

DISCRETE WAVELET TRANSFORM-BASED ANT COLONY OPTIMIZATION

FOR EDGE DETECTION

by

Aminu Muhammad

Submitted to the Institute of Graduate Studies in Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical-Electronic Engineering

Mevlana (Rumi) University

2014

DISCRETE WAVELET TRANSFORM-BASED ANT COLONY OPTIMIZATION

FOR EDGE DETECTION

submitted by Aminu Muhammad in partial fulfillment of the requirements for the degree of

Master of Science in Electrical and Electronic Engineering Department, Mevlana (Rumi)

University

APPROVED BY:

Examining Committee Members:

 Assist. Prof. Dr. Mohammad Shukri Salman

 (Thesis Supervisor)

 Assist. Prof. Dr. Nurdan Baykan

 Assist. Prof. Dr. Alaa Eleyan

 Prof. Dr. M. Uğur Ünver

 Head of Department, Electrical-Electronic Engineering

 Assoc. Prof. Dr. Ali Sebetci

 Director, Institute of Graduate Studies in Science and Engineering

DATE OF APPROVAL (/ / 2014)

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results that

are not original to this work.

 Aminu Muhammad

 Signature:

v

ABSTRACT

DISCRETE WAVELET TRANSFORM-BASED ANT COLONY OPTIMIZATION

FOR EDGE DETECTION

Aminu Muhammad

M.Sc. Thesis, 2014

Thesis Supervisor: Assist. Prof. Dr. Mohammad Shukri Salman

Keywords: Ant Colony Optimization, Artificial Bee Colony Optimization, Genetic

Algorithm, Simulated Annealing, Discrete-Wavelet Transform, Travelling Salesman Problem,

Edge Detection.

Evolutionary Optimization has attracted many researchers to use it in solving many

optimization problems that have no trivial solutions. Some of these techniques include;

Genetic Algorithms (GA), Simulated Annealing (SA), Artificial Bee Colony (ABC), Ant

Colony Optimization (ACO), etc.

In this thesis, we first compare the performance of GA, SA, ABC and ACO algorithms in

solving the well-known Travelling Salesman Problem (TSP). From the results obtained, the

ACO algorithm has shown significant performance compared to the others. Hence, the

performance of the ACO algorithm is tested in the 2-Dimensional (2-D) case for edge

detection.

In the last part of this work, the conventional 2-D ACO performance is tested in edge

detection problem. It shows high performance. However, this performance can be improved

further by transforming the input into different domain from the real time. Hence, we apply a

Discrete-Wavelet Transform (DWT) at the input of the 2-D ACO algorithm which provides us

denser and clearer images compared to the conventional ACO.

Simulations show that the proposed 2-D DWT-based ACO provides very high performance

compared to the conventional one, especially, when the input image is buried with noise.

vi

Dedicated to my Family and Friends

vii

ACKNOWLEDGEMENTS

I am wholeheartedly thankful to my supervisor, Assist. Prof. Dr. Mohammad Shukri Salman

for giving me an opportunity to work under his supervision. This work would not have been

successful without his patience, guidance and encouragement. I cannot thank you enough for

the unlimited support you have done to me sir!

Among the people, I would like to specially deliver my sincere gratitude to Assist. Prof. Dr.

Alaa Eleyan for his support and good advices. In addition, my appreciations go to my parents,

brothers and sisters who have been helping and assisting me since upbringing. It is an honor

for me to offer my gratitude to the Kano State Scholarship Board and the entire people of

Kano for giving me this magnificent opportunity to undergo for my master‟s degree program.

In addition, I wish to thank all my friends for their prayers and well-wishers, especially,

Nigerians who are here with me at Mevlana University, Konya, Turkey for the same program.

Lastly and above all, I give all love, thanks, honors and glories to our creator, ALLAH the

sustainer, the cherisher for making everything achievable.

viii

TABLE OF CONTENTS

ABSTRACT .. v

ACKNOWLEDGEMENTS... vii

TABLE OF CONTENTS ... viii

LIST OF TABLES... xii

LIST OF FIGURES ... xii

LIST OF SYMBOLS/ ABBREVIATION .. xiv

CHAPTER ONE .. 1

LITERATURE REVIEW .. 1

1.1. Evolutionary Algorithms .. 1

1.1.1. Paradigms ... 2

1.1.1.1. Genetic Algorithm .. 3

1.1.1.2. Evolution Strategy .. 4

1.1.1.3. Evolutionary Programming .. 4

1.2. Metaheuristic Algorithms .. 5

1.2.1. Classifications of Metaheuristic Algorithms .. 5

1.2.2. Major Metaheuristic Algorithms .. 6

1.2.2.1. Genetic Algorithm .. 6

1.2.2.2. Simulated Annealing .. 8

1.2.2.3. Artificial Bee Colony Algorithm .. 10

1.2.2.4. Ant Colony Algorithm .. 11

CHAPTER TWO ... 13

PROBLEM STATEMENT .. 13

2.1. Introduction .. 13

2.2. Travelling Salesman Problem .. 14

2.2.1. Genetic Algorithm for Travelling Salesman Problem .. 15

ix

2.2.2. Simulated Annealing for Travelling Salesman Problem 15

2.2.3. Artificial Bee Colony for Travelling Salesman Problem 17

2.2.4. Ant Colony Optimization for Travelling Salesman Problem 20

2.3. Edge Detection ... 21

2.3.1. Ant Colony Optimization for Edge Detection ... 22

2.3.1.1. Initialization stage ... 23

2.3.1.2. Construction stage ... 24

2.3.1.3. Update stage ... 25

2.3.1.4. Decision stage ... 25

CHAPTER THREE ... 27

PROPOSED ALGORITHMS.. 27

3.1. Overview .. 27

3.2. The Proposed Algorithms .. 27

3.2.1. Discrete Wavelet Transform-based ACO for Edge Detection 27

3.2.2. DWT Sub-Band Fusion using ACO for Edge Detection 29

3.2.2.1. Two Dimensional Discrete Wavelet Transform ... 29

3.2.2.2. Two Dimensional Inverse Discrete Wavelet Transform 30

CHAPTER FOUR ... 32

SIMULATION RESULTS .. 32

4.1. Overview .. 32

4.2. Travelling Salesman Problem .. 32

4.2.1. The Same Number of Cities with Independent Generations 32

4.3. Edge Detection ... 38

4.3.1. Discrete Wavelet Transform-based ACO for Edge Detection 39

4.3.2. Summary and Discussions ... 44

4.3.3. DWT Sub-Band Fusion using ACO for Edge Detection 49

CHAPTER FIVE ... 52

x

CONCLUSIONS AND FUTURE WORKS .. 52

5.1. Conclusions ... 52

5.2. Future Works ... 53

References ... 54

xi

LIST OF TABLES

Table 2.1: Probability of follow. .. 19

Table 2.2: ACO algorithm for Edge Detection. ... 22

Table 4.1: Experimental results to three data sets each contain 30 random cities. 34

Table 4.2: Results to three data sets contain 50,100 and150 cities. ... 37

Table 4.3: Figure of Merit results for Lena Image ... 47

Table 4.4: Figure of Merit results for Camera-man Image .. 48

Table 4.5: Figure of merit results ... 51

xii

LIST OF FIGURES

Figure 1.1: Evolutionary Algorithm Cycle. ... 2

Figure 1.2: Genetic Algorithm single-point random point crossover. 7

Figure 1.3: Genetic Algorithm mutation technique by selecting a bit randomly. 8

Figure 1.4: Ants find a shortest route. .. 12

Figure 2.1: Neighbors of pixels ,i jI 23

Figure 3.1: Flowchart of the proposed Discrete Wavelet Transform-based ACO for Edge

Detection. .. 28

Figure 3.2: Two-dimensional discrete wavelet image decomposition. 29

Figure 3.3: Two-dimensional discrete wavelet image reconstruction. 30

Figure 3.4: Flow chart of the proposed DWT Sub-Band Fusion using ACO for Edge

Detection. .. 31

Figure 4.1: Random cities positions of data set1. .. 332

Figure 4.2: Random cities positions of data set2. .. 33

Figure 4.3: Random cities positions of data set3. .. 33

Figure 4.4: Minimum normalized distance obtained using GA, SA, ABC and ACO for the

three data sets. ... 35

Figure 4.5: Random cities positions of data set 1 containing 50 cities 36

Figure 4.6: Random cities positions of data set 2 containing 100 cities 36

Figure 4.7: Random cities positions of data set 3 containing 150 cities 37

Figure 4.8: Minimum normalized distance obtained using GA, SA, ABC and ACO for the 50,

100 and 150 data sets. .. 38

Figure 4.9: (a) Original test Image (Lena), (b) Detected edges using ACO and (c) Detected

edges using the first proposed algorithm. .. 39

Figure 4.10: (a) Original test Image, (b) Image with noise  2 0.02  , (c) Detected edges

using ACO and (d) Detected edges using the first proposed algorithm. 40

Figure 4.11: (a) Original test Image, (b) Image with noise  2 0.05  , (c) Detected edges

using ACO and (d) Detected edges using the first proposed algorithm. 41

Figure 4.12: (a) Original test Image (Camara-man), (b) Detected edges using ACO and (c)

Detected edges using the first proposed method. .. 42

xiii

Figure 4.13: (a) Original test Image, (b) Image with noise  2 0.02  , (c) Detected edges

using ACO and (d) Detected edges using the first proposed algorithm. 43

Figure 4.14: (a) Original test Image, (b) Image with noise  2 0.05  , (c) Detected edges

using ACO and (d) Detected edges using the first proposed algorithm. 44

Figure 4.15: Ground truth images obtained using Canny and DWT (a) Lena, (b) Camera-

man. ... 46

Figure 4.16: Figure of merit for Lena Image ... 47

Figure 4.17: Figure of merit for Camera-man Image ... 49

Figure 4.18: (a) Lena image (b) Barbara image (c) Camera-man image (d) Lena edges using

ACO (e) Barbara edges using ACO (f) Camera-man edges using ACO (g) Lena

edges using the second proposed method. (h) Barbara edges using the second

proposed method (i) Camera-man edges using the second proposed method. 50

Figure 4.19: Figure of merit for Lena and Barbara images. ... 51

xiv

LIST OF SYMBOLS/ ABBREVIATION

Symbol Explanation

 Pheromone trail or arc-fitness influence

 Heuristic information influence

E Energy change

f Objective function change

 Arc-fitness value

 Heuristic information

 Chromosome solution

 Permutation of cities

 Evaporation coefficient

2 Noise variance

 Pheromone trail

 (1,1)rand 

 Arc-fitness matrix

 Pheromone decay coefficient

 Preferred path

A Set of allowed cities.

