

The Graduate Institute of Sciences and Engineering

M.Sc. Thesis in Electrical and Computer Engineering

ON A GREEDY HEURISTIC FOR THE STEINER

FOREST PROBLEM

by

Bilge Kağan DEDETÜRK

July 2014

Kayseri, Turkey

ON A GREEDY HEURISTIC FOR THE STEINER FOREST

PROBLEM

by

Bilge Kağan DEDETÜRK

A thesis submitted to

the Graduate Institute of Sciences and Engineering

of

Melikşah University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical and Computer Engineering

July 2014

Kayseri, TURKEY

APPROVAL PAGE

This is to certify that I have read the thesis entitled “On a Greedy Heuristic for the

Steiner Forest Problem” by Bilge Kağan DEDETÜRK and that in my opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science in

Electrical and Computer Engineering, the Graduate Institute of Science and

Engineering, Melikşah University.

July 3, 2014 Asst. Prof. Ali ÇİVRİL

 Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 July 3, 2014 Prof. Dr. Murat UZAM

 Head of Department

Examining Committee Members

Title and Name Approved

Asst. Prof. Ali ÇİVRİL July 3, 2014 ____________________

Assoc. Prof. Ahmet UYAR July 3, 2014 ____________________

Asst. Prof. Aytekin VARGÜN July 3, 2014 ____________________

Assoc. Prof Emel KIZILKAYA AYDOĞAN July 3, 2014 ____________________

It is approved that this thesis has been written in compliance with the formatting

rules laid down by the Graduate Institute of Science and Engineering.

 Prof. Dr. M. Halidun KELEŞTİMUR

 Director

July 2014

iii

ON A GREEDY HEURISTIC FOR THE STEINER FOREST

PROBLEM

Bilge Kağan DEDETÜRK

M.S. Thesis – Electrical and Computer Engineering

July 2014

Supervisor: Assist. Prof. Dr. Ali ÇİVRİL

ABSTRACT

The Steiner forest problem is one of the important NP-Complete problems in the

field of approximation algorithms and combinatorial optimization through decades. In

this work, we devolop three heuristics for Steiner forest problem inspired by the greedy

algorithms for the problem of finding a minimum spanning tree. According to the

experimental results on random geometric graphs and real-world geometric graphs, our

algorithms yield solutions of comparable quality to that of the famous 2-approximate

algorithm of Agrawal, Klein and Ravi, and a widely used greedy heuristic. Especially,

for real-world geometric graphs they yield much better running time with similar costs.

Keywords: Steiner Forest, NP-Complete, Approximation Algorithms,

Combinatorial Optimization, Greedy Algorithms

iv

ON A GREEDY HEURISTIC FOR THE STEINER FOREST

PROBLEM

Bilge Kağan DEDETÜRK

Yüksek Lisans Tezi – Elektrik ve Bilgisayar Mühendisliği

Temmuz 2014

Tez Yöneticisi: Yrd. Doç. Dr. Ali ÇİVRİL

ÖZ

Steiner ormanı problemi onlarca yıldır yaklaştırma algoritmaları ve kombinatoryel

optimizasyon alanındaki önemli NP-Tam problemlerden biridir. Bu çalışmada, Steiner

ormanı problemi için minimum bir tarayan ağaç bulma problemini çözen açgözlü

algoritmalardan esinlenen üç adet sezgisel algoritma geliştiriyoruz. Rastgele geometrik

çizgeler ve gerçek dünya geometrik çizgeleri üzerindeki deneysel sonuçlara göre

algoritmalarımız Agrawal, Klein ve Ravi’nin ünlü 2 yaklaşık algoritması ve geniş bir

şekilde kullanılan açgözlü sezgisel algoritma ile karşılaştırılabilir kalitede çözümler

veriyor. Özellikle, gerçek dünya geometrik çizgeleri için algoritmalarımız benzer

maliyetlerle çok daha iyi çalışma zamanı veriyor.

