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ABSTRACT 

 

In this thesis, a general approach is proposed for the computation of a liveness 

enforcing supervisor for the Petri net model of a flexible manufacturing system (FMS) 

prone to deadlocks. The proposed deadlock control policy in this thesis requires a 

modification to be made to the original Petri net model prone to deadlocks. The 

modification is simply the addition of a global sink/source place (GP), which is 

employed temporarily in the design process and then removed when the system 

becomes live. The proposed method is easy to use, straightforward and has 

computational simplicity. The applicability of the proposed approach is illustrated 

through examples from the related literature.  

Keywords: Flexible Manufacturing Systems (FMS), Deadlock, Petri nets, liveness 

enforcing supervisor. 
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Esnek Üretim Sistemlerinde Petri Ağı Temelli Canlılık Uygulayıcı 
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Tez Danışmanı: Prof. Dr. Murat UZAM 

 

ÖZ 

 

 Bu tezde, kördüğüm problemi olan bir esnek üretim sisteminin Petri ağı modeli için bir 

canlılık uygulayıcı gözetici hesaplanması konusunda genel bir yöntem önerilmektedir. 

Bu tezde önerilen kördüğüm kontrolu yaklaşımında, kördüğüm problemi olan asıl Petri 

ağı modelinde değişiklik yapılması söz konusudur. Buna göre, tasarım sürecinde geçici 

olarak kullanılan ve daha sonra asıl Petri ağı modeli canlı olduğunda kaldırılan küresel 

bir kaynak / yutak mevkisi (a global sink/source place GP) eklenmektedir. Önerilen 

yöntem basit, kullanımı ve hesaplaması kolaydır. Önerilen yaklaşımın uygulanabilirliği 

örneklerle gösterilmektedir. 

Anahtar Kelimeler: Esnek Üretim Sistemleri (FMS), kördüğüm, Petri ağları, canlılık 

uygulayıcı gözetici. 
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CHAPTER 1 

 INTRODUCTION  

 

The advancement in science and technology has brought about complex man-made 

systems that pose real challenges to both their developers and users. Discrete event systems 

(DES) are examples of such systems. DESs are dynamic system models with state changes 

driven by asynchronous occurrences of individual events [1]. DESs are characterized by 

properties such as process synchronization, concurrent operations and conflicts or resource 

sharing [2]. Resource allocation systems (RAS) are common in DESs such as flexible 

manufacturing systems (FMS), workflow management systems and computer operating 

systems [3]. 

FMSs as the modern industrial systems are readily adaptable to changes whether 

predicted or unpredicted, in which machines are able to manufacture parts and have the 

ability to handle varying levels of production. FMSs allow equipment to be used for more 

than one purpose. Most FMSs are controlled by computer programs and therefore are 

automated systems. An FMS consists of a finite number of shared resources such as 

machines, automated guided vehicles, robots, and buffers.  The main aim of FMSs is to offer 

the speed required to change with market conditions quickly [4].

            In an FMS different jobs are carried out by different parts of the system concurrently 

while sharing limited resources of the system. A situation arises in which one part of the 

system is holding on some of the limited resources leaving other parts waiting indefinitely 

for the resources to be released. This situation leads to deadlocks in parts of the system or in 

the system as a whole. Deadlock in an RAS is a highly undesirable situation and must be 

dealt with in order to avoid catastrophic results since it affects the overall system’s 

throughput and may lead to complete system failure or stoppage. There are four necessary 

conditions for the occurrence of deadlocks in RASs [5]. These conditions are given: 
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1) Mutual Exclusion: This means that two or more parts can acquire a resource at the 

same time. The resource is only exclusively occupied by one part of a system. 

2) No Preemption: This implies that once a resource is acquired by a part in process it 

cannot be forcibly removed by any external agent. 

3) Hold and Wait: This indicates that a process acquires some resources and awaits 

additional resources. 

4) Circular Wait: This is a situation whereby there is a set of linearly ordering 

processes such that each process requests the resources currently held by the next 

process while the last process requests the resources held by the first. 

Deadlock occurs if all of these conditions hold, and cannot happen if any of them 

does not hold [5]. In manufacturing systems, the first three conditions are already present. 

Thus, deadlock occurs when two or more jobs enter a circular wait state, and to avoid 

deadlock in manufacturing systems is to guarantee that there is no circular wait [6]. The 

first three conditions depend on the physical property of a system and its resources. 

However, the last is decided by the request, allocation and release of system resources. It 

is controllable and can be broken by properly assigning the resource of a system, aiming to 

avoid the occurrence of a circular wait [5]. 

As the scope of control theory is being extended into the fields of manufacturing 

systems, robotics, computer systems, communication networks and so on, there is need for 

different models capable of describing events that characterize the behaviors of these 

systems. The formal tools that are used to model such systems are finite state machines, 

graph theory, automata and Petri nets. 

Finite state machines are conceptual models for discrete event systems (DESs). 

They consist of a finite number of states, transitions between these states and actions. States 

present certain behaviors. A transition indicates a state change and is guided by a condition. 

Graph theory can be used to describe interactions between activities or operations and 

resources from which a deadlock control policy can be derived. In graph theory frame 

work, deadlocks are always related with the circuits of the graph and their occurrences can 

be detected by simply computing all the circuits [5]. Automata are a powerful modeling 

tool for systems with an infinite number of states. They provide a comprehensive and 



3 
 

 
 

structural treatment of the modeling and control of discrete event systems. A number of 

deadlock control policies that are computationally efficient are developed based on 

automata [5]. The modeling tool that we use in this research is called Petri nets. Petri nets 

have been used widely by researchers to model, analyze, design and control FMSs because 

of their properties which are suitable to detect deadlocks. There are software packages 

available which make Petri nets easy to be used as systematic tool to model and handle the 

control of a system in the real world [5].  

Several studies have been carried out in the last two decades to deal with the 

deadlock problems in RAS. Three approaches have been identified for this purpose. The 

first one is deadlock detection and recovery. This approach employs a mechanism that 

detects the occurrence of a deadlock in a system and then puts the system back to its 

deadlock free state. This approach does not eliminate the occurrence of deadlocks, but 

relies on its ability to handle them when they occur. The efficiency of this method depends 

on the response time of its implemented algorithms, [3] [7], [8]. The second approach is 

deadlock avoidance. This method keeps the system away from deadlocks by using a control 

policy that determines the correct system evaluations among the feasible ones. Even though 

this method improves system throughput and better utilization of system resources, it does 

not completely eliminate deadlocks. The third one is deadlock prevention [3], [8], [9]. This 

approach has received more attention and is a well-defined problem in DES. It is used at 

the stage of system design and planning, and therefore does not require run-time costs. A 

control policy is added to the system in such a way that deadlocks never happen in the 

system. The computation of this method is done off-line in a static way. Control places and 

related arcs are used for this purpose [3], [8]. Our research is based on the third approach. 

Dealing with deadlocks is not an easy task, because there are three important criteria 

that are considered in evaluating the performance of a liveness-enforcing supervisor: 

behavioral permissiveness, structural complexity and computational complexity. A 

maximally permissive optimal supervisor can lead to high utilization of system resources, 

and a supervisor with a simple structure can reduce the hardware and software costs in the 

stage of verification, validation and implementation [9]. Researchers try their best to come 

up with deadlock prevention policies that meet these three criteria. Petri nets are used as 



4 
 

 
 

mathematical tool to model, analyze and control the FMSs. In Petri net analysis, two 

techniques are used for deadlock prevention: structural analysis [10], [11], [12] and 

reachability graph analysis [13], [14]. In structural analysis technique, structural objects of 

Petri nets, such as siphons and resource transition circuits are used in developing deadlock 

prevention policies. The control laws are simple and the computational complexity is 

reduced. However, the technique suffers from structural complexity and the controlled 

systems obtained are often suboptimal.  Details of research works and developments on 

this techniques, especially by using siphons, can be found in [3], [8], [10], [11], [12], [15], 

[16], [17], [18], [19], [20], [21].   

The reachability graph (RG) analysis technique employs the behavior of a system 

from its generated RG. Though this analysis technique almost always gives a highly or 

even maximally permissive liveness-enforcing supervisor, it suffers from the state 

explosion problem. This is due to the fact that it requires generating all or a part of 

reachable markings. The theory of region was proposed which is an effective approach 

[22], [23]. The approach can definitely find an optimal supervisor if there is such a 

supervisor. The method has structural and computational problems. An important method 

was proposed in [13], where the RG of a Petri net model suffering from deadlocks is split 

into two parts: a live-zone (LZ) and a deadlock-zone (DZ). At each iteration, a first-met 

bad marking (FBM) derived from the reachability graph is selected and control place is 

designed to prevent the FBM from being reached. The design of the control place is done 

by using a place invariant (PI) based method proposed in [22]. An FBM is a marking in the 

DZ, presenting the very first entry from the LZ to the DZ. The drawback of the method is 

that it cannot guarantee the behavioral optimality of the supervisor, and it is easier to use 

for systems with a small reachable space. 

Another method that combines markings and siphons was proposed in [25]. The 

method is a selective siphon control policy in which highly permissive behavior can be 

obtained by a small-sized supervisor. The policy was improved in [26] by avoiding a 

complete siphon enumeration. However, there is lack of formal proof to show that the 

policy is definitely maximally permissive in theory [5]. Other related works can be found 

in [2], [13], [14], [23], [25], [26], [27]. 
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A divide-and-conquer strategy is another approach of liveness-enforcing 

supervisors which was claimed in [28] to be computationally superior compared with the 

well-established global-conquer approaches as in [13], [14]. In [29] a computationally 

efficient divide-and-conquer strategy for the computation of liveness-enforcing supervisors 

(LES) was presented. The method improves the conventional RG based methods. However, 

it is necessary to deal with too many submodels when the number of shared resources is 

big. Therefore the objective of this thesis is to propose a general approach for the 

computation of a liveness enforcing supervisors for the Petri net model of an FMS without 

dividing a given PN model into its submodels, and also without transformation or reduction 

of the given PN model as in [13], [14]. The proposed method is easy to apply and straight 

forward. The applicability of the proposed method is shown by examples.  

The remainder of this thesis is organized as follows. Chapter 2 comprises of basic 

definitions of Petri net, equations for the computations of the monitors, redundancy check 

algorithm and simple FMS system and its Petri net model with its reachability graph. 

Chapter 3 explains the proposed method with an illustrative example to show how the 

method is applied on a simple Petri net model. Chapter 4 contains application examples of 

the proposed method on two different Petri net models. Finally Chapter 5 provides the 

conclusion of the thesis. 
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                    CHAPTER 2 

                                               PRELIMINARIES 

 

2.1     INTRODUCTION 

 In this chapter some basic concepts related to this thesis are considered. These include 

Petri nets, computations of control places (monitors), a method used to identify and eliminate 

redundant monitors. Finally a simple FMS system and its Petri net model are explained. 

 

2.2     PETRI NETS 

 

Petri net were proposed by C. A. Petri in 1962 in his PhD thesis as net-like 

mathematical tool for the study of communication with automata [30]. Today, Petri nets are 

a powerful modeling formalism in many disciplines such as computer science, system 

engineering, communication and transport systems [31], [32]. Their further development was 

facilitated by the fact that they combine a well-defined mathematical theory with a graphical 

representation. Using Petri nets, it is possible to set up algebraic equations, state equations 

and other mathematical models describing the behavior of systems.  

 

The following definitions are from [5], [9]. 

2.2.1    Definition 1 Petri net is a four-tuple defined as N = (P, T, F, W), where P and T are 

finite non-empty and disjoint sets.  P is a set of places and T is set of transitions with P ∪ T 

≠ Ø and P ∩ T = Ø. F ⊆ (P  × 𝑇) ∪ (T × 𝑃) is called a flow relation of the net, it is represented 

by arrows from transitions to places or from places to transitions. W: (P × 𝑇) ∪ (T × 𝑃) →  
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ℕ is a mapping which assigns a weight to an arc: W (𝑥, y) > 0 iff (𝑥, y) ∈ F, and W (𝑥, y) = 

0, otherwise, where 𝑥, y ∈ P ∪ T and ℕ is the set of non-negative integers.      

2.2.2    Definition 2 A Petri net N = (P, T, F, W) is called an ordinary net, denoted as N = (P, 

T, F), if ∀ f ∈ F, W (f) = 1, and is called generalized if ∀ f ∈ F, W (f) > 1. 

2.2.3    Definition 3 A node 𝑥 ∈ P ∪ T, •𝑥 = {y ∈ P ∪ T| (𝑥, y) ∈ F} is called the preset of 𝑥, 

while 𝑥• = {y ∈ P ∪ T| (𝑥, y) ∈ F} is called the post set of 𝑥. 

2.2.4    Definition 4 A marking is a mapping M: P → ℕ. M (p) represents the number of 

tokens in a place p. Markings and vectors are usually described using a multiset or formal 

sum for space economy. ∑ 𝑀(𝑝)𝑝𝑝∈𝑃 , is used to denote vector M. A marked Petri net is 

represented by a pair (N, M₀). 

2.2.5     Definition 5 A net is said to be pure (self-loop free) iff ∄(𝑥, y) ∈ (P × 𝑇) ∪ (T  × 𝑃): 

(𝑥 . y) ∈ F ˄ (y . 𝑥) ∈ F. 

2.2.6    Definition 6 An incidence matrix of net N is a |𝑃| × |𝑇| integer matrix with [N] (p, 

t) = W (t, p) – W (p, t).  