d Distance

D Dance duration

e Decision tolerance value

F Preferred city

SK Dance scaling factor

Bk Boltzmann‟s constant

xv

L Tour length

N Neighborhood cities

BN Number of detected edge pixels

IN Number of ideal edge pixels

p Transitions probability

pf Tour profitability

cdp Percentage of true positive edge pixels

.folp Probability of selecting a bee‟s tour

ndp Percentage of false negative edge pixels

wdp Percentage of false positive edge pixels

T Annealing temperature

hT Threshold value

cV Variation in intensity

w Penalty constant

x Food source position

z Normalization factor

1-D One dimensional

2-D Two dimensional

ABC Artificial bee colony

ACO Ant Colony Optimization

1jcA 
 Approximation coefficient

()

1

h

jcD  Decomposed horizontal coefficient

()

1

v

jcD  Decomposed vertical coefficient

()

1

d

jcD  Decomposed diagonal coefficient

xvi

EAs Evolutionary algorithms

EP Evolutionary programming

ES Evolutionary strategy

FN False negative

FP False positive

FOM Figure of merit

GA Genetic algorithm

Hi_D Higher decomposition pass filter

Hi_R Higher reconstruction pass filter

Lo_D Lower decomposition pass filter

Lo_R Lower reconstruction pass filter

NP Non-linear programming

SA Simulated annealing

TP True positive

1

CHAPTER ONE

LITERATURE REVIEW

1.1. Evolutionary Algorithms

Evolutionary Algorithms (EAs) have turned out to be well-known instruments for solving

many complex optimization problems by the use of simulated Darwinian evolution processes

[1]. In searching and optimization tasks, the use of EAs as a stochastic search method has

been recently admired [2]. It has been applied as an all-purpose search method in areas like

machine learning, process control, combinatorial optimization, etc. because of its parallelism,

robustness and simplicity [3]. In EAs an amount of simulated individuals try to find out an

optimal solution by exploring on the problem space to locate best areas [4]. The idea behind

EAs is to generate children called offsprings during each iteration from the best part of the

solutions by mutation or combination to produce even better solutions in the next generations

[3]. An EA cycle can be shown in Fig. 1.1. The first stage is the initialization of individuals‟

population and is usually created randomly [5]. The fitness values which stand for the quality

of the individuals are then calculated in the next stage. Parents are then selected from the

individuals based on their fitness functions, the individuals with the higher quality are mostly

selected to be the parents and the others are discarded. The parents selected are recombined to

produce children called offsprings. These offsprings get certain characters of the parents they

are made from. However, there are some evolutionary algorithms that do not use this method

of recombination to produce new offsprings as we can see later in evolutionary strategy [5].

The children produced by recombination are then mutated in order to avoid having a solution

that is similar to any of the solution in the initialization state. The mutation is done by adding

a little bit randomness into the genes of the population. The next stage in the EA cycle after

mutating the children produced is the evaluation. In this stage, the fitness values of the

individuals recombined and mutated are computed using the objective function. The

environmental pressure affects the individuals due to the environmental changes. Some of the

individuals survive the environmental selection and some do not, this environmental selection

usually eliminates the individuals with low quality. The ones with higher fitness values

usually survive and become parents for the next generation. After the environmental

2

selection, the whole process is stopped if the termination criterion is met. Otherwise the next

cycle starts.

Initialization

Evaluation

Termination

 criterion

 met?

Yes

No

Yes

No

Parental

Selection

Recombination

Mutation

Evaluation

Environmental

 selection

Termination

 criterion

 met?

Output Result

Figure 1.1: Evolutionary Algorithm Cycle, [5].

1.1.1. Paradigms

Evolutionary Algorithms (EAs) have many types, and they all differ a little bit but, in this

thesis, we will be interested in three types, namely:

3

1. Genetic Algorithm

2. Evolution Strategy and

3. Evolutionary Programming

1.1.1.1. Genetic Algorithm

Genetic Algorithm (GA) was first introduced in United States by John Holland and his

students in 1960s and 1970s [1]. GA is inspired by the natural selection theory of Charles

Darwin based on biological evolution. In the field of artificial and adaptive systems, the use

of genetic operators that includes; selection, crossover and mutation, and recombination as a

basic of GA for solving problems were first used by John Holland [6]. Since the introduction

of this algorithm, a lot of optimization problems like travelling salesman, data clustering,

graph coloring, path planning in robotic system, etc. have been successfully tackled [6]. GA

steps can be summarized as the following [7]:

1. Initialization: Here usually the initial populations of solution are generated randomly.

The population can be large or small depending on the size needed.

2. Evaluation: Each individual of the population is then evaluated and its corresponding

fitness is computed.

3. Selection: This process involves selecting the best individuals and discarding the bad

ones. The selection is made based on the fitness values. The individuals with higher

fitness values are more probable to be selected than the ones with low fitnesses. The

fitter individuals selected are used for the next subsequent generations.

4. Crossover: This stage involves crossing the selected individuals (called parents) to

form new individuals (called children). The impression behind crossover is that, the

children produced inherit the best bits of the individuals. These children are then

added to the populations. Crossover increases, in average, the quality of the solution

[8].

5. Mutation: In order to avoid repetition of a solution, a little bit randomness is added

into the genes of the populations otherwise each solution produced will be in the

initial population. Mutation helps the algorithms to find out new states and this

reduces the chances of converging to local optima [8].

6. Repeat: The process is repeated from step two until termination criterion is met.

GA has many advantages over other conventional optimization algorithms. Some of these

important advantages include; parallelism and its ability to handle complex optimization

4

problems. Despite its ability to handle optimization problems where the objective fitness

function is either; linear, continuous, stationary, non-linear, discontinuous, non-stationary,

etc. [9], GA it still has some disadvantages in selecting the right parameters for the

algorithms like rate of crossover and mutation, fitness function population, etc. It needs

careful selection of these parameters for the algorithm to converge [6].

1.1.1.2. Evolution Strategy

Evolution Strategy (ES) was first established by Ingo Rechenberg, Hans-Paul Schwefel and

other co-workers in the late 1960s and early 1970s in Germany [1]. Traditionally, ES was

invented for parameter optimization problems [4]. As from the name implies, this algorithm

is also inspired from the Darwinian evolution of natural selection [10]. In ES, not like GA,

new individuals are generated without using crossover or any method alike, but instead a

number of samples with the higher fitness values are selected. The samples with higher

fitness values are selected and others with less are discarded. The successful of these

individuals are used for the subsequent generation as parents, and the process continues. ES

algorithms are simple, heuristic naturally and show very good performance [10]. ES usually

uses a very low size of population (1 20) unlike GA and is normally put in use to real-

valued optimization problems [1].

In General, ES procedure can be summarized as follows:

1. Initialization: Here we initialize a population of individuals and each of the

individuals is associated with an object parameter, a solution and a fitness value.

However, a population in some instances may only contain one individual [11].

2. Selection: After the populations are initialized, one or more individuals called parents

are selected and are duplicated and recombined to produce new individuals of

population called children or offsprings.

3. Mutation: The children called offsprings produced in step 2 are then allowed to go

through mutation and afterward become new population members.

4. The original size of the population is regained by the environmental selection [11].

1.1.1.3. Evolutionary Programming

Evolutionary Programming (EP) also aims to attain intelligent behavior by means of

simulated evolution and fits for real-valued function and combinatorial optimization [12].

This form of EAs was initially introduced in the United States in the year 1960 by Laurence

5

J. Fogel for the evolution of finite state machine [1]. In Fogel‟s work, mutation operators play

very vital role in alternating the finite state machines that were being evolved for a particular

job [1]. In EP no recombination is applied among the individuals, every individual of the

population precisely produce one offspring through mutation, so the number of parents is

equal to the number of children. The children combined with the parents produce the total

number of individuals, and the successful individuals are selected based on a probabilistic

tournament [13].

1.2. Metaheuristic Algorithms

Metaheuristic Algorithms (MAs) are mostly nature-simulated algorithms as they are usually

based on Darwin‟s theory of evolution [6]. In MAs, selection of solution and randomization

are the two main important parts. Enough randomization helps the algorithm to keep away

from being trapped into the local optima as it will search many minima including the global

optima. Selection of the best solution guarantees the convergence of the system to the global

minima [6].

1.2.1. Classifications of Metaheuristic Algorithms

Metaheuristic Algorithms can be classified depending on which criterion is taken into

consideration in classifying them. Below are some of the major ways of classifying them.

1. Nature-inspired and non-nature inspired: Some of the metaheuristic algorithms are

derived from nature and some are not. Bee Colony Algorithms, Ant Colony

Algorithms and Genetic Algorithms are some of the algorithms derived from nature

and hence classified as nature inspired algorithms. On the other hand, Tabu Search is

a non-nature inspired algorithm. However, to some researches, this method of

classification is not very vital in the sense that some algorithms hardly be put in one

of the classes or can be put in both [14].

2. Population-based and Trajectory-based: Population-based algorithms are algorithms

that operate on a population of solution at any time. Genetic Algorithm and Particle

Swarm Optimization are good example of population based algorithms as they use a

set of strings and multiple agents or particles, respectively. On the other hand,

Trajectory-based algorithms work on a single solution at any time and includes;

Simulated Annealing, Tabu Search, etc. [6].

6

3. Memory and Memory-less: Some metaheuristic algorithms have memory and make

use of their search history and some have no memory. The memory-less algorithms

only apply the current knowledge of the search process in order to ascertain the

subsequent action. They do Markov Chain process [14].

1.2.2. Major Metaheuristic Algorithms

Since the advent of EAs around 1970s, a lot of metaheuristic algorithms are being introduced

in order to overcome the shortcomings associated with the present numerical algorithms in

finding the solution of difficult optimization problems [15]. Major algorithms include GA,

ant colony algorithms (ACO), artificial bee colony algorithm (ABC), simulated annealing

(SA), harmony search (HS), firefly algorithm (FA), particle swarm optimization (PSO), and

so on. In this work, four of these metaheuristic algorithms which include; GA, SA, ABC and

ACO will be discussed in the remaining part of this thesis and the process of their

implementation in 1-D setting will be presented later in the report.

1.2.2.1. Genetic Algorithm

GA is inspired by the natural selection theory of Charles Darwin based on biological

evolution. In the field of artificial and adaptive systems, the use of genetic operators that

includes; selection, crossover and mutation, and recombination as a basic of GA for solving

problems was first used by John Holland [6]. GA has been used in solving many optimization

problems [6]. The whole ideas behind GA involve encoding the optimization functions to

signify chromosomes, maneuver these chromosomes which can be either bits arrays or

character arrays by the use of GA operators, and uses selection techniques to obtain good

solutions to the optimization problems. However, after a termination criteria is met the final

result is decoded to obtain the result.

In GA, good choice of fitness function is very vital for deciding the selection criterion to be

utilized. In GA for function minimization, fitness values can be obtained using Eq. (1.1).

