the problems.  
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2.2.3. Artificial Bee Colony for Travelling Salesman Problem 

ABC Algorithm is inspired by the foraging behavior of honey bees and has been applied to 

solve many optimization problems. Here, we introduced the way we used in solving the TSP 

[26].  

A number of bees, ( )N bee , which is equal to the same number of cities, is initialized. 

Afterwards bees are allowed to build a closed tour randomly. A cycle is made after all the 

bees have completed the tour. In the hive each bee, before leaving, randomly selects one of 

the paths explored by another bee based on the dances watched. This path called “

Preferred path ” denoted as , will lead the bee in forming its tour. At city i , a bee will 

have two sets of paths to go, which are; “ allowed city ” denoted as ( )iA t , and “

preferred city ” denoted as ( )iF t . ( )iA t  contains all the cities that can be visited from i  

including that of ( )iF t , and ( )iF t  is a set of a single city which is suggested to be visited by 

  from i . Let ( )n  represents the n th  element in . From the hive at the start of the tour 

 (0) (1)HF  and if at a given time t , ( )n is the recently visited city then

 ( ) ( ) ( 1)nF t n   .  

Throughout the foraging activity, a bee goes from one city to another up to the end.  Here, the 

transition from city i  to j  is guided by transition rule; which is based on the arc fitness and 

heuristic distance. At a given time, the arc fitness of all the paths to cities, that can be visited 

from that specific city, is evaluated and the arc which belongs to the preferred 

Preferred path  is given the highest value. This causes the bee to select the city which is 

part of the Preferred path  to visit next.  However, for the heuristic distance effect, a bee 

always chooses the closest city to its current position to visit. The transition rule for moving 

from city i  to j  is defined as: 

( )

( ). ( )
, if ( )

( ). ( )( )

0, otherwise

i

ij ij

i
bee

il ij
ij

l A t

t t
j A t

t tp t

 

 

 

 





 





                                                                    

(2.2)  

where ( )ij t  is the arc-fitness from city i  to j ,   and   are parameters that control the 

influence of  arc-fitness and heuristic distance respectively. 
1

ij

ijd
   is the heuristic distance. 

The arc-fitness is given by: 
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


     
  

                                       (2.3) 

From this equation ( ) ( )i iA t F t  is set to „1‟ when the case is common in both ( )iA t  and

( )iF t , or else set to „ 0 ‟. The parameter  stands for the probability of selecting a city in the

Preferred path .  

Supposing a bee has five cities to visit, as  1,2,3,4,5V  . It starts from hive, H and is 

provided with a Preferred path  as,  “ 2,1,3,4,5,2 ”. This path is witnessed from one of 

the bees via waggle dance in the hive. In order to push the bee to move to the first city in  ,  

the distance between the hive and any other city is assumed the same. In this example, 

heuristic distance has no effect. At 0t   a bee leaves its hive and go the first city to be visited 

and from  “ 2,1,3,4,5,2 ”, two city sets can be obtained. These sets are: 

 (0) 1,2,3,4,5HA   and  (0) 2HF  . The fitness values are allocated on all the arcs 

connecting the hive and cities in (0)HA .  is given to arc ( ,2)H  and 
(1 )

4


 is given to: 

( ,1),( ,3),( ,4)H H H  and ( ,5)H . Usually, the fitness values at a given time t  from city i  can 

be written in matrix, ( )i t  having a size of 1 ( )iA t  and entries, symbolized as ij , 

represent the arc fitness from city i  to j . Below is a matrix for the arc fitness from hive to 

city j at 0t   and (0)Hj A . 1 2 3 4 5(0) [ ]H H H H H H       or 

1 1 1 1

4 4 4 4

   


    
 
 

. The sum of all the arc fitness values associated to the paths 

connecting i  to the other cities is „1‟ as shown below: 

( )

( ) 1.
i

ij

j A t

t


                                                                                                                       (2.4) 

If city 2  is previously selected to be visited at 1t  ,  2( ) 1,3,4,5A t   and  2 (1) 1F  , the arc 

fitness values matrix will be: 

2

1 1 1
(1)

3 3 3

  


   
   

 
. This idea always directs the bee towards following the path 

which is part of the preferred by assigning the highest fitness value which is   and all the 

rest as (1  ). 
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Suppose 5  is selected at 1t  , then at 2t   the sets of allowed cities will be  5(2) 1,3,4A   

and  5(3) 2F  . Under this condition all the arcs connecting to 5  with 5(2)A  cities will have 

equal values of fitnesses as shown below: 

 5 51 53 54

1 1 1
(2)

3 3 3
  

 
    

 
. 

At the hive, a bee dances if and only if it finds a shorter path compared to the earlier tours it 

made. So, not all the bees dance in the hive when returned. The period taken by a bee i  to 

dance in the hive, when a tour better than its previous tours is found, is given as 

.

