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ABSTRACT 

 

 

REINFORCEMENT LEARNING AND EVOLUTIONARY ALGORITHMS  

FOR 

CONTAINER LOADING PROBLEM 

 

by 

Sani Tijjani 

 

M.Sc. Thesis, 2014 

 

Thesis Supervisor: Asst. Prof. Dr. Armağan ÖZKAYA 

 

Keywords: Container Loading Problem, Machine Learning, Reinforcement Learning, 

Temporal Difference, State-Action-Reward-State-Action, Genetic Algorithm, Ant Colony 

Optimization, 

 

Container Loading Problem (CLP) is a space utilization problem subject to various constraints. 

An example of it is the placement of containers in storage so as to minimize the waste of space. 

Other constraints that may be imposed include a certain loading order and an even weight 

distribution. Although evolutionary algorithms have been extensively studied to solve this 

problem, Reinforcement Learning (RL) which is a means of learning optimal behaviors by 

interacting with the environment, has not received enough attention in this respect. This work 

explores the use of RL as an alternative for tackling CLP so as to minimize the waste of space 

while maximizing the number of containers. We have applied five different RL algorithms (Q-

learning, TD( ), Monte-Carlo, TDQ-learning and SARSA), and two types of evolutionary 

algorithms (Genetic Algorithm and Ant Colony Optimization) to solve this problem. 

Simulations have been carried out using MATLAB to compare these algorithms based on space 

utilization, number of containers, simulation time and speed of convergence. The simulation 

parameters are set so that the algorithms are allowed to fill in storage yards 100% with 

containers of different sizes. Results show that, in general, RL may not guarantee the best 

results, but can minimize the computational difficulty providing a simple way to solve this 

problem. Genetic Algorithm (GA) on the other hand gives best speed of convergence for small 

storage yards, and, unlike other approaches that may require complex computations, four RL 
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algorithms, namely Q-learning, TD( ), Monte-Carlo and SARSA, give better speed of 

convergence than GA for larger storage yards used in our simulations. Ant Colony 

Optimization (ACO), while generally being worse than the others in terms of average 

convergence time, performs better than the ordinary Q-learning for the largest storage yard area 

used in our simulations and gives a result similar to GA. Growth of ACO’s average 

convergence time seems to be slower than those of others, indicating that it has the potential to 

have better convergence times with increasing storage yard area sizes. In terms of the number 

of containers that can be packed into storage yard when the number of containers is not 

restricted, all RL algorithms give approximately the same result. As the storage yard size 

becomes larger, however, Q-learning starts performing better than all the other RL algorithms 

in this respect and Monte-Carlo gradually worsens even though it is the best of all for filling 

small storage yards. But in terms of simulation time (for RL algorithms only) TDQ performs 

the best for all storage yard area combinations, except for the smallest area in which it comes in 

second position after TD-lambda. This is because learning optimal value in TDQ can take place 

under any policy and learning rate effect. TD-Lambda comes second for all remaining 

combinations while MC and SARSA come third and fourth respectively. 
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CHAPTER ONE 
 

1. INTRODUCTION 

1.1. Overview 
 

With the rapid increase of container volume and how transport of goods using ships plays a 

very important role in the economic development of the world, improving the operational 

efficiency is one of the most important issues for container terminals [1,2,3].  From the 

applications point of view, container loading problem arises in practice as an optimization 

issue whenever containers have to be filled or loaded with boxes, so that the usage of the 

container is maximized [4].  

The field of Machine Learning focuses on how to design systems that automatically improves 

with experience [5]. Many successful machine learning applications have been developed, 

ranging from software design to detecting fraudulent credit card transactions, to autonomous 

vehicles that learn to drive on public highways and even vehicles designed for fighting fire. 

There are also great advances in the theory and algorithms that form the foundations of 

machine learning field. As part of the machine learning field, Reinforcement Learning 

techniques deal with the problem about how an autonomous agent can learn to select proper 

actions through interacting with its system environment [6]. 

 1.2. Container Loading Problem 

 

 

Figure 1.1 A container [7] 
 

 A container which is a large metal box for transport of goods, shown in Figure 1.1, has 

played a vital role in world wide transportation. The Container Loading Problem (CLP) 

considers packing a set of rectangular boxes into a rectangular big box of fixed dimension [8]. 

We note that the big box might actually be a real container, but, according to the definition 
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given, it could also be the loading space of a truck, pallet or storage yard area which may be 

loaded up to a certain height [9]. CLP, therefore, is a space utilization problem subject to 

various constraints. An example of it is the placement of containers in storage yard so as to 

minimize the waste of space. Other constraints that may be imposed include a certain loading 

order and even weight distribution.   

According to the typology cited in [9], one can categorize container loading problems into 

two:  

 Those in which enough containers (large boxes) are available to accommodate all 

small items (small boxes). These categories are concerned with minimizing the value 

of the used containers. 

 Such problems in which only a subset of the small items (small boxes) can be packed 

since the availability of containers (large boxes) is limited. These categories are 

concerned with maximizing the value of the packed items. 

The former category includes Single-Stock-Size-Cutting-Stock Problem which is a process of 

packing of weakly heterogeneous set of cargo (consisting of diverse ingredients) into a 

minimum number of identical containers. Multiple-Stock-Size-Cutting-Stock Problem is a 

process of packing of weakly heterogeneous set of cargo into a weakly heterogeneous 

assortment of containers such that the value of the used containers is minimized. Residual-

Cutting-Stock Problem is the process of packing of weakly heterogeneous set of cargo into a 

strongly heterogeneous assortment of containers (i.e. mostly similar containers) such that the 

value of the used containers is minimized. Other types that fall in this category are Single-

Bin-Size-Bin-Packing Problem which is packing a strongly heterogeneous set of cargo into a 

minimum number of identical containers. Multiple-Bin-Size-Bin-Packing Problem is packing 

a strongly heterogeneous set of cargo into a weakly heterogeneous assortment of containers 

such that the value of the used containers is minimized. Residual-Bin-Packing Problem is 

packing a strongly heterogeneous set of cargo in to a strongly heterogeneous assortment of 

containers such that the value of the used containers is minimized. Open-Dimension Problem 

is packing a set of cargo into a single container with one or more variable dimension such that 

the container volume is minimized. All of these problems focus on minimizing the value of 

the used containers.  

The latter category encompasses the Identical-Item-Packing Problem which is loading a single 

container with a maximum number of identical small items. Single-Large-Object-Placement 

Problem is about loading a single container with a selection from a weakly heterogeneous set 
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of cargo such that the value of the loaded items is maximized. Multiple-Identical-Large- 

Object-Placement Problem is to load a set of identical containers with a selection from a 

weakly heterogeneous set of cargo such that the value of the loaded items is maximized. 

Multiple-Heterogeneous-Object-Placement Problem is the loading of weakly or strongly 

heterogeneous set of containers with a selection from a weakly heterogeneous set of cargo 

such that the value of the loaded items is maximized. Under this category also included is 

Single-Knapsack Problem which is to fill a single container with a selection from a strongly 

heterogeneous set of cargo so to maximize the value of the loaded items. Multiple-Identical- 

Knapsack-Problem is defined as loading a set of identical containers with a selection from a 

strongly heterogeneous set of cargo such that the value of the loaded items is maximized. 

Multiple-Heterogeneous-Knapsack Problem is loading a set of weakly or strongly 

heterogeneous containers with a selection from a strongly heterogeneous set of cargo such 

that the value of the loaded items is maximized.  All of these problems are concerned with 

maximizing the value of the loaded items. 

 

The type of CLP considered in this thesis falls in the second category and the type that best 

describes it is Multiple-Identical-Knapsack Problem since we apply the algorithms in 

consideration to load a set of identical containers (i.e. the storage yard) with a selection from a 

strongly heterogeneous set of cargo (i.e. the containers of known sizes) such that the value of 

the loaded items is maximized.  

 

Continuous increase in container volume and the need for rapid transport of goods make 

improving operational efficiency at the terminals critical. For instance, the process of loading 

outbound containers in a cargo port is of three stages: yard cranes pick up the desired 

containers from yard blocks and load them into the yard trailers, then yard trailers transport 

the containers to cranes, and lastly the cranes load the containers into the ships, as shown in 

Figure 1.2 [2]. 

 

It is difficult to optimize the whole container terminal operation with a single analytical model 

due to the complexity of the system. An important concern for the efficient operation of 

container loading is to find an algorithm that can optimize the way in which the containers are 

to be arranged, in order to speed up the process for economic requirements and ecological 

issues [10]. However, the efficient way to arrange containers involves new and specialized 

logistics process, a number of logistics plan and automated system to handle a great number 

of containers. Researchers have developed mathematical optimization models for different 
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sub-processes of the container terminal operation system. Researches have been carried out in 

order to find a procedure that leads to an optimal way of loading containers. Of these, some  

 

Figure 1.2 Container terminal 

 

concern about the weight distribution, some on loading sequence or maximizing container 

utilization factor and others focus on optimal loading in multiple containers. 

 

A method of integrating a Q-learning algorithm with a simulation technique is proposed to 

optimize the operation scheduling in the container terminals in [2]. Other related works 

include [11] where a simulated annealing algorithm for a single container loading problem is 

proposed. Aiming at the optimal layout problem of rectangular parts with dynamic 

constraints, a heuristic rectangular optimal layout method is proposed based on GA in [12].  

An application of ACO on CLP has been also studied [8]. GA for the two-dimensional strip 

packing problem with rectangular pieces introduced in [13] whereas [14] suggests an 

approach using GA to solve the storage space allocation problem in a container terminal. 

 

1.3 Method and Constraints 

A container terminal is a facility where cargo containers are moved between different 

transport vehicles, for transportation [15]. At container terminals, containers are transferred 

from one mode of transportation to another. Within a terminal, distinct types of material 

handling equipment are used to transship containers from ships to barges, trucks and trains 

and vice versa [16]. 
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The temporary storage of the inbound and outbound containers is one of the most important 

services at the container terminal that is known as the Storage Space Allocation Problem. The 

storage area in the terminal is divided into the several blocks of containers (Figure 1.3). Each 

block, as shown in Figure 1.4, consists of a number of side by side lanes with each lane 

including a number of containers [14]. 

 

 

Figure 1.3 Container terminal storage area [17] 

 

 

 

Figure 1.4 Blocks of containers [18] 

 

Some researchers like [13] solve CLP using two-dimensional space but in our work the width 

of the storage yard block is assumed to be the same with the width of all the containers, so the 

process space is considered as three dimensional. Hence, we have to be concerned with only 

heights and length of the containers. An instance of storage yard block with an arrangement of 

containers of different sizes is shown in Figure 1.5. 
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Figure 1.5 3D view of a storage yard with containers 

 

 

Storage yards of dimensions of 1500x300, 1500x600, 1500x900 and 1500x12000 units are 

considered in this study. The sizes of containers used are 500x100, 250x100 and 150x100 

which are labelled as the Red, Blue, and Green containers, respectively. Containers on ships 

or storage yards are stacked one on top of the other in columns, and can only be unloaded 

from the top of the column as assumed in [19]. Algorithms used in this work are designed to 

load containers layer-by-layer while holding the following conditions: 

i) All containers lie entirely within the storage yard block. 

ii) The containers do not overlap. 

The containers are packed by stacking them one by one until the yard block is full. The first 

container, also called the base container, is placed at the left corner of storage yard block as 

shown in Figure 1.6 (a). After packing the first base container in the storage yard block, the 

next container is placed to fill the empty space at right side of the first container, the 

containers that follow are also placed at the right side of the previous container until the first 

row is filled as shown in Figure 1.6 (b). After the first row is filled, the next container is 

placed at the left corner of storage yard block on the top of the first container of the first row, 

as shown in Figure 1.6 (c) below, and the second row is filled similarly (Figure 1.6 (d)). The 

process explained above continuous until the storage yard block filled as depicted in Figure 

1.6 (e) below, then we move to fill the second  layer of the storage yard block. 
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The foundation of this work in which an approach for maximizing container loading and 

minimizing the waste of space using Q-learning algorithm was presented in [1]. We build our 

work on this paper by solving the problem using four more RL algorithms, i.e. TDQ (Off-

Policy TD Control), Monte-Carlo (MC), State-Action-Reward-State-Action (SARSA), 

TD( ) and also two evolutionary algorithms, i.e. Genetic Algorithm (GA) and Ant Colony 

Optimization (ACO) Algorithm. 

  

(a)     (b) 

 

       

                                                 (c)                                                    (d) 

 

 

(e) 

 

Figure 1.6 How to fill empty space in storage yard block 
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 1.4 Organization of the Thesis 

 

This thesis is organized as follows:  

Chapter 2 describes the Reinforcement Learning approach. We discuss the Q-learning 

(deterministic), TDQ, Monte-Carlo, SARSA and TD( ) algorithms as well as the procedures 

devised  to solve the CLP. 

Chapter 3 describes evolutionary algorithms. We discuss GA and ACO, and then explain in 

detail how these algorithms are applied to solve the CLP. 