Anahtar Kelimeler: Steiner Ormanı, NP-Tam, Yaklaştıma Algoritmaları,

Kombinatoryel Optimizasyon, Açgözlü Algoritmalar

v

DEDICATION

Dedicated to my parents for their endless support and patience during the forming

phase of this thesis.

vi

ACKNOWLEDGEMENT

I would like to thank TÜBİTAK (Türkiye Bilimsel ve Teknolojik Araştırma

Kurumu) that has supported my thesis studies under the project number 112E192.

My special thanks to my advisor, Dr. Ali Çivril for his encouragement,

motivation, guidance, and help on technical issues. Through his help, I get opportunities

to learn new things in the development of the thesis.

I also want to express my gratitude to my colleagues Ayub Rokhman Wakhid and

Osman Melih Kürtüncü for their supports.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ ... iv

DEDICATION .. v

ACKNOWLEDGEMENT .. vi

TABLE OF CONTENTS .. vii

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 The Steiner Forest Problem .. 2

1.2 Related Work .. 3

CHAPTER 2 .. 5

PRELIMINARIES ... 5

2.1 Dijkstra’s Algorithm ... 5

2.2 Disjoint Set Operations ... 6

2.3 Minimum Spanning Tree Algorithms ... 6

CHAPTER 3 .. 8

ALGORITHMS FOR THE STEINER FOREST PROBLEM 8

3.1 A Primal Dual Algorithm for the Steiner Forest Problem 8

3.2 A Greedy Heuristic ... 17

CHAPTER 4 .. 23

NEW ALGORITHMS FOR THE STEINER FOREST PROBLEM 23

4.1 The New Algorithms .. 23

4.2 The Equivalence of the Algorithms .. 30

viii

4.3 A Bad Example for Our Algorithms ... 31

CHAPTER 5 .. 33

EXPERIMENTAL RESULTS .. 33

5.1 Experiment 1 ... 34

5.2 Experiment 2 ... 45

5.3 Experiment 3 ... 55

5.4 Experiment 4 ... 63

REFERENCES .. 70

ix

LIST OF FIGURES

FIGURE

3.1.1 An example to explain when a set is active or not .. 9

3.1.2 An example to explain how AKR works .. 11

3.1.3 Illustration of union 1 and 7 .. 11

3.1.4 Illustration of union 5 and 8 .. 12

3.1.5 Union of the sets corresponding to 1, 2 and 5 ... 12

3.1.6 Illustration of union 4 and 6 .. 13

3.1.7 Illustration of the solution returned by AKR .. 14

3.1.8 Illustration of growing moats on the specific example 15

3.1.9 Bad example for AKR... 16

3.1.10 Illustration of the solution returned by AKR .. 16

3.1.11 Illustration of the optimum solution.. 17

3.2.1 An instance for Greedy Heuristic.. 18

3.2.2 Illustration of the edges added into solution ... 18

3.2.3 Illustration of the solution returned by Greedy Heuristic 19

3.2.4 Bad example for Greedy Heuristic.. 20

3.2.5 Forest returned by Greedy Heuristic ... 21

3.2.6 Optimum solution ... 21

3.2.7 Forest returned by AKR .. 22

4.1.1 Illustration of the specific example ... 24

4.1.2 Illustration of the sets .. 24

4.1.3 Sorted shortest paths between terminals ... 25

4.1.4 Illustration of union 3 and 4 .. 25

4.1.5 Illustration of union 1 and 3 .. 26

4.1.6 Illustration of union 4 and 6 .. 26

4.1.7 Illustration of union 6 and 11 .. 26

4.1.8 Illustration of union 6 and 9 .. 27

x

4.3.1 Bad example for ÇDK-Kruskal ... 31

4.3.2 Illustration of the forest returned by ÇDK-Kruskal .. 32

4.3.3 Optimum forest ... 32

5.1.1 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 36

5.1.2 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 36

5.1.3 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 37

5.1.4 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 37

5.1.5 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 38

5.1.6 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 38

5.1.7 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 39

5.1.8 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 39