. ,i
i S

col

pf
D K

pf
                                                                                                                      (2.5) 

where  
1

i

i

pf
L

  is the profitability of a bee i , SK  is the scaling factor of the dance and 

.

1 1

1 1 1n n

col i

i i i

pf pf
n n L 

   , is the average profitability of the bees that perform waggle dances 

in the hive and n  stands for the number of bees that dance. 

However, before any bee selects a tour to follow, it decides either to follow or not with the 

probability of follow, .folp , given as: 

Table 2.1: Probability of follow. 

Profitability score 
.folp  

.0.5i colpf f  0.60  

. .0.5 0.65col i colpf pf pf   0.20  

. .0.65 0.85col i colpf pf pf   0.02  

.0.85 col ipf pf  0.00  

 

The probability of follow from the Table 2.1 is changing with the change in ipf  and .colpf . In 

a situation where by the . 0.00folp   a bee will trace back its previous path. It will not select 

any new path. 
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This algorithm presents better results when compared with the results obtained by GA and 

SA. However, ACO is another optimization algorithm which can easily be applied to solving 

TSP.  

 

2.2.4. Ant Colony Optimization for Travelling Salesman Problem 

ACO algorithm is inspired by the foraging behavior of ants, and it has been applied for 

solving many optimization problems. Here we applied it to solve TSP as follows: 

Initially, all ants were placed on the cities randomly and the initial values of the pheromone 

trail (0) are assigned on each city. Each ant will use the transition formula given below to 

move from one city to another until it returns to the starting city (node). Ant k uses Eq. (2.6) 

to define the probability of moving from city i  to j . 

( ). ( )
, if

( ). ( )( )

0, otherwise

k
i

ij ij k

i
k

il ij
ij

l N

t t
j N

t tp t

 

 

 

 





 



 ,                                                                          (2.6) 

where 
k

iN  is the set of all cities that can be visited from i  excluding the cities passed. It can 

be simply written as  k k

iN N tabu  ,  and   are constant values used to control the 

influence of pheromone and visibility, respectively, and ij

ij

v

d
   is the visibility, where ijd is 

the distance between cities i , j  and v  is a constant.  

The next step, after all the ants have finished building the tours, all the paths are globally 

updated using: 

1

( ) ( ) ,
n

k

ij ij ij

k

t n t  


                                                                                                      (2.7) 

where  is the evaporation coefficient and   is a constant value (0 1) , 

if belongs to the tour made by

0, otherwise

k
kij

Q
ij k

L




  



 , 

where kL is the total tour length performed by ant k  and Q  is a constant value associated 

with the amount of trails deposited. 
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The length of the tours obtained using this algorithm happens to be shorter than those of the 

other three algorithms. It gives minimum costs than GA, SA and ABC and, hence, we will 

use the ACO algorithm in detecting the edges of image since it is an optimization problem. 

 

2.3. Edge Detection 

Edge detection is considered as an important tool in image processing. It has been used an 

important pre-processing tool in feature extraction and object segmentation [30]. Edges are 

regions where there are sudden changes in intensity and are used to define boundaries in an 

image. Through the edge detection process, useful information in an image are reserved and 

useless ones are eliminated [31]. Researchers have succeeded in introducing a lot of edge 

detection methods and each one is purposed to fit a distinct types of edges. Some of these 

methods are; Canny, Laplacian of Gaussian, Prewitt operator, Robert operator, Sobel operator 

[32]. Up to our knowledge, Canny always provides the best results. Usually, these operators 

are matrix-based and they are used to perform gradient operation on image area in order to 

find the intensity of variance between pixels [30]. When dealing with these operators for edge 

detection usually four steps are followed; 

1. Smoothing: This is the process of removing the available noise in the image. Care 

should be taken in smoothing an image in order not to damage some edges. 

2. Enhancement: Enhancement or sharpening is applied after smoothing to improve the 

quality of the image‟s edges. A filter can be used for this purpose. 

3. Localization: Two important tools are usually needed in this steps which are; thinning 

and linking. Localization involves finding the precise location of an edge.  

4. Detection: This involves using process like intensity threshold to finally obtain the 

edge pixels. 

Recently a lot of research work has shown the ability of evolutionary algorithms, such as 

ACO and ABC, to be effectively used for tackling edge detection problems. Examples of 

these works include, the work in [18] for edge detection of CNN based imaging sensors using 

ABC for designing a novel cloning template. Also, the work in [25] for solving edge 

detection problems, especially, with noisy images using ACO and DWT. The results obtained 

using these algorithms show significant improvement.    
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2.3.1. Ant Colony Optimization for Edge Detection 

One of several techniques that are successfully being applied for image edge detection 

problem is the ACO algorithms [33]. This optimization technique is based on the foraging 

behavior of living ants [6]. In this technique, ants deposit a chemical substance, called 

pheromone, on the ground which is used for communication among them. Many optimization 

problems have been solved using ACO [26]. ACO is applied in edge detection problem to 

obtain the edge information; which is very vital in understanding the information stored in the 

image [34]. Such method concerns the ants movements driven by the local variation of image 

pixels to store positions where there is a change in the intensity value in their memory and 

update the pheromone matrix. It starts with initialization state where the pheromone matrix is 

initialized and the heuristic matrix is calculated. The other stages are: construction, updating 

and decision. These stages are given in detailed below: 

 

 

Table 2.2: ACO algorithm for Edge Detection. 

