

The Graduate Institute of Science and Engineering

M.Sc. Thesis in Computer Engineering

A Comparative Study of Theorem Provers

by

Adamu Sani YAHAYA

July 2014

Kayseri, Turkey

A Comparative Study of Theorem Provers

By

Adamu Sani YAHAYA

A thesis submitted to

the Graduate Institute of Science and Engineering

of

Meliksah University

in partial fulfillment of the requirements for the degree of

Master of Science

in

 Computer Engineering

July 2014

 Kayseri, Turkey

APPROVAL PAGE

This is to certify that I have read the thesis entitled “A Comparative Study of

Theorem Provers” by Adamu Sani Yahaya and that in my opinion it is fully adequate, in

scope and quality, as a thesis for the degree of Master of Science in Electrical and

Computer Engineering, the Graduate Institute of Science and Engineering, Melikşah

University.

 July 17, 2014 Prof. Dr. Murat UZAM

 Head of Department

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 July 17, 2014 Yrd. Dr. Aytekin VARGÜN

 Supervisor

Examining Committee Members

Title and Name Approved

Asst. Prof. Aytekin VARGÜN July 17, 2014 ____________________

Assoc. Prof. Dr. Ahmet UYAR July 17, 2014 _____________________

Asst. Prof. Hasan PALTA July 17, 2014 _____________________

It is approved that this thesis has been written in compliance with the formatting rules

laid down by the Graduate Institute of Science and Engineering.

Prof. Dr. M. Halidun Keleştemur

 Director

July2014

iii

A Comparative Study of Theorem Provers

Adamu Sani YAHAYA

M.S. Thesis in Electrical and Computer Engineering

July 2014

Supervisor: Asst. Prof. Aytekin VARGÜN

ABSTRACT

Theorem provers and proof assistants are mainly used for solving mathematical

problems or in formal verification of software and hardware. It is critical to deliver

correct and safe code to the customers to prevent high cost of software maintenance.

This is also indispensable and can cause life-threatening problems in applications that

are related to health, aerospace and nuclear reactors etc. Formal verification via theorem

provers provides high assurance of correctness and safety. The theorem proving process

requires writing specifications and proofs of properties that identify safety, correctness

or other mathematical features. Some theorem provers are fully automatic but in many

cases interaction with proof assistants are required to complete the proof process.

The choice of suitable theorem provers is not an easy process. There are currently

many theorem provers which can provide help in writing proofs. Some applications may

require proofs to be written in detail while some requires complete automation. The

work in this thesis attempts to compare three popular theorem provers which are

Athena, Coq and Isabelle. We select representative examples from different domains

and use each theorem prover to write formal proofs. During these steps, we compare

these tools based on some criteria which include proof automation, readability,

debugging, and documentation.

Keywords: Theorem prover, proof assistant, first-order logic, Athena, Coq, Isabelle.

iv

TEOREM İSPATLAMA SİSTEMLERİNİN

KARŞILAŞTIRILMASIYLA İLGİLİ BİR ÇALIŞMA

Adamu Sani YAHAYA

YüksekLisansTezi – Elektrik ve Bilgisayar Mühendisliği

Haziran 2014

Tez Danışmanı: Yrd. Doç. Dr. Aytekin VARGÜN

ÖZ

Teorem ispatlayıcıları ve ispat yardımcıları genellikle matematiksel problemleri çözmek

için ya da yazılım ve donanımların formal olarak doğrulanmasında kullanılır. Yazılımların

bakım işleminin yüksek maliyetli olmasını engellemek için müşterilere doğru ve güvenli

kod teslim etmek kritiktir. Bu aynı zamanda vazgeçilmezdir çünkü sağlık, havacılık ve

nükleer reaktörler ve benzeri alanlarla ilişkili uygulamalarda yaşamı tehdit eden

problemlere neden olabilir. Teorem ispatlayıcıların kullanılmasıyla yapılabilen formal

doğrulama, yüksek doğruluk ve güvenirliliğin garanti edilmesini sağlar. Teorem ispatlama

süreci güvenilirlik, doğrululuk, ve diğer matematiksel özelliklerin ifade edilmesini

(yazılmasını) ve bunlarla ilgili ispatların yazılması işlemini gerektirir. Bazı teorem

ispatlayıcılar tamamıyla otomatiktir ancak birçok durumda ispatlama işleminin

tamamlanabilmesi için kullanıcının sistemi yönlendirmesi gerekir.

Uygun teorem ispatlayıcının seçimi kolay bir işlem değildir. Halihazırda ispat yazmada

yardım sağlayabilen pek çok teorem ispatlayıcı vardır. Bazı uygulamalar ispatların detaylı

bir şekilde yazılmasına ihtiyaç duyarken diğer bir kısmı ise tam otomasyon gerektirir. Bu

tezdeki çalışma, Athena, Coq, ve Isabelle isimli üç popüler teorem ispatlayıcıyı

karşılaştırmayı amaçlamaktadır. Bunu yapabilmek için farklı alanları temsil eden örnek

problemler seçtik ve bunlarla ilgili formal tanımlamalar ve ispatlar yazdık. Bu süreçte,

ispatların otomatik olarak yazılabilmesi, okunabilirlik, hatalardan temizleme ve belgeleme

gibi kriterleri kullanarak bu yazılımları karşılaştırdık.

Anahtar sözcukler: Teorem ispatlayıcılar,İspat yardımcısı,Birinci-derece mantık, Athena,

Coq, İsabelle

v

DEDICATION

I dedicate this thesis to my parents for their tireless, indefatigable and earnest support, love,

and encouragement they have been offering me since childhood to where and how I am

today. My achievements in life wouldn’t have been materialized without their prayer,

guidance and the philosophy of hardworking they imparted on me.

vi

ACKNOWLEDGEMENT

Without the meaningful suggestions and advice from my supervisor, whose strenuous

passion for software verification strengthens my enthusiasm for my research area, this

thesis wouldn’t have gone beyond a mere dream. My sincere appreciation goes to my thesis

supervisor and also course instructor Yrd. Doç. Dr. Aytekin VARGÜN

I remain grateful to His Excellency, the Executive Governor of Kano State-Nigeria,

Engr. Dr. Rabi’u Musa. Apart from the knowledge acquired, this has given me an

opportunity to explore other part of the world.

I also express my earnest indebtedness to my H.O.D and course instructor, Assoc.

Prof. Ahmet Uyar together with the entourage of academic staffs of my department for all

the support and the knowledge they imparted on me. This has contributed immensely while

carrying out this research.

I similarly owe a great deal of thanks to my brothers, sisters, uncles, friends and most

importantly 18 M.Sc students with which I benefited the 501 Kano State Scholarship

Scheme.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

DEDICATION .. v

ACKNOWLEDGMENT .. vi

TABLE OF CONTENTS ... vii

LIST OF TABLES .. x

LIST OF FIGURES .. xi

LIST OF SYMBOLS AND ABBREVIATIONS ... xiii

CHAPTER 1 :INTRODUCTION

1.1 INTRODUCTION ... 1

1.2 Statement of Problem .. 1

1.3 Organization of the Thesis ... 3

CHAPTER 2: LITERATURE REVIEW

2.1 RELATED WORK .. 4

2.2 THEOREM PROVING AND THEOREM PROVERS...5

2.2.1 History of Theorem Prover and Proof Assistant 5

2.2.2 Theorem Prover ... 7

2.2.2.1 Automated Theorem Prover ... 7

2.2.2.2 Proof Assistant ... 8

2.3 COMMON TERMS AND RELATED DEFINITIONS 9

2.3.1 Axioms .. 9

2.3.2 Theorem .. 10

2.3.3 Logics ... 11

2.3.3.1 Types of Logics .. 11

viii

2.3.3.1.1 propositional Logics .. 11

2.3.3.1.2 Predicate Logics .. 12

2.3.3.1.3 Formal Logics ... 12

2.3.3.1.3.1 First-order Logics 13

2.3.3.1.3.2 Higher-order Logics 13

 2.3.4 Proofs ... 14

 2.3.4.1 Formal Proofs ... 14

 2.4 ATHENA THEOREM PROVER ... 14

 2.4.1 Some Athena Features .. 15

 2.4.1.1 Terms in Athena ... 15

 2.4.1.2 Proofs Methods in Athena .. 15

 2.4.1.2.1 Equality and Implication Chaining 16

 2.4.1.2.2 Proof by Inductions ... 16

 2.4.1.2.3 Proof by Contradictions .. 17

2.5 COQ THEOREM PROVER .. 17

 2.5.1 Proof Methods ... 18

2.6 ISABELLE THEOREM PROVER .. 19

 2.6.1 Proof Methods in Isabelle .. 19

 2.6.1.1 Structural Induction and Cases distinction 19

 2.6.1.2 Simplifications ... 20

CHAPTER 3 METHODOLOGY

3.1 OUR APPROACH ... 21

3.1.1 Readability and understandability ... 22

3.1.2 Bigger Library .. 22

ix

3.1.3 Shorter Proofs ... 22

3.1.4 Flexibility in constructing Proofs ... 22

3.1.5 Documentations .. 23

3.1.6 Library Lookup ... 23

3.1.7 Platforms ... 23

3.1.8 Feedback from System .. 23

3.1.9 Meaningless Typography Noise .. 23

3.2 TACTICS USED IN COQ AND ISABELLE THEOREM PROVER 24

3.3 AN EXAMPLES IN ATHENA THEOREM PROVER 25

3.4 AN EXAMPLE IN COQ THEOREM PROVER ... 27

3.5 EXAMPLE IN ISABELLE THEOREM PROVER .. 30

CHAPTER 4 CASE STUDIES

4.1 CASE STUDY: EQUIVALENCE OF FACTORIAL AND TAIL-RECURSIVE

FACTORIAL .. 33

4.2 CASE STUDY: SUM OF N NUMBERS .. 42

4.3 CASE STUDY: SUM LIST.. 47

4.4 CASE STUDY: DEFINING LINES AND EXAMPLE PROOFS 53

CHAPTER 5 COMPARISONS OF THEOREM PROVERS

5.1 JUSTIFICATION OF COMPARISONS ... 58

5.1.1 Readability and understandability ... 58

5.1.2 Size of Mathematical Libraries .. 60

5.1.3 Shorter Proofs ... 60

5.1.4 Flexibility in constructing Proofs ... 61

5.1.5 Better Documentation ... 61

5.1.6 Library Lookup ... 63

5.1.7 Availability on Platforms .. 63

5.1.8 Feedback from System .. 64

5.1.9 Meaningless Typography Noise ... 65

x

5.2 RESULT OF COMPARISONS ... 66

CHAPTER 6 CONCONCLUSION ... 67

REFERENCE ... 68

APPENDIX .. 73

APPENDIX A .. 73

APPENDIX B .. 76

APPENDIX C .. 78

xi

LIST OF TABLES

TABLE

1 Comparison of proof Assistants ... 9

5.1 Comparison of Theories in all the Systems ... 60

5.2 Comparison of Theorem Provers in terms of Line .. 60

5.3 Important Document ... 63

5.4 Typographic Noise .. 65

5.5 Comparison of Systems ... 66

xii

LIST OF FIGURES

FIGURES

5.1 A graph showing the difference in terms of Lines .. 60

1

CHAPTER ONE

INTRODUCTION

1.1 INTRODUCTION

In today’s world, there are many devices that are controlled by software in our

daily life. Personal computers, airplanes, cells phones, washing machines and many

similar devices have software on them. In many ways either directly or indirectly our

lives, properties or our work depend on these devices. Their proper functionality is very

important. There are several ways to check the accuracy of the software being used on

them. One of the methodologies is to use formal verification which could be either

automatic or semi-automatic. The role of automated reasoning or deduction is very

important in formal methods and software verification. Automated reasoning and

software verification reduce the amount of failure in software and improve the

efficiency or performance. The theorem proving process requires one to write axioms,

specifications, and any other related symbolic definitions first. In the next step, the user

constructs proofs by using the language of the proof assistant. In some cases, the proofs

can be obtained automatically. But in general, this process requires interaction from

users who must have some expertise in proof engineering. In extreme cases, the whole

proof might be written manually. There are many theorem provers which might have

some degree of automation. In this thesis, we compare some of these theorem provers to

help users to select a proper proof assistant for their needs.

1.2 Statement of the Problem

Coq, Athena and Isabelle are three popular theorem provers and proof assistants

which have been used widely in the area in many projects. Although they have many

2

Similarities, they also have important differences. We observed that these theorem

provers are not compared yet which is important since various problems require

different approaches when proving theorems. The choice of right theorem prover that is

related to the problem domain is extremely important since this choice can shorten the

theorem proving process. As opposed to automated theorem proving, it might be

necessary to present steps of proofs for mathematical problems.

Based on the literature review, this is the first work that compares Athena to Coq and

Isabelle

In this research, we compare Athena, Coq and Isabelle by writing formal

definitions and proofs which makes it possible to test correctness of some functions that

we selected from different domains including natural numbers and lists. We selected

five different representative examples and proved properties about them in all three

theorem provers. One of the case studies we picked is to prove the equality of the

definitions of factorial and tail-recursive factorial functions. These two functions are

defined axiomatically in all three theorem provers and are proved that they are

equivalent. We also defined a function called sum which returns the sum of natural

numbers in a list. We used this definition as a specification and wrote definitions for a

more efficient sum function. Our third example is selected as a mathematical problem

which is based on sum of first n numbers. We also picked an example about

intersection/parallelism of lines. Although this example was relatively simple, we

collected valuable data from it where we needed to use proof by contradiction. Our final

examples depict list operations. We defined and proved some properties of a function

that reverses a list of natural numbers. All these examples required us to use existing

libraries.

One of the goals of this research includes how easy it is to construct and maintain

proofs and debug them by using a proof assistant. Are the proofs readable? Do the

theorem provers have any documents and libraries to help users to write proofs. More

specifically, we compared them based on the following criteria:

 Proof readability and understandability

 Bigger mathematical library

3

 Shorter proofs

 Flexibility in constructing proofs

 Better documentation

 Available on more platforms

 Better library lookup

 More feedback from the system

 Less meaningless typographic noise

These criteria are explained in Chapter-3 where we explain our methodology.

1.3 Organization of the Thesis

This thesis consists of 6 Chapters. In Chapter 2, we present previous work on

automated theorem provers which are also compared by many researchers. The

history of automated theorem provers and proof assistants is also discussed.

Important terms in automated theorem proving are explained. The three theorem

provers used in our research are introduced with a brief discussion to make it clearer

for novice readers to understand our axioms and proofs. In Chapter 3, our approach

was explained and some relatively simple proofs are illustrated in all three theorem

provers. In Chapter 4, we present our case studies and explain proof steps while

comparing the features of theorem provers. In Chapter 5, our results are illustrated

and discussed in detail. We talked about the conclusions and possible future work in

the last chapter.

4

CHAPTER TWO

LITERATURE REVIEW

2.1 RELATED WORK

The users of different mechanical proof-checking systems believed that there is

little communication within them. The insufficiency of communication motivates them

to give courage in preconception and myths about the ability to use variety of different

systems. Tangible comparison shows clearly the advantages and limitations of various

systems, in addition to their differences and commonalities. Furthermore, comparisons

assist to find out what progress is being made and which way the field is heading.

