

The Graduate Institute of Sciences and Engineering

M.Sc. Thesis in Electrical and Computer Engineering

ON A GREEDY HEURISTIC FOR THE

MULTICOMMODITY RENT-OR-BUY PROBLEM

by

Osman Melih KÜRTÜNCÜ

July 2014

Kayseri, Turkey

ON A GREEDY HEURISTIC FOR THE MULTICOMMODITY

RENT-OR-BUY PROBLEM

by

Osman Melih KÜRTÜNCÜ

A thesis submitted to

the Graduate Institute of Sciences and Engineering

of

Melikşah University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical and Computer Engineering

July 2014

Kayseri, TURKEY

APPROVAL PAGE

This is to certify that I have read the thesis entitled “On a Greedy Heuristic for the

Multicommodity Rent-or-Buy Problem” by Osman Melih KÜRTÜNCÜ and that in my

opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of

Science in Electrical and Computer Engineering, the Graduate Institute of Science and

Engineering, Melikşah University.

July 3, 2014 Asst. Prof. Dr. Ali ÇİVRİL

 Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 July 3, 2014 Prof. Dr. Murat UZAM

 Head of Department

Examining Committee Members

Title and Name Approved

Asst. Prof. Dr. Ali ÇİVRİL July 3, 2014 ________________

Assoc. Prof. Dr. Ahmet UYAR July3, 2014 ________________

Assoc. Prof. Dr. Emel KIZILKAYA AYDOĞAN July3,2014 _________________

It is approved that this thesis has been written in compliance with the formatting

rules laid down by the Graduate Institute of Science and Engineering.

 Prof. Dr. M. Halidun KELEŞTİMUR

 Director

July 2014

iii

ON A GREEDY HEURISTIC FOR THE MULTICOMMODITY

RENT-OR-BUY PROBLEM

Osman Melih KÜRTÜNCÜ

M.S. Thesis – Electrical and Computer Engineering

July 2014

Supervisor: Asst. Prof. Dr. Ali ÇİVRİL

ABSTRACT

This thesis introduces three new algorithms for an important network design

problem called the Multicommodity Rent-or-Buy Problem which is a generalization of

the famous Steiner Forest Problem. These algorithms are inspired by the well-known

minimum spanning tree algorithms of Kruskal, Prim and Boruvka. Although our

algorithms do not have good approximation ratio compared to the state-of-art, we show

that they are much faster than the well-known approximation algorithm of Agrawal,

Klein and Ravi (AKR) with similar solution costs, especially when the edge weights

span a wide range. In particular, our algorithms turn out to be a very good alternative

for AKR on real world data, where for example the points to be connected in the

problem represents the cities of a country on the Euclidean plane.

The running time of our algorithms for the Steiner Forest Problem is

)) which is an improvement over the previous
 ⁄) approximate

algorithm with) running time where , and are the number of edges,

vertices and terminal pairs in the graph respectively.

Keywords: Multicommodity Rent-or-Buy Problem, Steiner Forest Problem,

Sample and Augment algorithm, Strictness, Greedy Heuristics, Approximation

Algorithms

iv

ÇOKLU EŞYA SATIN AL YA DA KİRALA PROBLEMİNE AÇ

GÖZLÜ BİR SEZGİSEL

Osman Melih KÜRTÜNCÜ

Yüksek Lisans Tezi – Elektrik ve Bilgisayar Mühendisliği

Temmuz 2014

Tez Yöneticisi: Yrd. Doç. Dr. Ali ÇİVRİL

ÖZ

Bu tez, ünlü Steiner Ormanı Probleminin genelleştirilmiş bir hali ve önemli bir ağ

tasarım problemi olan Çoklu Eşya Kirala veya Satın Al Problemi için üç yeni algoritma

öne sürmektedir. Bu algoritmalar Kruskal, Boruvka ve Prim’in iyi billinen minimum

yayılan ağaç algoritmalarından esinlenmişlerdir. Bizim algoritmalarımızın son

geliştirilen algoritmalara kıyasla kötü olmasına rağmen, bizim algoritmalarımızın

özellikle kenar ağırlıklarının yüksek aralıklarla değiştiği çizgelerde iyi bilinen Agrawal,

Klein ve Ravi’nin (AKR) algoritmasından çok daha hızlı çalıştığını ve ona benzer sonuç

verdiğini gösterdik. Özellikle, algoritmalarımız Öklid düzlemde bir ülkenin şehirlerini

birbirine bağlayan gerçek dünya verisi için çok iyi bir alternatif teşkil etmektedirler. .

Algoritmalarımızın Steiener Ormanı problemi için çalışma zamanları

)) olup
 ⁄) yaklaşık ve çalışma zamanı) olan bir önceki

algoritmaya göre daha iyidir ki burada m, n ve k sırası ile çizgedeki köşe, düğüm ve

terminal çiftlerinin sayısıdır.

Anahtar Kelimeler: Çoklu Eşya Kirala veya Satın Al Problemi, Steiner Ormanı

Problemi, Açgözlü Algoritmalar, Yaklaştırma Algoritmaları

v

DEDICATION

Dedicated to my family for their endless support and patience during the forming

phase of this thesis.

vi

ACKNOWLEDGEMENT

I would like to thank to The Scientific and Technological Research Council of Turkey

(TÜBITAK) that supported this thesis under the project number 112E192.

I would like to express my gratitude to my supervisor Assoc. Prof. Dr. Ali ÇİVRİL whose

help, stimulating suggestions and encouragement helped me during the course of research and

writing of this thesis.

 I also want to thank Teaching Assistant Bilge Kağan DEDETÜRK for his significant

contributions to my research endeavors.

 I express my thanks and appreciation to my family for their understanding, motivation and

patience. Lastly, but in no sense the least, I am thankful to all of my colleagues and friends who

believe in me about my researches

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

DEDICATION ... v

ACKNOWLEDGEMENT .. vi

LIST OF TABLES .. ix

LIST OF FIGURES ... xii

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 PROBLEMS CONSIDERED IN THIS THESIS ... 3

2.1 THE MULTICOMMODITY RENT-OR-BUY PROBLEM ... 3

2.2 THE STEINER FOREST PROBLEM .. 7

CHAPTER 3 PREVIOUS ALGORITHMS FOR THE STEINER FOREST PROBLEM10

3.1 ALGORITHMS AKR AND KLS ... 10

3.2 A GREEDY HEURISTIC ... 13

CHAPTER 4 THE NEW ALGORITHMS ..16

4.1 THE ALGORITHMS OF KRUSKAL, BORUVKA AND PRIM 16

4.2 INTUITION FOR THE NEW ALGORITHMS .. 19

4.3 THE NEW ALGORITHMS ÇDK-KRUSKAL, ÇDK-BORUVKA AND ÇDK- PRİM

 ... 20

4.4 EQUIVALENCE OF THE NEW ALGORITHMS ... 23

4.5 A BAD INSTANCE FOR THE NEW ALGORITHMS ... 24

4.6 AN EXECUTION OF THE NEW ALGORITHMS ON AN MROB INSTANCE 26

CHAPTER 5 EXPERIMENTS ..32

5.1 EXPERIMENTS ON RANDOM GRAPHS WITH RANDOM DEMAND-UNIT

WEIGHT ..33

viii

5.2 EXPERIMENTS ON RANDOM GRAPHS WITH RANDOM DEMAND-RANDOM

WEIGHT (Wi=1-100) ..40

5.3 EXPERIMENTS ON RANDOM GRAPHS WITH RANDOM DEMAND-RANDOM

WEIGHT (Wi=1-10000) ..47

5.4 EXPERIMENTS ON TSP URUGUAY GRAPH WITH RANDOM DEMANDS-54

5.5 EXPERIMENTS ON A GEOMETRIC RANDOM GRAPH WITH RANDOM

DEMAND ...62

REFERENCES...70

ix

LIST OF TABLES

TABLE

2.1 Previous Works for Steiner Tree Problem .. 8

4.6.1 The sorted Shortest Path Between each Terminal in 27

5.1.1 Computational results on Random Graphs with Random demand

Unit weight for …………. ... 34

5.1.2 Computational results on Random Graphs with Random demand

Unit weight for …………. .. 35

5.1.3 Computational results on Random Graphs with Random demand

Unit weight for …………. ... 36

5.1.4 Computational results on Random Graphs with Random demand

Unit weight for …………. ... 37

5.1.5 Computational results on Random Graphs with Random demand

Unit weight for …………. ... 38

5.1.6 Computational results on Random Graphs with Random demand

Unit weight for …………. .. 39

5.2.1 Computational results on Random Graphs with Random demand

Random weight (=1-100) for …………. ... 41

5.2.2 Computational results on Random Graphs with Random demand

Random weight (=1-100) for …………. ... 42

5.2.3 Computational results on Random Graphs with Random demand

Random weight (=1-100) for …………. ... 43

5.2.4 Computational results on Random Graphs with Random demand

Random weight (=1-100) for …………. ... 44

5.2.5 Computational results on Random Graphs with Random demand

Random weight (=1-100) for …………. ... 45

x

5.2.6 Computational results on Random Graphs with Random demand

Random weight (=1-10000) for …………. .. 46

5.3.1 Computational results on Random Graphs with Random demand

Random weight (=1-10000) for …………. 48

5.3.2 Computational results on Random Graphs with Random demand

Random weight (=1-10000) for …………. 49

5.3.3 Computational results on Random Graphs with Random demand

Random weight (=1-10000) for …………. 50

5.3.4 Computational results on Random Graphs with Random demand

Random weight (=1-10000) for …………. 51

5.3.5 Computational results on Random Graphs with Random demand

Random weight (=1-10000) for …………. 52

5.3.6 Computational results on Random Graphs with Random demand

Random weight (=1-10000) for …………. .. 53

5.4.1 Computational results on TSP Uruguay Graph with random demands

for …………. .. 56

5.4.2 Computational results on TSP Uruguay Graph with random demands

for …………. .. 57

5.4.3 Computational results on TSP Uruguay Graph with random demands

for …………. .. 58

5.4.4 Computational results on TSP Uruguay Graph with random demands

for …………. .. 59

5.4.5 Computational results on TSP Uruguay Graph with random demands

for …………. .. 60

5.4.6 Computational results on TSP Uruguay Graph with random demands

for …………. ... 61

5.5.1 Computational results on Geometric Random Graph with random demands

for …………. .. 63

5.5.2 Computational results on Geometric Random Graph with random demands

for …………. .. 64

5.5.3 Computational results on Geometric Random Graph with random demands

for …………. .. 65

xi

5.5.4 Computational results on Geometric Random Graph with random demands

for …………. .. 66

5.5.5 Computational results on Geometric Random Graph with random demands

for …………. .. 67

5.5.6 Computational results on Geometric Random Graph with random demands

for …………. ... 68

xii

LIST OF FIGURES

FIGURE

2.1.1 An example for MRoB .. 4

2.1.2 1
st
 solution for the example ... 4

2.1.3 2
nd

 solution for the example .. 5

2.1.4 3
rd

 solution for the example .. 5

3.1.1 A tight example for AKR .. 11

3.1.2 Optimum solution of given instance ... 12

3.1.3 The forest returned by AKR.. 12

3.2.1 A sample graph ... 14

3.2.2 The optimum solution of sample graph with red edges 14

3.2.3 The solution of the Greedy Heuristic .. 15

3.2.4 The solution of AKR ... 15

4.2 A graph on which the compared algorithm return different solutions 19

4.5.1 A sample graph ... 24

4.5.2 Optimum solution of given instance ... 26

4.5.3 The solution of ÇDK-Kruskal for given instance ... 26

4.6.1 An MRoB instance .. 26

4.6.2 The picked terminal pairs in subproblem step of the sample and augment

framework ... 27

4.6.3 The adjunct graph ... 27

4.6.4 1
st
 iteration of ÇDK-Kruskal after computing .. 28

4.6.5 2
nd

 iteration of ÇDK-Kruskal after computing ... 28

4.6.6 3
rd

 iteration of ÇDK-Kruskal after computing .. 28

4.6.7 The forest returned by ÇDK-Kruskal .. 29

xiii

4.6.8 The solution of MRoB instance using ÇDK-Kruskal ... 29

4.6.9 The growth of moats ... 30

4.6.10 Including the edges corresponding to tight components 30

4.6.11 2
nd

 iteration of AKR .. 31

4.6.12 The forest returned by AKR and augment step... 31

5.1.1 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand-Unit weight for ... 34