5.1.9 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 40

5.1.10 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 40

5.1.11 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 41

5.1.12 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 41

5.1.13 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 42

5.1.14 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 42

5.1.15 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 43

xi

5.1.16 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 43

5.1.17 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 44

5.1.18 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 44

5.2.1 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 36

5.2.2 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 36

5.2.3 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 37

5.2.4 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 37

5.2.5 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 38

5.2.6 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 38

5.2.7 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 39

5.2.8 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 39

5.2.9 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 40

5.2.10 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 40

5.2.11 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 41

5.2.12 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 41

5.2.13 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 42

xii

5.2.14 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 42

5.2.15 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 43

5.2.16 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 43

5.2.17 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on Random

Graph with Probability of Edge Existance ... 44

5.2.18 Running Time Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance ... 44

5.3.1 The Map of Uruguay [20] ... 56

5.3.2 The Point Set of Uruguay [21] .. 56

5.3.3 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP

Uruguay Graph with edge weights which are smaller than the biggest distance x ...57

5.3.4 Running Time Comparison of the three Algorithms on TSP Uruguay Graph with

edge weights which are smaller than the biggest distance x 57

5.3.5 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP

Uruguay Graph with edge weights which are smaller than the biggest distance x ...58

5.3.6 Running Time Comparison of the three Algorithms on TSP Uruguay Graph with

edge weights which are smaller than the biggest distance x 58

5.3.7 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP

Uruguay Graph with edge weights which are smaller than the biggest distance x ...59

5.3.8 Running Time Comparison of the three Algorithms on TSP Uruguay Graph with

edge weights which are smaller than the biggest distance x 59

5.3.9 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP

Uruguay Graph with edge weights which are smaller than the biggest distance x ...60

5.3.10 Running Time Comparison of the three Algorithms on TSP Uruguay Graph with

edge weights which are smaller than the biggest distance x 60

5.3.11 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP

Uruguay Graph with edge weights which are smaller than the biggest distance x ...61

5.3.12 Running Time Comparison of the three Algorithms on TSP Uruguay Graph with

edge weights which are smaller than the biggest distance x 61

xiii

5.3.13 Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP

Uruguay Graph with edge weights which are smaller than the biggest distance x ...62