Chapter 4 presents simulations, numerical results obtained to compare the algorithms by 

various metrics, and discussion of results. 

Chapter 5 contains conclusions and possible future work.  
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CHAPTER TWO 
 

2. EVOLUTIONARY ALGORITHMS FOR CONTAINER LOADING PROBLEM 

2.1. Overview 

 

Evolutionary Algorithms (EA) is a field of artificial intelligence algorithms that attempts to 

bring out a system with the ability to evolve and meet new challenges or goals. EA are 

typically used to provide good approximate result to hard problems such as optimization 

techniques. Genetic Algorithm (GA) and Ant Colony Optimization (ACO) are some of the 

known EAs [20].  

The GA is a search technique originally stimulated by biological genetics and uses ideas 

based on the natural genetics and biological evolution [21]. It provides an approach to 

learning that is based loosely on simulated evolution. Hypotheses are often described by bit 

strings whose interpretations depend on the application, though hypotheses may also be 

described by numbers, symbolic expressions or even computer programs. Genetic algorithms 

have been applied successfully to a variety of learning tasks and to other optimization 

problems [22]. 

ACO algorithm is a nature-inspired cybernetic method in artificial intelligence. In this 

technique, ants put down what is called pheromone on the ground in a form of liquid which is 

used for communication among them. The path that marks the presence of pheromone 

indicates the presence of food when followed from the nest of the ants. Many optimization 

problems have been solved using ACO [22,23]. ACO algorithm shows a surprisingly 

successful performance in the solution of NP-hard problems, which draws more and more 

attention to ACO research [24].  

 

2.2. Genetic Algorithm 

 

The search for an appropriate hypothesis begins with a population, or collection of initial 

hypotheses. Members of the current population give rise to the next generation population by 

means of operations such as random crossover and mutation, which are patterned after 

processes in biological evolution. At each step, the hypotheses in the current population are 

evaluated relative to a given measure of fitness, with the fittest hypotheses selected 

probabilistically as seeds for producing the next generation [5]. 
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Figure 2.1 Genetic Algorithm 

 

As can be seen from Figure 3.1 above the GA starts by generating initial population from 

which parent pair are also selected for recombination (cross over) and mutation. Thus, a new 

generation is produced as an offspring of the parent population form which the fittest 

hypothesis selected according to the fitness function. 

2.3. GA for Container Loading 

 

Unlike various constructive optimization algorithms that use sophisticated methods to obtain a 

good single solution, the GA deals with a set of solutions (population) and applies to each 

solution simple procedures of crossover, mutation and quality evaluation [19]. The population 

size used in this work is 30 (unlike RL algorithms, in GA and ACO there is a need to initialize 

the starting number of container arrangements. 30 is chosen because it is best suitable to 

produce the results that can be compared with RL algorithms). Crossover Rate is 0.6 (18 

arrangements) and Mutation Rate is 0.2 (6 arrangements). Any value between 0 to 1 can be 

select as Crossover Rate and Mutation Rate, but in most research the Crossover Rate is mostly 

greater 0.5 and Mutation Rate is less than 0.5. The fitness function is proportional to the total 

number of containers placed in the storage and inversely proportional to the space wasted as 

calculated using the equation: 
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 * 2
ACTFitness N N N

R B G ASY
   ………………………………………………………… (1) 

  

where 

N
R

= Number of red containers, 

      N
B

= Number of blue containers, 

      N
G

= Number of green containers, 

      A
SY

= Area of storage yard, 

      A
CT

 =Total area covered by the containers 

 

The procedure of GA for CLP is shown in Algorithm 2.1 below. 

 

 

GA  

 

Function GA 

   Initialize population, P in the fashion R B G 

   Choose Crossover Rate = 0.6 and Mutation Rate, m = 0.2 

       For generation = 1: maximum generation 

          Randomly generate container arrangement R1B1G1 to RnBnGn  

         While maximum fitness < fitness threshold 

            Select probabilistically sub population, Ps for cross over 

                Choose m percent of the Ps for mutation 

                Update P with Ps population 

                       Compute fitness using function   

                    * 2
ACTFitness N N N

R B G ASY
    

        End 

End 

    Return the arrangement with the highest fitness value 

End 

 

Algorithm 2.1 Procedure of GA for CLP 
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2.3.1. Initial Population 
 

30 populations were randomly generated initially as shown in Table 2.1. 

 

Table 2.1 GA initial populations 

 

 

     

 

 

 
 

 
 

 

 

2.3.2. Cross Over  
 

18 sub populations are chosen probabilistically as parent populations out of 30 initial 

populations for cross over (Equation 2). These are shown in bold in Table 2.1. 

fitness
P

fitness



……………………………………………………..………………. (2) 

 

The cross over process is carried out as follows: 

    39    40   30 

                                39    40   39  

    20    29    39 

 

    40    38    29           

                                40   38   8   
    40    33     8          

     

    40    38    30     

                                40   38   33 

    23    32    33 

 

    40    38    33 

                                40   38   39 
    40    39    39                                  

   

    40    40    33 

                                40   40   39   
    2     37     39                                   

S/N POPULATIONS 

   R        B      G 

S/N POPULATIONS 

  R        B      G 

S/N POPULATIONS 

  R        B      G 

1. 1    39    23 11. 40    39    33 21. 40    39    29 

2. 40    39    31 12. 40    39    39 22. 40    39    33 

3. 40    39    23 13. 40    40    33 23. 38    30    38 

4. 40    38    33 14. 2    37      7 24. 40    39    28 

5. 39    40    30 15. 40    39    17 25. 40    12    33 

6. 20    29    39 16. 40    11    33 26. 40    16    33 

7. 40    38    29 17. 40    37    33 27. 40    39    33 

8. 40    33      8 18. 3    39    40 28. 30    39    40 

9. 40    38    30 19. 39    39    17 29. 40    39    30 

10. 23    32    33 20. 40    39    40 30. 40    25    33 
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   40    39    17 

                                40    39    33 
   40    11    33                                  

   

   40    37    33 

                                40    37   40 
   3      39    40                               

    

   39    37    17 

                                39    37    40 
   40    39     40 

                                      

   40     39    29 

                               40     39    33 

   40    39    33 

 

2.3.3. Mutation  
 

Six sub populations were chosen probabilistically (Equation 2) out of 18 for cross over 

populations for mutation as shown below: 

Table 2.2 Sub populations for mutation 

 

S/N POPULATIONS 

R        B      G 

1. 39     40    39 

2. 40     38    39 

3. 40     40    39 

4. 40     37    40 

5. 39     37    40 

6. 40     39    33 

 

The swap mutation process is carried out as follows: 
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40    38    39 

                          39   38   39 

39    40   39 

                             

Figure 2.2 Mutation 1 
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Figure 2.3 Mutation 2 
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Figure 2.4 Mutation 3 
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2.3.4. Survivor Selection 
 

Finally the fittest arrangement is chosen out of the mutation sub populations as shown below: 

 

 

 

 

 

39   38   39 

                            

40   40   40       40   40   40   

  

40   39   33 
  

 

 

Figure 2.5 The fittest arrangement 

 

2.4. Ant Colony Optimization (ACO) Algorithm 
 

ACO has widely been applied to solve combinatorial optimization problems in recent years 

[25]. This technique is an optimization algorithm that imitates the behaviour of living ants. 

The ACO algorithm gives a surprisingly successful performance in the solution of NP-hard 

problems, which draws more and more attention on ACO research, particularly to the study of 

its theoretical foundation [25]. This algorithm is presented under the inspiration that an ant 

colony could build the shortest path from a food source to their nest by using some chemical 

substance called pheromone. Ants lay down pheromone trails when passing paths. The more 

ants choose a path, the more pheromone is laid down on it. Then, ants tend to choose the path 

with higher pheromone intensity. However, it is very interesting that ants do not always 

choose the path with the highest pheromone intensity. Otherwise, the shortest path will hardly 

be built up [25]. 

2.5. ACO for CLP 

 

The procedure of ACO algorithm for CLP is shown in Algorithm 2.2. 

After initialization step generally, in ACO algorithms two important steps are needed to be 

determined; the construction step and the update of the pheromone [23,26]. 

 

 

 

 



16 

 

1. Initialization 

At initial stage, the artificial ACO will initial the pheromone  . The N arrangements 

of the containers are also generated randomly. The value of  N used in this work is 30. 

ACO initial populations are shown in Table 2.3. 

 

 

ACO ALGORITHM 

 

Function ACO 

    Initialize pheromone O =1 

      For m ants do 

        Randomly generate container arrangement R1B1G1 to RnBnGn 

        Compute heuristic information   using function 

                * 2
ACTN N N

R B G ASY
     

    Choose next arrangements using probability function 

         
ij ij

ij

ij ij

P
 

 





 

   Update pheromone value according to 

      (1 )ij ij        

End 

Return the best solution 

End 

 

Algorithm 2.2 Procedure of the ACO algorithm for CLP 

 

Table 2.3 ACO initial populations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S/N POPULATIONS 

    R        B      G 

S/N POPULATIONS 

   R        B      G 

1.       1    39    23 16.     40    11    33 

2.     40    39    31 17.     40    37    33 

3.     40    39    23 18.       3    39    40 

4.     40    38    33 19.     39    39    17 

5.     39    40    30 20.     40    39    40 

6.     20    29    39 21.     40    39    29 

7.     40    40    39 22.     40    39    33 

8.     40    33      8 23.     38    30    38 

9.     40    38    30 24.     40    39    28 

10.     23    32    33 25.     40    12    33 

11.     40    39    33 26.     40    16    33 

12.     40    39    39 27.     40    39    33 

13.     40    40    33 28.     30    39    40 

14.       2    37      7 29.     40    39    30 

15.     40    39    17 30.     40    25    33 
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2. Construction 

For 1 to maximum iteration, M ants will select one arrangement out of the N 

arrangements generated at initial stage, using the probability function: 

ij ij

ij

ij ij

P
 

 





..................................................................................................................... (3) 

 

where, 

 = pheromone 

 = heuristic information 

i = present arrangement 

j = next arrangement 
 

The heuristic information can be calculated using the equation shown below: 

 

  * 2
ACTN N N

R B G ASY
    ............................................................................... (4)

  

Figure 2.6 Artificial ants search for the best arrangement 

 

  

The artificial ants search for best arrangement from the arrangements generated in the first 

generation from R1-G1-B1 to Rn-Gn-Bn. Based on the initial population given in Table 2.3, 

the best arrangement in the first generation is 40-40-39 which is depicted in Figure 2.7. 
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3. Updating 

The pheromone value is updated at every iteration using the equation: 

 

(1 )ij ij ij       ......................................................................................................... (5) 

 

where  

 =evaporation coefficient (any value between 0 to 1 can be selected). 

The artificial ant chooses one of the arrangements generated above and the pheromone value 

is updated using Equation 5. If the arrangement chosen by the artificial ant is not the best 

arrangement needed, the algorithm goes to the next iteration and this process continues until 

the best arrangement is chosen, i.e. 40-40-40, and that is shown in Figure 2.8. 
 

 

 

Figure 2.7 Best arrangement in the first generation 
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Figure 2.8 The best arrangement in all generations 
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CHAPTER THREE 
 

3. REINFORCEMENT LEARNING FOR CONTAINER LOADING PROBLEM 

3.1. Overview 

 

When we think about the nature of learning, the fact that we learn by interacting with our 

environment is probably the first thing that comes to our mind. When an infant plays, waves 

its arms, or looks about, it has no explicit teacher, but it does have a direct sensor motor 

connection to its environment. Exercising this connection gives a lot of information about 

cause and effect, about the consequences of actions, and about the best actions to do in order 

to achieve goals. We come across such interactions of our environment throughout our lives, 

and we drive knowledge about what is around us. Whether a person is learning to drive a 

vehicle or to hold a picture or conversation, he is intensely aware of how his environment 

responds to what he performs, and the consequences of his actions affect his state as well as 

the environment he is in. Learning by interaction with an environment is the primary idea 

underlying nearly all theories of learning and intelligence [27].  

3.2. RL Technique 

 

RL is simply learning what to do and how to plan situations to actions, so as to maximize a 

return reward. In most forms of machine learning, there is no need for the learner to be told 

which actions to take, but instead he must discover which actions produce the highest reward 

by trying them [27].  

Every living organism interacts with its environment and uses those interactions to improve 

its own actions and we call this modification of actions based on interactions with the 

environment Reinforcement learning (RL). Actions may influence not only the instant reward 

but also the next situation and, through that, all following rewards. Trial-and-error search and 

delayed reward are the two most important characteristics that distinguish RL from other 

techniques [27]. 

RL is a kind of unsupervised machine learning technique which belongs to the category of 

machine learning algorithms, and is therefore different from supervised learning methods that 

require a teacher [1,28]. A RL agent has the computational task of learning which action to 

take in a given condition (state) to achieve its goal. The learning process takes place through 

interaction with an environment (Fig. 3.1). 
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Figure 3.1 Basic Reinforcement Learning Model. 