Konstantine Arkoudas compared Athena and HOL theorem provers here [1]. In

his research his main interest is to compare the simplicity and ease of expression: how

easy or difficult to specify deductive processes that dynamically construct complicated

proofs. He shows that in most situations Athena definitions and proofs are shorter. It is

easier to express and understand Athena proofs. In his research he shows that Athena is

efficient than HOL theorem prover.

 Markus Wenzel and Freek Wiedjik in 2002 [2] compared Mizar and Isar theorem

provers. The comparison determine a list of differences between Isar and Mizar,

highlighted the strength of both systems from the views of end-users. In their Research

they also show high-level views sketches in formal proofs. Wenzel and Wiedjik used

just one example to compare the systems (the example is Euclid proof of the existence

of infinitely many primes).

Freek Wiedjik, Dana Scott and Radboud in [3] also compared the style of

different proof Assistants for mathematics which includes Mizar, HOL, Coq,

Isabelle/Isar, PVS, Otter/Ivy, ACL2, Alfa/Agda, Theorema, Nuprl, IMPS, PhoX, Lego,

Metamath, B method, -mega and Minlod. They used Pythagoras proofs of the

5

irrationality of in both formal and informal way in the mentioned systems to

make their comparisons.

Vicent Zammit in [4] illustrated in his paper the differences between the style of

theory mechanization of HOL and Coq. The comparison is based on the mechanization

of fragment of the theory of computation in both HOL and Coq. Some examples are

implemented to support the opinion debated in his paper. In addition, the mechanism for

theorem proving and specifying definitions are discussed separately. They found that

the strongest point given to the user is flexibility by means of metalanguage. Coq

theorem prover relies on the power of calculus of Inductive construction. David Basin

in [5] used examples to compare two systems which are Nuprl Proofs Development and

Boyer-Moore Theorem prover. The example used is machine verification of a version of

Ramsey theorem. Non-quantitative and quantitative measures were used to compare the

proofs. Also in their Research they point-out that it is difficult to compare the

naturalness and ease with which one finds proofs in different systems- especially when

the theorem proving paradigms are different as NQTHM and Nuprl.

Our main focus is to compare Athena, Coq and Isabelle theorem provers. With

our literature review we found out that Athena has not been compared with Coq and

Isabelle theorem previously.

2.2 THEOREM PROVING AND THEOREM PROVERS

This section starts with a brief historical discussion of theorem provers and proof

assistants. We then explain some common terms which include axioms, lemma, logic,

proofs and theorems in general. We will show how to define or use them in all three

theorem provers with a basic example in Chapter-3. We also provide a short

introduction to theorem provers in general. We then specifically concentrate on the

languages of Athena, Coq and Isabelle and explain them in more detail.

2.2.1 Brief History of Theorem Provers and Proof Assistants

In 1957 during class session Adridus wedberg called the Attention of his first year

students where he made mention that proving Mathematical theorem in first-order logic

6

on computer can be possible. This statement encourages his student Dag Prawitz to used

the idea into practice [6]

The First general purpose machine or computer became obtainable after 2
nd

 world

war. In 1954, Martin Davis designed a program for advanced study about Presburger’s

algorithm using JOHNNIAC vacuum tube computer at Princeton Institute. Based on

Martins, "Its great achievement was to prove that the sum of two even numbers is even”

[7][8]. A .Simon, J.C. Shaw and Allen Newell developed a deduction system know as

logic Theory machine (LTM) which “built proofs from sets of axioms and three rules of

deduction: variable substitution, modus ponens, and the insertion of formulas by their

definition”. These systems make an effort to imitate human mathematician but do not

guarantee to establish every valid theorem. They prove thirty eight out of fifty theorems

in principia Mathematica [7].

Upon to proof assistants, in 1970’s the idea of mathematical proofs with computer

came up at different places at the same time [9]. The origin of proof assistant will be

discussed here: Let us begin with Automath. The Automath project [10, 11] was started

in the year 1967 by De-Bruijn whose goal was to developed a mathematical verification

machine system. The related aims of the project was to design a language based on

mathematics in which all the mathematical structures can be represented exactly, in the

way where linguistic accuracy will give correct mathematical structures. This language

has to be computer verifiable and supportive in enhancing their reliability and

dependability in mathematical results. Various Automath systems have been used and

applied in the mathematical formalization. Another essential initiative that first included

in Automath is the Logical Frameworks. De-Bruijn stated that his system has only

provided with the fundamental mathematical mechanisms in unfolding definitions,

variable bindings, substitutions and creating etc. and an end-user can freely make any

additions of logical rules as he/she wishes [9].

Martin-Lӧf extended the idea of curry-Howard formulas-as-types isomorphism

which provides a connection of proofs between λ-calculus and constructive logics,

designed constructive type theory as root for mathematical approaches, where functions

and inductive types defined by understandable recursions are the basic principles [12,

13]. The first extended theory was used in Nuprl [14], Agda [15] and ALF [16] also in

various proof assistants like Coq, LF and lego.

Logic for Computational Functions (LCF) was developed by Milner for formal

theory which was defined by Scott in 1969. LCF born the systems HOL-light, Isabelle

7

and HOL. They all used LCF approaches. The first system developed was a directed

system that has tactics to disintegrate a larger goal into pieces of smaller goals. This

system also included a simplifier that would simplify smaller goals and add a new proof

command safely without storing proofs in memory but with the facts that are proved [8].

Trybulec built a system in 1973 at the University of Bialystok called Mizar

System which was divided into two: Mizar Language and Mizar System. Its main goal

is formal languages similar to mathematical languages where the system is a computer

program which allows text file verification that is written in Mizar for mathematical

correctness [9].

The first Nqthm was started in 1973 and arouse from the work of McCarthy. It

was implemented in Lisp and is an automated reasoning system, it can be called

“Boyer-Moore theorem prover”, and the interesting idea of Nqthm was concentrated

toward automation and by combining interactiveness which allowed people to add

lemmas. The logic behind is quantifier-free which is first-order logic with equality. The

idea was used in Twelf Logical framework and evolved into ACL2 [9].

2.2.2 Theorem Provers

In computer science, theorem provers can be referred to as:

 Automated theorem provers which searches for a proof that a given

statement is either true or false automatically or,

 Proof assistant which is an interactive theorem prover that requires a high

degree of user interaction to find the proof

2.2.2.1 Automated Theorem Provers

Automated theorem proving (ATP), which is also called automated deduction, is a

subdivision of mathematical logic. Automated reasoning deals with proving theorems of

mathematics by a computer program. Proving mathematical expressions by using

automated reasoning made a big impact on of computer science [17].

ATPs deal with the design of computer programs which show that a conjecture or

in simplest word a statement is a logical outcome of a set of axioms or/and hypothesis.

ATP plays vital roles in various places and areas such as mathematical centers,

8

management consultants and hardware developers. For example, mathematicians can

prove a statement that groups of order are commutative by applying the axioms of

group theory; hardware developers can validate circuits by proving a statement that

describes the equality of the circuit and its optimized version by using axioms and proof

techniques; A management consultants can design a set of axioms which explain how

community grows and interacts, and from those axioms it can be proved that

community death rates increase or decrease with ages. All of these problems can be

solved by the use of an ATP system with a proper designation of the problem which is

defined with axioms, hypotheses, and conjectures.

2.2.2.2 Proof Assistants

In mathematics and computer science, interactive theorem prover or a proof

assistant is software which provides help with the developments of formal proof by

human-machine cooperation. This involves some sorts of interactive proof editor, with

which an end-user can guide proof search, details of information are stored in, and a few

steps are supplied by a machine (computer) [18].

A lot of automated proof systems began from complete automatic theorem prover

to proof assistants. The initial proof assistants are based on first-order and propositional

logic while the current ones are general-purpose systems which are identified as “proofs

processor with spell-checkers.” which look similar to normal words-processors with a

spelling checker that helps catching small errors while typing. Also proof assistants

assist to developed proofs while removing errors and checking correctness [19].

The entire recent proof assistants are more or less influenced by Logic for

Computable Functions (LCF)[20]. It introduced a functional meta-language that should

be used to merge primitive reasoning or justification steps into extra sophisticated

pattern of reasoning’s know as tactics. Its further fundamental contribution is to separate

the center or core of the proof checker from the remaining part of the system. The latter

guarantees that the correctness of the proof relied barely on the correctness of the proofs

checker [19].

The most popular front-end for proofs assistant is Emacs-based editors, which was

developed in the University of Edinburg. The proof assistants include coq, Isabelle and

so on. The proof assistant for coq comprised of CoqIDE, which is based on OCaml/Gtk.

9

Isabelle comprised Isabelle/jEdit, which is based on jEdit and the Isabelle/Scala

infrastructure for document-oriented proof processing [18].

Table 1: Comparison of proof assistants [3]

Proof Assistants

H
O

L

M
iz

ar

 P
V

S

 C
o

q

 O
tt

er
/I

v
y

 Is
ab

el
le

 A
lf

a/
A

g
d

a

 A
C

L
2

 P
h

o
X

IM
P

S

small proof kernel (‘proof objects’) + - - + + + + - + -

calculations can be proved automatically + - + + + + - + + +

extensible/programmable by the user + - + + - + - - - -

powerful automation + - + - + + - + - +

readable proof input files - + - - - + - + - -

based on higher order logic + - + + - + + - + +

large mathematical standard library + + + + - + - - - +

2.3 COMMON TERMS AND RELATED DEFINITIONS

2.3.1 Axioms

The word originated via Latin, from Greek ἀξίωμα (āxīoma) “that which is

decision; thought fitting; self-evident principle”. Almost two and half decades of

centuries ago, axiom was believed to be a statement that was absolutely true without a

minimum amount of false suspicion, a self-evident truth. Nowadays non-

mathematicians were convinced from mathematicians that an axiom is a rule in a game

or only a premise and a point were ever rules begin [21].

In Mathematics, the term axiom is used in two associated but obvious senses "non-

logical axioms" and "logical axioms" which will be described soon. In both senses,

mathematical axioms are any statement in mathematics that serves as an initial point

from which some others mathematical statements are derived using logical methods.

Within the boundary of the system they define, axioms cannot be verifiable

by mathematical proofs, nor derived by principles of deduction, basically for the reason

10

that they are starting points. However, a Mathematical axiom in some systems may

perhaps be a theorem in other systems, and vice versa.

Non-logical axioms (e.g. as in commutative over +, b + a = a + b) are truly

defining properties belonging to the domain of mathematical theories specifically (such

as arithmetic’s) [22].

2.3.2 Theorem

The word theorem was originated from Greek called theorema, from the word

theorein meaning as "to look at," of unknown origin. In mathematics and computer

science, theorems are statements that have been proven on the origin of formerly

established statement, like other theorems and normally accepted statements, for

example like axioms. A mathematical theorem’s proof is a logical argument for the

statement given in the theorem which set in accord with the deductive system rules. The

proof of a theorem is regularly explained or interpreted as the justification of the fact in

the theorem’s statement. In line with requirement that the Mathematical theorems can

be proved, the idea of a theorem is primarily deductive, in distinction to the impression

of a theory in science, which is called empirical [23].

Although theorems can be expressed in an absolutely symbolic forms, for e.g., in

calculus proposition, theorems are frequently articulated in natural languages such as

English language. The Same in proofs, which are frequently articulated as apparently

worded and logically planned in informal arguments, with intention to satisfy readers

about the truth in theorem statements away from any reasonable doubts, and through

which symbolic proof might be constructed. These arguments are normally simpler and

easier to verify than solely symbolic ones. Certainly, many mathematicians would

explain in some way why proof is apparently true and also express a preference for a

proof that not only demonstrates the validity of a theorem.

A Lot of mathematical theorems are based on conditional statements. In this

sense, the proof extracts the conclusion from the hypotheses. In light of the

interpretation of proof as justification of truth, the conclusion is frequently seen as a

compulsory outcome of the hypotheses, that is, the validity of the hypotheses is true

which will make the conclusion to be true, with no any additional assumptions.

However, the condition could be explained and interpreted in a different way in

11

some deductive systems, relying on the meanings given to the ruled of derivation and

the conditional symbol [24].

2.3.3 Logic

The Name logic was originated from ancient of Greek word “logike” which has

two meaning: the standard study of reasoning and secondly it described or explained

validity of reasoning in various events [25]. Logic is rearrangement of facts to find the

information that we want [26]. The first feature of logic was used significantly in the

field of mathematics, philosophy and computer science; formal logic was developed

date back to the period of ancient times in Greece, India and China. The study of logic

is the development of valid inference in science, Greek logic; specifically the

Aristotelian logic, its application was widely accepted in science and mathematics [24].

In this section we will talk about some types of logics and formal logical systems.

The types of logic include propositional logic and predicate logic. In formal logical

system will include first-order logic, other classical logic, non-classical logic and

Algebraic logic.

2.3.3.1 Types of Logic

2.3.3.1.1 Propositional Logic

A propositional logic or propositional calculus is the lowest level or most

restricted logical language where the basic unit of language is a proposition. The

proposition is a statement which is either false or true. In simple statements,

propositional logic is a formal system whereby some formulae representing a

proposition can be created by a combination of atomic propositions with the help of

some logical connectives. The established formal proof rules are known as “theorem”.

These logical connectives can be disjunctions (Logical OR) and conjunctions

(logical AND) with the addition of negation of a proposition. There might be other

appropriate symbols for some other statements such as implication which might be

expressed in terms of conjunction, disjunction and negations. Logic does not bother

with proposition by itself but their falsehood or truth hood. Proposition may perhaps be

12

a statement like it may stand for a bit value in digital circuit or “All men are mortal” or

and the logic will not be distorted [27].

A proposition is a well formed formula.

If A is a well formed formula then so is

¬A which is (NOT A).

If A and B are well formed formulae then so is the conjunction

A /\ B which is (A AND B).

The disjunction

A \/ B which is (A OR B);

And so on.

2.3.3.1.2 Predicate logic

Before going deeply into predicate calculus or logic, let us begin by defining

predicate and subject. Subject is normally an individually entity, for example a boy or a

school or a country. It may also be a class of entities, for example, all boys. A predicate

is an attribute or property or mode of existence which a given subject may or may not

have. For instance, an individual boy may or may not be skilful. Also a boy may or may

not have brothers.

In predicate calculus or logic, the predicate/subject is different from the way it’s

in Aristotelean logic. The main idea is, in predicate logic, a subject is an individual

entity. For instance, an individual boy can be treated as a subject, but the class of all

boys must be treated as a predicate [28].

Predicate logic provides an account of quantifiers general enough to express a

wide set of arguments occurring in a natural language. Predicate calculus or logic is the

generic term for symbolic formal systems such as first-order logic, second-order logic

and infinitary logic [25]. More details will be discussed in the next part.

2.3.3.1.3 Formal Logical Systems

This section presents first-order, and other classical logic.

13

2.3.3.1.3.1 First-Order Logic

Propositional logic was extended to predicate logic in first-order logic. Whereby

proposition is basically true or false, the truth value of functions of terms is the

predicate that possibly be defined over domain or any non-empty sets. Variables,

constant values or functions over the domain can be terms. The relationship between

elements of the domain can be seen as predicates. A predicate of an arbitrary n defines

the relations over product set of D
n
. Moreover, a variable can be quantified by using

universal quantifiers and existential quantifiers.

