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ABSTRACT 

 

LMS BASED SPARSE ADAPTIVE FILTERS: FROM 1D TO 2D REPRESENTATIONS 

 

 

Gülden ELEYAN 

 

Ph.D. Dissertation, 2016 

 

Thesis Supervisor: Assist. Prof. Dr. Mohammad Shukri SALMAN 

 

 

Keywords: Adaptive filters, least mean square, sparse systems, zero attracting, l-norm 

 

 

Adaptive filters are commonly and regularly used nowadays in different gadgets such as 

mobile phones and devices, medical equipment and digital cameras. This can be easily 

justified due to the increase of influence of digital signal processors. Example of the 

necessity for using adaptive filters is in the telecommunications field, where we can face 

many sources of echo caused by long distance communications or hands-free voice 

conversation. Another example is in computer vision applications, where the received 

images can be noisy and thus, need to be enhanced and filtered form such an unwanted noise. 

The adaptive filter is a system that computationally models the relation between the input 

and output signal. The adaptive filter modifies or adjusts its coefficients iteratively based on 

some adaptive optimization algorithm. The cost function is the key or the criterion for 

optimizing the filter performance which will work on minimizing the error signal.  

In this dissertation, new different algorithms for improving the performance of one-

dimensional and two-dimensional least mean square (LMS) algorithm are proposed.  

This study started by providing the derivation of the convergence analysis of the mixed-

norm least mean square (MN-LMS) algorithm. Our first proposed algorithm is based on MN-
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LMS algorithm.  The proposed algorithm exploits the sparsity of the system by adding l1-

norm penalty term to the cost function of the original MN-LMS algorithm. The new term 

enables us to attract the zero and near-to-zero filter weights to the zero value in a faster way. 

However, when the targeted system is near or exactly non-sparse, the performance of this 

algorithm drops. To overcome the limitation of this algorithm when the system is near or 

exactly non-sparse another algorithm that uses an approximation of l0-norm penalty term in 

the cost function of the original MN-LMS algorithm is proposed. This provides high 

performance even with completely non-sparse systems. 

For improving the two-dimensional least mean square (2D-LMS) algorithm performance, a 

new two-dimensional zero-attracting least mean square (2D ZA-LMS) adaptive filter is 

proposed by imposing a sparsity aware l1-norm penalty term in the cost function of the 

original 2D-LMS algorithm. The convergence analysis of the 2D ZA-LMS algorithm is 

presented and stability criterion is also derived. 

Beside the mathematical derivation for the convergence analysis of the provided algorithms, 

all the algorithms are experimentally tested. In this study, extensive experiments are 

conducted using different parameters and scenarios such as signal-to-noise-ratio (SNR), 

sparsity level and filter tap length. Images corrupted with different noise types and different 

parameters are used to test the proposed 2D ZA-LMS algorithm against the 2D-LMS 

algorithm.  
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ÖZET 

 

LMS BASED SPARSE ADAPTIVE FILTERS: FROM 1D TO 2D REPRESENTATIONS 

 

Gülden ELEYAN 

 

Doktora Tezi, 2016 

 

Tez Danışmanı: Yrd. Doç. Dr. Mohammad Shukri SALMAN 

 

 

Anahtar Kelimeler: Uyarlanır Filtre, en küçük kare ortalaması, seyrek sistem, sıfıra çeken, 

l-norm. 

 

 

Sayısal sinyal işlemenin gücünün artışıyla, uyarlanır filtreme çok daha yaygın hale gelmiştir 

ve şu sıralar; mobil telefonları, diğer haberleşme cihazları ve tıbbi ekipmanlar ve dijital 

kameralar gibi elektronik cihazlarda sıklıkla kullanılmaktadır.  

Uyarlanır filtre giriş ve çıkış sinyali arasındaki ilişkiyi hesaplamalı olarak modelleyen 

sistemdir. Uyarlanır filtreler katsayılarını bazı adaptif optimizasyon algoritmalarına 

dayanarak iteratif olarak ayarlar veya modifiye ederler. Hata sinyalini minimize etmeye 

yarayan cost fonksiyonu, süzgeç performansını optimize etmeye yarayan anahtar kriterdir.  

Bu tezde bir ve iki boyutlu En Küçük Kare algoritmasının performansını iyileştirecek farklı 

yeni algoritmalar önermekteyiz.  

Karışık normlu LMS algoritmasının çözümü ile başlamaktayız. İlk algoritmamız karışık 

norm’lu LMS algoritmasına dayalıdır. Sistem seyrekliği, MN-LMS algoritmasının cost 

fonksiyonuna l1-norm ceza terimi eklenerek ortaya çıkarılmaktadır. Bu terim, sıfır veya sıfıra 

yakın filtre bileşenlerinin sıfıra çekilmesine hızlı bir şekilde olanak verir. Buna rağmen, 

sistem sparse’a yakın ya da tamamen sparse değilse çalışmamaktadır. Sistemin tamamen 

seyrek olmaması durumunun getirdiği sınırlamayı aşmak için MN-LMS algoritmasının cost 
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fonksiyonunda l0-norm penaltısının bir yaklaşımını kullanan başka bir algoritma 

önermekteyiz. Bu yöntem, hiç seyrek olmayan sistemlerde bile yüksek performans 

sağlamaktadır.  

İki boyutlu LMS algoritmasının performansını iyileştirmek için cost fonksiyonuna bir l1-

norm seyreklik farkındalık terimi ekleyerek yeni iki boyutlu (2D) sıfıra çeken en küçük kare 

algoritması (ZA-LMS) öneriyoruz. 2 boyutlu ZA-LMS algoritmasının yakınsama analizi ve 

denge kriteri yapılmıştır.  

MN-LMS algoritmasının yakınsama analizi çıkarılmış tüm algoritmalar deneysel olarak test 

edilmiştir. Farklı parametreler, sinyalin gürültüye oranı, seyreklik ve süzgeç uzunluğu, 

kullanılarak çok miktarda deney gerçekleştirilmiştir. Bu çalışmada, farklı gürültü çeşitleri 

ve farklı parametreler kullanılarak bozulmuş görüntüler önerilen iki boyutlu sıfıra çeken 

LMS algoritmasının iki boyutlu standart LMS algoritmasıyla kıyaslanması için 

kullanılmıştır.   
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CHAPTER 1 

INTRODUCTION 

 

1.1. Adaptive Filters 

An adaptive filter is system that relies for its updating process on a recursive algorithm. This 

is an important criterion in a situation where prior information about the relevant statistics 

is not presented. Adaptive filters can be categorized into two main categories: linear, and 

nonlinear filters. Adaptive filter that uses a linear combination of the signals which is applied 

to its input for estimating the desired response is called linear adaptive filters. Otherwise, it 

is nonlinear adaptive filter [1]. Adaptive filters may also be grouped into supervised and 

unsupervised filters: 

 

1.2. Applications of Adaptive Filters  

Since 1960, adaptive filters are popular because of their many advantages, such as the 

updating of filter weights over time, to acclimate the change in signal characteristics. Over 

the past thirty years, digital signal processors have made great improvements in terms of 

speed, complexity, and power consumption. As a result, real-time adaptive filters are rapidly 

becoming practical and crucial for the future of wired and wireless communications.  

Adaptive linear combiners have been successfully used in the modeling of unknown systems 

[2] [6]–[8], linear prediction [2][9]–[11], adaptive noise cancellation [4][12], adaptive 

antenna systems [3][13]–[15], channel equalization systems[16]–[19], echo cancellation 

[20]–[23], instantaneous frequency estimation [24], adaptive line enhancer [4][25]–[30], 

adaptive control systems [31], and many other real-time applications.  

The main adaptive filters configurations are: 
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1.2.1. System Identification 

System identification configuration is shown in Fig 1.1. An input signal is applied both to 

the adaptive filter and to the unknown system. The unknown system delivers the desired 

response. Some applications for system identification are; control systems [5], seismic signal 

processing [32], and echo cancellation in some communication systems [33]. 

 

Figure 1.1 System identification configuration. 

 

1.2.2. Noise Cancellation 

In in noise cancellation configuration, the reference signal the desired signal which is 

corrupted by an additive noise 𝑣1(𝑘). The input signal is a noise signal 𝑣2(𝑘) that is 

correlated with the additive noise 𝑣1(𝑘) and uncorrelated with 𝑥(𝑘). Fig. 1.2 shows the 

configuration of noise cancellation. Some real world examples are acoustic echo cancellation 

on telephone circuits [4], hydrophones noise cancellation [35], interference cancellation in 

electrocardiography ECG [5]. 

 

Figure 1.2 Noise cancellation configuration. 

 



3 

 

1.2.3. System Prediction  

The adaptive filtering prediction process aim is developing a model of a signal of interest, 

instead of encoding it directly. The signal prediction provides the prediction of the best 

present value of the signal. The input values consist of an older version of the desired 

response as shown in Fig. 1.3. An important application is coding of speech signals [36]. 

Other applications are adaptive line enhancement (ALE) and suppression of interferences in 

signal. 

 

Figure 1.3 System prediction configuration. 

 

 

1.2.4. Channel Equalization 

Channel equalization or inverse modeling includes an estimation of an impulse response that 

is equal to the inverse of the impulse response of the unknown system, to equalize the linear 

distortion produced by the channel. The desired response for the adaptive filter is produced 

by a shifted version of the unknown system input (see Fig 1.4). In [37], decision-feedback 

equalization, decision-assisted inert-symbol interference ISI cancellation, and adaptive 

filtering for maximum-likelihood sequence estimation has been performed. A second 

interpretation is a control application in [5]. Inverse filtering basic idea is to produce signals 

that can be used in unknown system. 
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Figure 1.4 Channel equalization. 

 

1.2.5. Echo Cancellation 

Echo signal is defined as the delayed and attenuated version of the original signal produced 

by a certain source, such as a loudspeaker. A challenging problem is that the echo path is 

changing due to probable over time change of the channel characteristics, because of 

different parameters such as the distance between the loudspeaker and the microphone.  

Fig. 1.5 shows the existence of acoustic echo. The received signal from the far end speaker, 

𝑟(𝑘) is passing through the loudspeaker to the near end. A delayed version of 𝑟(𝑘) signal is 

received by the microphone, combined with the near end speech, forming the received signal 

from the acoustic channel, 𝑟𝐴(𝑘). The echo path is defined by functions 𝒇 and 𝒈 on both 

ends; these functions represent the linear or non-linear behavior of the echo path. 

 

Figure 1.5 An acoustic echo scenario. 
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1.2.5.1. Sources of Echo 

In the telecommunications field, we can find many sources of echo caused by long distance 

communications and/or the hands-free voice conversations [38]. For instance; on the hands-

free voice over internet protocol (VoIP) setup in which we have a microphone and a 

loudspeaker on a mobile telephone connection.  

Applications such as hands-free telephony, tele-conferencing and video-conferencing 

require the use of acoustic echo cancellation (AEC) techniques to eliminate acoustic 

feedback from the loudspeaker to the microphone [39]. To be able to construct a model for 

the mentioned time-changing echo characteristics and to cancel the unwanted effects on the 

conversation, adaptive filtering [5][40][41] has been widely used in the last three decades 

(see for instance, [42]-[47]). In Fig. 1.6, the acoustic echo canceller system is shown. The 

adaptive filter synthesizes a copy of the echo, which is deducted from the returned signal. 

This removes/minimizes the echo without interrupting the echo path. The adaptive filter 

compensates the undesired effects of the non-ideal hybrid circuit.  

 

 

Figure 1.6 The acoustic echo canceller. 
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1.3. Adaptive Algorithms 

1.3.1. Least Mean Square (LMS) Algorithm 

The least mean square (LMS) algorithm was developed by Widrow and Hoff in a pattern-

recognition machine research [48]. It is known as the adaptive linear element. It is used in 

many different applications due to its easy implementation. So far, the LMS algorithm is one 

of the most extensively used algorithms in adaptive filters. The main reasons are its low 

computational complexity, efficient convergence and stability behavior in stationary 

environments.  

The LMS algorithm includes of two basic steps: 

 A filtering step which involves calculating the filter output using tap inputs. 

Subtracting this output from desired response value will generate an estimation error. 

 An adaptive step which involves the automatic updating of the weights of the 

adaptive filter based on the estimated error. 

 

A summary of the algorithm is shown as following. 

The desired output of the filter: 

    𝑑(𝑘) = 𝐡𝑇𝐱(𝑘),               (1.1) 

where 𝐡 is the optimum filter weights vector and 𝐱(𝑘) is the input-tap vector. 

The error of the estimation:  

𝑒(𝑘) = 𝑑(𝑘) − 𝐰𝑇(𝑘)𝐱(𝑘),              (1.2) 

where 𝐰(𝑘) is the estimated filter weights vector  

The update equation: 

𝐰(𝑘 + 1) = 𝐰(𝑘) + 2𝜇𝑒(𝑘)𝐱(𝑘),                                                           (1.3) 
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where 𝜇 is the step size or the convergence rate factor. 𝜇  should be less than the reciprocal 

of the maximum eigenvalue of the autocorrelation matrix of the input signal. The derivation 

of the LMS algorithm and its weight update equation are provided in details in Chapter 3. 

 

1.3.2. Normalized LMS Algorithm 

The LMS algorithm has two problems: the convergence rate is small and the performance is 

sensitive to the eigenvalue spread.  In the standard LMS the adjustment applied is directly 

proportional to the tap-input vector, when it is large, the LMS algorithm suffers from a 

gradient noise amplification problem. To avoid of this problem, the normalized LMS was 

proposed in [49]. In deterministic systems [50], to avoid dividing by zero, a constant small 

value is added to the normalized least mean squares algorithm. 

The usage of variable convergence rate 𝜇𝑘 in the update equation of NLMS helps to 

minimize the output error which, in turn, guarantees faster convergence compared to LMS 

algorithm. The drawback of such a variable convergence factor that it increases the 

misadjustment. 

 

The desired output of the filter: 

    𝑑(𝑘) = 𝐡𝑇𝐱(𝑘).                                                                                           (1.4) 

The error of the estimation: 

𝑒(𝑘) = 𝑑(𝑘) − 𝐰𝑇(𝑘)𝐱(𝑘).                                                                         (1.5) 

The update equation: 

𝐰(𝑘 + 1) = 𝐰(𝑘) +
𝜇𝑘

𝛾+𝐱𝑻(𝑘)𝐱(𝑘)
𝑒(𝑘)𝐱(𝑘),                                                       (1.6) 

where 𝛾 is a very small positive constant and 0 < 𝜇𝑘 ≤ 2. 
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1.3.3. Quantized Error Algorithms 

In echo cancellation or channel equalization adaptive filters supposed to run in high speed. 

This in turn, requires the minimization of the overall complexity of the used algorithm. 

Computational complexity of the LMS algorithm arises from the multiplications executed 

though the update process and from computing the output of adaptive filter. Applying 

quantization to the error signal of the LMS algorithm will generate the quantized-error 

algorithm for updating the filter weights. 

 

1.3.3.1. Sign Error Algorithm 

The simplest function for the quantization process is the sign (sgn) function defined by 

𝑠𝑔𝑛[𝑏] = {
𝑏

|𝑏|
      , 𝑏 ≠ 0

  0       , 𝑏 = 0
.                                                                               (1.7) 

The sign-error algorithm utilizes the sign function as the error quantizer, where the weights 

vector updating is done by 

𝐰(𝑘 + 1) = 𝐰(𝑘) + 2𝜇 𝑠𝑔𝑛[𝑒(𝑘)]𝐱(𝑘).                                                         (1.8) 

The main drawback of the sign-error algorithm is its slow convergence. Fig. 1.7 shows an 

illustration of the sign-error algorithm for a delay line input 𝐱(𝑘).  



9 

 

 

Figure 1.7 Sign-error adaptive filter [34] 

 

1.3.3.2. Dual Sign Algorithm 

The dual-sign algorithm performs large modifications to the weights vector when the 

modulus of the error signal is higher than a predefined level. The inspiration using the dual-

sign algorithm is to speed up the slow convergence caused by replacing 𝑒(𝑘) by 𝑠𝑔𝑛[𝑒(𝑘)] 

when |𝑒(𝑘)| is value is high. 

The quantization function for the dual-sign algorithm is given by 

𝑑𝑠[𝑏] = {
𝛾 𝑠𝑔𝑛[𝑏]     , |𝑏| > 𝜌

   𝑠𝑔𝑛[𝑏]     , |𝑏| ≤ 𝜌
,                                                                    (1.9) 

where 𝛾 > 1 is a power of two. The dual-sign algorithm uses this function as the error 

quantizer, and the weights updating is performed as 
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𝐰(𝑘 + 1) = 𝐰(𝑘) + 2𝜇 𝑑𝑠[𝑒(𝑘)]𝐱(𝑘).                                                       (1.10) 

 

1.3.3.3. Sign Data Algorithm 

An alternative approach for reducing the computational complexity of the LMS algorithm is 

to apply quantization to the input signal 𝐱(𝑘). One suggested quantization technique is to 

apply the sign function to the input signals. It is called the sign-data algorithm whose weight 

updating is performed as 

𝐰(𝑘 + 1) = 𝐰(𝑘) + 2𝜇 𝑒(𝑘)𝑠𝑔𝑛[𝐱(𝑘)],                                                    (1.11) 

where the sign function is applied to each value in the input signal. 

 

1.3.4. Newton-LMS Algorithm 

The Newton-LMS algorithm incorporating estimates of the second-order statistics of the 

environment signals. The main idea of the algorithm is to get higher convergence rate than 

the LMS algorithm when the input signal is highly correlated. The drawback of the system 

is the increase of the computational complexity. 

The desired output of the filter: 

    𝑑(𝑘) = 𝐡𝑇𝐱(𝑘).                                                                                                       (1.12) 

The error of the estimation: 

𝑒(𝑘) = 𝑑(𝑘) − 𝐰𝑇(𝑘)𝐱(𝑘).                                                                                   (1.13) 

The update equation: 

𝐰(𝑘 + 1) = 𝐰(𝑘) + 2𝜇𝑒(𝑘)𝐑̂−𝟏(𝑘)𝐱(𝑘).                                                         (1.14) 

𝐑̂−𝟏(𝑘) =
1

1−𝛼
[𝐑̂−𝟏(𝑘 − 1) −

𝐑̂−𝟏(𝑘−1)𝐱(𝑘)𝐱𝑻(𝑘)𝐑̂−𝟏(𝑘−1)
1−𝛼

𝛼
+ 𝐱𝑻(𝑘)𝐑̂−𝟏(𝑘−1)𝐱(𝑘)

],                             (1.15) 
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where 𝐑̂  is the estimate of the autocorrelation matrix of the input-tap vector and 𝛼 is a small 

value chosen as 0 < 𝛼 ≤ 0.1. 