5.1.2 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Unit weight for ... 34

5.1.3 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand-Unit weight for ... 35

5.1.4 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Unit weight for ... 35

5.1.5 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand-Unit weight for ... 36

5.1.6 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Unit weight for ... 36

5.1.7 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand-Unit weight for ... 37

5.1.8 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Unit weight for ... 37

5.1.9 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand-Unit weight for ... 38

5.1.10 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Unit weight for ... 38

5.1.11 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand-Unit weight for .. 39

5.1.12 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Unit weight for .. 39

5.2.1 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand-Random weight (=1-100) for .. 41

5.2.2 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand- Random weight (=1-100) for 41

xiv

5.2.3 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand- Random weight (=1-100) for ... 42

5.2.4 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand- Random weight (=1-100) for 42

5.2.5 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand- Random weight (=1-100) for ... 43

5.2.6 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand- Random weight (=1-100) for 43

5.2.7 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand- Random weight (=1-100) for ... 44

5.2.8 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand- Random weight (=1-100) for 44

5.2.9 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand- Random weight (=1-100) for ... 45

5.2.10 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand- Random weight (=1-100) for 45

5.2.11 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand- Random weight (=1-100) for .. 46

5.2.12 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand- Random weight (=1-10000) for 46

5.3.1 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand-Random weight (=1-10000) for .. 48

5.3.2 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand- Random weight (=1-10000) for 48

5.3.3 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand- Random weight (=1-10000) for 49

5.3.4 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand- Random weight (=1-10000) for 49

5.3.5 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand- Random weight (=1-10000) for 51

5.3.6 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand- Random weight (=1-10000) for 51

xv

5.3.7 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand- Random weight (=1-10000) for 51

5.3.8 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand- Random weight (=1-10000) for 51

5.3.9 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand- Random weight (=1-10000) for 52

5.3.10 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand- Random weight (=1-10000) for 52

5.3.11 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph with

Random demand- Random weight (=1-10000) for .. 53

5.3.12 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand- Random weight (=1-10000) for 53

5.4.1 The point set derived from the National Imagenery and Mapping Geographic

Feature Name [] .. 55

5.4.2 Map of Uruguay from CIA World Factbook []... 55

5.4.3 Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay Graph

with unit demands for ... 56

5.4.4 Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay

Graph with random demands for .. 56

5.4.5 Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay Graph

with random demands for ... 57

5.4.6 Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay

Graph with random demands for .. 57

5.4.7 Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay Graph

with random demands for ... 58

5.4.8 Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay

Graph with random demands for .. 58

5.4.9 Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay Graph

with random demands for ... 59

5.4.10 Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay

Graph with random demands for .. 59

5.4.11 Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay Graph

with random demands for ... 60

xvi

5.4.12 Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay

Graph with random demands for .. 60

5.4.13 Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay Graph

with random demands for ... 61

5.4.14 Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay

Graph with random demands for .. 61

5.5.1 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric Random

Graph with unit demands for .. 63

5.5.2 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Geometric

Random Graph with random demands for .. 63

5.5.3 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric Random

Graph with random demands for .. 64

5.5.4 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Geometric

Random Graph with random demands for .. 64

5.5.5 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric Random

Graph with random demands for .. 65

5.5.6 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Geometric

Random Graph with random demands for .. 65

5.5.7 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric Random

Graph with random demands for .. 66

5.5.8 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Geometric

Random Graph with random demands for .. 66

5.5.9 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric Random

Graph with random demands for .. 67

5.5.10 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Geometric

Random Graph with random demands for .. 67

5.5.11 Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric Random

Graph with random demands for .. 68

5.5.12 Running time comparison of AKR, Greedy and ÇDK-Kruskal on Geometric

Random Graph with random demands for ... 68

1

CHAPTER 1

INTRODUCTION

In the past few decades, combinatorial optimization has been one of the most

important paradigms in scientific research. In this field, one is required to find an

optimal solution with respect to an objective function from a finite set of object which

defines the solution space. However, it is difficult to find an optimal solution for many

important combinatorial optimization problems such as finding shortest/cheapest round

trips (TSP), planning, scheduling, time tabling, internet data packet routing to name a

few. In fact, many combinatorial optimization problems which arise in various areas of

computer science and mathematics are NP-hard which means that no polynomial-time

algorithm is possible for these problems unless the widely believed conjecture .

One of the main approaches to tackle with these difficult problems is to give up

the requirement to find an exact solution and find an approximate solution in

polynomial time. This is the most popular approach taken in computer science and the

field of approximation algorithms provides the following definition in this framework.

Definition 1.1: An α-approximation algorithm where α is called approximation

ratio or approximation factor is a polynomial time algorithm whose value is within α of

the optimal solution’s value for all instances of the problem [2]. For minimization

problems α > 1 while α < 1 for maximization problems.

This definition guarantees that the algorithm at hand finds an approximate

solution for all instances of the problem. This fact makes the design of approximation

algorithms a challenging endeavor and such algorithms might be complicated with a

high running time. On the other hand, it is also well-known that simple heuristics that

2

do not have a proven approximation ratio might provide reasonably good results on

random instances and real world data. This thesis describes three new algorithms for an

important network design problem called the Multicommodity Rent-or-Buy Problem

which is a generalization of the famous Steiner Forest Problem. These algorithms are

inspired by the well-known minimum spanning tree algorithms of Kruskal, Prim and

Boruvka. In fact, we show that all of our algorithms are equivalent. We provide

instances on which our algorithms perform poorly, i.e. they do not have good

approximation ratios. However, they are very simple and easy to implement.

Furthermore, the quality of the solutions they return are as good as the best

approximation algorithm for the problem and their running time are much better than

the approximation algorithm on instances where the edges weights span a wide range.

In particular, our algorithms turn out to be a very good alternative for real world data,

where the points to be connected in the problem are represented by cities of a country

on the Euclidean plane.

3

CHAPTER 2

PROBLEMS CONSIDERED IN THIS THESIS

2.1 THE MULTICOMMODITY RENT-OR-BUY PROBLEM

In the Multicommodity Rent-or-Buy Problem (MRoB), we are given a weighted

graph (i.e.) with a cost function) together with terminal pairs

)) where for . We are also given a positive

demand for each terminal pair) , and a parameter . The goal is to

install capacities on the edges of such that for all) , we can simultaneously

route units of flow on edge , or we can buy infinite capacity on an edge at

cost).

As for the importance of the MRoB Problem in real world applications, it plays an

important role in approximately solving some network design problems with economies

of scale since it is a central special case of the buy-at-bulk network design problem [2].

Thus, it arises in many real world applications. For example, consider an electricity

network with sources that produce energy and customers who absorb energy from a

specific source as terminal pairs. The produced energy at source must be dispatched to

the customers according to their demands. And the capacities of cables which form the

edges of the network can be rent or bought with a cost related with capacities. So, the

goal is to meet the needs of customers with a minimum expense.

The following is an example for the MRoB Problem: Assume that there is a given

undirected graph) with costs for all and terminal pairs

)) with positive demands and and parameter as

shown in the figure 2.1.1. The goal is to install minimum cost of capacities on edges

such that all flows can be routed simultaneously and it can be either rent capacity at cost

 or buy infinite capacity at cost .

4

Figure 2.1.1: An example for the MRoB

Since structure of the problem is an optimization problem, there can be some

several solutions for that kind of problem. Figure 2.2.2, Figure 2.2.3 and Figure 2.2.4

are just one of the solutions.

Figure 2.1.2: 1
st
 solution for the example

The solution for the example given in Figure 2.1.1 consists of the red edges which

are enough to connect to and to as shown in Figure 2.2.2. And renting these

edges is more profitable than buying because the cost of buying these edges will be

)) while the cost of renting these edges will be)

))) .

5

Figure 2.1.3: 2
nd

 solution for the example

Another solution for the example given in Figure 2.1.1 consists of the red edges

which are enough to connect to and to as shown in Figure 2.2.3. And the cost

of renting these edges is

)) ())))

)) ())))

However, if the edge with demand (2+3=5) in Figure 2.2.3 is bought as shown in

Figure 2.1.4 the solution will be more profitable. This time, the cost will be

)))))

)))))

Figure 2.1.4: 3
rd

 solution for the example

6

MRoB is NP-Hard, and even Max-SNP hard like Steiner Forest which will be

discussed in chapter 2.2, since it contains Steiner Tree as a special case [3]. Note that

for and unit demands, this problem reduces to the Steiner Forest Problem. And

with a root node to be simultaneously sent a specified number of flows, it reduces to

Single-commodity Rent-or-Buy Problem (SRoB). In addition, another NP hard problem

named Multicast Rent-or-Buy Problem (MuRoB) is a generalization of MRoB. In this

problem, we are given a set of terminals with and for

 .The goal is to install capacities on the edges of so that one can route

units of flow between the terminals of every group . If for , then

MuRoB reduces to MRoB.

The best known performance guarantee for MRoB was the)-

approximation algorithm by Awerbuch and Azar [4] in 1997 and Bartal [5] in 1998.

Later in 2002, Kumar, Gupta and Roughgarden [6] gave the first constant

approximation algorithm for this problem. Then, Gupta, Kumar and Roughgarden [7]

provide a framework called sample-and-augment to give approximation algorithms for

a number of network problems including a special case of MRoB. This framework is

then generalized to incorporate MRoB by Gupta et al.[8]. The same authors provide the

final framework which also applies MuRoB in [9]. The sample-and-augment algorithm

for MRoB works as follows:

1. Sampling: Select a random subset of terminal pairs by picking every

terminal pair) independently with probability

2. Subproblem: Compute an α-approximate Steiner forest in S and buy all the

edges in .

