

REINFORCEMENT LEARNING AND EVOLUTIONARY ALGORITHMS

FOR

CONTAINER LOADING PROBLEM

By

SANI TIJJANI

Submitted to the Institute of Graduate Studies in Science and Engineering

 in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Mevlana (Rumi) University, Turkey

2014

i

REINFORCEMENT LEARNING AND EVOLUTIONARY ALGORITHMS

FOR

CONTAINER LOADING PROBLEM

Submitted by Sani Tijjani in partial fulfillment of the requirements for the degree of

Master of Science in Computer Engineering, Mevlana (Rumi) University, Turkey.

APPROVED BY:

Examining Committee Members:

 Asst. Prof. Dr. Armağan ÖZKAYA

 (Thesis Supervisor)

 Asst. Prof. Dr. Mehmet HACIBEYOĞLU

 Asst. Prof. Dr. Mustafa KAIIALI

 Assoc. Prof. Dr. Halis Altun

 Head, Department of Computer Engineering

 Assoc. Prof. Dr. Ali Sebetci

 Director, Institute of Graduate Studies in Science and Engineering

DATE OF APPROVAL (Day/Month/Year):

ii

DECLARATION

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not original

to this work.

 Sani TIJJANI

 Signature:

iii

DEDICATION

I wish to dedicate this work to my parents, family, father in law, mother in law, my wife,

friends and entire people of Kano State.

iv

ACKNOWLEDGEMENTS

I would like to thank my creator Almighty Allah, the most beneficent, and the most merciful,

for all his guidance and giving while I was preparing, doing and finishing this master’s thesis.

May peace, mercy and blessing of Allah be upon his final messenger, Prophet Muhammad

(S.A.W), upon his families and all his companions.

I wish to express my deepest gratitude to my supervisor Asst. Prof. Dr. Armağan ÖZKAYA,

for his guidance, advice, criticism, encouragement and insight throughout that research. I also

thank my lecturer Asst. Prof. Dr. Ihsan Ömür Bucak and my colleague Jawad Muhammad for

their assistance that helped the success of this work.

I would also like to express my sincere gratitude to His Excellency the Executive Governor of

Kano State Engineer Dr. Rabiu Musa Kwankwaso, who sponsored this program. May Allah

reward him abundantly and protect him and his family from all evil.

I would also like to thank my parents, uncles, brothers, sisters, friends and the entire family for

their endless love, encouragement and support throughout my life.

v

ABSTRACT

REINFORCEMENT LEARNING AND EVOLUTIONARY ALGORITHMS

FOR

CONTAINER LOADING PROBLEM

by

Sani Tijjani

M.Sc. Thesis, 2014

Thesis Supervisor: Asst. Prof. Dr. Armağan ÖZKAYA

Keywords: Container Loading Problem, Machine Learning, Reinforcement Learning,

Temporal Difference, State-Action-Reward-State-Action, Genetic Algorithm, Ant Colony

Optimization,

Container Loading Problem (CLP) is a space utilization problem subject to various constraints.

An example of it is the placement of containers in storage so as to minimize the waste of space.

Other constraints that may be imposed include a certain loading order and an even weight

distribution. Although evolutionary algorithms have been extensively studied to solve this

problem, Reinforcement Learning (RL) which is a means of learning optimal behaviors by

interacting with the environment, has not received enough attention in this respect. This work

explores the use of RL as an alternative for tackling CLP so as to minimize the waste of space

while maximizing the number of containers. We have applied five different RL algorithms (Q-

learning, TD(), Monte-Carlo, TDQ-learning and SARSA), and two types of evolutionary

algorithms (Genetic Algorithm and Ant Colony Optimization) to solve this problem.

Simulations have been carried out using MATLAB to compare these algorithms based on space

utilization, number of containers, simulation time and speed of convergence. The simulation

parameters are set so that the algorithms are allowed to fill in storage yards 100% with

containers of different sizes. Results show that, in general, RL may not guarantee the best

results, but can minimize the computational difficulty providing a simple way to solve this

problem. Genetic Algorithm (GA) on the other hand gives best speed of convergence for small

storage yards, and, unlike other approaches that may require complex computations, four RL

vi

algorithms, namely Q-learning, TD(), Monte-Carlo and SARSA, give better speed of

convergence than GA for larger storage yards used in our simulations. Ant Colony

Optimization (ACO), while generally being worse than the others in terms of average

convergence time, performs better than the ordinary Q-learning for the largest storage yard area

used in our simulations and gives a result similar to GA. Growth of ACO’s average

convergence time seems to be slower than those of others, indicating that it has the potential to

have better convergence times with increasing storage yard area sizes. In terms of the number

of containers that can be packed into storage yard when the number of containers is not

restricted, all RL algorithms give approximately the same result. As the storage yard size

becomes larger, however, Q-learning starts performing better than all the other RL algorithms

in this respect and Monte-Carlo gradually worsens even though it is the best of all for filling

small storage yards. But in terms of simulation time (for RL algorithms only) TDQ performs

the best for all storage yard area combinations, except for the smallest area in which it comes in

second position after TD-lambda. This is because learning optimal value in TDQ can take place

under any policy and learning rate effect. TD-Lambda comes second for all remaining

combinations while MC and SARSA come third and fourth respectively.

vii

TABLE OF CONTENTS

DEDICATION .. iii

ACKNOWLEDGEMENTS .. iv

ABSTRACT ... v

TABLE OF CONTENTS ... vii

LIST OF TABLES ... x

LIST OF FIGURES ... xi

LIST OF ALGORITHMS .. xii

LIST OF SYMBOLS/ABBREVIATIONS ... xiii

CHAPTER ONE .. 1

1. INTRODUCTION .. 1

1.1. Overview .. 1

1.2. Container Loading Problem ... 1

1.3 Method and Constraints .. 4

1.4 Organization of the Thesis .. 8

CHAPTER TWO .. 9

2. EVOLUTIONARY ALGORITHMS FOR CONTAINER LOADING PROBLEM 9

2.1. Overview .. 9

2.2. Genetic Algorithm ... 9

2.3. GA for Container Loading ... 10

2.3.1. Initial Population ... 12

2.3.2. Cross Over .. 12

2.3.3. Mutation .. 13

2.3.4. Survivor Selection ... 15

2.4. Ant Colony Optimization (ACO) Algorithm ... 15

2.5. ACO for CLP ... 15

viii

CHAPTER THREE .. 19

3. REINFORCEMENT LEARNING FOR CONTAINER LOADING PROBLEM 19

3.1. Overview .. 19

3.2. RL Technique ... 19

3.3. Q-learning (Deterministic) ... 21

3.4. TD() .. 22

3.5. TDQ (Off Policy TD Control) ... 23

3.6. SARSA (On Policy TD Control) ... 24

3.7. Monte-Carlo ... 25

3.8. Agent, Environment, State, Actions, and Reward ... 25

3.8.1. Agent ... 25

3.8.2. Environment .. 25

3.8.3. State ... 27

3.8.4. Actions .. 27

3.8.5. Reward .. 28

CHAPTER FOUR .. 29

4. NUMERICAL EXPERIMENTS .. 29

4.1. Overview .. 29

4.2. Comparison between RL Algorithms .. 30

4.3. Comparison between RL and EAs ... 32

4.4. Discussion on the Results of Comparisons between RL and EAs 33

CHAPTER FIVE .. 37

5. CONCLUSION AND FUTURE WORK ... 37

5.1. Conclusion ... 37

5.2. Future Work ... 37

REFERENCES ... 38

ix

APPENDIX A: Tables of comparison between RL algorithms without restriction to the number

of containers (1500x300). .. 42

APPENDIX B: Tables of comparison between RL algorithms without restriction to the number

of containers (1500x600). .. 45

APPENDIX C: Tables of comparison between RL algorithms without restriction to the number

of containers (1500x900). .. 49

APPENDIX D: Tables of comparison between RL algorithms without restriction to the number

of containers (1500x1200) ... 53

APPENDIX E: Tables of comparison between RL and EAs with restriction (1500x300) 56

APPENDIX F: Tables of comparison between RL and EAs with restriction (1500x600) 63

APPENDIX G: Tables of comparison between RL and EAs with restriction (1500x900) 70

APPENDIX H: Tables of comparison between RL and EAs with restriction (1500x1200) 76

x

LIST OF TABLES

Table 2.1 GA initial populations .. 12

Table 2.2 Sub populations for mutation ... 13

Table 2.3 ACO initial populations ... 16

Table 4.1 RL algorithms comparison summary without restriction to the number of containers

(1500x300). .. 31

Table 4.2 RL algorithms comparison summary without restriction to the number of containers

(1500x600). .. 31

Table 4.3 RL algorithms comparison summary without restriction to the number of containers

(1500x900). .. 31

Table 4.4 RL algorithms comparison summary without restriction to the number of containers

(1500x1200). .. 32

Table 4.5 RL and EAs comparison summary with number of containers restricted to 30

(1500x300). .. 32

Table 4.6 RL and EAs comparison summary with number of containers restricted to 60

(1500x600). .. 33

Table 4.7 RL and EAs comparison summary with numbers of containers restricted to 90

(1500x900). .. 33

Table 4.8 RL and EAs comparison summary with number of containers restricted to 120

(1500x1200). .. 33

Table 4.9 RL and EAs comparison summary with both restriction and no restriction to the

number of containers (1500x300). ... 34

Table 4.10 RL and EAs comparison summary for both restriction and no restriction to the

number of containers (1500x600). ... 34

Table 4.11 RL and EAs comparison summary for both restriction and no restriction to the

number of containers (1500x900). ... 34

Table 4.12 RL and EAs comparison summary for both restriction and no restriction to the

number of containers (1500x1200). ... 35

Table 4.13 RL algorithms simulation time comparison summary without restriction to the

number of containers .. 35

xi

LIST OF FIGURES

Figure 1.1 A container ... 1

Figure 1.2 Container terminal .. 4

Figure 1.3 Container terminal storage area ... 5

Figure 1.4 Blocks of containers ... 5

Figure 1.5 3D view of a storage yard with containers.. 6

Figure 1.6 How to fill empty space in storage yard block ... 7

Figure 2.1 Genetic Algorithm .. 10

Figure 2.2 Mutation 1 ... 13

Figure 2.3 Mutation 2 ... 14

Figure 2.4 Mutation 3 ... 14

Figure 2.5 The fittest arrangement ... 15

Figure 2.6 Artificial ants search for the best arrangement ... 17

Figure 2.7 Best arrangement in the first generation ... 18

Figure 2.8 The best arrangement in all generations ... 18

Figure 3. 1 Basic Reinforcement Learning model. .. 20

Figure 3.2 Yard crane ... 26

Figure 3.3 Storage yard block and containers .. 26

Figure 3.4 A state ... 27

Figure 3.5 Actions .. 27

Figure 3.6 RL for container loading ... 28

Figure 4.1 Series of bad action selections. ... 29

Figure 4.2 Good action selections and convergence. ... 30

Figure 4.3 1500x300 storage yard area with an arrangement of containers............................... 30

xii

LIST OF ALGORITHMS

Algorithm 2.1 Procedure of GA for CLP ... 11

Algorithm 2.2 Procedure of the ACO algorithm for CLP .. 16

Algorithm 3.1 Procedure of the Q-learning algorithm for CLP ... 21

Algorithm 3.2 Procedure of the TD() algorithm for CLP.. 22

Algorithm 3.3 Procedure of the TDQ algorithm for CLP .. 23

Algorithm 3.4 Procedure of the SARSA algorithm for CLP ... 24

Algorithm 3.5 Procedure of the Monte-Carlo algorithm for CLP .. 26

xiii

LIST OF SYMBOLS/ABBREVIATIONS

Symbol Explanation

 Learning rate

 Epsilon

 Discount-rate

 Lambda

 Pheromone

 Heuristic information

 Evaporation coefficient

i Present arrangement

j Next arrangement

a Action

r Reward

s State

t Time

ACO Ant Colony Optimization

ACT Total Area Covered by the Containers

ASY Area of Storage Yard

EA Evolutionary Algorithm

GA Genetic Algorithm

MC Monte-Carlo

NB Number of Blue containers

NG Number of Green containers

NR Number of Red containers

QL Q-learning (Deterministic)

RL Reinforcement Learning

RMSE Root-Mean-Squared-Error

SARSA State-Action-Reward- State-Action

TD Temporal Difference

TDQ Q-learning (Off policy TD Control)

1

CHAPTER ONE

1. INTRODUCTION

1.1. Overview

With the rapid increase of container volume and how transport of goods using ships plays a

very important role in the economic development of the world, improving the operational

efficiency is one of the most important issues for container terminals [1,2,3]. From the

applications point of view, container loading problem arises in practice as an optimization

issue whenever containers have to be filled or loaded with boxes, so that the usage of the

container is maximized [4].

The field of Machine Learning focuses on how to design systems that automatically improves

with experience [5]. Many successful machine learning applications have been developed,

ranging from software design to detecting fraudulent credit card transactions, to autonomous

vehicles that learn to drive on public highways and even vehicles designed for fighting fire.

There are also great advances in the theory and algorithms that form the foundations of

machine learning field. As part of the machine learning field, Reinforcement Learning

techniques deal with the problem about how an autonomous agent can learn to select proper

actions through interacting with its system environment [6].

 1.2. Container Loading Problem

Figure 1.1 A container [7]

 A container which is a large metal box for transport of goods, shown in Figure 1.1, has

played a vital role in world wide transportation. The Container Loading Problem (CLP)

considers packing a set of rectangular boxes into a rectangular big box of fixed dimension [8].

We note that the big box might actually be a real container, but, according to the definition

2

given, it could also be the loading space of a truck, pallet or storage yard area which may be

loaded up to a certain height [9]. CLP, therefore, is a space utilization problem subject to

various constraints. An example of it is the placement of containers in storage yard so as to

minimize the waste of space. Other constraints that may be imposed include a certain loading

order and even weight distribution.

According to the typology cited in [9], one can categorize container loading problems into

two:

 Those in which enough containers (large boxes) are available to accommodate all

small items (small boxes). These categories are concerned with minimizing the value

of the used containers.

 Such problems in which only a subset of the small items (small boxes) can be packed

since the availability of containers (large boxes) is limited. These categories are

concerned with maximizing the value of the packed items.