 

1.3.5. Transform-domain LMS algorithms 

The transform-domain LMS algorithm is another approach used to enhance the performance 

of the LMS algorithm with highly correlated input signal. The objective behind this approach 

is to improve the conditioning number of the correlation matrix by transforming the input 

signal to be applied to the adaptive filter [34].  

In the transform-domain LMS algorithm, the input signal 𝑥(𝑘) is transformed by using an 

orthonormal or unitary transform algorithm [51]-[53]. Fig. 1.8 shows an example of 

transform domain adaptive filter. 

 

Figure 1.8 Transform domain adaptive filter 
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1.3.6. Recursive Least Square (RLS) Algorithm 

The LMS algorithm is aiming to reduce the error between the output signal and the desired 

output of the filter [54]. In contrary, the RLS algorithm utilizes continuously updated 

prediction of the autocorrelation matrix of the input signal and the cross correlation vector 

at every iteration [1]. 

The recursive least squares adaptive filter (RLS) is recursively calculating the weights to 

reduce a weighted linear least squares cost function of the input signals. RLS algorithms 

have high convergence rate even when the eigenvalue spread of the input signal correlation 

matrix is large. These algorithms performances very well in time-varying environments [55].   

The desired output of the filter: 

    𝑑(𝑘) = 𝐡𝑇𝐱(𝑘).                                                                                           (1.16) 

The error of the estimation: 

𝑒(𝑘) = 𝑑(𝑘) − 𝐱𝑇(𝑘)𝐰(𝑘 − 1).                                                                    (1.17) 

The update equation: 

𝐰(𝑘) = 𝐰(𝑘 − 1) + e(𝑘)𝐒𝑫(𝑘)𝐱(𝑘),                                                             (1.18) 

𝐒𝐷(𝑘) =
1

𝜆
[𝐒𝐷(𝑘 − 1) −

𝝍(𝑘)𝝍𝑻(𝑘)

𝜆+𝝍𝑻(𝑘)𝐱(𝑘)
],                                           (1.19) 

𝝍(𝑘) = 𝐒𝐷(𝑘 − 1)𝐱(𝑘),                                  (1.20) 

where 𝜆 is an exponential weighting factor usually in the range 0 ≪ 𝜆 ≤ 1. 𝐒𝐷 is the inverse 

of the deterministic autocorrelation matrix 𝐑𝐷[34]. 

 

1.3.7. Mixed Norm Least Mean Square (MN-LMS) Algorithm 

The mixed norm LMS algorithm proposed by Boukis et al. [56] is based on the least sum of 

exponentials (LSE). LSE provides a generalization of the class of weighted mixed norm 

https://en.wikipedia.org/wiki/Weighted_least_squares
https://en.wikipedia.org/wiki/Loss_function
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algorithms. It is derived by minimizing a sum of error exponentials. The algorithm showed 

significant performance compared to that of the conventional LMS algorithm. 

The cost function: 

𝐽𝐰(𝑘) = (𝑒𝑥𝑝(𝑒(𝑘)) + 𝑒𝑥𝑝(−𝑒(𝑘)))
2

.          (1.21) 

The error of the estimation: 

𝑒(𝑘) = 𝑑(𝑘) − 𝐰𝑇(𝑘)𝐱(𝑘).                        (1.22) 

The update equation: 

 𝐰(𝑘 + 1) = 𝐰(𝑘) + 2𝜇 𝐱(𝑘)sinh(𝑒(𝑘)).                                         (1.23)  

The derivation of the MN-LMS algorithm and its weight update equation is provided in 

details in Section 4.3. 

 

1.3.8. Zero Attracting Least Mean Square (ZA-LMS) Algorithm 

In the ZA-LMS, a new cost function 𝐽𝐰(𝑘) is defined by adding l1-norm penalty of the weight 

vector to the instantaneous square error.  

The cost function is given as 

 𝐽𝐰(𝑘) =
1

2
 𝑒2(𝑘) + 𝛾‖𝐰(𝑘)‖1.                           (1.24) 

𝛾 is a positive constant. Using the gradient descent update equation, the ZA-LMS filter 

update equation is defined as 

𝐰(𝑘 + 1) = 𝐰(𝑘) − 𝜇
𝜕𝐽𝐰(𝑘)

𝜕𝐰(𝑘)
 

                    = 𝐰(𝑘) − 𝜌 𝑠𝑔𝑛 [𝐰(𝑘)] + 𝜇 𝑒(𝑘)𝐱(𝑘),                              (1.25) 

where 𝜌 = 𝜇𝛾 and 𝑠𝑔𝑛[. ] is the sign function defined in (1.4) 
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Comparing the ZA-LMS update equation (1.25) to the update equation of conventional LMS 

(1.3), the ZA-LMS algorithm has an additional term −𝜌 𝑠𝑔𝑛 [𝐰(𝑘)], which will attracts the 

vector coefficients to zero. It is called the zero attractor, whose power is managed by the 

shrinkage parameter 𝜌. Naturally, the zero attractor will increase convergence rate when 

most of coefficients of 𝐰 are zero, i.e., the system is sparse. 

 

1.3.9. Reweighted Zero Attracting Least Mean Square (RZA-LMS) Algorithm 

This approach is inspired by the fact that the shrinkage parameter 𝜌 in the ZA-LMS does not 

differentiate between zero and non-zero values. Since all the values are pushed to zero 

uniformly, its performance would decline for near non-sparse systems. Inspired by 

reweighting in compressive sampling [57], an approach to strengthen the zero attractor called 

the reweighted zero-attracting LMS (RZA-LMS) was proposed. 

The cost function is given as 

𝐽𝒘(𝑘) =
1

2
𝑒2(𝑘) + 𝛾′∑ 𝑙𝑜𝑔 (1 + 

|𝑤𝑖|

𝜀′
)𝑁

𝑖=1 ,           (1.26) 

where 𝛾′ and 𝜀′ are positive constants. The log based penalty term  ∑ 𝑙𝑜𝑔(1 + |𝑤𝑖|/𝜀′)
𝑁
𝑖=1   

is introduced as it has similar to the l0-norm.  

The weight vector can be updated as 

𝑤𝒊(𝑘 + 1) = 𝑤𝑖(𝑘) − 𝜌 
𝑠𝑔𝑛 [𝑤𝑖(𝑘)]

1+𝜀|𝑤𝑖(𝑘)|
+ 𝜇𝑒(𝑘)𝑥𝑖(𝑘).                                   (1.27) 

or equivalently, in the vector form 

𝐰(𝑘 + 1) = 𝐰(𝑘) − 𝜌 
𝑠𝑔𝑛 [𝐰(𝑘)]

1+𝜀|𝐰(𝑘)|
+ 𝜇 𝑒(𝑘)𝐱(𝑘).                                         (1.28) 

The RZA-LMS algorithm selectively shrinks elements with small magnitudes. The 

reweighted zero attractor has effect only on those elements for which magnitudes are close 

to 1/𝜀; and there is small shrinkage employed on the elements whose |𝑤𝑖(𝑘)| ≫ 1/𝜀 . In 

this manner, the bias of the RZA-LMS algorithm is minimized. 
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1.4. SPARSE SYSTEMS  

1.4.1. Definition of the sparse systems 

In many engineering and mathematics problems, sparsity is a popular topic. In system 

identification and communication applications, the system may be in sparse nature such as 

acoustic echo cancellation [58] and network cancellation applications. Channel impulse 

response is frequently sparse due to high-speed data transmission, which will be dominated 

by a small number of high elements or taps [59][60]. A typical example of an finite impulse 

response FIR-based sparse channel is shown in Fig. 1.9.  The channel dominant taps are at 

tap indices 3, 7, 11, and 15. 

 

Figure 1.9 An example of an FIR based sparse channel with 4 dominant channel taps. 

 

Sparse system identification is an essential requirement for fast converging adaptive filters 

in, for example, certain specific applications of echo cancellation. Recent developments 

based on proportionate update techniques have been used in network echo cancellation to 

overcome the problems of huge delays in IP network propagation for VoIP applications and 

the delay in the direct acoustic path. 
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1.4.2. Sparsity in Adaptive Filtering 

In the last decade, many algorithms exploiting sparsity were based on applying a subset 

selection techniques during the filtering process, which was implemented via statistical 

detection of active taps [61]-[63] or sequential partial updating [64][65]. A general 

exploiting sparsity is done by updating a subset of the channel model or filter taps [66]. A 

derivation of the Exponentiated Gradient (EG) algorithm as an approximate gradient descent 

algorithm implemented in [67]. 

In [68] authors proposed a high convergence rate algorithm for sparse-tap adaptive filters to 

identify an unknown number of multiple dispersive areas by controlling simultaneously the 

weight values and tap-positions of the adaptive filter. A constrained area for new-tap 

positions is selected from equally sized subgroups of all possible tap-positions, and it hops 

from one subgroup to another to cover multiple dispersive regions. In [69], authors 

introduced an algorithm to exploit sparsity that is based on minimizing the cost function 

based on a time-dependent constraint on the norm of the filter update. 

According to the research based on the least absolute shrinkage and selection operator 

(LASSO) [70], the sparsity is exploited by incorporating l-norm penalties to the general LMS 

algorithm cost function.  

Many sparse LMS-type algorithms have been introduced lately to exploit sparsity [71][72]. 

In [71], zero-attracting LMS (ZA-LMS) has been proposed by Chen et al., using l1-norm 

sparse penalty on mean square error (MSE). However, the ZA-LMS algorithm only exploits 

limited sparse information. Inspired by the reweight l1-norm sparse signal recovery 

algorithm [73], Chen et al. proposed an improved version, which is called the reweighted 

zero-attracting LMS (RZA-LMS) algorithm [71], to further exploit the sparsity. Beside l1-

norm sparse penalty on LMS, Taheri and Vorobyov proposed lp-norm LMS algorithm [74] 

to enhance the sparse channel estimation performance. Moreover, Gu et al. proposed l0-norm 

LMS (l0-LMS) algorithm in [75] and provided performance analysis in [76]. Later, Gui et 

al. applied the l0-LMS algorithm on adaptive sparse channel estimation [72] to further 

enhance estimation performance. A method in [77] is introducing sparse representations in 

overcomplete transforms, based on minimization of the l0-norm.  
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 An approach is based on minimizing a regularized mean squared error criteria with sparsity 

being promoted by the regularizing term which consists of a diversity measure. new adaptive 

filters that directly exploit the sparsity of the filter are developed by using the scale mixture 

Gaussian distribution as the prior [78] 

Other algorithms allocate proportional step sizes to different elements according to their 

magnitudes, such as the proportionate normalized LMS (PNLMS) algorithm and its variants 

[79]. In [80], the response of two independent adaptive filters are adaptively merged 

together and used to increase the improved proportionate normalized LMS (IPNLMS) 

algorithm robustness to sparse channels.  
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CHAPTER 2 

PROBLEM STATEMENT & CONTRIBUTIONS 

 

2.1. Overview 

A filter is simply a device or process that removes some unwanted component or feature 

from a signal. Conventional filters have fixed parameters but, on the other hand, the adaptive 

filters have the power of being able to adjust their parameters iteratively or recursively 

depending on the environment.      

In this chapter, we are emphasizing the contributions made in this dissertation to the field of 

adaptive filters, both in one-dimensional and two-dimensional aspects. We also outlined the 

materials and presented in each chapter of the dissertation briefly.  

 

2.2. Contributions of the Dissertation  

In this dissertation new different algorithms for improving the performance of the one-

dimensional and two-dimensional least mean square (LMS) algorithm are proposed.  

The first contribution of this dissertation is providing the derivation of the convergence 

analysis of the mixed-norm LMS algorithm. 

In the second contribution, new algorithms based on mixed-norm LMS algorithm are 

proposed. The first algorithm exploits the sparsity of the system by adding l1-norm penalty 

term to the cost function of the MN-LMS algorithm. This term enables us to attract the zero 

and/or near-to-zero filter coefficients to the zero value in a faster way. However, when the 

system is near or exactly non-sparse, the algorithm almost fails.  

The third contribution was proposed to overcome this limitation of first algorithm when the 

system is near or exactly non-sparse, the second algorithm that uses an approximation of l0-
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norm penalty term in the cost function of the MN-LMS algorithm was proposed. This 

provides high performance even with completely non-sparse systems. 

The fourth contribution was to improve the 2D-LMS algorithm performance by proposed a 

new two-dimensional (2D) zero-attracting least mean square (ZA-LMS) adaptive filter by 

imposing a sparsity aware l1-norm penalty term in the cost function of the 2D-LMS 

algorithm. The convergence analysis of the 2D ZA-LMS algorithm are presented and 

stability criterion is derived. 

In general, the objectives of the research conducted in this dissertation include: 

1. Review of the adaptive filters and applications. 

2. Review of the LMS algorithm and its variants. 

3. Investigation of the sparse systems in adaptive filters. 

4. Study of the zero attracting and reweighted zero attracting algorithms and their effect on 

the system performance. 

5. Comprehensive and collective convergence analysis of the recently proposed mixed-

norm LMS algorithm. 

6. Implementation of the proposed algorithms for system identification and acoustic room 

problem.  

7. Practical realization of the proposed 2D ZA-LMS algorithm for image de-noising 

problem.  

8. Convergence analysis of the proposed 2D ZA-LMS algorithm. 

 

2.3. Outlines of the Dissertation 

Chapter one is intended to give general introduction about the adaptive filters. This chapter 

lists the main applications of adaptive filters. Sparsity systems are explained in the chapter 

together with their relations with adaptive filters.  
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Chapter two is talking about the problem statement of this dissertation. The contribution and 

the outlines of the dissertation are explained briefly in this chapter. 

Chapter three is explaining the foundation algorithms of the proposed approaches. Least 

mean square (LMS) algorithm derivation is explained in details. Also, the main properties 

related to the convergence behavior of the LMS algorithm in a stationary environment are 

described.  In this chapter, the convergence analysis of the mixed-norm least mean square 

(MN-LMS) algorithm is derived. MN-LMS algorithm shows outstanding performance 

compared to that of the conventional LMS algorithm. Update equations of the Zero attractive 

LMS and reweighted zero attractive LMS are listed in this chapter. At the end of the chapter, 

the two-dimensional LMS (2D-LMS) adaptive filter derivation is provided. 

Chapter four explains the two proposed algorithms based on MN-LMS algorithm.  Based on 

the fact that MN-LMS algorithm is performing better than LMS algorithm, two algorithms 

that exploit the sparsity of the system have been derived by adding l1-norm penalty or an 

approximation of l0-norm penalty to the cost function of the MN-LMS algorithm. 

Experiments with different settings are provided at the end of the chapter. 

In Chapter five, the derivation of the proposed two-dimensional ZA-LMS algorithm is 

provided. Different data reuse patterns are explained. Experiments are conducted to compare 

the proposed algorithm to the conventional 2D-LMS algorithm. 

At the end of the dissertation, conclusions and discussions on the introduced algorithms and 

simulation results are presented in Chapter six. Furthermore, possible future work to modify/ 

improve the proposed algorithms or other conventional algorithms is included and discussed. 

 

 

 

 

 



21 

 

 

CHAPTER 3 

BASICS OF THE RELATED ADAPTIVE ALGORITHMS 

 

3.1.Overview  

This chapter gives the mathematical explanation of the related adaptive algorithms. These 

algorithms are the foundation for the proposed algorithms in Chapter 4 and Chapter 5. The 

steps of these algorithms together with some of their convergence analysis are given in the 

following sections.  

 

3.2.Least Mean Square (LMS) Algorithm 

The least mean square algorithm is a well-known adaptive algorithm in signal processing 

[5]. The optimal (Wiener) solution is given as  

𝒘𝒐 = 𝐑−𝟏𝐩,                    (3.1) 

where the autocorrelation matrix 𝐑 = 𝐸[𝐱(𝑘)𝐱𝑇(𝑘)] and the cross correlation 𝐩 =

𝐸[𝑑(𝑘)𝐱(𝑘)]  assuming that 𝑑(𝑘) and 𝐱(𝑘) are jointly wide-sense stationary. 

If the estimates of R, denoted by   𝐑̂(𝑘), and of p, denoted by 𝐩̂(𝑘), are available and good, 

a steepest-descent-based algorithm can be utilized to find the Wiener solution of (3.1) as  

𝐰(𝑘 + 1) = 𝐰(𝑘) − 𝜇𝐠̂𝒘(𝑘)                        

𝐰(𝑘 + 1) = 𝐰(𝑘) + 2𝜇 (𝐩̂(𝑘) − 𝐑̂(𝑘)𝐰(𝑘)),                                            (3.2) 

for 𝑘 = 0,1,2, …, where 𝐠̂𝒘(𝑘) is an estimate of the gradient vector of the cost 

function with respect to the filter weight vector. 

A solution to estimate the gradient vector is by using instantaneous estimates for R and p as  
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𝐑̂(𝑘) = 𝐱(𝑘)𝐱𝑇(𝑘),    

𝐩̂(𝑘) = 𝑑(𝑘)𝐱𝑇(𝑘).                                                                                     (3.3) 

The gradient estimate will be given as 

𝐠̂𝒘(𝑘)  = −2𝑑(𝑘)𝐱(𝑘) + 2𝐱(𝑘)𝐱𝑇(𝑘)𝐰(𝑘) 

              = 2𝐱(𝑘)(−𝑑(𝑘) + 𝐱𝑇(𝑘)𝐰(𝑘))    

              = −2𝑒(𝑘)𝐱(𝑘).                                                           (3.4) 

Replacing the cost function by the instantaneous square error 𝑒2(𝑘), instead of the MSE, the 

above gradient estimate will become the true gradient vector since 

𝜕𝑒2(𝑘)

𝜕𝐰
=

[
 
 
 
 
 
 
 
 
 2𝑒(𝑘)

𝜕𝑒(𝑘)

𝜕𝑤0(𝑘)

 2𝑒(𝑘)
𝜕𝑒(𝑘)

𝜕𝑤1(𝑘)
 

⋮

 2𝑒(𝑘)
𝜕𝑒(𝑘)

𝜕𝑤𝑁−1(𝑘)]
 
 
 
 
 
 
 
 
 

 

              = −2𝑒(𝑘)𝐱(𝑘) 

              = 𝐠̂𝒘(𝑘).                                                                                         (3.5) 

The gradient-based algorithm is known as the least mean square (LMS) algorithm, whose 

weight updating equation is 

𝐰(𝑘 + 1) = 𝐰(𝑘) + 2𝜇𝑒(𝑘)𝐱(𝑘),                        (3.6) 

where the convergence rate 𝜇 should be selected carefully to ensure convergence. 