 

At each discrete time step, an RL agent observes the current state. In each state, the agent can 

take some action from the set of actions available in that state. An action can cause a 

transition from the current state to another state, based on the transition probabilities 

[1,5,28,29,30]. The model of the environment contains these transition probabilities. A 

numerical reward is returned back to the agent to inform it about the ‘quality’ of its actions or 

the intrinsic desirability of that state. The reward is also a part of the model of the 

environment.  

An RL agent searches for the optimal policy in order to maximize accumulated reward 

[1,28,29]. An optimal policy is the sequence of actions that maximize the total reward [6]. RL 

deals with the problem about how an autonomous agent can learn to select proper actions 

through interacting with its system environment. Each time after an agent performs an action, 

the environment’s response (as indicated by its new state) is used by the agent to reward or 

penalize its action [31]. The objective is to develop a decision-making policy on selecting the 

appropriate action rule for each agent. By RL, the optimal policy for each agent can be 

obtained [1,5]. 

In this work, we will explore RL as an alternative for tackling container loading problem, 

specifically for maximizing the number of containers and minimizing the waste of space. We 

will apply 5 known RL algorithms, namely:  

• Q-learning (deterministic)  

• TD( ) 

• TDQ (Off Policy TD Control) 

• SARSA (On Policy TD Control) 

• Monte-Carlo  
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3.3. Q-learning (Deterministic) 

 

Q-learning algorithm is one of the most widely used reinforcement learning algorithms. It was 

proposed by Watkins in 1989 [1,2]. The objective of this algorithm is to learn the state-action 

pair value Q(s, a), which represents the expected reward for each pair of state and action 

denoted by s and a, respectively. Q(s, a) is expressed by the following equation:  

 

,
( , ) max ( , )Q s a reward Q s a

a
   …………………………………………………………… (6) 

 Before learning has started, Q returns a fixed value, chosen by the designer. As can be seen in 

Equation (6), an agent can choose an action that gives maximum reward out of all possible 

actions and receive reward. γ is the discount-rate parameter which impacts the present value 

of future rewards, in other words it determines the importance of future rewards. If we set 

γ=0, only the immediate or current reward is considered. As we set γ closer to 1, future 

rewards are given greater emphasis relative to the immediate reward. In this work, 0.9 is 

chosen as the value of  γ.  

One of the important factors of Q-learning is the action selection process. This process is 

responsible for selecting the actions that the agent will perform during the learning process. In 

this work, we consider the  -greedy exploration.  -greedy process selects a random action 

with probability   and the best action which has the highest Q-value at the moment, with 

probability 1-  [32]. The procedure of Q-learning algorithm for CLP is shown in Algorithm 

3.1 below: 

 

Q-LEARNING ALGORITHM 

  

Function Q-learning 

    Initialize Q, choose =0. 9and  =0.1 

    For episode= 1: maximum episode 

   Initialize state S for this episode 

   While step <= maximum step & area covered<=goal 

                  Take action a  using  -greedy, observe reward and new state 
,

s  

                  Update Q function according to  

                    
,

( , ) max ( , )Q s a reward Q s a
a

   

           End 

    End 

    Return the best state 

End 

 

 

Algorithm 3.1 Procedure of the Q-learning algorithm for CLP 
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3.4. TD( )  

 

The Q-learning learns by iteratively reducing the discrepancy between Q-value estimates for 

adjacent states. In this sense, Q-learning is a special case of a general class of temporal 

difference algorithms that learn by reducing discrepancies between estimates made by the 

agent at different times. TD( ) algorithm is designed to reduce discrepancies between the 

estimated Q-value of a state and more distant descendants or ancestors [5]. The idea is to use 

a constant lambda to combine the estimates obtained from various look-ahead distances in the 

following fashion: 

'( , ) [(1 )max ( , ) ( , )]
1 1

Q s a reward Q s a Q s at t t t ta

      
 

……..……………….(7)  

 

 
'max ( , )Q s at t = is maximum future reward of Q estimates 

( , )
1 1

Q s a
t t


 

= is look ahead value 

 

Thus, the algorithm uses the observed reward and Q estimate to provide a perfect estimate of 

true Q value. If we chose  =0, we have our original Q-learning equation which considers 

only one step discrepancies in the Q estimates. As  increases, the algorithm places more 

emphasis on discrepancies based on more distance look-ahead. At the extreme value of  =1, 

only observed “next state” reward values are considered with no contribution from the current 

Q estimate. The procedure of TD( ) algorithm for CLP is shown in Algorithm 3.2 below. 

 

TD( )  ALGORITHM 

 

 Function TD-lambda 

     Initialize S, choose  =0.9,  =0.1 and  =0.1 

    For episode= 1: maximum episode 

     Initialize state S for this episode 

  While step <= maximum step & area covered<=goal 

         Take action ta  using  -greedy, observe reward and new state 1ts   

         Update Q function according to 

            
'( , ) [(1 )max ( , ) ( , )]

1 1
Q s a reward Q s a Q s at t t t ta

      
 

 

   End 

End 

Return the best state 

End 
 

 

Algorithm 3.2 Procedure of the TD( ) algorithm for CLP 
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3.5. TDQ (Off Policy TD Control) 
 

One of the most important breakthroughs in RL was the development of an off-policy TD 

control algorithm known as TDQ or Q-learning Off-Policy (Watkins, 1989). This algorithm 

does not pay attention to what policy (i.e. series of actions or action selection algorithm) is 

being followed. Instead, it just uses the best Q-value.  It tries to learn the value function for 

the best policy, irrespective of the policy being followed. Since it uses any policy to estimate 

the Q-value, it is called an off-policy learning algorithm [27]. Its simplest form is defined by 

the equation shown below:  
 

' '( , ) ( , ) [ max ( , ) ( , )]
1 1

Q s a Q s a r Q s a Q s at t t t t tt ta
    

 
……………………………(8) 

 

Here, the goal is to compute directly the optimal value function ( , )Q s at t . The core of the 

algorithm is a simple “value iteration update” by using the old value and making a correction 

based on the new information. In off-policy methods, learning optimal value can take place 

under any policy regarding the subject. In this case, the learned action-value function directly 

approximates the optimal action-value function, independent of the policy being followed 

[27]. The learning rate alpha determines to what extent the newly acquired information will 

override the old information. A factor of 0 will make the agent not learn anything, while a 

factor of 1 would make the agent consider only the most recent information. The procedure of 

TDQ (off-policy TD control) algorithm for CLP is shown in Algorithm 3.3 below: 

 

TDQ ALGORITHM 

 

Function TDQ 

      Initialize Q, choose =0.9,  =0.1 and  =0.1 

     For episode= 1: maximum episode 

     Initialize state S for this episode 

      While step <= maximum step & area covered<=goal 

         Choose ta  from ts  using  -greedy 

         Observe reward and new state 1ts   

         Update Q function according to 

                   
' '( , ) ( , ) [ max ( , ) ( , )]

1 1
Q s a Q s a r Q s a Q s at t t t t tt ta

    
 

 

     End 

End 

Return the best state 

End 

 

 

Algorithm 3.3 Procedure of the TDQ algorithm for CLP 
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3.6. SARSA (On Policy TD Control) 

 

Unlike the previous approaches where we consider transitions from state to state and learn the 

values of states, we now consider transitions from state-action pair to state-action pair and 

learn the value of state-action pairs using the equation: 

  
' '( , ) ( , ) [ ( , ) ( , )]

1 1 1
Q s a Q s a r Q s a Q s at t t t t tt t t

    
  

……………………………..(9) 

 

This update is done after every transition from a non terminal state st . Q-learning backs up 

the best Q-value from the state reached while SARSA waits until an action is taken and then 

backs up the Q-value from that action. If 
1

s
t

 is terminal, then ( , )
1 1

Q s a
t t 

  is defined as 

zero. This rule uses every element of the quintuple of events ( st  , at  ,
1

r
t

, 
1

s
t

 ,
1

a
t

) that 

make up a transition from one state-action pair to the next [27]. This quintuple gives rise to 

the name “State-Action-Reward State-Action” (SARSA) for the algorithm. SARSA is an on-

policy learning algorithm. It updates value functions strictly on the basis of the experience 

gained from executing some (possibly non-stationary) policy. A SARSA agent will interact 

with the environment and update the policy based on actions taken. It can start with a random 

policy, then iteratively improve and converge to optimal. On-policy learns the value function 

of the policy being followed [27]. The procedure of SARSA for CLP is shown in Algorithm 

3.4 below: 

 

SARSA ALGORITHM 

 

 Function SARSA 

        Initialize Q, Choose =0.8,  =0.1 and  =0.1 

        For episode= 1: maximum episode 

            Initialize state S for this episode 

       Choose a  from s  using  -greedy 

       Take action a , observed reward and new state 's  

          While step <= maximum step & Area covered<=Goal 

             Choose 'a from 's using  -greedy 

             Update Q function according to 

                 ' '( , ) ( , ) [ ( , ) ( , )]
1 1 1

Q s a Q s a r Q s a Q s at t t t t tt t t
    

  
 

         End 

  End 

   Return the best state 

End 

 

 

Algorithm 3.4 Procedure of the SARSA algorithm for CLP 
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3.7. Monte-Carlo 

 

Policy evaluation algorithms are intended to estimate the value functions for a given policy. 

Typically these are on-policy algorithms, and the considered policy is assumed to be 

stationary. Direct Monte-Carlo methods are the most straight-forward, and considered here for 

comparison with other methods. Monte-Carlo methods are based on simple idea of averaging 

a number of random samples of returns (i.e reward). Monte Carlo methods are suitable for 

learning from experience that does not require prior knowledge of the environment's 

dynamics. These methods solve the reinforcement learning problem based on averaging 

sample returns. 

1' '( , ) ( , ) ( , )
( )

Q s a Q s a R Q s at t t t t t tn s
   
  

……………………………………………….(10) 

( )n s =number of first visit to state s. 

A constant   can be formulated in order to estimate the actual return Rt as shown in the 

equation below: 

 
' '( , ) ( , ) ( , )Q s a Q s a R Q s at t t t t t t    

  
…………………………………………………(11) 

 Rt = is long term reward 

'( , )R Q s at t t  
  

= updated value function 

In MC approach, values for each state or pair state-action are updated only based on final 

reward, not on estimates of neighboring states as in previous approaches [27]. The procedure 

of Monte-Carlo for CLP is given in Algorithm 3.5. 

 
 

3.8. Agent, Environment, State, Actions, and Reward 

 

3.8.1. Agent 
 

When we come to the real life application, a device that is used to load the containers can be 

regarded as our agent. Since in a container terminal, a yard crane is a device used to load 

containers in storage yard, it can be considered as our agent (Figure 3.2).  

 

3.8.2. Environment 
 

The problem environment is formed by the storage yard block and containers (Figure 3.3). 
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MONTE-CARLO ALGORITHM 

 

Function Monte-Carlo 

      Initialize Q,  =0.1 and  =0.1 

     For episode= 1: maximum episode 

     Initialize state S for this episode 

      While step <= maximum step & area covered<=goal 

         Choose ta  from ts  using  -greedy 

         Take action ta , observe reward and new state 1ts   

         Update Q function according to 

                   
' '( , ) ( , ) ( , )Q s a Q s a R Q s at t t t t t t    

  
 

     End 

End 

    Return the best state 

End 

 
 

Algorithm 3.5 Procedure of the Monte-Carlo algorithm for CLP 
 

 

 

Figure 3.2 Yard crane 
 

 

 

 

Figure 3.3 Storage yard block and containers 
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3.8.3. State 
 

A state is the numbers of red containers, blue containers, and green containers together with 

their positions in the storage yard at a given time. Thus, states are the ways the containers 

arranged in the storage yard and the number of containers contained in the storage yard block.  
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Figure 3.4 A state 

 

3.8.4. Actions 
 

The agent can choose any one of the possible actions shown below. For example, if removing 

one red container can give space to replace it with two green containers, removing that red 

container is a good action at this situation. Similarly if the space we have can be best filled 

with a single red container, so adding a red container is the best action at this particular 

moment. Any action applied yields to a new state. 

 

 

Figure 3.5 Actions 
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3.8.5. Reward 
 

As we aim to minimize the waste of space (i.e. empty space) and maximize the number of 

containers, the reward is set to be proportional to the total number of containers placed in the 

storage and inversely proportional to the space wasted using the equation: 
 

 * 2
ACTReward N N N

R B G ASY
   ……………………………………………………….. (12) 

 

where 

N
R

= Number of red containers, 

      N
B

= Number of blue containers, 

      N
G

= Number of green containers, 

      A
SY

= Area of storage yard, 

      A
CT

 =Total area covered by the containers 

Note that the Area of Storage Yard (ASY) is multiplied by two in Equation (12) above (i.e. 

2*ASY). This is because our algorithms are designed to fill two layers of storage yard block. 