The former category includes Single-Stock-Size-Cutting-Stock Problem which is a process of

packing of weakly heterogeneous set of cargo (consisting of diverse ingredients) into a

minimum number of identical containers. Multiple-Stock-Size-Cutting-Stock Problem is a

process of packing of weakly heterogeneous set of cargo into a weakly heterogeneous

assortment of containers such that the value of the used containers is minimized. Residual-

Cutting-Stock Problem is the process of packing of weakly heterogeneous set of cargo into a

strongly heterogeneous assortment of containers (i.e. mostly similar containers) such that the

value of the used containers is minimized. Other types that fall in this category are Single-

Bin-Size-Bin-Packing Problem which is packing a strongly heterogeneous set of cargo into a

minimum number of identical containers. Multiple-Bin-Size-Bin-Packing Problem is packing

a strongly heterogeneous set of cargo into a weakly heterogeneous assortment of containers

such that the value of the used containers is minimized. Residual-Bin-Packing Problem is

packing a strongly heterogeneous set of cargo in to a strongly heterogeneous assortment of

containers such that the value of the used containers is minimized. Open-Dimension Problem

is packing a set of cargo into a single container with one or more variable dimension such that

the container volume is minimized. All of these problems focus on minimizing the value of

the used containers.

The latter category encompasses the Identical-Item-Packing Problem which is loading a single

container with a maximum number of identical small items. Single-Large-Object-Placement

Problem is about loading a single container with a selection from a weakly heterogeneous set

3

of cargo such that the value of the loaded items is maximized. Multiple-Identical-Large-

Object-Placement Problem is to load a set of identical containers with a selection from a

weakly heterogeneous set of cargo such that the value of the loaded items is maximized.

Multiple-Heterogeneous-Object-Placement Problem is the loading of weakly or strongly

heterogeneous set of containers with a selection from a weakly heterogeneous set of cargo

such that the value of the loaded items is maximized. Under this category also included is

Single-Knapsack Problem which is to fill a single container with a selection from a strongly

heterogeneous set of cargo so to maximize the value of the loaded items. Multiple-Identical-

Knapsack-Problem is defined as loading a set of identical containers with a selection from a

strongly heterogeneous set of cargo such that the value of the loaded items is maximized.

Multiple-Heterogeneous-Knapsack Problem is loading a set of weakly or strongly

heterogeneous containers with a selection from a strongly heterogeneous set of cargo such

that the value of the loaded items is maximized. All of these problems are concerned with

maximizing the value of the loaded items.

The type of CLP considered in this thesis falls in the second category and the type that best

describes it is Multiple-Identical-Knapsack Problem since we apply the algorithms in

consideration to load a set of identical containers (i.e. the storage yard) with a selection from a

strongly heterogeneous set of cargo (i.e. the containers of known sizes) such that the value of

the loaded items is maximized.

Continuous increase in container volume and the need for rapid transport of goods make

improving operational efficiency at the terminals critical. For instance, the process of loading

outbound containers in a cargo port is of three stages: yard cranes pick up the desired

containers from yard blocks and load them into the yard trailers, then yard trailers transport

the containers to cranes, and lastly the cranes load the containers into the ships, as shown in

Figure 1.2 [2].

It is difficult to optimize the whole container terminal operation with a single analytical model

due to the complexity of the system. An important concern for the efficient operation of

container loading is to find an algorithm that can optimize the way in which the containers are

to be arranged, in order to speed up the process for economic requirements and ecological

issues [10]. However, the efficient way to arrange containers involves new and specialized

logistics process, a number of logistics plan and automated system to handle a great number

of containers. Researchers have developed mathematical optimization models for different

4

sub-processes of the container terminal operation system. Researches have been carried out in

order to find a procedure that leads to an optimal way of loading containers. Of these, some

Figure 1.2 Container terminal

concern about the weight distribution, some on loading sequence or maximizing container

utilization factor and others focus on optimal loading in multiple containers.

A method of integrating a Q-learning algorithm with a simulation technique is proposed to

optimize the operation scheduling in the container terminals in [2]. Other related works

include [11] where a simulated annealing algorithm for a single container loading problem is

proposed. Aiming at the optimal layout problem of rectangular parts with dynamic

constraints, a heuristic rectangular optimal layout method is proposed based on GA in [12].

An application of ACO on CLP has been also studied [8]. GA for the two-dimensional strip

packing problem with rectangular pieces introduced in [13] whereas [14] suggests an

approach using GA to solve the storage space allocation problem in a container terminal.

1.3 Method and Constraints

A container terminal is a facility where cargo containers are moved between different

transport vehicles, for transportation [15]. At container terminals, containers are transferred

from one mode of transportation to another. Within a terminal, distinct types of material

handling equipment are used to transship containers from ships to barges, trucks and trains

and vice versa [16].

5

The temporary storage of the inbound and outbound containers is one of the most important

services at the container terminal that is known as the Storage Space Allocation Problem. The

storage area in the terminal is divided into the several blocks of containers (Figure 1.3). Each

block, as shown in Figure 1.4, consists of a number of side by side lanes with each lane

including a number of containers [14].

Figure 1.3 Container terminal storage area [17]

Figure 1.4 Blocks of containers [18]

Some researchers like [13] solve CLP using two-dimensional space but in our work the width

of the storage yard block is assumed to be the same with the width of all the containers, so the

process space is considered as three dimensional. Hence, we have to be concerned with only

heights and length of the containers. An instance of storage yard block with an arrangement of

containers of different sizes is shown in Figure 1.5.

6

Figure 1.5 3D view of a storage yard with containers

Storage yards of dimensions of 1500x300, 1500x600, 1500x900 and 1500x12000 units are

considered in this study. The sizes of containers used are 500x100, 250x100 and 150x100

which are labelled as the Red, Blue, and Green containers, respectively. Containers on ships

or storage yards are stacked one on top of the other in columns, and can only be unloaded

from the top of the column as assumed in [19]. Algorithms used in this work are designed to

load containers layer-by-layer while holding the following conditions:

i) All containers lie entirely within the storage yard block.

ii) The containers do not overlap.

The containers are packed by stacking them one by one until the yard block is full. The first

container, also called the base container, is placed at the left corner of storage yard block as

shown in Figure 1.6 (a). After packing the first base container in the storage yard block, the

next container is placed to fill the empty space at right side of the first container, the

containers that follow are also placed at the right side of the previous container until the first

row is filled as shown in Figure 1.6 (b). After the first row is filled, the next container is

placed at the left corner of storage yard block on the top of the first container of the first row,

as shown in Figure 1.6 (c) below, and the second row is filled similarly (Figure 1.6 (d)). The

process explained above continuous until the storage yard block filled as depicted in Figure

1.6 (e) below, then we move to fill the second layer of the storage yard block.

7

The foundation of this work in which an approach for maximizing container loading and

minimizing the waste of space using Q-learning algorithm was presented in [1]. We build our

work on this paper by solving the problem using four more RL algorithms, i.e. TDQ (Off-

Policy TD Control), Monte-Carlo (MC), State-Action-Reward-State-Action (SARSA),

TD() and also two evolutionary algorithms, i.e. Genetic Algorithm (GA) and Ant Colony

Optimization (ACO) Algorithm.

(a) (b)

 (c) (d)

(e)

Figure 1.6 How to fill empty space in storage yard block

8

 1.4 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 describes the Reinforcement Learning approach. We discuss the Q-learning

(deterministic), TDQ, Monte-Carlo, SARSA and TD() algorithms as well as the procedures

devised to solve the CLP.

Chapter 3 describes evolutionary algorithms. We discuss GA and ACO, and then explain in

detail how these algorithms are applied to solve the CLP.

Chapter 4 presents simulations, numerical results obtained to compare the algorithms by

various metrics, and discussion of results.

Chapter 5 contains conclusions and possible future work.

9

CHAPTER TWO

2. EVOLUTIONARY ALGORITHMS FOR CONTAINER LOADING PROBLEM

2.1. Overview

Evolutionary Algorithms (EA) is a field of artificial intelligence algorithms that attempts to

bring out a system with the ability to evolve and meet new challenges or goals. EA are

typically used to provide good approximate result to hard problems such as optimization

techniques. Genetic Algorithm (GA) and Ant Colony Optimization (ACO) are some of the

known EAs [20].

The GA is a search technique originally stimulated by biological genetics and uses ideas

based on the natural genetics and biological evolution [21]. It provides an approach to

learning that is based loosely on simulated evolution. Hypotheses are often described by bit

strings whose interpretations depend on the application, though hypotheses may also be

described by numbers, symbolic expressions or even computer programs. Genetic algorithms

have been applied successfully to a variety of learning tasks and to other optimization

problems [22].

ACO algorithm is a nature-inspired cybernetic method in artificial intelligence. In this

technique, ants put down what is called pheromone on the ground in a form of liquid which is

used for communication among them. The path that marks the presence of pheromone

indicates the presence of food when followed from the nest of the ants. Many optimization

problems have been solved using ACO [22,23]. ACO algorithm shows a surprisingly

successful performance in the solution of NP-hard problems, which draws more and more

attention to ACO research [24].

2.2. Genetic Algorithm

The search for an appropriate hypothesis begins with a population, or collection of initial

hypotheses. Members of the current population give rise to the next generation population by

means of operations such as random crossover and mutation, which are patterned after

processes in biological evolution. At each step, the hypotheses in the current population are

evaluated relative to a given measure of fitness, with the fittest hypotheses selected

probabilistically as seeds for producing the next generation [5].

10

Figure 2.1 Genetic Algorithm

As can be seen from Figure 3.1 above the GA starts by generating initial population from

which parent pair are also selected for recombination (cross over) and mutation. Thus, a new

generation is produced as an offspring of the parent population form which the fittest

hypothesis selected according to the fitness function.

2.3. GA for Container Loading

Unlike various constructive optimization algorithms that use sophisticated methods to obtain a

good single solution, the GA deals with a set of solutions (population) and applies to each

solution simple procedures of crossover, mutation and quality evaluation [19]. The population

size used in this work is 30 (unlike RL algorithms, in GA and ACO there is a need to initialize

the starting number of container arrangements. 30 is chosen because it is best suitable to

produce the results that can be compared with RL algorithms). Crossover Rate is 0.6 (18

arrangements) and Mutation Rate is 0.2 (6 arrangements). Any value between 0 to 1 can be

select as Crossover Rate and Mutation Rate, but in most research the Crossover Rate is mostly

greater 0.5 and Mutation Rate is less than 0.5. The fitness function is proportional to the total

number of containers placed in the storage and inversely proportional to the space wasted as

calculated using the equation:

11

 * 2
ACTFitness N N N

R B G ASY
   ………………………………………………………… (1)

where

N
R

= Number of red containers,

 N
B

= Number of blue containers,

 N
G

= Number of green containers,

 A
SY

= Area of storage yard,

 A
CT

 =Total area covered by the containers

The procedure of GA for CLP is shown in Algorithm 2.1 below.

GA

Function GA

 Initialize population, P in the fashion R B G

 Choose Crossover Rate = 0.6 and Mutation Rate, m = 0.2

 For generation = 1: maximum generation

 Randomly generate container arrangement R1B1G1 to RnBnGn

 While maximum fitness < fitness threshold

 Select probabilistically sub population, Ps for cross over

 Choose m percent of the Ps for mutation

 Update P with Ps population

 Compute fitness using function

  * 2
ACTFitness N N N

R B G ASY
  

 End

End

 Return the arrangement with the highest fitness value

End

Algorithm 2.1 Procedure of GA for CLP

12

2.3.1. Initial Population

30 populations were randomly generated initially as shown in Table 2.1.

Table 2.1 GA initial populations

2.3.2. Cross Over

18 sub populations are chosen probabilistically as parent populations out of 30 initial

populations for cross over (Equation 2). These are shown in bold in Table 2.1.

fitness
P

fitness



……………………………………………………..………………. (2)

The cross over process is carried out as follows:

 39 40 30

 39 40 39

 20 29 39

 40 38 29

 40 38 8
 40 33 8

 40 38 30

 40 38 33

 23 32 33

 40 38 33

 40 38 39
 40 39 39

 40 40 33

 40 40 39
 2 37 39

S/N POPULATIONS

 R B G

S/N POPULATIONS

 R B G

S/N POPULATIONS

 R B G

1. 1 39 23 11. 40 39 33 21. 40 39 29

2. 40 39 31 12. 40 39 39 22. 40 39 33

3. 40 39 23 13. 40 40 33 23. 38 30 38

4. 40 38 33 14. 2 37 7 24. 40 39 28

5. 39 40 30 15. 40 39 17 25. 40 12 33

6. 20 29 39 16. 40 11 33 26. 40 16 33

7. 40 38 29 17. 40 37 33 27. 40 39 33

8. 40 33 8 18. 3 39 40 28. 30 39 40

9. 40 38 30 19. 39 39 17 29. 40 39 30

10. 23 32 33 20. 40 39 40 30. 40 25 33

13

 40 39 17

 40 39 33
 40 11 33

 40 37 33

 40 37 40
 3 39 40

 39 37 17

 39 37 40
 40 39 40

 40 39 29

 40 39 33

 40 39 33

2.3.3. Mutation

Six sub populations were chosen probabilistically (Equation 2) out of 18 for cross over

populations for mutation as shown below:

Table 2.2 Sub populations for mutation

S/N POPULATIONS

R B G

1. 39 40 39

2. 40 38 39

3. 40 40 39

4. 40 37 40

5. 39 37 40

6. 40 39 33

The swap mutation process is carried out as follows:

0 500 1000 1500
0

200

400

600

800

1000

1200
RED CONTAINER=40 BLUE CONTAINER=38 GREEN CONTAINER=39

0 500 1000 1500
0

200

400

600

800

1000

1200
RED CONTAINER=39 BLUE CONTAINER=40 GREEN CONTAINER=39

40 38 39

 39 38 39

39 40 39

Figure 2.2 Mutation 1

14

0 500 1000 1500
0

200

400

600

800

1000

1200
RED CONTAINER=40 BLUE CONTAINER=40 GREEN CONTAINER=39

0 500 1000 1500
0

200

400

600

800

1000

1200
RED CONTAINER=40 BLUE CONTAINER=37 GREEN CONTAINER=40

40 40 39

 40 40 40

40 37 40

Figure 2.3 Mutation 2

0 500 1000 1500
0

200

400

600

800

1000

1200
RED CONTAINER=39 BLUE CONTAINER=37 GREEN CONTAINER=40

0 500 1000 1500
0

200

400

600

800

1000

1200
RED CONTAINER=40 BLUE CONTAINER=39 GREEN CONTAINER=33

39 37 40

 40 39 33

40 39 33

Figure 2.4 Mutation 3

15

0 500 1000 1500
0

200

400

600

800

1000

1200
RED CONTAINER=40 BLUE CONTAINER=40 GREEN CONTAINER=40

2.3.4. Survivor Selection

Finally the fittest arrangement is chosen out of the mutation sub populations as shown below:

39 38 39

40 40 40 40 40 40

40 39 33

Figure 2.5 The fittest arrangement

2.4. Ant Colony Optimization (ACO) Algorithm

ACO has widely been applied to solve combinatorial optimization problems in recent years

[25]. This technique is an optimization algorithm that imitates the behaviour of living ants.