2.2.7    Definition 7 A transition is fired or enabled at marking M if ∀ 𝑝 ∈ •t, M (p) ≥ W (p, 

t). This fact is denoted as M [t〉. Firing a transition yields a new marking M ʹ such that ∀ p ∈ 

P, M ʹ (p) = 𝑀 (𝑝) − W (p, t) + W (t, p), denoted by M [t〉 M ʹ, and M ʹ is called an 

immediately reachable marking from M.  M ʹ is reachable form M if there exists a sequence 

of transitions 𝜎 = t1, t2 . . . , tn and markings M 1, M2.  . . , and Mn-1 such that M [t1〉 M1 [t2〉 M2 

[t3〉 . . . Mn-1 [tn〉 M ʹ holds and satisfies the state equation M ʹ = M + [N] 𝜎 ⃗⃗  ⃗, where 𝜎 ⃗⃗  ⃗: T → ℕ 

is a vector of non-negative integers called a counting vector, and  𝜎 ⃗⃗  ⃗(t) indicates the algebraic 

sum of all occurrences of t in 𝜎. M [〉 is the set of all markings reachable from M by enabling 

any possible sequence of transitions. M₀[〉 is called the set of reachable markings of a Petri 

net N from initial marking M₀, often denoted by R (N, M₀). R (N, M₀) can be graphically 

expressed by a reachability graph of a net (N, M₀) which is denoted as G (N, M₀). G (N, M₀) 

is a directed graph which has its nodes in R (N, M₀) as markings, and its arcs are labeled by 

the transitions of N. An arc from M1 to M2 is labeled by the t if M1 [t〉 M2. 
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2.2.8    Definition 8 A place is called k-bounded (k ∈ ℕ \ {0}) if ∀ M ∈ R (N, M₀): M (p) ≤ 

k. A net is k-bounded if every place is k-bounded. A net is safe if it is 1-bounded. 

2.2.9    Definition 9 Given a net system (N, M₀) with N = (P, T, F, W), a transition t  ∈ T is 

live at M₀ if ∀ M ∈ R (N, M₀), ∃M ʹ ∈ R (N, M), M ʹ [t〉 holds. A transition is said to be live 

if it is potentially firable in any marking R (N, M), and the net system (N, M₀) is said to be 

live. A transition t  ∈ T is dead at M if ∄M ʹ ∈ R (N, M) such that M ʹ [t〉 holds, and the 

transition cannot fire any more. A net system (N, M₀) with a dead transition is said to be 

prone to deadlock since it has a transition which is not potentially firable. (N, M₀) is deadlock-

free if ∀ M ∈ R (N, M₀), ∃t ∈ T, M [t〉 holds.  

2.2.10    Definition 10 A Petri net is said to be conservative if the total number of tokens of 

all its reachable markings is constant. 

 

2.3    COMPUTATION OF MONITORS 

In the place invariant method proposed in [24] for the computation of monitors, the 

controlled Petri net of a system has an incidence matrix D made up of both the original Petri 

net and the added control places with their related arcs. The idea is to force the system to 

obey constraints which can be grouped in matrix form as follows: 

 Lµp ≤ b                                                                                                      (1)         

Where: µp is the marking vector of the Petri net model (PNM), L is an nc 𝗑 n integer matrix 

representing the place invariant, b is an nc 𝗑 1 integer vector and nc is the number of 

constraints of (1). If a non-negative slack variable µc is introduced, the inequality 

constraint becomes equality as follows:               

Lµp + µc = b                                                                                                (2)                    

µc is an nc 𝗑 1 integer vector, representing the markings of the control places. 
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If the incidence matrix of the PNM is given as DP, the Petri net controller Dc, which 

is a row vector representing the connection between the control places and the transition can 

be defined as follows:  

Dc =  ̵ LDP                                                                                                   (3) 

The initial marking of the controlled PNM µc0, which is computed in such a way that 

the place invariant (PI) of equation (2) is initially satisfied, is given as follows: 

µc0 = b  ̵ LµP0                                                                                               (4) 

When dealing with large Petri nets, the incidence matrices tend to be very big, and 

this is a major drawback of this method. However, a simplified method was proposed in [14] 

in order to reduce the size of the incidence matrix DP. Equations 2 and 3 are modified in [14], 

and there is no need to use the incidence matrix DP, the computation is done by using the 

incidence matrix DPI of PI related Petri net.  

Dc =  ̵ LPI DPI                                                                                               (5) 

Where DPI is the incidence matrix of the PI related net with j places and k transitions, LPI is a 

j 𝗑 1 integer row vector representing the invariant related places, Dc is a k 𝗑 1 integer row 

vector representing the incidence matrix of the monitor. 

µc0 = b  ̵ LPI µPI0                                                                                           (6) 

Where LPI is place invariant related integer vector, µPI0 is initial marking of place invariant 

related net. 

By definition, initially there is no tokens within the activity places, which means that 

LPI µPI0 = 0. Therefore equation (6) becomes: 

µc0 = b                 (7) 

 

 

 



10 
 

 
 

2.4     IDENTIFICATION AND ELIMINATION OF REDUNDANT MONITORS 

There are may exist some redundant monitors among the monitors or control places 

(CPs) computed for liveness enforcing supervisor. If redundant CPs are removed from a live 

Petri net model (LPN), the Petri net model still maintains its liveness. Removing redundant 

CPs from a LPN model and leaving only the necessary ones may reduce the structural 

complexity of the LPN model. Below are redundancy test algorithms proposed in [33] for 

removing redundant monitors from a LPN model.   

Algorithm Redundancy Test: Redundancy test for LES of FMS  

 

Input: A live Petri net (LPN) model, denoted by a net system (N₀, M₀), of an FMS, controlled 

by n CPs; CP = {C1, C2, …, Cn}; 

(1) [Define] β₀: the number of reachable markings or states of reachability graph (R₀) of 

(N₀, M₀).                                                                    

[Define for Algorithm A] βA: the number of reachable markings or states of RA of 

(NA, MA); n = j + k, where n: the number of CPs of LPN; j: the number of redundant 

CPs; k: the number necessary CPs: 

[Define for Algorithm B] βB: the number of reachable markings or states of RB of (NB, 

MB); n = l + m, where n: the number CPs of LPN; l: the number of redundant CPs; m: 

the number of necessary CPs;    

(2) Apply Algorithm A to (N₀, M₀) and the resultant net system is denoted as (NA, MA). 

(3) Apply Algorithm B to (N₀, M₀) and the resultant net system is denoted as (NB, MB). 

Output: If (j > 0) [for Algorithm A]     

                     then Output A = an LPN, denoted a net system (NA, MA), controlled by k 

necessary CPs; there are j redundant CPs;                                                                                                                                                                                                                                    

 if βA = β₀ then the controlled behaviour of (NA, MA) is the same as  (N₀, M₀)                      

 if βA > β₀ then the controlled behaviour of (NA, MA) is more permissive than                         

  (N₀, M₀)       

                   else there is no redundant CPs obtained due to Algorithm A and therefore for 

Algorithm A: Output = Input;     

        If (l > 0) [for Algorithm B]  
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                Then Output B = an LPN, denoted by a net system (NB, MB), controlled by m 

necessary CPs; there are l redundant CPs;          

                        if βB = β₀ then the controlled behaviour of (NB, MB) is the same as  (N₀, M₀)                               

if βB > β₀ then the controlled behaviour of (NB, MB) is more permissive than                         

  (N₀, M₀)       

                   else there is no redundant CPs obtained due to Algorithm B and therefore for 

Algorithm B: Output = Input;    

 

End of Algorithm Redundancy Test  

 

Algorithm A: Front-to-Back (FTB) redundancy test for LES of FMS. 

 

Input: A live Petri net (LPN) model, denoted by a net system (N₀, M₀), of an FMS, controlled 

by 

n CPs; CP = {C1, C2, …, Cn};      

(1) [Initialize] NA := N₀ ; MA := M₀; i = 1; j = 0; k = 0; 

(2) Remove Ci from (NA, MA). Denoted the resultant net system by (Ni, Mi). 

(3) Check the liveness property of (Ni, Mi), compute the reachability graph (Ri) of Ci and 

define βAi, i.e., the number of reachable markings of Ri; 

              If (Ni, Mi) is NOT LIVE  

               then put Ci back into (Ni, Mi); k = k + 1; which means that Ci is necessary to keep 

the PN model live.    

               else [i.e. If (Ni, Mi) is live], j = j + 1; which means that Ci is redundant,  

               if βAi = β₀ then the controlled behaviour of (Ni, Mi) is the same as (N₀, M₀)     

               if βAi > β₀ then the controlled behaviour of (Ni, Mi) is more permissive than (N₀, M₀)     

               endif 

(4) NA := Ni ; MA := Mi  

(5) i = i + 1 

(6) if i ≤ n then go to step 2. 

Output: If (j > 0) 
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           then Output = an LPN, denoted by a net system (NA, MA), controlled by k necessary 

CPs;   

            there are j redundant CPs; 

 if βA = β₀ then the controlled behaviour of (NA, MA)is the same as (N₀, M₀)    

         if βA > β₀ then the controlled behaviour of (NA, MA) is more permissive than (N₀, M₀)  

   else there is no redundant CPs and therefore Output = Input; 

 

End of Algorithm A   

 

Algorithm B: Back-to-Front (BTF) redundancy test for LES of FMS. 

 

Input: A live Petri net (LPN) model, denoted by a net system (N₀, M₀), of an FMS, controlled 

by 

n CPs; CP = {C1, C2, …, Cn};      

(1) [Initialize] NB := N₀ ; MB := M₀; i = 1; l = 0; m = 0; 

(2) Remove Ci from (NB, MB). Denoted the resultant net system by (Ni, Mi). 

(3) Check the liveness property of (Ni, Mi), compute the reachability graph (Ri) of Ci and 

define βBi, i.e., the number of reachable markings of Ri; 

              If (Ni, Mi) is NOT LIVE  

                  then put Ci back into (Ni, Mi); m = m + 1; which means that Ci is necessary to keep 

the PN model live.    

                else [i.e. If (Ni, Mi) is live], l = l + 1; which means that Ci is redundant,  

                if βBi = β₀ then the controlled behaviour of (Ni, Mi) is the same as (N₀, M₀)     

               if βBi > β₀ then the controlled behaviour of (Ni, Mi) is more permissive than (N₀, M₀)     

             endif 

(4) NB := Ni ; MB := Mi  

(5) i = i  ̵ 1 

(6) if i ≠ 0 then go to step 2. 

Output: If (l > 0) 

              then Output = an LPN, denoted by a net system (NB, MB), controlled by m necessary 

CPs;   
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            there are j redundant CPs; 

  if βB = β₀ then the controlled behaviour of (NB, MB)is the same as (N₀, M₀)    

  if βB > β₀ then the controlled behaviour of (NB, MB) is more permissive than (N₀, M₀)  

 else there is no redundant CPs and therefore Output = Input;  

 

End of Algorithm B   

 

Redundancy test algorithm makes use of both Algorithm A and B. Algorithm A test 

each CP from number 1 to end, while B tests each CP starting from end to number 1. Both 

tests may produce the same result or it may be possible to obtain different results [33]. 

 

 

2.5    FMS EXAMPLE 

 

In this section an example of modeling of an FMS and the computation of its 

reachability graph is considered. Fig. 2.1 shows an FMS from [13] consisting of two 

machines M1 and M2 each of which can process one part at a time and one robot which can 

hold one part at a time. The FMS has two input/output buffers, I/O1 and I/O2 through which 

parts enter the FMS. We consider only two parts: P1 and P2. It is assumed that there are no 

parts initially in the system [14]. The production sequences are as follows: 

 

         PART 1 (P1): M1  Robot  M2;           PART 2 (P2): M2  Robot  M1 

Input/

Output 1 Machine 1 Machine 2
Input/

Output 2

Robot

L/U L/U

 

                                                   Figure 2.1. An example FMS. 

Fig. 2.2 is the PNM of the FMS depicted in Fig. 2.1. There are eleven places in the 

PNM, P = {p1-p6, p11-p13, p21-p22} and eight transitions, T = {t1-t8}. There are six activity 

places, PA = {p1-p6}, which represent the operations of activities of M1, R and M2, and M2, 

R and M1 for the part type P1and P2 respectively, three resource places PR = {p11-p13} and 
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two sink/source places PA = {p21-p22}. The number of tokens in the sink/source places, p21 

and p22 represent the number of concurrent activities that can take place for part types P1 

and P2 respectively. The initial marking of p12 is one, as robot R can hold one part at a time. 

Similarly the initial markings of p11 and p13 are all one as machines can process one part at 

a time. 

From the reachability graph (RG) of the PNM, it can be verified that the uncontrolled 

PNM is prone to deadlocks. There are 20 states within RG, 5 of which are bad states, in the 

dead zone (DZ) and 15 of which are good states within the live zone (LZ). Therefore a control 

policy is required to prevent these 5 states within the DZ from being reached in order to get 

the live PNM. 

t1

t2

t3

t4 t5

t6

t7

t8

p1

p2

p3 p4

p5

p6

p11

p12

p13

p21 p22

M1

M2

R

. ... ..

 

         Figure 2.2. Petri net Model (PNM) of the FMS for the two production sequences. 

 

The reachability graph of the FMS is shown in Fig. 2.3 indicating the 20 states within 

the RG. States 8 and 13 are deadlock states while states 10, 11 and 12 are bad states leading 

to the deadlock states. These five states form the DZ while the remaining 15 states are good 

sates; within the LZ. 
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s10

s14
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s7
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s9

s5

s1

s18

s16

s19

s17

s6

s2

s4

s8

s20
t8

t5

 

                              Figure 2.3. The RG of the PNM. 

 

The markings of the states of the RG  are shown in Table 2.1. 

 

                        Table 2.1. States of the computed RG of the PNM. 