 

 

 

 

Figure 3.6 RL for container loading 

 

 

In a nutshell, when an agent (yard crane) interacts with an environment (storage yard block) 

by applying one of the six possible actions (add R, remove R, add B, remove B, add G or 

remove G), it enters a new state (a new container arrangement and a new number of 

containers) and receives the reward as calculated in Equation (12). 
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CHAPTER FOUR 
 

4. NUMERICAL EXPERIMENTS 

4.1. Overview 
 

 The simulations of this work have been carried out using MATLAB software on a computer 

with Intel Core-i3-3110M dual core 2.4 GHz CPU and 4GB RAM running Windows8 64bit 

operating system. For experiments, the area of the storage yard has been chosen to be 

1500x300, 1500x600, 1500x900 and 1500x1200 unit squared (usually the unit of centimeter 

may be used, but in practice any appropriate unit can be used regarding the area of storage 

yard and area of containers).              

The measure used to decide the convergence of RL algorithms is the Root-Mean-Squared-

Error (RMSE) which is the difference between the Q-value at an episode and the previous 

episode’s Q-value. The number of episodes run is 500.  During an episode, if a chosen action 

happens to be bad, it will cause an instant rise in RMSE. At convergence, RMSE is 

approximately zero which means the true value function is attained. The Goal of our agent is 

to cover 100 percent of the storage area within 500 episodes. 
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Figure 4.1 Series of bad action selections. 

 

As can be seen from the example given in Figure 4.1, an agent makes bad action selections 

throughout 500 episodes and the error keeps on rising. The number of goals reached is zero 

since the agent fails to reach the goal state within all 500 episodes. 
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Figure 4.2 Good action selections and convergence. 
 

On the other hand, Figure 4.2 shows another example where an agent makes good action 

selections throughout remaining episodes after 59 episodes. The error converges to zero due 

to the good action selections made by the agent. The number of goals reached is 441 since the 

agent fails to reach the goal state for the first 59 episodes out of 500. 

A sample of a storage yard of size 1500x300 with an arrangement of containers placed to fill 

in the yard after running a simulation is shown in Figure 4.3.  
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Figure 4.3 1500x300 storage yard area with an arrangement of containers 

4.2. Comparison between RL Algorithms  
 

Under this subsection the five RL algorithms are compared without restriction to the number 

of containers while the area of storage yard is fixed to 1500x300, 1500x600, 1500x900, and 

1500x1200. The goal of our agent is to cover 100 percent of the storage area in 12 steps 

within 500 episodes. The size of red container is 500x100 unit squared, blue container 

250x100 unit squared, and green container 150x100 unit squared.  
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The simulation time, the episode at which the algorithm converges, convergence period, the 

number of times an agent reaches the Goal state and the numbers of containers loaded were 

recorded for multiple runs of simulations. These are shown in the summary Tables 4.1 to 4.4 

below and Appendices A to D.  

 

Table 4.1 RL algorithms comparison summary without restriction to the number of containers 

(1500x300). 

Algorithm Average convergence 

time (s) 

Most frequent 

convergence 

time(s) 

Average number of 

containers 

QL 0.406 0.260 31.4 

TDQ 0.089 0.049 32.4 

MC 0.096 0.045 32.7 

SARSA 0.106 0.120 32.4 

TD( ) 0.064 0.045 32.5 

 

 

 

Table 4.2 RL algorithms comparison summary without restriction to the number of containers 

(1500x600). 

Algorithm Average convergence 

time (s) 

Most frequent 

time (s) 

Average number 

of  

containers 

QL 2.270 2.285 62.767 

TDQ 0.692 0.589 62.6 

MC 0.835 0.954 63.45 

SARSA 1.353 0.896 63.1 

TD( ) 0.519 0.34 62.2 

 

 

 

Table 4.3 RL algorithms comparison summary without restriction to the number of containers 

(1500x900). 

Algorithm Average convergence 

time (s) 

Most frequent 

time (s) 

Average number 

of 

containers 

QL 10.569 10.593 93.5 

TDQ 2.320 1.005 93.6 

MC 2.648 3.440 94 

SARSA 2.816 1.029 93.933 

TD( ) 2.184 0.980 94.05 
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Table 4.4 RL algorithms comparison summary without restriction to the number of containers 

(1500x1200). 

Algorithm Average convergence 

time (s) 

Most frequent 

time (s) 

Average number 

of 

containers 

QL 33.333 25.127 126 

TDQ 5.569 6.650 125.5 

MC 6.083 2.315 125.7 

SARSA 7.959 5.957 125.7 

TD( ) 4.930 6.411 125.3 

 

4.3. Comparison between RL and EAs 
 

In this section, five RL and two EA Algorithms were compared when the number of 

containers restricted to 30, 60, 90, and 120 while the area of storage yard is fixed to 

1500x300, 1500x600, 1500x900, and 1500x1200, respectively. The goal is to cover 100 

percent of the storage area within 500 episodes. The sizes of red, blue, and green containers 

are 500x100 unit squared, 250x100 unit squared, and 150x100 unit squared, respectively. The 

simulation time, the episode at which the algorithm converge, convergence period, the 

number an agent reaches the goal state and the number of containers loaded were recorded for 

multiple runs of simulations . These are shown in the summary Tables 4.5 to 4.8 below and 

Appendices E to H.  

 

Table 4.5 RL and EAs comparison summary with number of containers restricted to 30 

(1500x300). 

 

Algorithm Average convergence 

time (s) 

Most frequent 

time (s) 

QL 0.594 0.882 

TDQ 0.110 0.050 

MC 0.105 0.103 

SARSA 0.109 0.089 

TD( ) 0.074 0.020 

GA 0.041 0.040 

ACO 0.676 0.639 
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Table 4.6 RL and EAs comparison summary with number of containers restricted to 60 

(1500x600). 

 

Algorithm Average convergence 

time (s) 

Most frequent 

time (s) 

QL 1.423 1.478 

TDQ 0.401 0.050 

MC 0.427 0.096 

SARSA 0.483 0.450 

TD( ) 0.361 0.326 

GA 0.193 0.140 

ACO 2.536 0.680 

 

Table 4.7 RL and EAs comparison summary with numbers of containers restricted to 90 

(1500x900). 

Algorithm Average convergence 

time (s) 

Most frequent 

time (s) 

QL 2.470 0.642 

TDQ 0.759 0.667 

MC 1.113 1.328 

SARSA 1.202 0.913 

TD( ) 0.632 0.223 

GA 1.099 0.427 

ACO 4.865 6.313 

 

Table 4.8 RL and EAs comparison summary with number of containers restricted to 120 

(1500x1200). 

Algorithm Average convergence 

time (s) 

Most frequent 

time (s) 

QL 7.192 5.362 

TDQ 1.741 2.573 

MC 2.279 3.189 

SARSA 2.811 2.573 

TD( ) 1.663 1.922 

GA 4.119 0.381 

ACO 5.178 6.731 

 

 

4.4. Discussion on the Results of Comparisons between RL and EAs  
 

For storage yard areas of 1500x300, 1500x600, 1500x900 and 1500x1200, comparisons of the 

performance of the RL algorithms without restriction to the number of containers and 

comparisons between RL and EAs by restricting number of containers to 30, 60, 90 and 120 

are summarized in the following tables.  
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Table 4.9 RL and EAs comparison summary both with restriction and without restriction to 

the number of containers (1500x300). 

 WITHOUT  RESTRICTION WITH RESTRICTION 

Algorithm Average 

convergence 

time (s) 

Most 

frequent 

time (s) 

Average number 

of containers 

Average 

convergence 

time (s) 

Most 

frequent 

time (s) 

Number 

of 

containers 

QL 0.406 0.260 31.4 0.594 0.882 30 

TDQ 0.089 0.049 32.4 0.110 0.050 30 

MC 0.096 0.045 32.7 0.105 0.103 30 

SARSA 0.106 0.120 32.4 0.109 0.089 30 

TD( ) 0.064 0.045 32.5 0.074 0.020 30 

GA - - - 0.041 0.040 30 

ACO - - - 0.676 0.639 30 

 

 

Table 4.10 RL and EAs comparison summary both with restriction and without restriction to 

the number of containers (1500x600). 

 WITHOUT  RESTRICTION WITH RESTRICTION 

Algorithm Average 

convergence 

time (s) 

Most 

frequent 

time (s) 

Average 

number of 

containers 

Average 

convergence 

time (s) 

Most 

frequent 

time (s) 

Number 

of 

containers 

QL 2.270 2.285 62.767 1.423 1.478 60 

TDQ 0.692 0.589 62.6 0.401 0.050 60 

MC 0.835 0.954 63.45 0.427 0.096 60 

SARSA 1.353 0.896 63.1 0.483 0.450 60 

TD( ) 0.519 0.34 62.2 0.361 0.326 60 

GA - - - 0.193 0.140 60 

ACO - - - 2.536 0.680 60 

 

 

Table 4.11 RL and EAs comparison summary both with restriction and without restriction to 

the number of containers (1500x900). 

 WITHOUT  RESTRICTION WITH RESTRICTION 

Algorithm Average 

convergence 

time (s) 

Most 

frequent 

time (s) 

Average 

number of 

containers 

Average 

convergence 

time (s) 

Most 

frequent 

time (s) 

Number 

of 

containers 

QL 10.569 10.593 93.5 2.470 0.642 90 

TDQ 2.320 1.005 93.6 0.759 0.667 90 

MC 2.648 3.440 94 1.113 1.328 90 

SARSA 2.816 1.029 93.93333 1.202 0.913 90 

TD( ) 2.184 0.980 94.05 0.632 0.223 90 

GA - - - 1.099 0.427 90 

ACO - - - 4.865 6.313 90 
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Table 4.12 RL and EAs comparison summary both with restriction and without restriction to 

the number of containers (1500x1200). 

 WITHOUT  RESTRICTION WITH RESTRICTION 

Algorithm Average 

convergence 

time (s) 

Most 

frequent 

time (s) 

Average 

number of 

containers 

Average 

convergence 

time (s) 

Most 

frequent 

time (s) 

Number 

of 

containers 

QL 33.333 25.127 126 7.192 5.362 120 

TDQ 5.569 6.650 125.5 1.741 2.573 120 

MC 6.083 2.315 125.7 2.279 3.189 120 

SARSA 7.959 5.957 125.7 2.811 2.573 120 

TD( ) 4.930 6.411 125.3 1.663 1.922 120 

GA - - - 4.119 0.381 120 

ACO - - - 5.178 6.731 120 

 

  

Table 4.13 RL algorithms average simulation time comparison without restriction to the 

number of containers. 

Algorithm Storage Yard Area 

1500X300 1500X600 1500X900 1500X1200 

QL 12.302 60.756 197.499 495.456 

TDQ 2.235 12.996 40.090 96.277 

MC 2.398 15.770 48.059 109.097 

SARSA 2.635 17.116 46.767 127.262 

TD( ) 2.208 15.526 44.278 103.094 

 

 

 

As can be observed from the results obtained using different combinations of storage yard 

areas, when the number of containers is not restricted all the algorithms load more containers 

compared to the simulations when the number of containers is restricted to 30, 60, 90 and 120 

for the same storage yard. Also, the simulations take less time when the number of containers 

is restricted than that when the number of containers is not restricted.  

 

As to the convergence time of the RL algorithms without restriction to the number of 

containers, TD( ) leads in all the cases because this algorithm is designed to reduce 

discrepancies between the estimated Q-values of a state and more distant descendants or 

ancestors of the state. Q-learning always comes last because all the remaining algorithms are 

the improvement of this algorithm. For example, if we choose lambda=0 in TD( ), we end 

up with the original Q-learning equation which considers only one step discrepancies in the Q 

estimates. TDQ and Monte-Carlo come second and third respectively, because these 

approaches use a learning rate which determines to what extent the newly acquired 
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information will override the old information. SARSA comes fourth; this algorithm also uses 

a learning rate but selects actions twice for each step which is why it performs better than the 

ordinary Q-learning algorithm.  

 

In terms of the number of containers that can be packed into storage yard when the number of 

containers is not restricted, all RL algorithms give approximately the same result. As the 

storage yard size becomes larger, however, Q-learning starts performing better than all the 

other RL algorithms in this respect and Monte-Carlo gradually worsens even though it is the 

best of all for filling small storage yards. 

 

In terms of the average simulation/completion time of RL algorithms, TDQ performs the best 

for all storage yard area combinations, except for the smallest area in which it comes in 

second position after TD-lambda. This is because learning optimal value in TDQ can take 

place under any policy and learning rate effect. TD-Lambda comes second for all remaining 

combinations while MC and SARSA come third and fourth respectively. 