 

1.  Initialization phase 

     Define the initial pheromone matrix, calculate the heuristic matrix. 

2. Construction phase 

for 1:n N  place all the ants on the image randomly. 

     for every movement 1:l L  

           for  every ant 1:k K  

                 move to the next pixel in its neighborhood and update pheromone locally. 

            end 

      end 

    update visited pixels 

end 

 

3. Decision phase 

binary decision is finally made on the updated pheromone matrix on each entry 

weather is an edge or not to obtain the image edge detected results.  
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2.3.1.1. Initialization stage 

In the initialization stage, the artificial ants are randomly dispatched on the image. A 

pheromone matrix whose size is the same as that of the input image is formed. The entries of 

this matrix are set to very small initial values and denoted as (0) . Another matrix called 

heuristic matrix is also formed, the entries of this matrix are calculated based on the image 

intensity values of the pixels which rely on clique. The heuristic information at pixel location 

( , )i j is defined as: 

,

,

( )
,

c i j

i j

V I

Z
                                                                                                                         (2.8) 

where 
,( )c i jV I  is the variation in intensity value between the pixel 

,i jI  and the group of local 

neighboring pixels and computed as shown in Fig. 2.1, Z  is the normalization coefficient and 

is given as, 
,( )

th th

c i j

i m row j n col

Z V I
 

    . 
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Figure 2.1: Neighbors of pixels ,i jI . 

 

The variation in intensity given in Eq. (2.8) is computed using these neighbor pixels as, 
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This variation is higher when the pixels are located at edges. However, the image borders do 

not have complete neighbor pixels, for example pixel positioned at (1,1)  does not possess 

pixels located at the north and west of it and, therefore, the clique is not complete. These 

border pixels are assigned a very small value so that the area will be less attractive for ants. 

Equations (2.10) – (2.13) are carefully taken into consideration in finding the function, (.)f , 

stated in Eq. (2.9). 

( ) for 0,f x x x                                                                                                         (2.10) 

2( ) for 0,f x x x                                                                                                      (2.11) 

sin for 0
( ) ,2

0 else

x
x

f x






  
   

  



                                                                                 (2.12) 
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0 else

x
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xf x









  
      




                                                                           (2.13) 

 

Where   is a parameter that is used to change the shape of these functions [34].  

 

2.3.1.2. Construction stage 

During this stage, at every thn construction step, an ant is randomly chosen from the total ant 

number, K . This ant moves from one point to another on the image for L  steps. The 

transition of ant from pixel location ( , )l m to ( , )i j  is based on the equation below: 

( , )

( 1)

, ,( )

( , ),( , ) ( 1)

, ,( , )

( ) ( )
,

( ) ( )
l m

n

i j i jn

l m i j n

i j i ji j
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 
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 

 










                                                                                (2.14)        

where 
( 1)

( , )

n

i j 
 represents the quantity of pheromone trail at pixel ( , )i j , ,i j is the heuristic 

information at pixel ( , )i j ,  and   are parameters that stand for the influence of pheromone 

trail and heuristic information, respectively. ( , )l m  represents all the pixels that can be visited 

from pixel ( , )l m , i.e. its neighborhood pixels. 
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2.3.1.3. Update stage 

During this stage, two types of pheromone update are usually carried out; which are local 

update and global update. Local update is performed after each ant, k , moves during the 

construction step. This update is performed using Eq. (2.15), 

( 1) ( )

, ,( 1)

, ( 1)

,

(1 ). . , if ( , ) is visited by ant
,

, otherwise

n k th

i j i jn

i j n

i j

i j k  










   
 


                                       (2.15) 

where  is the pheromone evaporation rate and 
( )

,

k

i j  is determined from the heuristic 

information, i.e. 
( )

, ,

k

i j i j  . The global update is done after all the ants have finished the 

movement steps. The update is given in Eq. (2.16) as, 

( ) ( 1) (0)

, , ,(1 ). . ,n n

i j i j i j                                                                                                       (2.16) 

where  is the pheromone decay coefficient and 
(0)

,i j  is the initial pheromone matrix at pixel 

location ( , )i j .  