3. Augmentation: Augment to a feasible solution for by renting additional

edges to connect all terminal pairs in in the least costly manner.

There is a relationship between the approximation ratio obtained for the MRoB in

this framework and what is called strict cost sharing scheme. Gupta et al. [8, 9] show

that if the Steiner forest algorithm has approximation ratio α and admits β-strict cost

share, then the sample and augment algorithm is an)-approximate algorithm for

the MRoB problem.

7

The notation from Fleischer et al. [10] is adapted to define strictness of a Steiner

forest algorithm for the rest of this thesis. Given a forest in , let denote the

graph resulting from contracting all trees of . Let) denote the minimum cost

of any path in . A Steiner forest algorithm is said to be β-strict for , if

there exists nonnegative cost shares for all) satisfying the following two

conditions:

1.) , where denotes the minimum cost of a Steiner forest

for .

2. for all) , where is a Steiner forest for the

terminal set) returned by .

The sample-and-augment framework can be adapted to yield)-

approximate algorithm for the MuRoB problem [7], stochastic Steiner tree (SST)

problem in the black-box model [11] and the stochastic Steiner forest (SSF) problem in

the independent decision model [12].

Finally, sample and augment framework provides Gupta et al. [8, 9] to improve

12-approximate algorithm to the MRoB problem. Bechetti et al. [13] improved

approximation ratio to 6.828. The best approximation algorithm obtained for this

problem is due to Fleischer et al. [14] which is 5.

Since MRoB is a generalization of Steiner Forest, we need to examine the Steiner

Forest Problem in more detail. In fact, the algorithms that we provide also work for the

Steiner Forest Problem and they were inspired as a solution to this were special case.

2.2 THE STEINER FOREST PROBLEM

In the Steiner Forest Problem, which is also known as the Generalized Steiner

Tree Problem, we are given an undirected graph) with a cost function on the

edges , and a set of k terminal pairs)) .

The goal is to find a minimum cost subset of edges such that there is at least one

path between each terminal pair) in). Since this problem is both a

generalization of the famous Steiner Tree Problem, and a special case of several

8

network design problems such as Survivable Network Problem, it is one of the central

problems in the field of approximation algorithms and combinatorial optimization.

Indeed, if for , the Steiner Forest Problem reduces to Steiner

Tree Problem. Moreover, if it is required that there exists edge-disjoint paths

between and in) (where), then Steiner Forest Problem turns into

Survivable Network Design Problem.

Since the Steiner Forest Problem is a generalization of Steiner Tree Problem, it is

NP-hard and in fact MAX-SNP hard [3, 15, 16]. Starting with the work of Takahashi

and Matsuyama [17] which yields a 2-approximation ratio to the problem in 1980, a

series of algorithms sequentially improved the ratio to 1,55 [18, 19, 20, 21, 22, 23, 24].

Finally, Byrka et al. [25] achieved 1.39 approximation with a new LP-based algorithm

which is the best algorithm obtained thus far as shown in Table 2.1.

Table 2.1: Previous works for Steiner Tree Problem

Year
Performance

Ratio
Authors

1980 2 Takahashi, Matsuyama [17]

1993 1,834 Zelikovsky [18]

1994 1,734 Berman, Ramaiyer [19]

1995 1,694 Zelikovsky [20]

1997 1,667 Prömel, Steger [21]

1997 1,664 Karpinski, Zelikovsky [22]

1998 1,598 Hougardy, Prömel [23]

2005 1,55 Robins, Zelikovsky [24]

2013 1,39 Byrka, Grandoni, Rothvoss, Sanita [25]

Even though many algorithmic improvements were recorded for the Steiner Tree

Problem, the same is not true for the Steiner Forest Problem. In fact, there is only one

approximation algorithm stated in two different languages. Obtaining a genuinely

different approximation algorithm for this problem has been a challenge for the past two

decades. Indeed, our attempts towards this thesis were along the lines of a possible such

algorithm.

 One of the approximation algorithms for the Steiner Forest Problem is stated in

purely combinatorial terms by Agrawal, Klein and Ravi [26] while other is

parameterized by a certain variable in LP relaxation of a primal-dual approach by

Goemans and Williamson [27]. In this approach , it has become customary to express

9

the dual variables as moats and the increase in dual variables of [26] as growing moats.

As usual, we will briefly call this version of algorithm which is stated by Agrawal,

Klein and Ravi as AKR. The approximation ratio of AKR is

 and this ratio is tight

since LP relaxation is known to be

 . Apart from this algorithm, a slightly different

algorithm with the same approximation ratio for achieving a game theoretic constraint is

introduced by Könemann et al. [28] in 2008. This algorithm which we will briefly call

as KLS is also based on natural LP relaxation. The main difference from the previous

algorithm is that the moats are growing for an extended period of time in KLS.

10

CHAPTER 3

PREVIOUS ALGORITHMS FOR THE STEINER FOREST

PROBLEM

3.1 ALGORITHMS AKR AND KLS

The standard LP Relaxation of Steiner Forest Problem consists of a variable for

each . This variable is 1 if e is in the resulting forest and 0 otherwise. Let be the

set of subsets of that separate at least one terminal pair in . In other words,

if and only if there is) satisfying . Let also) denote the set

of edges with exactly one endpoint in . The integer linear programming formulation

for the problem is then as follows:

minimize (IP)

subject to) ,

 , .

The constraints enforce that for any cut separating and for some , it must

be selected one edge from). If the constraint is dropped and replaced

with to obtain an LP relaxation, the dual of this linear program is

maximize (D)

subject to) ,

 , .

AKR algorithm considers all connected components of) such that

 for some . Therefore, at the beginning, is completely . Then, is

uniformly increased for all such connected components until the dual inequality for

11

some) becomes tight where is some component at the current iteration. This

edge is then included in the forest. If all the terminal pairs which are in the component

connected, then is not increased for that component in the next iteration. So the

iterations are continued like this until all pairs are connected. After all iterations are

completed, reverse-delete step is performed which excludes the edges from resulting

forest in a reverse order of included edges to the resulting forest. For each excluded

edge, it checks whether the resulting forest is feasible or not. If it is not feasible, then

this edge is again included to the resulting forest.

The difference between AKR and KLS is the period of time for which the set of

moats are grown. In AKR, two initial moats and which belong to the terminal

pairs) might not be able to collide each other during the execution because they

may collide and unit with other components. However, in KLS, the growing of these

moats continues until they meet each other. Hence, the main difference of KLS from

AKR is that the moats corresponding to a specific pair are grown as if the other terminal

pairs do not exist.

Figure 3.1.1: A tight example for AKR

The instance given in Figure 3.1.1 is tight for AKR since optimal solution equals

to) and the solution returned by AKR has cost) which means that

12

when ϵ goes to , the approximation ratio of AKR is

 . The optimum

takes all the edges of costs) as shown in Figure 3.1.2. On the other hand, AKR

first takes the edges of costs since the grown moats first collide on these edges. Then,

it complete execution with taking one of the edge of cost) since all of the

terminal pairs are connected. The solution returned by this algorithm is shown in Figure

3.1.3.

Figure 3.1.2: Optimum solution of the given instance

Figure 3.1.3: The forest returned by AKR

13

3.2 A GREEDY HEURISTIC

Even though the algorithms given up to now have a 2-approximation ratio for the

Steiner Forest Problem, i.e. AKR and KLS, a proverbial greedy algorithm which has

worse approximation ratio already exists. This algorithm is stated as ‘Greedy’ for the

rest of this thesis. Although it is known that this algorithm has a 2-approximation ratio

for the Steiner Tree Problem, this can not be said for the Steiner Forest Problem. In fact,

there is an example that shows this algorithm is worse than AKR, i.e. its approximation

ratio is greater than . In this section, we briefly overview this heuristic and provide an

instance on which the cost of the solution it gives is 4 times as large as the optimum.

Starting from pair, Greedy Algorithm finds the shortest path between

them. Then this path is included to the resulting forest and the pair is contracted which

means the length of the path is zeroed out. This computation performed iteratively up

to .

As example to how good the Greedy Heuristic can perform on a graph, consider

the graph which has a total of terminal pair and every terminal pairs are adjacent

to each other with a cost of as given in Figure 3.2.1.

In this example, the cost of optimum solution is . More specifically, it is

all of the solid edges with cost 2 and 1 as given in Figure 3.2.2. However, Greedy takes

all the adjacent edges of terminal pairs with a cost of) which is four times as

large as the optimum as shown in Figure 3.2.3 while AKR Algorithm finds a solution

with a cost of)) as shown with red edges in Figure 3.2.4.

14

Figure 3.2.1: A sample graph

Figure 3.2.2: The optimum solution of sample graph with red edges

15

Figure 3.2.3: The solution of the Greedy Heuristic

Figure 3.2.4: The solution of AKR

16

CHAPTER 4

THE NEW ALGORITHMS

In this chapter, three equivalent new algorithms for the Steiner Forest Problem

and the MRoB Problem are given. These algorithms are simpler than AKR in that they

are extensives of basic greedy algorithms for finding minimum spanning trees. They are

appropriately named as ÇDK-Kruskal, ÇDK Prim and ÇDK-Boruvka since they are

analogues of the well-known algorithms of Kruskal [29], Prim [30] and Boruvka [31].

To be more specific, we run our algorithms on an adjunct graph H which is derived

from the input graph G. Even though our algorithms are quite similar to the algorithms

of Kruskal, Prim and Boruvka in spirit, a necessary modification is required by the

structure of H. Since these algorithms provide a basis for our approach and the notation,

they are stated in section 4.1 The notation from [32] is used in the statement of these

algorithms as well as in the statements of our new algorithms.

4.1 THE ALGORITHMS OF KRUSKAL, BORUVKA AND PRIM

Each algorithm of Kruskal, Boruvka and Prim provide to find a minimum

spanning tree of a graph G in different ways. The pseudocodes for these algorithms are

given in Algorithm 1, Algorithm 2 and Algorithm 3, respectively.

Kruskal’s algorithm non-decreasingly sorts the edges and processes all of sorted

edges iteratively starting from the edge which has the smallest weight. Then the current

edge is added to the final list if it does not form a new cycle in the graph. In order to

check whether adding this edge forms a new cycle or not, disjoint set structure is used.

17

At the beginning of Kruskal’s algorithm, a set is created for each vertex by

the MAKE-SET command. Additionally FIND-SET command checks whether the set

associated with two vertices are identical. UNION command takes a union of the sets

associated with the two vertices given as parameters. Boruvka’s algorithm is similar to

Kruskal’s algorithm. The difference is that the cheapest edges that are going out of each

set are considered at each step. At the final iteration, algorithm merges the sets

appropriately and continues until just one set remains. Completely different from

Kruskal’s and Boruvka’s algorithm, Prim’s algorithm starts processing edges rom a root

vertex and greedily grows this single set until it contains all the vertices.