 

For the comparison of the performance of the GA and RL algorithms with restriction to the 

number of containers, GA performs best for the first two combinations of storage yard areas 

(1500x300 and 1500x600), followed by TD( ), TDQ, Monte-Carlo, SARSA, ACO and 

finally Q-learning. As the size of storage yards increase to 1500x900 and 1500x1200, 

however, TD( ), TDQ and Monte-Carlo come first, second and third respectively, leaving 

GA, SARSA , Q-learning and ACO in subsequent positions. The good performance of the GA 

for small storage yards is due to the cross-over and mutation that help the algorithm to 

produce best arrangement in short time. TD-Lambda follows GA for small storage yards and 

performs the best for large yards due to the effect of lambda which reduces discrepancies 

between the estimate Q-values between present and next Q-values. 
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CHAPTER FIVE 
 

5. CONCLUSION AND FUTURE WORK 

5.1. Conclusion 
 

This work explores the reinforcement learning to tackle container loading problem for 

maximizing the number of containers and minimizing the waste of space. We have compared 

five different types of such algorithms between themselves as well as against two 

evolutionary algorithms based on space utilization, number of containers, simulation time and 

speed of convergence. If the yard crane is considered as our agent, it can select the optimal 

loading strategy based on the real-time state of the operational system. Reducing the time at 

which the containers are unloaded from a ship and placed in the storage yard reduces the 

waiting time of the ship. Although all of the developed procedures may serve to reduce the 

waiting time of the ships at the container terminal, TD( ) performs the best overall. In real-

life applications, TD( ) can be considered the most appropriate due to its high speed of 

convergence and minimum completion time. 

 

Thus, we achieved the aim of this work which was to design software for container loading 

with aforementioned constraints using five different RL algorithms and two evolutionary 

algorithms to provide a comparison so to reduce the waiting time of the ship at a container 

terminal. We have also empirically determined which of these algorithms are advantageous in 

certain cases. 

 

5.2. Future Work 
 

The work in the future can include implementing the Bee Colony Algorithm to solve the CLP 

and compare its performance to those given in this thesis. We can also try to increase the 

complexity of the work to make it resemble more of real-life cases by adding additional types 

of containers, more layers, and larger storage yards. This work can be expanded to include 

applications and comparisons of algorithms to the other types of container loading problem 

specified in [9]. 
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APPENDICES 

 

APPENDIX A: Comparison between RL algorithms without restriction to the number of 

containers (1500x300). 

 
 

Appendix A1: Q-learning 

 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 12.219 11 0.269 490 31 

2. 13.012 33 0.859 468 31 

3. 12.032 11 0.265 490 31 

4. 12.026 11 0.265 490 33 

5. 12.726 25 0.636 476 32 

6. 12.319 18 0.443 483 29 

7. 12.334 18 0.444 483 34 

8. 12.028 9 0.217 492 29 

9. 12.400 18 0.446 483 32 

10. 11.926 9 0.215 492 32 

 

 
 

 
 

 

Appendix A2: TDQ 

 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 2.555 26 0.133 475 31 

2. 2.187 19 0.083 482 32 

3. 1.947 14 0.055 487 33 

4. 1.897 13 0.049 488 33 

5. 1.899 13 0.049 488 33 

6. 1.802 11 0.040 490 34 

7. 2.697 29 0.156 472 33 

8. 2.506 19 0.095 482 33 

9. 2.364 23 0.109 478 32 

10. 2.495 25 0.125 476 30 
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Appendix A3: Monte-Carlo 

 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 1.998 10 0.040 491 32 

2. 3.425 41 0.281 460 33 

3. 2.694 24 0.129 477 32 

4. 1.982 10 0.040 491 33 

5. 2.081 12 0.050 489 31 

6. 2.054 11 0.045 490 33 

7. 2.916 28 0.163 473 33 

8. 2.317 16 0.074 485 31 

9. 2.229 15 0.067 486 35 

10. 2.286 15 0.067 486 34 

 

 
 

 

 

Appendix A4: SARSA 

 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 2.377 12 0.057 489 33 

2. 2.535 15 0.076 486 29 

3. 2.671 22 0.118 479 33 

4. 2.921 30 0.175 471 34 

5. 2.707 22 0.119 479 31 

6. 2.532 17 0.086 484 31 

7. 2.351 10 0.047 491 33 

8. 2.945 30 0.177 471 34 

9. 2.779 23 0.128 478 33 

10. 2.528 15 0.076 486 33 
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Appendix A5: TD( ) 

 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 1.955 10 0.039 491 31 

2. 2.602 22 0.114 479 31 

3. 2.483 20 0.099 481 34 

4. 2.156 13 0.056 488 33 

5. 2.038 11 0.044 490 32 

6. 2.039 11 0.045 490 33 

7. 2.224 12 0.053 489 33 

8. 1.971 10 0.039 491 34 

9. 2.166 13 0.056 488 32 

10. 2.448 19 0.093 482 32 
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APPENDIX B: Comparison between RL algorithms without restriction to the number of 

containers (1500x600). 

 

 

Appendix B1: Q-learning 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 56.171 8 0.899 493 63 

2. 57.846 12 1.388 489 60 

3. 53.441 5 0.534 496 63 

4. 58.189 8 0.931 493 64 

5. 58.248 13 1.514 488 65 

6. 57.452 12 1.379 489 62 

7. 60.046 19 2.282 482 60 

8. 54.587 6 0.655 495 60 

9. 67.489 45 6.074 456 62 

10. 61.141 22 2.690 479 62 

11. 58.089 8 0.929 493 64 

12. 62.700 22 2.759 479 65 

13. 59.820 18 2.154 483 65 

14. 53.463 5 0.535 496 62 

15 62.481 23 2.874 478 64 

16. 55.813 7 0.781 494 61 

17. 65.640 37 4.857 464 63 

18. 60.132 19 2.285 482 62 

19. 65.375 36 4.707 465 62 

20. 57.264 10 1.145 491 65 

21. 60.903 19 2.314 482 60 

22. 62.366 22 2.744 479 65 

23. 61.219 18 2.204 483 65 

24. 54.806 5 0.548 496 62 

25. 62.557 23 2.878 478 64 

26. 56.030 7 0.784 494 61 

27. 94.604 37 7.000 464 63 

28. 61.127 19 2.323 482 62 

29. 66.281 36 4.772 465 62 

30. 57.397 10 1.148 491 65 
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Appendix B2: TDQ 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 12.958 23 0.596 478 64 

2. 10.534 15 0.316 486 64 

3. 11.014 16 0.352 485 66 

4. 20.930 52 2.177 449 62 

5. 9.447 12 0.227 489 62 

6. 9.536 12 0.229 489 62 

7. 9.932 13 0.258 488 66 

8. 17.451 39 1.361 462 64 

9. 19.069 44 1.678 457 62 

10. 9.780 13 0.254 488 64 

11. 13.228 25 0.661 476 63 

12. 9.025 10 0.181 491 64 

13. 12.878 22 0.567 479 61 

14. 10.464 15 0.314 486 62 

15 11.868 19 0.451 482 61 

16. 8.801 10 0.176 491 61 

17. 13.110 23 0.603 478 62 

18. 9.188 11 0.202 490 62 

19. 14.271 27 0.771 474 61 

20. 13.521 24 0.649 477 60 

21. 13.651 25 0.683 476 63 

22. 11.929 20 0.447 481 62 

23. 20.281 50 2.028 451 63 

24. 9.238 10 0.185 491 64 

25. 12.663 22 0.557 479 61 

26. 17.471 39 1.363 462 62 

27. 16.028 33 1.058 468 62 

28. 18.972 43 1.632 458 64 

29. 13.396 22 0.589 478 62 

30. 9.234 11 0.203 490 62 
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Appendix B3: Monte-Carlo 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 13.627 17 0.463 484 63 

2. 13.757 18 0.495 483 65 

3. 16.586 28 0.929 473 62 

4. 13.898 13 0.361 488 64 

5. 16.633 29 0.965 472 65 

6. 10.995 10 0.220 491 64 

7. 18.393 34 1.251 467 62 

8. 15.346 23 0.706 478 64 

9. 23.942 55 2.634 446 61 

10. 14.725 21 0.618 480 65 

11. 14.134 13 0.367 488 64 

12. 16.730 27 0.903 474 64 

13. 15.257 22 0.671 478 65 

14. 10.855 10 0.217 491 62 

15 17.028 28 0.954 473 64 

16. 16.397 27 0.885 474 63 

17. 19.584 38 1.488 463 62 

18. 10.927 10 0.219 491 60 

19. 19.351 36 1.393 465 65 

20. 17.244 28 0.966 473 65 

 

 

 

 

 

 

Appendix B4: SARSA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 20.366 64 2.607 437 64 

2. 16.588 27 0.896 474 62 

3. 16.301 28 0.913 473 62 

4. 24.190 92 4.451 409 65 

5. 10.763 47 1.012 464 64 

6. 14.599 14 0.409 487 62 

7. 18.807 50 1.881 451 62 

8. 18.660 41 1.530 460 62 

9. 16.861 34 1.147 467 62 

10. 15.686 19 0.596 482 65 

11. 19.530 49 1.914 452 63 

12. 18.395 50 1.840 451 61 

13. 15.980 28 0.895 473 64 

14. 14.435 11 0.317 490 65 

15 14.503 13 0.377 488 60 

16. 13.782 10 0.276 491 64 

17. 18.973 49 1.859 452 64 

18. 17.356 34 1.180 467 65 

19. 19.069 51 1.945 450 62 

20. 17.470 29 1.013 472 64 
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Appendix B5: TD( ) 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 13.049 13 0.339 488 64 

2. 13.389 17 0.455 484 62 

3. 15.354 23 0.706 478 64 

4. 15.844 25 0.792 476 62 

5. 12.418 14 0.348 487 62 

6. 16.231 26 0.844 475 62 

7. 13.579 13 0.353 488 64 

8. 13.433 17 0.457 484 62 

9. 15.394 23 0.708 478 64 

10. 15.865 25 0.793 476 62 

11. 18.347 12 0.440 489 61 

12. 16.979 10 0.340 491 60 

13. 16.661 10 0.333 491 63 

14. 17.552 11 0.386 490 61 

15. 18.793 13 0.488 488 60 
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APPENDIX C: Comparison between RL algorithms without restriction to the number of 

containers (1500x900). 

 

 

Appendix C1: Q-learning 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 203.778 26 10.596 475 93 

2. 166.553 5 1.666 496 95 

3. 201.788 28 11.300 473 95 

4. 190.851 16 6.107 485 92 

5. 203.716 26 10.593 475 93 

6. 192.500 18 6.930 483 95 

7. 184.413 11 4.057 490 92 

8. 191.568 25 9.578 476 92 

9. 219.562 52 22.834 449 92 

10. 220.257 50 22.026 451 96 

 
 

 
 

 

 

Appendix C2: TDQ 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 47.268 31 2.931 470 93 

2. 37.895 23 1.743 478 94 

3. 47.309 31 2.933 470 93 

4. 38.016 23 1.749 478 95 

5. 33.199 18 1.195 483 94 

6. 70.517 60 8.462 441 91 

7. 31.170 16 0.997 485 92 

8. 32.940 18 1.186 483 95 

9. 31.187 16 0.998 485 94 

10. 31.403 16 1.005 485 95 
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Appendix C3: Monte-Carlo 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 45.040 22 1.982 479 96 

2. 53.870 32 3.448 469 93 

3. 52.157 30 3.129 471 94 

4. 32.344 10 0.647 491 94 

5. 50.164 30 3.009 471 92 

6. 55.483 31 3.440 470 93 

7. 45.383 23 2.088 478 95 

8. 48.597 26 2.527 475 93 

9. 43.403 21 1.823 480 95 

10. 42.362 20 1.694 481 93 

11. 54.171 34 3.684 467 93 

12. 32.154 11 0.707 490 93 

13. 63.013 44 5.545 457 95 

14. 53.339 33 3.520 468 97 

15. 49.410 25 2.471 476 94 

 
 

 
 

 
 

 

 
 

 

 
 

 

 
 

 



51 

 

Appendix C4: SARSA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 41.624 12 0.999 489 95 

2. 49.937 44 4.394 457 94 

3. 42.663 13 1.109 488 92 

4. 44.522 23 2.048 478 92 

5. 44.360 24 2.129 477 94 

6. 45.485 26 2.365 475 93 

7. 43.308 14 1.213 487 93 

8. 52.445 42 4.405 459 93 

9. 41.389 13 1.076 488 96 

10. 63.615 72 9.161 429 94 

11. 51.267 35 3.589 466 95 

12. 45.704 23 2.102 478 94 

13. 39.804 10 0.796 491 95 

14. 53.389 54 5.766 447 93 

15. 41.988 13 1.092 488 96 

 

 
 
 

 

 

 

Appendix C5: TD-LAMBDA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 40.234 18 1.448 483 96 

2. 34.326 12 0.824 489 93 

3. 54.755 31 3.395 470 93 

4. 44.994 23 2.070 478 95 

5. 41.886 20 1.675 481 93 

6. 42.892 20 1.716 481 93 

7. 35.325 13 0.918 488 95 

8. 53.677 31 3.328 470 94 

9. 38.551 16 1.234 485 92 

10. 34.987 14 0.980 487 93 

11. 47.601 26 2.475 475 95 

12. 32.305 12 0.775 489 94 

13. 58.425 42 4.791 459 94 

14. 63.513 43 5.462 458 95 

15. 35.857 15 1.076 486 92 

16. 36.493 14 1.022 487 95 

17. 56.366 35 3.946 466 96 

18. 36.748 14 1.029 487 97 

19. 59.356 37 4.392 464 92 

20. 37.267 15 1.118 486 94 
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APPENDIX D: Comparison between RL algorithms without restriction to the number of 

containers (1500x1200). 