Fig. 3.1 shows the block diagram of the LMS algorithm for an input 𝑥(𝑘). One iteration of 

the LMS requires 𝑁 + 2 multiplications for the filter weight updating and 𝑁 + 1 

multiplications for the error generation. The weight of the adaptive filter can be initialized 

with zeros.  
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Figure 3.1 Block diagram of the LMS Adaptive FIR Filter 

 

3.2.1. Some Properties of the LMS Algorithm 

3.2.1.1. Gradient Behavior 

The ideal gradient direction required to perform a search on the MSE surface for the 

optimum coefficient vector solution is 

𝐠𝒘(𝑘)  = 2𝐸[𝐱(𝑘)𝐱𝑇(𝑘)]𝐰(𝑘) − 2𝐸[𝑑(𝑘)𝐱(𝑘)] 

              = 2[𝐑𝐰(𝑘) − 𝐩].                   (3.7) 

In the LMS algorithm, instantaneous estimates of R and p are used to determine the search 

direction, i.e. 

 𝐠̂𝒘(𝑘)  = 2[𝐱(𝑘)𝐱𝑇(𝑘)𝐰(𝑘) − 𝑑(𝑘)𝐱(𝑘)].                (3.8) 
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As expected, the direction determined by (3.8) is totally different from that of (3.7). 

Therefore, by using the more computationally attractive gradient direction of the LMS 

algorithm, the convergence behavior is different from the steepest-descent algorithm. 

On average, it can be said that the LMS gradient direction tends to approach the ideal 

gradient direction since, for a fixed weight vector 𝐰, 

𝐸[𝐠̂𝒘(𝑘) ] = 2{𝐸[𝐱(𝑘)𝐱𝑇(𝑘)]𝐰 − 𝐸[𝑑(𝑘)𝐱(𝑘)]} 

                    = 𝐠𝒘.                                 (3.9) 

Hence, vector 𝐠̂𝒘(𝑘) can be considered as an unbiased instantaneous estimate of 𝐠𝒘,. In an 

ergodic environment, if, for a fixed 𝐰 vector, 𝐠̂𝒘(𝑘)  is calculated for a large number of 

inputs and reference signals, the average direction tends to 𝐠𝒘, i.e., 

lim
N→∞

1

𝑁
∑ 𝐠̂𝒘(𝑘 + 𝑖)𝑁

𝑖=1  →  𝐠𝒘.            (3.10) 

 

3.2.1.2. Convergence Behavior of the Weights Vector 

Assume that an unknown FIR filter with weight vector 𝐰𝒐 is being identified by an adaptive 

FIR filter, using the LMS algorithm. Measurement white noise 𝑣(𝑘) with zero mean and 

variance 𝜎2  is added to the output of the unknown system. The error in the adaptive-filter 

weights as related to the ideal weights vector 𝐰𝒐, in each iteration, is described by the 𝑁 

length vector 

∆𝐰(𝑘) = 𝐰(𝑘) −  𝐰𝒐.               (3.11) 

Here, the LMS algorithm can also be described as 

∆𝐰(𝑘 + 1) = ∆𝐰(𝑘) + 2𝜇 𝑒(𝑘)𝐱(𝑘) 

                      = ∆𝐰(𝑘) + 2𝜇 𝐱(𝑘) [𝐱𝑇(𝑘)𝐰𝒐 + 𝑛(𝑘) − 𝐱𝑇(𝑘)𝐰(𝑘)] 

                      = ∆𝐰(𝑘) + 2𝜇 𝐱(𝑘) [𝑒𝑜(𝑘) − 𝐱𝑇(𝑘)∆𝐰(𝑘)] 

                      =  [𝐈 −  2𝜇 𝐱(𝑘)𝐱𝑇(𝑘)]∆𝐰(𝑘) + 2𝜇 𝑒𝑜(𝑘)𝐱(𝑘),                  (3.12) 
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where 𝑒𝑜(𝑘) is the optimum output error given as 

𝑒𝑜(𝑘) = 𝑑(𝑘) − 𝐰𝒐
𝑇𝐱(𝑘) 

            = 𝐰𝒐
𝑇𝐱(𝑘) + 𝑣(𝑘) − 𝐰𝒐

𝑇𝐱(𝑘) 

            = 𝑣(𝑘).                   (3.13) 

The expected error in the weight vector is then given as 

𝐸[∆𝐰(𝑘 + 1)] =  𝐸{[ 𝐈 −  2𝜇 𝐱(𝑘)𝐱𝑇(𝑘)]∆𝐰(𝑘)} + 2𝜇 𝑒𝑜(𝑘)𝐱(𝑘).     (3.14) 

If it is assumed that the elements of 𝐱(𝑘) are statistically independent of the elements of 

∆𝐰(𝑘) and 𝑒𝑜(𝑘), (3.14) can be simplified as  

𝐸[∆𝐰(𝑘 + 1)] =  {𝐈 −  2𝜇 𝐸[ 𝐱(𝑘)𝐱𝑇(𝑘)]}𝐸[∆𝐰(𝑘)]      

                            =  {𝐈 −  2𝜇𝐑}𝐸[∆𝐰(𝑘)].                 (3.15) 

The first assumption is justified if we consider that the deviation in the parameters is reliant 

on previous input-tap vectors only, whereas in the second assumption we also assumed that 

the error signal at the optimal solution is orthogonal to the coefficients of the input-tap 

vector. The expression in (3.15) becomes  

𝐸[∆𝐰(𝑘 + 1)]  =  (𝐈 −  2𝜇𝐑)𝑘+1𝐸[∆𝐰(0)].                (3.16) 

Premultiplying (3.16) by 𝐐𝑇, where 𝐐 is the unitary matrix that diagonalizes 𝐑 through a 

similarity transformation, leads to 

𝐸[𝐐𝑇∆𝐰(𝑘 + 1)]  =  (𝐈 −  2𝜇 𝐐𝑇𝐑𝐐)𝑘+1𝐸[𝐐𝑇∆𝐰(0)] 

                               = 𝐸[∆𝐰′(𝑘 + 1)] 

                               = (𝐈 −  2𝜇 𝚲)𝐸[∆𝐰′(𝑘)] 

                          =[

1 −  2𝜇𝜆0             0                  …                     0
0                     1 −  2𝜇𝜆1           …                      0
⋮                            ⋮                       ⋱                      ⋮

0                          0                       …    1 −  2𝜇𝜆𝑁−1

] 𝐸[∆𝐰′(𝑘)],       (3.17) 
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where 𝚲 is the matrix of eigenvalues of 𝐑 and Δ𝐰′(𝑘 +  1)  =  𝐐𝑇Δ𝐰(𝑘 +  1) is the 

rotated-weight error vector. The used rotation returned an equation where the driving matrix 

is diagonal, making it easier to analyze the dynamic behavior of the equation. Alternatively, 

the equation in (3.17) can be written as 

𝐸[∆𝐰′(𝑘 + 1)] = (𝐈 −  2𝜇 𝚲)𝑘+1𝐸[∆𝐰′(𝑘)] 

              = 

[
 
 
 

(1 −  2𝜇𝜆0 )
𝑘+1          0                       …                           0

0                         ( 1 −  2𝜇𝜆1)
𝑘+1         …                           0

⋮                                       ⋮                         ⋱                            ⋮
0                                      0                     …   (1 −  2𝜇𝜆𝑁−1)

𝑘+1]
 
 
 
𝐸[∆𝐰′(0)],     (3.18) 

This equation shows that to ensure convergence of the weights in the mean, the convergence 

rate or the step-size of the LMS algorithm 𝜇 must be chosen as 

  0 < 𝜇 <
1

𝜆𝑚𝑎𝑥
,                     (3.19) 

where 𝜆𝑚𝑎𝑥 represents the largest eigenvalue of 𝐑. Values of 𝜇 in this range ensures that all 

elements of the diagonal matrix in (3.18) reach to zero as 𝑘 → ∞, since −1 < (1 − 2𝜇𝜆𝑖) <

1, for 𝑖 =  0, 1, . . . , 𝑁 − 1. As a result 𝐸[Δ𝐰(𝑘 +  1)] reaches to zero for large 𝑘. The 

selection of 𝜇 as above explained guarantees that the mean value of the coefficient vector 

approaches the optimum coefficient vector 𝐰𝒐. It is worth mentioning that, if the matrix 𝐑 

has a large eigenvalue spread, it is recommended to select a value for 𝜇 much smaller than 

the upper bound. As a result, the convergence speed of the weights will be mainly dependent 

on the value of the smallest eigenvalue, responsible for the slowest mode in (3.18). The main 

assumption for the above analysis is the so-called independence theory, which assumes all 

vectors 𝐱(𝑖) for  𝑖 =  0, 1, . . . , 𝑘, statistically independent. This assumption allowed us to 

assume Δ𝐰(𝑘) independent of 𝐱(𝑘)𝐱𝑇(𝑘) in equation (3.14). Such an assumption, 

regardless of not being strictly valid especially when 𝐱(𝑘) contains the elements of a delay 

line, leads to theoretical results consistent with the experimental results. 
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3.2 Zero Attracting Least Mean Square (ZA-LMS) Algorithm 

Consider a linear system with its input signal 𝐱(𝑘) and desired output 𝑑(𝑘) related by 

𝑑(𝑘) = 𝐡𝑇𝐱(𝑘) + 𝑣(𝑘),               (3.20) 

where 𝐡 = [ℎ0, … , ℎ𝑁−1]
𝑇 is the unknown system with length 𝑁, 𝐱(𝑘) = [𝑥(𝑘), … , 𝑥(𝑘 −

𝑁 + 1)]𝑇 is the system input vector, and 𝑣(𝑘) is the additive noise and independent 

with 𝐱(𝑘). To adaptively estimate the unknown system coefficients vector 𝐡 using the 

system input vector 𝐱(𝑘) and output signal 𝑑(𝑘), the ZA-LMS algorithm [71] updates its 

estimate by 

𝐰(𝑘 + 1) = 𝐰(𝑘) + 𝜇 𝑒(𝑘)𝐱(𝑘) −  𝜌 𝑠𝑔𝑛[𝐰(𝑘)],                                  (3.21) 

where 𝜇 is the step size, 𝜌 is the zero-attractor controller, 𝑠𝑔𝑛[·] is the sign function, the 

vector 𝐰(𝑘) = [𝑤0(𝑘), … ,𝑤𝑁−1(𝑘)]𝑇 denotes filter weights, and 𝑒(𝑘) is the instantaneous 

estimation error defined as 

𝑒(𝑘) = 𝑑(𝑘) − 𝐰𝑇(𝑘)𝐱(𝑘)             (3.22) 

 

3.2.1.  Convergence Analysis of the ZA-LMS Algorithm 

The mean square convergence analysis of the ZA-LMS algorithm [81] is shown in this 

section. Assuming an i.i.d. zero-mean Gaussian input signal 𝐱(𝑘) and a zero-mean white 

noise 𝑣(𝑘), the second order stability condition was analyzed, the steady-state mean square 

deviation (MSD) based on the system sparsity, system response length, and filter parameters 

was derived and a criterion on filter parameter selection for the ZA-LMS to improve the 

standard LMS algorithm was proposed. 

The filter misalignment vector can be defined as  

𝛅(𝑘) = 𝐰(𝑘) − 𝐡.             (3.23) 
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Defining the mean 𝜺(𝑘) and auto-covariance matrix 𝐒(𝑘) of 𝛅(𝑘), respectively, as 

𝜺(𝑘) = 𝐸[𝛅(𝑘)],             (3.24) 

𝐒(𝑘) = 𝐸[𝒛(𝑘)𝒛𝑇(𝑘)],                                                                                                     (3.25) 

where 𝐸[·] denotes the statistical expectation and 𝒛(𝑘) is the zero-mean misalignment 

vector. 

𝒛(𝑘) = 𝛅(𝑘) − 𝐸[𝛅(𝑘)].                     (3.26) 

The MSD is used for performance evaluation. The instantaneous MSD is defined as 

   MSD𝑖𝑛𝑠(𝑘) = 𝐸[‖𝛅(𝑘)‖2
2] = ∑ Γ𝑖(𝑘)𝑁−1

𝑖=0 ,                    (3.27) 

where Γ𝑖(𝑘) denotes the ith-element MSD and is defined based on the ith element of 𝛅(𝑘) as 

Γ𝑖(𝑘) = 𝐸[𝛿𝑖
2(𝑘)] = 𝑆𝑖𝑖(𝑘) +𝜀𝑖

2(𝑘),    𝑖 = 0,… ,𝑁 − 1.                             (3.28) 

𝑆𝑖𝑖(𝑘) is the ith diagonal element of 𝐒(𝑘), and 𝜀𝑖(𝑘) is the ith element of 𝜺(𝑘).  

 

3.2.2. Mean Square Convergence 

Combining (3.20), (3.21), (3.22) and (3.23), we obtain 

𝛅(𝑘 + 1) = 𝐀(𝑘)𝛅(𝑘) + 𝜇𝐱(𝑘)𝑣(𝑘) − 𝜌𝑠𝑔𝑛[𝐰(𝑘)],                 (3.29) 

where 

𝐀(𝑘) = 𝐈𝑁 − 𝜇𝐱(𝑘)𝐱𝑇(𝑘),              (3.30) 

and 𝐈𝑁denotes the 𝑁 × 𝑁 identity matrix. The expectation of (3.29) will result in 

𝜺(𝑘 + 1) = (1 − 𝜇𝜎𝑥
2)𝜺(𝑘) − 𝜌𝐸[𝑠𝑔𝑛[𝐰(𝑘)]],                  (3.31) 

where 𝜎𝑥
2 denotes the variance of 𝐱(𝑘). Combining ( 3.26), (3.29) and (3.29), we obtain 

𝒛(𝑘 + 1) = 𝐀(𝑘)𝒛(𝑘) + 𝜇𝐁(𝑘)𝜺(𝑘) + 𝜇𝐱(𝑘)𝑣(𝑘) + 𝜌𝒑(𝑘),       (3.32) 
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where 

𝐁(𝑘) = 𝐸[𝐱(𝑘)𝐱𝑇(𝑘)] − 𝐱(𝑘)𝐱𝑇(𝑘),          (3.33) 

𝒑(𝑘) = 𝐸[𝑠𝑔𝑛[𝐰(𝑘)]] − 𝑠𝑔𝑛[𝐰(𝑘)].            (3.34) 

It is straightforward to verify that both 𝐁(𝑘) and 𝒑(𝑘) are of zero mean. Considering the 

independence assumption, i.e. ,  𝛅(𝑘),  𝐱(𝑘), and 𝑣(𝑘) are mutually independent, 

substituting (3.32) into (3.25) leads to 

𝐒(𝑘 + 1) = 𝐸[𝐀(𝑘)𝒛(𝑘)𝒛𝑇(𝑘)𝐀𝑇(𝑘)] + 

                       𝜇2𝐸[𝐁(𝑘)𝜺(𝑘)𝜺𝑇(𝑘)𝐁𝑇(𝑘)] + 𝜇2𝜎𝑥
2𝜎𝑣

2𝐈𝑁 + 𝜌2𝐸[𝒑(𝑘)𝒑𝑇(𝑘)] 

                      +𝜌𝐸[𝐀(𝑘)𝒛(𝑘)𝒑𝑇(𝑘)] + 𝜌𝐸[𝒑(𝑘)𝒛𝑇(𝑘)𝐀𝑇(𝑘)],                (3.35) 

where 𝜎𝑣
2 is the variance of 𝑣(𝑘). Using the facts that the fourth-order moment of a Gaussian 

variable is equal to three times the variance square and that 𝐒(𝑘) is symmetric, we get 

𝐸[𝐀(𝑘)𝒛(𝑘)𝒛𝑇(𝑘)𝐀𝑇(𝑘)] = (1 − 2𝜇𝜎𝑥
2 + 2𝜇2𝜎𝑥

4)𝐒(𝑘) 

                                                     +𝜇2𝜎𝑥
4𝑡𝑟[𝐒(𝑘)]𝐈𝑁,         (3.36) 

𝐸[𝐁(𝑘)𝜺(𝑘)𝜺𝑇(𝑘)𝐁𝑇(𝑘)] = 𝜎𝑥
4 {𝜺(𝑘)𝜺𝑇(𝑘) + 𝑡𝑟[𝜺(𝑘)𝜺𝑇(𝑘)]}𝐈𝑁,       (3.37) 

where 𝑡𝑟[·] represents the trace of a matrix. Also, with (3.23), (3.26) and (3.34) we obtain 

𝐸[𝐀(𝑘)𝒛(𝑘)𝒑𝑇(𝑘)] =  𝐸[𝒑(𝑘)𝒛𝑇(𝑘)𝐀𝑇(𝑘)] 

                                     = (1 − 2𝜎𝑥
2)𝐸[𝐰(𝑘)𝒑𝑇(𝑘)].           (3.38) 

Combining (3.35) - (3.38) we obtain 

𝑡𝑟[𝐒(𝑘 + 1)] = [1 − 2𝜇𝜎𝑥
2 + (𝑁 + 2)𝜇2𝜎𝑥

4]𝑡𝑟[𝐒(𝑘)] 

                             +(𝑁 + 1)𝜇2𝜎𝑥
4𝜺𝑇(𝑘)𝜺(𝑘) + 𝑁𝜇2𝜎𝑣

2𝜎𝑥
2 + 𝜌2𝐸[𝒑𝑇(𝑘)𝒑(𝑘)] 

                             +2𝜌(1 − 𝜇𝜎𝑥
2)𝐸[𝐰(𝑘)𝒑𝑇(𝑘)].                                      (3.39) 
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𝒑(𝑘) is bounded and thus 𝐸[𝐰𝑇(𝑘)𝒑(𝑘)] converges. Then, the adaptive filter is stable if, 

and only if, 

  |1 − 2𝜇𝜎𝑥
2 + (𝑁 + 2)𝜇2𝜎𝑥

4| < 1,                   (3.40) 

which can be simplified to 

0 < 𝜇 <
2

(𝑁+2)𝜎𝑥
2.               (3.41) 

This shows that the ZA-LMS algorithm has the same stability constraint as the conventional 

LMS algorithm. 

  

3.3  Reweighted Zero Attracting Least Mean Square (RZA-LMS) Algorithm 

The reweighted l0-norm minimization for sparse signal recovery has been studied in [82]. 

The resulting update equation is  

𝐰(𝑘 + 1) = 𝐰(𝑘) − 𝜌 
𝑠𝑔𝑛 [𝐰(𝑘)]

1+𝜀|𝐰(𝑘−1)|
+ 𝜇𝑒(𝑘)𝐱(𝑘),                             (3.42) 

where 𝜌 = 𝜇𝛾 and 𝑠𝑔𝑛[. ] is the sign function defined in (1.7). The absolute value operator 

as well as the 𝑠𝑔𝑛[. ] and the division operator in the last term of (3.42) are all component-

wise. Therefore, the ith element of 
𝑠𝑔𝑛 [𝐰(𝑘)]

𝜀+|𝐰(𝑘−1)|
  is 

𝑠𝑔𝑛 [𝑤𝑖(𝑘)]

𝜀+|𝑤𝑖(𝑘−1)|
. Therefore, the reweighted l0-

norm penalized LMS algorithm is definite to converge to the global minimum under certain 

conditions. 