Algorithm 1 Kruskal’s algorithm to find a minimum spanning tree of a graph

 1: procedure KRUSKAL))

 2:

 3: for each vertex do

 4:)

 5: Sort the edges of in non-decreasing order by

 6: for each edge) , taken in non-decreasing order by do

 7: if)) then

 8:)

 9:)

10: return

18

Algorithm 2 Boruvka’s algorithm to find a minimum spanning tree of a graph

 1: procedure BORUVKA))

 2:

 3: for each vertex do

 4:)

 5: while there are more than 1 set do

 6: for each set do

 7:

 8: for each vertex in do

 9: {the cheapest edge)such that

)) }

10: {the cheapest edge) in }

11: for each set do

12:)

13: return

Algorithm 3 Prim’s algorithm to find a minimum spanning tree of a graph

 1: procedure PRIM))

 2:

 3:)

 4: while do

 5:

 6: for each vertex in do

 7: {the cheapest edge) such that

))}

 8: {the cheapest edge) in }

 9:)

10: return

19

4.2 INTUITION FOR THE NEW ALGORITHMS

The algorithms of ÇDK-Kruskal, ÇDK-Boruvka and ÇDK-Prim are stated in

purely combinatorial terms and do not use the language imposed by the LP relaxation to

the Steiner Forest Problem. ÇDK-Kruskal imitates Kruskal’s Algorithm by first

computing all the shortest paths between terminal pairs and sorts them in non-

decreasing order with respect to their weighted lengths. Then, if the endpoints of the

paths are not in the same set, it includes them in to the solution in this order. After a

path is included into the solution, a union operation is performed between the sets

corresponding to the terminals which are the endpoints of the path. This is different

from both AKR and KLS. During the execution of these algorithms, the edges that are

not on the shortest path might be included to the solution. ÇDK-Kruskal ensures that the

structure between two terminals remains as a path since the unnecessary edges which

are excluded in the reverse delete step of AKR are not included in ÇDK-Kruskal.

However, our new algorithms might include multiple copies of edges since the shortest

paths between terminal pairs might intersect. Note that it is possible to exclude the

duplicate edges that are found by ÇDK-Kruskal and so decrease the cost of the forest

with an overhead in running time.

Figure 4.2: A graph on which the compared algorithms return different solutions

The difference between the algorithms mentioned in this thesis is best seen on an

example. Consider the graph in Figure 4.2. Obviously, the cost of the optimal and the

feasible solution is 17. AKR takes all the edges and finds the optimal cost. However,

20

KLS Algorithm takes the edges of costs 3 and 5 once, and the edge with the cost 1 twice

since it continues to grow moats and which belong to the pair) even if

they collide with the moats and of the pair) before meeting each other.

Hence, the edge with cost 1 is included into solution twice: once for and and

once for and . Therefore, the cost returned by KLS is 18. On the other hand,

Greedy first finds the shortest path between and and then contracts them. In the

next iteration, it finds the shortest path between and in the graph where and

 are contracted with the shortest path between them. So, the forest returned by Greedy

is just a node where all the terminal pairs are contracted and the cost of solution is 17,

same as AKR. ÇDK-Kruskal computes all the 6 shortest paths between 4 terminals and

processes them in a greedy manner starting from the least cost path. And the cost of the

forest returned by ÇDK-Kruskal is)))

 .

4.3 THE NEW ALGORITHMS ÇDK-KRUSKAL, ÇDK-BORUVKA AND ÇDK-

PRİM

As mentioned before, all of our new algorithms run on an adjunct graph H which

is derived from the input graph G and represents all the shortest paths between terminals

as edges. More specifically, each vertex in the vertex set of H corresponds to a terminal

and edges are shortest paths between these terminals. Hence, there are vertices and

(

) edges in H.

After H is computed, taking into account of the shortest paths of the original

graph G, our algorithms construct a forest by processing the edges of H. Even though

our algorithms are similar to the minimum spanning tree algorithms, they are different

since the computed graph is a complete graph and connecting terminal pairs is enough

to terminate the algorithm instead of a full connection of all the vertices. Therefore, the

solution returned by our algorithms is a forest.

Computing H determines the running time of our algorithms since the running

time of the remaining part of the algorithm which is performed on a graph of

vertices is asymptotically smaller than the running time of computing H. We use

Dijktra’s shortest path algorithm for all the terminals to compute H. This takes

21

)) using a Fibonacci Heap where m is the number of edges, n is the number of

vertices and k is the number of terminal pairs.

The pseudocodes for our new algorithms are given in Algorithm 4, Algorithm 5

and Algorithm 6.

Algorithm 4 Algorithm ÇDK-Kruskal to find a Steiner forest in a graph

 1: procedure ÇDK-Kruskal))

 2:

 3: for each do

 4:)

 5:))

 6: (

) sort the edges of in non-decreasing order by

 7: for to (

) do

 8: Let be between and

 9: if)) then

10: {the set of edges of }

11:)

12: if all and are connected via then

13: break

14: for down to do

15: if is a feasible solution then

16: remove from

17: return

22

Algorithm 5 Algorithm ÇDK-BORUVKA to find a Steiner forest in a graph

 1: procedure ÇDK-Boruvka))

 2:

 3: for each do

 4:)

 5:))

 6: (

) sort the edges of in non-decreasing order by

 7: while not all pairs) are connected via do

 8: for each set do

 9:

10: for each vertex do

11: {the cheapest edge) in such that

))}

12: {the cheapest edge) in }

13: for each set do

14:)

15: for down to do

16: if is a feasible solution then

17: remove from

18: return

Algorithm 6 Algorithm ÇDK-PRIM to find a Steiner forest in a graph

 1: procedure ÇDK-Prim))

 2:

 3:)

 4:))

 5: (

) sort the edges of in non-decreasing order by

 6: while not all pairs) are connected via do

 7:

 8: for each vertex do

 9: {the cheapest edge) in such that

23

))}

10: {the cheapest edge) in }

11:)

12: for down to do

13: if is a feasible solution then

14: remove from

15: return

4.4 EQUIVALENCE OF THE NEW ALGORITHMS

In this part, a lemma that claims given a full ordering of the edges of H with

respect to their weights, ÇDK-Kruskal, ÇDK Boruvka and ÇDK-Prim algorithms return

the same set of edges on H.

Lemma 4.1. Given a full ordering of the edges of H, ÇDK-Kruskal, ÇDK Boruvka and

ÇDK-Prim are equivalent.

Proof. Let
(

)
 be the set of the edges in increasing order. We argue

by induction on , the number of the edges selected by ÇDK-Kruskal algorithm during

its execution. For , ÇDK-Kruskal selects the smallest weighted edge and

let). Consider ÇDK-Boruvka and ÇDK-Prim algorithms are at a situation

where and are not in the same set and the edges that are adjacent to these nodes are

considered. So at this stage, by the nature of these algorithms, the edge will be

included in the forest since it is the smallest weighted edge. Thus, the base case of the

induction is formed. Assume, as the induction hypothesis that, the set

 has been already selected before ÇDK-Kruskal selects)st edge and all

the other edges up to excluding the edges in are not selected, and the set of

selected and unselected edges are the same for ÇDK-Boruvka and ÇDK-Prim. If there is

an edge, say , between and
in ordering, then is not selected by

ÇDK-Kruskal since it creates a cycle, i.e. and are in the same set. Also the edge

will not be selected by ÇDK-Boruvka and ÇDK-Prim since and will be same set for

these algorithms via the edges in by induction hypothesis. Otherwise, these

algorithms will not select one of the edges in which contradicts the induction

24

hypothesis. All that remain is to show that
 is selected by ÇDK-Boruvka and ÇDK-

Prim. Let
) where and are not in the same set and then consider these

algorithms are in a stage that they consider the edges adjacent to and . The edge

will be selected since this edge is the smallest weighted edge which does not create a

cycle by the choice of ÇDK-Kruskal. Finally, the termination conditions are also

equivalent since the condition is a full connection of terminal pairs. Therefore the proof

of the Lemma 4.1 is completed.

4.5 A BAD INSTANCE FOR THE NEW ALGORITHMS

Consider the graph given in Figure 4.5.1. All of the edges between the terminal

pairs have a cost ϵ and the edges between unpaired terminals have cost 1 except the

edge that connects terminal pairs to . This edge has a cost 3 while the cost of the

edges that connect and to other terminals are 2.

Figure 4.5.1: A sample graph

Clearly, the optimum solution is the adjacent edges to the terminal pairs as shown

in Figure 4.5.2. Thus, it has a cost)

25

Figure 4.5.2: Optimum solution of given instance

Consider the computation of the ÇDK-Kruskal Algorithm. It first sorts the paths

between terminals. Then, the edges that have cost ϵ are included to the resulting forest

since all the terminals are not in the same set. In the next step, the algorithm includes

the edges that have cost 1 to connect the remaining terminal pair since these

edges have the smallest weight. Since the included edges are not enough to connect

to , algorithm includes the next two smallest weight edges to the resulting forest

which have cost 2. Therefore, the computation of ÇDK-Kruskal is completed as shown

in Figure 4.4.3. The solution returned by the algorithm has cost))

which means that the approximation ratio of our algorithms is since
))

)

 when goes to .

The instance given in this section shows that the approximation ratio of our

algorithms is not constant, i. e. it depends on . Thus, even if we can find a small

strictness (β) for our new algorithms since their approximation factor depends on for

the Steiner Forest Problem, the same thing holds for the MRoB Problem. This is

because the approximation factor for MRoB is , where β is the strictness and α is

the approximation factor for Steiner Forest.

Figure 4.5.3: The solution of ÇDK-Kruskal for given instance

26

4.6 AN EXECUTION OF THE NEW ALGORITHMS ON AN MROB INSTANCE

In this section, we explain the new algorithms on an example. Consider the graph

given in Figure 4.6.1 where the number of terminal pairs and each node is

represented with an integer. The demands for each terminal pair are unit () for all

 where and . The goal is to determine minimum-cost capacity

installation such that all demands can be routed simultaneously.

Figure 4.6.1: An MROB instance

We use the sample and augment framework of Gupta et.al [9] which is mentioned

in section 2.1 to solve the given instance. By the definition of this framework, in

sampling step, a random subset of terminal pairs is determined by picking every

terminal pair with a probability of . Thus, assume that the terminal pairs and

 are picked in this step as shown in Figure 4.6.2. In the subproblem step, we run

the Steiner Forest Algorithm on the terminal pairs picked in sampling step and buy the

edges returned by the algorithm. This step plays an important role in solving the MRoB

Problem since the Steiner Forest computed in this step determines the solution of the

problem. For this reason, we show the execution of both ÇDK-Kruskal and AKR for the

instance defined in this section.

