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ABSTRACT 
 

 

 

This thesis introduces three new algorithms for an important network design 

problem called the Multicommodity Rent-or-Buy Problem which is a generalization of 

the famous Steiner Forest Problem. These algorithms are inspired by the well-known 

minimum spanning tree algorithms of Kruskal, Prim and Boruvka. Although our 

algorithms do not have good approximation ratio compared to the state-of-art, we show 

that they are much faster than the well-known approximation algorithm of Agrawal, 

Klein and Ravi (AKR) with similar solution costs, especially when the edge weights 

span a wide range. In particular, our algorithms turn out to be a very good alternative 

for AKR on real world data, where for example the points to be connected in the 

problem represents the cities of a country on the Euclidean plane.  

 

The running time of our algorithms for the Steiner Forest Problem is      

     ) ) which is an improvement over the previous     
 ⁄ ) approximate 

algorithm with         ) running time where  ,   and   are the number of edges, 

vertices and terminal pairs in the graph respectively.  

 

 

Keywords: Multicommodity Rent-or-Buy Problem, Steiner Forest Problem, 

Sample and Augment algorithm, Strictness, Greedy Heuristics, Approximation 

Algorithms 
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ÖZ 
 

 

 

Bu tez, ünlü Steiner Ormanı Probleminin genelleştirilmiş bir hali ve önemli bir ağ 

tasarım problemi olan Çoklu Eşya Kirala veya Satın Al Problemi için üç yeni algoritma 

öne sürmektedir. Bu algoritmalar Kruskal, Boruvka ve Prim’in iyi billinen minimum 

yayılan ağaç algoritmalarından esinlenmişlerdir. Bizim algoritmalarımızın son 

geliştirilen algoritmalara kıyasla kötü olmasına rağmen, bizim algoritmalarımızın 

özellikle kenar ağırlıklarının yüksek aralıklarla değiştiği çizgelerde iyi bilinen Agrawal, 

Klein ve Ravi’nin (AKR) algoritmasından çok daha hızlı çalıştığını ve ona benzer sonuç 

verdiğini gösterdik. Özellikle, algoritmalarımız Öklid düzlemde bir ülkenin şehirlerini 

birbirine bağlayan gerçek dünya verisi için çok iyi bir alternatif teşkil etmektedirler.  .    

 

Algoritmalarımızın Steiener Ormanı problemi için çalışma zamanları      

     ) ) olup     
 ⁄ ) yaklaşık ve çalışma zamanı         ) olan bir önceki 

algoritmaya göre daha iyidir ki burada m, n ve k sırası ile çizgedeki köşe, düğüm ve 

terminal çiftlerinin sayısıdır.  

 

 

Anahtar Kelimeler:  Çoklu Eşya Kirala veya Satın Al Problemi, Steiner Ormanı 

Problemi, Açgözlü Algoritmalar,  Yaklaştırma Algoritmaları 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

In the past few decades, combinatorial optimization has been one of the most 

important paradigms in scientific research. In this field, one is required to find an 

optimal solution with respect to an objective function from a finite set of object which 

defines the solution space. However, it is difficult to find an optimal solution for many 

important combinatorial optimization problems such as finding shortest/cheapest round 

trips (TSP), planning,  scheduling,  time tabling,  internet data packet routing to name a 

few.  In fact, many combinatorial optimization problems which arise in various areas of 

computer science and mathematics are NP-hard which means that no polynomial-time 

algorithm is possible for these problems unless the widely believed conjecture     .  

One of the main approaches to tackle with these difficult problems is to give up 

the requirement to find an exact solution and find an approximate solution in 

polynomial time. This is the most popular approach taken in computer science and the 

field of approximation algorithms provides the following definition in this framework.  

Definition 1.1: An α-approximation algorithm where α is called approximation 

ratio or approximation factor is a polynomial time algorithm whose value is within α of 

the optimal solution’s value for all instances of the problem [2]. For minimization 

problems α > 1 while α < 1 for maximization problems. 

This definition guarantees that the algorithm at hand finds an approximate 

solution for all instances of the problem. This fact makes the design of approximation 

algorithms a challenging endeavor and such algorithms might be complicated with a 

high running time. On the other hand, it is also well-known that simple heuristics that 
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do not have a proven approximation ratio might provide reasonably good results on 

random instances and real world data. This thesis describes three new algorithms for an 

important network design problem called the Multicommodity Rent-or-Buy Problem 

which is a generalization of the famous Steiner Forest Problem. These algorithms are 

inspired by the well-known minimum spanning tree algorithms of Kruskal, Prim and 

Boruvka. In fact, we show that all of our algorithms are equivalent. We provide 

instances on which our algorithms perform poorly, i.e. they do not have good 

approximation ratios. However, they are very simple and easy to implement. 

Furthermore, the quality of the solutions they return are as good as the best 

approximation algorithm for the problem and their running time are much better than 

the approximation algorithm on instances where the edges weights span a wide range. 

In particular, our algorithms turn out to be a very good alternative for real world data, 

where the points to be connected in the problem are represented by cities of a country 

on the Euclidean plane. 
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CHAPTER 2 

 

 

PROBLEMS CONSIDERED IN THIS THESIS 
 

 

 

2.1 THE MULTICOMMODITY RENT-OR-BUY PROBLEM 

In the Multicommodity Rent-or-Buy Problem (MRoB), we are given a weighted 

graph (i.e.       ) with a cost function       ) together with   terminal pairs 

         )         )  where         for        . We are also given a positive 

demand    for each terminal pair       )   , and a parameter    . The goal is to 

install capacities on the edges of   such that for all       )   , we can simultaneously 

route    units of flow on edge  , or we can buy infinite capacity on an edge at 

cost      ).  

As for the importance of the MRoB Problem in real world applications, it plays an 

important role in approximately solving some network design problems with economies 

of scale since it is a central special case of the buy-at-bulk network design problem [2]. 

Thus, it arises in many real world applications. For example, consider an electricity 

network with sources that produce energy and customers who absorb energy from a 

specific source as terminal pairs. The produced energy at source must be dispatched to 

the customers according to their demands. And the capacities of cables which form the 

edges of the network can be rent or bought with a cost related with capacities. So, the 

goal is to meet the needs of customers with a minimum expense.  

The following is an example for the MRoB Problem: Assume that there is a given 

undirected graph       ) with costs    for all     and terminal pairs   

       )       )  with positive demands      and      and parameter     as 

shown in the figure 2.1.1. The goal is to install minimum cost of capacities on edges 

such that all flows can be routed simultaneously and it can be either rent capacity at cost 

      or buy infinite capacity at cost     . 
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Figure 2.1.1: An example for the MRoB  

 

Since structure of the problem is an optimization problem, there can be some 

several solutions for that kind of problem. Figure 2.2.2, Figure 2.2.3 and Figure 2.2.4 

are just one of the solutions. 

 

Figure 2.1.2: 1
st
 solution for the example 

 

The solution for the example given in Figure 2.1.1 consists of the red edges which 

are enough to connect    to    and    to    as shown in Figure 2.2.2. And renting these 

edges is more profitable than buying because the cost of buying these edges will be 

    )      )     while the cost of renting these edges will be      )  

     )      )      )    . 
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Figure 2.1.3: 2
nd

 solution for the example 

 

Another solution for the example given in Figure 2.1.1 consists of the red edges 

which are enough to connect    to    and    to    as shown in Figure 2.2.3. And the cost 

of renting these edges is  

     )       )  (      )   )       )       ) 

     )      )  (    )   )      )      )     

However, if the edge with demand (2+3=5) in Figure 2.2.3 is bought as shown in 

Figure 2.1.4 the solution will be more profitable. This time, the cost will be  

     )       )      )       )       ) 

     )      )      )      )      )     

 

Figure 2.1.4: 3
rd

 solution for the example 
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MRoB is NP-Hard, and even Max-SNP hard like Steiner Forest which will be 

discussed in chapter 2.2, since it contains Steiner Tree as a special case [3]. Note that 

for     and unit demands, this problem reduces to the Steiner Forest Problem. And 

with a root node   to be simultaneously sent a specified number of flows, it reduces to 

Single-commodity Rent-or-Buy Problem (SRoB). In addition, another NP hard problem 

named Multicast Rent-or-Buy Problem (MuRoB) is a generalization of MRoB. In this 

problem, we are given a set of terminals             with      and        for 

     .The goal is to install capacities on the edges of   so that one can route    

units of flow between the terminals of every group   . If        for      , then 

MuRoB reduces to MRoB.  

The best known performance guarantee for MRoB was the                    )-

approximation algorithm by Awerbuch and Azar [4] in 1997 and Bartal [5] in 1998. 