Conventional notation in first-order logics, predicates are represented as capital letters

while variables, constants and functions are represented as lower case letters. These

conventions are not fixed. They can be changed at anytime and in machine-based

systems it is suitable to write all functions in prefix syntax for more readability. Some

systems allow infix form to be used too [27]. Their syntax is very similar to

propositional calculus but quantifiers are included.

2.3.3.2.2 Higher-order Logic

In higher-order logics quantification over predicates and function is allowed in

addition to elements of the domain. A predicate is a function and a variable itself can

also be a function which may be quantified over to express properties hold for the entire

predicate and functions. In higher-order logic, set theory can be expressed in natural and

direct way, in contrary to the convoluted method which needs to express every kind of

set theory in first-order logics. First-order logic may perhaps express ZF which is

known as zermelo-fraenkel set theory but it is very complex and difficult to show even

easiest concepts like ordered pair. Therefore, in higher-order logic it ease the

complexity in expressing the language by extending and improving the expressive

power of the language. But it has the cost in terms of the degree and decidability to

which the process of the proofs can be automated. A Complete and standard 2
nd

 order

logic is explained in details by Manzano [27].

14

2.3.4 Proofs

A proof is an argument for the truth of a proposition. In any mathematical field

defined by its axioms or assumptions, a proof is arguments producing a theorem of that

field through acknowledged inference rules which begin from either established

theorem or those defined axioms. The topic of logic in specific proof theory studies and

formalizes the idea of proof in formal approach [29][40-47].

2.3.4.1 Formal proofs

In a simple sentence a formal proof or a derivation is a sequence of finite

sentences where each is an axiom which follows a sequence of rule of inferences. The

final sentence in the sequence is a theorem in the formal system. Computers help in

constructing formal proofs in an interactive theorem proving environment and these

proofs can automatically be verified by computers.

2.4 ATHENA THEOREM PROVER

Athena language and/or proofs system is a programming language and interactive

theorem prover environment which brought a way to show and works with

mathematical proofs, so that they are both computer checkable and human readable.

The language was developed by K. Arkoudas in MIT.

Athena language was designed to be a programming language which is a Higher-

order functional language and also in many-sorted first-order logics based on the

traditions of ML and scheme. It does encourage a programming techniques based on

recursion and functions call with imperative characteristics [30].

Athena has primitive functions for mapping, unification, substitution and

matching. ML-like pattern matching is provided for defining both functions and

Method. Athena also offer support for both backward and forward inference steps,

proofs by induction, proof by contradiction and equational reasoning [31].

With Athena it is doable to designed and write proof as function-like construction

know as method whose executions can either results to Theorem or Lemma if inference

rules is apply accurately, or an error conditions will be prompted which will makes it to

stop if there are no rules of inferences is applied. Proofs can be represented at high-level

15

abstraction, allowing the end-user to call the method and function defining it in various

ways, for that reason the same functions or methods does not have to redeveloped for

different parameters. With the same step generic library of proofs can be constructed

[32].

2.4.1 Some Features in Athena

2.4.1.1 Terms in Athena

Terms can be either variables, functions application or constant, where functions

can be written in the form (f x1,x2……xn) and f is the function symbols while

x1,x2,…..xn are the variables, constant or functions application. Each term must contain

a type datatype or some domains.

Function symbols are declare to have precise range types and domain with

declaration of the structure (declare f (→ (d1, d2, ….dn) r)) which corresponded to

normal notation of mathematics f: d1× d2×……….× dn → r. Where constants are

function without single argument, which declared as: (declare point (-> () Point)) or

(declare point Point).

For example: if Nat is a datatype then (declare point (→ (Nat Nat) Point))

Where point is a function taking two natural numbers as arguments and it produce a

result of another point, and (declare X1 Nat) this show that X1 is a constant of type Nat.

The type in function symbol definition must match with the related type argument

in function application, and the range type of the function symbol is declared as the type

application.

 2.4.1.2 Proof Methods in Athena

In Athena we have various methods to prove a proofs such method includes proof

by implication and equality chaining, proof by induction and proof by contradictions.

Some proofs use two or more methods. The structure of each method will be shows and

with some explanation about each proofs [32].

16

2.4.1.2.1 Equality and Implications chaining

Equality and Implications is one of the most useful approaches uses in each proofs

methods. It proves equation by chaining together a sequence of terms connected by

equalities. Athena expresses such methods as which can proves this proofs t0 = tn as:

(! chain [t0 = t1 [J1] = t2 [J2] = · · · = tn [Jn]])

Where Ji is the justification of each step taken and it must be sentence inside the

assumption base. The sentence can be axioms, or previous proved theorems.

Also in implications chaining, to prove the implication S0 => Sn we can

expressed it as:

(!chain [S0 ⇒ S1 [J1] => S2 [J2] => · · · => Sn [Jn]]) where the Si are sentences and the

justification Ji proves (Si-1 => Si).

2.4.1.2.2 Proof by Induction

Mathematical induction divides a proof of the form (∀n. (P n)) into two parts. The

first part is the basis case while the other one is the inductive case:

(i) (P 0) and

(ii) (∀n. (P n) => (P n + 1)).

The property of natural numbers can be defined in Athena as a datatype as shown

below:

datatype N := zero | (S N)

We first defined natural numbers above. We could then prove properties of

natural numbers by using some basic axioms and proof by induction rule whose

structure is presented below:

by-induction (forall ? n . P ?n) {

zero =>

 conclude (P zero)

...

| (S n) =>

let { ind-hyp := (P n)}

conclude (P (S n))

... }

Where every induction principle begins with by-induction and the name “ind-hyp”

means induction hypothesis (P n). The line that starts with zero is where we prove the

basis case. In the definition of natural numbers we used the letter S which stands for the

17

successor operator. The line that starts with (S n) is where we start proving the

induction step.

2.4.1.2.3 Proof by Contradiction

Proof by contradiction can be expressed as:

(! by-contradiction P

assume (~ P) D)

(! by-contradiction P

assume (~ P)

 (suppose-absurd p

 (!absurd R Q))

D is obtained as false with the call of the method called absurd “(!absurd R Q).”

where R and Q have been deduced from (~ P), where Q is the negation of R. Some

Athena proofs about the proof by induction and proof by contradiction methodologies

will be illustrated in the next chapters.

2.5 COQ THEOREM PROVER

Coq is an interactive theorem prover and a formal proof management system. It

provides formal languages to express mathematical definitions or assertions and

executable algorithms. Mechanically checked proof of these assertions which help to

find formal proofs and extract authorized programs from formal specifications which

are developed from constructive proofs [33]. Coq was developed in France, by the

following joint team called PI.R2. The teams included in the development are CNRS,

Paris Diderot University, Ecole Polytechnique, INRIA, and Paris-Sud Univ. The Team

was lead by Hugo Herbelinand implemented in Ocaml [34].

It is based on a very expressive logic, the Calculus of Inductive Constructions

(CIC) which is originated within boundary of theory of calculus of inductive

construction where it works. Coq is not an instrument that will automatically prove

theorems but includes automatic theorem proving tactics and a variety of decision

measures that greatly simplify the improvement of formal proofs [33].

18

2.5.1 Proof Methods in Coq

In order to develop propositions and to make sure their validity we must establish

proofs. Subsequent to the method developed by R. Milner for LCF systems, backward

reasoning with tactics [35] is used in this system. The typical method to developed

proofs are called goal directed. Below we show how to prove theorems in Coq with a

typical scenario [36]:

1. The user writes the statement to be proved by the commands either Lemma or

Theorem, including the name of the conjecture for further reference

2. The system shows the formula to be proved, which also displays the goal under

a horizontal line “=============”

3. After that the command will be entered to disintegrate goal(s) into smaller goals.

4. List of formulas that need to be proved will be shown by the system

5. Step 3 to 5 will be repeated until no goal is displayed by the system.

The decomposition made in step 3 is known as tactics. A tactic transforms a goal

into a set of subgoals such that solving these subgoals is sufficient to solve the original

goal and these tactics reduce the numerical amount of goals. If there are no more goals

to be decomposed then the proof is complete. The completed proofs need to be saved.

They are stored when the user commands Qed. The effect of this command is to save a

new theorem whose name was given at step-1. More details about tactics will be

explained later when a proof example is implemented. The syntax of coq prover is

shown below:

Theorem or Lemma name_of_theorem: proposition to be proved.

Proof. (Optional)

…….

Tactics

………

Qed.

19

2.6 ISABELLE THEOREM PROVER

Isabelle is a generic theorem prover or proof assistant which supports interactive

reasoning in a variety of formal theories or logics. Rules are represented as propositions

not as functions and proofs as in Coq. Isabelle provides an important proof methods for

various first-order logics, constructive type theory, higher order logic and zermelo-

fraenkel (ZF) set theory. Higher Order Logic (HOL) theorem prover is the predecessor

of Isabelle theorem prover and it is based on small logical core which guarantees logical

correctness. It was written in standard ML and has followed the style of LCF-style

theorem prover.

Isabelle also has features such as automated reasoning tools that are efficient, like

a tableaux prover and term rewriting engine, as well as different decision events.

Isabelle has been used to formalize various theorems in computer science and

mathematics [39].

2.6.1 Proof Methods in Isabelle

Isabelle is a directed goal system that has tactics to disintegrate down a larger goal

into pieces of smaller goals and which also includes a simplifier that would simplify

simple goals. There are many methods to disintegrate goals in Isabelle. We will discuss

Structural Induction, Case Distinction, and Simplifications.

General skeleton of Isabelle proofs are shown below [38]:

theory T

imports B1…… Bn

begin

 declaration, definition, and proof

Theorem or lemma Name_theoremorLemma: "equations"

apply(Methods)

apply(Methods)

done

2.6.1.1 Structural Induction and Case Distinction

Induction is executed by “induct_tac” and induction works for any datatype.

In some cases, induction is overkill and a case distinction over all constructors of the

20

datatype suffices. This is performed by “case_tac”[38]. Examples will be shown

in the next chapter.

2.6.1.2 Simplifications

In Isabelle and other systems, simplification is one of the central theorem proving

tools and it simply means repeated substitutions of equations starting from left to right.

The tool used is known as a simplifier which has term rewriting capability and the

equations that are used mean rewriting rules. To bring about simplifications, the

attributes [simp] declares lemma to simplification rules where the simplifier simplifies

the lemma automatically. The simplification method has a general format as:

simp list_of_Modifiers

The attribute of the simplification in theorem can be turned off and on:

declare Lemma-name [simp]

and

declare Lemma-name [simp del],

add: list of theorem names

or

del: list of theorem names

or

only: list of theorem names [38].

Example of simplification methods will be explained and shown in the next chapters.

21

CHAPTER THREE

METHODOLOGY

3.1 OUR APPROACH

In this research we compared Athena, Coq and Isabelle. We first selected proof

problems from different domains. We defined function symbols axiomatically and write

proofs about them in each theorem prover. For example, one of the examples that we

selected is about the factorial of natural numbers. There are different ways of coding

this to compute factorials. The regular recursive versions suffer from memory limits

since factorials of big numbers require too many calls which will result in too many

stack frames. If the same computation is done by using a tail-recursive version, the

program will use only a single stack frame. This version would be more efficient and is

therefore more preferable. We show that the two definitions are the same so one can use

the tail-recursive version to compute factorials instead of the regular one. In this thesis

we wrote formal proofs for doing this. We defined the following functions and proved

the properties shown below in all three theorem provers:

 Equivalence of factorial and factorial efficient,

 Equivalence of a Sum-list and a tail recursive sum-list function which

compute the sum of all natural numbers in a list in two different ways,

 Equivalence of Reverse and Reverse Efficient which reverse a list of

natural numbers by using the regular and tail-recursive versions.

 Double reverse which applies the reverse function twice to the same list.

 A function that computes the sum of numbers from one to n and proved

the related formula.

 Point and Line objects in geometry are defined. We then proved properties

about the intersection and parallelism of lines.

22

While proving these theorems, we noted our experiences and compared these

theorem provers based on the criteria we listed in Chapter-1. These will be explained in

this chapter one by one now.

3.1.1 Proof readability and understandability

When we talk about readability, we mean something looking obviously clear to

users. When the readability [37] is good the text can be read and understood easily.

Readability can be determined if the definitions of symbols, axioms and theorems are

understandable without spending too much time when reading them. The proofs should

be understood without spending too much effort. This would make it possible for users

to update the proofs and definitions when needed. Sometimes high-level definitions and

functions do not make proofs look very clear.

3.1.2 Bigger mathematical library

A library is an organized collection of sources of information and similar

resources, made accessible to a defined community for reference [51]. In this situation,

bigger mathematical library simply means how big collection of organized theorems or

lemmas are there inside the formal library for further reference. We have counted all the

theorems in all three theorem provers to compare the size of the libraries roughly.

3.1.3 Shorter proofs

The term short simply means very few. In our perception when we said shorter

proof we mean a proof that consists of a fewer line of code from the beginning of the

proof to the end.

3.1.4 Flexibility in constructing proofs

Flexibility means the ability of changing, bending and modifying things without

altering its meaning. Flexibility in constructing proofs is the ability of users to change or

direct proofs to his desired direction without changing the meaning or breaking rules.

23

3.1.5 Documentation

Documentation is a set of documents provided on paper, or online, or on any other

digital platforms. Examples are user guides, on-line help, and quick-reference guides

and email lists. It is becoming less common to see paper (hard-copy) documentation.

Documentation is distributed via websites, software products, and other on-line

applications.

3.1.6 Platforms

In our point of view, Platform typically refers to a computer's operating system.

For example: Windows, Unix, or Macintosh platforms and so on.

3.1.7 Library Lookup

A library lookup is a tool or command which used to search for a theorem,

definition or lemmas inside a formal library especially larger library. It is very difficult

to remember the names of all definitions, lemmas and theorems available in the current

context, especially if the user has access to very large libraries. Also it is sometimes

very difficult to search for needed lemma or theorem manually by using brute force

techniques.

3.1.8 Feedback from the System

Feedback from the system means a process whereby the system provides vital

information at every point during theorem construction. It will help to rectify errors or

mistakes by the users.

3.1.9 Meaningless Typographic noise

Meaningless Typographic noise is a process whereby the theorem prover system

supports less important characteristics that may lead to a lot of code lines and probably

to slow down the loading time. This can also make it hard for user to understand the

proofs.

24

3.2 TACTICS THAT ARE USED IN COQ AND ISABELLE THEOREM

PROVERS

Coq Tactics

The coq tactics below are explained in [52] as:

 contradiction :solves the goal when False, or A and ¬A appear in the

hypotheses

 trivial: tries very simple lemmas to solve the goal

 auto: searches in a database of lemmas to solve the goal

 intuition: removes the propositional structure of the goal then applies auto

 simpl: The tactic simpl simplifies all fixpoint definitions in the goal (which is

sometimes too much, in which case it is recommended to prove the relevant

equations as theorems and use them in a controlled way with the rewrite tactic).

 rewrite: The rewrite tactic by default replace all the occurrences of u in P(u).

 assumption: proves the goal if it is computationally equal to a hypothesis.

 apply: tell Coq which hypothesis to use. Eg: apply H1 [53].

 intros: This tactic transforms a proof state with a goal that involves logical

implication, by moving the left-hand side of the implication into our set of

hypotheses, giving it a name, and leaving the right-hand side of the goal[53].

 ring: is a generic tactic which deal with algebraic manipulations like associative

and commutative rewriting in specific structures; the user can extend these

tactics for new data-type and operations[52].

 assert: assert A ,Given a goal G, assert A creates a new goal A and

adds A to the context in which we have to prove G. This is typically used in case

we first want to prove an intermediate result A. NB: In case A is a compound

proposition, like P x, it has to be put between brackets, assert (P x) [53].