5.3.14 Running Time Comparison of the three Algorithms on TSP Uruguay Graph with

edge weights which are smaller than the biggest distance x 62

5.4.1 Cost Comparison of the three Algorithms on Geometric Random Graph with

edge weights which are smaller than the biggest distance x 64

5.4.2 Running Time Comparison of the three Algorithms on Geometric Random

Graph with edge weights which are smaller than the biggest distance x 64

5.4.3 Cost Comparison of the three Algorithms on Geometric Random Graph with

edge weights which are smaller than the biggest distance x 65

5.4.4 Running Time Comparison of the three Algorithms on Geometric Random

Graph with edge weights which are smaller than the biggest distance x 65

5.4.5 Cost Comparison of the three Algorithms on Geometric Random Graph with

edge weights which are smaller than the biggest distance x 66

5.4.6 Running Time Comparison of the three Algorithms on Geometric Random

Graph with edge weights which are smaller than the biggest distance x 66

5.4.7 Cost Comparison of the three Algorithms on Geometric Random Graph with

edge weights which are smaller than the biggest distance x 67

5.4.8 Running Time Comparison of the three Algorithms on Geometric Random

Graph with edge weights which are smaller than the biggest distance x 67

5.4.9 Cost Comparison of the three Algorithms on Geometric Random Graph with

edge weights which are smaller than the biggest distance x 68

5.4.10 Running Time Comparison of the three Algorithms on Geometric Random

Graph with edge weights which are smaller than the biggest distance x 68

5.4.11 Cost Comparison of the three Algorithms on Geometric Random Graph with

edge weights which are smaller than the biggest distance x 69

5.4.12 Running Time Comparison of the three Algorithms on Geometric Random

Graph with edge weights which are smaller than the biggest distance x 69

xiv

LIST OF TABLES

TABLE

5.1.1 Results of cost and running time of the three algorithms with probability of edge

existence 1.. 36

5.1.2 Results of cost and running time of the three algorithms with probability of edge

existence ... 37

5.1.3 Results of cost and running time of the three algorithms with probability of edge

existence ... 38

5.1.4 Results of cost and running time of the three algorithms with probability of edge

existence ... 39

5.1.5 Results of cost and running time of the three algorithms with probability of edge

existence ... 40

5.1.6 Results of cost and running time of the three algorithms with probability of edge

existence ... 41

5.1.7 Results of cost and running time of the three algorithms with probability of edge

existence ... 42

5.1.8 Results of cost and running time of the three algorithms with probability of edge

existence ... 43

5.1.9 Results of cost and running time of the three algorithms with probability of edge

existence ... 44

5.2.1 Results of cost and running time of the three algorithms with probability of edge

existence 1.. 46

5.2.2 Results of cost and running time of the three algorithms with probability of edge

existence ... 47

5.2.3 Results of cost and running time of the three algorithms with probability of edge

existence ... 48

5.2.4 Results of cost and running time of the three algorithms with probability of edge

existence ... 49

xv

5.2.5 Results of cost and running time of the three algorithms with probability of edge

existence ... 50

5.2.6 Results of cost and running time of the three algorithms with probability of edge

existence ... 51

5.2.7 Results of cost and running time of the three algorithms with probability of edge

existence ... 52

5.2.8 Results of cost and running time of the three algorithms with probability of edge

existence ... 53

5.2.9 Results of cost and running time of the three algorithms with probability of edge

existence ... 54

5.3.1 Results of Cost and Running Time of Three Algorithms on TSP-Uruguay Graph

with Edge Weights less than 0,1 times maximum distances .. 57

5.3.2 Results of Cost and Running Time of Three Algorithms on TSP-Uruguay Graph

with Edge Weights less than 0,2 times maximum distances .. 58

5.3.3 Results of Cost and Running Time of Three Algorithms on TSP-Uruguay Graph

with Edge Weights less than 0,4 times maximum distances .. 59

5.3.4 Results of Cost and Running Time of Three Algorithms on TSP-Uruguay Graph

with Edge Weights less than 0,6 times maximum distances .. 60

5.3.5 Results of Cost and Running Time of Three Algorithms on TSP-Uruguay Graph

with Edge Weights less than 0,8 times maximum distances .. 61

5.3.6 Results of Cost and Running Time of Three Algorithms on TSP-Uruguay Graph

with Edge Weights less than 1,0 times maximum distances .. 62

5.4.1 Results of Cost and Running Time of Three Algorithms on Geometric Random

Graph with Edge Weights less than 0,1 times maximum distances 64

5.4.2 Results of Cost and Running Time of Three Algorithms on Geometric Random

Graph with Edge Weights less than 0,2 times maximum distances 65

5.4.3 Results of Cost and Running Time of Three Algorithms on Geometric Random

Graph with Edge Weights less than 0,4 times maximum distances 66

5.4.4 Results of Cost and Running Time of Three Algorithms on Geometric Random

Graph with Edge Weights less than 0,6 times maximum distances 67

5.4.5 Results of Cost and Running Time of Three Algorithms on Geometric Random

Graph with Edge Weights less than 0,8 times maximum distances 68

5.4.6 Results of Cost and Running Time of Three Algorithms on Geometric Random

Graph with Edge Weights less than 1,0 times maximum distances 69

1

CHAPTER 1

INTRODUCTION

Many optimization problems are NP-hard which means that there is no

polynomial time algorithm that exactly solves the problem unless P = NP. If P ≠ NP, we

can’t find optimal solutions in polynomial time for NP hard problems. What can we do

when we encounter with such NP hard problems? One approach is that we can try to

find an approximate solution that runs in polynomial time instead of finding optimal

solution. The goal is to find a solution in polynomial time which is as close as possible

to the optimal solution under some objective function.

Definition 1.1: An α-approximation algorithm for an optimization problem is a

polynomial-time algorithm that for all instances of the problem produces a solution

whose value is within a factor of α of the value of an optimal solution. [1]

Here, α is the approximation ratio or approximation factor of the algorithm. α > 1

for minimization problems while α < 1 for maximization problems.