 

3.3.1. Convergence Analysis 

The update equation for the coefficient error vector of the l0-norm penalized LMS 𝛅(𝑘) can 

be written as 

𝛅(𝑘 + 1) = 𝛅(𝑘) − 𝜇𝐱(𝑘)𝐱𝑇(𝑘)𝛅(𝑘) + 𝜇𝑣(𝑘)𝐱(𝑘) − 𝜌 
𝑠𝑔𝑛 [𝐰(𝑘)]

𝜀+|𝐰(𝑘−1)|
.       (3.43) 
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From (3.43) we can derive the evolution equation for 𝐸[𝛅(𝑘)]. Since 𝑣(𝑘) and 𝐱(𝑘) are 

independent and 𝑛(𝑘) is assumed to have zero mean, there is 𝐸[𝜇𝑛(𝑘)𝐱(𝑘)] = 0. Then the 

evolution equation is 

𝐸[𝛅(𝑘 + 1)] = (𝐈 − 𝜇𝐑)𝐸[𝛅(𝑘)] − 𝜌 𝐸 [
𝑠𝑔𝑛 [𝐰(𝑘)]

𝜀+|𝐰(𝑘−1)|
].         (3.44) 

It is easy to see that the term 
𝑠𝑔𝑛 [𝐰(𝑘)]

𝜀+|𝐰(𝑘−1)|
 is bounded below and above element-wise as 

−
1

𝜀
≤

𝑠𝑔𝑛 [𝐰(𝑘)]

𝜀+|𝐰(𝑘−1)|
≤

1

𝜀
,             (3.45) 

where 1 is the vector with all of its entries set to one. Indeed, 1 is always less than or equal 

to 𝑠𝑔𝑛 [𝐰(𝑘)], while 1 is always larger than or equal to 𝑠𝑔𝑛 [𝐰(𝑘)]. The equation of 

𝜌 𝐸 [
𝑠𝑔𝑛 [𝐰(𝑘)]

𝜀+|𝐰(𝑘−1)|
] is bounded. After taking expectation, 

[𝐸[𝐜(𝑘 + 𝑁)]]
𝑖
= (1 − 𝜇𝜆𝑖)

𝑀[𝐸[𝐜(𝑘)]]
𝑖
 

                                    −∑ (1 − 𝜇𝜆𝑖)
𝑚[𝐰′(𝑘 + 𝑁 − 𝑚 − 1)]𝑖

𝑁−1
𝑚=0            (3.46) 

Since the largest eigenvalue of  𝐈 − 𝜇𝐑 is smaller than 1, then all the diagonal elements 

(1 − 𝜇𝜆𝑖) are smaller than 1. Also, note that the ith entry of the vector 𝐰′(𝑘) is bounded. 

The other term on the right-hand side of (3.46) approaches zero as 𝑁 → ∞. As a result, 

[𝐸[𝐜(𝑘 + 𝑁)]]
𝑖
 as well as the whole vector 𝐸[𝐜(𝑘 + 𝑁)] are bounded when 𝑁 → ∞. Given 

that 𝐸[𝐜(𝑘)] is a rotated version of 𝐸[𝛅(𝑘)],  then the coefficient error vector 𝛅(𝑘) is also 

bounded in the mean sense. Therefore, given the largest eigenvalue of 𝐈 − 𝜇𝐑 is smaller than 

1, then 𝐸[𝛅(𝑘)] is bounded as 𝑘 → ∞. 

𝐸[𝛅(𝑘 + 1)] = (𝐈 − 𝜇𝐑)𝐸[𝛅(𝑘)].           (3.47) 
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3.4 Two-Dimensional LMS (2D-LMS) Algorithm 

The two-dimensional LMS (2D-LMS) adaptive filter operation is illustrated in Fig. 3.2 

where the error 𝑒𝑘 is used to update the filter weights [83]. The LMS algorithm is based on 

the steepest decent method. In this method, the update of next weight matrix is based on the 

present weight matrix and the negative gradient of the error power. This method will be used 

to find an approximate solution for the weights. According to this technique, the 2-

dimensional weight adjustment algorithm is given in matrix form as follows 

𝐖𝑘+1 = 𝐖𝑘 + 𝜇 𝐆̂𝑘,                    (3.48) 

where 𝐖𝑘+1 is the weight matrix after updating, 𝐖𝑘 is the weight matrix before updating 

and 𝐆̂𝑘 is estimate for the 2D instantaneous gradient of 𝐸{𝑒𝑘
2} with respect to 𝐖𝑘. 

𝐆̂𝑘 = 
𝜕𝐸{𝑒𝑘

2}

𝜕𝐖𝑘
=

𝜕𝐸{(𝐃(𝑚,𝑛)−𝐖𝒌
𝑇𝐗𝑘(𝑚−𝑟,𝑛−𝑐))

𝟐
}

𝜕𝐖𝑘
.           (3.49)  

Equation (3.49) which defines the true two-dimensional instantaneous gradient of the mean 

squared error during the kth iteration, can be written in an explicit matrix form as 

𝐆̂𝑘 =

[
 
 
 
 
 
 

𝜕{𝐸[𝑒𝑘
2]}

𝜕𝑤𝑘(0,0)
  …   

𝜕{𝐸[𝑒𝑘
2]}

𝜕𝑤𝑘(0,𝑁−1)

⋮
…                                …

⋮
𝜕{𝐸[𝑒𝑘

2]}

𝜕𝑤𝑘(𝑁−1,0)
      …   

𝜕{𝐸[𝑒𝑘
2]}

𝜕𝑤𝑘(𝑁−1,𝑁−1)]
 
 
 
 
 
 

             (3.50) 
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Figure 3.2 The two-dimensional LMS adaptive filter structure [83] 

 

The LMS algorithm estimates an instantaneous gradient 𝐆𝐈 which is the gradient of the 

squared error of a single iteration, such that 

𝐆𝐈(𝑟, 𝑐) =
𝜕𝑒𝑘

2

𝜕𝐖𝑘
= 2𝑒𝑘

𝜕𝑒𝑘

𝜕𝐖𝑘
.               (3.51) 

From (3.51) we obtain 

𝜕𝑒𝑘
2

𝜕𝐖𝑘
= 0 − 𝐗(𝑚 − 𝑟, 𝑛 − 𝑐) 

          = −𝐗(𝑚 − 𝑟, 𝑛 − 𝑐).               (3.52) 
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Then,  

𝐆𝐈(𝑟, 𝑐) = −𝐗(𝑚 − 𝑟, 𝑛 − 𝑐).              (3.52) 

Or the estimated instantaneous gradient matrix 𝐆𝐈 is  

𝐆𝐈 = −𝐗𝑘.              (3.53) 

Substituting (3.51) and (3.53) into (3.48) we get 

𝐖𝑘+1 = 𝐖𝑘 + 2𝜇 𝑒𝑘𝐗𝑘,                    (3.54) 

which can be rewritten as  

𝐖𝑘+1(𝑟, 𝑐) = 𝐖𝑘(𝑟, 𝑐) + 2𝜇 𝑒𝑘𝐗𝑘(𝑚 − 𝑟, 𝑛 − 𝑐).                (3.55) 

 

Equations (3.54) and (3.55) give the two-dimensional weight updating algorithm for the 

2DLMS adaptive filter. The algorithm doesn’t require any averaging, differentiation or any 

matrix operations. It delivers good nonstationary performance as its convergence is 

guaranteed regardless of the initial conditions.  
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CHAPTER 4 

THE PROPOSED VARIANTS OF MIXED-NORM LMS ALGORITHM 

 

4.1. Overview 

The mixed-norm least mean square (MN-LMS) algorithm has shown outstanding 

performance compared to that of the conventional LMS algorithm [56]. In this chapter, the 

convergence analysis of the MN-LMS algorithm is derived. Based on that, two algorithms 

that exploit the sparsity of the system have been derived. The first algorithm is proposed by 

adding l1-norm penalty to the cost function of the MN-LMS algorithms. This term enables 

us to attract the zero and/or near-to-zero filter coefficients to the zero value faster. However, 

when the system is near or exactly non-sparse, the algorithm almost fails. To overcome this 

limitation, we propose another algorithm that uses an approximation of l0-norm penalty term 

in the cost function of the MN-LMS algorithm. This provides high performance even with 

completely non-sparse systems. The performances of the proposed algorithms are compared 

to those of the LMS and MN-LMS algorithms in an acoustic sparse system identification 

setting. These proposed algorithms provide significant performances compared to the other 

algorithms under different sparsity levels and signal-to-noise ratios (SNRs). 

 

4.2. Related Work 

Adaptive algorithms are usually used to update the filter weights by minimizing the error 

function; which is represented as the difference between the desired response and the real 

output of the adaptive filter. Adaptive filters have a wide range of applications such as; 

system identification [84][85], echo and/or adaptive noise cancelation [44][86], linear 

prediction [87][88], adaptive line enhancement [82][89], etc. 

In the last decades, the least mean square (LMS) algorithm has gained much of interest 

because to its simplicity. The LMS algorithm is, basically, a stochastic gradient-based 
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algorithm that iteratively updates the weights of the filter to converge to the optimum error. 

In many signal processing applications; namely the system identification or channel 

estimation problem, the impulse response of the system/channel may have sparse nature. 

Sparsity means that only small coefficients have relatively large magnitudes and the others 

are zero or near-zero. The sparsity can be handled by imposing the lp-norm to the cost 

function of the classical LMS algorithm. In [90], authors performed theoretical performance 

analysis of 𝑙0-LMS for white Gaussian input signals based on sparse systems. In [71], 

researchers introduced two new algorithms with 𝑙1-relaxation to enhance the performance of 

the LMS algorithm. Their algorithms generated a zero-attractor in the LMS iteration which 

in turn helped to accelerate the convergence when identifying sparse systems. In [91], 

authors proposed adaptive algorithm which adapts to the degree of sparseness, using a 

convex combination based approach.  

Introduction of p-norm-like penalty in the cost function of the LMS algorithm helped 

exerting zero attraction in LMS iterations in the work of Wu and Tong [92]. This in turn 

improved the performance of norm constraint based LMS algorithms. Penalized LMS 

algorithms were proposed in [93] using lp-norm and 𝑙1-norm. This work showed that such 

sparsity-aware LMS algorithms achieve better performance than the standard LMS 

algorithm when the system to be estimated is sparse or near-sparse.  

The mixed norm LMS algorithm recently proposed by Boukis et al. [56] is based on the least 

sum of exponentials (LSE). LSE provides a generalization of the class of weighted mixed 

norm algorithms. It is derived by minimizing a sum of error exponentials. The algorithm has 

shown significant performance compared to that of the conventional LMS algorithm. 

In this chapter, the convergence analyses of the MN-LMS algorithm in terms of mean and 

mean-square sense have been derived. We also propose two zero-attracting versions of the 

algorithm which have shown high performance in system identification setting, particularly, 

when the unknown system is a sparse or a near-sparse system. 
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4.3. The Mixed Norm Least Mean Square (MN-LMS) Algorithm 

Before deriving the proposed algorithm, we introduce a review of the MN-LMS algorithm. 

In the system identification setting shown in Fig. 4.1, the output of a linear system with input 

signal 𝐱(𝑘) is given by 

𝑑(𝑘) = 𝐡𝑻𝐱(𝑘) + 𝑣(𝑘),                     (4.1) 

where 𝑑(𝑘) the desired response of the adaptive is filter, 𝐡  is the impulse response of the 

unknown system, 𝐱(𝑘) is the input-tap vector, 𝑣(𝑘) is the observation noise and [. ]𝑇 is 

transposition operator.  

 

 

Figure 4.1 Block diagram of a system identification setting. 

 

The cost function of the MN-LMS algorithm [56] is given by 

𝐽𝒘(𝑘) = (𝑒𝑥𝑝(𝑒(𝑘)) + 𝑒𝑥𝑝(−𝑒(𝑘)))
𝟐

,                       (4.2) 

where 𝐰(𝑘) is the filter-tap weight vector with length N and 𝑒(𝑘) is the instantaneous error 

and defined by 

𝑒(𝑘) =  𝑑(𝑘) − 𝐰𝑻(𝑘)𝐱(𝑘).                 (4.3) 
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Deriving (4.2) with respect to 𝐰(𝑘) gives 

𝜕𝐽(k)

𝜕𝐰(𝑘)
= −4𝐱(𝑘)𝑠𝑖𝑛ℎ (𝑒(𝑘)).              (4.4) 

The tap-update equation is given by 

𝐰(𝑘 + 1) = 𝐰(𝑘) −
𝜇

2

𝜕𝐽(𝑘)

𝜕𝐰(𝑘)
,                (4.5) 

where μ is the step-size controlling convergence and the steady-state behaviors of the 

algorithm. Substituting (4.4) in (4.5) and rearranging, the update equation of the MN-LMS 

algorithm becomes 

𝐰(𝑘 + 1) = 𝐰(𝑘) + 2𝜇𝐱(𝑘)𝑠𝑖𝑛ℎ(𝑒(𝑘)).            (4.6) 

In order to test how the algorithm is successful and robust, convergence analyses of the 

algorithm in the mean sense and the mean-square sense are performed.  

 

4.4. Convergence Analysis of the MN-LMS Algorithm 

The convergence analysis of the MN-LMS algorithm is performed in this section. Through 

the analysis, the input signal 𝐱(𝑘) is assumed to be Gaussian with zero-mean and 

variance 𝜎𝑥
2. The misalignment vector is defined as 

𝛅(k) = 𝐰(k) − 𝐡,                (4.7) 

and hence, the instantaneous error becomes 

𝑒(𝑘) = 𝛅𝑇(𝑘)𝐱(𝑘) + 𝜂(𝑘).              (4.8) 

Combining (4.6) and (4.7), we obtain 

𝛅(𝑘 + 1) = 𝛅(𝑘) + 2𝜇𝐱(𝑘)sinh (𝑒(𝑘)).                                                             (4.9) 

 

 



39 

 

4.4.1. Convergence in the Mean Sense 

Let us define the mean-square-error (MSE) as 

𝛆(𝑘) = 𝐸{𝛅(𝑘)𝛅(𝑘)𝑇}.                                                                           (4.10) 

Using the relation, sinh(𝑒(𝑘)) =
(𝒆(𝑘))

2𝑖+1

(2𝑖+1)!
 and substituting (4.1) and (4.3) in (4.9) we obtain 

𝛅(𝑘 + 1) = 𝛅(𝑘) + 2𝜇𝐱(𝑘)∑
[𝐱(𝑘)𝑇𝛅(𝑘)+𝜂(𝑘)]2𝑖

(2𝑖+1)!

∞
𝑖=0 .                                (4.11) 

Taking the expectation of both sides of (4.11) yields 

𝐸{𝛅(𝑘 + 1)} ≈ 𝐸{𝛅(𝑘)} − 2𝜇𝐱(𝑘)∑
(2𝑖 + 1)2𝑖

(2𝑖 + 1)!
𝐸{𝜂𝑘

2𝑖}

∞

𝑖=0

𝐑𝛅(𝑘) 

                                                     = {𝐈 − 2𝜇 ∑
(2𝑖+1)2𝑖

(2𝑖+1)!
𝐸{𝜂𝑘

2𝑖}𝐑∞
𝑖=0 } 𝛅(𝑘),                                  (4.12) 

where is the autocorrelation matrix defined as 𝐑 = 𝐸{𝐱(𝑘)𝐱𝑻(𝑘)}. From (4.12) it is noted 

that, 𝐸{𝛅(𝑘 + 1)} → constant value, if the maximum eigenvalue of (𝐈 −

2𝜇 ∑
(2𝑖+1)2𝑖

(2𝑖+1)!
𝐸{𝜂𝑘

2𝑖}𝐑∞
𝑖=0 )  should be less than unity, and hence, it shows that the filter 

weights converge to their optimum solution in the mean sense. 

 

4.4.2. Convergence in the Mean Square Sense 

In this section, convergence in the mean-square sense is derived.  The convergence condition 

is obtained by multiplying both sides of (4.11) by 𝛅(𝑘 + 1)𝑇, taking the expectation and 

using (4.10) it provides 

𝛆(𝑘 + 1) = 𝛆(𝑘) − 𝐸 {𝜇 ∑
(2𝑖 + 1)2𝑖

(2𝑖 + 1)!

∞

𝑖=0

𝐸{𝜂𝑘
2𝑖}𝐑𝛅(𝑘)𝛅(𝑘)𝑇}

− {𝜇 ∑
(2𝑖 + 1)2𝑖

(2𝑖 + 1)!

∞

𝑖=0

𝐸{𝜂𝑘
2𝑖}𝛅(𝑘)𝛅(𝑘)𝑇𝐑}  
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                 + 𝐸 {𝜇2 ∑
(2𝑖+1)4𝑖

[(2𝑖+1)!]2
[𝐸{𝜂𝑘

2𝑖}
2
]𝐑𝛅(𝑘)𝛅(𝑘)𝑇𝐑∞

𝑖=0 }.                      (4.13) 

 

calculating the trace the fourth term of (4.13) 

𝑡𝑟(𝐸{𝜇2 ∑
(2𝑖 + 1)4𝑖

[(2𝑖 + 1)!]2
[𝐸{𝜂𝑘

2𝑖}
2
]𝐑𝛅(𝑘)𝛅(𝑘)𝑇𝐑} 

∞

𝑖=0

 

                                                         = 𝛼𝜇2 ∑ (𝜎𝜂
2𝑖)2∞

𝑖=0 𝑡𝑟{𝐑𝛆(𝑘)},        (4.14) 

From [1], {𝐑 𝛆(𝑘)} = ∑ 𝜆𝑖𝑥𝑖(𝑘)𝑁
𝑖=1 = ∑ 𝜆𝑗𝐸 {|𝛅𝑗(𝑘)|

2
}𝑁

𝑗=1 .  The matrices 𝐑 and 𝛆(𝑘) are 

symmetric, and hence, 𝑡𝑟(𝐑𝛆(𝑘)𝐑) = 𝑡𝑟(𝐑2𝛆(𝑘)).  Substituting these in (4.13) gives 

𝛆(𝑘 + 1) = (1 − 2𝛾𝜇𝜎𝑥
2 + µ2𝛼𝜎𝑥

4)𝛆(𝑘).                        (4.15) 

where 

𝛼 = ∑
(2𝑖+1)4𝑖

((2𝑖+1)!)
2

∞
𝑖=0 , 

𝛾 = ∑
(2𝑖+1)2𝑖

((2𝑖+1)!)

∞
𝑖=0   and  

𝐸{𝜂𝑘
2} = 𝜎𝜂

2.  