27

Figure 4.6.2: The picked terminal pairs in subproblem step of the Sample and Augment

Framework

By the definition of ÇDK-Kruskal, it creates sets for each terminal and then

computes an adjunct graph by computing (

) shortest paths as shown in Figure

4.6.3. It then sorts all the shortest paths in the adjunct graph in non-decreasing order

by their weighted lengths as shown in Table 4.6.1. In addition, with this order it checks

whether the end points of the paths are in the same set.

Figure 4.6.3: The adjunct graph

Table 4.6.1: The sorted shortest paths between each terminal in

Node1 Node2 Distance

1 s1 s2 1

2 t1 t2 1

3 s2 t1 4

4 s1 t1 4

5 s2 t2 4

6 s1 t2 5

28

ÇDK-Kruskal first checks whether and terminals are in the same set since

 path is the shortest path in . Thus, it takes this path to the resulting forest and

performs a union of the sets associated with these vertices as shown in Figure 4.6.4.

Figure 4.6.4: 1
st
 iteration of ÇDK-Kruskal after computing

Then, the algorithm checks whether and terminals are in the same set. It also

adds path to the solution and performs a union of the sets associated with these

terminals as shown in Figure 4.6.5.

Figure 4.6.5: 2
nd

 iteration of ÇDK-Kruskal after computing

In the next step, the algorithm checks whether and are in the same set. Since

they are not in the same set, it adds path to the resulting forest and performs a

union the sets associated with these terminals as shown in Figure 4.6.6.

Figure 4.6.6: 3
rd

 iteration of ÇDK-Kruskal after computing

29

Finally, all the terminal pairs are connected via the shortest path between the

terminals)) and) with a cost of . The shortest path

between and consists of path. Thus, the resulting forest is given

in Figure 4.6.7 with the red edges. Consequently, sample and augment buys the forest

returned by the algorithm with a cost of .

Figure 4.6.7: The forest returned by ÇDK-Kruskal

In the augmentation step, we need to augment the forest returned by the Steiner

Forest algorithm to a feasible solution for all terminal pairs by renting additional edges

to connect the terminal pairs which are not chosen in the sampling step. Hence, in this

instance, we need to augment the forest returned by ÇDK-Kruskal to feasible solution

by renting additional edges to connect to in the least costly manner. Thus, the

blue edge between and is rented with a cost of as shown in

Figure 4.6.8. So the final cost is for this MRoB instance when ÇDK-

Kruskal is used in subproblem step of the sample and augment framework.

Figure 4.6.8: The solution of MRoB instance using ÇDK-Kruskal

30

In the subproblem step of sample and augment, AKR starts by growing moats for

all terminals chosen in sampling step as shown in Figure 4.6.9. In the first step, the

growth of moats is units since the shortest distance between two components is .

Figure 4.6.9: Growth of moats

AKR includes the edges) and) since the sum of the span of moats

covers these edges as shown in Figure 4.6.10 and performs a union of the tight

components corresponding to these vertices.

Figure 4.6.10: Including the edges corresponding to tight components

Then, AKR continues to grow the moats by and then 1 unit as the same

manner and again it includes the edges corresponding to the tight components as shown

with red in Figure 4.6.11. So, AKR takes all the edges

)))))))) simultaneously. However, in the

reverse delete step it excludes the edges))))))).

31

Thus, the forest returned by AKR which is shown in Figure 4.6.12 by red edges is the

 path with a cost of .

Figure 4.6.11: 2
nd

 iteration of AKR

Figure 4.6.12: The forest returned by AKR and augment step

Consequently, sample and augment buys the forest returned by the algorithm with

a cost of . Now, we need to augment the forest returned by AKR to

feasible solution by renting additional edges to connect to in the least costly

manner. Thus,) and) edges are rented with a cost of)

))) as shown in Figure 4.6.12 by the blue edges. So the final

cost is for this MRoB instance when AKR is used in subproblem step of

the sample and augment framework.

32

CHAPTER 5

EXPERIMENTS

 In this chapter, the performance of AKR, Greedy and ÇDK-Kruskal for the

Multicommodity Rent-or-Buy Problem are compared on a set of test graphs. We use

JAVA on a computer which has Intel (R) Core (TM) i5-3470 CPU @ 3.20 GHz, 4.00

GB RAM and 64 bit operating system. All of the algorithms are applied to three types

of graphs:

1. Random Graphs of Erdöş-Renyi model where the probability of having an

edge between two nodes is a constant .

2. Real World Geometric Graphs which is obtained from TSP National

Collection data that can be downloaded from [33]. This data consists of 734

cities of Uruguay as nodes and the distances between each city as weights. In

the rest of the thesis, this graph is called as TSP Uruguay Graph. We have

tried all the algorithms on several other real world data from the same source

and the results were similar.

3. Random Geometric Graphs where the nodes are randomly chosen points on

the Euclidean plane in a square shaped area, and there is an edge between two

nodes if the distance between them is smaller than some specified value.

Each generated random graph in the experiments has 1000 nodes and a variable

where is the probability that there is an edge between a pair of nodes. Moreover,

according to demands of every terminal pairs and cost of edges , two types

of random graphs are defined: Random demand-Unit weight, Random demand-Random

weight for and for the number of terminal pairs

 . Note that if , the graph turns out to be a complete

graph. TSP Uruguay Graph is defined as TSP Uruguay Graph with Random demands

for a value which determines whether there is an edge between two cities in the

33

graph where is the maximum distance between two cities and

 . If the distance between two cities is smaller than or equal

to , the edge corresponding to this distance is included to TSP Uruguay Graph.

Moreover, according to TSP data, the maximum distance between two cities, m, equals

5746,907405630345. However, for a better computation, all the weights are rounded in

our experiment. So equals 5747 for TSP Uruguay in our experiments. We have

observed that if the weights are in double precision, the running time of AKR is

exceedingly high, probably due to the excessive number of updates performed in

floating point arithmetic. Similarly, Random Geometric Graphs have 1000 nodes with

randomly weighted edges between 1 and 1000 with the same and values.

The reason why we are separating graphs according to demands and weights as

random and unit is that we would like to see various computational results since the

demand value of the terminal pairs may result in a different forest. The computational

results that we get with unit demands are similar to graphs with random demands. Thus,

we just state the experiments with the graphs with random demands.

A total of 144 experiments on random graphs, 48 experiments on the real world

graph and 48 experiments on a geometric random graph are performed to test AKR,

ÇDK-Kruskal and Greedy Heuristic for the Multicommodity Rent-or-Buy Problem.

This chapter consists of five parts. Each part represents 48 experiments. First three

parts show the computational results for random graphs while the last two show the

computational result for TSP Uruguay Graph and Geometric Random Graph. The

framework of Gupta et al. [27], sample and augment algorithm, is used to compute all

of the algorithms.

5.1 EXPERIMENTS ON RANDOM GRAPHS WITH RANDOM DEMAND-UNIT

WEIGHT

In this experiment, a random graph with 1000 nodes and unit weighted edges,

 , is generated for each and where is the

probability that there is an edge between a pair of nodes and

 is the number of terminal pairs in the definition of

34

MRoB. In addition, demands for each terminal are randomly generated between 1 and 5

and . Therefore, in the sampling step, every terminal pair is picked with a

probability of

). A total of experiments are performed in this

section. The computational results for each are given as follows:

Table 5.1.1: Computational results on Random Graphs with

Random demand-Unit weight for

Unit Weight (wi=1)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes= 0.1

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 30 30 20 624 125 156

3 30 34 24 109 110 46

5 55 55 40 250 187 109

10 70 70 70 78 312 124

20 147 152 127 281 468 219

30 236 236 243 109 842 265

40 258 258 259 188 889 437

50 372 372 375 172 1357 483

Figure 5.1.1: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Unit weight for

Figure 5.1.2: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random

Graph with Random demand-Unit weight for

0

200

400

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

500

1000

1500

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

35

Table 5.1.2: Computational results on Random Graphs with

 Random demand-Unit weight for

Unit Weight (wi=1)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes= 0.2

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 20 25 20 140 125 47

3 18 18 18 124 63 141

5 24 24 24 125 109 156

10 77 77 72 328 421 156

20 146 146 136 140 1030 452

30 239 239 234 172 1607 390

40 307 307 292 484 1950 764

50 360 360 316 390 2745 827

Figure 5.1.3: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Unit weight for

Figure 5.1.4: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random

Graph with Random demand-Unit weight for

0

100

200

300

400

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

500

1000

1500

2000

2500

3000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

36

Table 5.1.3: Computational results on Random Graphs with

 Random demand-Unit weight for

Unit Weight (wi=1)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes=0.4

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 20 25 20 1045 327 110

3 17 17 17 281 187 125

5 38 38 33 390 437 1420

10 63 63 63 187 874 484

20 153 153 126 936 2746 655

30 185 205 194 453 3666 951

40 293 293 257 546 5148 1216

50 364 364 306 624 6474 1732

Figure 5.1.5: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Unit weight for

Figure 5.1.6: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random

Graph with Random demand-Unit weight for

0

100

200

300

400

2 3 5 10 20 30 40 50

Csot

k

AKR

CDK_Kruskal

Greedy

0

2000

4000

6000

8000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

37

Table 5.1.4: Computational results on Random Graphs with

 Random demand-Unit weight for

Unit Weight (wi=1)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes= 0.6

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 12 12 12 827 374 406

3 19 19 19 312 1107 359

5 36 36 31 125 1762 406

10 58 58 48 624 3666 1076

20 153 153 123 453 6676 1560

30 214 214 176 764 9111 2823

40 253 253 211 1701 10062 2901

50 385 385 297 639 9953 2200

Figure 5.1.7: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Unit weight for

Figure 5.1.8: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random

Graph with Random demand-Unit weight for p=

0

100

200

300

400

500

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

2000

4000

6000

8000

10000

12000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

38

Table 5.1.5: Computational results on Random Graphs with

 Random demand-Unit weight for

Unit Weight (wi=1)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes= 0.8

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 7 7 7 110 265 125

3 17 17 12 125 639 203

5 45 45 30 156 1716 328

10 55 55 35 406 1840 609

20 122 122 77 577 4040 1124

30 199 204 124 764 6692 1701

40 288 288 187 1201 13588 5600

50 367 362 252 1466 14492 3744

Figure 5.1.9: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Unit weight for

Figure 5.1.10: Running time comparison of AKR, Greedy and ÇDK-Kruskal on

Random Graph with Random demand-Unit weight for

0

100

200

300

400

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

5000

10000

15000

20000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

39

Table 5.1.6: Computational results on Random Graphs with

Random demand-Unit weight for

Unit Weight (wi=1)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 1

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 6 6 6 172 109 156

3 11 11 11 171 422 218

5 45 45 25 62 1342 406

10 95 95 50 62 3417 842

20 121 121 76 592 4134 1311

30 207 207 117 765 6832 1716

40 230 230 135 1295 8736 2512

50 289 289 174 1684 9906 3370

Figure 5.1.11: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Unit weight for

Figure 5.1.12: Running time comparison of AKR, Greedy and ÇDK-Kruskal on

Random Graph with Random demand-Unit weight for

0

100

200

300

400

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

2000

4000

6000

8000

10000

12000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

40

The experiments over the generated random graphs show that Greedy gives better

cost results while weights of all edges are unit and demands of terminal pairs are

randomly assigned. In addition, the results of ÇDK-Kruskal and AKR are close to each

other. In many cases, AKR gives slightly better results and the differences between the

results become more significant as the probability of having an edge between two nodes

increases. More specifically, AKR has better running time compared to both ÇDK-

Kruskal and Greedy since unit weights cause all the moats to collide during the first few

iterations. Besides, the running time of Greedy is better than ÇDK-Kruskal, because

ÇDK-Kruskal is computing an adjunct graph which takes time when it is compared to

finding shortest path.