The ACO algorithm gives a surprisingly successful performance in the solution of NP-hard

problems, which draws more and more attention on ACO research, particularly to the study of

its theoretical foundation [25]. This algorithm is presented under the inspiration that an ant

colony could build the shortest path from a food source to their nest by using some chemical

substance called pheromone. Ants lay down pheromone trails when passing paths. The more

ants choose a path, the more pheromone is laid down on it. Then, ants tend to choose the path

with higher pheromone intensity. However, it is very interesting that ants do not always

choose the path with the highest pheromone intensity. Otherwise, the shortest path will hardly

be built up [25].

2.5. ACO for CLP

The procedure of ACO algorithm for CLP is shown in Algorithm 2.2.

After initialization step generally, in ACO algorithms two important steps are needed to be

determined; the construction step and the update of the pheromone [23,26].

16

1. Initialization

At initial stage, the artificial ACO will initial the pheromone  . The N arrangements

of the containers are also generated randomly. The value of N used in this work is 30.

ACO initial populations are shown in Table 2.3.

ACO ALGORITHM

Function ACO

 Initialize pheromone O =1

 For m ants do

 Randomly generate container arrangement R1B1G1 to RnBnGn

 Compute heuristic information  using function

  * 2
ACTN N N

R B G ASY
   

 Choose next arrangements using probability function

ij ij

ij

ij ij

P
 

 






 Update pheromone value according to

 (1)ij ij      

End

Return the best solution

End

Algorithm 2.2 Procedure of the ACO algorithm for CLP

Table 2.3 ACO initial populations

S/N POPULATIONS

 R B G

S/N POPULATIONS

 R B G

1. 1 39 23 16. 40 11 33

2. 40 39 31 17. 40 37 33

3. 40 39 23 18. 3 39 40

4. 40 38 33 19. 39 39 17

5. 39 40 30 20. 40 39 40

6. 20 29 39 21. 40 39 29

7. 40 40 39 22. 40 39 33

8. 40 33 8 23. 38 30 38

9. 40 38 30 24. 40 39 28

10. 23 32 33 25. 40 12 33

11. 40 39 33 26. 40 16 33

12. 40 39 39 27. 40 39 33

13. 40 40 33 28. 30 39 40

14. 2 37 7 29. 40 39 30

15. 40 39 17 30. 40 25 33

17

2. Construction

For 1 to maximum iteration, M ants will select one arrangement out of the N

arrangements generated at initial stage, using the probability function:

ij ij

ij

ij ij

P
 

 





... (3)

where,

 = pheromone

 = heuristic information

i = present arrangement

j = next arrangement

The heuristic information can be calculated using the equation shown below:

  * 2
ACTN N N

R B G ASY
    ... (4)

Figure 2.6 Artificial ants search for the best arrangement

The artificial ants search for best arrangement from the arrangements generated in the first

generation from R1-G1-B1 to Rn-Gn-Bn. Based on the initial population given in Table 2.3,

the best arrangement in the first generation is 40-40-39 which is depicted in Figure 2.7.

18

3. Updating

The pheromone value is updated at every iteration using the equation:

(1)ij ij ij       ... (5)

where

 =evaporation coefficient (any value between 0 to 1 can be selected).

The artificial ant chooses one of the arrangements generated above and the pheromone value

is updated using Equation 5. If the arrangement chosen by the artificial ant is not the best

arrangement needed, the algorithm goes to the next iteration and this process continues until

the best arrangement is chosen, i.e. 40-40-40, and that is shown in Figure 2.8.

Figure 2.7 Best arrangement in the first generation

0 500 1000 1500
0

200

400

600

800

1000

1200
RED CONTAINER=40 BLUE CONTAINER=40 GREEN CONTAINER=40

Figure 2.8 The best arrangement in all generations

0 500 1000 1500
0

200

400

600

800

1000

1200
RED CONTAINER=40 BLUE CONTAINER=40 GREEN CONTAINER=39

19

CHAPTER THREE

3. REINFORCEMENT LEARNING FOR CONTAINER LOADING PROBLEM

3.1. Overview

When we think about the nature of learning, the fact that we learn by interacting with our

environment is probably the first thing that comes to our mind. When an infant plays, waves

its arms, or looks about, it has no explicit teacher, but it does have a direct sensor motor

connection to its environment. Exercising this connection gives a lot of information about

cause and effect, about the consequences of actions, and about the best actions to do in order

to achieve goals. We come across such interactions of our environment throughout our lives,

and we drive knowledge about what is around us. Whether a person is learning to drive a

vehicle or to hold a picture or conversation, he is intensely aware of how his environment

responds to what he performs, and the consequences of his actions affect his state as well as

the environment he is in. Learning by interaction with an environment is the primary idea

underlying nearly all theories of learning and intelligence [27].

3.2. RL Technique

RL is simply learning what to do and how to plan situations to actions, so as to maximize a

return reward. In most forms of machine learning, there is no need for the learner to be told

which actions to take, but instead he must discover which actions produce the highest reward

by trying them [27].

Every living organism interacts with its environment and uses those interactions to improve

its own actions and we call this modification of actions based on interactions with the

environment Reinforcement learning (RL). Actions may influence not only the instant reward

but also the next situation and, through that, all following rewards. Trial-and-error search and

delayed reward are the two most important characteristics that distinguish RL from other

techniques [27].

RL is a kind of unsupervised machine learning technique which belongs to the category of

machine learning algorithms, and is therefore different from supervised learning methods that

require a teacher [1,28]. A RL agent has the computational task of learning which action to

take in a given condition (state) to achieve its goal. The learning process takes place through

interaction with an environment (Fig. 3.1).

20

Figure 3.1 Basic Reinforcement Learning Model.

At each discrete time step, an RL agent observes the current state. In each state, the agent can

take some action from the set of actions available in that state. An action can cause a

transition from the current state to another state, based on the transition probabilities

[1,5,28,29,30]. The model of the environment contains these transition probabilities. A

numerical reward is returned back to the agent to inform it about the ‘quality’ of its actions or

the intrinsic desirability of that state. The reward is also a part of the model of the

environment.

An RL agent searches for the optimal policy in order to maximize accumulated reward

[1,28,29]. An optimal policy is the sequence of actions that maximize the total reward [6]. RL

deals with the problem about how an autonomous agent can learn to select proper actions

through interacting with its system environment. Each time after an agent performs an action,

the environment’s response (as indicated by its new state) is used by the agent to reward or

penalize its action [31]. The objective is to develop a decision-making policy on selecting the

appropriate action rule for each agent. By RL, the optimal policy for each agent can be

obtained [1,5].

In this work, we will explore RL as an alternative for tackling container loading problem,

specifically for maximizing the number of containers and minimizing the waste of space. We

will apply 5 known RL algorithms, namely:

• Q-learning (deterministic)

• TD()

• TDQ (Off Policy TD Control)

• SARSA (On Policy TD Control)

• Monte-Carlo

21

3.3. Q-learning (Deterministic)

Q-learning algorithm is one of the most widely used reinforcement learning algorithms. It was

proposed by Watkins in 1989 [1,2]. The objective of this algorithm is to learn the state-action

pair value Q(s, a), which represents the expected reward for each pair of state and action

denoted by s and a, respectively. Q(s, a) is expressed by the following equation:

,
(,) max (,)Q s a reward Q s a

a
  …………………………………………………………… (6)

 Before learning has started, Q returns a fixed value, chosen by the designer. As can be seen in

Equation (6), an agent can choose an action that gives maximum reward out of all possible

actions and receive reward. γ is the discount-rate parameter which impacts the present value

of future rewards, in other words it determines the importance of future rewards. If we set

γ=0, only the immediate or current reward is considered. As we set γ closer to 1, future

rewards are given greater emphasis relative to the immediate reward. In this work, 0.9 is

chosen as the value of γ.

One of the important factors of Q-learning is the action selection process. This process is

responsible for selecting the actions that the agent will perform during the learning process. In

this work, we consider the  -greedy exploration.  -greedy process selects a random action

with probability  and the best action which has the highest Q-value at the moment, with

probability 1- [32]. The procedure of Q-learning algorithm for CLP is shown in Algorithm

3.1 below:

Q-LEARNING ALGORITHM

Function Q-learning

 Initialize Q, choose =0. 9and  =0.1

 For episode= 1: maximum episode

 Initialize state S for this episode

 While step <= maximum step & area covered<=goal

 Take action a using  -greedy, observe reward and new state
,

s

 Update Q function according to

,

(,) max (,)Q s a reward Q s a
a

 

 End

 End

 Return the best state

End

Algorithm 3.1 Procedure of the Q-learning algorithm for CLP

22

3.4. TD()

The Q-learning learns by iteratively reducing the discrepancy between Q-value estimates for

adjacent states. In this sense, Q-learning is a special case of a general class of temporal

difference algorithms that learn by reducing discrepancies between estimates made by the

agent at different times. TD() algorithm is designed to reduce discrepancies between the

estimated Q-value of a state and more distant descendants or ancestors [5]. The idea is to use

a constant lambda to combine the estimates obtained from various look-ahead distances in the

following fashion:

'(,) [(1)max (,) (,)]
1 1

Q s a reward Q s a Q s at t t t ta

      
 

……..……………….(7)

'max (,)Q s at t = is maximum future reward of Q estimates

(,)
1 1

Q s a
t t


 

= is look ahead value

Thus, the algorithm uses the observed reward and Q estimate to provide a perfect estimate of

true Q value. If we chose  =0, we have our original Q-learning equation which considers

only one step discrepancies in the Q estimates. As  increases, the algorithm places more

emphasis on discrepancies based on more distance look-ahead. At the extreme value of  =1,

only observed “next state” reward values are considered with no contribution from the current

Q estimate. The procedure of TD() algorithm for CLP is shown in Algorithm 3.2 below.

TD() ALGORITHM

 Function TD-lambda

 Initialize S, choose  =0.9,  =0.1 and  =0.1

 For episode= 1: maximum episode

 Initialize state S for this episode

 While step <= maximum step & area covered<=goal

 Take action ta using  -greedy, observe reward and new state 1ts 

 Update Q function according to

'(,) [(1)max (,) (,)]

1 1
Q s a reward Q s a Q s at t t t ta

      
 

 End

End

Return the best state

End

Algorithm 3.2 Procedure of the TD() algorithm for CLP

23

3.5. TDQ (Off Policy TD Control)

One of the most important breakthroughs in RL was the development of an off-policy TD

control algorithm known as TDQ or Q-learning Off-Policy (Watkins, 1989). This algorithm

does not pay attention to what policy (i.e. series of actions or action selection algorithm) is

being followed. Instead, it just uses the best Q-value. It tries to learn the value function for

the best policy, irrespective of the policy being followed. Since it uses any policy to estimate

the Q-value, it is called an off-policy learning algorithm [27]. Its simplest form is defined by

the equation shown below:

' '(,) (,) [max (,) (,)]
1 1

Q s a Q s a r Q s a Q s at t t t t tt ta
    

 
……………………………(8)

Here, the goal is to compute directly the optimal value function (,)Q s at t . The core of the

algorithm is a simple “value iteration update” by using the old value and making a correction

based on the new information. In off-policy methods, learning optimal value can take place

under any policy regarding the subject. In this case, the learned action-value function directly

approximates the optimal action-value function, independent of the policy being followed

[27]. The learning rate alpha determines to what extent the newly acquired information will

override the old information. A factor of 0 will make the agent not learn anything, while a

factor of 1 would make the agent consider only the most recent information. The procedure of

TDQ (off-policy TD control) algorithm for CLP is shown in Algorithm 3.3 below:

TDQ ALGORITHM

Function TDQ

 Initialize Q, choose =0.9,  =0.1 and  =0.1

 For episode= 1: maximum episode

 Initialize state S for this episode

 While step <= maximum step & area covered<=goal

 Choose ta from ts using  -greedy

 Observe reward and new state 1ts 

 Update Q function according to

' '(,) (,) [max (,) (,)]

1 1
Q s a Q s a r Q s a Q s at t t t t tt ta

    
 

 End

End

Return the best state

End

Algorithm 3.3 Procedure of the TDQ algorithm for CLP

24

3.6. SARSA (On Policy TD Control)

Unlike the previous approaches where we consider transitions from state to state and learn the

values of states, we now consider transitions from state-action pair to state-action pair and

learn the value of state-action pairs using the equation:

' '(,) (,) [(,) (,)]

1 1 1
Q s a Q s a r Q s a Q s at t t t t tt t t

    
  

……………………………..(9)

This update is done after every transition from a non terminal state st . Q-learning backs up

the best Q-value from the state reached while SARSA waits until an action is taken and then

backs up the Q-value from that action. If
1

s
t

 is terminal, then (,)
1 1

Q s a
t t 

 is defined as

zero. This rule uses every element of the quintuple of events (st , at ,
1

r
t

,
1

s
t

 ,
1

a
t

) that

make up a transition from one state-action pair to the next [27]. This quintuple gives rise to

the name “State-Action-Reward State-Action” (SARSA) for the algorithm. SARSA is an on-

policy learning algorithm. It updates value functions strictly on the basis of the experience

gained from executing some (possibly non-stationary) policy. A SARSA agent will interact

with the environment and update the policy based on actions taken. It can start with a random

policy, then iteratively improve and converge to optimal. On-policy learns the value function

of the policy being followed [27]. The procedure of SARSA for CLP is shown in Algorithm

3.4 below:

SARSA ALGORITHM

 Function SARSA

 Initialize Q, Choose =0.8,  =0.1 and  =0.1

 For episode= 1: maximum episode

 Initialize state S for this episode

 Choose a from s using  -greedy

 Take action a , observed reward and new state 's

 While step <= maximum step & Area covered<=Goal

 Choose 'a from 's using  -greedy

 Update Q function according to

 ' '(,) (,) [(,) (,)]
1 1 1

Q s a Q s a r Q s a Q s at t t t t tt t t
    

  

 End

 End

 Return the best state

End

Algorithm 3.4 Procedure of the SARSA algorithm for CLP

25

3.7. Monte-Carlo

Policy evaluation algorithms are intended to estimate the value functions for a given policy.