In order for (4.15) to converge, the term |1 − 2𝛾𝜇𝜎𝑥
2 + 𝜇2𝛼𝜎𝑥

4| should be less than unity. 

Solving this term provides 

0 < 𝜇 <
2𝛾

𝛼𝜎𝑥
2
 .                              (4.16) 

The result of (4.16) provides a tighter bound on 𝜇 than that of the conventional LMS 

algorithm. Based on this, we propose the following sparse adaptive algorithms. 
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4.5. The Proposed Algorithms 

The performance of the MN-LMS can be further improved in system identification settings 

if the system is sparse. This improvement can be achieved by imposing a penalty term in its 

cost function. In this chapter, we derive two sparse algorithms by imposing the l1 and l0-

norms to the cost function of the MN-LMS algorithm. 

 

4.5.1. Zero-Attracting Mixed Norm LMS (ZA-MN-LMS) Algorithm 

The improvement in the performance of the MN-LMS algorithm, when the system is sparse, 

can be achieved by modifying the cost function in (4.2) to become 

𝐽1,𝐰(𝑘) = (𝑒𝑥𝑝(𝑒(𝑘)) + 𝑒𝑥𝑝(−𝑒(𝑘)))
2
+ 𝜉‖𝐰(𝑘)‖1,        (4.17) 

where ‖. ‖1 denotes the l1-norm of the weight vector and 𝜉 is a positive constant. Deriving 

(4.17) with respect to 𝐰(𝑘) and substituting in (4.5) yields 

𝐰(𝑘 + 1) = 𝐰(𝑘) + 2𝜇𝐱(𝑘)𝑠𝑖𝑛ℎ(𝑒(𝑘)) − 𝜌 𝑠𝑔𝑛[𝐰(𝑘)].        (4.18) 

where 𝜌 = 𝜇𝜉 and 𝑠𝑔𝑛(. )is the sign function and defined as 

                         𝑠𝑔𝑛[𝑏] = {
𝑏

|𝑏|
 , 𝑏 ≠ 0

0 , 𝑏 = 0
 . 

The term 𝜌 𝑠𝑔𝑛[𝐰(𝑘)] in (4.18) imposes an attraction to zero on small weights (zero or 

near-to-zero coefficients). Particularly, if the filter weight value is positive, it will decrease 

and if it is negative, it will increase. However, if the system is non-sparse or near to non-

sparse, the performance of the algorithm may deteriorate due to this term. Thereby, a 

reweighted zero attraction term is introduced next. 
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4.5.2. Reweighted Zero-Attracting Mixed Norm LMS (RZA-MN-LMS) Algorithm 

The cost function, here, may be written as 

𝐽2,𝐰(𝑘) = (𝑒𝑥𝑝(𝑒(𝑘)) + 𝑒𝑥𝑝(−𝑒(𝑘)))
2
+ 𝛽‖𝐰(𝑘)‖0,                   (4.19) 

where ‖. ‖0 is the l0-norm of the weight vector and 𝛽 is a positive constant. The main 

problem in the cost function given in (4.19), is taking the derivative of the l0-norm term with 

respect to 𝐰(𝑘). Therefore, the well-known approximation of l0-norm maybe used, which is 

given as 

‖𝐰(𝑘)‖0 = ∑ 𝑙𝑜𝑔 (1 +
|𝑤𝑖(𝑘)|

𝜂
)𝑁

𝑖=1 ,           (4.20) 

where 𝜂 is a positive parameter. Taking derivative of (4.19) with respect to 𝐰(𝑘) and 

substituting in (4.5) results in 

𝐰(𝑘 + 1) = 𝐰(𝑘) + 2𝜇𝐱(𝑘)sinh(𝑒(𝑘)) − 𝜌 
𝑠𝑔𝑛[𝐰(𝑘)]

1+𝜀|𝐰(𝑘)|
        (4.21) 

where 𝜌 =
𝜇𝛽

𝜂
 and 𝜀 =

1

𝜂
. The term 𝜌 

𝑠𝑔𝑛[𝐰(𝑘)]

1+𝜀|𝐰(𝑘)|
  in (4.21) imposes a reweighted attraction to 

zero on small weights (zero or near-to-zero weights). Particularly, if the filter weight value 

is positive, it will decrease and if it is negative, it will increase. The reweighted zero attractor 

has effect only on those elements for which magnitudes are comparable to 
1

𝜂
 and there will 

be a small shrinkage employed on the taps whose |𝑤𝑖(𝑘)| <
1

𝜂
. 

 

4.6. Simulation Results and Discussions 

In this section, the performances of the ZA-MN-LMS and RZA-MN-LMS algorithms are 

compared to those of the LMS and MN-LMS algorithms in the system identification setting. 

The performance measures are the convergence rate and the mean square deviation (MSD) 

which is calculated as 

 MSD(𝑘) = 𝐸{‖𝐰(𝑘) − 𝐡‖2 }.            (4.22) 
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The observation noise is assumed to be an additive white Gaussian noise (AWGN) with zero 

mean and variance 𝜎𝑣
2 = 0.001. The simulations of all algorithms are performed for 100 

independent runs. For all the algorithms μ= 0.005.  

In the first experiment, we investigate the MSD of the proposed algorithms and MN-LMS 

versus different values of 𝜌 with 90% and 50% sparsity levels. The filter length is assumed 

to be 20 taps. The SNR is 10 dB and for the RZA-MN-LMS algorithm ε = 10.  

 

Figure 4.2  MSD vs.  ρ for the RZA-MN-LMS, ZA-MN-LMS and MN-LMS algorithms in 

AWGN with 90% sparsity. 

 

From Fig. 4.2, the proposed algorithms reach MSDs lower than that of the MN-LMS 

algorithm by 2.1 dB with 90% sparsity. Also, even though both the ZA-MN-LMS and the 

RZA-MN-LMS algorithms provide almost the same optimum MSD (-25 dB), the minimum 

MSD of the RZA-MN-LMS algorithm can be achieved for a wider range of 𝜌. 
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Figure 4.3 MSD vs.  𝜌 for the RZA-MN-LMS, ZA-MN-LMS and MN-LMS algorithms in 

AWGN with 50% sparsity. 

 

Fig. 4.3 shows the MSD vs ρ with 50% sparsity. The proposed algorithms still reach MSDs 

lower than that of the MN-LMS algorithm. The optimum MSD for the ZA-MN-LMS and 

the RZA-MN-LMS algorithms are -20.5 dB and -21.3 dB, respectively. With less sparsity 

of the system the performance of ZA-MN-LMS starts to deteriorate as it perform best at high 

sparsity levels. 

In the second experiment, the convergence behaviors of the proposed algorithms, MN-LMS 

and LMS are investigated in AWGN environment. The parameters are the same as the first 

experiment. The 𝜌 values of the ZA-MN-LMS algorithm is chosen according to the results 

in Fig. 4.2 as ρ=2×10−4 while for the RZA-MN-LMS algorithm is  𝜌 = 10−3. From Fig. 4.4, 

we clearly see that RZA-MN-LMS algorithm has a faster convergence with a lower MSD 

value than the other algorithms.  

In the third experiment, we investigate the MSD behaviors of the RZA-MN-LMS, ZA-MN-

LMS and MN-LMS algorithms for different sparsity ratios. The filter length here is N=10 

taps. For the ZA-MN-LMS algorithm 𝜌 = 5 × 10−5.  For the RZA-MN-LMS algorithm 𝜌 =
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10−3 (again these 𝜌 values are found in the same way as in the first experiment). Fig. 4.5 

shows that even though the performance of the ZA-MN-LMS is good at high sparsity levels, 

it deteriorates when the system tends to be non-sparse system. However, the performance of 

the RZA-MN-LMS is always better than all algorithms or the same (in the worst case when 

the system is completely non-sparse).  

 

Figure 4.4 Convergence behaviors of the proposed algorithms, MN-LMS and LMS 

algorithms in AWGN environment. 
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Figure 4.5 MSD curves of the RZA-MN-LMS, ZA-MN-LMS and MN-LMS algorithms 

for different sparsity ratios. 

 

In the fourth experiment, the input signal and the observation noise is considered same as 

previous settings. The unknown system is considered to be a clustered sparse system with 

256 taps as shown in Fig. 4.6.  

The algorithms are simulated with the following parameters (see Fig. 4.7):  

For the ZA-MN-LMS algorithm : μ = 0.005 and ρ = 1.5×10−5.  

For the RZA-MN-LMS algorithm : μ = 0.005,  ρ = 1.5×10−5 and ε = 10.  
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Figure 4.6 Impulse function of the acoustic system. 

 

 

 

Figure 4.7  MSD performances of the algorithms in AWGN environment. 

 

In the fifth experiment, the input signal and the impulse response of the unknown system are 

considered to be as those of experiment 4. In order to study the effect of using different noise 

0 500 1000 1500 2000 2500 3000
-25

-20

-15

-10

-5

0

5

Iteration

A
m

p
lit

u
d

e

 

 

LMS

ZA-MN-LMS

RZA-MN-LMS

MN-LMS

0 50 100 150 200 250
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Iterasyon

G
e
n
lik

0 500 1000 1500 2000 2500 3000
-35

-30

-25

-20

-15

-10

-5

  LMS

  LMS

Iterasyon

M
S

D
 (

d
B

)

 

 

MN-LMS

RZA-MN-LMS

ZA-MN-LMS

LMS

0 500 1000 1500 2000 2500 3000
-25

-20

-15

-10

-5

0

5

Iteration

M
S

D
 (

d
B

)

 

 

LMS

ZA-MN-LMS

RZA-MN-LMS

MN-LMS



48 

 

on the performance of the proposed algorithms, the observation noise is assumed to be an 

additive correlated Gaussian noise (ACGN) with 90 % sparsity. The correlated noise is 

created using an AR(1) process 𝑧(𝑘) = 0.8𝑧(𝑘 − 1) + 𝑣(𝑘) where 𝑣(𝑘) is a white Gaussian 

process with zero mean and variance 𝜎𝑣
2 = 0.001. In Figure 4.8, even though ZA-MN-LMS 

is showing faster convergence rate, the RZA-MN-LMS is the one with the lowest MSD value 

(≈ −25 dB). 

 

Figure 4.8  MSD performances of the algorithms in ACGN environment. 

 

In the last experiment, the performances of the RZA-MN-LMS and MN-LMS algorithms 

with different SNR values was investigated (here the ZA-MN-LMS algorithm is neglected 

because it diverges (goes to infinity) at low SNR values). The sparsity ratio is assumed to be 

90% and 𝜌 = 10−3. Fig. 4.9 shows that the RZA-MNLMS algorithm is always better than 

the MN-LMS algorithm under the given conditions. 
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Figure 4.9 MSD curves of the RZA-MN-LMS and MN-LMS algorithms for different SNR 

values. 

 

4.7. Conclusion  

In this chapter, convergence analyses in the mean and mean-square sense of the MN-LMS 

algorithm were presented. In addition to this, two algorithms that exploit the sparsity of the 

system were proposed, namely: ZA-MN-LMS and RZA-MN-LMS Algorithms. The 

performances of the proposed ZA-MN-LMS and the RZA-MN-LMS algorithms were 

investigated under different filter lengths, sparsity ratios and SNRs. The proposed algorithms 

always showed high performance compared to the original MN-LMS algorithm under the 
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CHAPTER 5 

THE PROPOSED 2D ZERO ATTRACTING LMS ALGORITHM 

 

5.1. Overview 

In this chapter, a new two-dimensional zero-attracting least mean square (2D ZA-LMS) 

adaptive filter is proposed. The filter is imposing a sparsity aware l1-norm penalty term into 

the cost function of the 2D-LMS algorithm.  The convergence analysis of the 2D ZA-LMS 

algorithm is presented and stability criterion is derived. The performance of the proposed 

algorithm has been compared to that of the 2D-LMS algorithm in adaptive line enhancer 

(ALE) problem on sparse and non-sparse images. Simulation results have shown that the 

proposed algorithm has good capabilities in updating the filter coefficients along both 

horizontal and vertical directions, and its performance is always the same/better than that of 

the 2D-LMS algorithm with lower computational complexity.  

 

5.2. Related Work 

The earliest studies on gradient-based adaptive algorithms may be traced back to more than 

six decades [48]. In late 1950’s, the least mean square (LMS) algorithm was devised by 

Widrow and Hoff [48] in their study of the adaptive linear element machine. It is a stochastic 

gradient algorithm in that it iterates each tap weight of the filter [1]. In [83], the first two 

dimensional adaptive filtering algorithm which can be applied as an adaptive line enhancer 

is presented. It is a direct extension of the one-dimensional (1-D) LMS algorithm. Two-

Dimensional (2D) adaptive filters are applied to the problems of image denoising as in [94]. 

The performance of the algorithms is improved by changing the step-size and updating the 

filter coefficients partially. In [95], a system identification application has been developed. 

It has linear adaptive filters, whose coefficients are updated based on the normalized LMS 

algorithm. In [96], another 2D adaptive filtering application on equalization that employs 

the optimum (minimum mean-square-error (MSE)) was proposed.  
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LMS algorithms for sparse system identification recently appeared as a popular research 

topic as the unknown systems are sparse in most physical paths. One of the first trials is the 

zero-attracting LMS (ZA-LMS) algorithm [71]. The algorithm is derived by imposing the 

𝑙1-norm penalty into the quadratic cost function of the standard LMS algorithm. Its mean 

square error analysis has been provided in [81].  In [90], an l0 norm constraint LMS algorithm 

modifies the cost function of the standard algorithm and the parameter selection rule is 

performed. In [90], the sparsity is exploited by using l1-norm penalty in the cost function of 

the standard algorithm. 

 

5.3. The 2D ZA-LMS Algorithm 

Before deriving the proposed algorithm, we try to highlight the main role of the zero-

attracting term in the 1-D ZA-LMS algorithm. 

 

5.3.1 Review of the 1-D ZA-LMS Algorithm 

In the 1-D ZA-LMS algorithm, the cost function 𝐽𝐰 is defined by adding the 
1l  norm penalty 

of the weights vector to the instantaneous squared error  

𝐽𝐰 =
1

2
𝑒𝑘

2 + 𝛾‖𝐰𝑘‖1,                 (5.1) 

where 𝑒𝑘 is the instantaneous error given by 𝑒𝑘 = 𝑑𝑘 − 𝐰𝑘𝐱𝑘, 𝑑𝑘 is the desired response, 

𝛾  is a small positive parameter and 𝐰𝑘 is the tap-weight vector of the algorithm of length N. 

The ZA-LMS filter weight update equation is defined as 

𝐰𝑘+1 = 𝐰𝑘 − 𝜇
𝜕𝐽𝐰
𝜕𝐰𝑘

 

           = 𝐰𝑘 − 𝜌 𝑠𝑔𝑛[𝐰𝑘]  + 𝜇 𝑒𝑘𝐱𝑘,               (5.2) 

where 𝜌 = 𝛾𝜇 which controls the zero-attraction term and 𝑠𝑔𝑛[. ] is a sign function defined 

as 
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 𝑠𝑔𝑛[𝑏] = {

   

   
𝑏

|𝑏|
     , 𝑏 ≠ 0

    0      , 𝑏 = 0
.                    

 

                                     (5.3)           

The term 𝜌 𝑠𝑔𝑛[𝐰𝑘] imposes zero attraction on small weights (zero or near-to-zero weights). 

Particularly, if the filter weight value is positive, it will decrease and if it is negative, it will 

increase.  

 

5.3.2. Extending to the 2D Case 

The update equation of the 2D ZA-LMS adaptive filter weight matrix can be given as: 

𝐖𝑘+1 = 𝐖𝑘 − 𝜇𝐆𝑘,                                                               (5.4) 

where 𝐖𝑘 is the updated weight matrix of size N×N.  The estimate of the true 2D 

instantaneous gradient of 𝐸{𝑒𝑘
2}, with respect to 𝐖𝑘 is  

𝐆𝑘 =
𝜕𝐸{𝑒𝑘

2}

𝜕𝐖𝑘
+ 𝜆‖𝐰𝑘‖1.                       (5.5) 

𝐆𝑘 can be further expended to  

𝐆𝑘 =

[
 
 
 
 

         −2𝑒𝑘𝐗𝑘(0,0) + 𝜆 𝑠𝑔𝑛[𝐖𝑘(0,0)]         … − 2𝑒𝑘𝐗𝑘(0, 𝑁 − 1) + 𝜆 𝑠𝑔𝑛[𝐖𝑘(0, 𝑁 − 1)]

⋮                                         ⋱                                           ⋮

−2𝑒𝑘𝐗𝑘(𝑁 − 1,0) + 𝜆 𝑠𝑔𝑛[𝐖𝑘(𝑁 − 1,0)]   …  − 2𝑒𝑘𝐗𝑘(0,0) + 𝜆 𝑠𝑔𝑛[𝐖𝑘(𝑁 − 1,𝑁 − 1)]]
 
 
 
 

.       (5.6) 

The ZA-LMS algorithm estimates the instantaneous gradient; the gradient of the squared 

error of an iteration.  