One of the main results of this experiment is that when edge weights span a

narrow range, AKR runs much faster than ÇDK-Kruskal and Greedy since all the moats

grown by AKR collide during the first few iterations and the result is immediately

returned.

5.2 EXPERIMENTS ON RANDOM GRAPHS WITH RANDOM DEMAND-

RANDOM WEIGHT (Wi=1-100)

In this experiment, a random graph with 1000 nodes and random edge costs

between 1 and 100 for each vertex are generated for each and where

 is the probability that there is an edge between a pair of nodes

and is the number of terminal pairs in the definition of

MRoB. In addition, demands for each terminal are randomly generated between 1 and 5

and . Therefore, in the sampling step, every terminal pair is picked with a

probability of . A total of experiments are performed in

this section. The computational results for each are given as follows:

41

Table 5.2.1: Computational results on Random Graphs with

Random demand-Random weight (wi=1-100) for

Random Weight (wi=1-100)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 0.1

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 145 145 135 640 93 172

3 205 215 185 187 125 47

5 195 200 180 93 172 93

10 120 430 365 93 328 140

20 705 765 721 156 500 312

30 1053 1113 1005 219 889 312

40 1307 1377 1366 296 1108 561

50 1582 1693 1656 515 1233 561

Figure 5.2.1: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Random weight (wi=1-100) for

Figure 5.2.2: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random

Graph with Random demand-Random weight (wi=1-100) for

0

500

1000

1500

2000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

500

1000

1500

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

42

Table 5.2.2: Computational results on Random Graphs with

Random demand-Random weight (wi=1-100) for

Random Weight (wi=1-100)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 0.2

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 85 100 80 94 140 47

3 107 112 82 141 203 78

5 126 136 106 109 218 172

10 267 289 244 140 484 234

20 514 544 483 468 1061 468

30 637 695 652 359 1576 468

40 896 961 959 468 2075 858

50 1038 1096 1098 468 3198 858

Figure 5.2.3: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Random weight (wi=1-100) for

Figure 5.2.4: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random

Graph with Random demand-Random weight (wi=1-100) for

0

200

400

600

800

1000

1200

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

1000

2000

3000

4000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

43

Table 5.2.3: Computational results on Random Graphs with

Random demand-Random weight for

Random Weight (wi=1-100)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 0.4

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 16 16 16 109 63 78

3 75 95 65 188 561 141

5 118 118 98 156 546 172

10 168 178 164 250 1185 375

20 359 394 361 437 2589 655

30 461 480 466 608 3323 982

40 691 723 700 764 4805 1357

50 755 804 786 968 5865 1576

Figure 5.2.5: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Random weight (wi=1-100) for

Figure 5.2.6: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random

Graph with Random demand-Random weight (wi=1-100) for

0

200

400

600

800

1000

2 3 5 10 20 30 40 50

Csot

k

AKR

CDK_Kruskal

Greedy

0

2000

4000

6000

8000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

44

Table 5.2.4: Computational results on Random Graphs with

Random demand-Random weight (wi=1-100) for

Random Weight (wi=1-100)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 0.6

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 45 45 40 172 515 140

3 42 42 42 172 280 172

5 110 120 90 218 999 249

10 165 165 140 327 1451 499

20 332 327 287 421 3744 1061

30 426 428 413 765 5273 1326

40 567 569 565 1061 6006 1809

50 666 691 730 1107 8424 2481

Figure 5.2.7: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Random weight (wi=1-100) for

Figure 5.2.8: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random

Graph with Random demand-Random weight (wi=1-100) for

0

200

400

600

800

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

2000

4000

6000

8000

10000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

45

Table 5.2.5: Computational results on Random Graphs with

Random demand-Random weight (wi=1-100) for

Random Weight (wi=1-100)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 0.8

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 40 45 35 62 546 141

3 27 27 27 348 394 218

5 85 85 62 374 1014 336

10 186 216 156 202 3318 672

20 315 330 260 733 4836 1123

30 395 408 360 952 6224 1935

40 486 503 511 1186 7675 2184

50 574 603 605 1872 11159 3104

Figure 5.2.9: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Random weight (wi=1-100) for

Figure 5.2.10: Running time comparison of AKR, Greedy and ÇDK-Kruskal on

Random Graph with Random demand-Random weight (wi=1-100) for

0

200

400

600

800

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

2000

4000

6000

8000

10000

12000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

46

Table 5.2.6: Computational results on Random Graphs with

Random demand-Random weight (wi=1-100) for

Random Weight (wi=1-10000)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 1

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 45 45 35 94 655 172

3 24 24 24 187 390 218

5 57 57 47 390 936 374

10 148 151 114 483 2512 718

20 271 271 236 858 5195 1342

30 377 372 301 1310 7239 2246

40 530 553 521 1076 12527 2605

50 620 640 635 1825 13119 3495

Figure 5.2.11: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Random weight (wi=1-100) for

Figure 5.2.12: Running time comparison of AKR, Greedy and ÇDK-Kruskal on

Random Graph with Random demand-Random weight (wi=1-100) for

0

200

400

600

800

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

5000

10000

15000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

47

The experiments over the generated random graphs show that Greedy gives better

cost results while weights of all edges and demands of terminal pairs are randomly

assigned. In addition, the results of ÇDK-Kruskal and AKR are close to each other. In

many cases, AKR gives slightly better results and the differences between the results

become more significant as the probability of having an edge between two nodes

increases. More specifically, AKR has better running time according to both ÇDK-

Kruskal and Greedy since small weights causes all the moats to collide in a short period

of time. Besides, the running time of Greedy is better than ÇDK-Kruskal because ÇDK-

Kruskal is computing an adjunct graph which takes much time when it is compared to

finding shortest path. Thus, the results of the experiments in this section are quite

similar to the results stated in section 5.1 when AKR and ÇDK-Kruskal are compared

since the weights of the edges are still small. The main difference is that, in this section

Greedy is not better than the other algorithms give similar cost results.

Similar to the previous section, since edge weights span a relatively narrow range

and the moats grown by AKR collide during the first few iterations and the result is

immediately returned, AKR runs much faster than ÇDK-Kruskal and Greedy.

5.3 EXPERIMENTS ON RANDOM GRAPHS WITH RANDOM DEMAND-

RANDOM WEIGHT (Wi=1-10000)

In this experiment, a random graph with 1000 nodes and random edge costs

between 1 and 10000 for each vertex are generated for each and where

 is the probability that there is an edge between a pair of nodes

and is the number of terminal pairs in the definition of

MRoB. In addition, demands for each terminal are randomly generated between 1 and 5

and . Therefore, in the sampling step, every terminal pair is picked with a

probability of . A total of experiments are performed in

this section. The computational results for each are given as follows:

48

Table 5.3.1: Computational results on Random Graphs with

Random demand-Random weight (wi=1-10000) for

Random Weight (wi=1-10000)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 0.1

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 4903 4903 4903 811 78 172

3 7034 7034 7034 655 78 63

5 18232 18732 15972 1373 218 78

10 33984 36769 29441 4415 219 140

20 48133 51543 45646 3728 437 312

30 67371 75721 69979 17363 780 281

40 78277 83517 84601 6115 1623 452

50 107833 117103 106094 7941 1263 780

Figure 5.3.1: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Random weight (wi=1-10000) for

Figure 5.3.2: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random

Graph with Random demand-Random weight (wi=1-10000) for

0

20000

40000

60000

80000

100000

120000

140000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

5000

10000

15000

20000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

49

Table 5.3.2: Computational results on Random Graphs with

Random demand-Random weight (wi=1-10000) for

Random Weight (wi=1-10000)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 0.2

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 1053 1053 1053 125 62 78

3 3616 3616 3616 125 78 63

5 5366 5366 5366 655 234 140

10 11467 11801 10919 1139 499 203

20 19025 19960 18796 3525 1326 531

30 37291 42206 36994 4914 1763 499

40 45452 48052 45073 6988 1966 546

50 43277 46437 44808 8736 2465 905

Figure 5.3.3: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Random weight (wi=1-10000) for

Figure 5.3.4: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random

Graph with Random demand-Random weight (wi=1-10000) for

0

10000

20000

30000

40000

50000

60000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

2000

4000

6000

8000

10000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

50

Table 5.3.3: Computational results on Random Graphs with

Random demand-Random weight (wi=1-10000) for

Random Weight (wi=1-10000)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 0.4

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 2330 2645 2090 219 343 93

3 1542 1542 1542 967 203 125

5 5595 6095 4685 2153 655 172

10 8457 9092 8040 2714 1388 375

20 13010 14660 12099 9345 1809 624

30 19393 21153 19527 7613 3697 873

40 20781 23276 21119 8019 5569 1295

50 27965 30320 29611 9266 4852 1342

Figure 5.3.5: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Random weight (wi=1-10000) for

Figure 5.3.6: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random

Graph with Random demand-Random weight (wi=1-10000) for

0

10000

20000

30000

40000

2 3 5 10 20 30 40 50

Csot

k

AKR

CDK_Kruskal

Greedy

0

2000

4000

6000

8000

10000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

51

Table 5.3.4: Computational results on Random Graphs with

Random demand-Random weight (wi=1-10000) for

Random Weight (wi=1-10000)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 0.6

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 760 760 760 312 249 125

3 734 734 734 312 296 172

5 1362 1362 1362 749 375 265

10 4671 4791 4170 1436 936 577

20 9794 10584 9126 4368 3338 905

30 12927 13537 12435 7410 4929 1451

40 11809 12694 12575 11170 5226 1888

50 17193 18428 17213 9391 8330 2403

Figure 5.3.7: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Random weight (wi=1-10000) for

Figure 5.3.8: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random

Graph with Random demand-Random weight for (wi=1-10000)

0

5000

10000

15000

20000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

2000

4000

6000

8000

10000

12000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

52

Table 5.3.5: Computational results on Random Graphs with

Random demand-Random weight (wi=1-10000) for

Random Weight (wi=1-10000)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 0.8