Based on this definition, note that an approximation algorithm has to guarantee

the approximation factor for all instances of the problem. This requirement makes

approximation algorithms hard and complicated to design and also they may need high

running time to be implemented. However, very complicated instances (bad cases) are

generally hard to be found in the real-world. Hence, to solve real-world problems, we

can still benefit from other algorithms that even do not have proven approximation

ratios, but can give reasonably good results in a reasonable running time.

2

In this thesis, we provide novel algorithms for the Steiner forest problem that are

applicable to real-world data with better running time and comparable quality compared

to the well known approximation algorithms which we briefly call AKR. We base our

algorithms on the well-known minimum spanning tree algorithms of Kruskal, Prim, and

Boruvka. We give an example in which our algorithms work worse than AKR in a

specific case. However in real-world instances like the geometric graph representing the

cities of specific countries, our algorithms work much faster than the primal dual

algorithm AKR although they have similar costs. Also, our algorithms have very good

running time for all instances and they are very simple compared to AKR.

1.1 The Steiner Forest Problem

In this thesis, we deal with the Steiner forest problem which is also known as the

generalized Steiner tree problem. The Steiner forest problem is a natural generalization

of the Steiner tree problem. So, we first mention about the Steiner tree problem.

In the Steiner tree problem, we are given a connected, undirected graph

G = (V, E) with nonnegative costs for all edges e ∈ E and a set of terminal vertices

T ⊆ V. The vertices of V-T are nonterminal vertices or Steiner vertices. The goal is to

find a minimum cost tree which contains all terminal vertices in T.

In the Steiner forest problem, we are given an undirected graph G = (V, E),

nonnegative edge costs for all edges e ∈ E. Also we are given a set of k terminal

pairs R = {() ()}. The object is to find minimum cost subset of edges

F ⊆ E such that there is at least one path between each terminal pair and for

1 ≤ i ≤ k.

The Steiner tree problem is an NP hard problem [2]. Since the Steiner forest

problem is the natural generalization of the Steiner tree problem, the Steiner Forest

problem is also an NP hard problem. That is to say, if =
for i = 1,…, k-1 the

Steiner Forest problem reduces to the Steiner tree problem. The Steiner forest problem

is one of the major problems in the field of approximation algorithms. As we will see,

there is a 2-approximate algorithm for this problem which is more than 2 decades old. A

text written by Williamson and Shmoys [1] tells us that obtaining an algorithm having

3

approximation factor strictly less than 2 for the Steiner forest problem is one of the ten

major open problems in the field.

1.2 Related Work

The well-known approximation algorithm for the Steiner Forest problem was

introduced by Agrawal, Klein and Ravi [3]. Approximation ratio of this algorithm is

2-

, where k is the number of terminal pairs. Then, Goemans and Williamson [4]

introduced an algorithm mimicking this algorithm by using the primal-dual method. The

approximation ratio of this algorithm is still 2-

. Analogously, recent paper by

Könemann, Leonardi, Schafer and Van Zwam [5] give us an algorithm having the same

approximation ratio with this algorithm by using a slightly different LP relaxation.

Besides of the Steiner forest problem itself, there has been numerous works

associated with it. Here, we mention about some of them which are popular.

The multicommodity rent-or-buy problem (MRoB) is a generalization of the

Steiner Forest problem. In this problem, we are given a weighted graph G = (V, E),

nonnegative edge costs for all edges ∈ E, a set of k terminal pairs R = {(),…,

()}, and a parameter M ≥ 1. We are also given a positive demand for each

terminal pair () ∈ R for 1 ≤ i ≤ k. The object is to install capacities on the edges of

G such that for all () ∈ R, we can simultaneously route an amount of flow from

 . We can either buy infinite capacity on edge at cost () or we can rent

capacity on an edge at cost () (), where () is the flow on edge . For M = 1

and unit demands, this problem reduces to the Steiner Forest problem. Kumar, Gupta

and Roughgarden [6] gave first approximation algorithm for this problem. Later Gupta,

Kumar, Pal and Roughgarden [7, 8] produced an algorithm whose approximation ratio

is 12 (Actually, it can be tightened to 8-approximation). Then Becchetti, Könemann,

Leonardi and Pal [9] gave the improved approximation ratio which is 6.828. Fleischer et

al. [10] have given the best approximation ratio which is 5 for this problem so far.