Typically these are on-policy algorithms, and the considered policy is assumed to be

stationary. Direct Monte-Carlo methods are the most straight-forward, and considered here for

comparison with other methods. Monte-Carlo methods are based on simple idea of averaging

a number of random samples of returns (i.e reward). Monte Carlo methods are suitable for

learning from experience that does not require prior knowledge of the environment's

dynamics. These methods solve the reinforcement learning problem based on averaging

sample returns.

1' '(,) (,) (,)
()

Q s a Q s a R Q s at t t t t t tn s
   
  

……………………………………………….(10)

()n s =number of first visit to state s.

A constant  can be formulated in order to estimate the actual return Rt as shown in the

equation below:

' '(,) (,) (,)Q s a Q s a R Q s at t t t t t t    

  
…………………………………………………(11)

 Rt = is long term reward

'(,)R Q s at t t  
  

= updated value function

In MC approach, values for each state or pair state-action are updated only based on final

reward, not on estimates of neighboring states as in previous approaches [27]. The procedure

of Monte-Carlo for CLP is given in Algorithm 3.5.

3.8. Agent, Environment, State, Actions, and Reward

3.8.1. Agent

When we come to the real life application, a device that is used to load the containers can be

regarded as our agent. Since in a container terminal, a yard crane is a device used to load

containers in storage yard, it can be considered as our agent (Figure 3.2).

3.8.2. Environment

The problem environment is formed by the storage yard block and containers (Figure 3.3).

26

MONTE-CARLO ALGORITHM

Function Monte-Carlo

 Initialize Q,  =0.1 and  =0.1

 For episode= 1: maximum episode

 Initialize state S for this episode

 While step <= maximum step & area covered<=goal

 Choose ta from ts using  -greedy

 Take action ta , observe reward and new state 1ts 

 Update Q function according to

' '(,) (,) (,)Q s a Q s a R Q s at t t t t t t    

  

 End

End

 Return the best state

End

Algorithm 3.5 Procedure of the Monte-Carlo algorithm for CLP

Figure 3.2 Yard crane

Figure 3.3 Storage yard block and containers

27

3.8.3. State

A state is the numbers of red containers, blue containers, and green containers together with

their positions in the storage yard at a given time. Thus, states are the ways the containers

arranged in the storage yard and the number of containers contained in the storage yard block.

0 500 1000 1500
0

200

400

600

800

1000

1200
RED CONTAINER=40 BLUE CONTAINER=38 GREEN CONTAINER=39

Figure 3.4 A state

3.8.4. Actions

The agent can choose any one of the possible actions shown below. For example, if removing

one red container can give space to replace it with two green containers, removing that red

container is a good action at this situation. Similarly if the space we have can be best filled

with a single red container, so adding a red container is the best action at this particular

moment. Any action applied yields to a new state.

Figure 3.5 Actions

28

3.8.5. Reward

As we aim to minimize the waste of space (i.e. empty space) and maximize the number of

containers, the reward is set to be proportional to the total number of containers placed in the

storage and inversely proportional to the space wasted using the equation:

 * 2
ACTReward N N N

R B G ASY
   ……………………………………………………….. (12)

where

N
R

= Number of red containers,

 N
B

= Number of blue containers,

 N
G

= Number of green containers,

 A
SY

= Area of storage yard,

 A
CT

 =Total area covered by the containers

Note that the Area of Storage Yard (ASY) is multiplied by two in Equation (12) above (i.e.

2*ASY). This is because our algorithms are designed to fill two layers of storage yard block.

Figure 3.6 RL for container loading

In a nutshell, when an agent (yard crane) interacts with an environment (storage yard block)

by applying one of the six possible actions (add R, remove R, add B, remove B, add G or

remove G), it enters a new state (a new container arrangement and a new number of

containers) and receives the reward as calculated in Equation (12).

29

CHAPTER FOUR

4. NUMERICAL EXPERIMENTS

4.1. Overview

 The simulations of this work have been carried out using MATLAB software on a computer

with Intel Core-i3-3110M dual core 2.4 GHz CPU and 4GB RAM running Windows8 64bit

operating system. For experiments, the area of the storage yard has been chosen to be

1500x300, 1500x600, 1500x900 and 1500x1200 unit squared (usually the unit of centimeter

may be used, but in practice any appropriate unit can be used regarding the area of storage

yard and area of containers).

The measure used to decide the convergence of RL algorithms is the Root-Mean-Squared-

Error (RMSE) which is the difference between the Q-value at an episode and the previous

episode’s Q-value. The number of episodes run is 500. During an episode, if a chosen action

happens to be bad, it will cause an instant rise in RMSE. At convergence, RMSE is

approximately zero which means the true value function is attained. The Goal of our agent is

to cover 100 percent of the storage area within 500 episodes.

0 50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

1
Q-LEARNING CONTAINER LOADING -RMS ERROR GRAPH GOAL=0

EPISODES

R
M

S
E

Figure 4.1 Series of bad action selections.

As can be seen from the example given in Figure 4.1, an agent makes bad action selections

throughout 500 episodes and the error keeps on rising. The number of goals reached is zero

since the agent fails to reach the goal state within all 500 episodes.

30

0 50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

1
Q-LEARNING CONTAINER LOADING -RMS ERROR GRAPH GOAL=441

EPISODES

R
M

S
E

Figure 4.2 Good action selections and convergence.

On the other hand, Figure 4.2 shows another example where an agent makes good action

selections throughout remaining episodes after 59 episodes. The error converges to zero due

to the good action selections made by the agent. The number of goals reached is 441 since the

agent fails to reach the goal state for the first 59 episodes out of 500.

A sample of a storage yard of size 1500x300 with an arrangement of containers placed to fill

in the yard after running a simulation is shown in Figure 4.3.

0 500 1000 1500
0

50

100

150

200

250

300

Figure 4.3 1500x300 storage yard area with an arrangement of containers

4.2. Comparison between RL Algorithms

Under this subsection the five RL algorithms are compared without restriction to the number

of containers while the area of storage yard is fixed to 1500x300, 1500x600, 1500x900, and

1500x1200. The goal of our agent is to cover 100 percent of the storage area in 12 steps

within 500 episodes. The size of red container is 500x100 unit squared, blue container

250x100 unit squared, and green container 150x100 unit squared.

31

The simulation time, the episode at which the algorithm converges, convergence period, the

number of times an agent reaches the Goal state and the numbers of containers loaded were

recorded for multiple runs of simulations. These are shown in the summary Tables 4.1 to 4.4

below and Appendices A to D.

Table 4.1 RL algorithms comparison summary without restriction to the number of containers

(1500x300).

Algorithm Average convergence

time (s)

Most frequent

convergence

time(s)

Average number of

containers

QL 0.406 0.260 31.4

TDQ 0.089 0.049 32.4

MC 0.096 0.045 32.7

SARSA 0.106 0.120 32.4

TD() 0.064 0.045 32.5

Table 4.2 RL algorithms comparison summary without restriction to the number of containers

(1500x600).

Algorithm Average convergence

time (s)

Most frequent

time (s)

Average number

of

containers

QL 2.270 2.285 62.767

TDQ 0.692 0.589 62.6

MC 0.835 0.954 63.45

SARSA 1.353 0.896 63.1

TD() 0.519 0.34 62.2

Table 4.3 RL algorithms comparison summary without restriction to the number of containers

(1500x900).

Algorithm Average convergence

time (s)

Most frequent

time (s)

Average number

of

containers

QL 10.569 10.593 93.5

TDQ 2.320 1.005 93.6

MC 2.648 3.440 94

SARSA 2.816 1.029 93.933

TD() 2.184 0.980 94.05

32

Table 4.4 RL algorithms comparison summary without restriction to the number of containers

(1500x1200).

Algorithm Average convergence

time (s)

Most frequent

time (s)

Average number

of

containers

QL 33.333 25.127 126

TDQ 5.569 6.650 125.5

MC 6.083 2.315 125.7

SARSA 7.959 5.957 125.7

TD() 4.930 6.411 125.3

4.3. Comparison between RL and EAs

In this section, five RL and two EA Algorithms were compared when the number of

containers restricted to 30, 60, 90, and 120 while the area of storage yard is fixed to

1500x300, 1500x600, 1500x900, and 1500x1200, respectively. The goal is to cover 100

percent of the storage area within 500 episodes. The sizes of red, blue, and green containers

are 500x100 unit squared, 250x100 unit squared, and 150x100 unit squared, respectively. The

simulation time, the episode at which the algorithm converge, convergence period, the

number an agent reaches the goal state and the number of containers loaded were recorded for

multiple runs of simulations . These are shown in the summary Tables 4.5 to 4.8 below and

Appendices E to H.

Table 4.5 RL and EAs comparison summary with number of containers restricted to 30

(1500x300).

Algorithm Average convergence

time (s)

Most frequent

time (s)

QL 0.594 0.882

TDQ 0.110 0.050

MC 0.105 0.103

SARSA 0.109 0.089

TD() 0.074 0.020

GA 0.041 0.040

ACO 0.676 0.639

33

Table 4.6 RL and EAs comparison summary with number of containers restricted to 60

(1500x600).

Algorithm Average convergence

time (s)

Most frequent

time (s)

QL 1.423 1.478

TDQ 0.401 0.050

MC 0.427 0.096

SARSA 0.483 0.450

TD() 0.361 0.326

GA 0.193 0.140

ACO 2.536 0.680

Table 4.7 RL and EAs comparison summary with numbers of containers restricted to 90

(1500x900).

Algorithm Average convergence

time (s)

Most frequent

time (s)

QL 2.470 0.642

TDQ 0.759 0.667

MC 1.113 1.328

SARSA 1.202 0.913

TD() 0.632 0.223

GA 1.099 0.427

ACO 4.865 6.313

Table 4.8 RL and EAs comparison summary with number of containers restricted to 120

(1500x1200).

Algorithm Average convergence

time (s)

Most frequent

time (s)

QL 7.192 5.362

TDQ 1.741 2.573

MC 2.279 3.189

SARSA 2.811 2.573

TD() 1.663 1.922

GA 4.119 0.381

ACO 5.178 6.731

4.4. Discussion on the Results of Comparisons between RL and EAs

For storage yard areas of 1500x300, 1500x600, 1500x900 and 1500x1200, comparisons of the

performance of the RL algorithms without restriction to the number of containers and

comparisons between RL and EAs by restricting number of containers to 30, 60, 90 and 120

are summarized in the following tables.

34

Table 4.9 RL and EAs comparison summary both with restriction and without restriction to

the number of containers (1500x300).

 WITHOUT RESTRICTION WITH RESTRICTION

Algorithm Average

convergence

time (s)

Most

frequent

time (s)

Average number

of containers

Average

convergence

time (s)

Most

frequent

time (s)

Number

of

containers

QL 0.406 0.260 31.4 0.594 0.882 30

TDQ 0.089 0.049 32.4 0.110 0.050 30

MC 0.096 0.045 32.7 0.105 0.103 30

SARSA 0.106 0.120 32.4 0.109 0.089 30

TD() 0.064 0.045 32.5 0.074 0.020 30

GA - - - 0.041 0.040 30

ACO - - - 0.676 0.639 30

Table 4.10 RL and EAs comparison summary both with restriction and without restriction to

the number of containers (1500x600).

 WITHOUT RESTRICTION WITH RESTRICTION

Algorithm Average

convergence

time (s)

Most

frequent

time (s)

Average

number of

containers

Average

convergence

time (s)

Most

frequent

time (s)

Number

of

containers

QL 2.270 2.285 62.767 1.423 1.478 60

TDQ 0.692 0.589 62.6 0.401 0.050 60

MC 0.835 0.954 63.45 0.427 0.096 60

SARSA 1.353 0.896 63.1 0.483 0.450 60

TD() 0.519 0.34 62.2 0.361 0.326 60

GA - - - 0.193 0.140 60

ACO - - - 2.536 0.680 60

Table 4.11 RL and EAs comparison summary both with restriction and without restriction to

the number of containers (1500x900).

 WITHOUT RESTRICTION WITH RESTRICTION

Algorithm Average

convergence

time (s)

Most

frequent

time (s)

Average

number of

containers

Average

convergence

time (s)

Most

frequent

time (s)

Number

of

containers

QL 10.569 10.593 93.5 2.470 0.642 90

TDQ 2.320 1.005 93.6 0.759 0.667 90

MC 2.648 3.440 94 1.113 1.328 90

SARSA 2.816 1.029 93.93333 1.202 0.913 90

TD() 2.184 0.980 94.05 0.632 0.223 90

GA - - - 1.099 0.427 90

ACO - - - 4.865 6.313 90

35

Table 4.12 RL and EAs comparison summary both with restriction and without restriction to

the number of containers (1500x1200).

 WITHOUT RESTRICTION WITH RESTRICTION

Algorithm Average

convergence

time (s)

Most

frequent

time (s)

Average

number of

containers

Average

convergence

time (s)

Most

frequent

time (s)

Number

of

containers

QL 33.333 25.127 126 7.192 5.362 120

TDQ 5.569 6.650 125.5 1.741 2.573 120

MC 6.083 2.315 125.7 2.279 3.189 120

SARSA 7.959 5.957 125.7 2.811 2.573 120

TD() 4.930 6.411 125.3 1.663 1.922 120

GA - - - 4.119 0.381 120

ACO - - - 5.178 6.731 120

Table 4.13 RL algorithms average simulation time comparison without restriction to the

number of containers.

Algorithm Storage Yard Area

1500X300 1500X600 1500X900 1500X1200

QL 12.302 60.756 197.499 495.456

TDQ 2.235 12.996 40.090 96.277

MC 2.398 15.770 48.059 109.097

SARSA 2.635 17.116 46.767 127.262

TD() 2.208 15.526 44.278 103.094

As can be observed from the results obtained using different combinations of storage yard

areas, when the number of containers is not restricted all the algorithms load more containers

compared to the simulations when the number of containers is restricted to 30, 60, 90 and 120

for the same storage yard. Also, the simulations take less time when the number of containers

is restricted than that when the number of containers is not restricted.