 Unfold: unfold tactic is used to replace an identifier with the value to which it is

bound. More precisely, unfold t unfolds the definition of t in the goal

Isabelle Tactics

The Isabelle tactics below are explained in [38] as:

javascript:tacref(5)

25

Simp: Simp tactic is a rule which simplifies a sub-goal based on the definitions used in

the theory. Datatype and primrec declarations and few others implicitly declare some

simplification rule. Explicit definitions are not declared as simplification rules

automatically. Almost all theorems can become a simplification rule. To use theorem or

a lemma in simplification rule, we added the attribute [simp] to the definition of the

theorem. Example: lemma add_0_right [simp]: "m+0 = m". The simplifier

will transform theorem into equation.

 Auto (used as apply(auto)) : This command tells Isabelle to apply a proof

strategy called auto to all sub-goals. The auto command will try to apply a

simplification rule to all sub-goals concurrently to solve our goals.

 unfold: As in coq, it is used to expand the definitional equation. The tactic

unfold merely unfolds one or several definitions, as in apply (unfold

add_def). This is can be useful in situations where simp does too much.

Warning: unfold acts on all subgoals!

3.3 EXAMPLE PROOF IN ATHENA THEOREM PROVER

As it is mentioned in the previous chapter there are various methods to prove a

theorem. One can use proof by induction, contradiction, equality or implication

chaining or mixture of them. We will present an example in this section by using the

proof by induction method to prove a simple property.

In Athena we need to define and load axioms and can use the theorems that are

already proved. Here is how to define and assert axioms into the assumptions base:

assert right-zero := (forall ?n . ?n + zero = ?n)

assert right-nonzero := (forall ?m ?n . ?n + (S ?m) = (S (?n + ?m)))

When the two axioms above are asserted we get the following messages from

Athena saying that these are part of the assumption base which is a database of rules

that are loaded or proved:

The sentence

(forall ?n:N

 (= (Plus ?n:N zero)

 ?n:N))

has been added to the assumption base.

The sentence

(forall ?m:N

26

 (forall ?n:N

 (= (Plus ?n:N

 (S ?m:N))

 (S (Plus ?n:N ?m:N)))))

has been added to the assumption base.

We will now prove that the addition operation is commutative. In order to prove

it we define the following property which assumes that addition is already defined. We

must load these definitions beforehand. This property is an intermediate property which

will be used in the proof of the commutativity property.

define left-nonzero :=

 (forall ?n . (zero + ?n = ?n))

This property is proved by using proof-by induction as shown below:

define left-nonzero := (forall ?n . (?n + zero = ?n))

by-induction left-nonzero {

 zero =>

 pick-any m

 (!chain [((S m) + zero)

 --> (S m) [right-zero]

 <-- (S (m + zero)) [right-zero]])

| (S n) =>

let {induction-hypothesis :=

 (forall ?m . (S ?m) + n = (S (?m + n)))}

 pick-any m

 (!chain [((S m) + (S n))

 --> (S ((S m) + n)) [right-nonzero]

 --> (S (S (m + n))) [induction-hypothesis]

 <-- (S (m + (S n))) [right-nonzero]])}

And the result is:

Theorem: (forall ?n:N

 (= (Plus zero ?n:N)

 ?n:N))

Then we can use the above axioms and the left-nonzero property (which is a

theorem now) to prove commutativity over addition. The proof is by induction again:

define commutative := (forall ?n ?m . ?m + ?n = ?n + ?m)

by-induction commutative {

 zero =>

 pick-any m

 (!chain [(m + zero)

 --> m [right-zero]

 <-- (zero + m) [left-zero]])

| (S n) =>

 pick-any m

 let {induction-hypothesis := (forall ?m . ?m + n = n + ?m)}

 (!chain [(m + (S n))

27

 --> (S (m + n)) [right-nonzero]

 --> (S (n + m)) [induction-hypothesis]

 <-- ((S n) + m) [left-nonzero]])}

 When these proofs are entered into Athena, the following theorem will be added

into the assumption base:

Theorem: (forall ?n:N

 (forall ?m:N

 (= (N.Plus ?m:N ?n:N)

 (N.Plus ?n:N ?m:N))))

3.4 AN EXAMPLE PROOF IN COQ THEOREM PROVER

In Coq, there are various ways to prove theorems. We will discuss how to write

proofs step by step by using an example. The way we prove depends on the method we

use. Proofs in coq start with the keyword “Theorem” or “Lemma”. Here is an example:

Coq < Lemma pluso: forall x: nat, x = x + 0. or

Theorem pluso: forall x: nat, x = x + 0.

Each line in coq must end with a full stop or dot “.” Coq can execute the code in

the corresponding line which ends with a dot which signifies the completeness of the

code. In our example we will show the proof of x = x + 0 with structural induction.

Coq < Lemma plusO: forall x: nat, x = x + 0

This line of code will produce:

1 subgoal

============================

forall x : nat, x = x + 0

Then we can apply simple induction on n or intros n; elim n. to apply

induction on the goals.

Coq < intros x; elim x.

This will yield the following result:

2 subgoals

x : nat

============================

0 = 0 + 0

subgoal 2 is:

forall x0 : nat, x0 = x0 + 0 -> S x0 = S x0 + 0

28

We need to simplify the basis step and inductive step, and then we apply “simpl”

command to simplify the basis case as shown below:

Coq < simpl.

2 subgoals

x : nat

============================

0 = 0

subgoal 2 is:

forall x0 : nat, x0 = x0 + 0 -> S x0 = S x0 + 0

Then Coq tactic auto command can be applied when left-hand side and right-

hand sides are equal. Or if you want to simplify the step that you are currently working

on and remove all simplified statements in coq system then apply reflexivity tactic

or auto command. They both serve for the same purpose.

Coq < auto.

After applying the command auto, it produced the result as follows:

1 subgoal

n : nat

============================

forall x0 : nat, x0 = x0 + 0 -> S x0 = S x0 + 0

Here, we have one remaining goal which is the one for the inductive step. We can

apply the simpl command to simplify the statement and auto to remove the

simplified statements.

Coq < simpl; auto.

The result obtained is: No more subgoals, meaning that there are no more

goals to solve which mark the end of the proof. And we can conclude or save by

entering the command “Qed.”

intro x; elim x.

simpl.

auto.

simpl; auto.

plusO is defined

 We will now present another proof which is the commutativity of addition. We

can write it in mathematics like this: ∀ x y, x + y = y + x, which can be written in Coq

as:

Coq < Lemma com_plus: forall x y: nat, x + y = y + x.

29

We will see the result as:

1 subgoal

============================

forall x y : nat, x + y = y + x

We have an option to choose which of the variable to apply the induction: either x

or y. coq has the ability to combine many rules at once.

Coq < simple induction y; simpl; auto.

The following result will be produced:

1 subgoal

x : nat

y : nat

============================

forall y0 : nat, x + y0 = y0 + x -> x + S y0 = S (y0 + x)

The base case is succeed by the help of “auto” command but does not handle the

inductive step. We need to apply rewrite to solve the inductive step.

We can apply “intros m’ E “which will replace each occurrence of th inductive

variable with m’ in the expression E.

Coq < intros m’ E;

This yields the following result:

x : nat

y : nat

m’ : nat

E : m’ + x = x + m’

============================

 x + S m’ = S (m’ + x)

We apply simpl. command to simplify and then apply the rewrite <- E.

where E is the hypothesis.

Coq < rewrite <- E.

We have now this result:

x : nat

y : nat

m’ : nat

E : x + m’ = m’ + x

============================

 x + S m’ = S (x + m’)

by applying auto it will yield “no more subgoal” showing that there is no

more goal to solve and marked the end of the prove. Then we enter command Qed to

save the proof.

Coq < Qed.

30

simple induction m; simpl; auto.

intros m’ E.

simpl.

auto.

 rewrite <- E.

 auto.

com_plus is defined

We showed the whole proof in the table above.

3.5 EXAMPLE PROOF IN ISABELLE THEOREM PROVER

There are various ways to prove theorems in Isabelle. We will discuss them step

by step with the help of an example. How to prove theorems depend on what process

you want to use to prove. To start any proofs in Isabelle we must begin with the

keyword “Theorem” or “Lemma” here is an example:

To prove the theorem “lemma "m + n = n + m"” which is called the

commutativity over addition; we need some lemmas to be proved before proving the

main theorem. The command “lemma” starts the proofs. While the apply (rule induct)

instruct Isabelle to start proofs by induction.

lemma "m + n = n + m"

apply (rule induct)

This command yields the result:

proof (prove): step 1

goal (2 subgoals):

 1. m + n = 0

 2. ⋀x. m + n = x ⟹ m + n = Suc(x)

The numbered lines are called subgoals where the first one is the base case and

the last one is the inductive step case. We used back command to calls back one step

of the subgoal.

goal (2 subgoals):

 1. 0 + n = n + 0

 2. ⋀x. x + n = n + x ⟹ Suc(x) + n = n + Suc(x)

Applying oops will stop the proof of commutativity because we need another

intermediate proof to continue with the actual proof. And that intermediate property to

be proved is named as add_0 which is 0 + n = n. The proof for this is shown in the

table below:

lemma add_0 [simp]: "0+n = n"

apply (unfold add_def)

apply (rule rec_0)

done

31

We prove another property which is add_Suc. In the proof steps we apply

apply(unfold add_def) which expands addition property from the definition

stated and rule rec_0 concluded the proofs. In the add_suc proof "Suc(m)+n =

Suc(m+n)" we also apply unfold and rec_suc to solve our proof.

lemma add_Suc [simp]: "Suc(m)+n = Suc(m+n)"

apply (unfold add_def)

apply (rule rec_Suc)

done

lemma add_0_right [simp]: "m+0 = m"

apply (rule_tac n = m in induct)

apply simp

apply simp

done

lemma add_Suc_right[simp]: "m+Suc(n) = Suc(m+n)"

apply (rule_tac n = m in induct)

apply simp_all

done

The lemma add_0_right proves “m + 0 = m”. in this case we apply proof by

inductions m. where we have two sub-goals, the zero case and inductive steps. We also

apply “apply unfold” which expand addition definition and solve the zero case and then

we solve the second sub-goal which inductive steps by apply rec_suc. In all our lemma

we insert [simp] attribute which add the lemma into the simplifier. Whenever simp is

apply then the lemma cam be apply if the sub-goal required it.

After proving all these lemmas we can continue to prove our main goal.

Remember that our proof has stopped when we entered oops. Note also that we named

the theorems after proving them for further references.

lemma add_com :"(m + n) = (n + m)"

and it yields this result:

goal (1 subgoal):

1. m + n = n + m

apply(rule_tac n = m in induct)

Also yields the following result:

32

goal (2 subgoals):

 1. 0 + n = n + 0

 2. ⋀x. x + n = n + x ⟹ Suc(x) + n = n + Suc(x)

We apply: simp command with the help of the above lemma that had been proved

“apply simp”

Now the result becomes:

goal (1 subgoal):

1. ⋀x. x + n = n + x ⟹ Suc(x) + n = n + Suc(x)

We also need to apply simp again to simplify the inductive base case and it yields

“no subgoals” meaning that the proof is done or completed.

Here is the complete proof:

lemma add_com :"(m + n) = (n + m)"

apply(rule_tac n = m in induct)

apply simp

apply simp

done

33

CHAPTER FOUR

CASE STUDIES

4.1 CASE STUDY: EQUIVALENCE OF FACTORIAL AND TAIL-

 RECURSIVE FACTORIAL

 In this section we first define factorial and tail-recursive factorial functions

axiomatically in all three theorem provers. In the next step we show that these

definitions are equivalent. Since the tail-recursive functions are more efficient, they are

preferable to regular functions. Therefore one can use the tail recursive version if the

equivalence relation is proved. Table below shows code for intuitive implementation

and efficient implementation for factorial in java.

Definition of Factorial

Intuitive implementation Efficient implementation

public class Factorial {

 // Version-1: This version is

not efficient

 public static int

Factorial(int n){

 if (n==0)

 return 1;

 else

 return n*Factorial(n-

1);

 }

public static int

FactorialEfficient(int n){

 return

FactorialEfficient_Helper(n,1);

 }

 public static int

FactorialEfficient_Helper(int n,

int res){

 if (n==0)

 return res;

 else

 return

FactorialEfficient_Helper(n-1,

n*res);

 }

34

4.1.1 Equivalence of the Factorial and Tail-Recursive Factorial in Athena

In this example, two different factorial functions will be defined axiomatically.

The factorial function takes a natural number as input and returns its factorial. We can

define a regular factorial function as follows in Athena:

(declare Factorial (-> (Nat) Nat))

(define Factorial-zero-axiom

 (= (Factorial zero)

 (succ zero)))

(define Factorial-succ-axiom

 (forall ?x

 (= (Factorial (succ ?x))

 (Times (succ ?x) (Factorial ?x)))))

(assert Factorial-zero-axiom)

(assert Factorial-succ-axiom)

We first defined it symbolically. Then we stated two axioms that define the

factorial. The first axiom states that the factorial of zero is one. The second one states

that the factorial of (x+1) is equal to (x+1)*x!.

A function that is generated from these axioms is a recursive one which may have

a stack-overflow problem when its input is too large. An efficient factorial function can

be implemented to overcome the high usage of many stack frames which leads to

overflow. The solution is to define a tail-recursive factorial function which uses only

one stack frame during the execution.

The efficient version uses a helper function. Therefore we need to define two

functions in Athena. Here is how we define the helper function:

declare FactorialEfficientHelper (-> (Nat Nat) Nat))

(define FactorialEfficientHelper-zero-axiom

 (forall ?res

 (= (FactorialEfficientHelper zero ?res) ?res)))

35

(define FactorialEfficientHelper-succ-axiom

 (forall ?n ?res

 (= (FactorialEfficientHelper (succ ?n) ?res)

 (FactorialEfficientHelper ?n (Times (succ ?n) ?res)))))

(assert FactorialEfficientHelper-zero-axiom)

(assert FactorialEfficientHelper-succ-axiom)

We now can define the FactorialEfficient which uses the definition of the helper

function that is defined above.

(declare FactorialEfficient (-> (Nat) Nat))

(define FactorialEfficient-axiom

 (forall ?n

 (= (FactorialEfficient ?n)

 (FactorialEfficientHelper ?n (succ zero)))))

 (assert FactorialEfficient-axiom)

After defining and asserting the definitions of factorial and it counterpart i.e. the

factorial efficient as our axioms, we define a correctness statement as a conjecture as it

is done below:

define Equality :=

 (forall ?n .(Factorial ?n) = (FactorialEfficient ?n))

This statement cannot be asserted as we did with axioms. We have to provide a

proof of equivalence. We will now show the proof.

In some cases, the proofs are too large and may require an intermediate conjecture

to be proved before we prove the main statement. These smaller goals are called lemma

when we prove them. Here is the proof of the correctness statement that states the

equivalence of the regular factorial and its more efficient version.