(),F A f x  (1.1)

where A is a constant value that leads F to be positive if selected to be greater than ()f x .

Usually, if A is selected to be zero then, the aim is to maximize ()f x and afterwards

minimize the function .F Fitness functions are not only defined in this way, there are many

7

other ways [6]. One frequently used of them is to use individual fitness in relation to the total

population given in Eq. (1.2).

1

()
() ,

()

i
i N

ii

f
F x

f









 (1.2)

where i represents the individual chromosome solutions and N is the total population size

[6].

Crossover and mutation are two important operators. Crossover is having the higher

probability and is done by swapping the segments positions of the two chromosomes

interchangeably at random. Crossover can be at various points in a chromosome. Fig. 1.2

shows a single point crossover [6].

111 1

1 1 11

1000

000 0

Parent gene pair (before crossover)

111 1

1 1 10

0100

000 1

Child gene pair (after crossover)

Figure 1.2: Genetic Algorithm single-point random point crossover.

Mutation is operated by a randomly selected one of the chromosomes bit and flipped.

Probability of mutation, unlike crossover, is usually selected to be very small. Fig. 1.3 shows

a simple mutation technique by flipping.

8

111 11000

011 11000

Original gene (before mutation)

New gene (after mutation)

Figure 1.3: Genetic Algorithm mutation technique by selecting a bit randomly.

GA utilizes parallelism and has the ability to handle many complex optimization problems

where the objective fitness function is either; linear, continuous, stationary, non-linear,

discontinuous, non-stationary, etc. [9]. GA has some disadvantages as well in selecting the

right parameters for the algorithms like rate of crossover and mutation, fitness function

population, etc. It needs careful selection of these parameters for the algorithm to converge

[6].

1.2.2.2. Simulated Annealing

SA is inspired by the annealing process of metal [16]. SA concerns the situation happening in

metal when heated to a very high temperature and then allow the temperature to drop. This

process usually causes the physical properties of the metal to change due to the change in the

structure of the metal internally. The metal after gets cooled attains its new structure [17]. SA

algorithm, for solving optimization problem was first introduced by Kirkpatrick and

colleagues in 1983 to solve optimization problems. The main advantage of this algorithm is

to overcome the shortcomings of some of the search methods, like gradient based, of

converging to the local optima [6]. SA algorithm usually converges to global minima if

sufficient randomness is utilized with a good cooling schedule. In SA algorithm, the idea of

Markov chain is adopted by accepting any change that causes improvement in the objective

function and some do not [17]. In an optimization problem, dealing with minimizing, any

adjustment that reduces the objective function is accepted and those cause increase are also

accepted based on the probability derived from Eq. (1.3).

,B

E

k Tp e




 (1.3)

9

where E is the change in energy, Bk is the Boltzmann‟s constant and for simplicity is set to

1, and T is the temperature for controlling the annealing process. In order to relate E with

f which is the change in objective function, Eq. (1.4) is used.

,E f   (1.4)

where  is a real constant and is set to be 1. Therefore, Eq. (1.3) becomes:

.
f

Tp e




 (1.5)

This is the probability for accepting any adjustment that causes change in the objective

function and is also called transition probability [6]. In summary, SA can be described below

[17]:

1. Stating the initial temperature: From Eq. (1.5), we can easily analyze the following:

 as T  then 1P  .

 as 0T  then 0P .

So, at higher temperature, the probability of accepting any change in the objective

function is very high, which means any worth solution is accepted but as the

temperature approaches zero, so as the probability also, and under this condition

rarely worth solutions will be accepted. Care should be taken in stating the initial

temperature in order not to make the algorithm very slow or converge to the local

optima [6].

2. Defining final temperature: The final temperature is stated to be very low

10 5(10 10) 
, so that no any worth change can be accepted [6].

3. Generate initial random solution.

4. Then looping continues until the stopping requirement is satisfied. It usually holds

when the system gets cooled, that is when the final temperature is reached or when a

very good fitness is obtained.

5. Then a neighbor solution is obtained from the current solution.

6. Decision is made on the new solution, if it could be accepted or not.

7. The temperature of the system is then reduced.

8. Examining the condition for the system to converge, if not repeat from step 4

9. Stop.

10

1.2.2.3. Artificial Bee Colony Algorithm

Exactly thirteen years after ACO algorithm was proposed by M. Dorigo, another important

stochastic, population-based evolutionary algorithm was proposed in 2005 by Karaboga,

called ABC algorithm. This algorithm is stimulated by the honey bee foraging behavior [18].

ABC algorithm is simple, robust and very flexible. In ABC, three components are important

and they include: food source, employed and unemployed forager [19].

1. Food source: Each of the forager bees will choose a food source based on the

properties it examines on the food source. These properties include; proximity to the

hive, the amount of energy it contains, nectar taste, and simplicity of exploiting the

energy. All these factors are represented by a single magnitude called quality or

fitness.

2. Employed forager: These bees are sent to the food sources which are already explored

to exploit. They communicate with the remaining bees in the hive about the distance,

profitability and direction of the food source.

3. Unemployed forager: The bees staying in the hive are called unemployed bees and are

divided into onlookers and scouts. A scout bee searches food source randomly in the

surroundings. Onlooker bee‟s exploration is guided by the information received from

the employed bee.

In ABC algorithms, the food sources are initialized randomly using Eq. (1.6) below.

min max min(0,1)(),i j j jx x rand x x  

(1.6)

where 1,.....,i NF and 1,......, .j D NF is the number of food source and D is the number

of parameter to be optimized, minx and maxx represent the minimum and maximum range of

the search space, respectively [18]. Each of the employed bees is directed to one source and

carries the information about the quality of that source to the remaining bees in the hive. Each

of the employed bees goes back to the neighborhood of its current source and checks for

another source using Eq. (1.7) and evaluates its nectar [20].

(),ij ij ij ij kjv x x x   (1.7)

where j stands for a random integer ranges between 1 to D , i.e. 1,...,j D and k j

always and is a randomly chosen index, (1,1)ij rand   . However, after finding the second

solution, a greedy selection is now applied between the two solutions in order to have a better

11

solution for the following generation. These better positions for each employed bee are

selected by the onlooker in the hive based on their fitness values. The probability of selecting

each position is stated in Eq. (1.8) below [20]:

1

,i
i NF

i

i

fit
p

fit





 (1.8)

where ifit is the fitness value of the food source which assigns the quality of the solution.

In general ABC stages can be summarized below:

1. State the values of control parameters which include; limit of the scout and the

number of employed bees which is always equal to number of food sources.

2. Initialization: Here the position of the food sources are initialized which are the

probable solutions of the optimization problem.

3. The employed bees are positioned on the food sources initialized and they evaluate

their nectar.

4. The onlooker bees are positioned on the food source initialized and they evaluate their

nectar.

5. The scout bees are then directed to randomly search for food sources.

6. Memorize the best food sources.

7. Stop.

1.2.2.4. Ant Colony Algorithm

In the year 1992, the ideas of ACO were put forward by the Italian researcher, Marco Dorigo

and his colleagues as part of partial fulfillment for the award of his PhD thesis. Since then

many difficult optimization problems are successfully being tackled by the use of this multi-

agent ant-based approach [21]. ACO algorithms as the name implies has been stimulated by

the actions of real living ants, especially by their foraging behavior, particularly their ability

to determine from many the shortest path between their food sources and nest [22].

As the same time as the ants travel from their food sources to the nest and from the nest back

to their food sources, they form on their way a trail by putting down on the ground a chemical

substance called pheromone. Ants have the ability to sense pheromone and in probability

choose the way to follow with the higher concentration of pheromone. The pheromone trail

laid can guide the other ants for locating the food sources found by their mates and they

12

mostly stop searching at random, but instead going along the trail, strengthening the

pheromone trail while going back if subsequently they find source of food [21]. Fig. 1.4

shows a typical example of how ants finds shortest route from their nest to food source. Ants

coming from their food source separate at decision point A , randomly choose the upper path

and some choose the lower [23]. The ants on the lower path, which is shorter, reach the food

source and return to the colony before the ants that follow the upper and hence the

pheromone on their way becomes more accumulated. The following ants from the colony at

junction A will sense the pheromone from both ways and tend to follow the way that has

more pheromone which is the lower path. Gradually, majority of the ants will be following

the lower path since it is the shorter path.

Ant

A B

Pheromone

Colony Food source

Figure 1.4: Ants find a shortest route.

ACO will be discussed in detail in the next chapter

13

CHAPTER TWO

PROBLEM STATEMENT

2.1. Introduction

With the advent of evolutionary algorithms as alternative approaches for solving many

optimization problems, great achievements have been recorded to the solutions of many non-

linear programming (NP) hard problems [24]. These algorithms include, but not limited to,

the algorithms we explained before. These algorithms are being applied for solving 1-D

optimization problems like: Travelling Salesman Problem (TSP) [21], quadratic assignment

problem (QAP), sequential ordering problem (SOP) [21], etc. as well as 2-D problems that

include Image Edge detection, Image clustering, etc.

In this thesis work, the performance of the four algorithms discussed in Chapter one which

comprises GA, SA, ABC and ACO Algorithms will be implemented in TSP which is a 1-D

problem and ACO will be applied for Edge Detection problem which is a 2-D problem.

TSP is a 1-D optimization problem that belongs to the class of Non-Linear Programming

(NP-hard) problem of a salesman who wants to find the shortest closed tour of visiting all the

cities exactly once and returning back to the starting point. TSP has many applications that

include planning, logistics and manufacture of microchips. It can also be used in many areas

such as; DNA sequencing as a sub-problem [21]. TSP is widely regarded problem according

to the literature and has been considered by a lot of research works. TSP is selected to test the

performance of these algorithms because of the following reasons:

1. It is being considered by researchers as one of the most important NP-hard problems

that happen to be in various areas of application.

2. It is a problem in which the algorithms are not confused by many technicalities.

3. TSP is regarded by researches to be a standard laboratory for testing new algorithms.

The performance of any new algorithms in TSP is used to measure its usefulness.

On the other hand, edge detection problem is a 2-D problem of finding areas where there are

sudden changes in intensity which can be used in illustrating border lines in images. This

important property, therefore, enables edge detection to be very important in many areas

14

including object or pattern recognition, image analysis, computer vision, and image

processing [25]. ACO among the four algorithms, applied for 1-D case, is selected to be

applied for 2-D case and the reason for that because it provides the best performance among

the others in the 1-D case.

The remaining part of this chapter is devoted to the explanation of the two optimization

problems to be considered for our work which are TSP and Edge Detection.