As to the convergence time of the RL algorithms without restriction to the number of

containers, TD() leads in all the cases because this algorithm is designed to reduce

discrepancies between the estimated Q-values of a state and more distant descendants or

ancestors of the state. Q-learning always comes last because all the remaining algorithms are

the improvement of this algorithm. For example, if we choose lambda=0 in TD(), we end

up with the original Q-learning equation which considers only one step discrepancies in the Q

estimates. TDQ and Monte-Carlo come second and third respectively, because these

approaches use a learning rate which determines to what extent the newly acquired

36

information will override the old information. SARSA comes fourth; this algorithm also uses

a learning rate but selects actions twice for each step which is why it performs better than the

ordinary Q-learning algorithm.

In terms of the number of containers that can be packed into storage yard when the number of

containers is not restricted, all RL algorithms give approximately the same result. As the

storage yard size becomes larger, however, Q-learning starts performing better than all the

other RL algorithms in this respect and Monte-Carlo gradually worsens even though it is the

best of all for filling small storage yards.

In terms of the average simulation/completion time of RL algorithms, TDQ performs the best

for all storage yard area combinations, except for the smallest area in which it comes in

second position after TD-lambda. This is because learning optimal value in TDQ can take

place under any policy and learning rate effect. TD-Lambda comes second for all remaining

combinations while MC and SARSA come third and fourth respectively.

For the comparison of the performance of the GA and RL algorithms with restriction to the

number of containers, GA performs best for the first two combinations of storage yard areas

(1500x300 and 1500x600), followed by TD(), TDQ, Monte-Carlo, SARSA, ACO and

finally Q-learning. As the size of storage yards increase to 1500x900 and 1500x1200,

however, TD(), TDQ and Monte-Carlo come first, second and third respectively, leaving

GA, SARSA , Q-learning and ACO in subsequent positions. The good performance of the GA

for small storage yards is due to the cross-over and mutation that help the algorithm to

produce best arrangement in short time. TD-Lambda follows GA for small storage yards and

performs the best for large yards due to the effect of lambda which reduces discrepancies

between the estimate Q-values between present and next Q-values.

37

CHAPTER FIVE

5. CONCLUSION AND FUTURE WORK

5.1. Conclusion

This work explores the reinforcement learning to tackle container loading problem for

maximizing the number of containers and minimizing the waste of space. We have compared

five different types of such algorithms between themselves as well as against two

evolutionary algorithms based on space utilization, number of containers, simulation time and

speed of convergence. If the yard crane is considered as our agent, it can select the optimal

loading strategy based on the real-time state of the operational system. Reducing the time at

which the containers are unloaded from a ship and placed in the storage yard reduces the

waiting time of the ship. Although all of the developed procedures may serve to reduce the

waiting time of the ships at the container terminal, TD() performs the best overall. In real-

life applications, TD() can be considered the most appropriate due to its high speed of

convergence and minimum completion time.

Thus, we achieved the aim of this work which was to design software for container loading

with aforementioned constraints using five different RL algorithms and two evolutionary

algorithms to provide a comparison so to reduce the waiting time of the ship at a container

terminal. We have also empirically determined which of these algorithms are advantageous in

certain cases.

5.2. Future Work

The work in the future can include implementing the Bee Colony Algorithm to solve the CLP

and compare its performance to those given in this thesis. We can also try to increase the

complexity of the work to make it resemble more of real-life cases by adding additional types

of containers, more layers, and larger storage yards. This work can be expanded to include

applications and comparisons of algorithms to the other types of container loading problem

specified in [9].

38

REFERENCES

[1] S. Tijjani and I.O. Bucak. “An approach for maximizing container loading and minimize

the waste of space using Q-learning,” in Proc. International Conference on

Technological Advance in Electrical, Electronics and Computer Engineering, 2013, pp.

236-239.

[2] Q. Zeng and Z. Yang, “An Approach Integrating Simulation and Q-learning Algorithm

for Operation Scheduling in Container Terminals.” Journal of the Eastern Asia Society

for Transportation Studies, vol. 8, pp. 1-15, 2010.

[3] L.J. Pires and P.R. Pinheiro “A Hybrid Methodology Approach for Container Loading

Problem Using Genetic Algorithm to Maximize the Weight Distribution of Cargo” Real

world applicatıon of genetıc algorıthm, University of Fortaleza (UNIFOR,) Brazil,

pp.183-189, 2012.

[4] Parreño, Francisco, et al. "A maximal-space algorithm for the container loading

problem." INFORMS Journal on Computing, Vol. 20. No. 3, pp.412-422, 2008.

[5] T.M. Mitchel, March 1997. “Machine Learning” McGraw-Hill Engineering. Pp.367-

388.

[6] Alpaydin, Ethem. “Introduction to machine learning”. MIT press, pp 1-395, 2004.

[7] Standard purpose container, http://www.freeline.bg/useful-information/container-

types/?lang=en (Access on 30th may, 2014 by 12.46am).

[8] Yap, Ching Nei, Lai Soon Lee, Z. A. Majid, and Hsin Vonn Seow. “Ant Colony

Optimization for Container Loading Problem.” Journal of Mathematics &

Statistics, Vol. 8, pp. 169-175, 2012.

[9] Bortfeldt, Andreas, and Gerhard Wäscher. “Container loading problems: A state-of-the-

art review”. University Magdeburg German, Faculty of Economics and Management,

pp. 1-39, 2012.

[10] Dereli, Türkay, and Gülesin Sena Das. "A hybrid ‘bee (s) algorithm’for solving

container loading problems." Journal of Applied Soft Computing, Vol. 11, No. 2, pp.

2854-2862, 2011.

[11] W. Hongtao, W. Zhoujing and L. Jian “A simulated annealing algorithm for single

container loading problem” International conference on service system and service

management, pp. 551-556, IEEE 2012.

http://www.freeline.bg/useful-information/container-types/?lang=en
http://www.freeline.bg/useful-information/container-types/?lang=en

39

[12] M. Li “An Improved Genetic Algorithm for the Packing of Rectangles” Eighth

International Conference on Machine Learning and Cybernetics, Baoding, pp. 1690-

1692, IEEE 2009.

[13] Bortfeldt, Andreas, "A genetic algorithm for the two-dimensional strip packing problem

with rectangular pieces." European Journal of Operational Research, Vol. 172, No. 3,

pp. 814-837, 2006.

[14] Bazzazi, Mohammad, Nima Safaei, and Nikbakhsh Javadian, "A genetic algorithm to

solve the storage space allocation problem in a container terminal." Journal of

Computers & Industrial Engineering Vol. 56, No. 1, pp. 44-52, 2009.

[15] Container terminal, http://en.wikipedia.org/wiki/Container_terminal (Access on 30th

may, 2014 by 12.59am).

[16] Vis, I. F., & De Koster, R. “Transshipment of containers at a container terminal” An

overview. European Journal of operational research, Vol. 147, No. 1, pp 1-16, 2003.

[17] Yantian Container Terminal - Phase 1 & II, China,

http://www.aecom.com/Where+We+Are/Asia/Geotechnical/_carousel/Yantian+Contain

er+Terminal+-+Phase+1+&+II,+China (Access on 30th may, 2014 by 1.02am).

[18] Z-FRACHT: Your own World of Transports, Used shipping Containers & Brand New

Dry Containers for sale,

http://zfracht.ucoz.com/news/used_shipping_containers_brand_new_dry_containers_for

_sale/2013-03-21-7 (Access on 30th may, 2014 by 1.02am).

[19] Dubrovsky, Opher, Gregory Levitin, and Michal Penn. "A genetic algorithm with a

compact solution encoding for the container ship stowage problem." Journal of

Heuristics Vol. 8, No. 6, pp. 585-599, 2002.

[20] Smilkstein, Tina, et al. "An evolutionary algorithm testbed for quick implementation of

algorithms in hardware." Evolving and Self-Developing Intelligent Systems, ESDIS'09,

IEEE, pp. 51-57, 2009.

[21] Morris, Garrett M., David S. Goodsell, Robert S. Halliday, Ruth Huey, William E. Hart,

Richard K. Belew, and Arthur J. Olson. "Automated docking using a Lamarckian

genetic algorithm and an empirical binding free energy function." Journal of

computational chemistry, Vol. 19, No. 14, pp. 1639-1662, 1998.

http://en.wikipedia.org/wiki/Container_terminal
http://www.aecom.com/Where+We+Are/Asia/Geotechnical/_carousel/Yantian+Container+Terminal+-+Phase+1+&+II,+China
http://www.aecom.com/Where+We+Are/Asia/Geotechnical/_carousel/Yantian+Container+Terminal+-+Phase+1+&+II,+China
http://zfracht.ucoz.com/news/used_shipping_containers_brand_new_dry_containers_for_sale/2013-03-21-7
http://zfracht.ucoz.com/news/used_shipping_containers_brand_new_dry_containers_for_sale/2013-03-21-7

40

[22] R. Rajeswari and R. Rajesh, "A modified ant colony optimazation based approach for

image edge detection" International Conference on Image Information Processing, pp.

1-6, 2011.

[23] Muhammad, A., Bala, I., Salman, M. S., & Eleyan, A. “Discrete wavelet transform-

based Ant Colony Optimization for edge detection”. International Conference

on Technological Advances in Electrical, Electronics and Computer Engineering

(TAEECE), pp. 280-283,), May, 2013.

[24] Randall, M., & Tonkes, E. “Solving network synthesis problems using ant colony

optimisation. Engineering of Intelligent Systems”, Springer Berlin Heidelberg,, pp. 1-

10, 2001.

[25] Huang, H., Wu, C. G., & Hao, Z. F “A pheromone-rate-based analysis on the

convergence time of ACO algorithm” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, Vol. 39, pp. 910-923, 2009.

[26] T. ling, Y. Weiyu, C. Li and M. Lihong, "Image edge detection using variation-adaptive

ant colony optimization," Transactions on Computational Collective Intelligence V

Lecture Notes in Computer Science, Vol. 69, No. 10, pp. 27-40, 2011

[27] RS. Sutton and AG. Barto, 1998. ” Reinforcement Learning, an introduction” A

Bradford Book, The MIT Press, Cambridge, Massachusetts London, England, pp. 9-397.

[28] I.O. Bucak, and M.A. Zohdy, 2001. “Reinforcement learning control of nonlinear multi-

link system”, Engineering Applications of Artificial Intelligence, Journal of IFAC, Vol.

14, pp. 563-575.

[29] T. Wauters, November, 2012. “Reinforcement learning enhanced heuristic search for

combinatorial optimization” Katholieke Universiteit Leuven, Faculty of Engineering

Celestijnenlaan Heverlee, Belgium, pp. 7-14.

[30] I.O. Bucak and M.A. Zohdy, “Application of reinforcement learning control to a

nonlinear dextereous robot”, The 38th IEEE Conference on Decision and Control

(CDC'99), Phoenix, Arizona, Dec. pp. 5108-5113, 1999.

[31] F.L. Lewis and D. Vrabie, “Reinforcement Learning and Adaptive Dynamic

Programming for Feedback Control ” IEEE Circuit andsystems magazine, pp. 40-58,

2009.

41

[32] Rodrigues Gomes, Eduardo, and Ryszard Kowalczyk. "Dynamic analysis of multiagent

Q-learning with ε-greedy exploration." Proceedings of the 26th Annual International

Conference on Machine Learning. ACM, PP. 369-376, 2009.

42

APPENDICES

APPENDIX A: Comparison between RL algorithms without restriction to the number of

containers (1500x300).

Appendix A1: Q-learning

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 12.219 11 0.269 490 31

2. 13.012 33 0.859 468 31

3. 12.032 11 0.265 490 31

4. 12.026 11 0.265 490 33

5. 12.726 25 0.636 476 32

6. 12.319 18 0.443 483 29

7. 12.334 18 0.444 483 34

8. 12.028 9 0.217 492 29

9. 12.400 18 0.446 483 32

10. 11.926 9 0.215 492 32

Appendix A2: TDQ

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 2.555 26 0.133 475 31

2. 2.187 19 0.083 482 32

3. 1.947 14 0.055 487 33

4. 1.897 13 0.049 488 33

5. 1.899 13 0.049 488 33

6. 1.802 11 0.040 490 34

7. 2.697 29 0.156 472 33

8. 2.506 19 0.095 482 33

9. 2.364 23 0.109 478 32

10. 2.495 25 0.125 476 30

43

Appendix A3: Monte-Carlo

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 1.998 10 0.040 491 32

2. 3.425 41 0.281 460 33

3. 2.694 24 0.129 477 32

4. 1.982 10 0.040 491 33

5. 2.081 12 0.050 489 31

6. 2.054 11 0.045 490 33

7. 2.916 28 0.163 473 33

8. 2.317 16 0.074 485 31

9. 2.229 15 0.067 486 35

10. 2.286 15 0.067 486 34

Appendix A4: SARSA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 2.377 12 0.057 489 33

2. 2.535 15 0.076 486 29

3. 2.671 22 0.118 479 33

4. 2.921 30 0.175 471 34

5. 2.707 22 0.119 479 31

6. 2.532 17 0.086 484 31

7. 2.351 10 0.047 491 33

8. 2.945 30 0.177 471 34

9. 2.779 23 0.128 478 33

10. 2.528 15 0.076 486 33

44

Appendix A5: TD()

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 1.955 10 0.039 491 31

2. 2.602 22 0.114 479 31

3. 2.483 20 0.099 481 34

4. 2.156 13 0.056 488 33

5. 2.038 11 0.044 490 32

6. 2.039 11 0.045 490 33

7. 2.224 12 0.053 489 33

8. 1.971 10 0.039 491 34

9. 2.166 13 0.056 488 32

10. 2.448 19 0.093 482 32

45

APPENDIX B: Comparison between RL algorithms without restriction to the number of

containers (1500x600).