36

by-induction Equality{

 zero =>

 (!chain [(Factorial zero)

 -->(S zero)

 [Factorial-zero-axiom]

 <--(FactorialEfficientHelper zero (S zero))

 [FactorialEfficientHelper-zero-axiom]

 <--(FactorialEfficient zero)

 [FactorialEfficient-axiom]])

| (S n) =>

 let {induction-hypothesis :=

 (Factorial n) = (FactorialEfficient n)}

 (!chain

 [(Factorial (S n))

 -->((S n)*(Factorial n))

 [Factorial-succ-axiom]

 -->((S n)*(FactorialEfficient n))

 [induction-hypothesis]

 -->((S n)*(FactorialEfficientHelper n (S zero)))

 [FactorialEfficient-axiom]

 <--(FactorialEfficientHelper n ((S n)*(S zero)))

 [....]

 <--(FactorialEfficientHelper (S n) (S zero))

 [FactorialEfficientHelper-succ-axiom]

 <--(FactorialEfficient (S n))

 [FactorialEfficient-axiom]])

}

The proof given in the previous page uses a lemma which is stated and proved

below. Any lemmas need to be proved before they are used in the proofs.

define P1 :=

 (forall ?n ?a .

 (FactorialEfficientHelper ?n (?a * (S zero)))

 = (?a * (FactorialEfficientHelper ?n (S zero))))

37

The proof of lemma P1 is shown below:

by-induction P1{

 zero =>

 pick-any a

 (!chain [(FactorialEfficientHelper zero (a*(S zero)))

 --> (a*(S zero))

 [FactorialEfficientHelper-zero-axiom]

 <-- (a*(FactorialEfficientHelper zero (S zero)))

 [FactorialEfficientHelper-zero-axiom]])

| (S zero) =>

 let {induction-hypothesis :=

 (forall ?a .

 (FactorialEfficientHelper n (?a*(S zero)))=

 (?a*(FactorialEfficientHelper n (S zero))}

 pick-any a

 (!chain

 [(FactorialEfficientHelper (S n) (a*(S zero)))

 -->(FactorialEfficientHelper n ((S n)*(a*(S zero))))

 [FactorialEfficientHelper-succ-axiom]

 <--(FactorialEfficientHelper n (((S n)*a)*(S zero)))

 [Times-Associativity]

 -->(((S n)*a)*(FactorialEfficientHelper n (S zero)))

 [induction-hypothesis]

 -->((a*(S n))*(FactorialEfficientHelper n (S zero)))

 [Times-Commutativity]

 <--(a*((S n)*(FactorialEfficientHelper n (S zero))))

 [Times-Associativity]

<--(a*(FactorialEfficientHelper n ((S n)*(S zero))))

 [induction-hypothesis]

 <--(a*(FactorialEfficientHelper (S n) (S zero))))])

 [FactorialEfficientHelper-succ-axiom]])

}

38

4.1.2 Equivalence of the Factorial and Tail-Recursive Factorial in Isabelle

As stated in Chapter-2, every theory in Isabelle must begin with this statement

“theory name_of_the_theory” which is the name of the theory. After writing the name

of the theory we proceed with a imports statement which helps us to use any existing

theorems and definitions that are written previously. In the example below:

“import Nat”,

The definitions and the theorems in the library “Nat” will be available. We can

use them to write new proofs. As a beginner it is advisable to always use “main” as your

imported theory unless you know the proof steps exactly. The declarations ends with a

begin statement. After that point we write the actual proof. Here is an example:

“theory Equalityfact

imports Main Nat Rings

begin”

 In Isabelle theorem prover the keyword “primrec” indicates a primitive recursive

definition which is a definition that consists of equations. Each equation corresponds to

one of the constructors for the datatype. In the examples below the “Fact” in “primrec”

definition is the name of the function. “nat -> nat” means that definition “Fact” have

one input as a natural number and returns another natural number.

theory Equalityfact

imports Main Nat Rings

begin

primrec Fact::"nat => nat"

where

 "Fact 0 = 1"

| "Fact (Suc n) = Suc n * Fact n"

39

In factorial_helper, the “nat -> nat ->nat” means that function factorial_helper

takes two natural numbers as input and returns another one as an output. Below is

definition of factorial_helper in Isabelle:

primrec Factorial_helper::"nat => nat => nat"

where

 "Factorial_helper 0 a = a"

| "Factorial_helper (Suc n) a = Factorial_helper n (Suc n * a)"

We will now write proofs for several conjectures/properties. In Isabelle, we don’t

need to define the property separately. Rather we define it together with the proof which

is not the same as in Athena where the definition of any property must be done before

any proof begins. In this proof we apply proof by induction on n to prove our property.

Here is the intermediate property to be proved:

theorem Equality:"Fact n = Factorial_helper n 1"

Here is the proof for this property:

theorem Equality:"Fact n = Factorial_helper n 1"

apply(induct_tac n)

apply simp

apply simp

done

The first “apply simp” tries to simplify our zero case sub-goals based on our

“primrec” definition equation and was solved successfully. Because we have all we

need in the primrec definition. Our second “apply simp” failed because the required

definition or lemma is not in primrec definitions and sub-goal fails. We need to feed the

simplifier the required lemmas to solve our sub-goal. That means we need an

intermediate lemma.

theorem Equality:"Fact n = Factorial_helper n 1"

apply(induct_tac n)

apply simp

40

apply simp

done

During our proof steps we also prove the intermediate lemma which connects our

proof steps. We proved the intermediate lemma with proof by induction technique.

During the proof steps we found that we need other lemmas such as commutativity and

distributivity over addition to complete our proof. We imported them from “theory ring”

and add them into the simplifier to solve our sub-goal. Whenever such lemmas are

needed they are used by the simplifier to complete the goals. The complete proof is

shown below:

lemmas [simp] =

 ring_distribs

 diff_mult_distrib diff_mult_distrib2 --{*for type nat*}

theorem Equality:"Fact n = Factorial_helper n 1"

apply(induct_tac n)

apply simp

apply simp

done

lemma strong_fact[simp]:"ALL a. Factorial_helper n a = a * Fact n"

apply(induct_tac n)

apply simp

apply simp

done

4.1.3 Equivalence of the Factorial and Tail-Recursive Factorial in Coq

In Coq, the “Require Import” stated in the example below is an optional statement

which is different from Isabelle where a proof cannot begin without an import

statement. In Coq it can only be used when it is necessary. The function of the “Require

41

Import” is to extend the library you are concurrently using during the proof process. The

term “Fixpoint” is used to define functions over recursive datatype. We use Fixpoint

when trying to define a recursive function. In the definition of factorial which is

represented by the symbol fact we state that it takes a natural number as an input and

returns another natural number. Here is the Coq definition:

Require Import Arith ArithRing.

Require Ring.

Fixpoint fact(n:nat): nat :=

match n with

|O => S O

|S n => S n * fact n

end.

We also define helper_fact is tail-recursive factorial which accepts two parameters

and returns a natural number. Below is definition in Coq:

Fixpoint helper_fact(n a:nat): nat :=

match n with

|O => a

|S n => helper_fact n (S n * a)

end.

Definition fn_fact (n:nat) := helper_fact n 1.

In Coq we define the property and prove it together. In the proof below, we use

proof by induction on n to prove the Equality_fact property. For more details about the

functions of rewrite, unfold, simp, auto please refer to the previous chapter. The proof

steps are very similar to the ones in Athena and Isabelle where we need to prove an

intermediate lemma (in this case we named it fact_eq_strong) to connect our proofs.

Lemma Equality_fact(n:nat):fact n = fn_fact n.

induction n.

rewrite fact_zero.

42

unfold fn_fact.

simpl.

auto.

unfold fn_fact.

rewrite fact_eq_strong.

simpl.

rewrite plus_0_r.

auto.

Qed.

We proved the intermediate lemma using proof by induction on ‘n’. We then used

this lemma to complete the proof of the main theorem. The proof is shown below:

Lemma fact_eq_strong:forall n a, helper_fact n a = a * fact n.

induction n.

simpl.

intros.

ring.

auto.

intros.

simpl.

rewrite IHn.

rewrite mult_plus_distr_l.

ring.

Qed.

4.2 CASE STUDY: SUM OF N NUMBERS

 In this case study, we show a proof of sum of n numbers with all the three

theorem provers. From these proofs, it is clearly shown that Athena definitions and

proofs look much more readable. Proof steps are close to a hand-written proof in Athena

compared to Isabelle and coq proofs and definitions. In Isabelle and Coq some steps are

43

skipped due to its semi-automatic proof evaluation procedures. The function of sum of

natural numbers can be defined as the sum of numbers from 1 to n (inclusive). In this

section we proved the sum of n numbers in Athena and Isabelle and we used an existing

solution of coq which is taken from [50]. The sum function takes one input and returns

the sum of the numbers in the sequence from one to the input given. We show the

proofs below:

4.2.1 Sum of n Numbers in Athena

Axiomatic definition of sum function is illustrated below. This function takes a

natural number as input and returns the summation of the first n numbers. Below is

definition of sum in Athena:

load "nat-times.ath"

datatype N := zero | (S N)

declare Sum: [N] -> N

Here are the axioms that define this function:

declare one, two: N

assert one-definition := (one = (S zero))

assert two-definition := (two = (S one))

assert one-one-definition := (two = one + one)

assert n-one-definition := (forall ?n . ?n + one = (S ?n))

assert Sum-zero-axiom := ((Sum zero) = zero)

assert Sum-succ-axiom :=

 (forall ?n . (Sum (S ?n)) = (S ?n) + (Sum ?n))

Here is an intermediate lemma which we define and proved as the connector to

complete the proof of sum of n numbers.

define fact-distr :=

 (forall ?z ?x ?y . ?z * ?x + ?z * ?y = ?z * (?x + ?y))

by-induction fact-distr {

 zero =>

 pick-any x y

44

 (!combine-equations

 (!chain [(zero * x + zero * y)

 --> (zero + zero * y) [N.Times.left-zero]

 --> (zero + zero) [N.Times.left-zero]

 --> zero [N.Plus.left-zero]])

 (!chain [(zero * (x + y))

 --> zero [N.Times.left-zero]]))

 | (S z) =>

 let {induction-hypothesis :=

 (forall ?x ?y . z * ?x + z * ?y = z * (?x + ?y))}

 pick-any x y

 (!combine-equations

 (!chain [((S z) * x + (S z) * y)

 --> ((x + z * x) + (S z) * y) [N.Times.left-nonzero]

--> ((x + z * x) + (y + z * y)) [N.Times.left-nonzero]

 --> (x + (z * x + (y + z * y))) [N.Plus.associative]

 --> (x + ((y + z * y) + z * x)) [N.Plus.commutative]

--> (x + (y + (z * y + z * x))) [N.Plus.associative]

--> (x + (y + (z * x + z * y))) [N.Plus.commutative]

])

(!chain [((S z) * (x + y))

--> ((x + y) + z * (x + y)) [N.Times.left-nonzero]

--> ((x + y) + (z * x + z * y)) [N.Times.left-distributive]

--> (x + (y + (z * x + z * y))) [N.Plus.associative]

]))

}

After defining and asserting the definition of sum of n numbers, we define the

sum of n number conjecture which is shown below:

define N-Sum := (forall ?n . two * (Sum ?n) = ?n * (?n + one))

 This statement cannot be asserted as we did with axioms. We have to provide a

proof for this formula. We will now show the proof.

45

by-induction N-Sum {

 zero =>

 (!combine-equations

 (!chain [(two * (Sum zero))

 --> (two * zero) [Sum-zero-axiom]

 --> zero [N.Times.right-zero]])

 (!chain [(zero * (zero + one))

 --> zero [N.Times.left-zero]]))

| (S n) =>

 let {induction-hypothesis := (two * (Sum n) = n * (n + one))}

 (!chain [(two * (Sum (S n)))

 --> (two * ((S n) + (Sum n))) [Sum-succ-axiom]

 --> (two * (S n) + two * (Sum n)) [N.Times.left-

distributive]

 --> (two * (S n) + n * (n + one)) [induction-hypothesis]

 --> (two * (S n) + n * (S n)) [n-one-definition]

 --> ((S n) * two + n * (S n)) [N.Times.commutative]

 --> ((S n) * two + (S n) * n) [N.Times.commutative]

 --> ((S n) * (two + n)) [fact-distr]

 --> ((S n) * ((one + one) + n)) [one-one-definition]

 --> ((S n) * (one + (one + n))) [N.Plus.associative]

 --> ((S n) * (one + (n + one))) [N.Plus.commutative]

 --> ((S n) * (one + (S n))) [n-one-definition]

 --> ((S n) * ((S n) + one))

[N.Plus.commutative]])}

4.2.2 Sum of n Numbers in Coq

An axiomatic definition of sum function in Coq is illustrated below.

Require Import Arith ArithRing.

Require Ring.

Ltac defn x := unfold x; fold x.

46

Fixpoint sum (n : nat) : nat :=

 match n with

 | O => O

 | S n => S n + sum n

 end.

Now we are going to prove the mathematical formula that is presented in the previous

section. The proof is by induction over ‘n’. See the previous chapter for the functions of

trivial, ring, etc.

Theorem sum_equals: forall n, 2 * sum n = n * (n + 1).

induction n.

trivial.

defn sum.

rewrite mult_plus_distr_l.

rewrite IHn.

rewrite mult_comm.

ring.

Qed.

4.2.3 Sum of n Numbers in Isabelle

An axiomatic definition of sum function in Isabelle is presented below.

theory sum

imports Main Rings

begin

primrec sum :: "nat => nat" where

"sum 0 = 0" |

"sum (Suc n) = (n + 1) + sum n"

47

 We will now show the proof of the same conjecture that is proved in Athena and

Coq. Again the proof is by induction over ‘n’ to solve our sub-goals. See the previous

chapter for the definition of simp tactic. Here are the definition and proofs:

lemma " 2 * sum n = n*(n + 1)"

apply(induct_tac n)

apply(simp)

apply(simp)

done

4.3 CASE STUDY: SUM-LIST

 An axiomatic definition of a function called sum-list will be presented in this

section. The function sum list takes a list of natural numbers and returns the sum of the

numbers in the list. The Athena Sum-list proof was defined in the prefix notation in

[49]. In this study, we only proved it in Coq and Isabelle. This example is also used for

showing the proof process for a correctness property. The sum-list function can be

defined in two different ways with different symbols. In the first version we define a

regular recursive function which may consume the stack frames with repeated calls. The

second version is more efficient since it is the tail-recursive version of the same

function.

4.3.1 Sum-List in Athena

 In order to prove the correctness of sum-list in Athena, we defined the sum-list

function in two different ways. The first version represents a regular recursive function

which may consume the stack frames with repeated calls. The second version is tail-

recursive and thus more efficient. One can use the first definition as the specification of

how to compute the sum of numbers in a list. In the next step we will just need to prove

the equivalence of this specification and the definition of the tail-recursive version. The

definitions are shown below:

48

Definition of sum-list@ (This is not efficient and can serve as the specification):

define sum-list@-empty := ((sum-list@ nil) = zero)

define sum-list@-nonempty :=

 (forall ?x:N ?L:(List N) .