2.2. Travelling Salesman Problem

TSP is a 1-D NP-hard problem of finding the shortest closed tour of a visit for a set of cities

given, and each city is visited exactly once. This problem is consort with distances between

cities, or sometimes called costs. The salesman is expected to build a closed tour with

minimum cost. The closed tour signifies a round-trip where by the salesman starts from a

particular city and finally returns to that starting city after visiting all the cities and each city

is visited once [26]. TSP is one of the discrete combinatorial optimization problems and can

be represented using a weighted graph that connects all the cities, given as (,),G V A where

V stands for the set of n cities, i.e.  1, , ,nV v v and A is the set of all paths (edges) or

arcs that connects all cities. The set, A can be donated as  (,) : ,A s t s t V  and each of the

edges (,)s t A is given a distance ,s td as the distance between two cities s and t . If in any

given TSP and in at least one of the arcs , ,s t t sd d , the problem is asymmetric TSP. Else if

for all arcs , ,s t t sd d the problem is called symmetrical TSP. Generally, TSP is aimed to

compute the permutation  of the node indices  1,2,3, , n

which minimizes the equation

given in Eq. (2.1) below:

1

(), (1) (), (1)

1

() .
n

i i n

i

f d d   






  (2.1)

TSP has been solved using numerous methods which are usually of two categories;

approximation and exact algorithms [27]. Approximation methods use heuristics and iterative

improvement processes, unlike exact algorithms that use mathematical models. Exact

algorithms attempt to find a good solution of an optimization problem and attest their

optimality when tested for small instances. Approximation algorithms have the advantage of

producing satisfactorily good solutions within short time [28]. Approximation algorithms can

be divided into constructive heuristics and improvement heuristics. Solving TSP using

15

Insertion heuristic, Greedy heuristic, nearest neighbor, etc. are all constructive heuristic

methods, while optk  , EAs, and metaheuristic based algorithms like SA, ABC, ACO, etc.

are all belong to improvement heuristics. On the other hand, exact methods based instances

include: Lagrangian Relaxation, Integer Linear Programming, etc. [26].

2.2.1. Genetic Algorithm for Travelling Salesman Problem

GA has been applied for solving many optimization problems. TSP is one of the common

problems where such algorithm has been applied [29]. The way we applied it for TSP is

summarized below:

Populations of individuals‟ solutions are initially created randomly which are regarded as our

tours and their codification is called chromosome. This chromosome is an arrangement of

symbols that represent cities. These tours are our initial solutions and each one signifies a

closed path of visiting all the cities. Two of these tours which have the minimum distance

(highest fitness) were selected to be the parent-tours and crosses together to produce another

two solutions called children-tours, which expectantly will be better that the two parents

solutions. The selection criteria used is similar to Eq. (1.2). The crossover used in our

analysis is a single point crossover explained in Section 1.2.2.1 of Chapter One because it is

simple and gives good results. In order to avoid generating a solution that is identical to any

of the parents, the new solutions produced were mutated. The mutation used is swap

mutation; where by the sequence of the two cities codified in the chromosome were

interchanged. The two longer tours in the population were substituted by the two children

tours produced. The process is repeated by continually generating new children tours until

termination criterion is met.

Even though, this algorithm shows ability to solve TSP but the results obtained (as shown in

Chapter 4) are not satisfactory and hence another algorithm called SA, which is inspired by

the annealing process of metal, was tested to solve the same problem. The implementation

process is detailed below.

2.2.2. Simulated Annealing for Travelling Salesman Problem

SA is also another metaheuristic algorithm which, if implemented properly and took care of

all the parameters selection, can ensure near optimal solution of the TSP. Below, the

summary of procedure we used in applying SA to solution of TSP is given.

16

The initial temperature of the system was stated to be the same as the maximum cost (worth

cost) and allowed to drop quickly until 50% of the worth solutions were accepted, and then

the temperature was used as our initial temperature. The solution was represented as a series

of nodes and these nodes are arranged in the order they were visited. Each node is written

once in the list. In this solution representation node 1 always comes the first but is usually not

stated in the list but is assumed to be. The last node is also1. For example if the solution is

represented by the order: “ 4, 5, 3, 6, 2,1” it means the tour is started from city 1 to city

4, 5, 3, 6, 2 and lastly go back to city1. A feasible solution to the TSP was found using

greedy method; it begins the tour with the first node and to the most nearest node until the

tour is completed. At each node find the closest node to it and not visited before, until a

closed tour is formed. This solution obtained is the initial solution. From this solution, a

neighbor solution is produced by randomly interchanging two pairs of nodes. Node 1 is not

among the nodes to be interchange always. For example, if position 3 and 2 are randomly

selected to swap, then the new tour will be “ 4, 5, 2, 6, 3,1”. This neighbor solution, which is

the new route produced (“ 4, 5, 2, 6, 3,1”), is compared with the current route (“ 4, 5, 3, 6, 2,1

”). If the length of the new route is shorter than the current route, the new route becomes the

current route and is checked whether it is shorter than the previous routes found so far. The

new route is saved as the best route if it is shorter than all the routes found so far. If the length

of the new route is higher than the old route, the difference in length between the two tours is

used to calculate the transition probability explained in (1.5) for accepting or rejecting the

new route. A random number generated between „ 0 ‟ and „1‟ is compared with this transition

probability. If the probability value is greater than the random number, the change is accepted

and the new route becomes the current one, otherwise, it is rejected and the old route is

maintained. The temperature of the system is then updated using *T alpha T where alpha

is the geometric annealing factor. The algorithm continues until the temperature approaches

zero.

The results obtained using this algorithm show significant improvement when compared with

those of the GA, but since ABC algorithm was also successfully implemented for various

instances in solving TSP problem and was found to be robust in many optimization problems,

it is also introduced to solve the same data sets of the problems.

17

2.2.3. Artificial Bee Colony for Travelling Salesman Problem

ABC Algorithm is inspired by the foraging behavior of honey bees and has been applied to

solve many optimization problems. Here, we introduced the way we used in solving the TSP

[26].

A number of bees, ()N bee , which is equal to the same number of cities, is initialized.

Afterwards bees are allowed to build a closed tour randomly. A cycle is made after all the

bees have completed the tour. In the hive each bee, before leaving, randomly selects one of

the paths explored by another bee based on the dances watched. This path called “

Preferred path ” denoted as , will lead the bee in forming its tour. At city i , a bee will

have two sets of paths to go, which are; “ allowed city ” denoted as ()iA t , and “

preferred city ” denoted as ()iF t . ()iA t contains all the cities that can be visited from i

including that of ()iF t , and ()iF t is a set of a single city which is suggested to be visited by

 from i . Let ()n represents the n th element in . From the hive at the start of the tour

 (0) (1)HF  and if at a given time t , ()n is the recently visited city then

 () () (1)nF t n   .

Throughout the foraging activity, a bee goes from one city to another up to the end. Here, the

transition from city i to j is guided by transition rule; which is based on the arc fitness and

heuristic distance. At a given time, the arc fitness of all the paths to cities, that can be visited

from that specific city, is evaluated and the arc which belongs to the preferred

Preferred path is given the highest value. This causes the bee to select the city which is

part of the Preferred path to visit next. However, for the heuristic distance effect, a bee

always chooses the closest city to its current position to visit. The transition rule for moving

from city i to j is defined as:

()

(). ()
, if ()

(). ()()

0, otherwise

i

ij ij

i
bee

il ij
ij

l A t

t t
j A t

t tp t

 

 

 

 





 





(2.2)

where ()ij t is the arc-fitness from city i to j ,  and  are parameters that control the

influence of arc-fitness and heuristic distance respectively.
1

ij

ijd
  is the heuristic distance.

The arc-fitness is given by:

18

, ()

() (), 0 11 () ()
, ()

() () ()

i

ij ii i

i

i i i

j F t

t j A tA t F t
j F t

A t A t F t



 




     
  

 (2.3)

From this equation () ()i iA t F t is set to „1‟ when the case is common in both ()iA t and

()iF t , or else set to „ 0 ‟. The parameter  stands for the probability of selecting a city in the

Preferred path .

Supposing a bee has five cities to visit, as  1,2,3,4,5V  . It starts from hive, H and is

provided with a Preferred path as,  “ 2,1,3,4,5,2 ”. This path is witnessed from one of

the bees via waggle dance in the hive. In order to push the bee to move to the first city in  ,

the distance between the hive and any other city is assumed the same. In this example,

heuristic distance has no effect. At 0t  a bee leaves its hive and go the first city to be visited

and from  “ 2,1,3,4,5,2 ”, two city sets can be obtained. These sets are:

 (0) 1,2,3,4,5HA  and  (0) 2HF  . The fitness values are allocated on all the arcs

connecting the hive and cities in (0)HA .  is given to arc (,2)H and
(1)

4


 is given to:

(,1),(,3),(,4)H H H and (,5)H . Usually, the fitness values at a given time t from city i can

be written in matrix, ()i t having a size of 1 ()iA t and entries, symbolized as ij ,

represent the arc fitness from city i to j . Below is a matrix for the arc fitness from hive to

city j at 0t  and (0)Hj A . 1 2 3 4 5(0) []H H H H H H      or

1 1 1 1

4 4 4 4

   


    
 
 

. The sum of all the arc fitness values associated to the paths

connecting i to the other cities is „1‟ as shown below:

()

() 1.
i

ij

j A t

t


 (2.4)

If city 2 is previously selected to be visited at 1t  ,  2() 1,3,4,5A t  and  2 (1) 1F  , the arc

fitness values matrix will be:

2

1 1 1
(1)

3 3 3

  


   
   

 
. This idea always directs the bee towards following the path

which is part of the preferred by assigning the highest fitness value which is  and all the

rest as (1 ).

19

Suppose 5 is selected at 1t  , then at 2t  the sets of allowed cities will be  5(2) 1,3,4A 

and  5(3) 2F  . Under this condition all the arcs connecting to 5 with 5(2)A cities will have

equal values of fitnesses as shown below:

 5 51 53 54

1 1 1
(2)

3 3 3
  

 
    

 
.

At the hive, a bee dances if and only if it finds a shorter path compared to the earlier tours it

made. So, not all the bees dance in the hive when returned. The period taken by a bee i to

dance in the hive, when a tour better than its previous tours is found, is given as

.

. ,i
i S

col

pf
D K

pf
 (2.5)

where
1

i

i

pf
L

 is the profitability of a bee i , SK is the scaling factor of the dance and

.

1 1

1 1 1n n

col i

i i i

pf pf
n n L 

   , is the average profitability of the bees that perform waggle dances

in the hive and n stands for the number of bees that dance.

However, before any bee selects a tour to follow, it decides either to follow or not with the

probability of follow, .folp , given as:

Table 2.1: Probability of follow.

Profitability score
.folp

.0.5i colpf f 0.60

. .0.5 0.65col i colpf pf pf  0.20

. .0.65 0.85col i colpf pf pf  0.02

.0.85 col ipf pf 0.00

The probability of follow from the Table 2.1 is changing with the change in ipf and .colpf . In

a situation where by the . 0.00folp  a bee will trace back its previous path. It will not select

any new path.