Appendix B1: Q-learning

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 56.171 8 0.899 493 63

2. 57.846 12 1.388 489 60

3. 53.441 5 0.534 496 63

4. 58.189 8 0.931 493 64

5. 58.248 13 1.514 488 65

6. 57.452 12 1.379 489 62

7. 60.046 19 2.282 482 60

8. 54.587 6 0.655 495 60

9. 67.489 45 6.074 456 62

10. 61.141 22 2.690 479 62

11. 58.089 8 0.929 493 64

12. 62.700 22 2.759 479 65

13. 59.820 18 2.154 483 65

14. 53.463 5 0.535 496 62

15 62.481 23 2.874 478 64

16. 55.813 7 0.781 494 61

17. 65.640 37 4.857 464 63

18. 60.132 19 2.285 482 62

19. 65.375 36 4.707 465 62

20. 57.264 10 1.145 491 65

21. 60.903 19 2.314 482 60

22. 62.366 22 2.744 479 65

23. 61.219 18 2.204 483 65

24. 54.806 5 0.548 496 62

25. 62.557 23 2.878 478 64

26. 56.030 7 0.784 494 61

27. 94.604 37 7.000 464 63

28. 61.127 19 2.323 482 62

29. 66.281 36 4.772 465 62

30. 57.397 10 1.148 491 65

46

Appendix B2: TDQ

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 12.958 23 0.596 478 64

2. 10.534 15 0.316 486 64

3. 11.014 16 0.352 485 66

4. 20.930 52 2.177 449 62

5. 9.447 12 0.227 489 62

6. 9.536 12 0.229 489 62

7. 9.932 13 0.258 488 66

8. 17.451 39 1.361 462 64

9. 19.069 44 1.678 457 62

10. 9.780 13 0.254 488 64

11. 13.228 25 0.661 476 63

12. 9.025 10 0.181 491 64

13. 12.878 22 0.567 479 61

14. 10.464 15 0.314 486 62

15 11.868 19 0.451 482 61

16. 8.801 10 0.176 491 61

17. 13.110 23 0.603 478 62

18. 9.188 11 0.202 490 62

19. 14.271 27 0.771 474 61

20. 13.521 24 0.649 477 60

21. 13.651 25 0.683 476 63

22. 11.929 20 0.447 481 62

23. 20.281 50 2.028 451 63

24. 9.238 10 0.185 491 64

25. 12.663 22 0.557 479 61

26. 17.471 39 1.363 462 62

27. 16.028 33 1.058 468 62

28. 18.972 43 1.632 458 64

29. 13.396 22 0.589 478 62

30. 9.234 11 0.203 490 62

47

Appendix B3: Monte-Carlo

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 13.627 17 0.463 484 63

2. 13.757 18 0.495 483 65

3. 16.586 28 0.929 473 62

4. 13.898 13 0.361 488 64

5. 16.633 29 0.965 472 65

6. 10.995 10 0.220 491 64

7. 18.393 34 1.251 467 62

8. 15.346 23 0.706 478 64

9. 23.942 55 2.634 446 61

10. 14.725 21 0.618 480 65

11. 14.134 13 0.367 488 64

12. 16.730 27 0.903 474 64

13. 15.257 22 0.671 478 65

14. 10.855 10 0.217 491 62

15 17.028 28 0.954 473 64

16. 16.397 27 0.885 474 63

17. 19.584 38 1.488 463 62

18. 10.927 10 0.219 491 60

19. 19.351 36 1.393 465 65

20. 17.244 28 0.966 473 65

Appendix B4: SARSA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 20.366 64 2.607 437 64

2. 16.588 27 0.896 474 62

3. 16.301 28 0.913 473 62

4. 24.190 92 4.451 409 65

5. 10.763 47 1.012 464 64

6. 14.599 14 0.409 487 62

7. 18.807 50 1.881 451 62

8. 18.660 41 1.530 460 62

9. 16.861 34 1.147 467 62

10. 15.686 19 0.596 482 65

11. 19.530 49 1.914 452 63

12. 18.395 50 1.840 451 61

13. 15.980 28 0.895 473 64

14. 14.435 11 0.317 490 65

15 14.503 13 0.377 488 60

16. 13.782 10 0.276 491 64

17. 18.973 49 1.859 452 64

18. 17.356 34 1.180 467 65

19. 19.069 51 1.945 450 62

20. 17.470 29 1.013 472 64

48

Appendix B5: TD()

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 13.049 13 0.339 488 64

2. 13.389 17 0.455 484 62

3. 15.354 23 0.706 478 64

4. 15.844 25 0.792 476 62

5. 12.418 14 0.348 487 62

6. 16.231 26 0.844 475 62

7. 13.579 13 0.353 488 64

8. 13.433 17 0.457 484 62

9. 15.394 23 0.708 478 64

10. 15.865 25 0.793 476 62

11. 18.347 12 0.440 489 61

12. 16.979 10 0.340 491 60

13. 16.661 10 0.333 491 63

14. 17.552 11 0.386 490 61

15. 18.793 13 0.488 488 60

49

APPENDIX C: Comparison between RL algorithms without restriction to the number of

containers (1500x900).

Appendix C1: Q-learning

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 203.778 26 10.596 475 93

2. 166.553 5 1.666 496 95

3. 201.788 28 11.300 473 95

4. 190.851 16 6.107 485 92

5. 203.716 26 10.593 475 93

6. 192.500 18 6.930 483 95

7. 184.413 11 4.057 490 92

8. 191.568 25 9.578 476 92

9. 219.562 52 22.834 449 92

10. 220.257 50 22.026 451 96

Appendix C2: TDQ

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 47.268 31 2.931 470 93

2. 37.895 23 1.743 478 94

3. 47.309 31 2.933 470 93

4. 38.016 23 1.749 478 95

5. 33.199 18 1.195 483 94

6. 70.517 60 8.462 441 91

7. 31.170 16 0.997 485 92

8. 32.940 18 1.186 483 95

9. 31.187 16 0.998 485 94

10. 31.403 16 1.005 485 95

50

Appendix C3: Monte-Carlo

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 45.040 22 1.982 479 96

2. 53.870 32 3.448 469 93

3. 52.157 30 3.129 471 94

4. 32.344 10 0.647 491 94

5. 50.164 30 3.009 471 92

6. 55.483 31 3.440 470 93

7. 45.383 23 2.088 478 95

8. 48.597 26 2.527 475 93

9. 43.403 21 1.823 480 95

10. 42.362 20 1.694 481 93

11. 54.171 34 3.684 467 93

12. 32.154 11 0.707 490 93

13. 63.013 44 5.545 457 95

14. 53.339 33 3.520 468 97

15. 49.410 25 2.471 476 94

51

Appendix C4: SARSA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 41.624 12 0.999 489 95

2. 49.937 44 4.394 457 94

3. 42.663 13 1.109 488 92

4. 44.522 23 2.048 478 92

5. 44.360 24 2.129 477 94

6. 45.485 26 2.365 475 93

7. 43.308 14 1.213 487 93

8. 52.445 42 4.405 459 93

9. 41.389 13 1.076 488 96

10. 63.615 72 9.161 429 94

11. 51.267 35 3.589 466 95

12. 45.704 23 2.102 478 94

13. 39.804 10 0.796 491 95

14. 53.389 54 5.766 447 93

15. 41.988 13 1.092 488 96

Appendix C5: TD-LAMBDA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 40.234 18 1.448 483 96

2. 34.326 12 0.824 489 93

3. 54.755 31 3.395 470 93

4. 44.994 23 2.070 478 95

5. 41.886 20 1.675 481 93

6. 42.892 20 1.716 481 93

7. 35.325 13 0.918 488 95

8. 53.677 31 3.328 470 94

9. 38.551 16 1.234 485 92

10. 34.987 14 0.980 487 93

11. 47.601 26 2.475 475 95

12. 32.305 12 0.775 489 94

13. 58.425 42 4.791 459 94

14. 63.513 43 5.462 458 95

15. 35.857 15 1.076 486 92

16. 36.493 14 1.022 487 95

17. 56.366 35 3.946 466 96

18. 36.748 14 1.029 487 97

19. 59.356 37 4.392 464 92

20. 37.267 15 1.118 486 94

52

53

APPENDIX D: Comparison between RL algorithms without restriction to the number of

containers (1500x1200).

Appendix D1: Q-learning

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 480.463 25 24.023 476 127

2. 492.362 33 32.496 468 128

3. 452.529 15 13.576 486 125

4. 521.805 46 48.001 455 125

5. 497.836 33 32.857 468 124

6. 487.579 26 25.354 475 127

7. 553.058 64 70.791 437 126

8. 483.206 26 25.127 475 127

9. 457.812 16 14.650 485 124

10. 527.909 44 46.456 457 127

Appendix D2: TDQ

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 64.235 14 1.799 487 125

2. 107.374 31 6.657 470 126

3. 102.464 29 5.943 472 123

4. 139.199 45 12.528 456 124

5. 58.486 12 1.404 489 126

6. 105.829 31 6.561 470 125

7. 70.371 16 2.252 485 127

8. 108.864 31 6.750 470 127

9. 97.624 26 5.076 475 125

10. 108.327 31 6.716 470 127

54

Appendix D3: Monte-Carlo

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 123.764 32 7.921 469 124

2. 133.812 34 9.099 467 127

3. 82.747 14 2.317 487 127

4. 155.066 43 13.336 458 125

5. 85.941 15 2.578 486 126

6. 88.094 16 2.819 485 126

7. 152.850 44 13.450 457 128

8. 100.720 22 4.432 479 125

9. 85.312 15 2.559 486 123

10. 82.661 14 2.315 487 126

Appendix D4: SARSA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 118.548 28 6.639 473 128

2. 122.305 25 6.115 476 124

3. 119.876 23 5.514 478 124

4. 135.788 32 8.690 469 126

5. 139.530 36 10.046 465 125

6. 162.335 60 19.480 441 124

7. 111.778 20 4.471 481 126

8. 118.240 24 5.676 477 127

9. 119.149 25 5.957 476 126

10. 125.069 28 7.004 473 127

55

Appendix D5: TD-LAMBDA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL NUMBER OF

CONTAINER

1. 115.748 28 6.481 473 124

2. 123.296 30 7.398 471 126

3. 114.063 26 6.411 475 127

4. 100.286 21 4.212 480 126

5. 76.141 12 1.827 489 125

6. 128.255 33 8.465 468 125

7. 94.563 19 3.593 482 124

8. 91.123 17 3.098 484 124

9. 115.422 27 6.233 474 128

10. 72.045 11 1.585 490 124

56

APPENDIX E: Comparison between RL and EAs with restriction (1500x300).

Appendix E1: Q-learning

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 7.253 58 0.841 443

2. 7.129 46 0.656 455

3. 6.840 20 0.274 481

4. 6.874 43 0.591 458

5. 6.577 5 0.066 496

6. 6.511 8 0.104 493

7. 6.557 17 0.223 484

8. 7.013 62 0.870 439

9. 7.035 85 1.196 416

10. 6.513 24 0.313 477

11. 6.651 33 0.439 468

12. 6.630 40 0.530 461

13. 6.937 52 0.721 449

14. 6.736 29 0.391 472

15. 7.049 59 0.832 442

16. 6.993 21 0.294 480

17. 6.854 28 0.384 473

18. 6.524 14 0.183 487

19. 7.177 81 1.163 420

20. 6.610 18 0.238 483

21. 7.200 58 0.835 443

22. 7.147 46 0.658 455

23. 6.858 20 0.274 481

24. 6.910 43 0.594 458

25. 6.393 8 0.102 493

26. 7.122 62 0.883 439

27. 6.506 24 0.312 477

28. 6.529 33 0.431 468

29. 6.683 52 0.695 449

30. 6.506 29 0.377 472

31. 7.033 63 0.887 438

32. 6.618 34 0.450 467

33. 6.443 12 0.155 489

34. 6.891 64 0.882 437

35. 6.902 33 0.456 468

36. 7.343 65 0.955 436

37. 6.406 16 0.205 485

38. 6.403 19 0.243 482

39. 7.911 155 2.452 346

40. 7.520 108 1.624 392

57

Appendix E2: TDQ

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 0.883 16 0.028 485

2. 1.089 43 0.094 458

3. 1.414 69 0.195 432

4. 1.099 44 0.097 457

5. 1.571 91 0.286 410

6. 1.284 60 0.154 441

7. 1.011 38 0.077 463

8. 1.416 78 0.221 423

9. 0.694 11 0.015 490

10. 1.197 56 0.134 445

11. 1.039 40 0.083 461

12. 1.111 47 0.104 454

13. 0.976 34 0.066 467

14. 1.344 70 0.188 431

15. 0.950 32 0.061 469

16. 0.905 28 0.051 473

17. 1.042 39 0.081 462

18. 1.051 40 0.084 461

19. 1.080 45 0.097 456

20. 1.323 67 0.177 434

21. 2.259 35 0.158 466

22. 0.911 29 0.053 472

23. 1.155 51 0.118 450

24. 1.153 51 0.118 450

25. 1.101 48 0.106 453

26. 0.902 26 0.047 474

27. 1.171 57 0.133 444

28. 0.909 27 0.049 474

29. 1.344 69 0.185 432

30. 0.989 38 0.075 463

31. 0.921 28 0.052 473

32. 1.204 51 0.122 450

33. 1.177 51 0.120 450

34. 1.186 48 0.114 453

35. 0.910 27 0.049 474

36. 1.167 48 0.112 453

37. 1.371 67 0.184 432

38. 2.490 36 0.179 465

39. 0.930 27 0.050 474

40. 1.075 45 0.097 456

58

Appendix E3: Monte-Carlo

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 1.372 61 0.167 438

2. 1.038 34 0.071 467

3. 1.417 72 0.204 429

4. 0.729 10 0.015 491

5. 1.105 45 0.099 456

6. 1.391 70 0.195 431

7. 1.561 84 0.262 417

8. 1.577 86 0.271 415

9. 1.180 48 0.113 453

10. 1.409 72 0.203 429

11. 0.857 20 0.034 481

12. 1.121 42 0.094 459

13. 1.147 45 0.103 456

14. 1.166 47 0.110 454

15. 0.768 12 0.018 489

16. 1.142 45 0.103 456

17. 1.054 35 0.074 466

18. 1.136 44 0.100 457

19. 1.159 45 0.104 456

20. 0.986 29 0.057 472

21. 1.335 48 0.128 453

22. 0.855 19 0.032 482

23. 1.076 39 0.084 462

24. 0.954 27 0.052 474

25. 1.315 65 0.171 436

26. 1.343 59 0.158 442

27. 0.724 10 0.014 491

28. 1.445 74 0.214 427

29. 0.933 26 0.049 475

30. 1.014 33 0.067 468

31. 1.124 41 0.092 460

32. 0.959 28 0.054 473

33. 1.213 49 0.119 452

34. 1.165 47 0.110 454

35. 0.920 25 0.046 476

36. 1.064 38 0.081 463

37. 1.148 43 0.099 458

38. 1.035 34 0.070 467

39. 1.177 47 0.111 454

40. 0.847 19 0.032 482

59

Appendix E4: SARSA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 2.250 90 0.405 411