Later in 2002, Kumar, Gupta and Roughgarden [6] gave the first constant 

approximation algorithm for this problem. Then, Gupta, Kumar and Roughgarden [7] 

provide a framework called sample-and-augment to give approximation algorithms for 

a number of network problems including a special case of MRoB. This framework is 

then generalized to incorporate MRoB by Gupta et al.[8]. The same authors provide the 

final framework which also applies MuRoB in [9]. The sample-and-augment algorithm 

for MRoB works as follows:      

1. Sampling: Select a random subset     of terminal pairs by picking every 

terminal pair       )    independently with probability         
  

 
    

2. Subproblem: Compute an α-approximate Steiner forest    in S and buy all the 

edges in   . 

3. Augmentation: Augment    to a feasible solution for   by renting additional 

edges to connect all terminal pairs in     in the least costly manner. 

There is a relationship between the approximation ratio obtained for the MRoB in 

this framework and what is called strict cost sharing scheme. Gupta et al. [8, 9] show 

that if the Steiner forest algorithm has approximation ratio α and admits β-strict cost 

share, then the sample and augment algorithm is an     )-approximate algorithm for 

the MRoB problem. 
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The notation from Fleischer et al. [10] is adapted to define strictness of a Steiner 

forest algorithm for the rest of this thesis. Given a forest   in  , let     denote the 

graph resulting from contracting all trees of  . Let         ) denote the minimum cost 

of any     path in    . A Steiner forest algorithm   is said to be β-strict for    , if 

there exists nonnegative cost shares      for all     )    satisfying the following two 

conditions: 

1.      )            , where     denotes the minimum cost of a Steiner forest 

for  . 

2.                   for all     )   , where       is a Steiner forest for the 

terminal set              )  returned by  .     

The sample-and-augment framework can be adapted to yield     )-

approximate algorithm for the MuRoB problem [7], stochastic Steiner tree (SST) 

problem in the black-box model [11] and the stochastic Steiner forest (SSF) problem in 

the independent decision model [12].     

Finally, sample and augment framework provides Gupta et al. [8, 9] to improve 

12-approximate algorithm to the MRoB problem. Bechetti et al. [13] improved 

approximation ratio to 6.828. The best approximation algorithm obtained for this 

problem is due to Fleischer et al. [14] which is 5. 

Since MRoB is a generalization of Steiner Forest, we need to examine the Steiner 

Forest Problem in more detail. In fact, the algorithms that we provide also work for the 

Steiner Forest Problem and they were inspired as a solution to this were special case.  

 

2.2 THE STEINER FOREST PROBLEM 

In the Steiner Forest Problem, which is also known as the Generalized Steiner 

Tree Problem, we are given an undirected graph       ) with a cost function on the 

edges       , and a set of k terminal pairs           )          )     . 

The goal is to find a minimum cost subset of edges     such that there is at least one 

path between each terminal pair       ) in     ). Since this problem is both a 

generalization of the famous Steiner Tree Problem, and a special case of several 
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network design problems such as Survivable Network Problem, it is one of the central 

problems in the field of approximation algorithms and combinatorial optimization. 

Indeed, if           for            , the Steiner Forest Problem reduces to Steiner 

Tree Problem. Moreover, if it is required that there exists     edge-disjoint paths 

between    and    in     ) (where       ), then Steiner Forest Problem turns into 

Survivable Network Design Problem. 

Since the Steiner Forest Problem is a generalization of Steiner Tree Problem, it is 

NP-hard and in fact MAX-SNP hard [3, 15, 16]. Starting with the work of Takahashi 

and Matsuyama [17] which yields a 2-approximation ratio to the problem in 1980, a 

series of algorithms sequentially improved the ratio to 1,55 [18, 19, 20, 21, 22, 23, 24]. 

Finally, Byrka et al. [25] achieved 1.39 approximation with a new LP-based algorithm 

which is the best algorithm obtained thus far as shown in Table 2.1.  

Table 2.1: Previous works for Steiner Tree Problem 

Year 
Performance 

Ratio 
Authors 

1980 2 Takahashi, Matsuyama [17] 

1993 1,834 Zelikovsky [18] 

1994 1,734 Berman, Ramaiyer [19] 

1995 1,694 Zelikovsky [20] 

1997 1,667 Prömel, Steger [21] 

1997 1,664 Karpinski, Zelikovsky [22] 

1998 1,598 Hougardy, Prömel [23] 

2005 1,55 Robins, Zelikovsky [24] 

2013 1,39 Byrka, Grandoni, Rothvoss, Sanita [25] 

 

Even though many algorithmic improvements were recorded for the Steiner Tree 

Problem, the same is not true for the Steiner Forest Problem. In fact, there is only one 

approximation algorithm stated in two different languages. Obtaining a genuinely 

different approximation algorithm for this problem has been a challenge for the past two 

decades. Indeed, our attempts towards this thesis were along the lines of a possible such 

algorithm.  

  One of the approximation algorithms for the Steiner Forest Problem is stated in 

purely combinatorial terms by Agrawal, Klein and Ravi [26] while other is 

parameterized by a certain variable in LP relaxation of a primal-dual approach by 

Goemans and Williamson [27]. In this approach , it has become customary to express 
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the dual variables as moats and the increase in dual variables of [26] as growing moats. 

As usual, we will briefly call this version of algorithm which is stated by Agrawal, 

Klein and Ravi as AKR. The approximation ratio of AKR is   
 

 
 and this ratio is tight 

since LP relaxation is known to be   
 

 
 . Apart from this algorithm, a slightly different 

algorithm with the same approximation ratio for achieving a game theoretic constraint is 

introduced by Könemann et al. [28] in 2008. This algorithm which we will briefly call 

as KLS is also based on natural LP relaxation. The main difference from the previous 

algorithm is that the moats are growing for an extended period of time in KLS. 
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CHAPTER 3 

 

 

PREVIOUS ALGORITHMS FOR THE STEINER FOREST 

PROBLEM 
 

 

 

3.1 ALGORITHMS AKR AND KLS  

The standard LP Relaxation of Steiner Forest Problem consists of a variable    for 

each    . This variable is 1 if e is in the resulting forest and 0 otherwise. Let   be the 

set of subsets   of   that separate at least one terminal pair in  . In other words,     

if and only if there is     )    satisfying            . Let also    ) denote the set 

of edges with exactly one endpoint in  . The integer linear programming formulation 

for the problem is then as follows: 

minimize             (IP) 

subject to            )         , 

           ,      . 

The constraints enforce that for any cut   separating    and     for some  , it must 

be selected one edge from    ). If the constraint          is dropped and replaced 

with      to obtain an LP relaxation, the dual of this linear program is   

maximize          (D) 

subject to                )           , 

       ,       . 

AKR algorithm considers all connected components   of     ) such that 

              for some  . Therefore, at the beginning,   is completely  . Then,    is 

uniformly increased for all such connected components until the dual inequality for 
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some       ) becomes tight where    is some component at the current iteration. This 

edge is then included in the forest. If all the terminal pairs which are in the component 

connected, then    is not increased for that component in the next iteration. So the 

iterations are continued like this until all pairs are connected. After all iterations are 

completed, reverse-delete step is performed which excludes the edges from resulting 

forest in a reverse order of included edges to the resulting forest. For each excluded 

edge, it checks whether the resulting forest is feasible or not. If it is not feasible, then 

this edge is again included to the resulting forest. 

The difference between AKR and KLS is the period of time for which the set of 

moats are grown. In AKR, two initial moats    and    which belong to the terminal 

pairs     ) might not be able to collide each other during the execution because they 

may collide and unit with other components. However, in KLS, the growing of these 

moats continues until they meet each other. Hence, the main difference of KLS from 

AKR is that the moats corresponding to a specific pair are grown as if the other terminal 

pairs do not exist.      

 

Figure 3.1.1: A tight example for AKR 

 

The instance given in Figure 3.1.1 is tight for AKR since optimal solution equals 

to      ) and the solution returned by AKR has cost        ) which means that 
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when ϵ goes to  , the approximation ratio of AKR is  
      

    
      . The optimum 

takes all the edges of costs     ) as shown in Figure 3.1.2. On the other hand, AKR 

first takes the edges of costs   since the grown moats first collide on these edges. Then, 

it complete execution with taking one of the edge of cost     ) since all of the 

terminal pairs are connected. The solution returned by this algorithm is shown in Figure 

3.1.3. 

 

Figure 3.1.2: Optimum solution of the given instance 

 

 

Figure 3.1.3: The forest returned by AKR 
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3.2 A GREEDY HEURISTIC 

Even though the algorithms given up to now have a 2-approximation ratio for the 

Steiner Forest Problem, i.e. AKR and KLS, a proverbial greedy algorithm which has 

worse approximation ratio already exists. This algorithm is stated as ‘Greedy’ for the 

rest of this thesis. Although it is known that this algorithm has a 2-approximation ratio 

for the Steiner Tree Problem, this can not be said for the Steiner Forest Problem. In fact, 

there is an example that shows this algorithm is worse than AKR, i.e. its approximation 

ratio is greater than  . In this section, we briefly overview this heuristic and provide an 

instance on which the cost of the solution it gives is 4 times as large as the optimum. 