𝐆𝐈(𝑟, 𝑐) =
𝜕𝑒𝑘

2 + 𝜆 𝜕‖𝐖𝑘(𝑟, 𝑐)‖1

𝜕𝐖𝑘
 

                = −2𝑒𝑘𝐗𝑘(𝑟, 𝑐) + 𝜆 𝑠𝑔𝑛[𝐖𝑘(𝑟, 𝑐)],                                              (5.7) 

where r and c denote the row and column indices, respectively. Substituting (5.7) in (5.4) 

and simplifying yields the weight update equation as 

𝐖𝑘+1(𝑟, 𝑐) = 𝐖𝑘(𝑟, 𝑐) + 𝜇 𝐗𝑘(𝑙 − 𝑟,𝑚 − 𝑐)𝑑(𝑙,𝑚) 
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                           −𝜇 𝐗𝑘(𝑙 − 𝑟,𝑚 − 𝑐)∑ ∑ 𝐖𝑘(𝑎, 𝑏) 𝐗𝑘(𝑙 − 𝑎,𝑚 − 𝑏)𝑁−1
𝑏=0

𝑁−1
𝑎=0     

                           −𝜆 𝑠𝑔𝑛[𝐖𝑘(𝑟, 𝑐)],             (5.8) 

where the filter output is defined as 

𝑦(𝑟, 𝑐) = ∑ ∑ 𝐖𝑖(𝑎, 𝑏) 𝐗𝑘(𝑙 − 𝑎,𝑚 − 𝑏)𝑁−1
𝑏=0

𝑁−1
𝑎=0 .                                            (5.9) 

The filter weights 𝐰𝑣𝑘 and the input data matrix 𝐱𝑣𝑘 can be reshaped into one dimensional 

form. During the 𝑘th iteration, the column vectors are respectively 

𝐰𝑣𝑘 =

[
 
 
 
 
 
 

𝑤𝑘(0,0) 
⋮ 

𝑤𝑘
(0, 𝑁 − 1)

⋮
𝑤𝑘(𝑁 − 1,0)

⋮
  𝑤𝑘(𝑁 − 1,𝑁 − 1)  ]

 
 
 
 
 
 

                  (5.10) 

and 

𝐱𝑣𝑘 =

[
 
 
 
 
 
 

   

𝑥𝑘(0,0) 
⋮ 

𝑥𝑘
(0, 𝑁 − 1)

⋮
𝑥𝑘(𝑁 − 1,0)

⋮
𝑥𝑘(𝑁 − 1,𝑁 − 1)  ]

 
 
 
 
 
 

.                  (5.11) 

 

According to these, (5.8) can be written as  

𝐰𝑣(𝑘+1) = 𝐰𝑣𝑘 + 𝜇 𝑑(𝑙,𝑚)𝐱𝑣𝑘 − 𝜇 𝐱𝑣𝑘 𝐱𝑣𝑘
𝑇 𝐰𝑣𝑘 − 𝜆 𝑠𝑔𝑛[𝐰𝑣𝑘].              (5.12) 

Hence, using (5.10) and (5.11) the 1-D ZA-LMS can be used as a 2D ZA-LMS algorithm in 

(5.12) and the update equation becomes 

𝐰𝑣(𝑘+1) = (𝐈 − 𝜇 𝐱𝑣𝑘 𝐱𝑣𝑘
𝑇 )𝐰𝑣𝑘 + 𝜇 𝑑(𝑙,𝑚)𝐱𝑣𝑘  − 𝜆 𝑠𝑔𝑛[𝐰𝑣𝑘],              (5.13) 

where I is an N×N identity matrix.            
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5.3.3. Convergence Analysis of the Proposed Algorithm 

In this section we derive the convergence analysis of the 2D ZA-LMS algorithm. Through 

the analysis, the input signal  𝐱𝑣𝑘 is considered to be Gaussian with zero-mean and 

variance 𝜎𝑥
2. The misalignment vector is defined as; 

 𝛅𝑣𝑘 =  𝐰𝑣𝑘 −  𝐡,                                                                                (5.14) 

where 𝐡 is the vector reshaping the matrix of the blurring function. And hence, the 

instantaneous error becomes 

 𝑒𝑣𝑘 =  𝛅𝑣𝑘
𝑇 𝐱𝑣𝑘 + 𝜂𝑘,                                              (5.15) 

where 𝜂𝑘 represents the noise. Combining (5.13) and (5.14) and rearranging, we obtain 

𝛅𝑣(𝑘+1) = (𝐈 − 𝜇 𝐱𝑣𝑘 𝐱𝑣𝑘
𝑇 )𝛅𝑣𝑘 + 𝜇 𝐱𝑣𝑘𝜂𝑘  − 𝜆 𝑠𝑔𝑛[𝐰𝑣𝑘].                    (5.16) 

In (5.16), the expected value of the term 𝜆 𝑠𝑔𝑛[𝐰𝑣𝑘] is bounded. Hence, the expected value 

of (5.16) yields   

𝐸{𝛅𝑣𝑘} = (𝐈 − 𝜇𝐑)𝑘+1𝛅(0),                                                                 (5.17) 

where 𝐑 is the autocorrelation matrix of 𝐱𝑘 and defined as 𝐑 = 𝐸{ 𝐱𝑣𝑘 𝐱𝑣𝑘
𝑇 }.  

In order for (5.17) to converge, the maximum eigenvalue of the term (𝐈 − 𝜇𝐑) should be less 

than unity and, hence, the step-size selection criteria of the proposed algorithm will be the 

same as that of the LMS algorithm. 

 

5.4. The Data Reuse Patterns 

For 2D applications, the update of the filter is done along the horizontal and vertical 

directions by moving a mask of the filter size horizontally to the right by one column at a 

time until the end of each row. Afterward, the same process is repeated with the next row 

below until the last pixels of the image are reached.  
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Some possible ways of data reuse are shown in Fig. 5.1. In the scheme shown in Fig. 5.1 (a), 

all the data should be used [10]. However, with the same considered mask size, another 

pattern as in Fig. 5.1 (b) with almost 63% of the pixels may be used. And in case of sparse 

images (where most of the pixels are zeros) the performance of this pattern is very 

comparable to that in Fig. 5.1 (a) but with lower computational complexity.  

The filter tap weights vector update equation of the ZA-LMS algorithm can be generalized 

into its 2D form as 

𝐰𝑘+1(𝑚1,𝑚2) =  𝐰𝑘(𝑚1,𝑚2) − 𝜌 𝑠𝑔𝑛[ 𝐰𝑘(𝑚1, 𝑚2)] 

                                 +𝜇 𝑒(𝑘)𝐱(𝑛1, 𝑛2),                                (5.18) 

where 𝐰𝑘(𝑚1,𝑚2) is the 2D weights matrix with dimensions 𝑁 × 𝑁, 𝑚1 = 0,1,⋯ ,𝑁 − 1 

and 𝑚2 = 0,1,⋯ , 𝑁 − 1. The filter weights and the input data can be reshaped into 1D case, 

respectively, by 

𝐰𝑘(𝑚1, 𝑚2) =

[
 
 
 
 
 
 

𝑤𝑘(0,0)
⋮

𝑤𝑘(0, 𝑁 − 1)
⋮

𝑤𝑘(𝑁 − 1,0)
⋮

𝑤𝑘(𝑁 − 1,𝑁 − 1)]
 
 
 
 
 
 

,                    (5.19) 

and 

𝐱(𝑛1, 𝑛2) =

[
 
 
 
 
 
 

x(𝑛1, 𝑛2)
⋮

x(𝑛1, 𝑛2 − 𝑁 + 1)
⋮

x(𝑛1 − 𝑁 + 1, 𝑛2)
⋮

x(𝑛1 − 𝑁 + 1, 𝑛2 − 𝑁 + 1)]
 
 
 
 
 
 

.          (5.20) 
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(b) 

Figure 5.1 (a) Rectangular configuration of data-reusing in 2D and (b) Axial configuration 

of data-reusing in 2D [10]. 

 

Two data reuse configurations in 2D applications are shown in Fig. 5.1 for a mask of size 

4×4. The rectangular configuration is simple and straight forward. First of all, the mask will 

process all pixels of the image by moving from left top corner horizontally and vertically to 

cover all the rows and columns until it reaches the bottom right corner. For each processed 

pixel, the mask will be convolved with the corresponding sub-image after reshaping the sub-

image pixels into a vector following the directions shown in Fig 5.1a. Same process will be 
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followed for the axial configuration. The difference will be that we will just use 10 pixels 

instead of 16 pixels as shown in Fig 1b. Reshaping the 10 pixels into a vector is shown in 

Fig. 5.1b.  

The first configuration provides a good performance but it needs higher number of 

computations because it uses all the pixels in the filter mask. The second configuration 

provides a lower performance with a lower computational complexity. However, in sparse 

images (many zero pixels), the lower performance can be enhanced due to the sparsity of the 

image. The filter output can be given by the following 2D convolution 

𝑦(𝑛1, 𝑛2) = ∑ ∑ 𝑤(𝑚1, 𝑚2) 𝑥(𝑛1 − 𝑚1, 𝑛2 − 𝑚2)
𝑁−1
𝑚2=0

𝑁−1
𝑚1=0 .         (5.21) 

 

5.5. Simulation Results and Discussions 

 
 

5.5.1. Subjective Experiments 

In all the experiments we consider different 8-bit 256×256 grayscale sparse and non-sparse 

images where the number of pixels with zero/near zero values is changing. Different noises 

were applied to the images namely; additive white Gaussian noise (AWGN), salt & pepper, 

and sparkle noise. The performance of proposed 2D ZA-LMS algorithm is compared to that 

of the 2D-LMS algorithm for image denoising. 

In the first experiment, Lena image was degraded with additive white Gaussian noise AWGN 

with zero mean and 0.01 variance. Fig 5.1 shows the restored image using the 2D-LMS 

algorithm (Fig 5.1c) and the restored image using the proposed algorithm (Fig 5.1d). 
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(a)                                      (b)   

           

  (c)                                                           (d) 

Figure 5.2 (a) Lena image, (b) Noisy image (AWGN), (c) Restored image using the 2D-

LMS algorithm (PSNR: 56.98) (d) Restored image using the proposed 2D ZA-LMS 

algorithm (PSNR: 56.05). 

 

In order to test the performance of the proposed 2D ZA-LMS algorithm with respect to the 

noise type, the first experiment is repeated with the same parameters and a speckle noise with 

zero mean and 0.04 variance and µ=0.001 for both algorithms. Figure 5.3 shows that the 

proposed algorithm still performs the same as the 2D-LMS algorithm but with lower 

computational complexity. 
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(a)                                        (b)   

             

  (c)                                                          (d) 

Figure 5.3 (a) Rice image (b) Noisy image (Speckle noise), (c) Restored image using the 

2D-LMS algorithm (PSNR: 54.89 ) (d) Restored image using the proposed 2D ZA-LMS 

algorithm (PSNR: 55.07) 

 

In order to test the performance of the algorithms with different filter sizes, the first 

experiment is again repeated with the same parameters. A 3×3 filter size and salt and pepper 

noise with 0.05 density were used with µ=0.001 for both algorithms. Fig. 5.4 shows that the 

proposed 2D ZA-LMS algorithm is better than the 2D-LMS algorithm with almost 22% less 

computational complexity.  



60 

 

          

(a)                                        (b)   

           

(c)                                                    (d) 

Figure 5.4 (a) Cameraman image, (b) Noisy image (Salt&Pepper noise), (c) Restored 

image using the 2D-LMS algorithm (PSNR: 54.87)  (d) Restored image using the proposed 

2D ZA-LMS algorithm(PSNR: 55.34). 

 

In Fig. 5.5, the 2D-LMS algorithm is simulated with the parameters: µ=0.001 and 3×3 filter 

size are used in the rectangular configuration of data-reusing. For the proposed 2D ZA-LMS 

algorithm, axial configuration was applied. The parameters for 2D ZA-LMS are µ=0.001, 

ε=10, and ρ=10−4. 
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(a)                                                             (b) 

               

(c)                                                               (d) 

Figure 5.5 (a) Phantom image, (b) Noisy image (AWGN), (c) Restored image using the 

2D-LMS algorithm (PSNR: 34.31) (d) Restored image using the proposed 2D ZA-LMS 

algorithm (PSNR: 34.65). 

 

In Fig. 5.5b, the test phantom image is degraded by an AWGN with zero mean and 0.2 

variance. Fig. 5.5c shows the restored image by the 2D-LMS algorithm, and Fig. 5.5d shows 

the restored image by the proposed 2D ZA-LMS algorithm. 
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(a)                                                 (b) 

             

(c)                                            (d) 

Figure 5.6  (a) Splash image, (b) Noisy image (AWGN), (c) Restored image using the 2D-

LMS algorithm (PSNR: 45.87) (d) Restored image using the proposed 2D ZA-LMS 

algorithm (PSNR: 45.74). 

 

Fig. 5.6b shows the splash image again degraded by the same AWGN in Fig. 5.6. The 3×3 

Kernel here is replaced by a 4×4 kernel for both rectangular and axial configurations with 

µ=0.001 for both algorithms. Fig. 5.6c, the restored image by the 2D-LMS algorithm is shown 

while Fig. 5.6d shows the restored image by the proposed 2D ZA-LMS algorithm.  
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(a)                                                            (b) 

             

(c)                                                            (d) 

Figure 5.7 (a) Mustache image, (b) Noisy image (salt & pepper noise), (c) Restored image 

using the 2D-LMS algorithm (PSNR: 67.47)  (d) Restored image using the proposed 2D 

ZA-LMS algorithm(PSNR: 67.33)  . 

 

The image in Fig. 5.7 shows the mustache image degraded by salt & pepper noise with 

probability of 0.2 and µ=0.001 for both algorithms. Figs. 5.7c and 5.7d show the restored 

images using 2D-LMS and the proposed algorithms, respectively.  
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(a)                                                            (b) 

              

                           (c)                                                             (d) 

Figure 5.8 (a) Man image, (b) Noisy image (speckle noise), (c) Restored image using the 

2D-LMS algorithm (PSNR: 57.8)   (d) Restored image using the proposed 2D ZA-LMS 

algorithm (PSNR: 58.14)  . 

 

Fig. 5.8 shows the man image degraded by speckle noise (multiplicative noise) with zero 

mean and 0.4 variance with µ=0.001 for both algorithms. Figs. 5.8c and 5.8d show the 

restored images using 2D-LMS and the proposed 2D ZA-LMS algorithm, respectively.  

To test the effect of using AWGN noise different variance values, we performed an 

experiment as shown in Fig 5.9 to Fig. 5.12. The AWGN is chosen with zero mean and 

variance equal to 0.0001, 0.001, 0.01, 0.02, 0.05, 0.07, 0.1, 0.2 and 0.4 as shown in Fig 5.10.  
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Performance of both algorithms looks similar (see Fig 5.11 and Fig 5.12) with the advantage 

of faster computation of the proposed 2D ZA-LMS algorithm. 

  
Figure 5.9 The Maze image 

 

 
Figure 5.10 Maze image corrupted by AWGN with different variance values and zero 

mean 
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Figure 5.11 Restored images corresponding to the noisy maze images in previous figure 

using the proposed 2D ZA-LMS algorithm (𝜇 = 0.001, 𝜌 = 10−4, 𝜀 = 10 ) 

 
 

Figure 5.12 Restored images corresponding to noisy maze images in previous figure using 

2D-LMS algorithm (𝜇 = 0.001) 
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From all the test figures generated from different experiments, we can easily observe that a 

successful image denoising is achieved by the proposed 2D ZA-LMS algorithm in different 

noise environments with a less time consumption due to the usage of the axial configuration 

of the data mask.  

 

5.5.2. Objective Experiments 

To further emphasize the time consumption criteria of the proposed 2D ZA-LMS and 2D-

LMS, a comparison between the two algorithms is conducted under AWGN, speckle and 

salt&pepper noise using different images with 2D ZA-LMS using axial configuration. The 

results are shown in Table 5.1, Table 5.2 and Table 5.3, respectively. On average, the 

proposed 2D ZA-LMS algorithm is 15.96, 17.1 and 17.45 times faster than the 2D-LMS 

algorithm under the three noise types, respectively. This can be justified by the use of the 

axial configuration for the filter in 2D ZA-LMS algorithm instead of the rectangular 

configuration which is used by the filter of the 2D-LMS algorithm.  

 

Table 5.1 Time consumption comparison in seconds between the 2D-LMS and Proposed 

2D ZA-LMS algorithms using different images under AWGN (𝜎2 = 0.01). 

Image 

256×256 

Proposed 2D ZA-LMS 

𝜇 = 0.001, 𝜌 = 10−4, 

𝜀 = 10 

(sec) 

2D-LMS 

𝜇 = 0.001 

(sec) 

Gain Factor 

Man 2.23 36.91 16.55 

Splash 2.21 36.56 16.54 

Lena 2.43 37.02 15.23 

Maze 2.07 37.21 17.98 

Moustache 2.56 36.89 14.41 

Rice 2.59 38.82 14.98 

Phantom 2.33 37.30 16.01 

Average Gain Factor 15.96 
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Table 5.2 Time consumption comparison in seconds between the 2D-LMS and Proposed 

2D ZA-LMS algorithms using different images under Speckle noise (𝜎2 = 0.1). 

Image 

256×256 

Proposed 2D ZA-LMS 

𝜇 = 0.001, 𝜌 = 10−4, 

𝜀 = 10 

(sec) 

2D-LMS 

𝜇 = 0.001 

(sec) 

Gain Factor 

Man 2.24 37.55 16.76 

Splash 2.16 36.43 16.87 

Lena 2.16 38.47 17.81 

Maze 2.13 37.42 17.57 

Moustache 2.13 36.54 17.16 

Rice 2.12 36.16 17.06 

Phantom 2.19 36.23 16.54 

Average Gain Factor 17.1 

 

Table 5.3 Time consumption comparison in seconds between the 2D-LMS and Proposed 

2D ZA-LMS algorithms using different images under salt&pepper noise (𝑃𝑟 = 0.1). 

Image 

256×256 

Proposed 2D ZA-LMS 

𝜇 = 0.001, 𝜌 = 10−4,  

𝜀 = 10 

(sec) 

2D-LMS 

𝜇 = 0.001 

(sec) 

Gain Factor 

Man 2.10 36.53 17.40 

Splash 2.14 37.30 17.43 

Lena 2.14 39.40 18.41 

Maze 2.11 36.95 17.51 

Moustache 2.17 36.42 16.78 

Rice 2.10 36.10 17.19 

Phantom 2.15 37.70 17.54 

Average Gain Factor 17.47 
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Another objective test was conducted using the signal to noise ratio SNR and the peak signal 

to noise ratio PSNR. PSNR and SNR are metrics for measuring the Restored/denoised image 

quality and usually is shown in the logarithmic decibel scale.  

Given a restored 𝑁 × 𝑁  8-bit image 𝐼1 and its noisy version 𝐼2. The formula for SNR and 

PSNR metrics are given, respectively, as  

SNR =  
∑ ∑ [𝐼2(𝑖,𝑗)]2𝑁

𝑗=1
𝑁
𝑖=1

∑ ∑ [𝐼1(𝑖,𝑗)−𝐼2(𝑖,𝑗)]2𝑁
𝑗=1

𝑁
𝑖=1

,              (5.22) 

PSNR = 10𝑙𝑜𝑔10 (
2552

𝑀𝑆𝐸
),              (5.23) 

where mean square error MSE is calculated by 

MSE =  
1

𝑁2
∑ ∑ [𝐼1(𝑖, 𝑗) − 𝐼2(𝑖, 𝑗)]

2𝑁
𝑗=1

𝑁
𝑖=1             (5.24) 

 

Generally, the PSNR values for 8-bit image compression are between 30 and 50 dB. 

Typically, higher values indicate a better quality. Comparisons between the 2D-LMS and the 

proposed 2D ZA-LMS algorithms for different images and different noise with variable 

parameters are provided in Table 5.4, Table 5.5, and Table 5.6.  

Results on theses tables indicate that, regardless of the noise type, with the increase in the 

noise level, the PSNR and SNR values between the restored image and the noisy image is 

decreasing. This is due to the increase in the MSE value which is inversely proportional to 

SNR and PSNR values. Generally, the proposed 2D ZA-LMS algorithm is performing very 

close to the 2D-LMS algorithm in terms of PSNR, SNR and MSE values for sparse images.  

 

 

 

 

https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Decibel
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Table 5.4 PSNR, SNR and MSE comparisons between the 2D-LMS and 2D ZA-LMS 

algorithms under AWGN (𝜇 = 0.001, 𝜌 = 10−4, 𝜀 = 10 ). 