2. 1.013 89 0.180 412

3. 0.969 72 0.140 429

4. 0.925 62 0.115 439

5. 1.053 94 0.198 407

6. 0.798 37 0.059 464

7. 0.765 26 0.040 475

8. 1.009 80 0.161 421

9. 0.754 24 0.036 477

10. 0.701 20 0.028 481

11. 0.952 68 0.129 433

12. 0.852 52 0.089 449

13. 0.797 36 0.057 465

14. 1.035 94 0.195 407

15. 0.901 64 0.115 437

16. 0.718 18 0.026 483

17. 0.947 72 0.136 429

18. 0.663 13 0.028 488

19. 1.076 97 0.209 404

20. 0.778 33 0.051 468

21. 0.866 32 0.055 469

22. 0.879 51 0.090 450

23. 0.929 74 0.137 427

24. 0.765 30 0.046 471

25. 0.871 52 0.091 449

26. 0.792 36 0.057 465

27. 0.891 49 0.087 452

28. 0.867 48 0.083 453

29. 0.935 83 0.155 418

30. 0.855 52 0.089 449

31. 1.136 89 0.202 412

32. 1.002 72 0.144 429

33. 0.957 62 0.119 439

34. 0.861 37 0.064 464

35. 0.792 26 0.041 475

36. 1.023 80 0.164 421

37. 0.742 24 0.036 477

38. 0.699 20 0.028 481

39. 1.258 68 0.171 433

40. 0.883 52 0.092 449

60

Appendix E5: TD-LAMBDA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 0.820 18 0.030 483

2. 0.768 12 0.018 489

3. 1.114 44 0.098 457

4. 0.904 25 0.045 476

5. 1.097 40 0.088 461

6. 1.110 43 0.095 458

7. 1.217 54 0.131 447

8. 1.220 54 0.132 447

9. 0.771 13 0.020 488

10. 1.357 38 0.103 463

11. 1.021 35 0.071 466

12. 1.576 94 0.296 407

13. 0.731 10 0.015 491

14. 1.145 50 0.115 451

15. 1.123 46 0.103 455

16. 1.022 11 0.020 490

17. 1.033 37 0.076 464

18. 1.318 67 0.177 434

19. 1.067 43 0.092 458

20. 1.321 59 0.156 442

21. 1.323 67 0.177 434

22. 0.952 29 0.055 472

23. 0.886 20 0.035 481

24. 0.731 10 0.015 491

25. 0.943 28 0.053 473

26. 0.872 22 0.038 479

27. 0.789 15 0.024 486

28. 1.036 38 0.079 463

29. 1.069 41 0.088 460

30. 1.149 47 0.108 454

31. 0.838 19 0.032 482

32. 0.761 13 0.020 488

33. 1.066 37 0.079 464

34. 1.075 38 0.082 463

35. 0.861 21 0.036 480

36. 0.862 22 0.038 479

37. 0.789 14 0.022 487

38. 0.748 11 0.016 490

39. 0.871 20 0.035 481

40. 0.905 23 0.042 478

61

Appendix E6: GA

S/N

SIMULATION

TIME

CONVERGENCE

GENERATION

CONVERGENCE

TIME

1. 4.229 3 0.025

2. 3.541 8 0.057

3. 3.349 4 0.027

4. 3.314 8 0.053

5. 2.612 2 0.010

6. 2.402 2 0.010

7. 3.343 8 0.053

8. 3.400 8 0.054

9. 3.019 5 0.030

10. 3.050 9 0.055

11. 3.434 4 0.027

12. 3.678 9 0.066

13. 3.063 6 0.037

14. 3.283 4 0.026

15. 3.049 3 0.018

16. 4.910 11 0.108

17. 2.985 5 0.030

18. 3.404 17 0.116

19. 2.204 1 0.004

20. 2.593 5 0.026

21. 2.967 4 0.024

22. 3.274 8 0.052

23. 2.570 4 0.021

24. 2.897 14 0.081

25. 3.730 6 0.045

26. 2.916 6 0.035

27. 2.005 1 0.004

28. 2.907 7 0.041

29. 2.315 2 0.009

30. 2.653 3 0.016

31. 3.301 6 0.040

32. 3.298 6 0.040

33. 2.334 13 0.061

34. 3.155 8 0.050

35. 2.820 4 0.023

36. 3.315 9 0.046

37. 2.855 7 0.040

38. 2.941 24 0.141

39. 2.273 5 0.023

40. 2.992 5 0.030

62

Appendix E7: ACO

S/N

CONVERGENCE

TIME

CONVERGENCE

GENERATION

1. 0.821 31

2. 0.325 3

3. 0.639 22

4. 0.741 27

5. 0.714 25

6. 0.394 7

7. 0.468 12

8. 0.284 1

9. 0.529 15

10. 0.636 22

11. 0.654 22

12. 0.388 7

13. 1.360 63

14. 0.686 25

15. 0.420 9

16. 0.919 37

17. 0.354 5

18. 1.049 45

19. 0.458 11

20. 0.876 34

21. 0.293 2

22. 0.536 16

23. 0.355 5

24. 0.650 22

25. 0.858 34

26. 0.405 8

27. 0.329 4

28. 0.637 21

29. 0.973 41

30. 0.855 35

31. 0.727 25

32. 0.300 2

33. 0.978 41

34. 1.104 48

35. 1.448 68

36. 0.418 9

37. 0.717 26

38. 0.632 21

39. 1.186 54

40. 0.912 37

63

APPENDIX F: Comparison between RL and Eas with restriction (1500x600).

Appendix F1: Q-learning

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 18.132 41 1.487 460

2. 14.661 5 0.147 496

3. 17.852 50 1.785 451

4. 16.791 30 1.008 471

5. 17.766 44 1.563 457

6. 15.382 10 0.308 491

7. 17.852 36 1.285 465

8. 17.838 51 1.819 450

9. 19.650 82 3.223 419

10. 16.609 28 0.930 473

11. 18.187 55 2.001 446

12. 15.518 9 0.279 492

13. 19.195 74 2.840 427

14. 19.467 77 2.998 424

15. 15.106 6 0.181 495

16. 15.733 15 0.472 486

17. 15.921 16 0.509 485

18. 15.992 18 0.576 483

19. 17.255 37 1.277 464

20. 19.531 82 3.203 419

21. 19.424 63 2.447 438

22. 19.971 75 2.996 426

23. 18.082 50 1.808 451

24. 18.151 50 1.815 451

25. 16.410 15 0.492 486

26. 16.945 31 1.051 470

27. 17.824 45 1.604 456

28. 17.593 42 1.478 459

29. 15.078 8 0.241 493

30. 17.548 42 1.474 459

31. 15.315 8 0.245 493

32. 19.796 85 3.365 416

33. 19.194 74 2.841 427

34. 15.601 12 0.374 489

35. 18.457 61 2.252 440

36. 16.866 31 1.046 470

37. 17.595 42 1.478 459

38. 17.090 36 1.230 465

39. 15.998 16 0.512 485

40. 15.426 9 0.278 492

64

Appendix F2: TDQ

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 5.400 62 0.670 439

2. 2.437 10 0.049 491

3. 4.627 46 0.426 455

4. 2.748 14 0.077 487

5. 4.487 42 0.377 459

6. 4.472 42 0.376 459

7. 6.329 75 0.949 426

8. 5.083 55 0.559 446

9. 4.363 41 0.358 460

10. 5.479 60 0.657 441

11. 4.443 38 0.338 463

12. 6.331 78 0.988 423

13. 2.489 11 0.055 490

14. 3.630 28 0.203 473

15. 5.398 61 0.659 440

16. 5.944 72 0.863 429

17. 4.551 45 0.410 456

18. 2.438 10 0.049 491

19. 3.245 22 0.143 479

20. 5.098 55 0.561 446

21. 4.156 33 0.274 468

22. 2.524 11 0.056 490

23. 2.733 14 0.077 487

24. 5.122 53 0.543 448

25. 4.078 36 0.294 465

26. 2.545 11 0.056 490

27. 6.705 85 1.140 416

28. 5.155 56 0.577 445

29. 3.918 33 0.259 468

30. 4.046 34 0.275 467

31. 4.496 42 0.378 459

32. 5.062 53 0.537 448

33. 4.175 38 0.317 463

34. 5.872 69 0.810 432

35. 3.932 33 0.260 468

36. 4.091 35 0.286 466

37. 2.514 11 0.055 490

38. 5.115 54 0.552 447

39. 4.183 39 0.326 462

40. 3.543 26 0.184 475

65

Appendix F3: Monte-Carlo

S/N SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 3.538 19 0.134 482

2. 3.225 16 0.103 485

3. 6.130 65 0.797 436

4. 6.858 79 1.084 422

5. 3.123 14 0.087 487

6. 3.464 19 0.132 482

7. 3.183 15 0.095 486

8. 4.977 45 0.448 456

9. 5.513 54 0.595 447

10. 5.428 52 0.565 449

11. 5.555 54 0.600 447

12. 4.612 37 0.341 464

13. 4.697 38 0.357 463

14. 3.388 18 0.140 483

15. 4.738 42 0.398 459

16. 4.352 34 0.296 467

17. 3.391 18 0.122 483

18. 5.972 62 0.740 439

19. 3.131 14 0.088 487

20. 5.197 49 0.509 452

21. 3.446 17 0.117 484

22. 4.160 29 0.241 472

23. 3.256 15 0.098 486

24. 5.079 45 0.457 456

25. 6.737 76 1.024 425

26. 3.291 17 0.112 484

27. 5.607 57 0.639 444

28. 4.071 29 0.236 472

29. 3.207 15 0.096 486

30. 6.379 70 0.893 431

31. 4.739 39 0.340 462

32. 6.657 73 0.972 428

33. 3.647 22 0.160 479

34. 6.454 73 0.942 428

35. 6.490 66 0.857 435

36. 4.213 31 0.261 470

37. 3.698 22 0.163 479

38. 7.161 86 1.232 415

39. 4.474 36 0.322 465

40. 4.289 33 0.282 468

66

Appendix F4: SARSA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 3.744 19 0.142 482

2. 4.801 47 0.451 454

3. 4.517 48 0.434 453

4. 4.500 44 0.396 457

5. 3.878 24 0.186 477

6. 6.656 126 1.677 375

7. 4.608 41 0.378 460

8. 5.209 71 0.740 430

9. 4.703 52 0.489 449

10. 3.878 29 0.225 472

11. 4.186 36 0.301 465

12. 3.456 13 0.090 488

13. 4.578 48 0.439 453

14. 5.335 79 0.843 422

15. 3.642 16 0.117 485

16. 4.710 54 0.509 447

17. 4.890 43 0.421 458

18. 4.934 65 0.641 436

19. 5.473 77 0.843 424

20. 4.225 37 0.313 464

21. 4.356 47 0.409 454

22. 4.202 31 0.261 470

23. 5.112 68 0.695 433

24. 5.111 74 0.756 427

25. 4.022 22 0.177 479

26. 4.225 27 0.228 474

27. 5.036 67 0.675 434

28. 4.924 52 0.512 449

29. 5.408 85 0.919 416

30. 4.557 49 0.447 452

31. 5.249 72 0.756 429

32. 4.953 60 0.594 441

33. 4.544 46 0.418 455

34. 3.892 18 0.140 483

35. 4.829 65 0.628 436

36. 4.635 50 0.464 451

37. 4.648 49 0.456 452

38. 3.871 23 0.178 478

39. 4.790 55 0.527 446

40. 4.683 48 0.450 453

67

Appendix F5: TD-LAMBDA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 4.072 28 0.228 473

2. 3.507 20 0.140 481

3. 4.955 45 0.446 456

4. 5.869 55 0.646 446

5. 5.522 56 0.618 445

6. 4.613 39 0.360 462

7. 4.429 35 0.310 466

8. 4.323 28 0.242 473

9. 5.226 50 0.523 451

10. 4.913 43 0.423 458

11. 4.524 36 0.326 465

12. 5.910 62 0.733 439

13. 4.511 36 0.325 465

14. 3.795 25 0.190 476

15. 4.575 37 0.339 464

16. 4.543 37 0.336 464

17. 3.778 24 0.181 477

18. 5.550 54 0.599 447

19. 2.845 10 0.057 491

20. 5.670 54 0.612 447

21. 3.098 12 0.074 489

22. 5.567 53 0.590 448

23. 3.990 26 0.207 475

24. 3.746 21 0.157 480

25. 7.997 99 1.583 402

26. 3.737 23 0.172 478

27. 5.418 53 0.574 448

28. 5.071 48 0.487 453

29. 5.305 50 0.531 451

30. 3.555 20 0.142 481

31. 4.662 38 0.354 463

32. 5.126 47 0.482 454

33. 4.157 29 0.241 472

34. 3.280 16 0.105 485

35. 3.017 12 0.072 489

36. 4.322 31 0.268 470

37. 3.840 25 0.192 476

38. 3.429 18 0.123 483

39. 3.526 20 0.130 481

40. 4.517 36 0.325 465

68

Appendix F6: GA

S/N

SIMULATION

TIME

CONVERGENCE

GENERATION

CONVERGENCE

TIME

1. 4.571 5 0.046

2. 5.575 7 0.078

3. 5.573 12 0.134

4. 7.576 16 0.242

5. 5.538 8 0.089

6. 5.649 5 0.056

7. 5.659 9 0.102

8. 5.436 8 0.087

9. 5.707 17 0.194

10. 3.459 5 0.035

11. 12.132 18 0.437

12. 5.420 9 0.098

13. 3.364 2 0.013

14. 8.953 29 0.519

15. 8.978 9 0.162

16. 4.300 5 0.043

17. 9.346 14 0.262

18. 7.032 17 0.239

19. 4.867 12 0.117

20. 4.373 16 0.140

21. 9.156 37 0.678

22. 5.259 12 0.126

23. 5.371 13 0.140

24. 6.797 8 0.109

25. 9.235 17 0.314

26. 7.291 21 0.306

27. 3.277 2 0.013

28. 8.518 33 0.562

29. 12.745 20 0.510

30. 8.757 22 0.033

31. 5.560 28 0.311

32. 4.613 17 0.157

33. 5.331 5 0.053

34. 6.457 8 0.103

35. 6.944 10 0.139

36. 5.383 8 0.086

37. 6.129 13 0.159

38. 3.321 8 0.053

39. 7.017 53 0.744

40. 3.536 4 0.028

69

Appendix F7: ACO

S/N

CONVERGENCE

TIME

CONVERGENCE

GENERATION

1. 4.856 251

2. 1.766 69

3. 1.914 81

4. 5.256 273

5. 2.717 126

6. 0.716 7

7. 3.752 186

8. 4.245 219

9. 0.771 14

10. 5.226 276

11. 2.579 119

12. 2.172 89

13. 4.059 205

14. 3.291 158

15. 2.578 118

16. 3.502 176

17. 4.480 230

18. 1.839 78

19. 5.882 313

20. 2.348 106

21. 1.402 52

22. 3.876 195

23. 2.382 108

24. 3.209 156

25. 1.975 84

26. 2.899 138

27. 1.333 44

28. 0.970 26

29. 1.121 34

30. 4.282 213

31. 0.699 11

32. 2.899 136

33. 2.049 88

34. 1.942 82

35. 1.542 57

36. 0.680 9

37. 0.746 13

38. 0.649 7

39. 0.673 9

40. 2.164 92

70

APPENDIX G: Tables of comparison between RL and Eas with restriction (1500x900).