Starting from       pair, Greedy Algorithm finds the shortest path between 

them. Then this path is included to the resulting forest and the pair is contracted which 

means the length of the path is zeroed out. This computation performed iteratively up 

to      .  

As example to how good the Greedy Heuristic can perform on a graph, consider 

the graph which has a total of      terminal pair and every terminal pairs are adjacent 

to each other with a cost of       as given in Figure 3.2.1. 

In this example, the cost of optimum solution is      . More specifically, it is 

all of the solid edges with cost 2 and 1 as given in Figure 3.2.2. However, Greedy takes 

all the adjacent edges of terminal pairs with a cost of     )   which is four times as 

large as the optimum as shown in Figure 3.2.3 while AKR Algorithm finds a solution 

with a cost of         )    ) as shown with red edges in Figure 3.2.4.  
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Figure 3.2.1: A sample graph 

 

 

Figure 3.2.2: The optimum solution of sample graph with red edges 
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Figure 3.2.3: The solution of the Greedy Heuristic 

 

 

Figure 3.2.4: The solution of AKR  
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CHAPTER 4 

 

 

THE NEW ALGORITHMS 
 

 

 

In this chapter, three equivalent new algorithms for the Steiner Forest Problem 

and the MRoB Problem are given. These algorithms are simpler than AKR in that they 

are extensives of basic greedy algorithms for finding minimum spanning trees. They are 

appropriately named as ÇDK-Kruskal, ÇDK Prim and ÇDK-Boruvka since they are 

analogues of the well-known algorithms of Kruskal [29], Prim [30] and Boruvka [31]. 

To be more specific, we run our algorithms on an adjunct graph H which is derived 

from the input graph G. Even though our algorithms are quite similar to the algorithms 

of Kruskal, Prim and Boruvka in spirit, a necessary modification is required by the 

structure of H. Since these algorithms provide a basis for our approach and the notation, 

they are stated in section 4.1 The notation from [32] is used in the statement of these 

algorithms as well as in the statements of our new algorithms.  

 

4.1 THE ALGORITHMS OF KRUSKAL, BORUVKA AND PRIM 

Each algorithm of Kruskal, Boruvka and Prim provide to find a minimum 

spanning tree of a graph G in different ways. The pseudocodes for these algorithms are 

given in Algorithm 1, Algorithm 2 and Algorithm 3, respectively. 

Kruskal’s algorithm non-decreasingly sorts the edges and processes all of sorted 

edges iteratively starting from the edge which has the smallest weight. Then the current 

edge is added to the final list if it does not form a new cycle in the graph. In order to 

check whether adding this edge forms a new cycle or not, disjoint set structure is used. 
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At the beginning of Kruskal’s algorithm, a set is created for each vertex      by 

the MAKE-SET command. Additionally FIND-SET command checks whether the set 

associated with two vertices are identical. UNION command takes a union of the sets 

associated with the two vertices given as parameters. Boruvka’s algorithm is similar to 

Kruskal’s algorithm. The difference is that the cheapest edges that are going out of each 

set are considered at each step. At the final iteration, algorithm merges the sets 

appropriately and continues until just one set remains. Completely different from 

Kruskal’s and Boruvka’s algorithm, Prim’s algorithm starts processing edges rom a root 

vertex    and greedily grows this single set until it contains all the vertices. 

 

Algorithm 1 Kruskal’s algorithm to find a minimum spanning tree of a graph   

  1:   procedure KRUSKAL       )       ) 

  2:                

  3:         for each vertex     do    

  4:                        )    

  5:         Sort the edges of   in non-decreasing order by      

  6:         for each edge     )   , taken in non-decreasing order by   do     

  7:              if           )            ) then    

  8:                               )     

  9:                               )    

10:         return    
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Algorithm 2 Boruvka’s algorithm to find a minimum spanning tree of a graph   

  1:   procedure BORUVKA       )       ) 

  2:             

  3:      for each vertex     do    

  4:                     )    

  5:       while there are more than 1 set do    

  6:             for each set   do     

  7:                         

  8:                    for each vertex   in   do 

  9:                                {the cheapest edge     )such that 

                                              )            ) } 

10:                       {the cheapest edge       ) in    } 

11:           for each set   do     

12:                            )     

13:         return    

 

 

Algorithm 3 Prim’s algorithm to find a minimum spanning tree of a graph   

  1:   procedure PRIM       )         ) 

  2:                

  3:                     )    

  4:         while         do    

  5:                        

  6:               for each vertex   in   do     

  7:                                {the cheapest edge     ) such that 

                                                )            )}      

  8:                     {the cheapest edge       ) in   }    

  9:                          )    

10:       return    
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4.2 INTUITION FOR THE NEW ALGORITHMS 

The algorithms of ÇDK-Kruskal, ÇDK-Boruvka and ÇDK-Prim are stated in 

purely combinatorial terms and do not use the language imposed by the LP relaxation to 

the Steiner Forest Problem. ÇDK-Kruskal imitates Kruskal’s Algorithm by first 

computing all the shortest paths between terminal pairs and sorts them in non-

decreasing order with respect to their weighted lengths. Then, if the endpoints of the 

paths are not in the same set, it includes them in to the solution in this order. After a 

path is included into the solution, a union operation is performed between the sets 

corresponding to the terminals which are the endpoints of the path. This is different 

from both AKR and KLS. During the execution of these algorithms, the edges that are 

not on the shortest path might be included to the solution. ÇDK-Kruskal ensures that the 

structure between two terminals remains as a path since the unnecessary edges which 

are excluded in the reverse delete step of AKR are not included in ÇDK-Kruskal. 

However, our new algorithms might include multiple copies of edges since the shortest 

paths between terminal pairs might intersect. Note that it is possible to exclude the 

duplicate edges that are found by ÇDK-Kruskal and so decrease the cost of the forest 

with an overhead in running time.  

 

Figure 4.2: A graph on which the compared algorithms return different solutions 

 

The difference between the algorithms mentioned in this thesis is best seen on an 

example. Consider the graph in Figure 4.2. Obviously, the cost of the optimal and the 

feasible solution is 17. AKR takes all the edges and finds the optimal cost. However, 
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KLS Algorithm takes the edges of costs 3 and 5 once, and the edge with the cost 1 twice 

since it continues to grow moats     and     which belong to the pair      ) even if 

they collide with the moats     and     of the pair       ) before meeting each other. 

Hence, the edge with cost 1 is included into solution twice: once for     and     and 

once for     and    . Therefore, the cost returned by KLS is 18. On the other hand, 

Greedy first finds the shortest path between    and    and then contracts them. In the 

next iteration, it finds the shortest path between    and    in the graph where    and 

  are contracted with the shortest path between them. So, the forest returned by Greedy 

is just a node where all the terminal pairs are contracted and the cost of solution is 17, 

same as AKR. ÇDK-Kruskal computes all the 6 shortest paths between 4 terminals and 

processes them in a greedy manner starting from the least cost path. And the cost of the 

forest returned by ÇDK-Kruskal is        )         )         )        

  . 

 

4.3 THE NEW ALGORITHMS ÇDK-KRUSKAL, ÇDK-BORUVKA AND ÇDK-

PRİM 

As mentioned before, all of our new algorithms run on an adjunct graph H which 

is derived from the input graph G and represents all the shortest paths between terminals 

as edges. More specifically, each vertex in the vertex set of H corresponds to a terminal 

and edges are shortest paths between these terminals. Hence, there are    vertices and 

(  
 
) edges in H.  

After H is computed, taking into account of the shortest paths of the original 

graph G, our algorithms construct a forest by processing the edges of H. Even though 

our algorithms are similar to the minimum spanning tree algorithms, they are different 

since the computed graph is a complete graph and connecting terminal pairs is enough 

to terminate the algorithm instead of a full connection of all the vertices. Therefore, the 

solution returned by our algorithms is a forest. 

Computing H determines the running time of our algorithms since the running 

time of the remaining part of the algorithm which is performed on a graph of    

vertices is asymptotically smaller than the running time of computing H. We use 

Dijktra’s shortest path algorithm for all the terminals to compute H. This takes      
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     ) ) using a Fibonacci Heap where m is the number of edges, n is the number of 

vertices and k is the number of terminal pairs.  

The pseudocodes for our new algorithms are given in Algorithm 4, Algorithm 5 

and Algorithm 6. 