          

  

s1 = p11 + p12 + p13 + 3p21 + 3p22 s11 = p1 + p4 + p12  + 2p21 + 2p22 

s2 = p1 + p12 + p13 + 2p21 + 3p22 s12 = p1 + p5 + p13 + 2p21 + 2p22 

s3 = p2 + p11 + p13 + 2p21 +   3p22 s13 = p1 +  p4 + p5 + 2p21 + p22 

s4 = p1 + p2 + p13 + p21 + 3p22 s14 = p4 + p11 + p12 + 3p21 + 2p22 

s5 = p1 + p3 + p12 + p21 + 3p22 s15 = p5 + p11 + p13 + 3p21 + 2p22 

s6 = p2 + p3 + p11 + p21 + 3p22 s16 = p4 + p5 + p11 + 3p21 + p22 

s7 = p1 + p2 + p3 + 3p22 s17 = p4 + p6 + p12 + 3p21 + p22 

s8 = p1 + p2 + p4 + p21 + 2p22 s18 = p5 + p6 + p13 + 3p21 + p22 

s9 = p3 + p11 + p12 + 2p21 + 3p22 s19 = p4 + p5 + p6 + 3p21 

s10 = p2 + p4 + p11 + 2p21 + 2p22 s20 = p6 + p12 + p13 + 3p21 + 2p22. 
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CHAPTER 3 

THE PROPOSED METHOD AND ITS ALGORITHM 

 

3.1    INTRODUCTION 

In this chapter, a new approach for synthesis of Petri net based liveness enforcing 

supervisors in FMS is proposed. In the proposed method, reachability graph (RG) is used for 

tackling deadlock problems of a given Petri net model (PNM). The RG of a PNM suffering 

from deadlocks has two partitions: dead zone (DZ) and live zone (LZ). The DZ comprises of 

deadlock states together with bad states leading deadlock states while the LZ has the good 

states. The aim of this method is to prevent a PNM of an FMS from reaching all states within 

DZ while allowing every state within LZ to be reached.  

There are three categories of places in a PNM of an FMS: resource places PR, activity 

(operational) places PA, and sink/source places PS/S. Resource places represent the 

shared/non-shared resources. Activity (operational) places represent an action to process a 

part in a production sequence. The number of tokens initially deposited into sink/source 

places represent the number of the concurrent activities which can take place in a production 

sequence [27]. In this proposed method, we only focus on the markings of activity places 

when the RG of a PNM is computed. We consider only the activity places which have tokens. 

 

3.2    THE PROPOSED METHOD ALGORITHM 

The method proposed employs a global sink/source place (GP) in computing the 

liveness enforcing supervisors in an iterative way. In this control policy the reachability graph 

(RG) of the given PNM is generated by a Petri net analysis tool called INA [34], which gives
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both the LZ as the first strongly connected components, and the DZ, as the strongly connected 

components other than the first one of a given PNM. At each iteration, starting from one 

token, the number of tokens in the GP is increased by one and the RG of the net is computed. 

If the net is live, the number of tokens in the GP is increased by one and the RG is computed 

again. When the net is not live, the RG of the related net is divided into a DZ and a LZ. The 

latter constitutes the good states of the RG which represents optimal solution. The objective 

here is to prevent all states within the DZ from being reached, because they are considered 

as bad markings (BM). From a BM we consider only the markings of the activity places. A 

monitor (control place) with its related arcs and initial marking is computed to prevent the 

BM from being reached [9], [14], by means of a place invariant (PI). Computed PI is 

implemented in such a way that the sum of tokens within the subset of the activity places 

must be at most one token less than their current number.  

After the PNM becomes live, a redundancy test as proposed in [33] is carried out to 

remove any redundant monitor from the computed monitors. Finally, a live controlled Petri 

net model with all necessary control places as liveness enforcing supervisor is obtained. The 

proposed method provides optimal permissiveness on some Petri net models and near optimal 

on others. The method is straight forward and easy to use. The algorithm of the proposed 

deadlock prevention policy is as follows.  

 

Algorithm: Synthesis of a liveness enforcing supervisor by means of a global sink/source 

place   (GP) 

 

Input:    A Petri net model (PNM) of an FMS prone to deadlocks. 

Output: A live controlled Petri net model.  

Step 1:  Identify the input and output transitions of all sink/source places PS/S and use them 

for adding a global sink/source place (GP) to the PNM. The addition of the GP will 

be made in such a way that its input transitions are input transitions of all PS/S and 

its output transitions are output transitions of all PS/S. The resultant net system is 

PNMB = PNM + GP. 

Step 2:  for (B = 1; B ≤ k ; B++) 
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        /* B is the number of tokens in the GP, k is the sum of initial tokens in all sink/source                                                                                         

   Places */ 

    { 

              2.B.1: Compute the RGB of the PNMB,  

                          if  PNMB is live,  

        then consider a new net, i.e. go to Step 2.B.1 

        else compute the LZB and DZB of the RGB 

               endif 

 

2.B.2: From each BM of DZB, define a place-invariant PI. 

 

2.B.3: Compute a monitor C, for each PI using the simplified invariant-based method 

[13].  

                      

             2.B.4: If there are more than one monitor computed for PNMB then carry out the 

redundancy test to eliminate any redundant monitors by using the method    

[33].  

 

2.B.5: Add necessary monitors computed in the previous step within PNMB (PNMB 

: = PNMB + computed monitors) 

  } 

 

Step 3:  Obtain the live controlled PNM by adding all the necessary monitors computed in 

Step 2 within the PNM. 

  

Step 4:  Exit 

 

End of Algorithm 
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3.3   ILLUSTRATIVE EXAMPLE 

The success of any algorithm for solving a problem is measured by its ability to work 

on an example and also its ability to generalize on other examples that it has yet to see. If the 

method or algorithm works on every example, then we can claim its success since it is 

generalized. In this section, an example of synthesizing liveness enforcing supervisor based 

on the method proposed in the previous section on a simple uncontrolled PNM of an FMS 

from [10] is considered. The PNM shown in Fig. 3.1 is an S3PR (a System of Simple 

Sequential Process with Resources) model. It is verified that there are 95 states in the RG, of 

which 11 states are within DZ, representing the bad marking to be dealt with, and 84 states 

are in the LZ, representing good states or legal markings. The objective here, by applying the 

proposed method, is to obtain a live PNM while preventing the 11 bad states from being 

reached. 

 

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

t1

t2

t3

t4

t5

t6

t7

t8

5 1

    2

2

5

r2

r1

r3

 
                            Figure 3.1. S3PR Petri net model of an FMS from [10]. 

                  

 In the PNM there are six activity places PA = {p2-p4, p6-p8}, three shared resource 

places PR = {p9-p11}, and two sink/source places PS/S = {p1, p5}. 
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Step 1: The input and output transitions of GP are ˙GP = {t4, t5} and GP˙ = {t1, t8} 

respectively. The new Petri net model obtained with the addition of the GP, PNMB = PNMB 

+ GP is shown in Fig. 3.2.                               

     
                                                                                                                       

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

t1

t2

t3

t4

t5

t6

t7

t8

5     1

     2

2

5

r2

r1

r3

          B

GP

                                                                       
                                              Figure 3.2.  Net; PNMB = PNM + GP.                                                                                                                                  

                                                                                                                     

Step 2: for (B = 1; B ≤ 5; B++) 

   

              Step 2.1.1: (B = 1), when one token is deposited in the GP, as shown in Fig. 3.3, the net 

PNM1 is live with 7 good states. B: = B++ (B = 2). 
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                                         Figure 3.3. Live PNM1 with 7 good states.  

 

 Step 2.2.1: (B = 2), When two tokens are deposited in the GP, the net PNM2 is obtained as 

shown in Fig. 3.4. The PNM2 is live with 25 good states. B: = B++ (B = 3). 
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   Figure 3.4. Live PNM2 with 25 good states. 

 



22 
 

 
 

Step 2.3.1: (B = 3), the net PNM3, shown in Fig. 3.5, is not live. The reachability graph RG3 

computed for the PNM3 has 53 good states in the LZ3 and 2 bad states BM1 and 

BM2 within the DZ3.  
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                                    Figure 3.5. The PNM3. 

 

Step 2.3.2: The markings of activity places of BM1 and BM2 are shown in Table 3.1              

 

 Table 3.1. The markings of activity places of BM1 and BM2. 

 

                                                                                                                                  

The place invariants PI1 and PI2 for the BM1 and BM2 respectively are: 

 

 PI1 = µ2 + µ7 ≤ 2 

 

 PI2 = µ3 + µ8 ≤ 2 

 

 

Step 2.3.3: The computation of the monitors C1 and C2 are carried out as follows:  

 

            p2   p7 

LPI1 = [1     1]  

    State nr.   p2      p3   p4  p6  p7 p8 

        22   2   0   0   0  1  0 

        46   0 1   0   0  0  2 
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             t1      t2     t6     t7                                                                              

DPI1 = [
1    ̵1    0   0
0   0   ̵1   1

]
p2
p7

     

                                                                              

DC1 =   ̵ LPI1 . DPI1  =  ̵  [1     1]   [
1    ̵1    0   0
0   0   ̵1   1

] 

 
DC1  =   [1   ̵ 1    ̵1    1] 

 
                                     t1   t2    t6   t7 

Therefore,  DC1  =  [ ̵1     1     1     ̵1] 

 

µ0(c 1) = 2 

 
                                          
            p3   p8 

LPI2 = [1     1]  

 
             t2     t3      t7     t8                                                                          

DPI2 = [
1    ̵1    0   0
0   0   ̵1   1

]
p3
p8

     

                                                                         

DC2 =   ̵ LPI2 . DPI2  =  ̵  [1     1]   [
1   ̵1    0   0
0   0   ̵1   1

] 

 

DC2  =  ̵  [1     ̵1     ̵1     1] 

 

                                      t2    t3    t7   t8 

Therefore,  DC2  =   [ ̵1     1     1     ̵1] 

 

µ0(c 2) = 2 

 

The computed monitors are shown in Table 3.2. 

 

                           Table 3.2. Monitors C1 and C2.  

      Ci       •Ci       Ci
•    µ0(c i) 

      C1    t2, t6   t1, t7       2 

      C2    t3, t7   t2, t8       2 

 

 

Step 2.3.4: Redundancy test carried out shows that both C1 and C2 are necessary. 
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   Step 2.3.5: The controlled PNM3 := PNM3 +  C1 + C2 is shown in Fig. 3.6. It is live with 53 

good states. This is the optimal live behavior for the controlled PNM3. 
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                Figure 3.6. The controlled PNM3 := PNM3 + C1 + C2. 

 

  B := B ++  (B = 4). 

 

Step: 2.4.1: (B = 4), the net PNM4, shown in Fig. 3.7, is not live. The reachability graph RG4       

computed for PNM4 has 77 good states in LZ4 and 1 bad state BM4 within DZ4. 

 



25 
 

 
 

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

t1

t2

t3

t4

t5

t6

t7

t8

5     1

     2

2

5

r2

r1

r3

t6

t2

t1

 t3

t8

C1

t2

t7

C2

3

3

t7

                      4

GP

                                                                                                                                                           
                                           Figure 3.7. The PNM4.                        

                                                                                                                                                                                       

Step 2.4.2: The markings of the activity places BM3 are shown in Table 3.3. 

 

                               Table 3.3. The markings of the activity places of BM3. 

 State nr.    p2    p3   p4   p6   p7  p8 

      22     2     0     0    0    0   2 

 

 

 The place invariant for the BM3 is PI3 = µ2 + µ8 ≤ 3. 

 

Step 2.4.3: The computation of the monitors C3 is carried out as follows: 

 

             p2   p8 

 LPI3 = [1     1]  

                 
            t1      t2     t7     t8                                                                              

DPI3 = [
1   ̵1    0   0
0   0   ̵1   1

]
p2
p8

 

 

DC3 =  ̵  LPI3 . DPI3  =  ̵  [1     1]   [
1  ̵1    0   0
0  0    ̵1   1

] 

 
DC3  =  ̵  [1     ̵1     ̵1     1] 
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                                     t1   t2     t7    t8 

Therefore,  DC3  = [  ̵1      1      1      ̵1] 

 

µ0(c 3) = 3 

 
                                                                                                                                              

The computed monitor is shown in Table 3.4.                                                                              

                                                               Table 3.4. Monitor C3. 

   Ci      •Ci      Ci
•  µ0(ci) 

   C3     t2, t7    t1, t8     3 

 

                                                                                                                                              

Step 2.4.4: Since there is only one monitor computed, the redundancy test is not necessary.  

 

Step 2.4.5: The controlled PNM4 is obtained by adding C3 within the uncontrolled PNM4 

(PNM4 :=  PNM4 + C3) as shown in Fig. 3.8. It is live with 76 good states. This is 

the optimal live behavior for the controlled PNM4.                                                                                                                                                    
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            Figure 3.8. The controlled PNM4  (PNM4 := PNM4 + C3). 

 

B := B ++ (B= 5). 
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 Step 2.5.1: (B = 5), the PNM5 shown in Fig. 3.9 is live with 84 good states. This is the optimal 

behaviour not only for the PNM5, but also for the uncontrolled PNM. 
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Figure 3.9. Live PNM5. 

 

Step 3: The design procedure applied in Step 2 is provided in Table 3.6. When the computed 

necessary monitors are added in the uncontrolled PNM, the controlled PNM is 

obtained as shown Fig. 3.10. It is verified that this controlled model is live with 84 

good states. 

 

Step 4: Exit. 
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Figure 3.10. The optimally controlled PNM. 

 

                               Table 3.5. The computed necessary monitors. 

        Ci      •Ci       Ci 
•     µ0(ci) 

        C1    t2, t6   t1, t7       2 

        C2    t3, t7   t2, t8       2 

        C3    t2, t7   t1, t8       3 

 

                                            

                Table 3.6. The liveness enforcing procedure applied to the S3PR model.                                                                                                                                         

 

   

B 

 

 

 Included      

      C 

 

 Is the 

   net 

  live? 