20

This algorithm presents better results when compared with the results obtained by GA and

SA. However, ACO is another optimization algorithm which can easily be applied to solving

TSP.

2.2.4. Ant Colony Optimization for Travelling Salesman Problem

ACO algorithm is inspired by the foraging behavior of ants, and it has been applied for

solving many optimization problems. Here we applied it to solve TSP as follows:

Initially, all ants were placed on the cities randomly and the initial values of the pheromone

trail (0) are assigned on each city. Each ant will use the transition formula given below to

move from one city to another until it returns to the starting city (node). Ant k uses Eq. (2.6)

to define the probability of moving from city i to j .

(). ()
, if

(). ()()

0, otherwise

k
i

ij ij k

i
k

il ij
ij

l N

t t
j N

t tp t

 

 

 

 





 



 , (2.6)

where
k

iN is the set of all cities that can be visited from i excluding the cities passed. It can

be simply written as  k k

iN N tabu  ,  and  are constant values used to control the

influence of pheromone and visibility, respectively, and ij

ij

v

d
  is the visibility, where ijd is

the distance between cities i , j and v is a constant.

The next step, after all the ants have finished building the tours, all the paths are globally

updated using:

1

() () ,
n

k

ij ij ij

k

t n t  


    (2.7)

where  is the evaporation coefficient and  is a constant value (0 1) ,

if belongs to the tour made by

0, otherwise

k
kij

Q
ij k

L




  



 ,

where kL is the total tour length performed by ant k and Q is a constant value associated

with the amount of trails deposited.

21

The length of the tours obtained using this algorithm happens to be shorter than those of the

other three algorithms. It gives minimum costs than GA, SA and ABC and, hence, we will

use the ACO algorithm in detecting the edges of image since it is an optimization problem.

2.3. Edge Detection

Edge detection is considered as an important tool in image processing. It has been used an

important pre-processing tool in feature extraction and object segmentation [30]. Edges are

regions where there are sudden changes in intensity and are used to define boundaries in an

image. Through the edge detection process, useful information in an image are reserved and

useless ones are eliminated [31]. Researchers have succeeded in introducing a lot of edge

detection methods and each one is purposed to fit a distinct types of edges. Some of these

methods are; Canny, Laplacian of Gaussian, Prewitt operator, Robert operator, Sobel operator

[32]. Up to our knowledge, Canny always provides the best results. Usually, these operators

are matrix-based and they are used to perform gradient operation on image area in order to

find the intensity of variance between pixels [30]. When dealing with these operators for edge

detection usually four steps are followed;

1. Smoothing: This is the process of removing the available noise in the image. Care

should be taken in smoothing an image in order not to damage some edges.

2. Enhancement: Enhancement or sharpening is applied after smoothing to improve the

quality of the image‟s edges. A filter can be used for this purpose.

3. Localization: Two important tools are usually needed in this steps which are; thinning

and linking. Localization involves finding the precise location of an edge.

4. Detection: This involves using process like intensity threshold to finally obtain the

edge pixels.

Recently a lot of research work has shown the ability of evolutionary algorithms, such as

ACO and ABC, to be effectively used for tackling edge detection problems. Examples of

these works include, the work in [18] for edge detection of CNN based imaging sensors using

ABC for designing a novel cloning template. Also, the work in [25] for solving edge

detection problems, especially, with noisy images using ACO and DWT. The results obtained

using these algorithms show significant improvement.

22

2.3.1. Ant Colony Optimization for Edge Detection

One of several techniques that are successfully being applied for image edge detection

problem is the ACO algorithms [33]. This optimization technique is based on the foraging

behavior of living ants [6]. In this technique, ants deposit a chemical substance, called

pheromone, on the ground which is used for communication among them. Many optimization

problems have been solved using ACO [26]. ACO is applied in edge detection problem to

obtain the edge information; which is very vital in understanding the information stored in the

image [34]. Such method concerns the ants movements driven by the local variation of image

pixels to store positions where there is a change in the intensity value in their memory and

update the pheromone matrix. It starts with initialization state where the pheromone matrix is

initialized and the heuristic matrix is calculated. The other stages are: construction, updating

and decision. These stages are given in detailed below:

Table 2.2: ACO algorithm for Edge Detection.

1. Initialization phase

 Define the initial pheromone matrix, calculate the heuristic matrix.

2. Construction phase

for 1:n N place all the ants on the image randomly.

 for every movement 1:l L

 for every ant 1:k K

 move to the next pixel in its neighborhood and update pheromone locally.

 end

 end

 update visited pixels

end

3. Decision phase

binary decision is finally made on the updated pheromone matrix on each entry

weather is an edge or not to obtain the image edge detected results.

23

2.3.1.1. Initialization stage

In the initialization stage, the artificial ants are randomly dispatched on the image. A

pheromone matrix whose size is the same as that of the input image is formed. The entries of

this matrix are set to very small initial values and denoted as (0) . Another matrix called

heuristic matrix is also formed, the entries of this matrix are calculated based on the image

intensity values of the pixels which rely on clique. The heuristic information at pixel location

(,)i j is defined as:

,

,

()
,

c i j

i j

V I

Z
  (2.8)

where
,()c i jV I is the variation in intensity value between the pixel

,i jI and the group of local

neighboring pixels and computed as shown in Fig. 2.1, Z is the normalization coefficient and

is given as,
,()

th th

c i j

i m row j n col

Z V I
 

   .

Ii-2,j-1 Ii-2,j+1

Ii-1,j-2 Ii-1,j-1 Ii-1,j Ii-1,j+1 Ii-1,j+2

Ii+1,j-2 Ii+1,j-1
Ii+1,j Ii+1,j+1 Ii+1,j+2

Ii+2,j-1 Ii+2,j+1

Ii,j-1 Ii,j+1

Figure 2.1: Neighbors of pixels ,i jI .

The variation in intensity given in Eq. (2.8) is computed using these neighbor pixels as,





, 2, 1 2, 1 2, 1 2, 1 1, 2 1, 2 1, 1 1, 1

1, 1, 1, 1 1, 1 1, 2 1, 2 , 1 , 1

()

.

c i j i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

V I f I I I I I I I I

I I I I I I I I

               

           

        

      
 (2.9)

24

This variation is higher when the pixels are located at edges. However, the image borders do

not have complete neighbor pixels, for example pixel positioned at (1,1) does not possess

pixels located at the north and west of it and, therefore, the clique is not complete. These

border pixels are assigned a very small value so that the area will be less attractive for ants.

Equations (2.10) – (2.13) are carefully taken into consideration in finding the function, (.)f ,

stated in Eq. (2.9).

() for 0,f x x x  (2.10)

2() for 0,f x x x  (2.11)

sin for 0
() ,2

0 else

x
x

f x






  
   

  



 (2.12)

sin

for 0() .

0 else

x
x

xf x









  
      




 (2.13)

Where  is a parameter that is used to change the shape of these functions [34].

2.3.1.2. Construction stage

During this stage, at every thn construction step, an ant is randomly chosen from the total ant

number, K . This ant moves from one point to another on the image for L steps. The

transition of ant from pixel location (,)l m to (,)i j is based on the equation below:

(,)

(1)

, ,()

(,),(,) (1)

, ,(,)

() ()
,

() ()
l m

n

i j i jn

l m i j n

i j i ji j

p

 

 

 

 










 (2.14)

where
(1)

(,)

n

i j 
 represents the quantity of pheromone trail at pixel (,)i j , ,i j is the heuristic

information at pixel (,)i j ,  and  are parameters that stand for the influence of pheromone

trail and heuristic information, respectively. (,)l m represents all the pixels that can be visited

from pixel (,)l m , i.e. its neighborhood pixels.

25

2.3.1.3. Update stage

During this stage, two types of pheromone update are usually carried out; which are local

update and global update. Local update is performed after each ant, k , moves during the

construction step. This update is performed using Eq. (2.15),

(1) ()

, ,(1)

, (1)

,

(1). . , if (,) is visited by ant
,

, otherwise

n k th

i j i jn

i j n

i j

i j k  










   
 


 (2.15)

where  is the pheromone evaporation rate and
()

,

k

i j is determined from the heuristic

information, i.e.
()

, ,

k

i j i j  . The global update is done after all the ants have finished the

movement steps. The update is given in Eq. (2.16) as,

() (1) (0)

, , ,(1). . ,n n

i j i j i j       (2.16)

where  is the pheromone decay coefficient and
(0)

,i j is the initial pheromone matrix at pixel

location (,)i j .

2.3.1.4. Decision stage

In this stage, the updated pheromone matrix is used to obtain the detected edges by defining a

threshold value, hT . Binary decision is usually made on each pixel of the final pheromone

matrix ()N to verify if it is an edge or not. The threshold, hT , is computed adaptively based

on the method in [34]. This process is as follows:

Step 1: The initial threshold
(0)

hT is computed at 0iter  as,

1 2

()

,

1 1(0)

1 2

,

M M
N

i j

i j

hT
M M


 




 (2.17)

where 1M and 2M

are the row and column sizes of the pheromone matrix, respectively, and

they also denote the size of the original image.

Step 2: The entries of the pheromone matrix ()N are then grouped into two; the first group

contains all the entries below the threshold value
() ,iter

hT

and the second group contains the

rest of the entries. The mean value of these two groups of pixels is then computed as:

26

()

1 2

()

1 2

()

,

1: 1:()

()

,

1: 1:

()

,
()

iter
h

iter
h

L N

i jT
i M j Miter

L L N

i jT
i M j M

g

m
h





 

 



 

 
 (2.18)

()

1 2

()

1 2

()

,

1: 1:()

()

,

1: 1:

()

,
()

iter
h

iter
h

U N

i jT
i M j Miter

U U N

i jT
i M j M

g

m
h





 

 



 

 
 (2.19)

where

() ()

() ()

() ()

() ()

, if 1, if
() , () ,

0, otherwise 0, otherwise

if 1, if
() and () .

0, otherwise 0, otherwise

iter iter
h h

iter iter
h h

iter iter

L Lh h

T T

iter iter

U Uh h

T T

x x T x T
g x h x

x x T x T
g x h x

  
  
 

  
  
 

Step 3: set iteration as 1,iter iter  and the threshold value hT is updated using:

() ()
()

2

iter iter
iter L U

h

m m
T


 (2.20)

Step 4: In this step, binary decision is made on the pixels. If
() (1) ,iter n

h hT T e  terminate the

algorithm and check each pixel if it is an edge or not. Else go back to step 2. The decision on

pixel ,i jE is made based on the standard below:

() ()

,

,

1, if

0, otherwise

N iter

i j

i j

T
E

 
 


 (2.21)

where e is the decision tolerance value and usually is selected to be a small positive number.