 

Algorithm 4 Algorithm ÇDK-Kruskal to find a Steiner forest in a graph   

  1:   procedure ÇDK-Kruskal       )                           ) 

  2:                

  3:         for each     do    

  4:                          )    

  5:                    )                      )   

  6:              (  
 
)   sort the edges of    in non-decreasing order by         

  7:          for     to (  
 
) do 

  8:                  Let      be between     and            

  9:                 if            )            ) then      

10:                                    {the set of edges of     }    

11:                                      )    

12:                  if all    and    are connected via   then      

13:                          break 

14:         for     down to   do    

15:                  if        is a feasible solution then      

16:                   remove    from   

17:         return    
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Algorithm 5 Algorithm ÇDK-BORUVKA to find a Steiner forest in a graph   

  1:   procedure ÇDK-Boruvka       )                         ) 

  2:                

  3:         for each     do    

  4:                          )    

  5:                    )                      )   

  6:              (  
 
)   sort the edges of    in non-decreasing order by         

  7:          while not all pairs       ) are connected via   do 

  8:                  for each set   do        

  9:                                 

10:                            for each vertex     do     

11:                                           {the cheapest edge     ) in   such that 

                                                         )            )} 

12:                                  {the cheapest edge       ) in   } 

13:                  for each set   do        

14:                                        )    

15:         for     down to   do    

16:                  if        is a feasible solution then      

17:                   remove    from   

18:         return    

 

Algorithm 6 Algorithm ÇDK-PRIM to find a Steiner forest in a graph   

  1:   procedure ÇDK-Prim       )                           ) 

  2:                

  3:                     )       

  4:                    )                      )   

  5:              (  
 
)   sort the edges of    in non-decreasing order by         

  6:          while not all pairs       ) are connected via   do 

  7:                                 

  8:                            for each vertex     do     

  9:                                           {the cheapest edge     ) in   such that 
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                                                         )            )} 

10:                                  {the cheapest edge       ) in   }      

11:                                        )    

12:         for     down to   do    

13:                  if        is a feasible solution then      

14:                   remove    from   

15:         return    

 

4.4 EQUIVALENCE OF THE NEW ALGORITHMS 

In this part, a lemma that claims given a full ordering of the edges of H with 

respect to their weights, ÇDK-Kruskal, ÇDK Boruvka and ÇDK-Prim algorithms return 

the same set of edges on H. 

Lemma 4.1. Given a full ordering of the edges of H, ÇDK-Kruskal, ÇDK Boruvka and 

ÇDK-Prim are equivalent. 

Proof. Let                
(  

 )
  be the set of the edges in increasing order. We argue 

by induction on  , the number of the edges selected by ÇDK-Kruskal algorithm during 

its execution. For    , ÇDK-Kruskal selects the smallest weighted edge    and 

let        ). Consider ÇDK-Boruvka and ÇDK-Prim algorithms are at a situation 

where   and   are not in the same set and the edges that are adjacent to these nodes are 

considered. So at this stage, by the nature of these algorithms, the edge    will be 

included in the forest since it is the smallest weighted edge. Thus, the base case of the 

induction is formed. Assume, as the induction hypothesis that, the set        

           has been already selected before ÇDK-Kruskal selects     )st edge and all 

the other edges up to     excluding the edges in    are not selected, and the set of 

selected and unselected edges are the same for ÇDK-Boruvka and ÇDK-Prim. If there is 

an edge, say        , between     and      
in ordering, then   is not selected by 

ÇDK-Kruskal since it creates a cycle, i.e.   and   are in the same set. Also the edge   

will not be selected by ÇDK-Boruvka and ÇDK-Prim since   and   will be same set for 

these algorithms via the edges in    by induction hypothesis. Otherwise, these 

algorithms will not select one of the edges in    which contradicts the induction 
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hypothesis. All that remain is to show that      
 is selected by ÇDK-Boruvka and ÇDK-

Prim. Let      
     ) where   and   are not in the same set and then consider these 

algorithms are in a stage that they consider the edges adjacent to   and  . The edge      
 

will be selected since this edge is the smallest weighted edge which does not create a 

cycle by the choice of ÇDK-Kruskal. Finally, the termination conditions are also 

equivalent since the condition is a full connection of terminal pairs. Therefore the proof 

of the Lemma 4.1 is completed.           

 

4.5 A BAD INSTANCE FOR THE NEW ALGORITHMS 

Consider the graph given in Figure 4.5.1. All of the edges between the terminal 

pairs have a cost ϵ and the edges between unpaired terminals have cost 1 except the 

edge that connects terminal pairs    to   . This edge has a cost 3 while the cost of the 

edges that connect    and    to other terminals are 2.    

 

Figure 4.5.1: A sample graph 

 

Clearly, the optimum solution is the adjacent edges to the terminal pairs as shown 

in Figure 4.5.2. Thus, it has a cost      )     
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Figure 4.5.2: Optimum solution of given instance 

 

Consider the computation of the ÇDK-Kruskal Algorithm. It first sorts the paths 

between terminals. Then, the edges that have cost ϵ are included to the resulting forest 

since all the terminals are not in the same set. In the next step, the algorithm includes 

the edges that have cost 1 to connect the remaining terminal pair        since these 

edges have the smallest weight. Since the included edges are not enough to connect    

to   , algorithm includes the next two smallest weight edges to the resulting forest 

which have cost 2. Therefore, the computation of ÇDK-Kruskal is completed as shown 

in Figure 4.4.3. The solution returned by the algorithm has cost      )      )    

which means that the approximation ratio of our algorithms is   since 
     )     )  

     )  
 

  when   goes to  . 

The instance given in this section shows that the approximation ratio of our 

algorithms is not constant, i. e. it depends on  . Thus, even if we can find a small 

strictness (β) for our new algorithms since their approximation factor depends on   for 

the Steiner Forest Problem, the same thing holds for the MRoB Problem. This is 

because the approximation factor for MRoB is    , where β is the strictness and α is 

the approximation factor for Steiner Forest.  

 

Figure 4.5.3: The solution of ÇDK-Kruskal for given instance 
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4.6 AN EXECUTION OF THE NEW ALGORITHMS ON AN MROB INSTANCE 

In this section, we explain the new algorithms on an example. Consider the graph 

given in Figure 4.6.1 where the number of terminal pairs     and each node is 

represented with an integer. The demands for each terminal pair are unit (    ) for all 

  where           and    . The goal is to determine minimum-cost capacity 

installation such that all demands can be routed simultaneously. 

 

Figure 4.6.1: An MROB instance 

 

We use the sample and augment framework of Gupta et.al [9] which is mentioned 

in section 2.1 to solve the given instance. By the definition of this framework, in 

sampling step, a random subset of terminal pairs is determined by picking every 

terminal pair with a probability of    . Thus, assume that the terminal pairs       and 

      are picked in this step as shown in Figure 4.6.2. In the subproblem step, we run 

the Steiner Forest Algorithm on the terminal pairs picked in sampling step and buy the 

edges returned by the algorithm. This step plays an important role in solving the MRoB 

Problem since the Steiner Forest computed in this step determines the solution of the 

problem. For this reason, we show the execution of both ÇDK-Kruskal and AKR for the 

instance defined in this section.           
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Figure 4.6.2: The picked terminal pairs in subproblem step of the Sample and Augment 

Framework 

 

By the definition of ÇDK-Kruskal, it creates sets for each terminal and then 

computes an adjunct graph by computing ( 
 
)    shortest paths as shown in Figure 

4.6.3. It then sorts all the shortest paths in the adjunct graph   in non-decreasing order 

by their weighted lengths as shown in Table 4.6.1. In addition, with this order it checks 

whether the end points of the paths are in the same set.  

 

Figure 4.6.3: The adjunct graph   

 

Table 4.6.1: The sorted shortest paths between each terminal in   

 
Node1 Node2 Distance 

1 s1 s2 1 

2 t1 t2 1 

3 s2 t1 4 

4 s1 t1 4 

5 s2 t2 4 

6 s1 t2 5 
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ÇDK-Kruskal first checks whether    and    terminals are in the same set since 

      path is the shortest path in  . Thus, it takes this path to the resulting forest and 

performs a union of the sets associated with these vertices as shown in Figure 4.6.4.     

 

Figure 4.6.4: 1
st
 iteration of ÇDK-Kruskal after computing   

 

Then, the algorithm checks whether    and    terminals are in the same set. It also 

adds       path to the solution and performs a union of the sets associated with these 

terminals as shown in Figure 4.6.5.  

 

Figure 4.6.5: 2
nd

 iteration of ÇDK-Kruskal after computing   

 

In the next step, the algorithm checks whether    and    are in the same set. Since 

they are not in the same set, it adds       path to the resulting forest and performs a 

union the sets associated with these terminals as shown in Figure 4.6.6. 

 

Figure 4.6.6: 3
rd

 iteration of ÇDK-Kruskal after computing   
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Finally, all the terminal pairs are connected via the shortest path between the 

terminals       )        ) and        ) with a cost of        . The shortest path 

between    and    consists of           path. Thus, the resulting forest is given 

in Figure 4.6.7 with the red edges. Consequently, sample and augment buys the forest 

returned by the algorithm with a cost of           .  