 
Appendix D1: Q-learning 

 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 480.463 25 24.023 476 127 

2. 492.362 33 32.496 468 128 

3. 452.529 15 13.576 486 125 

4. 521.805 46 48.001 455 125 

5. 497.836 33 32.857 468 124 

6. 487.579 26 25.354 475 127 

7. 553.058 64 70.791 437 126 

8. 483.206 26 25.127 475 127 

9. 457.812 16 14.650 485 124 

10. 527.909 44 46.456 457 127 

 

 
 

 

 
 

 

Appendix D2: TDQ 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 64.235 14 1.799 487 125 

2. 107.374 31 6.657 470 126 

3. 102.464 29 5.943 472 123 

4. 139.199 45 12.528 456 124 

5. 58.486 12 1.404 489 126 

6. 105.829 31 6.561 470 125 

7. 70.371 16 2.252 485 127 

8. 108.864 31 6.750 470 127 

9. 97.624 26 5.076 475 125 

10. 108.327 31 6.716 470 127 
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Appendix D3: Monte-Carlo 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 123.764 32 7.921 469 124 

2. 133.812 34 9.099 467 127 

3. 82.747 14 2.317 487 127 

4. 155.066 43 13.336 458 125 

5. 85.941 15 2.578 486 126 

6. 88.094 16 2.819 485 126 

7. 152.850 44 13.450 457 128 

8. 100.720 22 4.432 479 125 

9. 85.312 15 2.559 486 123 

10. 82.661 14 2.315 487 126 

 

 

 

 

 

 

 

Appendix D4: SARSA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 118.548 28 6.639 473 128 

2. 122.305 25 6.115 476 124 

3. 119.876 23 5.514 478 124 

4. 135.788 32 8.690 469 126 

5. 139.530 36 10.046 465 125 

6. 162.335 60 19.480 441 124 

7. 111.778 20 4.471 481 126 

8. 118.240 24 5.676 477 127 

9. 119.149 25 5.957 476 126 

10. 125.069 28 7.004 473 127 
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Appendix D5: TD-LAMBDA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL NUMBER OF 

CONTAINER 

1. 115.748 28 6.481 473 124 

2. 123.296 30 7.398 471 126 

3. 114.063 26 6.411 475 127 

4. 100.286 21 4.212 480 126 

5. 76.141 12 1.827 489 125 

6. 128.255 33 8.465 468 125 

7. 94.563 19 3.593 482 124 

8. 91.123 17 3.098 484 124 

9. 115.422 27 6.233 474 128 

10. 72.045 11 1.585 490 124 
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APPENDIX E: Comparison between RL and EAs with restriction (1500x300). 

 

Appendix E1: Q-learning 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 7.253 58 0.841 443 

2. 7.129 46 0.656 455 

3. 6.840 20 0.274 481 

4. 6.874 43 0.591 458 

5. 6.577 5 0.066 496 

6. 6.511 8 0.104 493 

7. 6.557 17 0.223 484 

8. 7.013 62 0.870 439 

9. 7.035 85 1.196 416 

10. 6.513 24 0.313 477 

11. 6.651 33 0.439 468 

12. 6.630 40 0.530 461 

13. 6.937 52 0.721 449 

14. 6.736 29 0.391 472 

15. 7.049 59 0.832 442 

16. 6.993 21 0.294 480 

17. 6.854 28 0.384 473 

18. 6.524 14 0.183 487 

19. 7.177 81 1.163 420 

20. 6.610 18 0.238 483 

21. 7.200 58 0.835 443 

22. 7.147 46 0.658 455 

23. 6.858 20 0.274 481 

24. 6.910 43 0.594 458 

25. 6.393 8 0.102 493 

26. 7.122 62 0.883 439 

27. 6.506 24 0.312 477 

28. 6.529 33 0.431 468 

29. 6.683 52 0.695 449 

30. 6.506 29 0.377 472 

31. 7.033 63 0.887 438 

32. 6.618 34 0.450 467 

33. 6.443 12 0.155 489 

34. 6.891 64 0.882 437 

35. 6.902 33 0.456 468 

36. 7.343 65 0.955 436 

37. 6.406 16 0.205 485 

38. 6.403 19 0.243 482 

39. 7.911 155 2.452 346 

40. 7.520 108 1.624 392 
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Appendix E2: TDQ 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 0.883 16 0.028 485 

2. 1.089 43 0.094 458 

3. 1.414 69 0.195 432 

4. 1.099 44 0.097 457 

5. 1.571 91 0.286 410 

6. 1.284 60 0.154 441 

7. 1.011 38 0.077 463 

8. 1.416 78 0.221 423 

9. 0.694 11 0.015 490 

10. 1.197 56 0.134 445 

11. 1.039 40 0.083 461 

12. 1.111 47 0.104 454 

13. 0.976 34 0.066 467 

14. 1.344 70 0.188 431 

15. 0.950 32 0.061 469 

16. 0.905 28 0.051 473 

17. 1.042 39 0.081 462 

18. 1.051 40 0.084 461 

19. 1.080 45 0.097 456 

20. 1.323 67 0.177 434 

21. 2.259 35 0.158 466 

22. 0.911 29 0.053 472 

23. 1.155 51 0.118 450 

24. 1.153 51 0.118 450 

25. 1.101 48 0.106 453 

26. 0.902 26 0.047 474 

27. 1.171 57 0.133 444 

28. 0.909 27 0.049 474 

29. 1.344 69 0.185 432 

30. 0.989 38 0.075 463 

31. 0.921 28 0.052 473 

32. 1.204 51 0.122 450 

33. 1.177 51 0.120 450 

34. 1.186 48 0.114 453 

35. 0.910 27 0.049 474 

36. 1.167 48 0.112 453 

37. 1.371 67 0.184 432 

38. 2.490 36 0.179 465 

39. 0.930 27 0.050 474 

40. 1.075 45 0.097 456 
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Appendix E3: Monte-Carlo 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 1.372 61 0.167 438 

2. 1.038 34 0.071 467 

3. 1.417 72 0.204 429 

4. 0.729 10 0.015 491 

5. 1.105 45 0.099 456 

6. 1.391 70 0.195 431 

7. 1.561 84 0.262 417 

8. 1.577 86 0.271 415 

9. 1.180 48 0.113 453 

10. 1.409 72 0.203 429 

11. 0.857 20 0.034 481 

12. 1.121 42 0.094 459 

13. 1.147 45 0.103 456 

14. 1.166 47 0.110 454 

15. 0.768 12 0.018 489 

16. 1.142 45 0.103 456 

17. 1.054 35 0.074 466 

18. 1.136 44 0.100 457 

19. 1.159 45 0.104 456 

20. 0.986 29 0.057 472 

21. 1.335 48 0.128 453 

22. 0.855 19 0.032 482 

23. 1.076 39 0.084 462 

24. 0.954 27 0.052 474 

25. 1.315 65 0.171 436 

26. 1.343 59 0.158 442 

27. 0.724 10 0.014 491 

28. 1.445 74 0.214 427 

29. 0.933 26 0.049 475 

30. 1.014 33 0.067 468 

31. 1.124 41 0.092 460 

32. 0.959 28 0.054 473 

33. 1.213 49 0.119 452 

34. 1.165 47 0.110 454 

35. 0.920 25 0.046 476 

36. 1.064 38 0.081 463 

37. 1.148 43 0.099 458 

38. 1.035 34 0.070 467 

39. 1.177 47 0.111 454 

40. 0.847 19 0.032 482 
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Appendix E4: SARSA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 2.250 90 0.405 411 

2. 1.013 89 0.180 412 

3. 0.969 72 0.140 429 

4. 0.925 62 0.115 439 

5. 1.053 94 0.198 407 

6. 0.798 37 0.059 464 

7. 0.765 26 0.040 475 

8. 1.009 80 0.161 421 

9. 0.754 24 0.036 477 

10. 0.701 20 0.028 481 

11. 0.952 68 0.129 433 

12. 0.852 52 0.089 449 

13. 0.797 36 0.057 465 

14. 1.035 94 0.195 407 

15. 0.901 64 0.115 437 

16. 0.718 18 0.026 483 

17. 0.947 72 0.136 429 

18. 0.663 13 0.028 488 

19. 1.076 97 0.209 404 

20. 0.778 33 0.051 468 

21. 0.866 32 0.055 469 

22. 0.879 51 0.090 450 

23. 0.929 74 0.137 427 

24. 0.765 30 0.046 471 

25. 0.871 52 0.091 449 

26. 0.792 36 0.057 465 

27. 0.891 49 0.087 452 

28. 0.867 48 0.083 453 

29. 0.935 83 0.155 418 

30. 0.855 52 0.089 449 

31. 1.136 89 0.202 412 

32. 1.002 72 0.144 429 

33. 0.957 62 0.119 439 

34. 0.861 37 0.064 464 

35. 0.792 26 0.041 475 

36. 1.023 80 0.164 421 

37. 0.742 24 0.036 477 

38. 0.699 20 0.028 481 

39. 1.258 68 0.171 433 

40. 0.883 52 0.092 449 
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Appendix E5: TD-LAMBDA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 0.820 18 0.030 483 

2. 0.768 12 0.018 489 

3. 1.114 44 0.098 457 

4. 0.904 25 0.045 476 

5. 1.097 40 0.088 461 

6. 1.110 43 0.095 458 

7. 1.217 54 0.131 447 

8. 1.220 54 0.132 447 

9. 0.771 13 0.020 488 

10. 1.357 38 0.103 463 

11. 1.021 35 0.071 466 

12. 1.576 94 0.296 407 

13. 0.731 10 0.015 491 

14. 1.145 50 0.115 451 

15. 1.123 46 0.103 455 

16. 1.022 11 0.020 490 

17. 1.033 37 0.076 464 

18. 1.318 67 0.177 434 

19. 1.067 43 0.092 458 

20. 1.321 59 0.156 442 

21. 1.323 67 0.177 434 

22. 0.952 29 0.055 472 

23. 0.886 20 0.035 481 

24. 0.731 10 0.015 491 

25. 0.943 28 0.053 473 

26. 0.872 22 0.038 479 

27. 0.789 15 0.024 486 

28. 1.036 38 0.079 463 

29. 1.069 41 0.088 460 

30. 1.149 47 0.108 454 

31. 0.838 19 0.032 482 

32. 0.761 13 0.020 488 

33. 1.066 37 0.079 464 

34. 1.075 38 0.082 463 

35. 0.861 21 0.036 480 

36. 0.862 22 0.038 479 

37. 0.789 14 0.022 487 

38. 0.748 11 0.016 490 

39. 0.871 20 0.035 481 

40. 0.905 23 0.042 478 
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Appendix E6: GA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

GENERATION 

CONVERGENCE  

TIME 

1. 4.229 3 0.025 

2. 3.541 8 0.057 

3. 3.349 4 0.027 

4. 3.314 8 0.053 

5. 2.612 2 0.010 

6. 2.402 2 0.010 

7. 3.343 8 0.053 

8. 3.400 8 0.054 

9. 3.019 5 0.030 

10. 3.050 9 0.055 

11. 3.434 4 0.027 

12. 3.678 9 0.066 

13. 3.063 6 0.037 

14. 3.283 4 0.026 

15. 3.049 3 0.018 

16. 4.910 11 0.108 

17. 2.985 5 0.030 

18. 3.404 17 0.116 

19. 2.204 1 0.004 

20. 2.593 5 0.026 

21. 2.967 4 0.024 

22. 3.274 8 0.052 

23. 2.570 4 0.021 

24. 2.897 14 0.081 

25. 3.730 6 0.045 

26. 2.916 6 0.035 

27. 2.005 1 0.004 

28. 2.907 7 0.041 

29. 2.315 2 0.009 

30. 2.653 3 0.016 

31. 3.301 6 0.040 

32. 3.298 6 0.040 

33. 2.334 13 0.061 

34. 3.155 8 0.050 

35. 2.820 4 0.023 

36. 3.315 9 0.046 

37. 2.855 7 0.040 

38. 2.941 24 0.141 

39. 2.273 5 0.023 

40. 2.992 5 0.030 
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Appendix E7: ACO 
  

S/N 

 

CONVERGENCE  

TIME 

CONVERGENCE  

GENERATION 

1. 0.821 31 

2. 0.325 3 

3. 0.639 22 

4. 0.741 27 

5. 0.714 25 

6. 0.394 7 

7. 0.468 12 

8. 0.284 1 

9. 0.529 15 

10. 0.636 22 

11. 0.654 22 

12. 0.388 7 

13. 1.360 63 

14. 0.686 25 

15. 0.420 9 

16. 0.919 37 

17. 0.354 5 

18. 1.049 45 

19. 0.458 11 

20. 0.876 34 

21. 0.293 2 

22. 0.536 16 

23. 0.355 5 

24. 0.650 22 

25. 0.858 34 

26. 0.405 8 

27. 0.329 4 

28. 0.637 21 

29. 0.973 41 

30. 0.855 35 

31. 0.727 25 

32. 0.300 2 

33. 0.978 41 

34. 1.104 48 

35. 1.448 68 

36. 0.418 9 

37. 0.717 26 

38. 0.632 21 

39. 1.186 54 

40. 0.912 37 
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APPENDIX F: Comparison between RL and Eas with restriction (1500x600). 