    

 # of 

 States 

 in RG 

  

 # of 

 states 

 in DZ 

  

   # of 

  States 

  in LZ 

 

Computed  

       C 

  # of states           

     within 

controlled net 

RG = 

LZ 

 UR 

 1     ⎼   YES     7     0      7         ⎼         

 2     ⎯   YES    25     0     25         ⎯        

 3     ⎯    NO    55     2     53 C1, C2       53    0  

 4 C1, C2    NO    77     1     76 C3       76    0 

 5 C1,C2, C3   YES    84     0     84        ⎯          
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CHAPTER 4 

 

                                          APPLICATION EXAMPLES 
 

In this chapter, the proposed method is applied to obtain liveness enforcing supervisor 

for two Petri net models; an S3PR PNM from [13] and an AEMG PNM from [34]. Although 

the method gives optimal solution to the PNM treated in the illustrative example in chapter 

3, in the examples considered in this chapter, for both cases liveness with near optimal 

permissiveness is achieved. 

 

 

4.1 AN S3PR PETRI NET EXAMPLE 

 

The PNM of an FMS shown in Fig. 4.1 from [13], suffers from deadlock. It has 26,750 

states within the RG, 21,581 of which are in the LZ while remaining 5,169 states are in the 

DZ. 
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Figure 4.1. S3PR Petri net model of an FMS from [13]. 

                                                                                                              

There are sixteen activity places PA = {p2-p4, p6-p13, p15-p19}, seven shared resource 

places PR = {p20-p26}, and three sink/source places PS/S = {p1, p5, p14}.  

 

Step 1: The input and output transitions of GP are ˙GP = {t6, t14, t20} and GP˙ = {t1, t11, 

t15} respectively. The new Petri net model obtained with the addition of the GP, PNMB = 

PNMB + GP is shown in Fig. 4.2.                             
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                                          Figure 4.2.  Net; PNMB = PNM + GP.      

                                                                                                                             

                                                                                                                     

Step 2: for (B = 1; B ≤ 11; B++) 

   

    Step 2.1.1: (B = 1), when one token is deposited in the GP, as shown in Fig. 4.3, the net PNM1 

is live with 17 good states. B: = B++ (B = 2). 
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                                                 Figure 4.3. Live PNM1 with 17 good states.                                     

 

Step 2.2.1: (B = 2), when two tokens are deposited in the GP, as shown in Figure 4.4, the net 

PNM2 is live with 132 good states. B: = B++ (B = 3). 
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                             Figure 4.4. Live PNM2 with 132 good states.                                     

 

Step 2.3.1: (B = 3), when three tokens are deposited in the GP, as shown in Fig. 4.5, the net 

PNM3 is not live. The reachability graph RG3 computed for PNM3 has 632 good 

states in the LZ3 and 5 bad markings, BM2, BM3, BM4 and BM5 within the DZ3. 
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                                                              Figure 4.5.The PNM3. 

 

Step 2.3.2: The markings of activity places of BM1, …, BM5 are shown in Table 4.1. 

 

      Table 4.1. The markings of the activity places of BM1, …, BM5. 

State   SS          State 

 nr.S n   nr. 

p 

2 

p 

3 

p 

4 

p 

6 

p 

7 

p 

8 

p 

9 

p 

10 

p 

11 

p 

12 

p 

13 

p 

15 

p 

16 

p 

17 

p 

18 

p 

19 

 279 0 0 0 0 0 0 0  0  0  0  2  0  0  0  0  1 

 292 0 0   0 0 0 0 0  0  2  0  0  0  0  1  0  0 

 360 0 0 0 0  0 0 0  0  0  1  0  0  0   0   2  0 

 425 0 2 0 0 0 1 0  0  0  0  0  0   0  0  0  0 

 433 1 2 0 0 0 0 0  0  0  0  0  0  0  0  0  0 

 

                      

                       The place invariants PI1, PI2, PI3, PI4 and PI5 for BM1, BM2, BM3, BM4 and BM5 respectively 

are: 
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                        PI1 = 𝜇13 + 𝜇19 ≤ 2 

PI2 = 𝜇11 + 𝜇17 ≤ 2 

PI3 = 𝜇12 + 𝜇18 ≤ 2 

PI4 = 𝜇3 + 𝜇8 ≤ 2 

PI5 = 𝜇2 + 𝜇3 ≤ 2 

 

 

Step 2.3.3: The computation of the monitors C1, C2, C3, C4 and C5 are carried out as follows: 

 

           p13  p19 

 LPI1 = [1     1]  

 

                            t9     t10   t15    t16                                                                              

                DPI1 = [
1   ̵1    0   0
0    0    1  ̵1

]
p13
p19

     

                                                                            

      

                DC1 =  ̵ LPI1 . DPI1  =  ̵  [1     1]   [
1   ̵1    0   0
0    0    1  ̵1

] 

 

 DC1 =  ̵ [1     ̵1     1     ̵1] 

 

                                                      t9  t10  t15  t16 

                Therefore,  DC1  =   [ ̵1     1     ̵1     1] 

 

                 µ0(c1) = 2 

 

 

                          p11  p17 

 LPI2 = [1     1]  

 

                             t7     t8     t17   t18                                                                              

                 DPI2 = [
1   ̵1    0   0
0    0    1  ̵1

]
p11
p17

     

                                                                           

DC2 =  ̵ LPI2 . DPI2  =  ̵  [1     1]   [
1   ̵1    0   0
0    0    1  ̵1

] 

 

 DC2  =  ̵  [1     ̵1      1      ̵1] 

 

                                                     



36 
 

 
 

                                                       t7   t8   t17  t18 

                Therefore,  DC2  =  [ ̵1     1     ̵1     1] 

 

µ0(c2) = 2 

 

           p12  p18 

 LPI3 = [1      1]  

 

                          t8     t9     t16   t17                                                                              

 DPI3 [
1   ̵1    0   0
0    0    1  ̵1

]
p12
p18

     

                                                                            

                    

DC3 =  ̵  LPI3 . DPI3 =  ̵  [1     1]   [
1   ̵1    0   0
0    0    1  ̵1

] 

 

  DC3  =  ̵  [1     ̵1      1     ̵1] 

 

                                                  t8   t9   t16   t17 

                 Therefore,  DC3  =  [ ̵1     1      ̵1      1] 
 

  µ0(c3) = 2             

 

 

                             p3   p8 

 LPI4 = [1     1]  

                            

   t12    t13    t3     t4                                                                              

                  DPI4 = [
1   ̵1    0   0
0    0    1  ̵1

]
p3
p8

     

                                                                            

                  DC4 =  ̵ LPI4 . DPI4 =  ̵  [1     1]   [
1   ̵1    0   0
0    0    1  ̵1

] 

 

  DC4  =  ̵  [1     ̵1      1      ̵1] 

 

                                                 t12   t13  t3   t4 

                Therefore,  DC4  =  [ ̵1     1     ̵1     1] 

 

                 µ0(c4) = 2                                        

 

 

                            p2    p3 

 LPI5 = [1      1]  
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                            t11    t12   t13                                                                                                                

     DPI5 = [
1   ̵1   0
0    1  ̵1

]
p2
p3

    

             

 DC5 =  ̵ LPI5 . DPI5 =  ̵  [1      1]   [
1   ̵1   0
0    1  ̵1

] 

                 

DC3  =  ̵  [1     0     ̵1] 
 

                                                t11   t12   t13 

                Therefore,  DC5  =  [ ̵1      0      1] 

 

                 µ0(c5) = 2         

 

 The computed monitors are shown in Table 4.2. 

 

            Table 4.2. Computed monitors C1, C2, C3, C4 and C5. 

      Ci      •Ci       Ci 
•     µ0(ci) 

      C1   t10, t16   t9, t15       2 

      C2    t8, t18   t7, t17       2 

      C3    t9, t17   t8, t16       2 

      C4    t4, t13   t3, t12       2  

      C5       t13      t11       2 

               

 

Step 2.3.4: Redundancy test carried out shows that all five computed monitors are necessary. 

 

Step 2.3.5: The controlled PNM3 := PNM3 + C1 + C2 + C3 + C4 + C5 is shown in Fig. 4.6. It is 

live with 632 good states. This is the optimal live behaviour for the controlled 

PNM3.  
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Figure 4.6. The controlled PNM3:= PNM3 + C1 + C2 +C3 + C4 + C5. 

  

 

 B:= B ++ (B = 4). 

 

Step 2.4.1: (B = 4), the PNM4, shown in Fig. 4.7, is not live. The reachability graph RG4 

computed for the PNM4 has 2,104 good states in the LZ4 and 2 bad states BM6 

and BM7 within the DZ4.  
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Figure 4.7. The uncontrolled PNM4. 

       

 

Step 2.4.2: The markings of the activity places of BM6 and BM7 are shown in Table 4.3. 

 

                   Table 4.3. The markings of the activity of BM6 and BM7. 

  State      

   nr.        

P 

2 

P 

3 

P 

4 

P 

6 

P 

7 

P 

8 

P 

9 

P 

10 

P 

11 

P 

12 

P 

13 

P 

15 

P 

16 

P 

17 

P 

18 

P 

19 

  729 0 0 0 0 0 0 0  0  0  1  1  0  0  0  1  1 

 1389 0 0 0 0 0 0 0  0  2  0  0  0  0  0  2  0 

  

 The place invariants PI6 and PI7 for BM6 and BM7 are: 

             

 PI6 = 𝜇12 + 𝜇13 + 𝜇18+ 𝜇19 ≤ 3 

  

 PI7 = 𝜇11 + 𝜇18 ≤ 3 

  

 

Step 2.4.3: The computation of monitors C6 and C7 are carried out as follows: 
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           p12   p13 p18  p19 

LPI6 = [1     1      1      1]  

 

            t8   t9   t10 t15 t16  t17                                                                         

DPI6 = [

1
0

̵̵1
1

0
̵1

0 0 0
0 0 0

0
0

0
0

0
0

0 1 ̵1
1 ̵1 0

] 

p12
p13
p18
p19

    

                                                                           

DC6 =  ̵ LPI6 . DPI6  =  ̵  [1     1      1      1      1] [

1
0

̵̵1
1

0
̵1

0 0 0
0 0 0

0
0

0
0

0
0

0 1 ̵1
1 ̵1 0

] 

 

DC6  =  ̵  [1    0      ̵1       1     0      ̵1] 

 

                                t8   t9  t10  t15  t16  t17 

Therefore,  DC6  =  [ ̵1     0     1     ̵1     0     1] 

 

 µ0(c6) = 3 

 

 

           p11  p18 

LPI7 = [1     1]  

 

            t7       t8     t16    t17                                                                              

DPI7 =  [
1    ̵1    0    0
0    0    1    ̵1

]
p11
p18

     

 

                                                                       

DC7 =  ̵ LPI7 . DPI7 =  ̵  [1     1]   [
1    ̵1    0    0
0    0    1    ̵1

] 

 

DC7  =  ̵  [1     ̵1      1      ̵1] 

 

                                t7    t8  t16  t17 

Therefore,  DC7  =  [ ̵1     1     ̵1     1] 

 

µ0(c7) = 3                                        

 

 

The computed monitors are shown in Table 4.4. 
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                    Table 4.4. Computed monitors C6 and C7 

      Ci      •Ci       Ci 
•     µ0(ci) 

      C6   t10, t17    t8, t15      3 

      C7    t8, t17    t7, t16      3 

      

 

 

Step 2.4.4: Redundancy test carried out shows that the two computed monitors are necessary. 

 

Step 2.4.5: The controlled PNM4 = PNM4 + C6 + C7 is shown in Fig. 4.8. It is live with 2,104 

good states. This is the optimal live behaviour for the controlled PNM4.  
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Figure 4.8. The controlled PNM4 := PNM4 + C6 + C7. 

 

  B:= B ++ (B = 4). 

 

  Step 2.5.1: (B = 5), the PNM5, shown in Fig. 4.9, is not live. The reachability graph RG5 

computed for the PNM5 has 5,190 good states in the LZ5 and 2 bad states BM8 

and BM9 within the DZ5. 
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                               Figure 4.9. The uncontrolled model PNM5. 

       

 

Step 2.5.2: The markings of the activity places of BM8 and BM9 are shown in Table 4.5. 

 

         Table 4.5.The markings of the activity places of BM8 and BM9. 

State   

  nr.       

p 

2 

p 

3 

p 

4 

p 

6 

p 

7 

p 

8 

p 

9 

p 

10 

p 

11 

p 

12 

p 

13 

p 

15 

p 

16 

p 

17 

p 

18 

p 

19 

1335 0 0 0 0 0 0 0  0  2  1  0  0  0  0  1  1 

1334 0 0 0 0 0 0 0  0  2  0  1  0  0  0  1  1 

  

 The place invariants PI8 and PI9 for BM8 and BM9 respectively are: 

             

    PI8 = 𝜇11 + 𝜇12 + 𝜇18 + 𝜇19 ≤ 4 

 

  PI9 = 𝜇11 + 𝜇13 + 𝜇18 + 𝜇19 ≤ 4  

  

Step 2.5.3: The computation of the monitors C8 and C9 are carried out as follows: 
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           p11   p12  p18  p19 

LPI8 = [1      1       1      1]  

 

             t7   t8   t9  t15  t16  t17                                                                         

DPI8 = [

1
0

̵̵1
1

0
̵1

0 0 0
0 0 0

0
0

0
0

0
0

0 1 ̵1
1 ̵1 0

] 

p11
p12
p18
p19

   

  

DC8  = ̵ LPI8 . DPI8 =  ̵ [1      1       1      1] [

1
0

̵̵1
1

0
̵1

0 0 0
0 0 0

0
0

0
0

0
0

0 1 ̵1
1 ̵1 0

] 

 

DC8  =  ̵  [1    0     ̵1      1     0     ̵1] 

 

                               t7    t8   t9  t15  t16  t17 

Therefore,  DC8  =  [ ̵1    0    1     ̵1     0     1] 

 

µ0(c8) = 4 

 

 

          p11  p13  p18 p19 

LPI9 = [1     1      1      1]  

 

            t7   t8   t9  t10  t15  t16  t17                                                                         

DPI9 = [

1
0

̵1
0

0 0 0 0 0
1 ̵1 0 0 0

0
0

0
0

0 0 0 1 ̵1
0 0 1 ̵1 0

] 

p11
p13
p18
p19

    

                                                                         

DC9 =   ̵ LPI9 . DPI9  =  ̵  [1     1      1      1] [

1
0

̵1
0

0 0 0 0 0
1 ̵1 0 0 0

0
0

0
0

0 0 0 1 ̵1
0 0 1 ̵1 0

] 

 

DC9  =  ̵  [1     ̵1     1      ̵1      1     0     ̵1] 

 

                                 t7    t8    t9    t10  t15  t16  t17                                                                         

Therefore,  DC9  =  [ ̵ 1     1    ̵ 1     1    ̵ 1     0     1] 

 

µ0(c9) = 4 

 

 



44 
 

 
 

The computed monitors are shown in Table 4.6. 