 (sum-list@ (?x :: ?L)) = (?x + (sum-list@ ?L)))

Definition of sum-list (This is the more efficient version):

define sum-list-empty :=

 ((sum-list nil) = zero)

define sum-list-nonempty :=

 (forall ?L:(List N) ?x:N .

 (sum-list (?x :: ?L))=

 =(sum-list-compute ?L ?x))

Definition of sum-list-compute which is the extension of sum-list:

define sum-list-compute-empty :=

 (forall ?x .

 (sum-list-compute nil ?x)

 = ?x);;

define sum-list-compute-nonempty :=

 (forall ?L ?x ?y .

 (sum-list-compute (?y :: ?L) ?x)

 = (sum-list-compute ?L (?x + ?y)))

Below is the definition of sum-list-compute-relation. This intermediate property

needs to be proved first. The proof is presented below.

define sum-list-compute-relation :=

 (forall ?L ?x .

 (sum-list@ (?x:N :: ?L:(List N)))

 = (sum-list-compute ?L ?x))

The definition of sum-list-correctness proof shown below is the actual correctness

condition. If the proof is obtained, one can use the more efficient version instead of the

non-tail-recursive function.

49

Below is the proof of sum-list-compute-relation and sum-list-correctness:

define sum-list-compute-relation :=

 (forall ?L ?x .

 (sum-list@ (?x:N :: ?L:(List N)))

 = (sum-list-compute ?L ?x));;

by-induction

 sum-list-compute-relation {

 nil =>

 conclude (forall ?x:N .

 (sum-list@ (?x:N :: nil:(List N)))

 = (sum-list-compute nil ?x))

 pick-any x:N

 (!chain

 [(sum-list@ (x :: nil:(List N)))

 --> (x + (sum-list@ nil)) [sum-list@-nonempty]

 --> (x + zero) [sum-list@-empty]

 --> x [N.right-zero]

 <-- (sum-list-compute nil x) [sum-list-compute-empty]

])

| (y :: L) =>

 conclude (forall ?x:N .

 (sum-list@ (?x :: (y :: L)))

 = (sum-list-compute (y :: L) ?x))

 let {induction-hypothesis := (forall ?x:N .

 (sum-list@ (?x :: L))

 = (sum-list-compute L ?x))}

 pick-any x:N

 (!chain

 [(sum-list@ (x :: (y :: L)))

 --> (x + (sum-list@ (y :: L))) [sum-list@-nonempty]

 --> (x + (y + (sum-list@ L))) [sum-list@-nonempty]

 <-- ((x + y) + (sum-list@ L)) [N.associative]

 --> (sum-list@ ((x + y) :: L)) [sum-list@-nonempty]

 <-- (sum-list-compute L (x + y)) [induction-hypothesis]

 <-- (sum-list-compute (y :: L) x) [sum-list-compute-nonempty]

])

};;

define sum-list-correctness :=

 (forall ?L:(List N) .

 (sum-list ?L) =

 (sum-list@ ?L));;

by-induction sum-list-correctness{

 nil =>

 (!chain

 [(sum-list nil:(List N))

 --> zero [sum-list-empty]

define sum-list-correctness :=

 (forall ?L:(List N) .

 (sum-list ?L) =

 (sum-list@ ?L))

50

 <--(sum-list@ nil) [sum-list@-empty]])

 | (x:N :: L:(List N)) =>

 (!chain

 [(sum-list (x :: L))

 --> (sum-list-compute L x) [sum-list-nonempty]

 <-- (sum-list@ (x :: L)) [sum-list-compute-relation]])};;

4.3.1 Sum-List in Isabelle

 In order to prove the correctness of sum-list in Isabelle, we defined the sum-list

function in two different ways as stated in Athena. The imported theories are

“Datatype” and “Main” which are shown below. The proof is based on the imported

theory and the datatype of the list shown below:

theory Sumlist

imports Datatype Main

begin

datatype 'a list = Nil ("[]")

 | cons 'a "'a list" (infixr "#" 65)

Definition of sum-list’ (This is not efficient and can serve as the specification):

primrec sum_list' :: "nat list => nat" where

"sum_list' [] = 0"

| "sum_list' (x#xs) = x + sum_list' xs "

Definition of sum-list (This is the more efficient version):

primrec sum_list :: "nat list => nat" where

"sum_list [] = 0"

| "sum_list (x#xs) = sum_list_compute xs x "

Definition of sum-list-compute which is the extension of sum-list:

primrec sum_list_compute :: "nat list => nat => nat" where

"sum_list_compute [] y = y"

| "sum_list_compute (x#xs) y = sum_list_compute xs (y + x)"

51

The definition of sum-list-correctness and its proof are shown below. This is the

actual correctness condition. If the proof is obtained, one can use the more efficient

version instead of the non-tail-recursive function. Also the proof of the intermediate

lemma “sum_list_compute_relation” is shown together:

theorem sum_list_compute_relation[simp]:" sum_list_compute Ls x =

sum_list'(x # Ls)"

apply (induct Ls arbitrary: x)

apply (simp_all)

done

theorem sum_list_correctness: " sum_list L = sum_list' L"

apply (induct_tac L)

apply (auto)

done

4.3.1 Sum-List in Coq

 In order to prove the correctness property for sum-list in Isabelle, we did the same

thing that are done for Athena and Isabelle

We should first import “Arith” and “ArithRing” theories as shown below.

Require Import Arith ArithRing.

Require Ring.

Inductive list : Set :=

 | nil : list

 | cons: nat -> list -> list.

Definition of sum-list’ (This is not efficient and can serve as the specification) :

Fixpoint sum_list' (ls1 : list) {struct ls1} : nat :=

 match ls1 with

 | nil => 0

 | cons h ls1 => h + sum_list' ls1

End

52

Definition of sum-list (This is the more efficient version):

Fixpoint sum_list_compute (ls1:list) (n:nat){struct ls1} : nat :=

 match ls1 with

 | nil => n

 | (cons h ls1) => sum_list_compute ls1 (h + n)

 end.

Definition of sum-list-compute which is the extension of sum-list:

Fixpoint sum_list_compute (ls1:list) (n:nat){struct ls1} : nat :=

 match ls1 with

 | nil => n

 | (cons h ls1) => sum_list_compute ls1 (h + n)

 end.

The definition of sum-list-correctness and its proof in Coq are shown below.

Lemma help: forall L x n, (x + n)+ sum_list' L = sum_list' (cons (x

+ n) L).

auto.

Qed.

Theorem sum_list_compute_relation:forall L x , sum_list'(cons x L)=

sum_list_compute L x.

induction L.

simpl.

auto.

simpl.

intros.

rewrite plus_assoc.

rewrite help.

rewrite IHL.

rewrite plus_comm.

auto.

Qed.

Theorem sum_list_correctness: forall L, sum_list L = sum_list' L.

induction L.

auto.

53

intros.

rewrite sum_list_compute_relation.

simpl.

auto.

Qed.

4.4 CASE STUDY: DEFINING LINES AND EXAMPLE PROOFS

 In this section we first define a Point as in x-y coordinate system. Then we define

a Line which can be constructed from two Points. Lines can be either parallel or

intersecting. We axiomatically define this in all three theorem provers. If two lines are

parallel, they cannot intersect or vice versa. We state base axioms to define this fact,

and then state some conjectures to prove. In this case study, we also present proof by

contradiction technique in all three theorem provers.

4.4.1 Definitions of Point and Line in Athena

 We first declare symbols to represent points and lines in Athena first. We then

define three functions which are parallel, intersect, and angle. A point can be formed by

using two natural numbers. A line can be constructed by using two points. After

declaring lines, we can state a function called parallel whose input is two lines and the

output is a Boolean value. We repeat the same thing for the intersect function. If two

lines are intersecting, this function will return true. It should return false otherwise.

Here are the definitions in Athena:

(load-file "naturals.ath")

(domain Point)

(domain Line)

(declare point (-> (Nat Nat) Point))

(declare line (-> (Point Point) Line))

(declare parallel (-> (Line Line) Boolean))

(declare intersect (-> (Line Line) Boolean))

(declare angle (-> (Line Line) Nat))

54

We now define base axioms which will be used in the proof of a property which will be

shown later. In the following we state in the first axiom that if two lines are parallel the

angle between them is zero. The second axiom is saying that if two lines are

intersecting, the angle between them cannot be zero. Here are the definitions:

(define parallel-axiom

 (forall ?l1 ?l2

 (if (parallel ?l1 ?l2)

 (= (angle ?l1 ?l2) zero))))

(define intersect-axiom

 (forall ?l1 ?l2

 (if (intersect ?l1 ?l2)

 (not (= (angle ?l1 ?l2) zero)))))

(assert parallel-axiom intersect-axiom)

In this proof, we use proof by contradiction. In inside the proof steps we also used

modus ponnes “!mp” to prove some step. Here is the definition of parallel-not-intersect

line property and proof:

 (define parallel-not-intersect

 (forall ?l1 ?l2

 (if (parallel ?l1 ?l2)

 (not (intersect ?l1 ?l2)))))

The proof of this property is done by using proof by contradiction technique. Here is the

proof in Athena:

55

 (conclude parallel-not-intersect

 (pick-any l1 l2

 (assume (parallel l1 l2)

 (suppose-absurd (intersect l1 l2)

 (!absurd

 (conclude (= (angle l1 l2) zero)

 (!mp (!uspec* parallel-axiom [l1 l2])

 (parallel l1 l2))

 (conclude (not (= (angle l1 l2) zero)

 (!mp (!uspec* intersect-axiom [l1 l2])

 (intersect l1 l2))))))))

4.4.2 Definitions of Point and Line in Isabelle

 In Isabelle all definition and declaration are shown below. Here is the declaration

of parallel, intersect and angle in Isabelle. Where parallel and intersection are functions

of two lines which returns Boolean and angle is a function of two lines which returns

natural number:

theory testing2 imports "~~/src/HOL/Main" begin

locale geometry =

 fixes parallel :: "'line ⇒ 'line ⇒ bool"

 and intersect :: "'line ⇒ 'line ⇒ bool"

 and angle :: "'line ⇒ 'line ⇒ nat"

 assumes axiom1: "parallel l1 l2 ⟹ angle l1 l2 = 0"

 and axiom2: "intersect l1 l2 ⟹ ¬ (angle l1 l2 = 0)"

begin

Here is the definition of parallel-not-intersect line property and proof:

lemma -- "parallel_not_intersect"

 assumes

 3: " parallel l1 l2"

56

 shows " ¬intersect l1 l2"

proof(rule ccontr)

 assume 4: " ¬ ¬intersect l1 l2 "

have 5: " intersect l1 l2" using 4 by (simp)

 have 6: " angle l1 l2 = 0" using axiom1 3 by (simp)

 have 7: " ¬ (angle l1 l2 = 0)" using axiom2 5 by (simp)

 show False using 7 6 by (rule notE)

qed

end

4.4.3 Definitions of Point and Line in Coq

 Here is the declaration of parallel, intersect and angle in Coq. Where parallel and

intersection are functions of two lines which returns Boolean and angle is a function of

two lines and return natural number:

Variable line: Set.

Variable parallel:line -> line -> bool.

Variable intersect: line -> line -> bool.

Variable angle : line -> line -> nat.

Here are the definitions of parallel line and intersect line axiom:

Hypothesis axiom1: forall l1 l2:line,

 parallel l1 l2 = true -> angle l1 l2 =0.

Hypothesis axiom2 : forall l1 l2:line,

 intersect l1 l2 = true -> angle l1 l2 <>0 .

Hypothesis axiom3 : forall l1 l2:line,

 intersect l1 l2 = true.

57

Here is the definition of parallel-not-intersect line property and proof:

Lemma parrallel_not_intersect: forall l1 l2:line,

 parallel l1 l2 = true -> intersect l1 l2 = false.

intros .

assert (angle l1 l2 = 0).

apply axiom1;apply H;assumption.

assert(angle l1 l2 <> 0).

apply axiom2;apply axiom3;assumption.

contradiction.

Qed.

58

CHAPTER FIVE

COMPARISON OF THEOREM PROVERS

5.1 JUSTIFICATION OF COMPARISON

5.1.1 Proof Readability and Understandability

 Readability means something looking obviously clear to users. Based on the

analysis carried out in proofs that are in different lengths, we found out that Athena

proofs are usually longer than the proofs of coq because of its details are provided in the

proof. The proof steps are written clearly in Athena which makes it more

understandable for beginners of theorem provers. Isabelle proofs do not have too much

details compared to Athena and Coq. From the case study of sum of n numbers, it is

clear that Athena definitions and proofs are more readable and understandable without

requiring answers for many questions while Isabelle and Coq definitions and proofs

need more explanation about each line of the code written. The code in Isabelle and Coq

looks more abstract for the beginners because the tactics need to be explained. The user

has to learn tactics like unfold, rewrite, auto, syntax, terms and so on before writing a

proof. An Example is given below for each theorem prover:

Athena Codes:

by-induction Equality{

 zero =>

 (!chain [(Factorial zero)

 -->(S zero) [Factorial-zero-axiom]

<--(FactorialEfficientHelper zero (S zero)) [FactorialEfficientHelper-zero-

axiom]

<--(FactorialEfficient zero) [FactorialEfficient-axiom]])

| (S n) =>

59

 let {induction-hypothesis :=

 (Factorial n) = (FactorialEfficient n)}

 (!chain

 [(Factorial (S n))

-->((S n)*(Factorial n)) [Factorial-succ-axiom]

-->((S n)*(FactorialEfficient n)) [induction-hypothesis]

-->((S n)*(FactorialEfficientHelper n (S zero))) [FactorialEfficient-axiom]

<--(FactorialEfficientHelper n ((S n)*(S zero))) [P1]

<--(FactorialEfficientHelper (S n) (S zero)) [FactorialEfficientHelper-

succ-axiom]

<--(FactorialEfficient (S n)) [FactorialEfficient-axiom]])}

Isabelle Code:

theorem Equality:"Fact n = Factorial_helper n 1"

apply(induct_tac n)

apply simp

apply simp

done

Coq code:

Lemma Equality_fact(n:nat):fact n = fn_fact n.

induction n.

rewrite fact_zero.

unfold fn_fact.

simpl.

auto.

unfold fn_fact.

rewrite fact_eq_strong.

simpl.

rewrite plus_0_r.

auto.

Qed.

In general shorter proofs are hard to understand while longer proofs present more proof

steps which make them clearer.

60

5.1.2 Size of the Mathematical Libraries

The Isabelle system has a bigger library than both Coq and Athena systems. It is

very difficult to measure the formal library size in an objective way [1].We used

quantification methods to measure the size of all systems. The size of Isabelle system

library is more than 50MB (including FOL, HOL and others theories in Isabelle) and

Coq system library memory size is more than 5MB (including theories, Proofs, tactics

and so on) while Athena is the smallest in size which is less than 2 megabytes. Theorem

provers have theories. A theory is a collection of theorems and lemma in a formal

library. Isabelle system library includes definitions and proofs for String, Real, Logics,

Complex, Rational, Derivation in addition to first-order logics (FOL), ZF etc. Coq

system library includes String, Real, Logics, Rational numbers etc. But Athena does not

contain such mentioned theories in its library.

Table 5.1: Comparison of Theories in all the Systems

 Athena Coq Isabelle

Number of Theory 37 Approximately 240 More than 1000

Isabelle theorem prover has the bigger library as shown above, leading it to have

more theorems inside its formal library.