Another well-known problem which is related with the Steiner Forest problem is

the survivable network design problem. It is the natural generalization of the Steiner

4

forest problem, that is, if we require that there exists edge-disjoint paths between

and , we have the survivable network design problem. For this problem was given a

2k approximation algorithm by Williamson et al. [11]. Goemans et al. [12] gave a 2

approximation algorithm, where = 1 +

 + … +

. Later, Jain [13] produced a 2

approximation algorithm for this problem.

5

CHAPTER 2

PRELIMINARIES

2.1 Dijkstra’s Algorithm

In section 4.1 where we present our algorithms, we will need to compute all the

shortest paths between terminals. In addition, in section 3.2 where we will talk about a

well known greedy heuristic, we will need to compute all the shortest paths between all

terminal pairs. There are several algorithms for finding shortest paths between vertices.

Here, we consider Dijkstra’s algorithm. Dijkstra’s algorithm is an algorithm which

solves the single source shortest paths problem on a weighted connected graph G = (V,

E) with nonnegative weights. This algorithm calculates all the shortest paths from a

given vertex called the source to all other vertices. In the following, we give the

pseudocode of Dijkstra’s algorithm [14].

Algorithm 2.1.1: Dijkstra’s Algorithm

 1: Initialize minimum priority queue(Q)

 2: for every vertex in V

 3:

 4:
 5: Enqueue(,)

 6:

 7: DecreaseKey(Q, s,) // s is the element in the priority queue whose priority will be decreased

 8: S = ∅

 9: while Q ≠ ∅

10: DequeueMin(Q)

11: S S ⋃ { }

12: for every vertex in V – S that is adjacent to

13: if ()

14: ()
15:

16: DecreaseKey(Q, ,)

6

2.2 Disjoint Set Operations

We will use the disjoint set operations in section 3.1 and 4.1 while giving detailed

descriptions of algorithms there in. MAKE-SET operation will be used to make a set for

each terminal. We will use FIND-SET operation to check whether two nodes are in the

same set and UNION operation to combine two different sets into one set. We usually

use the definitions and notation from [15]. Below are the main functions that are used

inside disjoint set operations.

• MAKE-SET(u): creates a new set whose only member and representative is u.

• UNION(u, v): combines the different two sets that contain u and v into a new set

which is the union of these two sets.

• FIND-SET(u): finds and returns the representative of the set which contain u.

2.3 Minimum Spanning Tree Algorithms

Before we discuss our algorithms in section 4.1, it is of a great benefit to

remember the well-known minimum spanning tree algorithms of Kruskal [16], Prim

[17], and Boruvka [18]. We can choose any one of these algorithms as a basis to form

our algorithms.

Kruskal’s algorithm works by sorting the edges in non-decreasing order and

sequentially processes all of them by starting from the smallest weight edge. The

algorithm takes the next smallest weight edge and checks whether a cycle is formed. To

check whether a cycle is formed, a disjoint set data structure is used. If a cycle is not

formed, it includes the edge into the tree. It repeats this process until finally a tree that

includes all nodes in graph is formed. Prim’s algorithm achieves the same goal

differently. It finds the smallest weight edge on the boundary of current set to connect

this set to the rest of the nodes. This process continues until all of the nodes included to

the tree. As for Boruvka’s algorithm, it works similar to Kuruskal’s algorithms. At each

step, the cheapest edges that are going out of each set are considered. At the final

iteration, algorithm merges the sets appropriately and continues until just one set

remains which is the minimum spanning tree. The pseudocodes of the algorithms are

provided as follows:

7

Algorithm 2.3.1: Kruskal’s Algorithm

 1: G=(V, E),
 2: F ∅
 3: for each vertex v ∈ V do
 4: MAKE-SET(v)
 5: Sort the edges of E in non-decreasing order by w
 6: for each edge (v) ∈ E take i o -decreasing order by w do
 7: if FIND-SET(u) ≠ FIND-SET(v) then
 8: F F ⋃ {(v)}
 9: UNION(u, v)
10: return F