 

Figure 4.6.7: The forest returned by ÇDK-Kruskal 

 

In the augmentation step, we need to augment the forest returned by the Steiner 

Forest algorithm to a feasible solution for all terminal pairs by renting additional edges 

to connect the terminal pairs which are not chosen in the sampling step. Hence, in this 

instance, we need to augment the forest returned by ÇDK-Kruskal to feasible solution 

by renting additional edges to connect     to     in the least costly manner. Thus, the 

blue edge between      and     is rented with a cost of            as shown in 

Figure 4.6.8. So the final cost is         for this MRoB instance when ÇDK-

Kruskal is used in subproblem step of the sample and augment framework. 

 

Figure 4.6.8: The solution of MRoB instance using ÇDK-Kruskal 
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In the subproblem step of sample and augment, AKR starts by growing moats for 

all terminals chosen in sampling step as shown in Figure 4.6.9. In the first step, the 

growth of moats is     units since the shortest distance between two components is .  

 

Figure 4.6.9: Growth of moats 

 

AKR includes the edges       ) and       ) since the sum of the span of moats 

covers these edges as shown in Figure 4.6.10 and performs a union of the tight 

components corresponding to these vertices. 

 

Figure 4.6.10: Including the edges corresponding to tight components 

 

Then, AKR continues to grow the moats by      and then 1 unit as the same 

manner and again it includes the edges corresponding to the tight components as shown 

with red in Figure 4.6.11. So, AKR takes all the edges 

    )     )     )     )     )     )     )     ) simultaneously. However, in the 

reverse delete step it excludes the edges     )     )     )     )     )     )     ).  
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Thus, the forest returned by AKR which is shown in Figure 4.6.12 by red edges is the 

        path with a cost of        . 

 

Figure 4.6.11: 2
nd

 iteration of AKR 

 

 

Figure 4.6.12: The forest returned by AKR and augment step 

 

Consequently, sample and augment buys the forest returned by the algorithm with 

a cost of           . Now, we need to augment the forest returned by AKR to 

feasible solution by renting additional edges to connect     to     in the least costly 

manner. Thus,         ) and         ) edges are rented with a cost of      )      

 )      )      )    as shown in Figure 4.6.12 by the blue edges. So the final 

cost is         for this MRoB instance when AKR is used in subproblem step of 

the sample and augment framework. 
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CHAPTER 5 

 

 

EXPERIMENTS 
 

 

 

 In this chapter, the performance of AKR, Greedy and ÇDK-Kruskal for the 

Multicommodity Rent-or-Buy Problem are compared on a set of test graphs. We use 

JAVA on a computer which has Intel (R) Core (TM) i5-3470 CPU @ 3.20 GHz, 4.00 

GB RAM and 64 bit operating system. All of the algorithms are applied to three types 

of graphs: 

1. Random Graphs of Erdöş-Renyi model where the probability of having an 

edge between two nodes is a constant      . 

2. Real World Geometric Graphs which is obtained from TSP National 

Collection data that can be downloaded from [33]. This data consists of 734 

cities of Uruguay as nodes and the distances between each city as weights. In 

the rest of the thesis, this graph is called as TSP Uruguay Graph. We have 

tried all the algorithms on several other real world data from the same source 

and the results were similar. 

3. Random Geometric Graphs where the nodes are randomly chosen points on 

the Euclidean plane in a square shaped area, and there is an edge between two 

nodes if the distance between them is smaller than some specified value. 

Each generated random graph in the experiments has 1000 nodes and a variable   

where   is the probability that there is an edge between a pair of nodes. Moreover, 

according to demands of every     terminal pairs    and cost of edges   , two types 

of random graphs are defined: Random demand-Unit weight, Random demand-Random 

weight for                          and for the number of terminal pairs   

                      . Note that if    , the graph turns out to be a complete 

graph. TSP Uruguay Graph is defined as TSP Uruguay Graph with Random demands 

for a value     which determines whether there is an edge between two cities in the
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graph where   is the maximum distance between two cities and 

                         . If the distance between two cities is smaller than or equal 

to    , the edge corresponding to this distance is included to TSP Uruguay Graph. 

Moreover, according to TSP data, the maximum distance between two cities, m, equals 

5746,907405630345. However, for a better computation, all the weights are rounded in 

our experiment. So   equals 5747 for TSP Uruguay in our experiments. We have 

observed that if the weights are in double precision, the running time of AKR is 

exceedingly high, probably due to the excessive number of updates performed in 

floating point arithmetic. Similarly, Random Geometric Graphs have 1000 nodes with 

randomly weighted edges between 1 and 1000 with the same   and   values. 

The reason why we are separating graphs according to demands and weights as 

random and unit is that we would like to see various computational results since the 

demand value of the terminal pairs may result in a different forest. The computational 

results that we get with unit demands are similar to graphs with random demands. Thus, 

we just state the experiments with the graphs with random demands.  

A total of 144 experiments on random graphs, 48 experiments on the real world 

graph and 48 experiments on a geometric random graph are performed to test AKR, 

ÇDK-Kruskal and Greedy Heuristic for the Multicommodity Rent-or-Buy Problem. 

This chapter consists of five parts. Each part represents 48 experiments. First three 

parts show the computational results for random graphs while the last two show the 

computational result for TSP Uruguay Graph and Geometric Random Graph. The 

framework of Gupta et al. [27], sample and augment algorithm, is used to compute all 

of the algorithms.  

 

5.1 EXPERIMENTS ON RANDOM GRAPHS WITH RANDOM DEMAND-UNIT 

WEIGHT 

In this experiment, a random graph with 1000 nodes and unit weighted edges, 

    , is generated for each   and   where                           is the 

probability that there is an edge between a pair of nodes and 

                          is the number of terminal pairs in the definition of 
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MRoB. In addition, demands for each terminal are randomly generated between 1 and 5 

and    . Therefore, in the sampling step, every terminal pair is picked with a 

probability of  
  

 
). A total of                  experiments are performed in this 

section. The computational results for each   are given as follows:  

Table 5.1.1: Computational results on Random Graphs with  

Random demand-Unit weight for       

Unit Weight (wi=1) 

Random Demand (di=1-5) and  M=5  

Probability  that there is an edge between a pair of nodes= 0.1 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 30 30 20 624 125 156 

3 30 34 24 109 110 46 

5 55 55 40 250 187 109 

10 70 70 70 78 312 124 

20 147 152 127 281 468 219 

30 236 236 243 109 842 265 

40 258 258 259 188 889 437 

50 372 372 375 172 1357 483 

 

 

Figure 5.1.1: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Unit weight for       

 

 

Figure 5.1.2: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random 

Graph with Random demand-Unit weight for       
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Table 5.1.2: Computational results on Random Graphs with 

 Random demand-Unit weight for       

Unit Weight (wi=1) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes= 0.2 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 20 25 20 140 125 47 

3 18 18 18 124 63 141 

5 24 24 24 125 109 156 

10 77 77 72 328 421 156 

20 146 146 136 140 1030 452 

30 239 239 234 172 1607 390 

40 307 307 292 484 1950 764 

50 360 360 316 390 2745 827 

 

 

Figure 5.1.3: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Unit weight for       

 

 

Figure 5.1.4: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random 

Graph with Random demand-Unit weight for       
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Table 5.1.3: Computational results on Random Graphs with 

 Random demand-Unit weight for       

Unit Weight (wi=1) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes=0.4 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 20 25 20 1045 327 110 

3 17 17 17 281 187 125 

5 38 38 33 390 437 1420 

10 63 63 63 187 874 484 

20 153 153 126 936 2746 655 

30 185 205 194 453 3666 951 

40 293 293 257 546 5148 1216 

50 364 364 306 624 6474 1732 

 

 

Figure 5.1.5: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Unit weight for       

 

 

Figure 5.1.6: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random 

Graph with Random demand-Unit weight for       
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Table 5.1.4: Computational results on Random Graphs with 

 Random demand-Unit weight for       

Unit Weight (wi=1) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes= 0.6 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 12 12 12 827 374 406 

3 19 19 19 312 1107 359 

5 36 36 31 125 1762 406 

10 58 58 48 624 3666 1076 

20 153 153 123 453 6676 1560 

30 214 214 176 764 9111 2823 

40 253 253 211 1701 10062 2901 

50 385 385 297 639 9953 2200 
 

 

Figure 5.1.7: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Unit weight for       

 

 

Figure 5.1.8: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random 

Graph with Random demand-Unit weight for p=    
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Table 5.1.5: Computational results on Random Graphs with 

 Random demand-Unit weight for       

Unit Weight (wi=1) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes= 0.8 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 7 7 7 110 265 125 

3 17 17 12 125 639 203 

5 45 45 30 156 1716 328 

10 55 55 35 406 1840 609 

20 122 122 77 577 4040 1124 

30 199 204 124 764 6692 1701 

40 288 288 187 1201 13588 5600 

50 367 362 252 1466 14492 3744 
 

 

Figure 5.1.9: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Unit weight for       

 

 

Figure 5.1.10: Running time comparison of AKR, Greedy and ÇDK-Kruskal on 

Random Graph with Random demand-Unit weight for       
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Table 5.1.6: Computational results on Random Graphs with  

Random demand-Unit weight for     

Unit Weight (wi=1) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 1 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 6 6 6 172 109 156 

3 11 11 11 171 422 218 

5 45 45 25 62 1342 406 

10 95 95 50 62 3417 842 

20 121 121 76 592 4134 1311 

30 207 207 117 765 6832 1716 

40 230 230 135 1295 8736 2512 

50 289 289 174 1684 9906 3370 
 

 

Figure 5.1.11: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Unit weight for     

 

 

Figure 5.1.12: Running time comparison of AKR, Greedy and ÇDK-Kruskal on 

Random Graph with Random demand-Unit weight for     
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The experiments over the generated random graphs show that Greedy gives better 

cost results while weights of all edges are unit and demands of terminal pairs are 

randomly assigned. In addition, the results of ÇDK-Kruskal and AKR are close to each 

other. In many cases, AKR gives slightly better results and the differences between the 

results become more significant as the probability of having an edge between two nodes 

increases. More specifically, AKR has better running time compared to both ÇDK-

Kruskal and Greedy since unit weights cause all the moats to collide during the first few 

iterations. Besides, the running time of Greedy is better than ÇDK-Kruskal, because 

ÇDK-Kruskal is computing an adjunct graph which takes time when it is compared to 

finding shortest path.  