2.3.1.4. Decision stage 

In this stage, the updated pheromone matrix is used to obtain the detected edges by defining a 

threshold value, hT . Binary decision is usually made on each pixel of the final pheromone 

matrix ( )N  to verify if it is an edge or not. The threshold, hT , is computed adaptively based 

on the method in [34]. This process is as follows: 

Step 1: The initial threshold 
(0)

hT  is computed at 0iter  as, 

1 2

( )

,

1 1(0)

1 2

,

M M
N

i j

i j

hT
M M


 




                                                                                                               (2.17) 

where 1M  and 2M
 
are the row and column sizes of the pheromone matrix, respectively, and 

they also denote the size of the original image. 

Step 2: The entries of the pheromone matrix ( )N  are then grouped into two; the first group 

contains all the entries below the threshold value 
( ) ,iter

hT
 
and the second group contains the 

rest of the entries. The mean value of these two groups of pixels is then computed as: 
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Step 3: set iteration as 1,iter iter   and the threshold value hT is updated using: 

( ) ( )
( )

2

iter iter
iter L U

h

m m
T


                                                                                                          (2.20) 

Step 4: In this step, binary decision is made on the pixels. If 
( ) ( 1) ,iter n

h hT T e   terminate the 

algorithm and check each pixel if it is an edge or not. Else go back to step 2. The decision on 

pixel ,i jE  is made based on the standard below: 

( ) ( )

,

,

1, if

0, otherwise

N iter

i j

i j

T
E

 
 


                                                                                                  (2.21) 

where e  is the decision tolerance value and usually is selected to be a small positive number.  
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CHAPTER THREE 

 

PROPOSED ALGORITHMS  

 

 

3.1. Overview 

Even though the ACO algorithm has shown significant performance in edge detection 

problem, this performance can be enhanced further by applying a DWT on the input image. 

This technique is presented in detail in the rest of this chapter. 

 

3.2. The Proposed Algorithms 

The edge detection method explained in Section 2.3.1 shows ability to detect edges of an 

image. However, some results obtained using this method do not have enough information to 

clarify the image concerned, especially, when the edge results are hampered by breaking up 

or fragmentation, or when the original image is contaminated with noise. To overcome these 

problems, we propose a new algorithm based on DWT and ACO. The DWT is applied to the 

image as the preprocessing stage before the conventional ACO algorithm is applied. The edge 

detection results obtained using this technique show substantial improvements, more 

especially, when the original image is noisy. Also, another approach is proposed to improve 

the edge detection results by detecting the edges of each of the four sub-images obtained by 

decomposing the original image using 2D-DWT, independently, and then, using the 2D-

inverse DWT (2D-IDWT), the detected edges are combined. The two proposed algorithms 

are presented below. 

3.2.1. Discrete Wavelet Transform-based ACO for Edge Detection  

In an attempt to improve the edge detection results obtained by the conventional ACO, the 

concept of wavelet transform is introduced into the system. Wavelet transform is a process of 

decomposing, analyzing and displaying the processed major components of an image and 

leaving the rest of the components without processing [25].   Wavelet transform has been 

applied in various edge detection techniques [35]. In an effort to improve edge detection 

results, we propose applying DWT to the image as a preprocessing step before applying the 

conventional ACO algorithm in order to be capable of detecting the undetected or badly 
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detected edges, especially, when the image is contaminated with noise. Fig. 3.1 shows the 

flowchart of the proposed algorithm. 

Digital Image

Do Discrete

   Wavelet

 Transform

  Dispatch ants on the

 square approximation

     image randomly

pheromone matrix

    initialization

 Determine the

heuristic matrix

 Ants are moved by choosing

 current neighbored position

  pheromone

 matrix update

     All ants

 moved to the

      image?

     Mean

  threshold

value found?

Update pheromone matrix

All iterations

  finished?

Edge pixels

determined

Yes

No

Yes

No

Yes

No

 

Figure 3.1: Flowchart of the proposed Discrete Wavelet Transform-based ACO for Edge 

Detection. 
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As shown in the flowchart above, in this proposed algorithm the output image from the DWT 

is the input image to the conventional edge detection techniques using ACO explained in 

Section 3.2.1. The performance of the proposed algorithm shows clear and significant 

improvement in edge detection results, especially, when the input image is corrupted by 

noise. 

3.2.2. DWT Sub-Band Fusion using ACO for Edge Detection 

Even though the proposed algorithm shows a good capability of detecting edges that may not 

be detected by the conventional ACO, this performance can be enhanced more by using the 

approximation coefficient and the three details coefficients submatrices, resulted from the 

DWT. Each of these four submatrices is processed separately, and the resulting four matrices 

are recombined using the IDWT. The details of this method are below. 