 

 

                 Table 4.6. Computed monitors C8 and C9. 

      Ci      •Ci       Ci 
•      µ0(ci) 

      C8     t9, t17    t7, t15        4 

      C9 t8, t10, t17  t7, t9, t15        4 

      

 

Step 2.4.4: Redundancy test carried out shows that the two computed monitors are necessary. 

 

Step 2.4.5: The controlled PNM5 = PNM5 + C8 + C9 is shown in Fig. 4.10. It is live with 

5,190 good states. This is the optimal live behaviour for the controlled PNM5.  
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                            Figure 4.10. The controlled PNM5:= PNM5 + C8 + C9. 

 

B:= B ++ (B = 6). 

 

Step 2.6.1: (B = 6), The PNM6, shown in Fig. 4.11, is not live. The reachability graph RG6 

computed for the PNM6 has 9,878 good states in the LZ6 and 10 bad markings 
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BM10, BM11, BM12, BM13, BM14, BM15, BM16, BM17, BM18 and BM19 within the 

DZ6. 
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                                                                         Figure 4.11. The PNM6. 

 

Step 2.6.2: The markings of the activity places of BM10, …, BM19 of the PNM6 are shown in 

Table 4.7. 

 

                      Table 4.7. The markings of the activity places of BM10, …, BM19. 

State    

   nr.   

p 

2 

p 

3 

p 

4 

p 

6 

p 

7 

p 

8 

p 

9 

p 

10 

p 

11 

p 

12 

p 

13 

p 

15 

p 

16 

p 

17 

p 

18 

p 

19 

1141 0 1 0 0 0 1 1  0  0  0  0  0  0  0  2  1 

1148 0 0 0 0 0 1 2  0  0  0  0  0  0  0  2  1 

1661 0 0 0 1 2 0 0  0  1    0  0  0  1  1  0  0 

1955 0 0 0 0 0 1 2  0  0  0  1  0  0  0  1  1 

2027 0  1 0 0 0 1 1  0  0  0  1  0  0  0  1  1 

2570 0 0 0 1 2 0 0  0  0  0  0  0  2  1  0  0 

3273 1 1 0 0 0 0 1  0  0  0  1  0  0  0  1  1 

3816 1 0 0 0 0 0 2   0  0  0  1  0  0  0  1  1 

3974 1 1  0 0 0 0 1  0  0  0  0  0  0  0  2  1 

9689 1 0 0 0 0 0 2  0  0  0  0  0  0  0  2  1 

 

 The place invariants PIs for the BMs respectively are:       

      

 PI10 = 𝜇3 + 𝜇8 + 𝜇9 + 𝜇18 + 𝜇19 ≤ 5 
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 PI11 = 𝜇8 + 𝜇9 + 𝜇18 + 𝜇19 ≤ 5 

 PI12 = 𝜇6 + 𝜇7 + 𝜇11 + 𝜇16 + 𝜇17 ≤ 5 

 PI13 = 𝜇8 + 𝜇9 + 𝜇13 + 𝜇18 + 𝜇19 ≤ 5 

 PI14 = 𝜇3 + 𝜇8 + 𝜇9 + 𝜇13 + 𝜇18 + 𝜇19 ≤ 5 

 PI15 = 𝜇6 + 𝜇7 + 𝜇16 + 𝜇17 ≤ 5 

 PI16 = 𝜇2 + 𝜇3 + 𝜇9 + 𝜇13 + 𝜇18 + 𝜇19 ≤ 5 

 PI17 = 𝜇2 + 𝜇9 + 𝜇13 + 𝜇18 + 𝜇19 ≤ 5 

 PI18 = 𝜇2 + 𝜇3 + 𝜇9 + 𝜇18 + 𝜇19 ≤ 5 

 PI19 = 𝜇2 + 𝜇9 + 𝜇18 + 𝜇19 ≤ 5 

 

Step 2.6.3: The computation of the monitors C10, C11, C12, C13, C14, C15, C16, C17, C18 and 

C19 are carried out as follows: 

                                                                            

             p3    p8     p9    p18  p19 

LPI10  = [1      1       1       1       1]   

                  

 

                t3   t4   t5   t12 t13 t15 t16 t17 

  DPI10 = 

[
 
 
 
 
0
1

0 0 1 ̵1 0 0 0
̵1 0 0 0 0 0 0

0
0
0

1 ̵1 0 0 0 0 0
0 0 0 0 0 1 ̵1
0 0 0 0 1 ̵1 0]

 
 
 
 

p3
p8
p9

  p18
  p19

 

 

DC10 =  ̵ LPI10 . DPI10 =  ̵  [1     1      1      1      1] 

[
 
 
 
 
0
1

0 0 1 ̵1 0 0 0
̵1 0 0 0 0 0 0

0
0
0

1 ̵1 0 0 0 0 0
0 0 0 0 0 1 ̵1
0 0 0 0 1 ̵1 0]

 
 
 
 

 

 

DC10  =  ̵  [1     0     ̵1      1      ̵ 1      1      0     ̵1]   

 

 

 

                                  t3   t4   t5   t12  t13  t15  t16  t17                                                                        

Therefore,  DC10  =  [ ̵1     0     1     ̵1      1     ̵1     0     1] 
 

µ0(c10) = 5.  
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             p8    p9    p18   p19 

LPI11  =  [1      1       1       1]   

 

    t3   t4   t5  t15  t16  t17 

  DPI11 = [

1
0

̵1 0 0 0 0
1 ̵1 0 0 0

0
0

0 0 0 1 ̵1
0 0 1 ̵1 0

]

p8
p9

  p18
  p19

 

                                                                   

DC11 =  ̵  LPI11 . DPI11 =  ̵  [1     1      1      1] [

1
0

̵1 0 0 0 0
1 ̵1 0 0 0

0
0

0 0 0 1 ̵1
0 0 1 ̵1 0

] 

 

DC11 =  ̵  [1     0    ̵1     1     0    ̵1 ]   
 

                                  t3   t4   t5  t15  t16  t17                                                                        

Therefore,  DC11  =  [ ̵1     0    1     ̵1     0     1] 

 

 

µ0(c11) = 5.  

 

 

              p6   p7    p11   p16  p17 

 LPI12  = [1      1       1       1       1]   

                    

 

   t1   t2   t3   t7   t8  t17  t18  t19 

 DPI12 = 

[
 
 
 
 
1
0

̵1 0 ̵1 0 0 0 0
1 ̵1 0 0 0 0 0

0
0
0

0 0 1 ̵1 0 0 0
0 0 0 0 0 1 ̵1
0 0 0 0 1 ̵1 0]

 
 
 
 

p6
p7

  p11
  p16
  p17

 

                                

DC12 =  ̵  LPI12 . DPI12 =  ̵  [1     1      1      1      1] 

[
 
 
 
 
1
0

̵1 0 ̵1 0 0 0 0
1 ̵1 0 0 0 0 0

0
0
0

0 0 1 ̵1 0 0 0
0 0 0 0 0 1 ̵1
0 0 0 0 1 ̵1 0]

 
 
 
 

 

 

DC12  =  ̵  [1     0    ̵1     0     ̵1     1     0    ̵1]   

 

                                 t3    t4    t5  t12 t13  t15  t16  t17                                                                        

Therefore,  DC12  =  [ ̵1     0     1     0     1     ̵1    0     1] 
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µ0(c12) = 5. 

 

             p8    p9    p13   p18  p19 

LPI13  = [1      1       1       1       1] 

  

               t3   t4   t5   t9  t10  t15 t16 t17 

 DPI13 = 

[
 
 
 
 
1
0

̵1 0 0 0 0 0 0
1 ̵1 0 0 0 0 0

0
0
0

0 0 1 ̵1 0 0 0
0 0 0 0 0 1 ̵1
0 0 0 0 1 ̵1 0]

 
 
 
 

p8
p9

  p13
  p18
  p19

 

                                                

DC13 =  ̵  LPI13 . DPI13 =  ̵  [1     1      1      1      1] 

[
 
 
 
 
1
0

̵1 0 0 0 0 0 0
1 ̵1 0 0 0 0 0

0
0
0

0 0 1 ̵1 0 0 0
0 0 0 0 0 1 ̵1
0 0 0 0 1 ̵1 0]

 
 
 
 

 

 

DC13  =  ̵  [1     0    ̵1     1     ̵1     1     0    ̵1]   

 

                                                                  

                                 t3    t4   t5    t9  t10  t15  t16  t17                                                                        

Therefore,  DC13  =  [ ̵1     0     1     ̵1     1     ̵1     0     1] 

 

µ0(c13) = 5.  

 

 

              p3    p8    p9    p13  p18  p19 

LPI14  = [1      1       1       1       1      1]   

 

 

            t3   t4   t5   t9  t10  t11  t12 t15 t16 t17   

DPI14 = 

[
 
 
 
 
 
0 0 0 0 0 1 ̵1 0 0 0
1 ̵1 0 0 0 0 0 0 0 0
0 1 ̵1 0 0 0 0 0 0 0
0 0 0 1 ̵1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 ̵1
0 0 0 0 0 0 0 1 ̵1 0]

 
 
 
 
 

p2
p8
p9

  p13
  p18
  p19
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DC14 =  ̵ LPI14 . DPI14 =  ̵  [1     1      1      1      1      1] 

[
 
 
 
 
 
0 0 0 0 0 1 ̵1 0 0 0
1 ̵1 0 0 0 0 0 0 0 0
0 1 ̵1 0 0 0 0 0 0 0
0 0 0 1 ̵1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 ̵1
0 0 0 0 0 0 0 1 ̵1 0]

 
 
 
 
 

 

DC14  =  ̵  [1    0    ̵1    1     ̵1     1     ̵1     1     0    ̵1] 

 

                                  t3   t4   t5   t9   t10   t11   t12  t15  t16  t17                                                                        

Therefore,  DC14  =  [ ̵1     0     1     ̵1     1      ̵1      1      ̵1     0      1] 

 

 

µ0(c14) = 5.  

 

 

             p6    p7     p16  p17 

LPI15  = [1      1       1       1]   

 

              t1    t2   t3   t7  t17  t18 t19 

DPI15 = [

1
0

̵1 0 ̵1 0 0 0
1 ̵1 0 0 0 0

0
0

0 0 0 0 1 ̵1
0 0 0 1 ̵1 0

]

p6
p7

  p16
  p17

          

                                                    

DC15 =  ̵ LPI15 . DPI15 =  ̵ [1     1      1      1] [

1
0

̵1 0 ̵1 0 0 0
1 ̵1 0 0 0 0

0
0

0 0 0 0 1 ̵1
0 0 0 1 ̵1 0

] 

 

DC15 =  ̵ [1     0     ̵1     ̵1     1     0     ̵1 ]   

 

                                  t1   t2    t3    t7   t17  t18  t19                                                                        

Therefore,  DC15  =  [ ̵1     0     1     1     ̵1     0     1] 

           

µ0(c15) = 5. 

 

 

              p2    p3    p9    p13   p18  p19 

 LPI16  = [1      1       1       1       1      1] 
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   t4   t5   t9   t10 t11 t12 t13 t15 t16 t17 

 DPI16 = 

[
 
 
 
 
 
0 0 0 0 1 ̵1 0 0 0 0
0 0 0 0 0 1 ̵1 0 0 0
1 ̵1 0 0 0 0 0 0 0 0
0 0 1 ̵1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 ̵1
0 0 0 0 0 0 0 1 ̵1 0]

 
 
 
 
 

p2
p3
p9

  p13
  p18
  p19

 

 

                                                                            

DC16 =  ̵ LPI16 . DPI16 =  ̵ [1     1      1      1      1      1] 

[
 
 
 
 
 
0 0 0 0 1 ̵1 0 0 0 0
0 0 0 0 0 1 ̵1 0 0 0
1 ̵1 0 0 0 0 0 0 0 0
0 0 1 ̵1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 ̵1
0 0 0 0 0 0 0 1 ̵1 0]

 
 
 
 
 

 

 

DC16  =  ̵  [1    ̵ 1     1     ̵ 1      1     0      ̵1      1     0     ̵1]   

  

                                                                  

                                   t4    t5    t9   t10   t11  t12   t13   t15  t16  t17                                                                        

Therefore,  DC16  =  [ ̵ 1      1      ̵1      1      ̵1      0      1       ̵1      0      1] 
 

µ0(c16) = 5.  