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 1250 1345 1160 561 562 140

3 1581 1721 1531 1357 609 187

5 2513 2802 2121 3651 1248 421

10 4853 5368 4331 4134 2823 624

20 6331 6971 6016 2558 4417 1225

30 9969 10559 9851 5570 5717 1701

40 11299 11899 12054 8596 7207 2059

50 13035 13991 13216 14492 10393 2772

Figure 5.3.9: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Random weight (wi=1-10000) for

Figure 5.3.10: Running time comparison of AKR, Greedy and ÇDK-Kruskal on

Random Graph with Random demand-Random weight (wi=1-10000) for

0

5000

10000

15000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

5000

10000

15000

20000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

53

Table 5.3.6: Computational results on Random Graphs with

Random demand-Random weight (wi=1-10000) for

Random Weight (wi=1-10000)

Random Demand (di=1-5) and M=5

Probability that there is an edge between a pair of nodes = 1

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 815 835 685 593 624 156

3 462 462 462 203 406 234

5 2100 2405 1860 1654 1560 312

10 2627 2767 2422 2153 2418 686

20 5990 6440 5463 4103 5132 1451

30 5626 9380 8536 15615 6911 1903

40 8812 9397 5965 11123 8923 2824

50 10417 11212 11405 8984 12212 3057

Figure 5.3.11: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph

with Random demand-Random weight (wi=1-10000) for

Figure 5.3.12: Running time comparison of AKR, Greedy and ÇDK-Kruskal on

Random Graph with Random demand-Random weight (wi=1-10000) for

0

2000

4000

6000

8000

10000

12000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

5000

10000

15000

20000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

54

The experiments over the generated random graphs show that AKR gives slightly

better cost results while weights of all edges and demands of terminal pairs are

randomly assigned. The differences between the results become more significant as the

probability of having an edge between two nodes increases. Thus, Greedy has better

running time compared to ÇDK-Kruskal since ÇDK-Kruskal is computing an adjunct

graph which takes much time when it is compared to finding shortest path.

One of the main results of this experiment is that when edge weights span a wide

range, AKR runs slower than ÇDK-Kruskal and Greedy, especially when the graph is

sparse since there is an excessive number of edge weight updates represented by moats

grown in the algorithm. However, when the graph becomes denser, e.g. complete graph

with , the number of edge weight updates decreases for AKR since there is a

direct edge between any terminal pair. Hence, its running time gets closer to ÇDK-

Kruskal.

5.4 EXPERIMENTS ON TSP URUGUAY GRAPH WITH RANDOM

DEMANDS-

In this experiment, AKR, Greedy and ÇDK-Kruskal are run on a real world graph

with 734 nodes and the edges which are determined by a value where

is the maximum distance between two cities in Uruguay

and . If the distance between two cities is smaller than or

equal to , the edge corresponding to this distance is included into the graph.

We run AKR, Greedy and ÇDK-Kruskal on TSP Uruguay Graph for each

 in which the demands for each terminal pair are randomly

assigned integer between 1 and 5 and . Thus, in the sampling step, every terminal

pair is picking with a probability of . The computational results for each are

given as follows:

55

Figure 5.4.1: The point set derived from the National Imagery and Mapping Agency

Database of Geographic Feature Names [34]

Figure 5.4.2: Map of Uruguay from CIA World Factbook [35]

56

Table 5.4.1: Computational results on TSP Uruguay Graph with

random demands for

Random Demand (di=1-5) and M=5

For the edges of weight less than 0,1 x Maximum weight (5746)

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 20905 20905 24690 2715 62 156

3 20919 20919 20501 3806 47 31

5 38623 38623 39153 3260 63 31

10 56660 56660 64386 3182 94 47

20 78341 78595 89087 3588 249 63

30 94300 94450 108301 3900 343 94

40 106652 106439 121884 2792 484 125

50 127397 127771 137445 3713 609 171

Figure 5.4.3: Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay

Graph with random demands for

Figure 5.4.4: Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP

Uruguay Graph with random demands - for

0

50000

100000

150000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

1000

2000

3000

4000

5000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

57

Table 5.4.2: Computational results on TSP Uruguay Graph with

random demands for

Random Demand (di=1-5) and M=5

For the edges of weight less than 0,2 x Maximum weight (5746)

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 24280 24280 24280 18486 63 31

3 14239 14239 14239 1919 78 47

5 38807 38810 38725 26286 172 78

10 58365 59257 66911 19468 531 140

20 83408 83408 96991 21840 1170 265

30 103848 104182 118563 16442 1295 374

40 120615 121027 152622 20389 1170 328

50 115420 115939 146363 16099 2434 639

Figure 5.4.5: Cost Comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay

Graph with random demands for y=0.2

Figure 5.4.6: Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP

Uruguay Graph with random demands - for

0

50000

100000

150000

200000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

5000

10000

15000

20000

25000

30000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

58

Table 5.4.3: Computational results on TSP Uruguay Graph with

random demands for

Random Demand (di=1-5) and M=5

For the edges of weight less than 0,4 x Maximum weight (5746)

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 13250 13250 13250 19141 203 93

3 13445 13495 13495 48376 359 140

5 54045 54409 55445 104988 733 203

10 49633 49633 57008 96689 1294 328

20 94813 95019 105224 71417 2387 671

30 97987 97821 122524 89715 2746 1295

40 109474 109912 142335 83943 4228 1529

50 127912 128206 166226 50809 3073 1638

Figure 5.4.7: Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay

Graph with random demands for

Figure 5.4.8: Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP

Uruguay Graph with random demands - for

0

50000

100000

150000

200000

2 3 5 10 20 30 40 50

Csot

k

AKR

CDK_Kruskal

Greedy

0

20000

40000

60000

80000

100000

120000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

59

Table 5.4.4: Computational results on TSP Uruguay Graph with

random demands for

Random Demand (di=1-5) and M=5

For the edges of weight less than 0,6 x Maximum weight (5746)

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 10350 10350 10350 10935 297 125

3 34950 34950 37390 144815 998 203

5 48336 48336 56050 186170 1466 328

10 52578 52578 62188 96127 3136 624

20 74261 75003 78298 158184 2043 1295

30 110278 110494 148778 86455 3416 1966

40 103725 103725 136375 132678 9641 2371

50 127048 127060 160933 73850 5023 3261

Figure 5.4.9: Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay

Graph with random demands for

Figure 5.4.10: Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP

Uruguay Graph with random demands - for

0

50000

100000

150000

200000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

50000

100000

150000

200000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

60

Table 5.4.5: Computational results on TSP Uruguay Graph with

random demands for

Random Demand (di=1-5) and M=5

For the edges of weight less than 0,8 x Maximum weight (5746)

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 3436 3436 3436 125 93 110

3 21412 21412 21312 32448 811 234

5 30803 30803 32738 112071 1045 328

10 63890 63890 74391 114348 3073 718

20 86275 56847 113775 102835 2496 1451

30 104813 105116 126085 103584 5928 1513

40 111628 112162 134230 117468 11841 2917

50 126788 127185 182165 89169 12418 3744

Figure 5.4.11: Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay

Graph with random demands for

Figure 5.4.12: Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP

Uruguay Graph with random demands - for

0

50000

100000

150000

200000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

20000

40000

60000

80000

100000

120000

140000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

61

Table 5.4.6: Computational results on TSP Uruguay Graph with

random demands for

Random Demand (di=1-5) and M=5

For the edges of weight less than 1 x Maximum weight (5746)

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 8735 8735 8735 35069 359 156

3 20151 20151 20151 119018 374 328

5 37937 37985 38739 321976 687 280

10 53773 54313 58254 63208 1544 452

20 77844 78049 88494 144730 4071 1342

30 87204 88033 102970 179272 4664 1810

40 104174 104236 126566 81773 11451 2745

50 104151 104226 140009 94863 11841 3728

Figure 5.4.13: Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay

Graph with random demands for

Figure 5.4.14: Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP

Uruguay Graph with random demands- for

0

50000

100000

150000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

100000

200000

300000

400000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

62

The experiments over the TSP Uruguay Graph show that AKR and ÇDK-Kruskal

gives better cost results than Greedy. And in many cases AKR gives slightly better

results than ÇDK-Kruskal. The differences between the results become more significant

as the edges between cities which are determined by the value increases. Thus,

Greedy has better running time compared to ÇDK-Kruskal since ÇDK-Kruskal is

computing an adjunct graph which takes much time when it is compared to finding

shortest path. We would like to note that, we have run these algorithms on various TSP

data and eventually, very similar to the ones we have observed for TSP Uruguay.

One of the main results of this experiment is that since edge weights span a wide

range in real world data and it causes excessive number of edge weight updates

represented by moat grown in the AKR algorithm, it runs much slower than ÇDK-

Kruskal and Greedy. However, when the graph becomes denser, e.g. complete graph

with , the number of edge weight updates decreases for AKR since there is a

direct edge between any terminal pair. Hence, its running time gets closer to ÇDK-

Kruskal. In addition, ÇDK-Kruskal turns out to be a very good algorithm for real world

graphs since its running time is closer to Greedy, but its cost results are similar to AKR.

5.5 EXPERIMENTS ON A GEOMETRIC RANDOM GRAPH WITH RANDOM

DEMAND

In this experiment, AKR, Greedy and ÇDK-Kruskal are run on a geometric

random graph with 1000 nodes and the edges which are determined by a value

where is the maximum distance between two nodes in graph and

 . If the distance between two nodes is smaller than or equal

to , the edge corresponding to this distance is included into the graph.