Algorithm 2.3.2: Prim’s Algorithm

 1: G=(V, E), , r
 2: F ∅
 3: S MAKE-SET(r)
 4: while |S| < |V| do
 5: ∅
 6: for each vertex u in S do
 7: ⋃ {the cheapest edge (v) such that FIND-SET() ≠ FIND-SET(v) }
 8: F F ⋃ {the cheapest edge (,) in }
 9: UNION(,)
10: return F

Algorithm 2.3.3: Boruvka’s Algorithm

 1: G=(V, E),
 2: F ∅
 3: for each vertex v ∈ V do
 4: MAKE-SET(v)
 5: while there are more than 1 set do
 6: for each set S do
 7: ∅
 8: for each vertex u in S do
 9: ⋃ {the cheapest edge (u,v) such that FIND-SET() ≠ FIND-SET(v)}
10: F F ⋃ {the cheapest edge (,) in }
11: for each set S do
12: UNION(,)
13: return F

8

CHAPTER 3

ALGORITHMS FOR THE STEINER FOREST PROBLEM

3.1 A Primal Dual Algorithm for the Steiner Forest Problem

We now return to the Steiner Forest problem. Recall that in this problem we are

given an undirected graph () with nonnegative edge costs for all edges

 ∈ and a set of k terminal pairs = {() ()} ⊆ V × V. The goal is to

find a minimum cost subset of edges ⊆ such that there is at least one path between

each terminal pair and for 1 ≤ i ≤ k.

Here, we consider the algorithm of Agrawal, Klein, and Ravi [1], which we

briefly call AKR. AKR provides a 2-

 approximate solution for the Steiner Forest

problem. This algorithm is a primal dual algorithm, that is to say, it performs both a

feasible integral primal and a feasible dual solution. In the standart integer programming

formulation of AKR, there is a binary variable for all edges ∈ such that this

variable has value 1 if e is in the resulting forest ⊆ and otherwise. A subset

 ⊆ is a Steiner cut if it separates at least one terminal pair in . In other words, is

a Steiner cut iff there is a pair () ∈ that satisfies { } . Let be the

set of all Steiner cuts. Let also () include all the edges which is one endpoint in

and other endpoint not in . In other words, we define () to denote the set of edges

crossing the cut (, ̅). Now, we can give the following integer linear programming

formulation for the Steiner Forest problem.

 ∑

 ∈

 ()

 ∑

 ∈ ()

 ⊆

9

 ∈ { } ∈

In the dual program, there is a variable for each Steiner cut ∈ . The

program tries to maximize the sum of the dual variables subject to the condition that

the cost of each edge e in () can not be smaller than the dual variable . The dual of

the linear programming relaxation (LP) of integer programming (IP) is as follows:

 ∑

 ∈

 ()

 ∑

 ∈ ∈ ()

 ∈

 ∈

At each iteration, the algorithm raises the dual variables uniformly for each

Steiner cut ∈ until the some edge e ∈ () goes tight. It maintains the iterations

until all terminal pairs are connected. After all iterations are completed and the resulting

forest is generated, the algorithm performs the reverse-delete operation. In this

operation, the algorithm removes the edge or edges from the resulting forest provided

that the resulting forest remains feasible; that is, it excludes the edge or edges from the

the resulting forest as long as all and pairs are connected.

Subsequently, we use the term of “active set” instead of the term of “Steiner Cut”.

A set is an active set iff it includes a cut that separates at least one terminal pair in .

We give the following example to better explain when a set is active or not.

Figure 3.1.1: An example to explain when a set is active or not

10

 Initially, the following four sets are active: {1}, {2}, {3}, and {4} and each of

these active sets has the dual variable . In the first iteration, the algorithm raises

the dual variables by 2 for each active set and the edge between the nodes 1 and 2 goes

tight. It then adds this edge to resulting forest F. The sets {1} and {2} replace {1,2} as a

set. However, the set {1,2} isn’t an active set any more because it doesn’t separate any

terminal pair. So, this set doesn’t have the dual variable any longer. The active sets are

{3} and {4}. When the dual variables are raised by 1.5, edge between 3 and 4 goes tight

and the sets {3} and {4} replace {3,4} as a set. The algorithm adds this edge to

resulting forest. We now have a feasible solution since all and pairs (1-2) and (3-4)

are connected.