 

 

                p2    p9    p13   p18   p19 

LPI17  = [1      1       1       1       1]   
                           

 

    t4   t5   t9  t10  t11 t12 t15 t16 t17 

  DPI17 = 

[
 
 
 
 
0
1

0 0 0 1 ̵1 0 0 0
̵1 0 0 0 0 0 0 0

0
0
0

0 1 ̵1 0 0 0 0 0
0 0 0 0 0 0 1 ̵1
0 0 0 0 0 1 ̵1 0]

 
 
 
 

p2
p9

  p13
  p18
  p19

 

 

                                                                          

DC17 =  ̵  LPI17 . DPI17 =  ̵  [1     1      1      1      1] 

[
 
 
 
 
0
1

0 0 0 1 ̵1 0 0 0
̵1 0 0 0 0 0 0 0

0
0
0

0 1 ̵1 0 0 0 0 0
0 0 0 0 0 0 1 ̵1
0 0 0 0 0 1 ̵1 0]

 
 
 
 

 

 

DC17  =  ̵  [1     ̵1      1      ̵1      1      ̵1      1     0     ̵1]   
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                                 t4    t5    t9   t10  t11   t12  t15  t16  t17                                                                        

Therefore,  DC17 =  [ ̵1     1      ̵1     1      ̵1     1     ̵1     0     1] 

 

 

µ0(c17) = 5.  

 

                                    

     

              p2    p3    p9    p18   p19 

LPI18  = [1      1       1       1       1]   
                    

                                

   t4   t5  t11 t12  t13  t15 t16 t17 

  DPI18 = 

[
 
 
 
 
0
0

0 1 ̵1 0 0 0 0
0 0 1 ̵1 0 0 0

1
0
0

̵1 0 0 0 0 0 0
0 0 0 0 0 1 ̵1
0 0 0 0 1 ̵1 0]

 
 
 
 

p2
p3
p9

  p18
  p19

  

 

DC18 =  ̵  LPI18 . DPI18 =  ̵  [1     1      1      1      1] 

[
 
 
 
 
0
0

0 1 ̵1 0 0 0 0
0 0 1 ̵1 0 0 0

1
0
0

̵1 0 0 0 0 0 0
0 0 0 0 0 1 ̵1
0 0 0 0 1 ̵1 0]

 
 
 
 

 

 
DC18  =  ̵  [1     ̵1      1     0     ̵1      1      0     ̵1]   
 

                                  t4    t5    t11  t12   t13  t15   t16  t17                                                                        

Therefore,  DC18  =  [ ̵1      1      ̵1      0      1      ̵1      0     1] 
 

µ0(c18) = 5. 

 

 

              p2    p9    p18  p19 

LPI19  = [1      1       1       1]   

                    

 

   t4  t5  t11  t12  t15  t16 t17 

 DPI19 = [

0
1

0 1 ̵1 0 0 0
̵1 0 0 0 0 0

0
0

0 0 0 0 1 ̵1
0 0 0 1 ̵1 0

]

p2
p9
p18
p19
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DC19 =  ̵  LPI19 . DPI19 =  ̵  [1     1      1      1] [

0
1

0 1 ̵1 0 0 0
̵1 0 0 0 0 0

0
0

0 0 0 0 1 ̵1
0 0 0 1 ̵1 0

] 

 

 

DC19  =  ̵  [1      ̵1      1      ̵1      1     0     ̵1 ]   
 

 

                                  t4    t5    t11  t12  t15  t16  t17                                                                        

Therefore,  DC19  =  [ ̵1      1      ̵1      1      ̵1      0      1] 
           

 µ0(c19) = 5. 

         

    

Step 2.6.4: Redundancy test carried out shows that only three of the computed monitors are 

necessary, C12, C14 and C16. The remaining seven are redundant and are therefore 

removed. The necessary monitors are also renumbered in order to follow the 

regular sequence of numbering for convenience. Thus C11 becomes C10, C13 

becomes C14 and C16 becomes C12.   

 

The necessary monitors C10, C11, and C12 are shown in Table 4.8. 

 

 

         Table 4.8. Necessary monitors C10, C11 and C12. 

      Ci           •Ci          Ci 
•    µ0(ci) 

      C10       t3, t8, t19        t1, t17       5 

      C11   t5, t10, t13, t17  t3, t9, t12, t15       5 

      C12   t5, t10, t13, t17  t4, t9, t11, t15       5 

 

 

Step 2.6.5: The controlled PNM6 := PNM6 + C10 + C11 + C12 is shown in Fig. 4.12. It is live 

with 9,878 good states. This is the optimal live behaviour for the controlled 

PNM6. 
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                       Figure 4.12. The controlled PNM6:= PNM6 + C10 + C11 + C12. 

 

B:= B ++ (B = 7). 

 

Step 2.7.1: (B = 7), The PNM7, shown in Figure 4.13, is not live. The reachability graph RG7 

computed for the PNM7 has 15,013 good states in the LZ7 and 4 bad states BM13, 

BM14, BM15 and BM16 within the DZ7. 
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                                                                          Figure 4.13. The PNM7. 

 

       Step 2.7.2: The markings of the activity places of BM13, …, BM16 are shown in Table 4.9. 
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                       Table 4.9. The markings of the activity places of BM13 ,…, BM16. 

State  

  nr.    

p 

2 

p 

3 

p 

4 

p 

6 

p 

7 

p 

8 

 p 

 9 

 p 

10 

 p 

11 

 p 

12 

 p 

13 

 p 

15 

 p 

16 

 p 

17 

 p 

18 

 p 

19 

168 0 0 0 0 0 1  2  0  2  0  0  0  0  0  1  1 

896 0 1 0 0 0 1  1  0  2  0  0  0  0  0  1  1 

3116 1 0 0 0 0 0  2  0  2    0  0  0  0  0  1  1 

4337 1 1 0 0 0 0  1  0  2  0  0  0  0  0  1  1 

 

 

                   The place invariants PI13, PI14, PI15 and PI16 for BM13, BM14, BM15 and BM16   respectively 

are: 

             

                       PI13 = 𝜇8 + 𝜇9 + 𝜇11 + 𝜇18 + 𝜇19 ≤ 6   

                       PI14 = 𝜇3 + 𝜇8 + 𝜇9 + 𝜇11 + 𝜇18 + 𝜇19  ≤ 6 

                       PI15 = 𝜇2 + 𝜇9 + 𝜇11 + 𝜇18 + 𝜇19   ≤ 6  

                       PI16 = 𝜇2 + 𝜇3 + 𝜇9 + 𝜇11 + 𝜇18 + 𝜇19 ≤ 6 

 

Step 2.7.3: The computation of the monitors C13, C14, C15 and C16 are carried out as follows: 

 

 

             p8    p9   p11   p18   p19 

           LPI13 = [1      1      1       1       1]  
 

               t3   t4    t5   t7   t8 t15 t16 t17                                                                        

 DPI13 = 

[
 
 
 
 
1
0

̵1 0 0 0 0 0 0
1 ̵1 0 0 0 0 0

0
0
0

0 0 1 ̵1 0 0 0
0 0 0 0 0 1 ̵1
0 0 0 0 1 ̵1 0]

 
 
 
 

 

p8
p9

  p11
  p18
  p19

     

 

DC13 =  ̵ LPI13 . DPI13  =  ̵ [1     1      1      1      1] 

[
 
 
 
 
1
0

̵1 0 0 0 0 0 0
1 ̵1 0 0 0 0 0

0
0
0

0 0 1 ̵1 0 0 0
0 0 0 0 0 1 ̵1
0 0 0 0 1 ̵1 0]

 
 
 
 

 

 
DC13  =  ̵ [1    0     ̵1     1     ̵1      1     0      ̵1 ] 
 

                                 t3   t4    t5     t7    t8    t15  t16  t17                                                                         

Therefore,  DC13  =  [ ̵1     0     1   ̵ 1      1     ̵1     0     1] 

 

µ0(c13) = 6 
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             p3   p8    p9    p11   p18   p19 

LPI14 = [1      1      1       1       1       1]  
 

 

              t3   t4   t5   t7   t8  t12  t13  t15  t16  t17                                                                        

  DPI14 = 

[
 
 
 
 
 
0
1

0 0 0 0 1 ̵1 0 0 0
̵1 0 0 0 0 0 0 0 0

0
0
0
0

1 ̵1 0 0 0 0 0 0 0
0 0 1 ̵1 0 0 0 0 0
0
0

0
0

0
0

0
0

0
0

0
0

0 1 ̵1
1 ̵1 0]

 
 
 
 
 

 

p3
p8
p9

  p11
  p18
  p19

     

                                                                          

 DC14 =  ̵ LPI14 . DPI14  = [1      1     1      1      1      1] 

[
 
 
 
 
 
0
1

0 0 0 0 1 ̵1 0 0 0
̵1 0 0 0 0 0 0 0 0

0
0
0
0

1 ̵1 0 0 0 0 0 0 0
0 0 1 ̵1 0 0 0 0 0
0
0

0
0

0
0

0
0

0
0

0
0

0 1 ̵1
1 ̵1 0]

 
 
 
 
 

 

 

DC14  =  ̵ [1      0      ̵1       1      ̵1      1      ̵1      1     0      ̵1 ] 

  
                                 t3   t4    t5     t7    t8    t12   t13   t15  t16  t17                                                                         

Therefore,  DC14  =  [ ̵1     0      1     ̵ 1     1      ̵1     1      ̵1      0      1] 
 

 µ0(c14) = 6   

 

 

 

             p2     p9    p11   p18  p19 

LPI15 = [1       1       1       1       1]  
 

 

             t4   t5   t7   t8  t11  t12  t15  t16 t17 

DPI15 = 

[
 
 
 
 
0 0 0 0 1 ̵1 0 0 0
1
0
0
0

̵1
0
0
0

0
1
0
0

0
̵1
0
0

0
0
0
0

0
0
0
0

0 0 0
0 0 0
0 1 ̵1
1 ̵1 0]

 
 
 
 

p2
p9

  p11
  p18
  p19

 

 

DC15 =  ̵  LPI15 . DPI15  =  ̵  [1     1      1      1      1] 

[
 
 
 
 
0 0 0 0 1 ̵1 0 0 0
1
0
0
0

̵1
0
0
0

0
1
0
0

0
̵1
0
0

0
0
0
0

0
0
0
0

0 0 0
0 0 0
0 1 ̵1
1 ̵1 0]
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DC15  =  ̵  [1     ̵ 1      1      ̵1       1      ̵1      1      0      ̵1 ] 
 

                                  t4    t5    t7    t8     t11   t12  t15  t16  t17                                                                         

Therefore,  DC15  =  [ ̵1     1      ̵1      1     ̵ 1      1      ̵1      0      1] 
                        

µ0(c15) = 6 

 

            p2    p3    p9     p11  p18  p19 

LPI16 = [1      1      1       1       1       1]  

 
    

            t4    t5    t7   t8  t11  t12 t13 t15 t16 t17 

 DC16 = 

[
 
 
 
 
 
0 0 0 0 1 ̵1 0 0 0 0
0
1
0
0
0

0
̵1
0
0
0

0
0
1
0
0

0
0
̵1
0
0

0
0
0
0
0

1
0
0
0
0

̵1
0
0
0
0

0
0
0
0
1

0
0
0
1
̵1

0
0
0
̵1
0]
 
 
 
 
 

p2
p3
p9

  p11
  p18
  p19

 

 

 DC16 =  ̵ LPI16 . DPI16  =  ̵  [1      1      1      1      1      1] 

[
 
 
 
 
 
0 0 0 0 1 ̵1 0 0 0 0
0
1
0
0
0

0
̵1
0
0
0

0
0
1
0
0

0
0
̵1
0
0

0
0
0
0
0

1
0
0
0
0

̵1
0
0
0
0

0
0
0
0
1

0
0
0
1
̵1

0
0
0
̵1
0]
 
 
 
 
 

 

 

DC16  =   ̵ [1      ̵1      1      ̵1      1      0      ̵1      1      0      ̵1 ] 
  

                                 t4    t5    t7    t8    t11  t12  t13  t15  t16  t17                                                                         

Therefore,  DC16  = [ ̵1     1      ̵1      1      ̵1     0      1       ̵1     0     1] 
 

 µ0(c16) = 6  

 

 

Step 2.7.4: Redundancy test carried out shows that only three of the computed monitors are 

necessary, C14, C15 and C16 while C13 is redundant and is therefore removed. The 

necessary monitors are also renumbered in order to follow the regular sequence 

of numbering for convenience. Thus C14 becomes C13, C15 becomes C14 and C16 

becomes C15.  

The computed necessary monitors C13, C14 and C15 are shown in Table 4.10. 
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                               Table 4.10. Necessary monitors C13, C14 and C15. 

      Ci           •Ci          Ci 
•    µ0(ci) 

      C13    t5, t8, t13, t17  t3, t7, t12, t15       6 

      C14    t5, t8, t12, t17  t4, t7, t11, t15       6 

      C15    t5, t8, t13, t17  t4, t7, t11, t15       6 

 

 

Step 2.7.5: The controlled PNM7 := PNM7 + C13 + C14 + C15 is shown in Fig. 4.14. It is live 

with 15,013 good states. This is the optimal live behaviour for the controlled 

PNM7. 
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Figure 4.14. The controlled PNM7:= PNM7 + C13 + C14 + C15. 

 

        B:= B ++ (B = 8). 

  

                 Step 2.8.1: (B = 8), when eight tokens are deposited in the GP, as shown in Fig. 4.15, the 

net PNM8 is live with 18,972 good states. B: = B++ (B = 9). 