5.1.3 Shorter Proofs

Table 5.2: Comparison of Theorem provers in terms of Lines

Theorem prover Total number of lines

Athena 419Lines

Isabelle 126Lines

Coq 186Lines

A graph is plotted in figure 5.1 from the data in table 5.2 which shows clearly the

differences of line of codes within the three theorem provers.

61

Figure 5.1: A graph showing the difference in terms of Lines

Most proofs in coq and Isabelle are solved automatically or semi-automatically

which makes the proofs to skip many steps during the development. In general, Isabelle

proofs are shorter compared to Coq and Athena proofs. In Coq, most steps are done

either automatically or semi-automatically as in Isabelle. But Coq proofs consisted of a

fewer lemmas and theorems in its formal library than Isabelle. Also, we found out that

most of the proofs in Athena are almost doubling or tripling that of Isabelle and Coq in

terms of lines of code as shown in table 5.2.

5.1.4 Flexibility in Constructing Proofs

Shorter proofs lead to less flexibility in constructing theorems. As opposed to this

longer proofs make the theorem construction process more flexible since it is easier to

move from one step to the next. This makes the user to direct a proof step to his desired

direction and not directing the user to inconvenient steps.

Athena theorem prover is more flexible in constructing proofs compared to

Isabelle and Coq theorem provers which use a simplifier and automatic tactics which

can direct the user towards undesirable directions in some cases.

5.1.5 Better Documentation

Isabelle and Coq have well arranged documentation than Athena system. In

Athena we have no specific site or link where we can find a good document that will be

0

20

40

60

80

Athena
Isabelle

Coq

Total Number of Lines

Average of number lines

62

easy for us to understand Athena. There is only a brief guide published with only 13

pages. It is too brief to be of real use. Its link is:

 http://proofcentral.org/athena/resources/understanding-athena-proofs.pdf

In terms of mailing lists for questions and contributions, Athena does not have any

places where users can exchange ideas or send their questions. Nevertheless, we note

that Athena’s developer who is Kostas Arkoudas was very helpful whenever we had

questions.

Coq and Isabelle systems have more advanced documentations. There are many

tutorials and notes that explain their features. Coq has two main documents that are

officially maintained by Coq development team which are Reference Manual and

tutorials about the standard library distributed with the system. Also Coq has many

published documents that might be used by both beginners and advanced users. These

documents are:

 Coq'Art, Software Foundations,

 Coq in a Hurry (Yves Bertot, 2006),

 Video tutorials (Andrej Bauer, 2011) and many more

(http://coq.inria.fr/documentation).

Also coq provides a website for questions and contributions via coq-

club@pauillac.inria.fr.

Isabelle system also has reference manuals such as Isabelle (Paulson, 2002a),

further logics of the system (FOL and ZF) and Isar (Nipkow et al., 2002). There is

tutorial for Isabelle/HOL (Nipkow et al., 2002). All these are distributed freely with

Isabelle at http://isabelle.in.tum.de/dist/

 and it provides a website for questions and contributions via

cl-isabelle-users@list.cam.ac.uk. Finally a PhD thesis written by Wenzel which

described the development of Isar in detail includes many reference applications and

practical proof patterns but, dedicated tutorials and videos tutorials for beginners are

still missing.

63

Table 5.3: Important Documents

S/N Document Type Athena Coq Isabelle

1. Tutorial for beginners yes Yes No

2. Video tutorial No Yes No

3. Reference manual No Yes Yes

4. Mailing list No Yes Yes

5.1.6 Availability on Platforms

In this case Isabelle, Athena and Coq systems are all available on different kind

of platforms. The binaries of these systems are all free to download on the internet and

could be used.

Isabelle and Athena systems are written in standard ML and can be run on all

major platforms such as Intel, Apple, Sun and all major UNIX platforms. Coq system is

written and implemented on Objective Caml (Ocaml), it runs on MS Windows, all Unix

and Unix compatible systems, including MacOS X and Linux. Coq system binary is

also free to download on internet.

Note that Athena does not have an integrated development environment which

can make it easier for users to write proofs. It requires additional steps to install Athena

before using it. Isabelle and Coq come with an IDE where users can start writing and

executing proofs quickly.

5.1.7 Better Library Lookup

It is very difficult to remember the names of all definitions, lemmas and theorems

available in the current context, especially if large libraries have been loaded. Also it is

impossible to search for required lemmas or theorems manually by using brute force

techniques. Athena does not have any mechanism to search for needed lemmas while,

Isabelle and Coq systems provide tools to help users to find required lemmas.

 Isabelle provides ‘live’ view of current theory context. Its thms-containing

command finds theorem in a library: for example,

64

thms-containing x < y x <= y

retrieves all facts involving the < and <= relations. Also you can use the find-textbox in

Isabelle system to search for a required lemma by identifying some patterns: For

example,

“(_ + _ = _)”

will retrieve all lemmas that has the structure shown above. This pattern specifically has

a + sign and an equality sign. But the operators of + sign and the value on the right side

of the equality sign are unknown. So any lemmas that have an addition operator as used

above where ‘_’ can be used in place of an arbitrary term will be returned.

Also Coq System provides some commands to lookup all the unknown lemmas or

facts concerning predicates. These commands are SearchAbout, SearchPattern

and Search. For example: SearchAbout < will retrieve all the relations about less

than while, the search will only retrieve the lemmas where the searched predicate

appears at the head position in the conclusion. SearchPattern allows finding the

theorems with a conclusion matching a given pattern, where ‘_’ can be used in place of

an arbitrary term. Example: “SearchPattern (_ + _ = _)” .

5.1.8 More Feedback from the System

The Coq and Isabelle systems are fully interactive tactic-based provers. They are

capable of showing out a lot of information at any line in code together with what to be

proved, which is called goals or sub-goals. Athena lacks such vital information at each

step rather someone needs to brainstorm to know where and what to do next.

Let us show this with an example in Isabelle and Coq systems to see how much

information they provide, while Athena does not provide any help. The proof state in

Isabelle at strong_fact where we apply (induct n) is:

proof (prove): step 1

goal (2 subgoals):

 1. ∀a. Factorial_helper 0 a = a * Fact 0

 2. ⋀n. ∀a. Factorial_helper n a = a * Fact n ⟹

 ∀a. Factorial_helper (Suc n) a = a * Fact (Suc n)

65

The proof state in Coq at fact_eq_strong where the induction step is proved is:

2 subgoal

______________________________________(1/2)

forall a : nat, helper_fact 0 a = a * fact 0

______________________________________(2/2)

forall a : nat, helper_fact (S n) a = a * fact (S n)

From above examples, we saw that Coq and Isabelle provided sub-goals which

are base step and inductive step by itemizing them with subgoal1 and subgoal2 after

applying induction tactic. From there you can know what to solve first and where to

move forward. It is possible to implement functions that return the basis case and

induction steps for a given property in Athena too. But these are not part of the language

yet.

5.1.9 Less Meaningless Typographic Noise

Athena and Coq theorem prover texts contain less mathematically meaningless

symbols than Isabelle theorem prover texts. In Isabelle theorem prover, there are some

low-level “noise” characters that do not mean anything in mathematics. These

characters are quotes (“”) around formulas at the input level. There are also (-), (- -) and

dots (. And ..) . We show a related comparison in the next page:

Table 5.4: typographic Noise

S/n Typographic Noise Athena Coq Isabelle

1. Quotes(””) No No Yes

2. ? Yes No Yes

3. (-),(--) No No Yes

4. Single dot (‘.’) No Yes Yes

5 Double dot (‘..’) No No Yes

66

5.2 RESULT OF COMPARISONS

The table 5.4 shows the comparative result of the analysis conducted during this

research. Having just one * means that the prover has a weakness for the item we used

to compare. When the number of stars is more, the prover has more strength about the

property we used to compare. There could be at most 4 stars in a row.

Table 5.4: Comparison of Systems.

 Athena Isabelle Coq

1 Readability and understandability **** * **

2 Bigger mathematical library * **** ***

3 Shorter proofs * **** **

4 Flexibility in constructing proofs **** * **

5 Better documentation * ** ****

6 Better library lookup * **** ****

7 Available on more platforms **** **** ****

8 More feedback from the system * **** ****

9 Less meaningless typographic noise **** * ****

Note: For row-3 in the table 5.4, it is actually possible to write shorter proofs in Athena.

The proof writer can write proofs whose parts can be proved by using theorem provers

such as SPASS and Vampire etc. But these are external theorem provers.

67

CHAPTER SIX

CONCLUSIONS

We compared three theorem provers which are Athena, Coq and Isabelle based

on some criteria as stated in our methodology section, where we pointed out some

strong points in all the three systems. By representing some examples which are

Equality of factorial and factorial efficient, Equality of Reverse and Reverse efficient,

Sum of First n numbers, double reverse and followed by some properties necessary to

be proved before completing the desired examples in all the three theorem provers.

Certainly, all systems have their inherent advantages and disadvantages.

Speaking in terms of the system itself, the best choice for users is probably a matter of

taste. In reality, the availability of existing background theory and proof tools is

probably more important.

There are many similarities with the way we prove theorems in all these popular

theorem prover. In some cases, it might be good to start with Athena, in other cases Coq

and Isabelle might suit better. Since Isabelle’s proofs are shorter, it can be easy to see

the big picture or the steps of the proofs without getting into the details. If the problem

domain requires one to see more details (such as solving equations in mathematics),

starting with Athena might be better.

Concerning future work, it would be interesting to study how much of the

advantages of Athena can be added to Isabelle and Coq, and vice versa. This Research

may serve as a guideline for any such efforts towards better acceptance for development

of proofs assistants by providing convincing computer assistance.

Some software can be implemented in a high-level language that shows all the

three versions of the definitions and the proofs. With this way, one can write definitions

and proofs in one language and can see it in other versions at the same time.

68

REFERENCES

[1] konstantine Arkodas, A case comaparison of Athena and HOL, June 7, 2001.

[2] Markus Wenzel and Freek Wiedijk, “A Comparison of The Mathematical Proof

Languages: Mizar and Isar”, Journal of Automation Reasoning 29:389-411,

2002

[3] Dana S. Scott, “ The Seventeen Provers of the World” Freek Wiedijk (Eds),

Springer; 2006 edition (February 3, 2006)

[4] Vicent Zammit, “ A comparative Study of Coq and HOL”,10
th

 international

conference, TPHOLs, 97 Murry Hill, NJ, USA, August 19-22, 1997, proceeding,

PP 323-337, 1997.

[5] David Basin. Boyer-moore theorem and Nuprl proof: An experimental

comparison. In proceeding of first workshop on ‘logical frameworks’ Antibes,

France, pages 89-119. Cambridge university, press, 1991.

[6] Siekmann, J., Wrightson, G. (eds.): Automation of Reasoning Classical Papers

on Computational Logic 1957-1966, vol. 1. Springer, Berlin (1983).

http://www.intellektik.de/resources/OsnabrueckBuchfassung.pdf

[7] Davis, Martin (2001), "The Early History of Automated Deduction",

in Robinson, Alan; Voronkov, Andrei,(Eds), Handbook of Automated

Reasoning 1, Pages 3-15, Elsevier, 2001

[8] Bibel, Wolfgang (2007). "Early History and Perspectives of Automated

Deduction". KI 2007. LNAI (Springer) (4667): 2–18. Retrieved 2 September

2012.

[9] H. Geuvers. “Proof Assistants:history, ideas and future”, in Sadhana Journal,

Academy Proceedings in Engineering Sciences, Special Issue on Interactive

Theorem Proving and Proof Checking, Indian Academy of Sciences, Vol 34, part

1, February 2009, pp 3-25.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.5799&rep=rep1&

type=pdf

http://en.wikipedia.org/wiki/Martin_Davis
http://cs.nyu.edu/cs/faculty/davism/early.ps
http://en.wikipedia.org/wiki/John_Alan_Robinson
http://en.wikipedia.org/wiki/Andrei_Voronkov
http://en.wikipedia.org/wiki/Handbook_of_Automated_Reasoning
http://en.wikipedia.org/wiki/Handbook_of_Automated_Reasoning
http://en.wikipedia.org/wiki/Elsevier
http://www.intellektik.de/resources/OsnabrueckBuchfassung.pdf
http://www.intellektik.de/resources/OsnabrueckBuchfassung.pdf

69

[10] N. De Bruijn, Automath, a language for mathematics, Department of Mathematics,

Eindhoven University of Technology, TH-report 68-WSK-05, 1968. Reprinted in

revised form, with two pages commentary, in: Automation and Reasoning, vol 2,

Classical papers on computational logic 1967-1970, Springer Verlag, 1983, pp.

159-200.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.5799&rep=rep1&typ

e=pdf

[11] R.P. Nederpelt, H. Geuvers, R.C. de Vrijer, (editors), Selected Papers on Automath,

Volume 133 in Studies in Logic and the Foundations of Mathematics, North-

Holland, Amsterdam, 1994, pp 1024.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.5799&rep=rep1&typ

e=pdf

[12] P. Martin-Lof, Intuitionistic type theory, Napoli, Bibliopolis, 1984.

[13] B. Nordstrom, K. Petersson and J. Smith. Programming in Martin-Lof 's Type

Theory, Oxford University Press, 1990.

[14] R.L Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W.

Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T. Sasaki and

S.F. Smith, Implementing Mathematics with the Nuprl Development System,

Prentice-Hall, NJ, 1986.

[15] Agda: An interactive proof editor. http://agda.sf.net

[16] L. Magnusson and B. Nordstrom, The ALF proof editor and its proof engine, In

Types for Proofs and Programs, eds. H. Barendregt and T. Nipkow, LNCS Vol 806,

pp 213-237, 1994.

[17] http://en.wikipedia.org/wiki/Automated_theorem_proving#Comparison

[18] http://en.wikipedia.org/wiki/Proof_assistant

[19] Yegor Bryukhov, Integration Of Decision Procedures Into High-Order Interactive

Provers, A Dissertation Submitted To The Graduate Faculty In Computer Science

In Partial Fulfillment Of The Requirements For The Degree Of Doctor Of

Philosophy, The City University Of New York,2006

[20] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: a

mechanized logic of computation, volume 78 of Lecture Notes in Computer

Science. Springer-Verlag, NY, 1979.

70

[21] Richard B. Wells. Mathematics and Mathematical Axioms, 2006.

http://www.mrc.uidaho.edu/~rwells/Critical%20Philosophy%20and%20Mind/Chap

ter%2023.pdf

[22] axioms. http://en.wikipedia.org/wiki/Axiom

[23] However, both theorems and theories are investigations. See Heath

1897 Introduction, The terminology of Archimedes, clxxxii:"theorem (θεὼρνμα)

from θεωρεἳν to investigate"

[24] theorem http://en.wikipedia.org/wiki/Theorem#Derivation_of_a_theorem

[25] Barwise, Jon,(ed.), Handbook of Mathematical Logic, Studies in Logic and the

Foundations of Mathematics, Amsterdam, North Holland, 1982 ISBN 978-0-444-

86388-1

[26] John N. Crossley: What Is Mathematical Logic? A Survey, 2011,

http://www.csse.monash.edu.au/~jnc/jnc-tutorial.pdf

[27] James P. Bridge, Machine learning and automated theorem proving, November

2010, http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-792.pdf

[28] Stephen G. Simpson. Logic and Mathematics, 1999,

http://www.personal.psu.edu/t20/papers/philmath/

[29] Proof and other dilemmas: mathematics and philosophy by Bonnie Gold, Roger A.