We run AKR, Greedy and ÇDK-Kruskal on generated Geometric Random Graph

for each in which the demands for each terminal pair

are randomly assigned integer between 1 and 5 and . Thus, in the sampling step,

every terminal pair is picking with a probability of . The computational results for

each are given as follows:

63

Table 5.5.1: Computational results on Geometric Random Graph with

random demands for

Random Demand (di=1-5) and M=5

For the edges of weight less than 0,1 x Maximum weight (1368)

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 4385 4385 4500 1373 88 587

3 3582 3582 3582 117 17 72

5 10547 10547 10314 1691 459 63

10 11837 11837 11030 1611 265 93

20 20003 20051 22867 2000 605 194

30 21552 21559 25812 1911 531 199

40 26734 26769 31192 1534 661 221

50 29838 29878 35552 1359 892 335

Figure 5.5.1: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric

Random Graph with random demands for

Figure 5.5.2: Running time comparison of AKR, Greedy and ÇDK-Kruskal on

Geometric Random Graph with random demands - for

0

10000

20000

30000

40000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

500

1000

1500

2000

2500

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

64

Table 5.5.2: Computational results on Geometric Random Graph with

random demands for

Random Demand (di=1-5) and M=5

For the edges of weight less than 0,2 x Maximum weight (1368)

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 7065 7065 7045 15838 259 74

3 3733 3733 3733 5444 114 84

5 5708 5718 5718 4270 288 118

10 14060 14180 14898 8391 680 236

20 21359 21433 24864 13585 1337 356

30 23323 23315 28121 17454 2233 666

40 27330 27573 32515 8522 2396 875

50 31030 31193 37241 9146 3121 1340

Figure 5.5.3: Cost Comparison of AKR, Greedy and ÇDK-Kruskal on Geometric

Random Graph with random demands for y=0.2

Figure 5.5.4: Running time comparison of AKR, Greedy and ÇDK-Kruskal on

Geometric Random Graph with random demands - for

0

10000

20000

30000

40000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

5000

10000

15000

20000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

65

Table 5.5.3: Computational results on Geometric Random Graph with

random demands for

Random Demand (di=1-5) and M=5

For the edges of weight less than 0,4 x Maximum weight (1368)

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 2184 2184 2184 117 72 298

3 5448 5563 5563 50886 326 415

5 7808 7836 8180 19922 1322 421

10 11810 11883 14058 42376 2116 498

20 17480 20333 23086 17480 4101 1549

30 22556 22577 27523 43473 6873 1711

40 26286 26557 33152 24409 7591 2474

50 29972 29987 37306 28833 9655 2938

Figure 5.5.5: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric

Random Graph with random demands for

Figure 5.5.6: Running time comparison of AKR, Greedy and ÇDK-Kruskal on

Geometric Random Graph with random demands - for

0

10000

20000

30000

40000

2 3 5 10 20 30 40 50

Csot

k

AKR

CDK_Kruskal

Greedy

0

10000

20000

30000

40000

50000

60000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

66

Table 5.5.4: Computational results on Geometric Random Graph with

random demands for

Random Demand (di=1-5) and M=5

For the edges of weight less than 0,6 x Maximum weight (1368)

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 5435 5417 5417 84742 608 275

3 5338 5226 5226 70072 524 289

5 6867 6879 6879 77002 1511 547

10 12854 12854 15350 78500 4354 1215

20 19099 19290 22286 28835 6616 1940

30 23543 23544 28158 32437 12299 3059

40 26451 26575 32311 57064 14880 3905

50 31716 31789 39523 41520 13421 3391

Figure 5.5.7: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric

Random Graph with random demands for

Figure 5.5.8: Running time comparison of AKR, Greedy and ÇDK-Kruskal on

Geometric Random Graph with random demands - for

0

10000

20000

30000

40000

50000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

20000

40000

60000

80000

100000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

67

Table 5.5.5: Computational results on Geometric Random Graph with

random demands for

Random Demand (di=1-5) and M=5

For the edges of weight less than 0,8 x Maximum weight (1368)

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 3625 3625 3625 46730 442 214

3 4607 4607 4607 56000 350 204

5 9295 9295 9237 68611 2201 483

10 11776 11776 14151 27701 3311 809

20 19693 19849 24131 55874 6646 1746

30 22666 22699 27806 37996 11975 2927

40 26538 26625 32508 47549 12865 3151

50 50150 29831 37518 50150 17459 5742

Figure 5.5.9: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric

Random Graph with random demands for

Figure 5.5.10: Running time comparison of AKR, Greedy and ÇDK-Kruskal on

Geometric Random Graph with random demands - for

0

10000

20000

30000

40000

50000

60000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

20000

40000

60000

80000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

68

Table 5.5.6: Computational results on Geometric Random Graph with

random demands for

Random Demand (di=1-5) and M=5

For the edges of weight less than 1 x Maximum weight (1368)

k
RESULT RUNNING TIME (ms)

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy

2 5323 5277 5277 70098 376 371

3 4811 4811 4811 2558 776 414

5 9359 9359 10027 150649 1453 627

10 16802 16818 19496 85523 3184 1603

20 20247 20345 23054 120418 5002 1874

30 22804 22864 27082 57020 13525 3432

40 27911 28054 33428 42646 11421 3122

50 28716 28901 35349 41288 14713 4607

Figure 5.5.11: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric

Random Graph with random demands for

Figure 5.5.12: Running time comparison of AKR, Greedy and ÇDK-Kruskal on

Geometric Random Graph with random demands- for

0

10000

20000

30000

40000

2 3 5 10 20 30 40 50

Cost

k

AKR

CDK_Kruskal

Greedy

0

50000

100000

150000

200000

2 3 5 10 20 30 40 50

Time

k

AKR

CDK_Kruskal

Greedy

69

The experiments of this section are qualitatively the same as the previous section.

Overall, ÇDK-Kruskal is a good alternative to AKR for random geometric graphs and

real-world geometric graphs.

70

REFERENCES

[1] David P. Williamson and David B. Shmoys, The Design of Approximation

Algorithm, Ithaca, New York, 2010.

[2] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden, “Approximation via cost-

sharing: A simple approximation algorithm for the multicommodity rent-or-buy

problem”, Proceedings of IEEE Symposium on Foundations of Computer

Science, October 2003, pp. 606-615, Cambridge, England, 2003.

[3] M. Bern and P. Plassmann, “The Steiner problem with edge lengths 1 and 2”,

Inform. Process. Lett., Vol. 32, pp. 171–176, 1981.

[4] B. Awerbuch and Y. Azar, “Buy-at-bulk network design”, In 38th FOCS, pp:

542–547, 1997.

[5] Y. Bartal. “On approximating arbitrary metrics by tree metrics”, Inv 30th STOC,

pp: 161–168, 1998.

[6] A. Kumar, A. Gupta, and T. Roughgarden, “A constant-factor approximation

algorithm for the multicommodity rent-or-buy problem”, In FOCS, pp: 333–342,

2002.

[7] A.Gupta, A. Kumar, and T. Roughgarden, “Simpler and better approximation

algorithms for network design”, in Proceedings of the 35
th

 Annual ACM

Symposium on Theory of Computing, STOC’03, pp. 365-372, 2009.

[8] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden, “Approximation via cost-

sharing: A simple approximation algorithm for the multicommodity rent-or-buy

problem”. In Proceedings, IEEE Symposium on Foundations of Computer

Science, pp. 606-615, 2003.

[9] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden, “Approximation via cost

sharing: Simpler and better approximation algorithm for network design”, J.

ACM, voll.54, p.11, 2007.

[10] L. Fleischer, J. Könemann, S. Leonardi, and G. Schafer, “Strict cost sharing

schemes for steiner forest”, SIAN J. Comput., vol. 39, pp. 3616-3632, 2010.

71

[11] A. Gupta and M. Pal, “Stochastic Steiner tree without a root”, Proceedings of the

32
nd

 International Conference on Automata, Languages and Programming,

ICALP’05, pp.1051-1063, 2005.

[12] A. Gupta, M. Pal, R. Ravi, and A. Sinha, “Boosted sampling: approximation

algorithms for stochastic optimization”, STOC’04, pp. 417-426, 2004.

[13] L. Becchetti, J. Könemann, S. Leonardi, and M. Pal, “Sharing the cost more

efficiently: Improved approximation for multicommodity rent-or-buy”,

Proceedings of ACM Transactions on Algorithms, Fabruary 2007, vol. 3, pp. 1-

22, 2007.

[14] L. Fleischer, J. Könemann, S. Leonardi, and G. Schaffer, Strict cost share for

Steiner Forest, SIAM J. Comput., vol. 39 pp. 3616-3632, 2010.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

[16] M. Chlebik and J. Chlebikova, “The Steiner tree problem on graphs:

Inapproximability results”, Theor. Comput. Sci., Vol. 406, pp. 207-214, 2008.

[17] H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner

problem in graphs”, Math. Jap., Vol. 24, pp. 573–577, 1980.

[18] A. Zelikovsky, “An 11/6-approximation algorithm for the network Steiner

problem”, Algorithmica, Vol. 9, pp. 463–470, 1993.

[19] P. Berman and V. Ramaiyer, “Improved approximations for the Steiner tree

problem”, J. Algorithms, Vol. 17, pp. 381–408, 1994.

[20] A. Zelikovsky, “Better Approximation Bounds for the Network and Euclidean

Steiner Tree Problems”, Tech. report CS-96-06, University of Virginia,

Charlottesville, VA, 1996.

[21] H. J. Prömel and A. Steger, “RNC-approximation algorithms for the Steiner

problem”, in Proceedings of the 14th Annual Symposium on Theoretical Aspects

of Computer Science, Springer, Berlin, pp. 559–570, 1997.

[22] M. Karpinski and A. Zelikovsky, “New approximation algorithms for the Steiner

tree problem”, J. Combin. Optim., Vol. 1, pp. 47–65, 1997

[23] S. Hougardy, and H. J. Prömel, “A 1.598 approximation algorithm for the

Steiner problem in graphs”, in Proceedings of the Tenth Annual ACM-SIAM

Symposium on Discrete Algorithms, SIAM, Philadelphia, ACM, New York, pp.

448–453, 1999.

72

[24] G. Robins and A. Zelikovsky, “Tighter bounds for graph Steiner tree

approximation”, SIAM J. Discrete Math., Vol. 19, pp. 122-134, 2005.

[25] J. Byrka, F. Grandoni, T. Rothvoss, and L. Sanita, “Steiner tree approximation

via iterative randomized rounding”, J. ACM, Vol. 60, p. 6, 2013.

[26] A. Agrawal, P. N. Klein, and R. Ravi, “When trees collide: An approximation

algorithm for the generalized steiner problem on networks”, SIAM J. Comput.,

Vol. 24, pp. 440-456, 1995.

[27] M. X. Goemans and D. P. Williamson, “A general approximation technique for

constrained forest problems”, SIAM J. Comput., Vol. 24, pp. 296-317, 1995.

[28] J. Könemann, S. Leonardi, G. Schafer, and S. H. M. van Zwam, “A group-

strategy proof cost sharing mechanism for the Steiner forest game”, SIAM J.

Comput., Vol. 37, pp. 1319-1341, 2008.

[29] J.B. Kruskal, “On the shortest spanning subtree of a graph and the traveling

salesman problem”, Proc. AMS, Vol. 7, pp: 48-50, 1956.

[30] R. C. Prim, “Shortest connection networks and some generalizations”, Bell Syst.

Tech. Journal, Vol. 36, pp: 122-134, 1957.

[31] J. Nesetril, E. Milkov, H. Nesetrilov, “Otakar boruvka on minimum spanning

tree problem translation of both the 1926 papers, comments, history”., Discrete

Mathematics, Vol. 233, pp: 1389-1401, 2001.

[32] T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, (3. ed.), MIT Press, Cambridge, 2009.

[33] http://www.math.uwaterloo.ca/tsp/world/countries.html (Accessed on

30.06.2014)

[34] http://www.math.uwaterloo.ca/tsp/world/uypoints.html (Accessed on

30.06.2014)

[35] http://www.math.uwaterloo.ca/tsp/world/uymap.html (Accessed on 30.06.2014)

http://www.math.uwaterloo.ca/tsp/world/countries.html
http://www.math.uwaterloo.ca/tsp/world/uypoints.html
http://www.math.uwaterloo.ca/tsp/world/uymap.html