27

CHAPTER THREE

PROPOSED ALGORITHMS

3.1. Overview

Even though the ACO algorithm has shown significant performance in edge detection

problem, this performance can be enhanced further by applying a DWT on the input image.

This technique is presented in detail in the rest of this chapter.

3.2. The Proposed Algorithms

The edge detection method explained in Section 2.3.1 shows ability to detect edges of an

image. However, some results obtained using this method do not have enough information to

clarify the image concerned, especially, when the edge results are hampered by breaking up

or fragmentation, or when the original image is contaminated with noise. To overcome these

problems, we propose a new algorithm based on DWT and ACO. The DWT is applied to the

image as the preprocessing stage before the conventional ACO algorithm is applied. The edge

detection results obtained using this technique show substantial improvements, more

especially, when the original image is noisy. Also, another approach is proposed to improve

the edge detection results by detecting the edges of each of the four sub-images obtained by

decomposing the original image using 2D-DWT, independently, and then, using the 2D-

inverse DWT (2D-IDWT), the detected edges are combined. The two proposed algorithms

are presented below.

3.2.1. Discrete Wavelet Transform-based ACO for Edge Detection

In an attempt to improve the edge detection results obtained by the conventional ACO, the

concept of wavelet transform is introduced into the system. Wavelet transform is a process of

decomposing, analyzing and displaying the processed major components of an image and

leaving the rest of the components without processing [25]. Wavelet transform has been

applied in various edge detection techniques [35]. In an effort to improve edge detection

results, we propose applying DWT to the image as a preprocessing step before applying the

conventional ACO algorithm in order to be capable of detecting the undetected or badly

28

detected edges, especially, when the image is contaminated with noise. Fig. 3.1 shows the

flowchart of the proposed algorithm.

Digital Image

Do Discrete

 Wavelet

 Transform

 Dispatch ants on the

 square approximation

 image randomly

pheromone matrix

 initialization

 Determine the

heuristic matrix

 Ants are moved by choosing

 current neighbored position

 pheromone

 matrix update

 All ants

 moved to the

 image?

 Mean

 threshold

value found?

Update pheromone matrix

All iterations

 finished?

Edge pixels

determined

Yes

No

Yes

No

Yes

No

Figure 3.1: Flowchart of the proposed Discrete Wavelet Transform-based ACO for Edge

Detection.

29

As shown in the flowchart above, in this proposed algorithm the output image from the DWT

is the input image to the conventional edge detection techniques using ACO explained in

Section 3.2.1. The performance of the proposed algorithm shows clear and significant

improvement in edge detection results, especially, when the input image is corrupted by

noise.

3.2.2. DWT Sub-Band Fusion using ACO for Edge Detection

Even though the proposed algorithm shows a good capability of detecting edges that may not

be detected by the conventional ACO, this performance can be enhanced more by using the

approximation coefficient and the three details coefficients submatrices, resulted from the

DWT. Each of these four submatrices is processed separately, and the resulting four matrices

are recombined using the IDWT. The details of this method are below.

3.2.2.1. Two Dimensional Discrete Wavelet Transform

The digital image can be decomposed at j level into four components using 2D-DWT. The

components are; the approximation coefficient at level 1j  and the three details coefficient

which includes: horizontal coefficients, vertical coefficients and diagonal coefficients. The

2D-DWT decomposition of an image is shown in Fig. 3.2, [36, 37]:

Lo_D

Hi_D

Lo_D

Lo_D

Hi_D

Hi_D

cAj

cAj+1

cDj+1(h)

cDj+1(d)

Rows

Rows

Columns

Columns

Columns

Columns

2 1

2 1

cDj+1(v)

1 2

1 2

1 2

1 2

Figure 3.2: Two-dimensional discrete wavelet image decomposition.

30

 where 2 1 down samples columns of image, jcA and 1 2 down samples rows; Lo_D

and Hi_D are the decomposition low pass filter and high pass filter for convolutions with

rows and columns of jcA .

The components; j+1cA ,

(h)

j+1cD ,
(v)

j+1cD and
(d)

j+1cD are always of the

same size of the image and they represent the approximation coefficient, the horizontal

coefficient, the vertical coefficient and the diagonal coefficient matrices, respectively. The

approximations represent the high scale and components of the image with low frequency

while the details represent the opposite; low scale components of the high frequency. This

process involves 1-D convolutions of rows and columns of the image, jcA with the

decomposition low pass filter, Lo_D and decomposition high pass filter, Hi_D .

3.2.2.2. Two Dimensional Inverse Discrete Wavelet Transform

2D-IDWT can be used to reconstruct back the original image from high and low frequency

components obtained from the decomposition process of 2D-DWT, [36].

Lo_R

Hi_R

cAj+1

cDj+1(h)

cDj+1(v)

cDj+1(d)

Rows

Columns

Lo_R

Hi_R

Hi_R

Lo_R

Rows

Columns

Columns

Columns

wkeep cAj

 21

 21

 21

 21

2 1

2 1

.

Figure 3.3: Two-dimensional discrete wavelet image reconstruction.

where1 2 and 2 1 are for up sampling rows and columns respectively. The stage Lo_R

signifies the reconstruction low pass filter and Hi_R stands for the reconstruction high pass

filter.

These processes of decomposition and recombination of a digital image using 2D-DWT and

2D-IDWT, respectively, were used in our proposed algorithm. The digital image is

decomposed in the first stage of the algorithm into four sub images and each of these sub

images is applied to edge detection algorithm using ACO method explained in Section 3.2.1

above. The detected edge results of these four sub images are recombined together to produce

31

the final edge detection result using 2D-IDWT. The flowchart of the proposed algorithm is

shown in Fig. 3.4.

Figure 3.4: Flow chart of the proposed DWT Sub-Band Fusion using ACO for Edge

Detection.

ACO ACO ACO

𝑐𝐴𝑗+1
(𝑑)

 𝑐𝐷𝑗+1
(ℎ)

 𝑐𝐷𝑗+1
(𝑣)

 𝑐𝐷𝑗+1
(𝑑)

ACO

Result 2 Result 3 Result 4 Result 1

IDWT

Result

DWT

Image
cAj

32

CHAPTER FOUR

SIMULATION RESULTS

4.1. Overview

This chapter presents the results that compare the performance of the GA, SA, ABC and

ACO algorithms in TSP. It also presents the results that compare the performance of the

proposed algorithm with that of the ACO algorithm in edge detection. MATLAB software

(version 2012) was used for testing all the algorithms.

4.2. Travelling Salesman Problem

4.2.1. The Same Number of Cities with Independent Generations

In this experiment, three different data sets were randomly generated and each of them

contains 30 cities. Each of these data sets was considered separately and the minimum

distance of visiting all the 30 cities once was measured using GA, SA, ABC and ACO

algorithms. All these algorithms were run for 200 independent runs for each of the data sets.

The positions of the cities and implementation details for each of the algorithms are

summarized below:

Figure 4.1: Random cities positions of data set 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x coordinate

y
 c

o
o
rd

in
a
te

33

Figure 4.2: Random cities positions of data set 2.

Figure 4.3: Random cities positions of data set 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x coordinate

y
 c

o
o
rd

in
a
te

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x coordinate

y
 c

o
o
rd

in
a
te

34

All of the algorithms are implemented with the following parameters: Population size is set

equal to the number of cities (30). For the GA: Swap mutation and single point crossover are

used. For the SA algorithms: The geometric annealing factor 0.72alpha  . For the ABC

algorithm; 30beeN  , 200MaxBC  , 1  , 10  and 0.99  . For the ACO algorithm:

The number of ants 30m  , 1  , 3.5  , 1init  , 10000Q  and 10000v  . From Table

4.1 and Fig. 4.4, it is noted that at each dataset, the ACO algorithm performs much better than

GA and SA (on average, 0.601and 0.117 normalized distances, respectively). Compared to

the ABC algorithm, the ACO algorithm performs exactly the same as the ABC for the first

dataset and better in the second and third datasets (on average, the ACO is better than the

ABC algorithm by 0.0471 normalized distances). Hence, for such experiment the ACO

algorithm shows significant performance compared to the other algorithms.

Table 4.1: Experimental results to three data sets each contain 30 random cities.

Algorithm

Data set

GA

SA

ABC

ACO

1 4.9605 4.3528 4.2166 4.2166

2 5.3121 4.9101 4.8588 4.7823

3 5.0694 4.6256 4.6041 4.5392

Average

Tour 5.114 4.6295 4.5598 4.5127

35

Figure 4.4: Minimum normalized distance obtained using GA, SA, ABC and ACO for the

three data sets.

However, to be more satisfied with the performance of ACO in TSP compared to the others,

three new datasets containing 50, 100 and 150 random cities, respectively, are generated. The

experiments were repeated using the same algorithms and the same implementation

parameters. The cities positions for each of these data sets are shown in Figs. 4.5 - 4.7,

respectively. The obtained results are shown in the Table 4.2 for all the algorithms.

0.5 1 1.5 2 2.5 3 3.5
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

Data Set

M
in

.
N

o
rm

a
liz

e
d
 T

o
u
r

L
e
n
g
th

GA

SA

ABC

ACO

36

Figure 4.5: Random cities positions of data set 1 containing 50 cities

Figure 4.6: Random cities positions of data set 2 containing 100 cities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x coordinate

y
 c

o
o
rd

in
a
te

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x coordinate

y
 c

o
o
rd

in
a
te

37

Figure 4.7: Random cities positions of data set 3 containing 150 cities

Table 4.2: Results to three data sets contain 50,100 and150 cities.

Algorithm

Data set

GA

SA

ABC

ACO

50 cities 8.4765 6.9529 6.3625 5.9343

100 cities 19.5233 14.1877 8.6425 8.4165

150 cities 33.9455 22.5241 10.2845 10.2166

From Table 4.2 and Fig. 4.8, it is noticed that the performances of the GA and SA algorithms

deteriorates. This is due to the optimum path followed is local and not global. However, the

ABC and ACO algorithms provide very robust results and very shorter paths than the others

with the best performance for the ACO algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x coordinate

y
 c

o
o
rd

in
a
te

38

Figure 4.8: Minimum normalized distance obtained using GA, SA, ABC and ACO for the 50,

100 and 150 data sets.

Because the ACO algorithm provides the best performance among all the algorithms, we

thought of expanding it into the 2-D case and apply it to the image edge detection problem.

4.3. Edge Detection

In this section, Lena, Camera-man and Barbara images are used to test the performances of

the 2-D ACO and the proposed algorithms. The resolutions of all images used are of

512 512 pixels. The parameters used for implementing the conventional ACO and the two

proposed algorithms were the same and are: 1  , 0.1  , 0.1  , 0.05  , 0.1init  ,

10N  , 4K  , 40M  and 0.1e  .