 

 Algorithm Proposed 2D ZA-LMS 2D-LMS 

Image variance PSNR SNR MSE PSNR SNR MSE 

Man 

0.1 68.1933    20.0548     0.0068 65.2747     4.8842     0.0034 

0.2 64.2734    16.0658     0.0320 59.0973     1.7037     0.0060 

0.4 59.4061    10.9253     0.1218 52.1742     0.6437     0.0254 

Splash 

0.1 61.6492 13.2644     0.0018 65.5002      5.0320     0.0034 

0.2 60.3176    12.0678     0.0021 59.1464     1.7033     0.0060 

0.4 59.4588    11.3213     0.0043 52.1544     0.6328     0.0253 

Lena 

0.1 56.8468 6.7796     0.0047 57.1048      7.0515     0.0070 

0.2 56.5810     7.2754     0.0213 56.8409     7.5438     0.0265 

0.4 55.0042     6.6438     0.0772 55.1941     6.8223     0.0873 

Maze 

0.1 58.3278 0.4670     0.0020 58.4537     0.6140     0.0063 

0.2 55.6026     1.4369     0.0144 55.8054     1.6436     0.0266 

0.4 52.0478     2.6537     0.0887 52.3157     2.9300     0.1163 

Moustache 

0.1 69.7538    21.1240     0.0037 69.8414    

 

21.2107     0.0045 

0.2 67.4704    18.8778     0.0091 67.0322    18.4466     0.0109 

0.4 59.7060    11.3933     0.0130 59.7031    11.3916     0.0152 

Rice 

0.1 54.8899      3.6526     0.0023 55.0708    3.8311     0.0034 

0.2 53.5688     3.6429     0.0117 53.9141     3.9913     0.0157 

0.4 54.3875     5.7774     0.0545 54.7201     6.1185     0.0639 

Phantom 

0.1 65.2781     4.7872     0.0046 65.6510     5.1372     0.0034 

0.2 59.0758     1.7173     0.0061 58.9741     1.6377     0.0060 

0.4 51.9434     0.3933     0.0160 52.1374 0.6290     0.0255 
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Table 5.5 PSNR, SNR and MSE comparisons between the 2D-LMS and 2D ZA-LMS 

algorithms under Speckle noise (𝜇 = 0.001, 𝜌 = 10−4, 𝜀 = 10 ). 

 

 Algorithm Proposed 2D ZA-LMS 2D-LMS 

Image variance PSNR SNR MSE PSNR SNR MSE 

Man 

0.1 52.200

7 

1.7663 0.0013 52.202

9 

1.7727 0.0009 

0.2 51.833

2 

1.1629 0.0014 51.858

3 

1.2058 0.0010 

0.4 51.641

0 

0.8644 0.0020 51.657

4 

0.8690 0.0014 

Splash 

0.1 58.562

1 

9.7752 0.0196 58.501

8 

 

9.7148 0.0167 

0.2 54.916

4 

5.5583 0.0351 54.875

8 

5.5031 0.0317 

0.4 53.402

2 

3.5919 0.0651 53.388

6 

3.5563 0.0605 

Lena 

0.1 54.309

9 

2.5002 0.0032 54.428

0 

 

2.5814 0.0021 

0.2 53.528

5 

1.5913 0.0043 53.626

5 

1.6644 0.0027 

0.4 53.014

1 

1.0144 0.0069 53.067

8 

1.0843 0.0045 

Maze 

0.1 61.990

0 

0.0417 0.0058 62.114

2 

0.0821 0.0021 

0.2 60.390

5 

0.0234 0.0059 60.411

8 

0.0490 0.0022 

0.4 58.865

2 

0.0157 0.0057 58.929

2 

0.0278 0.0022 

Moustache 

0.1 58.079

8 

8.9320 0.0074 58.128

6 

8.9838 0.0055 

0.2 55.014

2 

5.2752 0.0162 55.042

4 

5.3037 0.0134 

0.4 53.721

9 

3.5244 0.0346 53.722

4 

3.5126 0.0308 

Rice 

0.1 56.003

8 

3.0531 0.0068 56.110

7 

3.1811 0.0044 

0.2 54.699

0 

1.8527 0.0089 54.782

8 

1.9433 0.0060 

0.4 53.787

5 

1.1265 0.0129 53.899

6 

1.1778 0.0097 

Phantom 

0.1 64.884

2 

2.9439 0.0149 70.073

5 

8.1570 0.0076 

 0.2 63.875

2 

1.6416 0.0164 66.222

4 

3.9614 0.0088 

 0.4 62.969

2 

0.9273 0.0181 64.163

1 

2.1245 0.0102 
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Table 5.6 PSNR, SNR and MSE comparisons between the 2D-LMS and 2D ZA-LMS 

algorithms under Salt&Pepper noise (𝜇 = 0.001, 𝜌 = 10−4, 𝜀 = 10 ). 

 

 Algorithm Proposed 2D ZA-LMS 2D-LMS 

Image probability PSNR SNR MSE PSNR SNR MSE 

Man 

0.1 58.5863    10.0654     0.0015 59.5168    

 

10.9968     0.0010 

0.2 56.3878     7.6516     0.0018 57.0559     8.3117     0.0013 

0.4 53.2251     4.0069     0.0029 54.4518     5.2335     0.0018 

Splash 

0.1 59.8710    11.1168     0.0051    59.9508    11.1960     0.0038 

0.2 57.2349     8.2705     0.0122 57.3663     8.4036     0.0100 

0.4 54.4521     5.0183     0.0392 54.6136     5.2047     0.0334 

Lena 

0.1 56.9295      5.8639     0.0031 57.9482     6.8987     0.0020 

0.2 55.5507     4.4740     0.0036 56.2083     5.1556     0.0024 

0.4 53.8208     2.7469     0.0049 54.1100     3.0486     0.0035 

Maze 

0.1 60.2200      0.0818     0.0032 60.3983     

 

0.2115     0.0019 

0.2 57.8298     0.0711     0.0021 57.7247    0.0882      0.0028 

0.4 54.9573     0.0083     0.0032 54.4086    0.0127      0.0090 

Moustache 

0.1 60.2200      0.0818     0.0032 60.8911    12.0460     0.0025 

0.2 57.8298     0.0711     0.0021 57.9229     8.8618     0.0067 

0.4 54.9573     0.0083     0.0032 54.9325     5.4308     0.0219 

Rice 

0.1 58.4494     5.1920     0.0050 59.0308     5.8078     0.0029 

0.2 56.8061     3.8359     0.0056 57.1316     4.1602     0.0036 

0.4 54.6283     2.1981     0.0073 54.6637     2.2640     0.0052 

Phantom 

0.1 60.7193     2.0332     0.0104 60.9592     

 

2.3314     0.0049 

0.2 57.8902     1.0546     0.0095 58.0407     1.1958     0.0048 

0.4 55.0493     0.4386     0.0083 55.0395     0.4743     0.0054 
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For testing the effect of the filter size on the performance of the algorithm, another experiment 

with different filter sizes was conducted. Experiment was applied on rice image with different 

noise types. The results are shown in Table 5.7 below. The results indicate that the larger the 

fılter size, the higher the MSE is going to reach, which in turn, will decrease the SNR and 

PSNR values as they are inversely proportional with each other. From results in Table 5.7 it 

is clear that the best values (highest PSNR & SNR values and lowest MSE value) for both 

algorithms were recorded with the use of 3×3 filter size. 

   

Table 5.7 PSNR, SNR and MSE comparisons between the 2D-LMS and the proposed 2D 

ZA-LMS algorithms under different filter sizes (𝜇 = 0.001, 𝜌 = 10−4, 𝜀 = 10 ). 

 Algorithm Proposed 2D ZA-LMS 2D-LMS 

Noise Filter Size PSNR SNR MSE PSNR SNR MSE 

AWGN 

(𝜎2 =0.1)  

3×3 55.1070     3.8601     0.0023    54.9167     3.6711     0.0034 

4×4 54.9522     3.7183     0.0029     54.7383     3.4839     0.0039 

5×5 54.6774     3.4478     0.0066     54.4606     3.2345     0.0091 

Speckle 

(𝜎2 =0.1) 

3×3 56.0540     3.0993     0.0044 55.9747    3.0180    0.0070   

4×4 55.9779     3.0359     0.0072 55.8840     2.9446     0.0099     

5×5 55.5332     2.5938     0.0132 55.6514     2.7134     0.0148     

Salt&Pepper 

(𝑃𝑟 =0.1)     

3×3 59.0660     5.8127     0.0029 58.3780     5.1385     0.0049   

4×4 58.3928     5.1440     0.0055 58.0439     4.7919     0.0077   

5×5 56.9049     3.6802     0.0112 57.3320     4.0964     0.0125   

 

 

5.6. Conclusion 

In this chapter, a new 2D zero-attracting LMS (2D ZA-LMS) algorithm was proposed. The 

convergence analysis of the proposed 2D ZA-LMS algorithm is derived. The performance of 

the proposed algorithm was compared to that of the 2D-LMS algorithm with different sparse 

and non-sparse images. Experiments on different images showed that the proposed 2D ZA-

LMS algorithm has shown high capabilities in updating the filter weights along the horizontal 
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and vertical directions with less computational complexity, less time consumption and 

comparable performance with the 2D-LMS algorithm. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 

 

6.1.  Conclusions 

The adaptive filter is a system that models the relation between the input and output signal 

by adjusting its coefficients iteratively or recursively based on some adaptive optimization 

algorithms. 

In this dissertation, new and novel adaptive filter algorithms on the light of the available 

adaptive filter algorithms were introduced. Three different adaptive algorithms based on the 

least mean square (LMS) algorithm and/or its variants were successfully introduced. These 

algorithms are: zero attracting mixed norm least mean square (ZA-MN-LMS) algorithm, 

reweighted zero attracting least mean square (RZA-MN-LMS) algorithm and (2D ZA-LMS) 

algorithm. 

This study started by providing the detailed derivation of the convergence analysis of the 

mixed-norm least mean square (MN-LMS) algorithm. MN-LMS convergence analysis was 

derived in both mean and mean square senses.  

Given that the system is sparse, the performance of the MN-LMS algorithm can easily be 

further improved in system identification settings. This improvement can be achieved by 

imposing a penalty term in its cost function. Based on this observation, new algorithm named 

zero attracting mixed norm LMS (ZA-MN-LMS) algorithm was proposed in this 

dissertation.  It exploits the sparsity of the system has by adding l1-norm penalty term to the 

cost function of the MN-LMS algorithm. This term enables us to attract the zero and/or near-

to-zero filter weights to the zero value in a faster manner. However, when the system is near 

or exactly non-sparse, the performance of the algorithm drops.  

To overcome the limitation of this algorithm when the system is near of exactly non-sparse 

another algorithm named reweighted zero attracting mixed norm LMS (RZA-MN-LMS) was 
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proposed in this dissertation that uses an approximation of l0-norm penalty term in the cost 

function of the MN-LMS algorithm. This provides high performance even with completely 

non-sparse systems. The performances of the proposed ZA-MN-LMS and the RZA-MN-

LMS algorithms were investigated experimentally under different filter lengths, sparsity 

ratios and signal to noise ratios SNRs. The proposed algorithms always showed high 

performance compared to the original MN-LMS algorithm as shown in results presented in 

Chapter 4. 

The new two-dimensional algorithm presented in Chapter 5 was introduced for improving 

the 2D-LMS algorithm performance. The new 2D zero-attracting least mean square (2D ZA-

LMS) adaptive filter is improving the performance by imposing a sparsity aware l1-norm 

penalty term into the cost function of the conventional 2D-LMS algorithm. Moreover, two 

data reuse configurations namely; rectangular and axial configurations were explained and 

utilized to boost the filtering process. The convergence analysis of the 2D ZA-LMS 

algorithm and stability criterion was also derived. 

Beside mathematical derivation for the convergence analysis of the proposed algorithms, 

both algorithms were tested experimentally. Images corrupted by different noise types with 

different parameters such as variance were used. Both algorithms showed a comparable 

results both subjectively by human eye inspection and/or objectively using PSNR metric. 

Still the results showed that the proposed 2D ZA-LMS algorithm is faster than the 2D-LMS 

algorithm by a high gain factor under different noise types and parameters with image size 

= 256×256, 𝜇 = 0.001, 𝜌 = 10−4, and 𝜀 = 10.  

Moreover, another experiment regarding the effect of changing the filter size was conducted. 

The results indicated that filter size will have inverse effect on the SNR and PSNR values. 

According to the carried out experiment, 3×3 filter size recorded the best results for PSNR, 

SNR and MSE for both algorithms. 

The rest of the obtained results for the comparison of the 2D-LMS and 2D ZA-LMS under 

different scenarios are shown in the Appendix at the end of the dissertation. 
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6.2.  Future works 

Through the proposed algorithms, convergence rate or step size 𝜇 was chosen to be fixed. 

Our proposed algorithms can be investigated with variable step size where it will be updated 

at each iteration. 

Another research direction can be the introduction of two dimensional reweighted zero 

attracting LMS algorithm.  An approximation of l0-norm penalty term can be imposed in the 

cost function of the conventional 2D-LMS algorithm. Convergence analysis derivation can 

also be provided for the new suggested algorithms. 

For sparse images restoration purposes, extension of the MN-LMS algorithm to two 

dimensional case can be studied using zero attracting and/or reweighted zero attracting 

techniques.    

The proposed adaptive filtering algorithms can be useful for enhancing sparse medical 

images such as X-Ray, ultrasound and magnetic resonance imaging (MRI). 

For instance if the breast cancer is in the beginning stage, with image restoration it will be 

clearer so the tumor region can be detected more efficiently.  

The ECG signal of the baby is usually affected by the mother’s heart beats. Considering the 

mother’s heart beats as a noise, adaptive filters can be utilized for noise cancellation which 

will help for better detection of any abnormality in the ECG of the baby. 

 

 

 

 

 

 



78 

 

 

REFERENCES 

 

[1] S. Haykin, “Adaptive filter theory”, Prentice Hall, Upper Saddle River, NJ, 3rd Edition. 

2008. 

[2] B. Widrow, “Adaptive filters”, in Aspects of Network and System Theory, R. Kalman 

and N. DeClaris, eds., pp. 563–587, Holt, Rinehart, and Winston, New York, 1971. 

[3] B. Widrow, P. Mantey, L. Griffiths, and B. Goode, “Adaptive antenna systems”, 

Proceeding of IEEE, vol. 55, no. 12, pp. 2143–2159, Dec. 1967. 

[4] B. Widrow, J. R. Glover, Jr., J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, 

J. R. Zeidler, E. Dong, Jr., and R. C. Goodlin, “Adaptive noise cancelling: Principles 

and applications”, Proceeding of IEEE, vol. 63, no. 12, pp. 1692–1716, Dec. 1975. 

[5] B. Widrow and S. D. Stearns, “Adaptive signal processing”, Prentice-Hall, Upper 

Saddle River, NJ, 1985. 

[6] B. Farhang-Boroujeny, “On statistical efficiency of the LMS algorithm in system 

modeling,” IEEE Transactions on Signal Processing, vol. 41, no. 5, pp. 1947–1951, 

May 1993. 

[7] M. Mboup, M. Bonnet, and N. Bershad, “LMS coupled adaptive prediction and system 

identification: A statistical model and transient mean analysis,” IEEE Transactions on 

Signal Processing, vol. 42, no. 10, pp. 2607–2615, Oct. 1994. 

[8] S. Theodoridis, “Adaptive filtering algorithms,” 18th IEEE Instruments and 

Measurements Technology Conference, Budapest, Hungary, vol. 3, pp. 1497–1501. 

May 2001. 

[9] J. Makhoul, “Linear prediction: A tutorial review,” Proceeding of IEEE, vol. 63, no. 

4, pp.561–580, Apr. 1975. 



79 

 

[10] B. Widrow, M. Lehr, F. Beaufays, E. Wan, and M. Bilello, “Learning algorithms for 

adaptive processing and control,” IEEE Int. Conference on Neural Networks, San 

Francisco, CA, , vol. 1, pp. 1–8. Mar./Apr. 1993 

[11] P. Prandoni and M. Vetterli, “An FIR cascade structure for adaptive linear prediction,” 

IEEE Transactions on Signal Processing, vol. 46, no. 9, pp. 2566–2571, Sep. 1998. 

[12] S. M. Kuo and D. R. Morgan, “Active noise control: A tutorial review,” Proceeding 

of IEEE, vol. 87, no. 6, pp. 943–973, June 1999. 

[13] L. C. Godara, “Improved LMS algorithm for adaptive beamforming,” IEEE 

Transactions on Antennas Propagation, vol. 38, no. 10, pp. 1631–1635, Oct. 1990. 

[14] C. C. Ko, “A simple, fast adaptive algorithm for broad-band null steering arrays,” 

IEEE Transactions on Antennas Propagation, vol. 39, no. 1, pp. 122–125, Jan. 1991. 

[15] S. Affes, S. Gazor, and Y. Grenier, “An algorithm for multisource beamforming and 

multitarget tracking,” IEEE Transactions on Signal Processing, vol. 44, no. 6, pp. 

1512–1522, June 1996. 

[16] R. W. Lucky, “Automatic equalization for digital communication,” Bell System 

Technical Journal, vol. 44, no. 4, pp. 547–588, Apr. 1965. 

[17] R. D. Gitlin, E. Y. Ho, and J. E. Mazo, “Passband equalization of differentially 

phase-modulated data signals,” Bell System Technical Journal, vol. 52, no. 2, pp. 219–

238, Feb. 1973. 

[18] S. Qureshi, “Adaptive equalization (data transmission),” IEEE Communications 

Magazine, vol. 20, no. 2, pp. 9–16, Mar. 1982. 

[19] J. G. Proakis, “Digital communications”, 4th edition, chapter 11, McGraw-Hill, New 

York, 2001. 

[20] M. M. Sondhi and A. J. Presti, “A self-adaptive echo canceller,” Bell System Technical 

Journal, vol. 46, no. 3, pp. 497–511, Mar. 1967. 



80 

 

[21] V. G. Koll and S. B. Weinstein, “Simultaneous two-way data transmission over a 

twowire circuit,” IEEE Transactions on Communications, vol. COM-21, no. 2, pp. 

143–147, Feb. 1973. 

[22] D. L. Duttweiler, “A twelve-channel digital echo canceler,” IEEE Transactions on 

Communications, vol. COM-26, no. 5, pp. 647–653, May 1978. 

[23] K. C. Ho, “Performance of multiple LMS adaptive filters in tandem,” IEEE 

Transactions on Signal Processing, vol. 49, no. 11, pp. 2762–2773, Nov. 2001. 