One of the main results of this experiment is that when edge weights span a 

narrow range, AKR runs much faster than ÇDK-Kruskal and Greedy since all the moats 

grown by AKR collide during the first few iterations and the result is immediately 

returned.  

 

5.2 EXPERIMENTS ON RANDOM GRAPHS WITH RANDOM DEMAND-

RANDOM WEIGHT (Wi=1-100)  

In this experiment, a random graph with 1000 nodes and random edge costs 

between 1 and 100 for each vertex are generated for each   and   where   

                        is the probability that there is an edge between a pair of nodes 

and                           is the number of terminal pairs in the definition of 

MRoB. In addition, demands for each terminal are randomly generated between 1 and 5 

and    . Therefore, in the sampling step, every terminal pair is picked with a 

probability of     . A total of                  experiments are performed in 

this section. The computational results for each   are given as follows:  
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Table 5.2.1: Computational results on Random Graphs with  

Random demand-Random weight (wi=1-100) for       

Random Weight (wi=1-100) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 0.1 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 145 145 135 640 93 172 

3 205 215 185 187 125 47 

5 195 200 180 93 172 93 

10 120 430 365 93 328 140 

20 705 765 721 156 500 312 

30 1053 1113 1005 219 889 312 

40 1307 1377 1366 296 1108 561 

50 1582 1693 1656 515 1233 561 

 

 

Figure 5.2.1: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Random weight (wi=1-100) for       

 

 

Figure 5.2.2: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random 

Graph with Random demand-Random weight (wi=1-100) for       
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Table 5.2.2: Computational results on Random Graphs with  

Random demand-Random weight (wi=1-100) for       

Random Weight (wi=1-100) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 0.2 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 85 100 80 94 140 47 

3 107 112 82 141 203 78 

5 126 136 106 109 218 172 

10 267 289 244 140 484 234 

20 514 544 483 468 1061 468 

30 637 695 652 359 1576 468 

40 896 961 959 468 2075 858 

50 1038 1096 1098 468 3198 858 

 

 

Figure 5.2.3: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Random weight (wi=1-100) for       

 

 

Figure 5.2.4: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random 

Graph with Random demand-Random weight (wi=1-100) for       
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Table 5.2.3: Computational results on Random Graphs with  

Random demand-Random weight for       

Random Weight (wi=1-100) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 0.4 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 16 16 16 109 63 78 

3 75 95 65 188 561 141 

5 118 118 98 156 546 172 

10 168 178 164 250 1185 375 

20 359 394 361 437 2589 655 

30 461 480 466 608 3323 982 

40 691 723 700 764 4805 1357 

50 755 804 786 968 5865 1576 

 

 

Figure 5.2.5: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Random weight (wi=1-100) for       

 

 

Figure 5.2.6: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random 

Graph with Random demand-Random weight (wi=1-100) for       
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Table 5.2.4: Computational results on Random Graphs with  

Random demand-Random weight (wi=1-100) for       

Random Weight (wi=1-100) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 0.6 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 45 45 40 172 515 140 

3 42 42 42 172 280 172 

5 110 120 90 218 999 249 

10 165 165 140 327 1451 499 

20 332 327 287 421 3744 1061 

30 426 428 413 765 5273 1326 

40 567 569 565 1061 6006 1809 

50 666 691 730 1107 8424 2481 

 

 

Figure 5.2.7: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Random weight (wi=1-100) for       

 

 

Figure 5.2.8: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random 

Graph with Random demand-Random weight (wi=1-100) for       
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Table 5.2.5: Computational results on Random Graphs with  

Random demand-Random weight (wi=1-100) for       

Random Weight (wi=1-100) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 0.8 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 40 45 35 62 546 141 

3 27 27 27 348 394 218 

5 85 85 62 374 1014 336 

10 186 216 156 202 3318 672 

20 315 330 260 733 4836 1123 

30 395 408 360 952 6224 1935 

40 486 503 511 1186 7675 2184 

50 574 603 605 1872 11159 3104 

 

 

Figure 5.2.9: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Random weight (wi=1-100) for       

 

 

Figure 5.2.10: Running time comparison of AKR, Greedy and ÇDK-Kruskal on 

Random Graph with Random demand-Random weight (wi=1-100) for       

0

200

400

600

800

2 3 5 10 20 30 40 50

Cost 

k 

AKR

CDK_Kruskal

Greedy

0

2000

4000

6000

8000

10000

12000

2 3 5 10 20 30 40 50

Time 

k 

AKR

CDK_Kruskal

Greedy



46 
 

 

Table 5.2.6: Computational results on Random Graphs with  

Random demand-Random weight (wi=1-100) for     

Random Weight (wi=1-10000) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 1 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 45 45 35 94 655 172 

3 24 24 24 187 390 218 

5 57 57 47 390 936 374 

10 148 151 114 483 2512 718 

20 271 271 236 858 5195 1342 

30 377 372 301 1310 7239 2246 

40 530 553 521 1076 12527 2605 

50 620 640 635 1825 13119 3495 

 

 

Figure 5.2.11: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Random weight (wi=1-100) for     

 

 

Figure 5.2.12: Running time comparison of AKR, Greedy and ÇDK-Kruskal on 

Random Graph with Random demand-Random weight (wi=1-100) for     
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The experiments over the generated random graphs show that Greedy gives better 

cost results while weights of all edges and demands of terminal pairs are randomly 

assigned. In addition, the results of ÇDK-Kruskal and AKR are close to each other. In 

many cases, AKR gives slightly better results and the differences between the results 

become more significant as the probability of having an edge between two nodes 

increases. More specifically, AKR has better running time according to both ÇDK-

Kruskal and Greedy since small weights causes all the moats to collide in a short period 

of time. Besides, the running time of Greedy is better than ÇDK-Kruskal because ÇDK-

Kruskal is computing an adjunct graph which takes much time when it is compared to 

finding shortest path. Thus, the results of the experiments in this section are quite 

similar to the results stated in section 5.1 when AKR and ÇDK-Kruskal are compared 

since the weights of the edges are still small. The main difference is that, in this section 

Greedy is not better than the other algorithms give similar cost results.   

Similar to the previous section, since edge weights span a relatively narrow range 

and the moats grown by AKR collide during the first few iterations and the result is 

immediately returned, AKR runs much faster than ÇDK-Kruskal and Greedy.  

 

5.3 EXPERIMENTS ON RANDOM GRAPHS WITH RANDOM DEMAND-

RANDOM WEIGHT (Wi=1-10000) 

In this experiment, a random graph with 1000 nodes and random edge costs 

between 1 and 10000 for each vertex are generated for each   and   where   

                        is the probability that there is an edge between a pair of nodes 

and                           is the number of terminal pairs in the definition of 

MRoB. In addition, demands for each terminal are randomly generated between 1 and 5 

and    . Therefore, in the sampling step, every terminal pair is picked with a 

probability of     . A total of                  experiments are performed in 

this section. The computational results for each   are given as follows:  
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Table 5.3.1: Computational results on Random Graphs with  

Random demand-Random weight (wi=1-10000) for       

Random Weight (wi=1-10000) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 0.1 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 4903 4903 4903 811 78 172 

3 7034 7034 7034 655 78 63 

5 18232 18732 15972 1373 218 78 

10 33984 36769 29441 4415 219 140 

20 48133 51543 45646 3728 437 312 

30 67371 75721 69979 17363 780 281 

40 78277 83517 84601 6115 1623 452 

50 107833 117103 106094 7941 1263 780 

 

 

Figure 5.3.1: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Random weight (wi=1-10000) for       

 

 

Figure 5.3.2: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random 

Graph with Random demand-Random weight (wi=1-10000) for       
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Table 5.3.2: Computational results on Random Graphs with  