3.2.2.1. Two Dimensional Discrete Wavelet Transform 

The digital image can be decomposed at j  level into four components using 2D-DWT. The 

components are; the approximation coefficient at level 1j   and the three details coefficient 

which includes: horizontal coefficients, vertical coefficients and diagonal coefficients. The 

2D-DWT decomposition of an image is shown in Fig. 3.2, [36, 37]: 
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Figure 3.2: Two-dimensional discrete wavelet image decomposition. 
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 where 2 1  down samples columns of image, jcA  and 1 2  down samples rows; Lo_D  

and Hi_D  are the decomposition low pass filter and high pass filter for convolutions with 

rows and columns of jcA .
 
The components; j+1cA ,

(h)

j+1cD , 
(v)

j+1cD  and 
(d)

j+1cD  are always of the 

same size of the image and they represent the approximation coefficient, the horizontal 

coefficient, the vertical coefficient and the diagonal coefficient matrices, respectively. The 

approximations represent the high scale and components of the image with low frequency 

while the details represent the opposite; low scale components of the high frequency. This 

process involves 1-D convolutions of rows and columns of the image, jcA with the 

decomposition low pass filter, Lo_D and decomposition high pass filter, Hi_D . 

3.2.2.2. Two Dimensional Inverse Discrete Wavelet Transform 

2D-IDWT can be used to reconstruct back the original image from high and low frequency 

components obtained from the decomposition process of 2D-DWT, [36]. 
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Figure 3.3: Two-dimensional discrete wavelet image reconstruction. 

 

where1 2  and 2 1  are for up sampling rows and columns respectively. The stage Lo_R  

signifies the reconstruction low pass filter and Hi_R stands for the reconstruction high pass 

filter.  

These processes of decomposition and recombination of a digital image using 2D-DWT and 

2D-IDWT, respectively, were used in our proposed algorithm. The digital image is 

decomposed in the first stage of the algorithm into four sub images and each of these sub 

images is applied to edge detection algorithm using ACO method explained in Section 3.2.1 

above. The detected edge results of these four sub images are recombined together to produce 
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the final edge detection result using 2D-IDWT. The flowchart of the proposed algorithm is 

shown in Fig. 3.4. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Flow chart of the proposed DWT Sub-Band Fusion using ACO for Edge 

Detection. 
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CHAPTER FOUR 

SIMULATION RESULTS 

 

 

4.1. Overview 

This chapter presents the results that compare the performance of the GA, SA, ABC and 

ACO algorithms in TSP. It also presents the results that compare the performance of the 

proposed algorithm with that of the ACO algorithm in edge detection. MATLAB software 

(version 2012) was used for testing all the algorithms.  

4.2.  Travelling Salesman Problem 

4.2.1.  The Same Number of Cities with Independent Generations 

In this experiment, three different data sets were randomly generated and each of them 

contains 30  cities. Each of these data sets was considered separately and the minimum 

distance of visiting all the 30  cities once was measured using GA, SA, ABC and ACO 

algorithms. All these algorithms were run for 200 independent runs for each of the data sets. 

The positions of the cities and implementation details for each of the algorithms are 

summarized below: 

 

Figure 4.1: Random cities positions of data set 1. 
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Figure 4.2: Random cities positions of data set 2.  

 

 

 

Figure 4.3: Random cities positions of data set 3.  
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All of the algorithms are implemented with the following parameters: Population size is set 

equal to the number of cities (30). For the GA: Swap mutation and single point crossover are 

used. For the SA algorithms: The geometric annealing factor 0.72alpha  . For the ABC 

algorithm; 30beeN  , 200MaxBC  , 1  , 10  and 0.99  . For the ACO algorithm: 

The number of ants 30m  , 1  , 3.5  , 1init  , 10000Q   and 10000v  . From Table 

4.1 and Fig. 4.4, it is noted that at each dataset, the ACO algorithm performs much better than 

GA and SA (on average, 0.601and 0.117  normalized distances, respectively). Compared to 

the ABC algorithm, the ACO algorithm performs exactly the same as the ABC for the first 

dataset and better in the second and third datasets (on average, the ACO is better than the 

ABC algorithm by 0.0471  normalized distances). Hence, for such experiment the ACO 

algorithm shows significant performance compared to the other algorithms.  

 

Table 4.1: Experimental results to three data sets each contain 30 random cities. 

Algorithm 

 

Data set 

 

GA 

 

SA 

 

ABC 

 

ACO 

1 4.9605 4.3528 4.2166 4.2166 

2 5.3121 4.9101 4.8588 4.7823 

3 5.0694 4.6256 4.6041 4.5392 

Average 

Tour 5.114 4.6295 4.5598 4.5127 
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Figure 4.4: Minimum normalized distance obtained using GA, SA, ABC and ACO for the 

three data sets. 