[24] L. J. Griffiths, “Rapid measurement of digital instantaneous frequency,” IEEE 

Transactions on Acoustic. Speech Signal Processing, vol. ASSP-23, no. 2, pp. 207–

222, Apr. 1975. 

[25] J. R. Zeidler, E. H. Satorius, D. M. Chabries, and H. T. Wexler, “Adaptive 

enhancement of multiple sinusoids in uncorrelated noise,” IEEE Transactions on 

Acoustic. Speech Signal Processing, vol. ASSP-26, no. 3, pp. 240–254, June 1978. 

[26] J. R. Treichler, “Transient and convergent behavior of the adaptive line enhancer,” 

IEEE Transactions on Acoustic. Speech Signal Processing, vol. ASSP-27, no. 1, pp. 

53–62, Feb. 1979. 

[27] J. T. Rickard, J. R. Zeidler, M. J. Dentino, and M. Shensa, “A performance analysis of 

adaptive line enhancer-augmented spectral detectors,” IEEE Transactions on Circuits 

& Systems, vol. CAS-28, no. 6, pp. 534–541, June 1981. 

[28] N. J. Bershad and O. M. Macchi, “Adaptive recovery of a chirped sinusoid in noise, 

Pt. II: Performance of the LMS algorithm,” IEEE Transactions on Signal Processing, 

vol. 39, no. 3, pp. 595–602, Mar. 1991. 

[29] M. Ghogho, M. Ibnkahla, and N. J. Bershad, “Analytic behavior of the LMS adaptive 

line enhancer for sinusoids corrupted by multiplicative and additive noise,” IEEE 

Transactions on Signal Processing, vol. 46, no. 9, pp. 2386–2393, Sept. 1998. 



81 

 

[30] R. L. Campbell, N. H. Younan, and J. Gu, “Performance analysis of the adaptive line 

enhancer with multiple sinusoids in noisy environment,” Signal Processing, vol. 82, 

pp. 93–101, Jan. 2002. 

[31] B. Widrow and E. Walach, “Adaptive inverse control”, Prentice-Hall, Upper Saddle 

River, NJ, 1996. 

[32] L.C. Wood & S. Treitel. “Seismic signal processing,” in Proceedings of IEEE , vol.63, 

no.4, pp.649-661, April 1975  

[33] M. L. Honig & D. G. Messerschmitt, “Adaptive filters: Structures, algorithms, and 

applications,” The Kluwer International Series in Engineering and Computer Science; 

SECS 1, Boston: Kluwer, 1984 

[34] P.S.R. Diniz. “Adaptive filters: Algorithms and practical implementation,” 3rd edition, 

springer. 2008. 

[35] B. D. Van Veen and K. M. Buckley, “Beamforming: a versatile approach to spatial 

filtering,” IEEE Acoustic, Speech, Signal Processing Magazine, vol. 37, pp. 4-24, 

April 1988. 

[36] L.H. Rosenthal, R.W. Schafer, L.R. Rabiner. “An algorithm for locating the beginning 

and end of an utterance using adpcm coded speech,” Bell System Technical Journal, 

The , vol.53, no.6, pp.1127-1135, July-Aug. 1974 

[37] M.V. Eyuboglu & S.U.H. Qureshi. “Reduced-state sequence estimation with set 

partitioning and decision feedback,” IEEE Transactions on  Communications , vol.36, 

no.1, pp.13-20, Jan 1988 

[38] M. Sondhi. “The history of echo cancellation”, IEEE Signal Processing Magazine, 

vol. 23, no.5, pp. 95 – 102. 2006 

[39] S. Gay & J. Benesty. “Acoustic signal processing for telecommunications”, Kluwer 

Academic Publishers. 2000 

[40] S. Haykin. “Adaptive filter theory,” 4th edn, Prentice-Hall. 2002 



82 

 

[41] A. Sayed. “Fundamentals of adaptive filtering,” Wiley-IEEE Press. 2003 

[42] J. Benesty, T. Gaensler, D. Morgan, M. Sondhi & S. Gay. “Advances in Network and 

Acoustic Echo Cancellation,” Springer-Verlag. 2001 

[43] J. Greenberg. “Modified LMS algorithms for speech processing with an adaptive noise 

canceller,” IEEE Transactions on Signal Processing, vol. 6, no. 4, pp. 338–351. 1998 

[44] J. Ni & F. Li. “Adaptive combination of subband adaptive filters for acoustic echo 

cancellation”, IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1549 – 

1555. 2010 

[45] E. Krishna, M. Raghuram, K. Madhav & K. Reddy. “Acoustic echo cancellation using 

a computationally efficient transform domain lms adaptive filter”, 10th International 

Conference on Information Sciences Signal Processing and their Applications 

(ISSPA), Kuala Lumpur, Malaysia, pp. 409–4, 2010 

[46] P. Marques. “Long distance echo cancellation using centered short length transversal 

filters,” Master’s thesis, Instituto Superior Técnico, Lisbon, Portugal. 1997 

[47] M. Sondhi & D. Berkeley. “Silencing echoes on the telephone network”, Proceedings 

of IEEE, vol. 68, no. 8, pp. 948–963. 1980 

[48] B. Widrow and M.E. Hoff, “Associative storage and retrieval of digital information in 

networks of adaptive ‘neurons’,” Biological Prototypes and Synthetic Systems, vol. 1, 

pp.160, 1962. 

[49] N.J. Bershad, “Analysis of the normalized LMS algorithm with Gaussian inputs,” 

IEEE Transactions on  Acoustics, Speech and Signal Processing, vol. 34, no. 4, pp. 

793-806, Aug 1986 

[50] G.C. Goodwin, Teoh, E.K.; Elliott, H., “Deterministic convergence of a self-tuning 

regulator with covariance resetting,” IEE Proceedings in Control Theory and 

Applications, D , vol. 130, no. 1, pp. 6-8, January 1983 



83 

 

[51] S. H. Cho and V. J. Mathews, “Tracking analysis of the sign algorithm in nonstationary 

environments,” IEEE Trans. on Acoustic, Speech, and Signal Processing, vol. 38, pp. 

2046-2057, Dec. 1990. 

[52] J. C. M. Bermudez and N. J. Bershad, “A nonlinear analytical model for the quantized 

LMS algorithm: The arbitrary step size case,” IEEE Transaction on Signal Processing, 

vol. 44, pp. 1175-1183, May 1996. 

[53] S. S. Narayan, A. M. Peterson, and M. J. Narasimha, “Transform domain LMS 

algorithm,” IEEE Trans. on Acoustic, Speech, and Signal Processing, vol. ASSP-31, 

pp. 609-615, June 1983. 

[54] G. Goodwin, M. Zarrop and R., Payne. “Coupled design of test signals, sampling 

intervals, and filters for system identification,” IEEE Transactions on  Automatic 

Control, vol.19, no.6, pp.748-752, Dec 1974 

[55] J. Benesty, C. Paleologu, S. Ciochin, “Regularization of the RLS algorithm”, IEICE 

Transactions on Fundamentals of Electronics, Communications and Computer 

Sciences, vol. 94, no. 8, pp. 1628-1629, 2011 

[56] C. Boukis, D.P. Mandic, A.G. Constantinides, “A Generalised Mixed Norm Stochastic 

Gradient Algorithm,” 15th International Conference on Digital Signal Processing, 

2007, vol., no., pp.27-30, 1-4 July 2007 

[57] Y. Chen, Y. Gu, and A. O. Hero. “Sparse LMS for system identification”. IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 

3, pp. 3125–3128. 2009 

[58] J.Yang, “Adaptive filter design for sparse signal estimation”, a dissertation submitted 

to the faculty of the graduate school of the university of Minnesota. 2011. 

[59] N. Czink, X. Yin, H. OZcelik, M. Herdin, E. Bonek, and B. Fleury. “Cluster 

characteristics in a MIMO indoor propagation environment”. IEEE Transactions on 

Wireless Communications, vol. 6, no. 4, pp.  1465–1475. 2007 



84 

 

[60] L. Vuokko, V.M. Kolmonen, J. Salo, and P. Vainikainen. “Measurement of large-scale 

cluster power characteristics for geometric channel models”. IEEE Transactions on 

Antennas and Propagation; vol. 55, no. 11, pp. 3361–3365, 2007 

[61] S. Kawamura and M. Hatori, “A tap selection algorithm for adaptive filters,” IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 

11, pp. 2979– 2982, 1986 

[62] J. Homer, I. Mareels, R.R. Bitmead, B. Wahlberg, and A. Gustafsson, “LMS 

estimation via structural detection,” IEEE Transactions on  Signal Processing, vol. 46, 

pp. 2651–2663, Oct. 1998. 

[63] Y. Li, Y. Gu, and K. Tang, “Parallel NLMS filters with stochastic active taps and step-

sizes for sparse system identification,” IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), vol. 3, pp. 109–112, 2006 

[64] D.M. Etter, “Identification of sparse impulse response systems using an adaptive delay 

filter,” IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), pp. 1169–1172. 1985 

[65] M. Godavarti and A. O. Hero, “Partial update LMS algorithms,” IEEE Transactions 

on  Signal Processing, vol. 53, pp. 2382–2399, 2005 

[66] R.K; Martin, W.A. Sethares, R.C. Williamson and C.R. Jr. Johnson. “Exploiting 

sparsity in adaptive filters,” IEEE Transactions on  Signal Processing, vol.50, no.8, 

pp.1883-1894, Aug 2002  

[67] A. Cichocki, S.Amari “Adaptive blind signal and image processing: learning 

algorithms and applications,” John Wiley & Son, 2002. 

[68] A. Sugiyama, H. Sato, A. Hirano and S. Ikeda. “A fast convergence algorithm for 

adaptive FIR filters under computational constraint for adaptive tap-position control,” 

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 

vol. 43, no. 9, pp. 629-636, Sep 1996 



85 

 

[69] L. Rey Vega, H. Rey, J. Benesty and S. Tressens. “A Family of robust algorithms 

exploiting sparsity in adaptive filters,” IEEE Transactions on  Audio, Speech, and 

Language Processing, vol.17, no.4, pp.572-581, May 2009 

[70] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal 

Statistical Society: Series B, vol. 58, pp. 267–288, 1996 

[71] Y. Chen, Y. Gu, and A. O. Hero. “Sparse LMS for system identification”. IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 

3, pp. 3125–3128. 2009 

[72] G. Gui, W. Peng and F. Adachi. “Improved adaptive sparse channel estimation based 

on the least mean square algorithm”. IEEE Wireless Communications and Networking 

Conference (WCNC), pp. 1–5, Shanghai, China, April 2013 

[73] E.J. Candes, M.B. Wakin and S.P. Boyd. “Enhancing sparsity by reweighted l1 

minimization”. Journal of Fourier Analysis and Applications 2008; vol. 14, no. (5–6), 

pp. 877–905 

[74] O. Taheri and S.A. Vorobyov. “Sparse channel estimation with lp-norm and 

reweighted L1-norm penalized least mean square”. IEEE International Conference on 

Acoustics Speech and Signal Processing (ICASSP); pp. 2864–2867, 2011 

[75] Y. Gu, J. Jin, and S. Mei. “l0-Norm constraint LMS algorithm for sparse system 

identification”. IEEE Signal Processing Letters, vol. 16, no. 9, pp. 774–777, 2009 

[76] G. Su, J. Jin, Y. Gu, and J. Wang. “Performance analysis of l0-norm constraint least 

mean square algorithm”. IEEE Transactions on Signal Proecessing, vol. 60, no. 5, pp. 

2223–2235. 2012 

[77] L. Mancera, J. Portilla, “l0-Norm-Based Sparse Representation Through Alternate 

Projections,” 2006 IEEE International Conference on  Image Processing, , vol., no., 

pp.2089-2092, Oct. 2006 

[78] G. Deng. “Partial update and sparse adaptive filters,” IET Signal Processing, , vol.1, 

no.1, pp.9-17, March 2007  



86 

 

[79] Y. Li, Y. Gu, K. Tang, “Parallel NLMS Filters with Stochastic Active Taps and Step-

Sizes for Sparse System Identification,” 2006 IEEE International Conference 

on  Acoustics, Speech and Signal Processing, vol.3, no., pp.III-III, 14-19 May 2006  

[80] J. Arenas-Garcia, A.R. Figueiras-Vidal, “Adaptive Combination of Proportionate 

Filters for Sparse Echo Cancellation,” IEEE Transactions on  Audio, Speech, and 

Language Processing, , vol.17, no.6, pp.1087-1098, Aug. 2009 

[81] K. Shi, P. Shi, “Convergence analysis of sparse LMS algorithms with l1-norm penalty 

based on white input signal”, Signal Processing, vol.  90, no. 12, December 2010, pp. 

3289-3293. 

[82] O. Taheri and S. A. Vorobyov, “Reweighted l1-norm penalized LMS for sparse 

channel estimation and its analysis,” Signal Processing, vol. 104, pp. 70-79, 2014. 

[83] M. Hadhoud and D. Thomas, “The two-dimensional adaptive LMS (TDLMS) 

algorithm”,  IEEE International Symposium on Circuits and Systems - ISCAS , vol. 35, 

pp. 485-494, 1988. 

[84] J. Chambers and A. Avlonitis, “A robust mixed-norm adaptive filter 

algorithm,” IEEE Signal Processing Letters, vol. 4, no. 2, pp .46-48, 1997. 

[85] Y. S. Choi, “A new subband adaptive filtering algorithm for sparse system 

identification with impulsive noise,” Journal of Applied Mathematics, vol. 2014, pp. 

1-7, 2014.  

[86] G. Rombouts, “Adaptive filtering algorithms for acoustic echo and noise 

cancellation,” Katholieke Universiteit Leuven Ph.D. Thesis, 2003. 

[87] D.R. Morgan, S.Craig, “Real-time adaptive linear prediction using the least mean 

square gradient algorithm,” IEEE Transactions on Acoustics, Speech and Signal 

Processing, vol.24, no.6, pp.494-507, 1976. 

[88] A. Mader, H. Puder and G. U. Schmidt, “Step-size control for acoustic echo 

cancellation filters-an overview,” Signal Processing, vol. 80, pp. 1697–1719, 2000. 

[89] W. Tianhui, M. Liyuan, L. Yongjun an D. Yonggang, “An improved variable step size 

LMS adaptive spectral-line enhancement algorithm and its simulation,” Proceedings 

http://libra.msra.cn/Conference/1223/iscas-ieee-international-symposium-on-circuits-and-systems
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Li%20Yongjun.QT.&newsearch=true


87 

 

of the International Conference on Pervasive Computing, Signal Processing and 

Applications (PCSPA 2010), pp. 727-730, 2010. 

[90] G. Su, J. Jin, Y. Gu and J. Wang, “Performance analysis of l0-norm constraint least 

mean square algorithm,”  IEEE Transaction on Signal Processing, vol. 60, no. 5, pp. 

2223-2235, 2012. 

[91] B. K. Das, M. Chakraborty and S. Banerjee, “Adaptive identification of sparse systems 

with variable sparsity,” IEEE International Symposium on Circuits and Systems 

(ISCAS2011), pp. 1267-1270, 2011.  

[92] F. Y. Wu and F. Tong, “Gradient optimization p-norm-like constraint LMS algorithm 

for sparse system estimation,” Signal Processing, vol. 93, no. 4, pp. 967–971, 2013. 

[93] J. Jin, Q. Qu and Y. Gu, “Robust zero-point attraction least mean square algorithm on 

near sparse system identification,” IET Signal Processing, vol. 7, no. 3, pp. 210-218, 

2013. 

[94] M.S.E. Abadi, and S. Nikbakht, “Image denoising with two-dimensional adaptive filter 

algorithms.” Iranian Journal of Electrical & Electronic Engineering, vol.7, no.2, pp. 

84-105, 2011. 

[95] G. Masui, K. Nishikawa and H. Kiya, “2D blind system identification using adaptive 

algorithms,” In Proceedings:  TENCON 2000, Kuala Lumpur, vol. 2, no.11,  pp.77-79, 

2000. 

[96] P. S. Kumar, and R. Sumit. “Two-dimensional equalization: Theory and applications 

to high density magnetic recording,” IEEE Transactions on Communications, vol. 42, 

no.234, pp. 386-395, 1994. 

 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0165168412003702
http://www.sciencedirect.com/science/article/pii/S0165168412003702


88 

 

 

APPENDIX A 

A.1. Extra Simulation Results 

 

Comparison between 2D-LMS & 2D ZA-LMS algorithms on different images using AWGN 

noise with different variance values and zero mean. 

  
Phantom Image 

 

 
Phantom Image corrupted by AWGN with different variance values and zero mean 
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Denoised images corresponding to noisy Phantom images in previous figure using 2D ZA-LMS  

(𝜇 = 0.001, 𝜌 = 10−4, 𝜀 = 10 ) 

 
 

Denoised images corresponding to noisy Phantom images in previous figure using 2D-LMS  

(𝜇 = 0.001) 
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Maze Image 

 

 
Maze Image corrupted by AWGN with different variance values and zero mean 
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Denoised images corresponding to noisy maze images in previous figure using 2D ZA-LMS  

(𝜇 = 0.001, 𝜌 = 10−4, 𝜀 = 10 ) 

 
 

Denoised images corresponding to noisy maze images in previous figure using 2D-LMS  

(𝜇 = 0.001) 
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Lena Image 

 

 
Lena Image corrupted by AWGN with different variance values and zero mean 
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Restored images corresponding to noisy Lena images in previous figure using 2D ZA-LMS  

(𝜇 = 0.001, 𝜌 = 10−4, 𝜀 = 10 ) 

 

 
Restored images corresponding to noisy Lena images in previous figure using 2D-LMS  

(𝜇 = 0.001) 
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Moustache Image 

 

 
Moustache Image corrupted by AWGN with different variance values and zero mean 
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Restored images corresponding to noisy moustache images in previous figure using 2D ZA-LMS  

(𝜇 = 0.001, 𝜌 = 10−4, 𝜀 = 10 ) 

 

 
Restored images corresponding to noisy moustache images in previous figure using 2D-LMS  

(𝜇 = 0.001) 
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Splash Image 

 

 
Splash Image corrupted by AWGN with different variance values and zero mean 
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Restored images corresponding to noisy splash images in previous figure using 2D ZA-LMS  

(𝜇 = 0.001, 𝜌 = 10−4, 𝜀 = 10 ) 

 
Restored images corresponding to noisy splash images in previous figure using 2D-LMS  

(𝜇 = 0.001) 
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Man Image 

 

 
Man Image corrupted by AWGN with different variance values and zero mean 

 

 



99 

 

 
Restored images corresponding to noisy man images in previous figure using 2D ZA-LMS  

(𝜇 = 0.001, 𝜌 = 10−4, 𝜀 = 10 ) 

 
Restored images corresponding to noisy man images in previous figure using 2D-LMS  

(𝜇 = 0.001) 

 

 

 

 