60 
 

 
 

 

p14p5

p2

p3

p4

p23

p24

p8p1

p7 p11

p22

p26

p10

p6

p20

p25

p9
p13

p21

p12

p15

p16

p17

p18

p19

t11

t12 t3

t13

t14

t2

t4

t5

t6

t1 t20

t7

t8

t9

t10

t19

t18

t16

t15

t17

2  2

11 7  13

2

1

1

2

t17 t16

C7

   3

t8 t7

         8

GP

t10

t16

t9

t15

t8

t18

t7 t9

t17

t8

t16

t4

t13

t3

t12 t13

t11
C1 C2 C3 C4 C5

   2    2    2    2   2

t17 t17 t15

C6

   3

t10 t8

t17t17

t7
C8

   4

t9

t15

C9
t7

t9

t8

t10   4

t15

z  5

   5     5C10

C11

C12

t1 t3t5

t8

t19 t17 t17

t10

t13

t3

t10

t13

t17

t5

t15

t4

t11

t15
t12

t9

t9   6
C13

t8

t17

t5
t3

t12

t7   6
C14

t8

t17

t5

t15

t4

t11

t7   6
C15

t8

t17

t5

t15

t4

t11

t7
t13 t12 t13

t15  
                                            Figure 4.15. The controlled PNM8.  

 

            Step 2.9.1: (B = 9), when nine tokens are deposited in the GP, as shown in Fig. 4.16, the net 

PNM9 is live with 20,980 good states. B: = B++ (B = 10). 
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                                               Figure 4.16. The controlled PNM9. 

 

Step 2.10.1: (B = 10) The PNM10, shown in Fig. 4.17, is not live. The reachability graph RG10 

computed for the PNM10 has 21,536 good states in the LZ10 and 11 bad states 
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BM16, BM17, BM18, BM19, BM20, BM21, BM22, BM23, BM24, BM25 and BM26 

within the DZ10. 
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                                                                  Figure 4.17. The PNM10. 

 

Step 2.7.2: The markings of the activity places of BM16, …, BM26 are shown in Table 4.11. 
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                   Table 4.11. The markings of the activity places of BM16, …, BM26. 

          

 

The place invariants PIs for the BMs respectively are: 

 

PI16 = 𝜇6 + 𝜇7 + 𝜇8 + 𝜇9 + 𝜇11 + 𝜇16 + 𝜇18 + 𝜇19 ≤ 9 

PI17 = 𝜇6 + 𝜇7 + 𝜇9 + 𝜇11 + 𝜇16 + 𝜇18+ 𝜇19  ≤ 9 

PI18 = 𝜇6 + 𝜇7 + 𝜇8 + 𝜇9 + 𝜇11 + 𝜇13 + 𝜇16 + 𝜇18 + 𝜇19   ≤ 9  

PI19 = 𝜇6 + 𝜇7 + 𝜇9 + 𝜇11 + 𝜇13 + 𝜇16 + 𝜇18 + 𝜇19 ≤ 9 

PI20 = 𝜇6 + 𝜇7 + 𝜇8 + 𝜇9 + 𝜇16 + 𝜇18 + 𝜇19 ≤ 9 

PI21 = 𝜇6 + 𝜇7 + 𝜇9 + 𝜇16 + 𝜇18 + 𝜇19 ≤ 9 

PI22 = 𝜇6 + 𝜇7 + 𝜇9 + 𝜇11 + 𝜇12 + 𝜇16 + 𝜇18 + 𝜇19 ≤ 9 

PI23 = 𝜇6 + 𝜇7 + 𝜇9 + 𝜇11 + 𝜇17 + 𝜇18 + 𝜇19 ≤ 9 

PI24 = 𝜇6 + 𝜇7 + 𝜇8 + 𝜇9 + 𝜇13 + 𝜇16 + 𝜇18 + 𝜇19 ≤ 9 

PI25 = 𝜇6 + 𝜇7 + 𝜇9 + 𝜇13 + 𝜇16 + 𝜇18 + 𝜇19 ≤ 9 

PI26 = 𝜇6 + 𝜇7 + 𝜇9 + 𝜇11 + 𝜇13 + 𝜇17 + 𝜇18 + 𝜇19 ≤ 9 

 

Step 2.7.3: The computation of the monitors are carried out as follows: 

 

 

                p6     p7     p8     p9     p11   p16   p18   p19 

  LPI16  = [1        1        1        1        1        1        1        1] 

 
 

 State 

   nr. 

 p 

 2 

 p 

 3 

 p 

 4 

 p 

 6 

 p 

 7 

 p 

 8 

 p 

 9 

 p 

10 

 p 

11 

 p 

12 

 p 

13 

 p 

15 

 p 

16 

 p 

17 

 p 

18 

 p 

19 

  273  0  0  0  1  2  1  1  0  1  0  0  0  1  0  2  1 

  274  0  0  0  1  2  0  2  0  1  0  0  0  1  0  2  1 

  770  0  0  0  1  2  1  1  0  1  0  1  0  1  0  1  1 

  771  0  0  0  1  2  0  2  0  1    0  1  0  1  1  1  1 

  893  0  0  0  1  2  1  1  0  0  0  0  0  2  0  2  1 

  894  0  0  0  1  2  0  2  0  0  0  0  0  2  0  2  1 

 1431  0  0  0  1  2  0  2  0  1  1  0  0  1  0  1  1 

 1603  0  0  0  1  2  0  2  0  1  0  0  0  0  1  2  1 

 4274  0  0  0  1  2  1  1  0  0  0  1   0  2  0  1  1 

 4275  0  0  0  1  2  0  2  0  0  0  1  0   2  0  1  1 

12161  0   0  0  1  2  0  2  0  1    0  1  0  0  1  1  1 
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              t1   t2    t3   t4   t5   t7  t8  t15  t16  t17 t18 t19                                                                    

DPI16 = 

[
 
 
 
 
 
 
 
1
0

̵1 0 0 0 ̵1 0 0 0 0 0 0
1 ̵1 0 0 0 0 0 0 0 0 0

0
0
0
0
0
0

0 1 ̵1 0 0 0 0 0 0 0 0
0 0 1 ̵1 0 0 0 0 0 0 0
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

1
0
0
0

̵1
0
0
0

0 0 0 0 0
0 0 0 1 ̵1
0
1

1
̵1

̵1
0

0
0

0
0]
 
 
 
 
 
 
 

p6
p7
p8
p9

  p11
  p16
  p18
  p19

     

  

 DC16  =  ̵  LPI16 . DPI16   

 

=   ̵ [1    1     1     1     1     1     1     1] 

[
 
 
 
 
 
 
 
1
0

̵1 0 0 0 ̵1 0 0 0 0 0 0
1 ̵1 0 0 0 0 0 0 0 0 0

0
0
0
0
0
0

0 1 ̵1 0 0 0 0 0 0 0 0
0 0 1 ̵1 0 0 0 0 0 0 0
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

1
0
0
0

̵1
0
0
0

0 0 0 0 0
0 0 0 1 ̵1
0
1

1
̵1

̵1
0

0
0

0
0]
 
 
 
 
 
 
 

 

                

DC16  =  ̵  [1     0     0     0      ̵1      0      ̵1      1      0      ̵1      1      ̵1] 

 
                                  t1    t2    t3    t4    t5     t7    t8    t15   t16  t17   t18  t19                                                                         

Therefore,  DC16  =  [ ̵1     0      0      0      1      0      1      ̵1      0      1      ̵1      1] 
 

µ0(c16) = 9 

                     

 

              p6    p7    p9   p11   p16  p18  p19 

LPI17  = [1      1       1      1       1       1       1]  

 
 

            t1   t2    t3   t4   t5   t7   t8 t15  t16  t17 t18 t19                                                                    

DPI17 = 

[
 
 
 
 
 
 
1
0

̵1 0 0 0 ̵1 0 0 0 0 0 0
1 ̵1 0 0 0 0 0 0 0 0 0

0
0
0
0
0

0 0 1 ̵1 0 0 0 0 0 0 0
0 0 0 0 1 ̵1 0 0 0 0 0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0 0 0 1 ̵1
0 1 ̵1 0 0
1 ̵1 0 0 0]

 
 
 
 
 
 

 

p6
p7
p9

  p11
  p16
  p18
  p19

     

 

 DC17  =  ̵ LPI17 . DPI17   
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=  ̵  [1      1      1      1      1      1      1] 

[
 
 
 
 
 
 
1
0

̵1 0 0 0 0 ̵1 0 0 0 0 0
1 ̵1 0 0 0 0 0 0 0 0 0

0
0
0
0
0

0 0 1 ̵1 0 0 0 0 0 0 0
0 0 0 0 1 ̵1 0 0 0 0 0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0 0 0 1 ̵1
0 1 ̵1 0 0
1 ̵1 0 0 0]

 
 
 
 
 
 

 

 

                

DC17  =  ̵ [1     0      ̵1     1      ̵1      1     0     1     0      ̵1      1      ̵1] 

                                                              

                                  t1    t2    t3    t4    t5     t7    t8    t15   t16  t17  t18  t19                                                                         

Therefore,  DC17  =  [ ̵1      0      1      ̵1      1      ̵1     0      ̵1      0      1      ̵1      1] 
 

µ0(c17) = 9 

 

 

             p6    p7    p8   p9   p11  p13  p16  p18  p19 

LPI18  = [1      1      1      1      1      1      1       1       1]  
 

              t1   t2    t3   t4   t5   t7   t8   t9  t10  t15 t16  t17 t18 t19                                                                    

DPI18 =  
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DC18  =  ̵  LPI18 . DPI18   
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DC18  =  ̵  [1     0     0     0      ̵1      0      ̵1      1      ̵1      1      0      ̵1       1      ̵1] 
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                                  t1    t2    t3   t4    t5   t7    t8    t9    t10   t15  t16   t17  t18  t19                                                                         

Therefore,  DC18  =  [ ̵1     0     0     0      1     0      1      ̵1      1      ̵1      0      1     ̵1     1] 
 

µ0(c18) = 9 

 

 

             p6   p7   p9   p11  p13  p16  p18  p19 

LPI19 = [1      1      1      1      1      1      1      1]  
   

             t1   t2    t3   t4   t5   t7   t8  t9  t10  t15  t16 t17  t18 t19                                                                 

DPI19 = 
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                       DC19 =  ̵  LPI19 . DPI19   

 

=  ̵  [1   1   1   1   1   1   1   1] 
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                      DC19  =   ̵  [1    0     ̵1     1      ̵1      1      0     1      ̵1      1      0      ̵1      1      ̵1] 
 

                                 t1    t2    t3   t4   t5    t7   t8   t9    t10  t15 t16 t17 t18  t19                                                                         

Therefore,  DC19  =  [ ̵1     0     1     ̵1     1     ̵1    0     ̵1     1      ̵1     0     1     ̵1     1] 

 

µ0(c19) = 9 

 

 

            p6    p7    p8   p9    p16  p18  p19 

LPI20  = [1      1      1      1      1      1      1]  

 

 
 



67 
 

 
 

             t1   t2    t3   t4   t5  t7  t15  t16  t17 t18 t19                                                                    

DPI20 = 
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DC20  =  ̵  LPI20 . DPI20   
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DC20  =  ̵  [1     0      0      0     ̵1      ̵1      1      0      ̵1      1      ̵1] 
 

 

                                 t1    t2    t3     t4     t5     t7     t15  t16  t17  t18  t19                                                                         

Therefore,  DC20  =  [ ̵1     0      0      0      1      1      ̵1     0     1      ̵1      1] 

 

µ0(20) = 9 

 

 

            p6    p7    p9    p16  p18  p19 

LPI21  = [1      1      1      1      1      1]  
 

             t1   t2    t3   t4   t5  t7  t15  t16  t17 t18  t19                                                                    

DPI21 = 
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DC21  =  ̵  LPI21 . DPI21   
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=  ̵  [1      1      1      1      1      1] 
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DC21  =  ̵  [1     0     ̵1     1     ̵1     ̵1     1      0     ̵1     1     ̵1] 
 

                                t1    t2    t3    t4    t5    t7    t15   t16  t17  t18   t19                                                                         

Therefore,  DC21 =  [ ̵1     0     1      ̵1     1     1      ̵1     0      1      ̵1      1] 

                                          

µ0(21) = 9 
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LPI22 = [1      1      1      1      1       1       1      1]  
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DC22 =  ̵  LPI22 . DPI22   
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DC22  =  ̵  [1    0     ̵1      1     ̵1       0     0     ̵1      1      0     ̵1     1     ̵1] 
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                                 t1    t2    t3   t4    t5   t7    t8   t9   t15  t16  t17  t18 t19                                                                         

Therefore,  DC22 =  [ ̵1     0     1     ̵1    1     0     0     1     ̵1     0     1     ̵1     1] 

 

µ0(c22) = 9 

 

 

             p6    p7   p9   p11  p17  p18  p19 

LPI23  = [1      1      1      1      1      1      1]  
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DPI23 = 
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DC23 =  ̵  LPI23 . DPI23  
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DC23  =  ̵  [1     0      ̵1      1      ̵1      0     ̵1      1      0      0     ̵1] 
 

                                 t1    t2    t3    t4    t5    t7    t8    t15   t16  t17  t18                                                                      

Therefore,  DC23  =  [ ̵1     0      1     ̵1     1     0     1      ̵1      0      0     1] 

 

µ0(c23) = 9 

 

 

           p6    p7    p8   p9    p13  p16  p18  p19 

LPI24 = [1      1      1      1      1      1      1      1]  
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             t1   t2    t3   t4   t5   t7   t9  t10  t15  t16 t17 t18 t19                                                                  

DPI24 = 
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DC24 =  ̵  LPI24 . DPI24   
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DC24  =  ̵  [1     0     0     0    ̵1     ̵1     1      ̵1      1      0     ̵1     1    ̵1] 

 

                                 t1    t2    t3   t4   t5    t7   t9   t10  t15 t16  t17 t18  t19                                                                         

Therefore,  DC24  =  [ ̵1     0     0     0     1     1     ̵1     1     ̵1     0     1     ̵1     1] 

 

µ0(c24) = 9 

 

 

           p6    p7    p9    p13   p16  p18  p19 

LPI25 = [1      1      1      1      1      1      1]  
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DC25 =  ̵ LPI25 . DPI25   
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DC25  =  ̵  [1     0     ̵1     1     ̵1     ̵1     1     ̵1      1     0    ̵1     1     ̵1] 

 

 

                                 t1    t2     t3    t4    t5    t7    t9    t10    t15  t16  t17  t18  t19                                                                      

Therefore,  DC25 =  [ ̵1     0      1      ̵1     1      1      ̵1      1      ̵1      0      1      ̵1      1] 

 

µ0(c25) = 9 

 

                                         

             t1   t2    t3   t4   t5   t7   t8   t9  t10  t15 t16 t17 t18                                                                  

DPI26 = 
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            p6    p7    p9    p11  p13   p17  p18  p19 

LPI26 = [1      1      1      1      1      1       1       1]  

 

 

DC26 =  ̵ LPI26 . DPI26   
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DC26  =  ̵  [1     0     ̵1     1     ̵1     0      ̵1     1     ̵1     1      0     0     ̵1] 



72 
 

 
 

                                 t1    t2   t3    t4    t5    t7   t8    t9   t10  t15  t16  t17 t18                                                                          

Therefore,  DC26 =  [ ̵1     0     1     ̵1     1     0     1     ̵1     1      ̵1     0     0     1] 

  

µ0(c26) = 9 

 

 

Step 2.10.4: Redundancy test carried out shows that only three of the computed monitors are 

necessary, C18, C22 and C26 while the rest of the monitors computed are redundant 

and are therefore removed. The necessary monitors are also renumbered in order 

to follow the regular sequence of numbering for convenience. Thus C18 becomes 

C16, C22 becomes C17 and C26 becomes C18.  