 

However, to be more satisfied with the performance of ACO in TSP compared to the others, 

three new datasets containing 50, 100 and 150 random cities, respectively, are generated. The 

experiments were repeated using the same algorithms and the same implementation 

parameters. The cities positions for each of these data sets are shown in Figs. 4.5 - 4.7, 

respectively. The obtained results are shown in the Table 4.2 for all the algorithms. 
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Figure 4.5: Random cities positions of data set 1 containing 50 cities 

 

 

 

Figure 4.6: Random cities positions of data set 2 containing 100 cities 
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Figure 4.7: Random cities positions of data set 3 containing 150 cities 

 

Table 4.2: Results to three data sets contain 50,100 and150 cities. 

Algorithm 

 

Data set 

 

GA 

 

SA 

 

ABC 

 

ACO 

50 cities 8.4765 6.9529 6.3625 5.9343 

100 cities 19.5233 14.1877 8.6425 8.4165 

150 cities 33.9455 22.5241 10.2845 10.2166 

  

From Table 4.2 and Fig. 4.8, it is noticed that the performances of the GA and SA algorithms 

deteriorates. This is due to the optimum path followed is local and not global. However, the 

ABC and ACO algorithms provide very robust results and very shorter paths than the others 

with the best performance for the ACO algorithm. 
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Figure 4.8: Minimum normalized distance obtained using GA, SA, ABC and ACO for the 50, 

100 and 150 data sets. 

 

Because the ACO algorithm provides the best performance among all the algorithms, we 

thought of expanding it into the 2-D case and apply it to the image edge detection problem. 

 

4.3. Edge Detection 

In this section, Lena, Camera-man and Barbara images are used to test the performances of 

the 2-D ACO and the proposed algorithms. The resolutions of all images used are of 

512 512  pixels. The parameters used for implementing the conventional ACO and the two 

proposed algorithms were the same and are: 1  , 0.1  , 0.1  , 0.05  , 0.1init  , 

10N  , 4K  , 40M   and 0.1e  . 
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4.3.1. Discrete Wavelet Transform-based ACO for Edge Detection 

This section presents performance comparisons between the first proposed algorithm and 

conventional ACO algorithms under different test images condition. Lena and Camera-man 

images were used in this section. 

In the first experiment, image edge detection using both algorithms is applied to the original 

Lena image. Fig. 4.9 (b) shows that the conventional ACO algorithm is capable to detect 

edges very efficiently. However, from Fig. 4.8 (c) we notice that, the first proposed algorithm 

detects the same edges but denser, which enables us to see some edges that may not be seen 

using the conventional ACO. This could be very clear at the left side of the image and the 

nose.  

  

(a) 

                                  

(b)                                                                    (c) 

Figure 4.9: (a) Original test Image (Lena), (b) Detected edges using ACO [38] and (c) 

Detected edges using the first proposed algorithm. 
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In order to see the effect of noise on the performance of the algorithms, in the second 

experiment, a normalized additive white Gaussian noise (AWGN) with zero mean and 

variance  2 0.02 
 
is added to the images. Image with noise is shown in Fig. 4.10 (b). Figs. 

4.10 (c) and (d) show the edges detected by the conventional ACO and the first proposed 

algorithm, respectively. It is obvious that the first proposed algorithm provides clearer 

detected edges than the conventional ACO algorithm. This is due to the ability of the DWT in 

suppressing the noise before detecting the edges. 

 

 

Figure 4.10: (a) Original test Image, (b) Image with noise  2 0.02  , (c) Detected edges 

using ACO and (d) Detected edges using the first proposed algorithm. 

 

In order to see the effect of the noise amount on the performances of the algorithms, AWGN 

with zero mean and variance  2 0.05   is added to the normalized images. Fig. 4.11 (b) 
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shows the image after the noise is added. Fig. 4.11 (c) shows the edge detection result using 

the conventional ACO algorithm and Fig. 4.11 (d) shows the result of the first proposed 

algorithm.  It is very clear from the results that the conventional ACO algorithm is not 

capable of detecting the edges of the image buried in noise. However, the first proposed 

algorithm is still capable of detecting the edges from the noisy image as can be seen from Fig. 

4.11 (d). 

 

 

Figure 4.11: (a) Original test Image, (b) Image with noise  2 0.05  , (c) Detected edges 

using ACO and (d) Detected edges using the first proposed algorithm. 

 

In the second part of this section, we try to show the performances of the conventional ACO 

and the first proposed algorithm in different images. For this purpose, the Camera-man image 

is used in this section. From Figs. 4.12 (b) and (c) we noticed that the first proposed 

algorithm is capable of detecting edges which are not detected by the conventional ACO. 
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This is very clear at the ear-side of the man and at the front-side of the camera. In addition to 

that, the edges detected by the first proposed algorithm are denser than those detected by the 

conventional ACO. 

 

 

 

(a) 

                              

                               (b)                                                                      (c) 

 

Figure 4.12: (a) Original test Image (Camara-man), (b) Detected edges using ACO and   (c) 

Detected edges using the first proposed method. 