 
 

Appendix F1: Q-learning 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 18.132 41 1.487 460 

2. 14.661 5 0.147 496 

3. 17.852 50 1.785 451 

4. 16.791 30 1.008 471 

5. 17.766 44 1.563 457 

6. 15.382 10 0.308 491 

7. 17.852 36 1.285 465 

8. 17.838 51 1.819 450 

9. 19.650 82 3.223 419 

10. 16.609 28 0.930 473 

11. 18.187 55 2.001 446 

12. 15.518 9 0.279 492 

13. 19.195 74 2.840 427 

14. 19.467 77 2.998 424 

15. 15.106 6 0.181 495 

16. 15.733 15 0.472 486 

17. 15.921 16 0.509 485 

18. 15.992 18 0.576 483 

19. 17.255 37 1.277 464 

20. 19.531 82 3.203 419 

21. 19.424 63 2.447 438 

22. 19.971 75 2.996 426 

23. 18.082 50 1.808 451 

24. 18.151 50 1.815 451 

25. 16.410 15 0.492 486 

26. 16.945 31 1.051 470 

27. 17.824 45 1.604 456 

28. 17.593 42 1.478 459 

29. 15.078 8 0.241 493 

30. 17.548 42 1.474 459 

31. 15.315 8 0.245 493 

32. 19.796 85 3.365 416 

33. 19.194 74 2.841 427 

34. 15.601 12 0.374 489 

35. 18.457 61 2.252 440 

36. 16.866 31 1.046 470 

37. 17.595 42 1.478 459 

38. 17.090 36 1.230 465 

39. 15.998 16 0.512 485 

40. 15.426 9 0.278 492 
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Appendix F2: TDQ 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 5.400 62 0.670 439 

2. 2.437 10 0.049 491 

3. 4.627 46 0.426 455 

4. 2.748 14 0.077 487 

5. 4.487 42 0.377 459 

6. 4.472 42 0.376 459 

7. 6.329 75 0.949 426 

8. 5.083 55 0.559 446 

9. 4.363 41 0.358 460 

10. 5.479 60 0.657 441 

11. 4.443 38 0.338 463 

12. 6.331 78 0.988 423 

13. 2.489 11 0.055 490 

14. 3.630 28 0.203 473 

15. 5.398 61 0.659 440 

16. 5.944 72 0.863 429 

17. 4.551 45 0.410 456 

18. 2.438 10 0.049 491 

19. 3.245 22 0.143 479 

20. 5.098 55 0.561 446 

21. 4.156 33 0.274 468 

22. 2.524 11 0.056 490 

23. 2.733 14 0.077 487 

24. 5.122 53 0.543 448 

25. 4.078 36 0.294 465 

26. 2.545 11 0.056 490 

27. 6.705 85 1.140 416 

28. 5.155 56 0.577 445 

29. 3.918 33 0.259 468 

30. 4.046 34 0.275 467 

31. 4.496 42 0.378 459 

32. 5.062 53 0.537 448 

33. 4.175 38 0.317 463 

34. 5.872 69 0.810 432 

35. 3.932 33 0.260 468 

36. 4.091 35 0.286 466 

37. 2.514 11 0.055 490 

38. 5.115 54 0.552 447 

39. 4.183 39 0.326 462 

40. 3.543 26 0.184 475 
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Appendix F3: Monte-Carlo 
 

S/N SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 3.538 19 0.134 482 

2. 3.225 16 0.103 485 

3. 6.130 65 0.797 436 

4. 6.858 79 1.084 422 

5. 3.123 14 0.087 487 

6. 3.464 19 0.132 482 

7. 3.183 15 0.095 486 

8. 4.977 45 0.448 456 

9. 5.513 54 0.595 447 

10. 5.428 52 0.565 449 

11. 5.555 54 0.600 447 

12. 4.612 37 0.341 464 

13. 4.697 38 0.357 463 

14. 3.388 18 0.140 483 

15. 4.738 42 0.398 459 

16. 4.352 34 0.296 467 

17. 3.391 18 0.122 483 

18. 5.972 62 0.740 439 

19. 3.131 14 0.088 487 

20. 5.197 49 0.509 452 

21. 3.446 17 0.117 484 

22. 4.160 29 0.241 472 

23. 3.256 15 0.098 486 

24. 5.079 45 0.457 456 

25. 6.737 76 1.024 425 

26. 3.291 17 0.112 484 

27. 5.607 57 0.639 444 

28. 4.071 29 0.236 472 

29. 3.207 15 0.096 486 

30. 6.379 70 0.893 431 

31. 4.739 39 0.340 462 

32. 6.657 73 0.972 428 

33. 3.647 22 0.160 479 

34. 6.454 73 0.942 428 

35. 6.490 66 0.857 435 

36. 4.213 31 0.261 470 

37. 3.698 22 0.163 479 

38. 7.161 86 1.232 415 

39. 4.474 36 0.322 465 

40. 4.289 33 0.282 468 
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Appendix F4: SARSA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 3.744 19 0.142 482 

2. 4.801 47 0.451 454 

3. 4.517 48 0.434 453 

4. 4.500 44 0.396 457 

5. 3.878 24 0.186 477 

6. 6.656 126 1.677 375 

7. 4.608 41 0.378 460 

8. 5.209 71 0.740 430 

9. 4.703 52 0.489 449 

10. 3.878 29 0.225 472 

11. 4.186 36 0.301 465 

12. 3.456 13 0.090 488 

13. 4.578 48 0.439 453 

14. 5.335 79 0.843 422 

15. 3.642 16 0.117 485 

16. 4.710 54 0.509 447 

17. 4.890 43 0.421 458 

18. 4.934 65 0.641 436 

19. 5.473 77 0.843 424 

20. 4.225 37 0.313 464 

21. 4.356 47 0.409 454 

22. 4.202 31 0.261 470 

23. 5.112 68 0.695 433 

24. 5.111 74 0.756 427 

25. 4.022 22 0.177 479 

26. 4.225 27 0.228 474 

27. 5.036 67 0.675 434 

28. 4.924 52 0.512 449 

29. 5.408 85 0.919 416 

30. 4.557 49 0.447 452 

31. 5.249 72 0.756 429 

32. 4.953 60 0.594 441 

33. 4.544 46 0.418 455 

34. 3.892 18 0.140 483 

35. 4.829 65 0.628 436 

36. 4.635 50 0.464 451 

37. 4.648 49 0.456 452 

38. 3.871 23 0.178 478 

39. 4.790 55 0.527 446 

40. 4.683 48 0.450 453 
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Appendix F5: TD-LAMBDA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 4.072 28 0.228 473 

2. 3.507 20 0.140 481 

3. 4.955 45 0.446 456 

4. 5.869 55 0.646 446 

5. 5.522 56 0.618 445 

6. 4.613 39 0.360 462 

7. 4.429 35 0.310 466 

8. 4.323 28 0.242 473 

9. 5.226 50 0.523 451 

10. 4.913 43 0.423 458 

11. 4.524 36 0.326 465 

12. 5.910 62 0.733 439 

13. 4.511 36 0.325 465 

14. 3.795 25 0.190 476 

15. 4.575 37 0.339 464 

16. 4.543 37 0.336 464 

17. 3.778 24 0.181 477 

18. 5.550 54 0.599 447 

19. 2.845 10 0.057 491 

20. 5.670 54 0.612 447 

21. 3.098 12 0.074 489 

22. 5.567 53 0.590 448 

23. 3.990 26 0.207 475 

24. 3.746 21 0.157 480 

25. 7.997 99 1.583 402 

26. 3.737 23 0.172 478 

27. 5.418 53 0.574 448 

28. 5.071 48 0.487 453 

29. 5.305 50 0.531 451 

30. 3.555 20 0.142 481 

31. 4.662 38 0.354 463 

32. 5.126 47 0.482 454 

33. 4.157 29 0.241 472 

34. 3.280 16 0.105 485 

35. 3.017 12 0.072 489 

36. 4.322 31 0.268 470 

37. 3.840 25 0.192 476 

38. 3.429 18 0.123 483 

39. 3.526 20 0.130 481 

40. 4.517 36 0.325 465 
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Appendix F6: GA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

GENERATION 

CONVERGENCE  

TIME 

1. 4.571 5 0.046 

2. 5.575 7 0.078 

3. 5.573 12 0.134 

4. 7.576 16 0.242 

5. 5.538 8 0.089 

6. 5.649 5 0.056 

7. 5.659 9 0.102 

8. 5.436 8 0.087 

9. 5.707 17 0.194 

10. 3.459 5 0.035 

11. 12.132 18 0.437 

12. 5.420 9 0.098 

13. 3.364 2 0.013 

14. 8.953 29 0.519 

15. 8.978 9 0.162 

16. 4.300 5 0.043 

17. 9.346 14 0.262 

18. 7.032 17 0.239 

19. 4.867 12 0.117 

20. 4.373 16 0.140 

21. 9.156 37 0.678 

22. 5.259 12 0.126 

23. 5.371 13 0.140 

24. 6.797 8 0.109 

25. 9.235 17 0.314 

26. 7.291 21 0.306 

27. 3.277 2 0.013 

28. 8.518 33 0.562 

29. 12.745 20 0.510 

30. 8.757 22 0.033 

31. 5.560 28 0.311 

32. 4.613 17 0.157 

33. 5.331 5 0.053 

34. 6.457 8 0.103 

35. 6.944 10 0.139 

36. 5.383 8 0.086 

37. 6.129 13 0.159 

38. 3.321 8 0.053 

39. 7.017 53 0.744 

40. 3.536 4 0.028 
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Appendix F7: ACO 
  

S/N 

 

CONVERGENCE  

TIME 

CONVERGENCE  

GENERATION 

1. 4.856 251 

2. 1.766 69 

3. 1.914 81 

4. 5.256 273 

5. 2.717 126 

6. 0.716 7 

7. 3.752 186 

8. 4.245 219 

9. 0.771 14 

10. 5.226 276 

11. 2.579 119 

12. 2.172 89 

13. 4.059 205 

14. 3.291 158 

15. 2.578 118 

16. 3.502 176 

17. 4.480 230 

18. 1.839 78 

19. 5.882 313 

20. 2.348 106 

21. 1.402 52 

22. 3.876 195 

23. 2.382 108 

24. 3.209 156 

25. 1.975 84 

26. 2.899 138 

27. 1.333 44 

28. 0.970 26 

29. 1.121 34 

30. 4.282 213 

31. 0.699 11 

32. 2.899 136 

33. 2.049 88 

34. 1.942 82 

35. 1.542 57 

36. 0.680 9 

37. 0.746 13 

38. 0.649 7 

39. 0.673 9 

40. 2.164 92 
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APPENDIX G: Tables of comparison between RL and Eas with restriction (1500x900). 