 

 The necessary monitors C16, C17 and C18 are shown in Table 4.12. 

 

 

              Table 4.12. Necessary monitors C16, C17 and C18. 

      Ci           •Ci          Ci 
•    µ0(ci) 

      C16   t5, t8, t10, t17, t19   t1, t9, t15, t18       9 

      C17    t3, t5, t9, t17, t19     t1, t4, t15, t18       9 

      C18    t3, t5, t8, t10, t18    t1, t4, t9, t15       9 

      

 

 

Step 2.10.5: The controlled PNM10 := PNM10 + C16 + C17 + C18 is shown in Fig. 4.18. It is 

live with 21,513 good states. This is the optimal live behaviour for the 

controlled PNM10. 
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              Figure 4.18. The controlled model PNM10 (PNM10 :=  PNM10 + C16 + C17 +C18).      

 

                                                                                                       

B := B ++ (B = 11)                

                                              

  Step 2.5.1: (B = 11), the PNM11 shown Fig. 4.19 is live with 21,562 good states.   
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Figure 4.19. The Live PNM11.    
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Step 3: The design procedure applied in Step 2 is provided in Table 4.13. The computed 

eighteen necessary monitors are added in the uncontrolled PNM, the controlled 

PNM is obtained as shown in Fig. 4.20. It is verified that this controlled model is 

live with 21,562 good states. 

                                                         

Step 4: Exit                                                                                                             
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                                              Figure 4.20. The controlled PNM.                                                                                                                            
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                                       Table 4.13. Computed necessary monitors. 

    Ci              •Ci           Ci
•      µ0(Ci) 

    C1  t10, t16  t9, t16        2 

    C2  t8, t18  t7, t17        2 

    C3  t9, t17  t8, t16        2 

    C4  t4, t13  t3, t12        2 

    C5  t13  t11        2 

    C6  t10, t17  t8, t15        3 

    C7  t8, t17  t7, t16        3 

    C8  t9, t17  t7, t15        4 

    C9  t8, t10, t17  t7, t9, t15            4 

    C10  t3, t8, t19       t1, t17        5 

    C11  t5, t10, t13, t17  t3, t9, t12, t15        5 

    C12  t5, t10, t13, t17  t4, t9, t11, t15        5 

    C13  t5, t8, t13, t17  t3, t7 ,t12, t15        6 

    C14  t5, t8, t12, t17  t4, t7, t11, t15        6 

    C15  t5, t8, t13, t17  t4, t7, t11, t15        6 

    C16  t5, t8, t10, t17, t19  t1, t9, t15, t18        9 

    C17  t3, t5, t9, t17, t19  t1, t4, t15, t18        9 

    C18  t3 t5, t8, t10, t18  t1, t4, t9, t15        9 

                                                                                                                

                          

                                                                                                  

Table 4.14 shows the liveness enforcing procedure applied to the given PNM of Fig. 4.1. The 

maximally permissive behaviour of the PNM must provide 21,581 good states. Using our 

method, we obtained live behaviour with 21,562 good states, 99.91% of the maximally 

permissive behaviour.   
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                  Table 4.14. The liveness enforcing procedure applied to S3PR PNM.                                                                                                                                          

 

   

 B 

 

 

   Included  

        C 

 

  Is     

 the 

 net 

live? 

    

  # of 

  States 

  in RG 

  

 # of 

 States   

 in DZ 

  

  # of 

 States 

 in LZ 

 

  

   Computed  

          C 

    #of states 

     With in 

   Controlled   

         net            

RG = 

LZ 

 UR 

 1          ⎼ YES    17     0    17            ⎼     17  

 2          ⎯ YES   132     0   132            ⎯    132  

 3          ⎯  NO   637     5   632 C1, C2, C3, C4, 

C5 

   632    0  

 4 C1, C2, .., C5  NO  2,106     2  2,104 C6, C7   2,104    0 

 5 C1, C2, .., C7  NO  5,192     2  5,190 C8, C9   5,190    0 

 6 

  

C1, C2, .., C9  NO 

 

 9,888    10  9,878 C10, C11, C12 

(7 redundant)    

  9,878    0 

 7 C1, C2, .., C12  NO 15,017     4 15,013  C13,C14, C15 

(1 redundant) 

 15,013    0 

 8 C1, C2, .., C15 YES 18,972     0 18,972            ⎼  18,972    0 

 9 C1, C2, .., C15 YES 20,980     0  20,980            ⎼  20,980    0 

10 C1, C2, .., C15  NO 21,536    11 21,525 C16,C17, C18 

(1 redundant) 

 21,513   12 

11 C1,C2, .., C18 YES 21,562     0 21,562            ⎼  21,562   19 

                                                                                                                                                                                                                                                

                       

 

                                                                                                                    

4.2 AN AEMG PETRI NET EXAMPLE 

 

The PNM of an FMS shown in Fig. 4.21 from [35], suffers from deadlocks. It has 3,136 states 

within the RG, 1,466 states of which are in the LZ while remaining 1,670 states are in the 

DZ. 
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                    Figure 4.21. An AEMG Petri net model of an FMS from [35]. 

 

There are twenty one activity places PA = {p2-p4, p6-p18, p20-p24}, eleven shared 

resource places PR = {p25-p27, p28-p35}, and three sink/source places PS/S = {p1, p5, p19}. 

Table 4.15 gives the liveness enforcing procedure applied to the AEGM PNM. 

Table 4.15 shows the liveness enforcing procedure applied to the AEMG PNM of 

Fig. 4.21. The optimal solution for this PNM must provide 1,466 reachable good states. By 

using our method, we obtained permissiveness of 1,330 reachable states which is 90.72% of 

the optimal solution. Table 4.16 provides the necessary computed monitors and their related 

arcs.  
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               Table 4.15. The liveness enforcing procedure applied to AEGM PNM.                                                                                                                                          

 

   

B 

 

 

   Included  

        C 

 

Is the 

  net 

 live? 

    

 # of 

States 

in RG 

  

 # of 

states 

in DZ 

  

 # of 

States 

in LZ 

 

  

    Computed 

           C 

# of states  

    Within 

controlled net 

RG =  

LZ 

 UR 

 1         ⎼  YES   47     0  17            ⎼  17  

 2         ⎯ NO  446    80 366    C1,C2,..,C40  

(40 redundant) 

366    0 

 3 C1, C2,.., C40   NO   991     2 989      C41, C42 989    0  

 4 C1, C2,.., C42   NO 1,305     2 1,303          C43 

 (1 redundant) 

1,303    0 

 5 C1, C2,.., C43  YES 1,329     0 1,329            ⎼   1,329    0 

 6 C1, C2,.., C43  YES 1,330     0 1,330            ⎼   1,330    0 
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                                           Table 4.16. Computed necessary monitors.  

 Ci 
           •Ci            Ci

• µ0(Ci)  Ci          •Ci           Ci
• µ0(Ci) 

 C1 t3 t1     1 C23 t8, t17, t20 t6, t16, t19    2 

 C2 t16, t18 t11, t12, t14     3 C24 t8, t16, t20 t6, t15, t19    2 

 C3 t14, t16, t18 t5, t11, t12, t15     3 C25 t9, t17, t20 t7, t16, t19    2 

 C4 t15, t18 t5, t11, t12     3 C26 t9, t16, t20 t7, t15, t19    2 

 C5 t8, t11, t18 t6, t9, 1t6     3 C27 t6, t7, t17, t20 t5, t16, t19    2 

 C6 t11, t18 t7, t16     3 C28 t6, t7, t16, t20 t5, t15, t19    2 

 C7 t17, t18, t20 t12, t13, t16, t19     2 C29 t12, t15, t20 t10, t14, t19    2 

 C8 t18, t16, t20 t12, t13, t15, t19     2 C30 t10, t15, t20 t8, t14, t19    2 

 C9 t18, t15, t20 t12, t13, t14, t19     2 C31 t6, t7, t15, t20 t5, t14, t19    2 

C10 t18, t14, t20 t12, t13, t5, t19     2 C32 t8, t15, t20 t6, t14, t19    2 

C11 t13, t16, t20 t11, t15, t19     2 C33 t6, t7, t11, t18 t5, t9, t16    3 

C12  

CC1

2C12 

t13, t15, t20 t11, t14, t19     2 C34 t12, t14, t20 t10, t5, t19    2 

C13 t13, t14, t20 t11, t5, t19     2 C35 t10, t14, t20 t5, t8, t19    2 

C14 t11, t17, t20 t9, t16, t19     2 C36 t8, t14, t20 t5, t6, t19    2 

C15 t11, t16, t20 t9, t15, t19     2 C37 t6, t7, t14, t23 2t5, t22    2 

C16 t11, t15, t20 t9, t14, t19     2 C38 t6, t7, t14, t22 2t5, t21    2 

C17 t11, t14, t20 t9, t5, t19     2 C39 t6, t7, t14, t21 2t5, t20    2 

C18 t9, t14, t20 t7, t5, t19     2 C40 t6, t7, t14, t20 2t5, t19    2 

C19 t12, t17, t20 t10, t16, t19     2 C41 t2, t15, t18 t1, t5, t10,t13    4 

C20 t12, t16, t20 t10, t15, t19     2 C42 t2, t12, t13, t15 t1, t5, t10, t11    4 

C21 t10,t17, t20  t8, t16, t19     2 C43 t3, t7, t10, t18 t2, t5, t15    6 

C22 t10, t16, t20 t8, t15, t19     2     
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4.3 PERFORMANCE COMPARISON OF DIFFERENT CONTROL POLICIES 

 

 

      4.3.1    Performance Comparison for the S3PR Example 

       

Table 4.17 shows the performance comparison of our solution on the S3PR example 

with other different solutions previously provided on the S3PR model in the literature. 

 

        Table 4.17 Performance comparison of different control policies for the S3PR model.                                           

        Parameters 

             

 Ezpeleta 

    et al.  

    [16] 

Li and  

  Zhou  

     [8] 

Huang 

  et al. 

   [20] 

Li et al. 

   [21] 

 Uzam  

   and      

  Zhou  

   [13]                           

  Our 

solution 

# of monitors added            18       6     12      7     19     18 

# of reachable states     6287    6287   12656  16636   21562   21562 

Permissiveness (%)    29.13    29.13    58.64   77.09    99.91    99.91 

 

 

       The permissiveness of PNM increases as we move from the left to the right of the 

Table 4.17. Our solution and the one in [13] give the highest number of reachable states but 

with different number of monitors. In our solution, 18 monitors are required to obtain the 

number of reachable states we obtained while in [13] 19 monitors are required. The proposed 

method is straightforward. The only modification it requires to be made in the original PNM 

is the addition of the global sink/source place. Also a small number of control places is 

desirable in the design of a liveness enforcing supervisor as it reduces the structural 

complexity of a controlled PN model. 

 

       4.3.2    Performance Comparison for the AEMG Example 

        Table 4.18 shows the performance comparison of our solution on the AEGM example 

with the one provided in [35] for the AEMG example. 
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      Table 4.18 Performance comparison of two control policies for the AEGM model.                                           

             Parameters                    [35]      Our solution 

 # of monitors added                           15              43 

 # of reachable states                    167           1,330 

 Permissiveness (%)                   11.39            90.72 

 

 

       It can be seen from Table 4.18 that our method provides very high number of reachable 

states compared with that of [35]. Our solution provides near optimal permissiveness for the 

AEGM example. 
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                                                            CHAPTER 5   

 

                                                         CONCLUSIONS 

 

In this thesis a new method for the synthesis of Petri net based liveness enforcing 

supervisors in FMS is proposed. The method is simple, straightforward and easy to apply. 

The applicability of the proposed method to Petri net models suffering from deadlocks is 

demonstrated through examples. It does not require dividing the given PN model into subnets 

as in [29]. The only modification it requires in its algorithm is the addition of global 

sink/source place (GP) which is used temporarily in the computation stage, and it is removed 

when the net becomes live. The computation is carried out in an iterative way by increasing 

the number of tokens in the GP at each iteration. 

The method provides very high behavioral permissiveness. It is not restricted to certain 

classes of PN models and it can be applied to many classes of Petri nets currently available 

in the literature. 
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