Random demand-Random weight (wi=1-10000) for       

Random Weight (wi=1-10000) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 0.2 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 1053 1053 1053 125 62 78 

3 3616 3616 3616 125 78 63 

5 5366 5366 5366 655 234 140 

10 11467 11801 10919 1139 499 203 

20 19025 19960 18796 3525 1326 531 

30 37291 42206 36994 4914 1763 499 

40 45452 48052 45073 6988 1966 546 

50 43277 46437 44808 8736 2465 905 

 

 

Figure 5.3.3: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Random weight (wi=1-10000) for       

 

 

Figure 5.3.4: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random 

Graph with Random demand-Random weight (wi=1-10000) for       
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Table 5.3.3: Computational results on Random Graphs with  

Random demand-Random weight (wi=1-10000) for       

Random Weight (wi=1-10000) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 0.4 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 2330 2645 2090 219 343 93 

3 1542 1542 1542 967 203 125 

5 5595 6095 4685 2153 655 172 

10 8457 9092 8040 2714 1388 375 

20 13010 14660 12099 9345 1809 624 

30 19393 21153 19527 7613 3697 873 

40 20781 23276 21119 8019 5569 1295 

50 27965 30320 29611 9266 4852 1342 

 

 

Figure 5.3.5: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Random weight (wi=1-10000) for       

 

 

Figure 5.3.6: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random 

Graph with Random demand-Random weight (wi=1-10000) for       
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Table 5.3.4: Computational results on Random Graphs with  

Random demand-Random weight (wi=1-10000) for       

Random Weight (wi=1-10000) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 0.6 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 760 760 760 312 249 125 

3 734 734 734 312 296 172 

5 1362 1362 1362 749 375 265 

10 4671 4791 4170 1436 936 577 

20 9794 10584 9126 4368 3338 905 

30 12927 13537 12435 7410 4929 1451 

40 11809 12694 12575 11170 5226 1888 

50 17193 18428 17213 9391 8330 2403 

 

 

Figure 5.3.7: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Random weight (wi=1-10000) for       

 

 

Figure 5.3.8: Running time comparison of AKR, Greedy and ÇDK-Kruskal on Random 

Graph with Random demand-Random weight for (wi=1-10000)       
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Table 5.3.5: Computational results on Random Graphs with  

Random demand-Random weight (wi=1-10000) for       

Random Weight (wi=1-10000) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 0.8 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 1250 1345 1160 561 562 140 

3 1581 1721 1531 1357 609 187 

5 2513 2802 2121 3651 1248 421 

10 4853 5368 4331 4134 2823 624 

20 6331 6971 6016 2558 4417 1225 

30 9969 10559 9851 5570 5717 1701 

40 11299 11899 12054 8596 7207 2059 

50 13035 13991 13216 14492 10393 2772 

 

 

Figure 5.3.9: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Random weight (wi=1-10000) for       

 

 

Figure 5.3.10: Running time comparison of AKR, Greedy and ÇDK-Kruskal on 

Random Graph with Random demand-Random weight (wi=1-10000) for       
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Table 5.3.6: Computational results on Random Graphs with  

Random demand-Random weight (wi=1-10000) for     

Random Weight (wi=1-10000) 

Random Demand (di=1-5) and  M=5 

Probability  that there is an edge between a pair of nodes = 1 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 815 835 685 593 624 156 

3 462 462 462 203 406 234 

5 2100 2405 1860 1654 1560 312 

10 2627 2767 2422 2153 2418 686 

20 5990 6440 5463 4103 5132 1451 

30 5626 9380 8536 15615 6911 1903 

40 8812 9397 5965 11123 8923 2824 

50 10417 11212 11405 8984 12212 3057 

 

 

Figure 5.3.11: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Random Graph 

with Random demand-Random weight (wi=1-10000) for     

 

 

Figure 5.3.12: Running time comparison of AKR, Greedy and ÇDK-Kruskal on 

Random Graph with Random demand-Random weight (wi=1-10000) for     
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The experiments over the generated random graphs show that AKR gives slightly 

better cost results while weights of all edges and demands of terminal pairs are 

randomly assigned. The differences between the results become more significant as the 

probability of having an edge between two nodes increases. Thus, Greedy has better 

running time compared to ÇDK-Kruskal since ÇDK-Kruskal is computing an adjunct 

graph which takes much time when it is compared to finding shortest path.  

One of the main results of this experiment is that when edge weights span a wide 

range, AKR runs slower than ÇDK-Kruskal and Greedy, especially when the graph is 

sparse since there is an excessive number of edge weight updates represented by moats 

grown in the algorithm. However, when the graph becomes denser, e.g. complete graph 

with    , the number of edge weight updates decreases for AKR since there is a 

direct edge between any terminal pair. Hence, its running time gets closer to ÇDK-

Kruskal. 

 

5.4 EXPERIMENTS ON TSP URUGUAY GRAPH WITH RANDOM 

DEMANDS- 

In this experiment, AKR, Greedy and ÇDK-Kruskal are run on a real world graph 

with 734 nodes and the edges which are determined by a value     where        

is the maximum distance between two cities in Uruguay 

and                          . If the distance between two cities is smaller than or 

equal to       , the edge corresponding to this distance is included into the graph.  

We run AKR, Greedy and ÇDK-Kruskal on TSP Uruguay Graph for each   

                        in which the demands    for each terminal pair are randomly 

assigned integer between 1 and 5 and    . Thus, in the sampling step, every terminal 

pair is picking with a probability of     . The computational results for each   are 

given as follows: 
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Figure 5.4.1: The point set derived from the National Imagery and Mapping Agency 

Database of Geographic Feature Names [34] 

 

 

Figure 5.4.2: Map of Uruguay from CIA World Factbook [35] 
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Table 5.4.1: Computational results on TSP Uruguay Graph with  

random demands for       

Random Demand (di=1-5) and M=5 

For the edges of weight less than 0,1 x Maximum weight (5746) 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 20905 20905 24690 2715 62 156 

3 20919 20919 20501 3806 47 31 

5 38623 38623 39153 3260 63 31 

10 56660 56660 64386 3182 94 47 

20 78341 78595 89087 3588 249 63 

30 94300 94450 108301 3900 343 94 

40 106652 106439 121884 2792 484 125 

50 127397 127771 137445 3713 609 171 

 

 

Figure 5.4.3: Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay 

Graph with random demands for       

 

 

Figure 5.4.4: Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP 

Uruguay Graph with random demands - for       
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Table 5.4.2: Computational results on TSP Uruguay Graph with  

random demands for       

Random Demand (di=1-5) and M=5 

For the edges of weight less than 0,2 x Maximum weight (5746) 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 24280 24280 24280 18486 63 31 

3 14239 14239 14239 1919 78 47 

5 38807 38810 38725 26286 172 78 

10 58365 59257 66911 19468 531 140 

20 83408 83408 96991 21840 1170 265 

30 103848 104182 118563 16442 1295 374 

40 120615 121027 152622 20389 1170 328 

50 115420 115939 146363 16099 2434 639 

 

 

Figure 5.4.5: Cost Comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay 

Graph with random demands for y=0.2 

 

 

Figure 5.4.6: Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP 

Uruguay Graph with random demands - for       
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Table 5.4.3: Computational results on TSP Uruguay Graph with  

random demands for       

Random Demand (di=1-5) and M=5 

For the edges of weight less than 0,4 x Maximum weight (5746) 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 13250 13250 13250 19141 203 93 

3 13445 13495 13495 48376 359 140 

5 54045 54409 55445 104988 733 203 

10 49633 49633 57008 96689 1294 328 

20 94813 95019 105224 71417 2387 671 

30 97987 97821 122524 89715 2746 1295 

40 109474 109912 142335 83943 4228 1529 

50 127912 128206 166226 50809 3073 1638 

 

 

Figure 5.4.7: Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay 

Graph with random demands for       

 

 

Figure 5.4.8: Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP 

Uruguay Graph with random demands - for       
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Table 5.4.4: Computational results on TSP Uruguay Graph with  

random demands for       

Random Demand (di=1-5) and M=5 

For the edges of weight less than 0,6 x Maximum weight (5746) 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 10350 10350 10350 10935 297 125 

3 34950 34950 37390 144815 998 203 

5 48336 48336 56050 186170 1466 328 

10 52578 52578 62188 96127 3136 624 

20 74261 75003 78298 158184 2043 1295 

30 110278 110494 148778 86455 3416 1966 

40 103725 103725 136375 132678 9641 2371 

50 127048 127060 160933 73850 5023 3261 

 

 

Figure 5.4.9: Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay 

Graph with random demands for       

 

 

Figure 5.4.10: Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP 

Uruguay Graph with random demands - for       

0

50000

100000

150000

200000

2 3 5 10 20 30 40 50

Cost 

k 

AKR

CDK_Kruskal

Greedy

0

50000

100000

150000

200000

2 3 5 10 20 30 40 50

Time 

k 

AKR

CDK_Kruskal

Greedy



60 
 

 