 

The second experiment is repeated with the same parameters, but using the Camera-man 

image. It is clear from Figs. 4.13 (c) and (d) that the conventional ACO almost fails in 

detecting the edges of the image where the first proposed algorithm is capable of detecting 

the edges successfully. 
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Figure 4.13: (a) Original test Image, (b) Image with noise  2 0.02  , (c) Detected edges 

using ACO and (d) Detected edges using the first proposed algorithm. 

 

Finally, from Figs. 4.14 (c) and (d) we noticed that, the amount of the additive noise has 

almost no effect on the first proposed algorithm. However, this noise amount makes the 

detection capability of the conventional ACO worse. 

 



44 
 

 

Figure 4.14: (a) Original test Image, (b) Image with noise  2 0.05  , (c) Detected edges 

using ACO and (d) Detected edges using the first proposed algorithm. 

 

4.3.2.  Summary and Discussions 

To measure the performance of any edge detection algorithm, usually a comparison is made 

between its edge map results with its ground truth image. This can be achieved through many 

ways that includes; the number of correctly detected edge pixels, called true positive (TP), the 

number of pixels wrongly classified as edge pixels, called false positive (FP), the number of 

edge pixels not detected as edge pixels, called false negative (FN), [39]. These ways of 

performance measurements can be defined mathematically, as: 

The percentage of edge pixels that were detected correctly is given in Eq. (4.1), [40]. 

max( , )
cd

I B

TP
p

N N
                                                                                                               (4.1) 
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where IN and BN represent the number of edge points of the ideal image and the number of 

edge points of the detected image, respectively.  

The percentage of edge pixels that were not detected is given in Eq. (4.2). 

max( , )
nd

I B

FN
p

N N
                                                                                                               (4.2) 

The percentage of edge pixels that were not edges but wrongly detected as edges is given in 

Eq. (4.3). 

max( , )
wd

I B

FP
p

N N
                                                                                                               (4.3) 

Pratt‟s figure of merit (FOM) is another important measure for assessing the performance of 

edge detection algorithms. FOM measures the distance between all pairs of points 

corresponding to quantify, with precision, the difference between the contours [39]. The 

FOM is defined in Eq. (4.4) [41, 42] and assesses the similarity between two contours [39]. 

2
1

1 1

max( , ) 1

BN

I B i

FOM
N N w d


 

                                                                                      (4.4) 

where w  is a scaling constant that is adjusted to penalize edge points that are detected but 

offset from exact or true position and its optimal value is 
1

9
 as given by Pratt [43], and d  is 

the distance of separation of an actual edge point along a line normal to a line of ideal edge 

points [40, 44]. 

The value of FOM  ranges between 0 and1. The larger the value of FOM , the better the 

performance [45]. 

In testing the performance of edge detection algorithm, visual method is another method 

different from objective method. In visual method usually an edge image is evaluated by a 

group of people and the average score is used as an index of quality [41]. 

In our work, we used the visual method up to this point and from now on we will use the 

objective (evaluation) method to test the performance of our algorithms. FOM is used among 

the objective techniques because it is a widely used objective standard to rate the quality of 

edge detection algorithms [42].   
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However, in testing the performances of the proposed algorithms, because the ground truth 

images are very rear and difficult to get, we used the Canny results of transformed Lena and 

Camera-man images to be our ground truth images for testing our proposed DWT-Based 

ACO for edge detection and Canny results of Lena and Barbara images without transform for 

the conventional ACO, Prewitt and Sobel because, up to our knowledge, Canny gives the best 

results. The ground truth images used for testing the proposed algorithm are shown in Fig. 

4.15. 

 

                   

 

Figure 4.15: Ground truth images obtained using Canny and DWT (a) Lena, (b) Camera-man. 

 

From Table 4.3 and Fig. 4.16, it is noted that at each normalized AWGN variance, the first 

proposed algorithm performs much better than ACO, Sobel and Prewitt. Compared to the 

Canny operator, our proposed algorithm performs less than Canny in the absence of noise and 

much better than Canny when the image is corrupted by noise.  

 

 

 

 

 

 

(a)                                                                    (b) 
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Table 4.3: Figure of Merit results for Lena Image. 

 Edge Detectors 

Normalized 

AWGN 

variance 

 

Canny 

 

Sobel 

 

Prewitt 

 

ACO 

First 

Proposed 

Algorithm 

0 1 0.9419 0.9416 0.9327 0.9435 

0.1 0.9738 0.9266 0.9264 0.9655 0.9821 

0.2 0.9725 0.9234 0.9232 0.9665 0.9915 

0.3 0.9721 0.9220 0.9219 0.9676 0.9912 

0.4 0.9716 0.9211 0.9210 0.9672 0.9912 

0.5 0.9714 0.9208 0.9206 0.9681 0.9908 

 

 

Figure 4.16: Figure of merit for Lena Image. 
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In the second part of this section, we try to test the performance of our first proposed 

algorithm on Camera-man image. From Table 4.4 and Fig. 4.17, it is noticed that our first 

proposed algorithm performs less than Sobel, Prewitt and Canny but better than the 

conventional ACO in the absence of noise. However, when the image is buried with noise, 

our first proposed algorithm performs much better than the others. 