0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

40

Data Set

M
in

.
N

o
rm

a
liz

e
d
 T

o
u
r

L
e
n
g
th

GA

SA

ABC

ACO

39

4.3.1. Discrete Wavelet Transform-based ACO for Edge Detection

This section presents performance comparisons between the first proposed algorithm and

conventional ACO algorithms under different test images condition. Lena and Camera-man

images were used in this section.

In the first experiment, image edge detection using both algorithms is applied to the original

Lena image. Fig. 4.9 (b) shows that the conventional ACO algorithm is capable to detect

edges very efficiently. However, from Fig. 4.8 (c) we notice that, the first proposed algorithm

detects the same edges but denser, which enables us to see some edges that may not be seen

using the conventional ACO. This could be very clear at the left side of the image and the

nose.

(a)

(b) (c)

Figure 4.9: (a) Original test Image (Lena), (b) Detected edges using ACO [38] and (c)

Detected edges using the first proposed algorithm.

40

In order to see the effect of noise on the performance of the algorithms, in the second

experiment, a normalized additive white Gaussian noise (AWGN) with zero mean and

variance  2 0.02 

is added to the images. Image with noise is shown in Fig. 4.10 (b). Figs.

4.10 (c) and (d) show the edges detected by the conventional ACO and the first proposed

algorithm, respectively. It is obvious that the first proposed algorithm provides clearer

detected edges than the conventional ACO algorithm. This is due to the ability of the DWT in

suppressing the noise before detecting the edges.

Figure 4.10: (a) Original test Image, (b) Image with noise  2 0.02  , (c) Detected edges

using ACO and (d) Detected edges using the first proposed algorithm.

In order to see the effect of the noise amount on the performances of the algorithms, AWGN

with zero mean and variance  2 0.05  is added to the normalized images. Fig. 4.11 (b)

41

shows the image after the noise is added. Fig. 4.11 (c) shows the edge detection result using

the conventional ACO algorithm and Fig. 4.11 (d) shows the result of the first proposed

algorithm. It is very clear from the results that the conventional ACO algorithm is not

capable of detecting the edges of the image buried in noise. However, the first proposed

algorithm is still capable of detecting the edges from the noisy image as can be seen from Fig.

4.11 (d).

Figure 4.11: (a) Original test Image, (b) Image with noise  2 0.05  , (c) Detected edges

using ACO and (d) Detected edges using the first proposed algorithm.

In the second part of this section, we try to show the performances of the conventional ACO

and the first proposed algorithm in different images. For this purpose, the Camera-man image

is used in this section. From Figs. 4.12 (b) and (c) we noticed that the first proposed

algorithm is capable of detecting edges which are not detected by the conventional ACO.

42

This is very clear at the ear-side of the man and at the front-side of the camera. In addition to

that, the edges detected by the first proposed algorithm are denser than those detected by the

conventional ACO.

(a)

 (b) (c)

Figure 4.12: (a) Original test Image (Camara-man), (b) Detected edges using ACO and (c)

Detected edges using the first proposed method.

The second experiment is repeated with the same parameters, but using the Camera-man

image. It is clear from Figs. 4.13 (c) and (d) that the conventional ACO almost fails in

detecting the edges of the image where the first proposed algorithm is capable of detecting

the edges successfully.

43

Figure 4.13: (a) Original test Image, (b) Image with noise  2 0.02  , (c) Detected edges

using ACO and (d) Detected edges using the first proposed algorithm.

Finally, from Figs. 4.14 (c) and (d) we noticed that, the amount of the additive noise has

almost no effect on the first proposed algorithm. However, this noise amount makes the

detection capability of the conventional ACO worse.

44

Figure 4.14: (a) Original test Image, (b) Image with noise  2 0.05  , (c) Detected edges

using ACO and (d) Detected edges using the first proposed algorithm.

4.3.2. Summary and Discussions

To measure the performance of any edge detection algorithm, usually a comparison is made

between its edge map results with its ground truth image. This can be achieved through many

ways that includes; the number of correctly detected edge pixels, called true positive (TP), the

number of pixels wrongly classified as edge pixels, called false positive (FP), the number of

edge pixels not detected as edge pixels, called false negative (FN), [39]. These ways of

performance measurements can be defined mathematically, as:

The percentage of edge pixels that were detected correctly is given in Eq. (4.1), [40].

max(,)
cd

I B

TP
p

N N
 (4.1)

45

where IN and BN represent the number of edge points of the ideal image and the number of

edge points of the detected image, respectively.

The percentage of edge pixels that were not detected is given in Eq. (4.2).

max(,)
nd

I B

FN
p

N N
 (4.2)

The percentage of edge pixels that were not edges but wrongly detected as edges is given in

Eq. (4.3).

max(,)
wd

I B

FP
p

N N
 (4.3)

Pratt‟s figure of merit (FOM) is another important measure for assessing the performance of

edge detection algorithms. FOM measures the distance between all pairs of points

corresponding to quantify, with precision, the difference between the contours [39]. The

FOM is defined in Eq. (4.4) [41, 42] and assesses the similarity between two contours [39].

2
1

1 1

max(,) 1

BN

I B i

FOM
N N w d


 

 (4.4)

where w is a scaling constant that is adjusted to penalize edge points that are detected but

offset from exact or true position and its optimal value is
1

9
 as given by Pratt [43], and d is

the distance of separation of an actual edge point along a line normal to a line of ideal edge

points [40, 44].

The value of FOM ranges between 0 and1. The larger the value of FOM , the better the

performance [45].

In testing the performance of edge detection algorithm, visual method is another method

different from objective method. In visual method usually an edge image is evaluated by a

group of people and the average score is used as an index of quality [41].

In our work, we used the visual method up to this point and from now on we will use the

objective (evaluation) method to test the performance of our algorithms. FOM is used among

the objective techniques because it is a widely used objective standard to rate the quality of

edge detection algorithms [42].

46

However, in testing the performances of the proposed algorithms, because the ground truth

images are very rear and difficult to get, we used the Canny results of transformed Lena and

Camera-man images to be our ground truth images for testing our proposed DWT-Based

ACO for edge detection and Canny results of Lena and Barbara images without transform for

the conventional ACO, Prewitt and Sobel because, up to our knowledge, Canny gives the best

results. The ground truth images used for testing the proposed algorithm are shown in Fig.

4.15.

Figure 4.15: Ground truth images obtained using Canny and DWT (a) Lena, (b) Camera-man.

From Table 4.3 and Fig. 4.16, it is noted that at each normalized AWGN variance, the first

proposed algorithm performs much better than ACO, Sobel and Prewitt. Compared to the

Canny operator, our proposed algorithm performs less than Canny in the absence of noise and

much better than Canny when the image is corrupted by noise.

(a) (b)

47

Table 4.3: Figure of Merit results for Lena Image.

 Edge Detectors

Normalized

AWGN

variance

Canny

Sobel

Prewitt

ACO

First

Proposed

Algorithm

0 1 0.9419 0.9416 0.9327 0.9435

0.1 0.9738 0.9266 0.9264 0.9655 0.9821

0.2 0.9725 0.9234 0.9232 0.9665 0.9915

0.3 0.9721 0.9220 0.9219 0.9676 0.9912

0.4 0.9716 0.9211 0.9210 0.9672 0.9912

0.5 0.9714 0.9208 0.9206 0.9681 0.9908

Figure 4.16: Figure of merit for Lena Image.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Normalized AWGN Variance

N
o
rm

a
liz

e
d
 F

ig
u
re

 o
f

M
e
ri
t

Canny

Sobel

Prewitt

ACO

First P. Alg.

48

In the second part of this section, we try to test the performance of our first proposed

algorithm on Camera-man image. From Table 4.4 and Fig. 4.17, it is noticed that our first

proposed algorithm performs less than Sobel, Prewitt and Canny but better than the

conventional ACO in the absence of noise. However, when the image is buried with noise,

our first proposed algorithm performs much better than the others.

Table 4.4: Figure of Merit results for Camera-man Image

 Edge Detectors

Normalized

AWGN

variance

Canny

Sobel

Prewitt

ACO

First

Proposed

Algorithm

0 1 0.9557 0.9556 0.9511 0.9531

0.1 0.9759 0.9493 0.9493 0.9817 0.9848

0.2 0.9741 0.9448 0.9449 0.9847 0.9901

0.3 0.9733 0.9417 0.9421 0.9856 0.9927

0.4 0.9728 0.9404 0.9406 0.9866 0.9924

0.5 0.9722 0.9397 0.9396 0.9852 0.9924

49

Figure 4.17: Figure of merit for Camera-man Image

4.3.3. DWT Sub-Band Fusion using ACO for Edge Detection

This section shows the performance of the second proposed algorithm compared to that of the

conventional ACO. Lena, Barbara and Camera-man images were used to test the

performances of both algorithms. Even though the second proposed algorithm needs more

time than the conventional ACO, it provides much denser edges is capable of detecting edges

that are not detected by the conventional ACO algorithm. This algorithm can be used in

applications were the detected edges are more important than the time.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Normalized AWGN Variance

N
o
rm

a
liz

e
d
 F

ig
u
re

 o
f

M
e
ri
t

Canny

Sobel

Prewitt

ACO

First P. Alg.

50

(a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Figure 4.18: (a) Lena image (b) Barbara image (c) Camera-man image (d) Lena edges using

ACO (e) Barbara edges using ACO (f) Camera-man edges using ACO (g) Lena edges using

the second proposed method. (h) Barbara edges using the second proposed method

(i) Camera-man edges using the second proposed method.

51

Like the first proposed algorithm, the second proposed algorithm was also tested using Pratt‟s

FOM. Lena and Barbara images were used to test the performance of this algorithm. From

Table 4.5 and Fig. 4.19, it is very clear that the performance of our second proposed

algorithm is better than those of the ACO and the first proposed algorithm.

Table 4.5: Figure of merit results

 Edge Detector Algorithms

Test Images ACO First Proposed

Algorithm

Second Proposed

Algorithm

Lena 0.9339 0.9458 0.9475

Barbara 0.9237 0.9391 0.9386

Figure 4.19: Figure of merit for Lena and Barbara images.

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

Test Images

N
o
rm

a
liz

e
d
 F

ig
u
re

 o
f

M
e
ri
t

ACO

First P. Alg.

Second P. Alg

52

CHAPTER FIVE

CONCLUSIONS AND FUTURE WORKS

5.1. Conclusions

In this thesis, the performances of four metaheuristic algorithms (GA, SA, ABC and ACO)

were tested in solving TSP using various positions and number of cities. The results obtained

in all the situations show that ACO performs better than others. For this reason ACO is

selected and applied in the 2-D case for edge detection problem. However, after ACO is

successfully applied for the edge detection problem, two algorithms were proposed to

improve the results. The first method was based on DWT and ACO. The DWT is applied to

the image as a preprocessing stage before conventional ACO algorithm. The edge detection

results obtained using this technique show substantial improvements, more especially, when

the original image is noisy.