 

 

Appendix G1: Q-learning 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 39.930 8 0.639 493 

2. 41.539 10 0.831 491 

3. 44.095 25 2.205 476 

4. 48.251 46 4.439 455 

5. 59.997 12 1.440 489 

6. 47.159 41 3.867 460 

7. 49.137 53 5.209 448 

8. 51.252 60 6.150 441 

9. 40.568 8 0.649 493 

10. 44.132 23 2.030 478 

11. 49.518 51 5.051 450 

12. 42.476 17 1.444 484 

13. 45.438 31 2.817 470 

14. 44.465 24 2.134 477 

15. 42.725 15 1.282 486 

16. 41.390 12 0.993 489 

17. 47.767 45 4.299 456 

18. 40.149 8 0.642 493 

19. 40.102 7 0.561 494 

20. 45.378 30 2.723 471 

 

 
 

 

 

Appendix G2: TDQ 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 13.299 44 1.170 457 

2. 11.381 35 0.797 466 

3. 13.038 43 1.121 458 

4. 10.139 27 0.548 474 

5. 7.111 13 0.185 488 

6. 10.833 32 0.693 469 

7. 10.873 30 0.652 471 

8. 12.661 41 1.038 460 

9. 10.766 31 0.667 470 

10. 11.204 32 0.717 469 



71 

 

 
 

 

 

Appendix G3: Monte-Carlo 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 17.409 62 2.159 439 

2. 8.266 10 0.165 491 

3. 14.651 45 1.319 456 

4. 14.818 46 1.363 455 

5. 8.544 13 0.222 488 

6. 16.866 55 1.855 446 

7. 14.750 45 1.328 456 

8. 15.875 49 1.556 452 

9. 10.467 21 0.440 480 

10. 11.981 30 0.719 471 

 

 
 

 

 

Appendix G4: SARSA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 17.549 88 3.089 413 

2. 11.693 22 0.514 479 

3. 13.728 52 1.428 449 

4. 11.532 24 0.554 477 

5. 10.515 17 0.358 484 

6. 15.370 75 2.306 426 

7. 14.373 58 1.667 443 

8. 17.161 95 3.261 406 

9. 10.013 11 0.220 490 

10. 11.352 19 0.431 482 

11. 11.677 22 0.514 479 

12. 13.717 52 1.427 449 

13. 11.632 24 0.558 477 

14. 10.706 17 0.364 484 

15. 12.573 36 0.905 465 

11. 12.009 25 0.600 476 
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12. 13.007 35 0.910 466 

13. 13.036 35 0.913 466 

14. 13.575 53 1.439 448 

15. 16.975 88 2.988 413 

16. 14.267 51 1.455 450 

17. 14.318 44 1.260 457 

18. 12.854 35 0.900 466 

19. 13.305 38 1.011 463 

20. 13.090 37 0.969 464 

 

 
 

 
 

 

Appendix G5: TD-LAMBDA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 11.264 26 0.586 475 

2. 11.078 26 0.576 475 

3. 13.127 36 0.945 465 

4. 11.560 27 0.624 474 

5. 15.046 46 1.384 455 

6. 8.767 14 0.245 487 

7. 8.285 12 0.199 489 

8. 8.579 13 0.223 488 

9. 13.479 37 0.997 464 

10. 14.166 43 1.218 458 

11. 8.069 10 0.162 491 

12. 9.392 16 0.301 485 

13. 11.806 29 0.685 472 

14. 8.483 12 0.204 489 

15. 10.621 22 0.467 479 

11. 14.268 41 1.170 460 

12. 8.900 14 0.249 487 

13. 13.320 38 1.012 463 

14. 10.386 21 0.436 480 

15. 15.445 49 1.514 452 

16. 8.269 12 0.198 489 

17. 9.585 17 0.326 484 

18. 8.856 14 0.248 487 

19 13.830 39 1.079 462 

20. 12.386 30 0.743 471 
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Appendix G6: GA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

GENERATION 

CONVERGENCE  

TIME 

1. 23.847 36 1.717 

2. 15.362 30 0.922 

3. 31.559 48 3.030 

4. 30.461 65 3.960 

5. 18.483 50 1.848 

6. 11.195 12 0.269 

7. 8.659 18 0.312 

8. 11.219 8 0.180 

9. 11.830 13 0.308 

10. 6.358 7 0.089 

11. 19.094 48 1.833 

12. 15.338 40 1.227 

13. 34.368 31 2.131 

14. 9.056 53 0.960 

15. 12.284 31 0.762 

16. 9.669 23 0.445 

17. 59.140 23 2.720 

18. 11.312 16 0.362 

19. 6.476 33 0.427 

20. 14.634 9 0.263 

21. 28.382 23 1.306 

22. 15.430 93 2.870 

23. 15.705 24 0.754 

24. 19.000 37 1.406 

25. 12.615 22 0.555 

26. 4.535 26 0.236 

27. 11.681 10 0.234 

28. 4.348 59 0.513 

29. 6.220 11 0.137 

30. 14.963 29 0.868 

31. 8.775 34 0.597 

32. 9.644 22 0.424 

33. 4.609 22 0.203 

34. 8.786 6 0.105 

35. 9.095 44 0.800 

36. 20.160 31 1.250 

37. 36.491 32 2.335 

38. 12.010 83 1.994 

39. 19.866 80 3.178 

40. 6.432 32 0.412 
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Appendix G7: ACO 
  

S/N 

 

CONVERGENCE  

TIME 

CONVERGENCE  

GENERATION 

1. 6.007 304 

2. 6.706 341 

3. 2.162 42 

4. 4.583 172 

5. 7.456 379 

6. 4.148 186 

7. 2.302 82 

8. 8.580 438 

9. 5.927 287 

10. 3.781 168 

11. 6.315 314 

12. 8.649 448 

13. 7.552 387 

14. 6.599 336 

15. 1.008 4 

16. 3.106 129 

17. 6.372 321 

18. 2.299 83 

19. 5.535 268 

20. 5.685 281 

21. 9.055 474 

22. 0.972 7 

23. 6.081 308 

24. 3.412 149 

25. 8.658 458 

26. 5.531 252 

27. 8.516 446 

28. 7.250 359 

29. 2.999 125 

30. 1.565 41 

31. 6.309 299 

32. 6.399 321 

33. 8.762 452 

34. 1.075 8 

35. 1.515 38 

36. 1.974 63 

37. 6.442 320 

38. 6.031 272 

39. 0.941 3 

40. 2.403 89 

41 7.664 379 

42 4.236 186 

43 2.308 82 

44 3.127 129 

45 6.243 287 

46 3.865 168 

47 6.313 324 

48 0.926 4 

49 1.234 83 

50 6.678 336 
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APPENDIX H: Tables of comparison between RL and EAs with restriction (1500x1200). 

 

Appendix H1: Q-learning 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 120.785 81 19.567 420 

2. 104.749 38 7.961 463 

3. 109.030 53 11.557 448 

4. 114.251 63 14.396 438 

5. 97.771 25 4.889 476 

6. 95.645 25 4.782 476 

7. 100.001 28 5.600 473 

8. 101.653 33 6.709 468 

9. 103.682 34 7.050 467 

10. 87.573 6 1.051 495 

11. 93.692 15 2.811 486 

12. 111.660 57 12.729 444 

13. 102.789 37 7.606 464 

14. 104.523 42 8.780 459 

15. 104.615 38 7.951 463 

16. 93.511 12 2.244 489 

17. 100.585 26 5.230 475 

18. 100.455 28 5.625 473 

19. 111.293 48 10.684 453 

20. 96.511 19 3.667 482 

21. 100.690 27 5.437 474 

22. 99.291 27 5.362 474 

23. 103.820 35 7.267 466 

24. 94.040 14 2.633 487 

25. 105.372 39 8.219 462 

 

 

 
 

 

 

Appendix H2: TDQ 

 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 14.552 12 0.349 489 

2. 27.121 36 1.953 465 

3. 25.522 36 1.838 465 

4. 28.887 45 2.600 456 

5. 27.967 45 2.517 456 

6. 30.246 51 3.085 450 

7. 32.628 54 3.524 447 

8. 28.448 44 2.503 457 

9. 19.985 24 0.959 477 

10. 24.802 34 1.687 467 

11. 22.557 27 1.218 474 

12. 26.311 36 1.894 465 

13. 21.616 27 1.167 474 

14. 26.942 39 2.101 462 

15. 21.934 26 1.141 475 

16. 15.351 13 0.399 488 
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17. 14.609 12 0.351 489 

18. 28.590 45 2.573 456 

19. 14.524 12 0.349 489 

20. 28.970 45 2.607 456 

 

 

 
 

 

 

Appendix H3: Monte-Carlo 

 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 22.326 20 0.893 481 

2. 35.101 53 3.721 448 

3. 33.910 49 3.323 452 

4. 24.434 25 1.222 476 

5. 28.870 38 2.194 463 

6. 28.782 36 2.072 465 

7. 31.223 43 2.685 458 

8. 35.620 53 3.776 448 

9. 17.558 11 0.386 490 

10. 31.791 45 2.861 456 

11. 33.565 47 3.155 454 

12. 20.627 17 0.701 484 

13. 34.913 51 3.561 450 

14. 23.761 23 1.093 478 

15. 20.549 16 0.658 485 

16. 33.488 48 3.215 453 

17. 27.059 31 1.678 470 

18. 32.868 48 3.155 453 

19. 30.349 40 2.428 461 

20. 26.647 30 1.599 471 

21 30.094 39 2.347 462 

22. 26.846 29 1.557 472 

23. 29.459 37 2.180 464 

24 33.704 47 3.168 454 

25. 17.747 10 0.355 491 

26. 30.298 39 2.363 462 

27. 33.930 47 3.189 454 

28. 34.234 48 3.286 453 

29. 34.776 49 3.408 452 

30. 29.916 36 2.154 465 
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Appendix H4: SARSA 

 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 23.775 20 0.951 481 

2. 41.637 104 8.660 397 

3. 23.423 16 0.750 485 

4. 39.788 103 8.196 398 

5. 24.869 23 1.144 478 

6. 28.930 43 2.488 458 

7. 29.238 44 2.573 457 

8. 29.131 44 2.564 457 

9. 30.254 54 3.267 447 

10. 31.681 58 3.675 442 

11. 39.706 98 7.782 403 

12. 30.162 51 3.077 450 

13. 34.725 76 5.278 425 

14. 25.976 29 1.507 472 

15. 38.055 90 6.850 411 

16. 22.257 15 0.668 486 

17. 23.478 20 0.939 481 

18. 23.843 16 0.763 485 

19. 25.034 23 1.152 478 

20. 26.484 33 1.748 468 

21. 23.658 17 0.804 484 

22. 25.753 32 1.648 469 

23. 27.143 32 1.737 469 

24. 24.361 18 0.877 483 

25. 29.322 48 2.815 453 

26. 23.953 21 1.006 480 

27. 30.772 47 2.893 454 

28. 29.917 46 2.752 455 

29. 29.547 52 3.073 449 

30. 29.131 46 2.680 455 
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Appendix H5: TD-LAMBDA 

  

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

EPISODE 

CONVERGENCE  

TIME 

GOAL 

1. 26.778 30 1.607 471 

2. 23.453 24 1.126 477 

3. 25.676 30 1.541 471 

4. 24.368 25 1.218 476 

5. 27.708 34 1.884 467 

6. 26.565 29 1.541 472 

7. 28.268 34 1.922 467 

8. 27.344 33 1.805 468 

9. 28.812 35 2.017 466 

10. 16.738 10 0.335 491 

11. 18.473 13 0.480 488 

12. 22.381 21 0.940 480 

13. 18.957 15 0.569 486 

14. 30.571 41 2.507 460 

15. 33.958 50 3.396 451 

16. 26.134 28 1.464 473 

17. 28.408 34 1.932 467 

18. 34.468 50 3.445 451 

19. 16.953 10 0.339 491 

20. 33.342 48 3.201 453 

 

 
 

 

 

 

Appendix H6: GA 
 

S/N 

 

SIMULATION  

TIME 

CONVERGENCE  

GENERATION 

CONVERGENCE  

TIME 

1. 25.395 20 1.016 

2. 25.405 35 1.778 

3. 31.509 14 0.882 

4. 24.154 62 2.995 

5. 18.716 33 1.235 

6. 69.515 32 4.449 

7. 62.342 35 4.364 

8. 24.686 20 0.987 

9. 8.064 3 0.048 

10. 25.101 76 3.815 

11. 30.062 23 1.383 

12. 45.864 79 7.247 

13. 8.652 22 0.381 

14. 9.065 21 0.381 

15. 8.278 56 0.927 

16. 24.155 50 2.416 

17. 27.556 70 3.858 

18. 9.188 23 0.423 

19. 16.809 143 4.807 

20. 28.680 47 2.696 

21. 14.318 48 1.375 

22. 5.494 30 0.330 
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23. 31.779 91 5.784 

24. 9.838 16 0.315 

25. 13.447 116 3.120 

26. 38.127 47 3.584 

27. 25.613 235 12.038 

28. 47.297 48 4.541 

29. 47.943 117 11.219 

30. 49.314 89 8.778 

31. 31.969 91 5.818 

32. 10.374 16 0.332 

33. 14.458 116 3.354 

34. 37.971 47 3.569 

35. 25.479 251 12.790 

36. 48.061 64 6.151 

37. 49.588 117 11.604 

38. 46.927 89 8.353 

39. 68.707 100 13.741 

40. 25.138 37 1.860 

 

 
 

 
 

 

Appendix H7: ACO 
 

S/N 

 

CONVERGENCE  

TIME 

CONVERGENCE  

GENERATION 

1. 1.976 26 

2. 3.497 128 

3. 4.027 158 

4. 6.731 304 

5. 1.646 23 

6. 8.352 405 

7. 5.315 229 

8. 2.877 92 

9. 4.995 215 

10. 6.579 309 

11. 2.316 63 

12. 6.770 318 

13. 7.571 368 

14. 7.600 370 

15. 7.050 342 

16. 2.298 52 

17. 2.158 53 

18. 5.624 248 

19. 6.429 303 

20. 3.957 153 

21. 8.545 427 

22. 9.979 482 

23. 4.495 191 

24. 3.596 135 

25. 7.245 343 

26. 7.367 366 

27. 1.791 24 

28. 5.968 272 

29. 2.307 56 

30. 6.635 307 

31. 7.851 376 
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32. 1.626 23 

33. 8.637 413 

34. 2.087 38 

35. 5.922 277 

36. 4.079 166 

37. 6.824 313 

38. 3.228 113 

39. 5.060 219 

40. 3.624 140 

41 6.004 268 

42 6.191 281 

43 9.656 481 

44 6.623 308 

45 3.908 149 

46 3.616 135 

47 2.234 55 

48 5.589 244 

49 3.097 101 

50 7.354 320 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  