 

Table 4.4: Figure of Merit results for Camera-man Image 

 Edge Detectors 

Normalized 

AWGN 

variance 

 

Canny 

 

Sobel 

 

Prewitt 

 

ACO 

First 

Proposed 

Algorithm 

0 1 0.9557 0.9556 0.9511 0.9531 

0.1 0.9759 0.9493 0.9493 0.9817 0.9848 

0.2 0.9741 0.9448 0.9449 0.9847 0.9901 

0.3 0.9733 0.9417 0.9421 0.9856 0.9927 

0.4 0.9728 0.9404 0.9406 0.9866 0.9924 

0.5 0.9722 0.9397 0.9396 0.9852 0.9924 
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Figure 4.17: Figure of merit for Camera-man Image 

 

4.3.3. DWT Sub-Band Fusion using ACO for Edge Detection 

This section shows the performance of the second proposed algorithm compared to that of the 

conventional ACO. Lena, Barbara and Camera-man images were used to test the 

performances of both algorithms. Even though the second proposed algorithm needs more 

time than the conventional ACO, it provides much denser edges is capable of detecting edges 

that are not detected by the conventional ACO algorithm. This algorithm can be used in 

applications were the detected edges are more important than the time. 
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(a)                                            (b)                                                 (c)                            

   

                   

                    (d)                                             (e)                                             (f) 

 

                 

                    (g)                                            (h)                                             (i) 

 

Figure 4.18: (a) Lena image (b) Barbara image (c) Camera-man image (d) Lena edges using 

ACO (e) Barbara edges using ACO (f) Camera-man edges using ACO (g) Lena edges using 

the second proposed method. (h) Barbara edges using the second proposed method               

(i) Camera-man edges using the second proposed method. 
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Like the first proposed algorithm, the second proposed algorithm was also tested using Pratt‟s 

FOM. Lena and Barbara images were used to test the performance of this algorithm. From 

Table 4.5 and Fig. 4.19, it is very clear that the performance of our second proposed 

algorithm is better than those of the ACO and the first proposed algorithm.  

 

Table 4.5: Figure of merit results 

 Edge Detector Algorithms 

Test Images ACO First Proposed 

Algorithm 

Second Proposed 

Algorithm 

Lena 0.9339 0.9458 0.9475 

Barbara 0.9237 0.9391 0.9386 

 

 

Figure 4.19: Figure of merit for Lena and Barbara images. 
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CHAPTER FIVE 

 

CONCLUSIONS AND FUTURE WORKS 

 

 

5.1. Conclusions 

In this thesis, the performances of four metaheuristic algorithms (GA, SA, ABC and ACO) 

were tested in solving TSP using various positions and number of cities. The results obtained 

in all the situations show that ACO performs better than others. For this reason ACO is 

selected and applied in the 2-D case for edge detection problem. However, after ACO is 

successfully applied for the edge detection problem, two algorithms were proposed to 

improve the results. The first method was based on DWT and ACO. The DWT is applied to 

the image as a preprocessing stage before conventional ACO algorithm. The edge detection 

results obtained using this technique show substantial improvements, more especially, when 

the original image is noisy.  

Another approach is proposed to enhance edge detection results more, by using each of the 

four sub-images obtained, by decomposing the original image using 2D-DWT and finally 

recombining the results by 2D-IDWT. The proposed algorithm is capable of detecting some 

edges that are not detected by the conventional ACO and it also provides a denser edge 

detection performance.  

The performances of the two proposed approaches were measured using a widely used 

standard objective approach (Pratt‟s figure of merit). The first proposed algorithm 

performance was tested on Lena and Camera-man images under different noise conditions. 

The algorithm is found to perform well in edge localization even with high noise powers. The 

second proposed algorithm performance was tested on Lena and Barbara images. The results 

obtained show that the second proposed algorithm performs better than the ACO and first 

proposed algorithm.   
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5.2. Future Works 

In this work, DWT is used with the conventional ACO to propose two algorithms for 

improving the performance ACO in edge detection. As a future work, the followings may be 

considered: 

 In all the experiments for the 1-D case, it is noticed that the performances of the ABC 

were close to ACO. Hence, it can be applied for the 2-D case as well, and the results 

may be compared to that of the ACO. 

 The GA and SA algorithms may be applied to the 2-D case for edge detection 

problem and their performances might be compared to those of the proposed 

algorithms. 
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