Table 5.4.5: Computational results on TSP Uruguay Graph with  

random demands for       

Random Demand (di=1-5) and M=5 

For the edges of weight less than 0,8 x Maximum weight (5746) 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 3436 3436 3436 125 93 110 

3 21412 21412 21312 32448 811 234 

5 30803 30803 32738 112071 1045 328 

10 63890 63890 74391 114348 3073 718 

20 86275 56847 113775 102835 2496 1451 

30 104813 105116 126085 103584 5928 1513 

40 111628 112162 134230 117468 11841 2917 

50 126788 127185 182165 89169 12418 3744 

 

 

Figure 5.4.11: Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay 

Graph with random demands for       

 

 

Figure 5.4.12: Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP 

Uruguay Graph with random demands - for       
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Table 5.4.6: Computational results on TSP Uruguay Graph with  

random demands for     

Random Demand (di=1-5) and M=5 

For the edges of weight less than 1 x Maximum weight (5746) 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 8735 8735 8735 35069 359 156 

3 20151 20151 20151 119018 374 328 

5 37937 37985 38739 321976 687 280 

10 53773 54313 58254 63208 1544 452 

20 77844 78049 88494 144730 4071 1342 

30 87204 88033 102970 179272 4664 1810 

40 104174 104236 126566 81773 11451 2745 

50 104151 104226 140009 94863 11841 3728 

 

 

Figure 5.4.13: Cost comparison of AKR, Greedy and ÇDK-Kruskal on TSP Uruguay 

Graph with random demands for     

 

 

Figure 5.4.14: Running time comparison of AKR, Greedy and ÇDK-Kruskal on TSP 

Uruguay Graph with random demands- for     
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The experiments over the TSP Uruguay Graph show that AKR and ÇDK-Kruskal 

gives better cost results than Greedy. And in many cases AKR gives slightly better 

results than ÇDK-Kruskal. The differences between the results become more significant 

as the edges between cities which are determined by the value     increases. Thus, 

Greedy has better running time compared to ÇDK-Kruskal since ÇDK-Kruskal is 

computing an adjunct graph which takes much time when it is compared to finding 

shortest path. We would like to note that, we have run these algorithms on various TSP 

data and eventually, very similar to the ones we have observed for TSP Uruguay. 

One of the main results of this experiment is that since edge weights span a wide 

range in real world data and it causes excessive number of edge weight updates 

represented by moat grown in the AKR algorithm, it runs much slower than ÇDK-

Kruskal and Greedy. However, when the graph becomes denser, e.g. complete graph 

with    , the number of edge weight updates decreases for AKR since there is a 

direct edge between any terminal pair. Hence, its running time gets closer to ÇDK-

Kruskal. In addition, ÇDK-Kruskal turns out to be a very good algorithm for real world 

graphs since its running time is closer to Greedy, but its cost results are similar to AKR. 

5.5 EXPERIMENTS ON A GEOMETRIC RANDOM GRAPH WITH RANDOM 

DEMAND 

In this experiment, AKR, Greedy and ÇDK-Kruskal are run on a geometric 

random graph with 1000 nodes and the edges which are determined by a value     

where        is the maximum distance between two nodes in graph and   

                       . If the distance between two nodes is smaller than or equal 

to       , the edge corresponding to this distance is included into the graph.  

We run AKR, Greedy and ÇDK-Kruskal on generated Geometric Random Graph 

for each                           in which the demands    for each terminal pair 

are randomly assigned integer between 1 and 5 and    . Thus, in the sampling step, 

every terminal pair is picking with a probability of     . The computational results for 

each   are given as follows:   
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Table 5.5.1: Computational results on Geometric Random Graph with  

random demands for       

Random Demand (di=1-5) and M=5  

For the edges of weight less than 0,1 x Maximum weight (1368) 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 4385 4385 4500 1373 88 587 

3 3582 3582 3582 117 17 72 

5 10547 10547 10314 1691 459 63 

10 11837 11837 11030 1611 265 93 

20 20003 20051 22867 2000 605 194 

30 21552 21559 25812 1911 531 199 

40 26734 26769 31192 1534 661 221 

50 29838 29878 35552 1359 892 335 

 

 

Figure 5.5.1: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric 

Random Graph with random demands for       

 

 

Figure 5.5.2: Running time comparison of AKR, Greedy and ÇDK-Kruskal on 

Geometric Random Graph with random demands - for       
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Table 5.5.2: Computational results on Geometric Random Graph with  

random demands for       

Random Demand (di=1-5) and M=5  

For the edges of weight less than 0,2 x Maximum weight (1368) 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 7065 7065 7045 15838 259 74 

3 3733 3733 3733 5444 114 84 

5 5708 5718 5718 4270 288 118 

10 14060 14180 14898 8391 680 236 

20 21359 21433 24864 13585 1337 356 

30 23323 23315 28121 17454 2233 666 

40 27330 27573 32515 8522 2396 875 

50 31030 31193 37241 9146 3121 1340 

 

 

Figure 5.5.3: Cost Comparison of AKR, Greedy and ÇDK-Kruskal on Geometric 

Random Graph with random demands for y=0.2 

 

 

Figure 5.5.4: Running time comparison of AKR, Greedy and ÇDK-Kruskal on 

Geometric Random Graph with random demands - for       
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Table 5.5.3: Computational results on Geometric Random Graph with  

random demands for       

Random Demand (di=1-5) and M=5  

For the edges of weight less than 0,4 x Maximum weight (1368) 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 2184 2184 2184 117 72 298 

3 5448 5563 5563 50886 326 415 

5 7808 7836 8180 19922 1322 421 

10 11810 11883 14058 42376 2116 498 

20 17480 20333 23086 17480 4101 1549 

30 22556 22577 27523 43473 6873 1711 

40 26286 26557 33152 24409 7591 2474 

50 29972 29987 37306 28833 9655 2938 

 

 

Figure 5.5.5: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric 

Random Graph with random demands for       

 

 

Figure 5.5.6: Running time comparison of AKR, Greedy and ÇDK-Kruskal on 

Geometric Random Graph with random demands - for       
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Table 5.5.4: Computational results on Geometric Random Graph with  

random demands for       

Random Demand (di=1-5) and M=5  

For the edges of weight less than 0,6 x Maximum weight (1368) 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 5435 5417 5417 84742 608 275 

3 5338 5226 5226 70072 524 289 

5 6867 6879 6879 77002 1511 547 

10 12854 12854 15350 78500 4354 1215 

20 19099 19290 22286 28835 6616 1940 

30 23543 23544 28158 32437 12299 3059 

40 26451 26575 32311 57064 14880 3905 

50 31716 31789 39523 41520 13421 3391 

 

 

Figure 5.5.7: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric 

Random Graph with random demands for       

 

 

Figure 5.5.8: Running time comparison of AKR, Greedy and ÇDK-Kruskal on 

Geometric Random Graph with random demands - for       
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Table 5.5.5: Computational results on Geometric Random Graph with  

random demands for       

Random Demand (di=1-5) and M=5  

For the edges of weight less than 0,8 x Maximum weight (1368) 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 3625 3625 3625 46730 442 214 

3 4607 4607 4607 56000 350 204 

5 9295 9295 9237 68611 2201 483 

10 11776 11776 14151 27701 3311 809 

20 19693 19849 24131 55874 6646 1746 

30 22666 22699 27806 37996 11975 2927 

40 26538 26625 32508 47549 12865 3151 

50 50150 29831 37518 50150 17459 5742 

 

 

Figure 5.5.9: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric 

Random Graph with random demands for       

 

 

Figure 5.5.10: Running time comparison of AKR, Greedy and ÇDK-Kruskal on 

Geometric Random Graph with random demands - for       
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Table 5.5.6: Computational results on Geometric Random Graph with  

random demands for     

Random Demand (di=1-5) and M=5  

For the edges of weight less than 1 x Maximum weight (1368) 

k 
RESULT RUNNING TIME (ms) 

AKR CDK_Kruskal Greedy AKR CDK_Kruskal Greedy 

2 5323 5277 5277 70098 376 371 

3 4811 4811 4811 2558 776 414 

5 9359 9359 10027 150649 1453 627 

10 16802 16818 19496 85523 3184 1603 

20 20247 20345 23054 120418 5002 1874 

30 22804 22864 27082 57020 13525 3432 

40 27911 28054 33428 42646 11421 3122 

50 28716 28901 35349 41288 14713 4607 

 

 

Figure 5.5.11: Cost comparison of AKR, Greedy and ÇDK-Kruskal on Geometric 

Random Graph with random demands for     

 

 

Figure 5.5.12: Running time comparison of AKR, Greedy and ÇDK-Kruskal on 

Geometric Random Graph with random demands- for     
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The experiments of this section are qualitatively the same as the previous section. 

Overall, ÇDK-Kruskal is a good alternative to AKR for random geometric graphs and 

real-world geometric graphs. 
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