Another approach is proposed to enhance edge detection results more, by using each of the

four sub-images obtained, by decomposing the original image using 2D-DWT and finally

recombining the results by 2D-IDWT. The proposed algorithm is capable of detecting some

edges that are not detected by the conventional ACO and it also provides a denser edge

detection performance.

The performances of the two proposed approaches were measured using a widely used

standard objective approach (Pratt‟s figure of merit). The first proposed algorithm

performance was tested on Lena and Camera-man images under different noise conditions.

The algorithm is found to perform well in edge localization even with high noise powers. The

second proposed algorithm performance was tested on Lena and Barbara images. The results

obtained show that the second proposed algorithm performs better than the ACO and first

proposed algorithm.

53

5.2. Future Works

In this work, DWT is used with the conventional ACO to propose two algorithms for

improving the performance ACO in edge detection. As a future work, the followings may be

considered:

 In all the experiments for the 1-D case, it is noticed that the performances of the ABC

were close to ACO. Hence, it can be applied for the 2-D case as well, and the results

may be compared to that of the ACO.

 The GA and SA algorithms may be applied to the 2-D case for edge detection

problem and their performances might be compared to those of the proposed

algorithms.

54

References

[1] D. Whitley, “An Overview of Evolutionary Algorithms: Practical Issues and Common

Pitfalls,” Information and Software Technology, pp. 817-831, 2001.

[2] G. Deng and Z. H. Ming Tang, “Research in the Performance Assessment of Multi-

objective Optimization Evolutionary Algorithms,” IEEE International Conference on

Communications, Circuits and Systems (ICCCAS), Kokura, pp. 915-918, 2007.

[3] D. E. Moriarty, A. C. Schultz and J. J. Grefenstette, “Evolutionary Algorithms for

Reinforcement Learning,” Journal of Artificial Intelligence Research, vol. 11, pp.

241-276, 1999.

[4] G. Jones, “Genetic and evolutionary algorithms,” Encyclopedia of Computational

Chemistry, John Wiley and Sons, 1998.

[5] K. Weicker, “Evolutionary algorithms and dynamic optimization problems,” Berlin:

Der Andere Verlag, 2003.

[6] Y. Xin-She, “Engineering optimization: an introduction with metaheuristic

applications,” John Wiley & Sons, 2010.

[7] Y. Yang, H. Dai and H. Li, “Adaptive Genetic Algorithm with Application for

Solving Travelling Salesman Problems,” IEEE International Conference on Internet

Technology and Applications, Wuhan, pp. 1-4, 2010.

[8] G. Zhao, W. Luo, H. Nie and C. Li, “A Genetic Algorithm Balancing Exploration and

Exploitation for the Travelling Salesman Problem,” IEEE Fourth International

Conference on Natural Computation, Jihan, vol. 1, pp. 505-509, 2008.

[9] L. Zhang, M. Yao and N. Zhen, “Optimization and Improvement of Genetic

Algorithms Solving Travelling Salesman Problem,” IEEE International Conference

on Image Processing and Signal Processing, Taizhou, pp. 327-332, 2009.

[10] D. Wierstra, T. Schaul, J. Peters and J. Schmidhuber, “Natural Evolution Strategies,”

IEEE World Congress on Computational Intelligence, Hong Kong, pp. 3381-3387,

2008.

[11] B. Thomas, “Evolutionary algorithms in theory and practice: evolution strategies,

evolutionary programming, genetic algorithms,” Oxford university press, 1996.

55

[12] C. Doo-Hyun, “Evolutionary Programming with Accumulated Evolution

Information,” IEEE Electronics Letters, vol. 35, issue 10, pp. 808-809, 1999.

[13] W. M. Spears, “The role of mutation and recombination in evolutionary algorithms,”

PhD diss., George Mason University, 1998.

[14] C. Blum, “Metaheuristic for Group Shop Scheduling,” Dipl. Thesis, Iridia University,

2002.

[15] K. S. Lee and Z. W. Geem, “A new Meta-heuristic Algorithms for Continuous

Engineering Optimization: Harmony Search Theory and Practice” Computer Methods

in Applied Mechanics and Engineering, vol. 194, issues 36-38, pp. 3902-3933, 2005.

[16] H. G. Shakouri, K. Shojaee and M. T. Behnam, “Investigation on the Choice of the

Initial Temperature in the Simulated Annealing: A Mushy State SA for TSP,” IEEE

Mediterranean Conference on Control and Automation, Makedonia Palace, Greece,

pp. 1050-1055, 2009.

[17] K. Shojaee, T. Behnam, G. Shakouri, and M. Rezaei, “Enhancement of SA algorithm

by intelligent time schedule,” IEEE Chinese Control Conference (CCC), pp. 1768-

1774, 2010.

[18] P. Selami and A. Mustapha, “A Novel Cloning Template Designing Method by Using

an Artificial Bee Colony Algorithm for Edge Detection of CNN Based Imaging

Sensors,” Academic Journal on Sensors, vol. 11, issue 5, pp. 5337-5359.

[19] B. Kamalam and K. Marcus, “A Comprehensive review of Artificial Bee Colony

Algorithm,” International Journal of Computer and Technology, vol. 5, No. 1, pp. 15-

28, 2013.

[20] S. Fazli and S. F. Ghiri, “Automatic Circle Detection in Digital Images using

Artificial Bee Colony,” International Conference on Advances in Computer and

Electrical Engineering (ICACEE), pp. 21-24, 2012.

[21] M. Dorigo and G. Di Caro, “Ant Algorithms for Discrete Optimization,” MIT Press,

1999.

[22] S. Thomas, and H. Hoos, “The max-min ant system and local search for

combinatorial optimization problems,” Springer US, pp. 313-329, 1999.

56

[23] J. Ouyang and Y. Gui-Rong, “A multi-group ant colony system algorithm for TSP,”

IEEE International Conference on Machine Learning and Cybernetics, vol. 1, pp.

117-121, 2004.

[24] E. Hetmaniok, D. Slota, A. Zielonka and R. Witula, “Comparison of ABC and ACO

algorithms applied for solving the inverse heat conduction problem,” Springer,

Swarm and Evolutionary Computation, Berlin Heidelberg, pp. 249-257, 2012.

[25] A. Muhammad, I. Bala, M. S. Salman and A. Eleyan, “Discrete wavelet transform-

based ant colony optimization for edge detection,” IEEE International Conference on

Technological Advances in Electrical, Electronics and Computer Engineering

(TAEECE2013), Turkey, pp. 280-283, 2013.

[26] W. Li-Pei, Y. H. Malcolm and C. S. Chong, “A Bee Colony Optimization Algorithm

for Travelling Salesman Problem,” IEEE Second Asia International Conference on

Modeling and Simulation (AICSM), Kuala Lumpur, pp. 818-823, 2008.

[27] G. Laporte, “The travelling salesman problem: An overview of exact and approximate

algorithms,” European Journal of Operational Research, vol. 59, no. 2, pp. 231-247,

1992.

[28] M. Dorigo and T. Stutzle, “Ant Colony Optimization,” MIT Press, 2004.

[29] J. L. Pasquier, I. K. Balich, D. W.Carr and C. Lopez-Martin, “A Comparative Study

of three Metaheuristic applied to the Travelling Salesman Problem,” IEEE

International Conference on Artificial Intelligence, pp. 243-254, 2007.

[30] H. S. Neoh and A. Hazanchuk, “Adaptive Edge Detection for Real-Time Video

Processing using FPGAs,” Global Signal Processing, 2004.

[31] R. Maini and Dr. H. Aggrawal, “Study and Comparison of Various Edge Detection

Techniques,” International Journal of Image Processing (IJIP), vol. 3, Issue (1), pp.

1-12, 2009.

[32] E. Nadernejad, S. Sharifzadeh, and H. Hassanpour, “Edge detection techniques:

evaluations and comparisons,” Applied Mathematical Sciences vol. 2, no. 31, pp.

1507-1520, 2008.

[33] B. A. Veronica, “Ant colony optimization for image edge detection,” PhD diss.,

Ateneo de Manila University, 2010.

57

[34] J. Tian, W. Yu and S. Xie, “An Ant Colony Optimization for Image Edge Detection,”

IEEE World Congress on Computational Intelligence, Hong Kong, pp. 751-756,

2008.

[35] Y. S. Al-Halabi and J. A. Hesham, “New Wavelet-Based Techniques for Edge

Detection,” Journal of Theoretical & Applied Information Technology, vol. 23, no. 1,

2011.

[36] X. Zhang and R. Zhang, “The technology research in decomposition and

reconstruction of image based on two-dimensional wavelet transform,” International

Conference on Fuzzy Systems and Knowledge Discovery, pp. 1998-2000, 2012.

[37] A. Muhammad, I. Bala, M. S. Salman and A. Eleyan, “DWT subbands fusion using

ant colony optimization for edge detection,” IEEE Signal Processing and

Communications Application Conference (SIU), pp. 1351-1354, 2014.

[38] P. Agrawal, S. Kaur, H. Kaur and A. Dhiman, “Analysis and Synthesis of an Ant

Colony Optimization Technique for Image Edge Detection,” IEEE International

Conference on Computing Sciences (ICCS), pp. 127-131, 2012.

[39] A. Halder, N. Chatterjee, A. Kar, S. Pal and S. Pramanik, “Edge Detection: A

Statistical approach,” International Conference on Electronics Computer Technology

(ICECT), vol. 2, pp. 306-309, 2013.

[40] B. Chanda, M. K. Kundu and Y. V. Padmaja, “A Multi-Scale Morphologic Edge

Detector,” Pattern Recognition, Elsevier, vol. 31, no. 10, pp. 1469-1478, 1998.

[41] Z. J. Hou and G. W. Wei, “A new approach to edge detection,” The Journal of the

Pattern Recognition Society, vol. 35, pp. 1559-1570, 2002.

[42] Y. Yuan-Hui and C. Chin-Chen, “A new edge detection approach based on image

context analysis,” Elsevier Image and Vision Computing, vol. 24, pp. 1090-1102,

2006.

[43] I. A. Abdou and W. Pratt, “Quantitative design and evaluation of enhancement/

thresholding edge detectors,” IEEE Proceedings, vol. 67, no. 5, pp. 753-766, 2005.

[44] S. Pande, V. S. Bhadouria and D. Ghoshal, “A study on edge marking scheme of

various standard edge detectors,” International Journal of Computer Applications,

vol. 44, no. 9, pp. 33-37, 2012.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6227654
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6227654
http://www.sciencedirect.com/science/journal/00313203

58

[45] K. A. Panetta, E. J. Wharton and S. S. Agaian, “Logarithmic Edge Detection with

Applications,” International Journal of Computers, vol. 3, no. 9, pp. 11-19, 2008.