Appendix G1: Q-learning

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 39.930 8 0.639 493

2. 41.539 10 0.831 491

3. 44.095 25 2.205 476

4. 48.251 46 4.439 455

5. 59.997 12 1.440 489

6. 47.159 41 3.867 460

7. 49.137 53 5.209 448

8. 51.252 60 6.150 441

9. 40.568 8 0.649 493

10. 44.132 23 2.030 478

11. 49.518 51 5.051 450

12. 42.476 17 1.444 484

13. 45.438 31 2.817 470

14. 44.465 24 2.134 477

15. 42.725 15 1.282 486

16. 41.390 12 0.993 489

17. 47.767 45 4.299 456

18. 40.149 8 0.642 493

19. 40.102 7 0.561 494

20. 45.378 30 2.723 471

Appendix G2: TDQ

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 13.299 44 1.170 457

2. 11.381 35 0.797 466

3. 13.038 43 1.121 458

4. 10.139 27 0.548 474

5. 7.111 13 0.185 488

6. 10.833 32 0.693 469

7. 10.873 30 0.652 471

8. 12.661 41 1.038 460

9. 10.766 31 0.667 470

10. 11.204 32 0.717 469

71

Appendix G3: Monte-Carlo

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 17.409 62 2.159 439

2. 8.266 10 0.165 491

3. 14.651 45 1.319 456

4. 14.818 46 1.363 455

5. 8.544 13 0.222 488

6. 16.866 55 1.855 446

7. 14.750 45 1.328 456

8. 15.875 49 1.556 452

9. 10.467 21 0.440 480

10. 11.981 30 0.719 471

Appendix G4: SARSA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 17.549 88 3.089 413

2. 11.693 22 0.514 479

3. 13.728 52 1.428 449

4. 11.532 24 0.554 477

5. 10.515 17 0.358 484

6. 15.370 75 2.306 426

7. 14.373 58 1.667 443

8. 17.161 95 3.261 406

9. 10.013 11 0.220 490

10. 11.352 19 0.431 482

11. 11.677 22 0.514 479

12. 13.717 52 1.427 449

13. 11.632 24 0.558 477

14. 10.706 17 0.364 484

15. 12.573 36 0.905 465

11. 12.009 25 0.600 476

72

12. 13.007 35 0.910 466

13. 13.036 35 0.913 466

14. 13.575 53 1.439 448

15. 16.975 88 2.988 413

16. 14.267 51 1.455 450

17. 14.318 44 1.260 457

18. 12.854 35 0.900 466

19. 13.305 38 1.011 463

20. 13.090 37 0.969 464

Appendix G5: TD-LAMBDA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 11.264 26 0.586 475

2. 11.078 26 0.576 475

3. 13.127 36 0.945 465

4. 11.560 27 0.624 474

5. 15.046 46 1.384 455

6. 8.767 14 0.245 487

7. 8.285 12 0.199 489

8. 8.579 13 0.223 488

9. 13.479 37 0.997 464

10. 14.166 43 1.218 458

11. 8.069 10 0.162 491

12. 9.392 16 0.301 485

13. 11.806 29 0.685 472

14. 8.483 12 0.204 489

15. 10.621 22 0.467 479

11. 14.268 41 1.170 460

12. 8.900 14 0.249 487

13. 13.320 38 1.012 463

14. 10.386 21 0.436 480

15. 15.445 49 1.514 452

16. 8.269 12 0.198 489

17. 9.585 17 0.326 484

18. 8.856 14 0.248 487

19 13.830 39 1.079 462

20. 12.386 30 0.743 471

73

Appendix G6: GA

S/N

SIMULATION

TIME

CONVERGENCE

GENERATION

CONVERGENCE

TIME

1. 23.847 36 1.717

2. 15.362 30 0.922

3. 31.559 48 3.030

4. 30.461 65 3.960

5. 18.483 50 1.848

6. 11.195 12 0.269

7. 8.659 18 0.312

8. 11.219 8 0.180

9. 11.830 13 0.308

10. 6.358 7 0.089

11. 19.094 48 1.833

12. 15.338 40 1.227

13. 34.368 31 2.131

14. 9.056 53 0.960

15. 12.284 31 0.762

16. 9.669 23 0.445

17. 59.140 23 2.720

18. 11.312 16 0.362

19. 6.476 33 0.427

20. 14.634 9 0.263

21. 28.382 23 1.306

22. 15.430 93 2.870

23. 15.705 24 0.754

24. 19.000 37 1.406

25. 12.615 22 0.555

26. 4.535 26 0.236

27. 11.681 10 0.234

28. 4.348 59 0.513

29. 6.220 11 0.137

30. 14.963 29 0.868

31. 8.775 34 0.597

32. 9.644 22 0.424

33. 4.609 22 0.203

34. 8.786 6 0.105

35. 9.095 44 0.800

36. 20.160 31 1.250

37. 36.491 32 2.335

38. 12.010 83 1.994

39. 19.866 80 3.178

40. 6.432 32 0.412

74

Appendix G7: ACO

S/N

CONVERGENCE

TIME

CONVERGENCE

GENERATION

1. 6.007 304

2. 6.706 341

3. 2.162 42

4. 4.583 172

5. 7.456 379

6. 4.148 186

7. 2.302 82

8. 8.580 438

9. 5.927 287

10. 3.781 168

11. 6.315 314

12. 8.649 448

13. 7.552 387

14. 6.599 336

15. 1.008 4

16. 3.106 129

17. 6.372 321

18. 2.299 83

19. 5.535 268

20. 5.685 281

21. 9.055 474

22. 0.972 7

23. 6.081 308

24. 3.412 149

25. 8.658 458

26. 5.531 252

27. 8.516 446

28. 7.250 359

29. 2.999 125

30. 1.565 41

31. 6.309 299

32. 6.399 321

33. 8.762 452

34. 1.075 8

35. 1.515 38

36. 1.974 63

37. 6.442 320

38. 6.031 272

39. 0.941 3

40. 2.403 89

41 7.664 379

42 4.236 186

43 2.308 82

44 3.127 129

45 6.243 287

46 3.865 168

47 6.313 324

48 0.926 4

49 1.234 83

50 6.678 336

75

76

APPENDIX H: Tables of comparison between RL and EAs with restriction (1500x1200).

Appendix H1: Q-learning

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 120.785 81 19.567 420

2. 104.749 38 7.961 463

3. 109.030 53 11.557 448

4. 114.251 63 14.396 438

5. 97.771 25 4.889 476

6. 95.645 25 4.782 476

7. 100.001 28 5.600 473

8. 101.653 33 6.709 468

9. 103.682 34 7.050 467

10. 87.573 6 1.051 495

11. 93.692 15 2.811 486

12. 111.660 57 12.729 444

13. 102.789 37 7.606 464

14. 104.523 42 8.780 459

15. 104.615 38 7.951 463

16. 93.511 12 2.244 489

17. 100.585 26 5.230 475

18. 100.455 28 5.625 473

19. 111.293 48 10.684 453

20. 96.511 19 3.667 482

21. 100.690 27 5.437 474

22. 99.291 27 5.362 474

23. 103.820 35 7.267 466

24. 94.040 14 2.633 487

25. 105.372 39 8.219 462

Appendix H2: TDQ

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 14.552 12 0.349 489

2. 27.121 36 1.953 465

3. 25.522 36 1.838 465

4. 28.887 45 2.600 456

5. 27.967 45 2.517 456

6. 30.246 51 3.085 450

7. 32.628 54 3.524 447

8. 28.448 44 2.503 457

9. 19.985 24 0.959 477

10. 24.802 34 1.687 467

11. 22.557 27 1.218 474

12. 26.311 36 1.894 465

13. 21.616 27 1.167 474

14. 26.942 39 2.101 462

15. 21.934 26 1.141 475

16. 15.351 13 0.399 488

77

17. 14.609 12 0.351 489

18. 28.590 45 2.573 456

19. 14.524 12 0.349 489

20. 28.970 45 2.607 456

Appendix H3: Monte-Carlo

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 22.326 20 0.893 481

2. 35.101 53 3.721 448

3. 33.910 49 3.323 452

4. 24.434 25 1.222 476

5. 28.870 38 2.194 463

6. 28.782 36 2.072 465

7. 31.223 43 2.685 458

8. 35.620 53 3.776 448

9. 17.558 11 0.386 490

10. 31.791 45 2.861 456

11. 33.565 47 3.155 454

12. 20.627 17 0.701 484

13. 34.913 51 3.561 450

14. 23.761 23 1.093 478

15. 20.549 16 0.658 485

16. 33.488 48 3.215 453

17. 27.059 31 1.678 470

18. 32.868 48 3.155 453

19. 30.349 40 2.428 461

20. 26.647 30 1.599 471

21 30.094 39 2.347 462

22. 26.846 29 1.557 472

23. 29.459 37 2.180 464

24 33.704 47 3.168 454

25. 17.747 10 0.355 491

26. 30.298 39 2.363 462

27. 33.930 47 3.189 454

28. 34.234 48 3.286 453

29. 34.776 49 3.408 452

30. 29.916 36 2.154 465

78

Appendix H4: SARSA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 23.775 20 0.951 481

2. 41.637 104 8.660 397

3. 23.423 16 0.750 485

4. 39.788 103 8.196 398

5. 24.869 23 1.144 478

6. 28.930 43 2.488 458

7. 29.238 44 2.573 457

8. 29.131 44 2.564 457

9. 30.254 54 3.267 447

10. 31.681 58 3.675 442

11. 39.706 98 7.782 403

12. 30.162 51 3.077 450

13. 34.725 76 5.278 425

14. 25.976 29 1.507 472

15. 38.055 90 6.850 411

16. 22.257 15 0.668 486

17. 23.478 20 0.939 481

18. 23.843 16 0.763 485

19. 25.034 23 1.152 478

20. 26.484 33 1.748 468

21. 23.658 17 0.804 484

22. 25.753 32 1.648 469

23. 27.143 32 1.737 469

24. 24.361 18 0.877 483

25. 29.322 48 2.815 453

26. 23.953 21 1.006 480

27. 30.772 47 2.893 454

28. 29.917 46 2.752 455

29. 29.547 52 3.073 449

30. 29.131 46 2.680 455

79

Appendix H5: TD-LAMBDA

S/N

SIMULATION

TIME

CONVERGENCE

EPISODE

CONVERGENCE

TIME

GOAL

1. 26.778 30 1.607 471

2. 23.453 24 1.126 477

3. 25.676 30 1.541 471

4. 24.368 25 1.218 476

5. 27.708 34 1.884 467

6. 26.565 29 1.541 472

7. 28.268 34 1.922 467

8. 27.344 33 1.805 468

9. 28.812 35 2.017 466

10. 16.738 10 0.335 491

11. 18.473 13 0.480 488

12. 22.381 21 0.940 480

13. 18.957 15 0.569 486

14. 30.571 41 2.507 460

15. 33.958 50 3.396 451

16. 26.134 28 1.464 473

17. 28.408 34 1.932 467

18. 34.468 50 3.445 451

19. 16.953 10 0.339 491

20. 33.342 48 3.201 453

Appendix H6: GA

S/N

SIMULATION

TIME

CONVERGENCE

GENERATION

CONVERGENCE

TIME

1. 25.395 20 1.016

2. 25.405 35 1.778

3. 31.509 14 0.882

4. 24.154 62 2.995

5. 18.716 33 1.235

6. 69.515 32 4.449

7. 62.342 35 4.364

8. 24.686 20 0.987

9. 8.064 3 0.048

10. 25.101 76 3.815

11. 30.062 23 1.383

12. 45.864 79 7.247

13. 8.652 22 0.381

14. 9.065 21 0.381

15. 8.278 56 0.927

16. 24.155 50 2.416

17. 27.556 70 3.858

18. 9.188 23 0.423

19. 16.809 143 4.807

20. 28.680 47 2.696

21. 14.318 48 1.375

22. 5.494 30 0.330

80

23. 31.779 91 5.784

24. 9.838 16 0.315

25. 13.447 116 3.120

26. 38.127 47 3.584

27. 25.613 235 12.038

28. 47.297 48 4.541

29. 47.943 117 11.219

30. 49.314 89 8.778

31. 31.969 91 5.818

32. 10.374 16 0.332

33. 14.458 116 3.354

34. 37.971 47 3.569

35. 25.479 251 12.790

36. 48.061 64 6.151

37. 49.588 117 11.604

38. 46.927 89 8.353

39. 68.707 100 13.741

40. 25.138 37 1.860

Appendix H7: ACO

S/N

CONVERGENCE

TIME

CONVERGENCE

GENERATION

1. 1.976 26

2. 3.497 128

3. 4.027 158

4. 6.731 304

5. 1.646 23

6. 8.352 405

7. 5.315 229

8. 2.877 92

9. 4.995 215

10. 6.579 309

11. 2.316 63

12. 6.770 318

13. 7.571 368

14. 7.600 370

15. 7.050 342

16. 2.298 52

17. 2.158 53

18. 5.624 248

19. 6.429 303

20. 3.957 153

21. 8.545 427

22. 9.979 482

23. 4.495 191

24. 3.596 135

25. 7.245 343

26. 7.367 366

27. 1.791 24

28. 5.968 272

29. 2.307 56

30. 6.635 307

31. 7.851 376

81

32. 1.626 23

33. 8.637 413

34. 2.087 38

35. 5.922 277

36. 4.079 166

37. 6.824 313

38. 3.228 113

39. 5.060 219

40. 3.624 140

41 6.004 268

42 6.191 281

43 9.656 481

44 6.623 308

45 3.908 149

46 3.616 135

47 2.234 55

48 5.589 244

49 3.097 101

50 7.354 320