Simons 2008 ISBN 0883855674 pages 12–20

[30] K. Arkoudas. Athena, 2006, http://proofcentral.org/athena.

[31] David R. Musser. Understanding Athena Proofs. Rensselaer Polytechnic Institute,

Troy, NY 12180

 http://proofcentral.org/athena/resources/understanding-athena-proofs.pdf.

[32] David R. Musser and Aytekin Vargun. Proving Theorem with Athena.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.559&rep=rep1&type=

pdf

[33] What is Coq ? | The Coq Proof Assistant. Coq.inria.fr. Retrieved on 2013-07-21

[34] PI.R2 http://www.pps.univ-paris-diderot.fr/pi.r2/

http://en.wikipedia.org/wiki/Special:BookSources/0883855674
http://www.pps.univ-paris-diderot.fr/pi.r2/

71

[35] Yves Bertot, Coq in a Hurry. April 2010, http://hal.inria.fr/docs/00/33/44/28/PDF/

coq- hurry.pdf

[36] Christine Paulin-Mohring, Introduction to the Coq proof-assistant for practical

software verification. https://www.lri.fr/~paulin/LASER/course-notes.pdf

[37] Tinker, Miles A. (1963). Legibility of Print. Iowa: Iowa State University Press.

pp. 5–7.ISBN 0-8138-2450-8.

[38] Tobias Nipkow, Lawrence C. Paulson and Markus Wenzel, A Proof Assistant for

Higher-Order Logic, December 5, 2013, http://isabelle.in.tum.de/doc/tutorial.pdf

[39] Lawrence C. Paulson: The foundation of a generic theorem prover. Journal of

Automated Reasoning, Volume 5, Issue 3 (September 1989), Pages: 363-397, ISSN

0168-7433

[40] Philosophical Papers, Volume 2 by Imre Lakatos, John Worrall, Gregory Currie,

ISBN Philosophical Papers, Volume 2 by Imre Lakatos, John Worrall, Gregory

Currie 1980ISBN 0521280303 pages 60–63

[41] Evidence, proof, and facts: a book of sources, Peter Murphy 2003 ISBN

0199261954, pages1–2

[42] Logic in Theology – And Other Essays by Isaac Taylor 2010 ISBN

1445530139 pages 5–15

[43] John Langshaw Austin: How to Do Things With Words. Cambridge (Mass.) 1962 –

Paperback: Harvard University Press, 2nd edition, 2005, ISBN 0-674-41152-8.

[44] Cupillari, Antonella. The Nuts and Bolts of Proofs. Academic Press, 2001. Page 3.

[45] Alfred Tarski, Introduction to Logic and to the Methodology of the Deductive

Sciences (ed. Jan Tarski). 4th Edition. Oxford Logic Guides, No. 24. New York and

Oxford: Oxford University Press, 1994, xxiv + 229 pp. ISBN 0-19-504472-X

[46] http://plato.stanford.edu/entries/justep-foundational/

[47] http://dictionary.reference.com/browse/proof

[48] Vargun, A. (2007, November). Termination checking without using an ordering

relation. In Proceedings of the 11th IASTED International Conference on Software

Engineering and Applications (pp. 130-135). ACTA Press.

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0521280303
http://en.wikipedia.org/wiki/Special:BookSources/0199261954
http://en.wikipedia.org/wiki/Special:BookSources/0199261954
http://en.wikipedia.org/wiki/Special:BookSources/1445530139
http://en.wikipedia.org/wiki/Special:BookSources/1445530139
http://en.wikipedia.org/wiki/John_Langshaw_Austin
http://en.wikipedia.org/wiki/How_to_Do_Things_With_Words
http://en.wikipedia.org/wiki/Harvard_University_Press
http://en.wikipedia.org/wiki/Special:BookSources/0674411528
http://en.wikipedia.org/wiki/Special:BookSources/019504472X
http://plato.stanford.edu/entries/justep-foundational/

72

[49] Tobias Nipkow, Theorem Proving with Isabelle/HOL An Intensive Course,

http://isabelle.in.tum.de/coursematerial/PSV2009-1/

[50] Adam Chlipala and George Necula, 2006, http://adam.chlipala.net/itp/lectures/sum.v

[51] Allen, R E, ed. (1984), The Pocket Oxford Dictionary of Current English. Oxford:

Clarendon Press; p.421.

[52] Christine Paulin-Mohring, Tools for Practical Software Verification ,Lecture Notes

in Computer Science Volume 7682, 2012, pp 45-95

[53] Chapter 1 Theorem proving with Coq, flint.cs.yale.edu/cs430/CoqTutorial.pdf

http://link.springer.com/book/10.1007/978-3-642-35746-6
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

73

APPENDIX A

ATHENA PROOF

 Appendix A consists of proofs pertaining Athena theorem provers which includes

equality of reverse efficient and intuitive reverse proof and double reverse proof.

load "nat-plus.ath"

datatype (List T) := nil | (:: T (List T))

assert (datatype-axioms "List")

declare Join: (T) [(List T) (List T)] -> (List T)

 declare Reverse: (T) [(List T)] -> (List T)

 declare Reverse-helper: (T) [(List T) (List T)] -> (List T)

 declare Reverse-efficient: (T) [(List T)] -> (List T)

assert left-empty := (forall ?q . nil Join ?q = ?q)

 assert left-nonempty :=

 (forall ?x ?r ?q . (?x :: ?r) Join ?q = ?x :: (?r Join ?q))

 assert right-empty := (forall ?p . ?p Join nil = ?p)

 assert right-nonempty :=

 (forall ?p ?y ?q .

 ?p Join (?y :: ?q) = (?p Join (?y :: nil)) Join ?q)

 assert Associative :=

 (forall ?p ?q ?r .

 (?p Join ?q) Join ?r = ?p Join (?q Join ?r))

 assert empty := ((Reverse nil) = nil)

 assert nonempty :=

 (forall ?x ?r .

 (Reverse (?x :: ?r)) = (Reverse ?r) Join (?x :: nil))

assert Reverse-helper-zero-axiom := (forall ?x . (Reverse-helper nil ?x) =

?x)

assert Reverse-helper-succ-axiom :=

 (forall ?p ?r ?x . (Reverse-helper(?r :: ?p) ?x) =

 (Reverse-helper ?p (?r :: ?x)))

assert Reverse-Eff-axiom := (forall ?p . (Reverse-efficient ?p) =

 (Reverse-helper ?p nil))

define Reverse-correct := (forall ?p ?a .

 (Reverse-helper ?p ?a) =

74

 ((Reverse ?p) Join ?a))

by-induction Reverse-correct{

nil =>

pick-any a:(List 'T)

(!combine-equations

(!chain [(Reverse-helper nil a)

 --> a [Reverse-helper-zero-axiom]])

(!chain [((Reverse nil) Join a)

 --> (nil Join a) [empty]

 --> a [left-empty]]))

| (x :: p) =>

let {induction-hypothesis := (forall ?a . (Reverse-helper p ?a) =

 ((Reverse p) Join ?a))}

conclude (forall ?a .

 (Reverse-helper (x :: p) ?a) =

 ((Reverse (x :: p)) Join ?a))

pick-any a:(List 'T)

(!combine-equations

(!chain [(Reverse-helper (x :: p) a)

 --> (Reverse-helper p (x :: a)) [Reverse-helper-succ-axiom]

 --> ((Reverse p) Join (x :: a)) [induction-hypothesis]])

(!chain [((Reverse (x :: p)) Join a)

 --> (((Reverse p) Join (x :: nil)) Join a) [nonempty]

 --> ((Reverse p) Join ((x :: nil) Join a)) [Associative]

 --> ((Reverse p) Join (x :: (nil Join a))) [left-nonempty]

 --> ((Reverse p) Join (x :: a)) [left-empty]]))

}

define Equality-Reverse :=

 (forall ?n .

 ((Reverse-efficient ?n) = (Reverse ?n)))

by-induction Equality-Reverse {

 nil =>

 (!combine-equations

 (!chain [(Reverse-efficient nil)

 --> (Reverse-helper nil nil) [Reverse-Eff-axiom]

 --> nil [Reverse-helper-zero-axiom]])

 (!chain [(Reverse nil)

 --> nil [empty]]))

| (x :: p) =>

 let {induction-hypothesis := ((Reverse-efficient p) = (Reverse p))}

 (!chain [(Reverse-efficient (x :: p))

 --> (Reverse-helper (x :: p) nil) [Reverse-Eff-axiom]

 --> ((Reverse (x :: p)) Join nil) [Reverse-correct]

 --> (Reverse (x :: p)) [right-empty]])}

====================reverse-reverse=======================================

define join :=

 (forall ?p ?q .

 (Reverse (?p Join ?q)) = (Reverse ?q) Join (Reverse ?p))

 define reverse := (forall ?p . (Reverse (Reverse ?p)) = ?p)

 by-induction join {

 nil =>

 conclude (forall ?q . (Reverse (nil Join ?q)) =

 (Reverse ?q) Join (Reverse nil))

 pick-any q

75

 (!combine-equations

 (!chain [(Reverse (nil Join q))

 --> (Reverse q) [left-empty]])

 (!chain [((Reverse q) Join (Reverse nil))

 --> ((Reverse q) Join nil) [empty]

 --> (Reverse q) [right-empty]]))

 | (x :: p) =>

 let {induction-hypothesis :=

 (forall ?q . (Reverse (p Join ?q)) =

 (Reverse ?q) Join (Reverse p))}

 conclude (forall ?q . (Reverse ((x :: p) Join ?q)) =

 (Reverse ?q) Join (Reverse (x :: p)))

 pick-any q

 (!chain [(Reverse ((x :: p) Join q))

 --> (Reverse (x :: (p Join q))) [left-nonempty]

 --> ((Reverse (p Join q)) Join (x :: nil))

 [nonempty]

 --> (((Reverse q) Join (Reverse p)) Join (x :: nil))

 [induction-hypothesis]

 --> ((Reverse q) Join ((Reverse p) Join (x :: nil)))

 [Associative]

 <-- ((Reverse q) Join (Reverse (x :: p)))

 [nonempty]])

 }

 by-induction reverse {

 nil =>

 conclude ((Reverse (Reverse nil)) = nil)

 (!chain [(Reverse (Reverse nil))

 --> (Reverse nil) [empty]

 --> nil [empty]])

 | (x :: p) =>

 conclude ((Reverse (Reverse (x :: p))) = (x :: p))

 let {induction-hypothesis := ((Reverse (Reverse p)) = p)}

 (!chain

 [(Reverse (Reverse (x :: p)))

 --> (Reverse ((Reverse p) Join (x :: nil)))

 [nonempty]

 --> ((Reverse (x :: nil)) Join (Reverse (Reverse p)))

 [join]

 --> ((Reverse (x :: nil)) Join p) [induction-hypothesis]

 --> (((Reverse nil) Join (x :: nil)) Join p)

 [nonempty]

 --> ((nil Join (x :: nil)) Join p) [empty]

 --> ((x :: nil) Join p) [left-empty]

 --> (x :: (nil Join p)) [left-nonempty]

 --> (x :: p) [left-empty]])

 }

76

APPENDIX B

COQ PROOF

 Appendix A consists of proofs pertaining Coq theorem provers which includes

equality of reverse efficient and intuitive reverse proof and double reverse proof.

Inductive list : Set :=

 | nil : list

 | cons : nat -> list -> list.

Fixpoint append (ls1 ls2 : list) {struct ls1} : list :=

 match ls1 with

 | nil => ls2

 | cons h t => cons h (append t ls2)

 end.

Fixpoint reverse (ls : list) : list :=

 match ls with

 | nil => nil

 | cons h t => append (reverse t) (cons h nil)

 end.

Fixpoint reverse'_helper (ls acc : list) {struct ls} : list :=

 match ls with

 | nil => acc

 | cons h t => reverse'_helper t (cons h acc)

 end.

Definition reverse' (ls : list) : list := reverse'_helper ls nil.

Theorem append_associative : forall ls1 ls2 ls3,

 append (append ls1 ls2) ls3 = append ls1 (append ls2 ls3).

 induction ls1; simpl; intuition.

 rewrite IHls1; trivial.

Qed.

Lemma reverse'_helper_correct : forall ls acc,

 reverse'_helper ls acc = append (reverse ls) acc.

 induction ls;simpl;intuition.

rewrite IHls.

 rewrite append_associative.

 trivial.

 Qed.

Lemma append_nil : forall ls, append ls nil = ls.

 induction ls; simpl; intuition.

 simpl.

auto.

congruence.

Qed.

77

Theorem reverse'_correct : forall ls, reverse' ls = reverse ls.

 intros.

 unfold reverse'.

 rewrite reverse'_helper_correct.

 apply append_nil.

Qed.

=====================reverse-reverse======================================

Theorem reverse_app : forall l1 l2,

reverse (append l1 l2) = append (reverse l2) (reverse l1).

induction l1; simpl; intuition.

rewrite append_nil.

auto.

rewrite IHl1.

rewrite append_associative.

auto.

Qed.

Lemma Reverse_reverse : forall ls, reverse (reverse ls) = ls.

induction ls.

auto.

simpl.

rewrite reverse_app.

rewrite IHls.

simpl.

auto.

Qed.

78

APPENDIX C

ISABELLE PROOFS

Appendix A consists of proofs pertaining Isabelle theorem provers which includes equality

of reverse efficient and intuitive reverse proof and double reverse proof.

theory Example1

imports Datatype

begin

datatype 'a lists = Nil

 | Cons 'a "'a lists"

primrec app :: "'a lists => 'a lists => 'a lists"

where

 "app Nil L2 = L2"

| "app(Cons x L1) L2 =Cons x (app L1 L2)"

 primrec reverse :: "'a lists => 'a lists" where

 "reverse Nil = Nil"

| "reverse (Cons x L1) = app (reverse L1) (Cons x Nil)"

primrec reverse_helper :: "'a lists ⇒'a lists ⇒ 'a lists" where
" reverse_helper Nil L2 = L2" |

" reverse_helper (Cons x L1) L2 = reverse_helper L1 (Cons x L2)"

lemma app_Nil2 [simp] : "app L1 Nil = L1"

apply(induct_tac L1)

apply simp

apply simp

done

lemma app_assoc[simp] : "(app(app L1 L2) L3) = (app L1 (app L2 L3))"

apply(induct_tac L1)

apply simp

apply simp

done

lemma strog_helper_Reverse[simp] :"∀L2 . reverse_helper L1 L2 = app (reverse
L1) L2"

apply(induct_tac L1)

apply simp

apply simp

done

 theorem Reverse_Equality_Reverse_Eff:" reverse_helper L Nil = reverse L"

 apply(induct_tac L)

 apply simp

 apply simp

 done

 =====================================reverse-reverse=====================

lemma rev_app[simp]: "reverse (app L1 L2) = app (reverse L2) (reverse L1)"

79

apply (induct L1)

apply (simp_all)

done

theorem reverse_reverse[simp]: "reverse (reverse L) = L"

apply (induct L)

apply (simp_all)

done