 In the following, we give pseudocode of the primal dual algorithm for the Steiner

forest problem [1].

Algorithm 3.1.1: Primal-dual Algorithm for the Steiner forest problem

 1: 0

 2: F ∅

 3: 0

 4: while not all pairs are connected in (V, F) do

 5: + 1

 6: Let S be the set of all connected components C of (V, F) such that |C { }| = 1

 7: for some

 8: Increase for all C in S uniformly until for some ∈ () ∈ S,

 9:
 ∑ ∈ ()

10: { }

11:

12: for down to 1 do

13: if is a feasible solution then

14: Remove from

15: Return

Line 1 initializes the dual variable to 0. Line 2 initializes the resulting forest F to

empty set and line 3 initializes the variable to 0. Until all terminal pairs (-) are

11

connected, the algorithm maintains the while loop of line 4-10. Each time through the

“while” loop of lines 4-10, line 5 raises the variable l by 1, lines 8 and 9 increase the

dual variable uniformly for all connected components (active sets) until the dual

equality provide for some edge e ∈ () and line 10 adds this edge to resulting forest .

Each time through the “for” loop of lines 12-14, the algorithm removes the edge if the

solution is still feasible when this edge is removed from the resulting forest . Finally,

line 15 returns the solution.

In the following, we give an example on which we explain how the primal-dual

algorithm works.

Figure 3.1.2: An example to explain how AKR works

Initially, the following four sets are active: {1}, {4}, {5}, and {6} and each of

these active sets has the dual variable . In the first iteration, the algorithm raises

the dual variables by 1 for each active set and the edge between the nodes 1 and 7 goes

tight. In the second iteration, it then adds this edge to resulting forest F and the active

set {1} and the set {7} replace {1,7} as an active set.

Figure 3.1.3: Illustration of union 1 and 7

12

The active sets are {1,7}, {4}, {5} and {6}. When the dual variables are raised by

1, edge between 5 and 8 goes tight. The algorithm adds this edge into resulting forest

and the active set {5} and the set {8} replace {5,8} as an active set as follows:

Figure 3.1.4: Illustration of union 5 and 8

The active sets are {1,7}, {4}, {5,8} and {6}. When the dual variables are raised

by 5, edges (1-2) and (1-5) go tight at same time. Let’s assume that the algorithm select

the edge between 1 and 2 first. In the next iteration, it adds this edge into resulting forest

and the active set {1,7} and the set {2} replace {1,7,2} as an active set. In the next

iteration, it adds edge (1-5) into resulting forest and the active set {1,7,2} and the active

set {5,8} replace {1,2,7,5,8} as an active set as follows:

Figure 3.1.5: Union of the sets corresponding to 1, 2 and 5

13

The active sets are {1,2,7,5,8}, {4}, and {6}. When the dual variables are raised

by 0.5, edge between 4 and 6 goes tight. The algorithm adds this edge into resulting

forest and the active set {4} and the active set {6} replace {4,6} as an active set as

follows:

Figure 3.1.6: Illustration of union 4 and 6

The active sets are {1,2,7,5,8} and {4,6}. When the dual variables are raised by

0.5, edges (2-3), (3-4) and (3,6) go tight at same time. Let’s assume that the algorithm

select the edge between 3 and 6 first. In the next iteration, it adds this edge into resulting

forest and the active set {4,6} and the set {3} replace {4,6,3} as an active set. Then, let

the algorithm select the edge between 3 and 4. Since set 3 and set 4 are in same set, the

algorithm can not add this edge into resulting forest. In the next iteration, it adds edge

(2-3) into resulting forest. We now have a feasible solution since all and pairs

(1-4) and (5-6) are connected. In the reverse-delete step, edges (1-7) and (5-8) are

excluded from resulting forest. Finally, solution obtained by the algorithm includes

edges (1-2), (2-3), (3-6), (1-5), (4-6). The cost of this solution is 45. Edges which the

solution includes are marked thick:

14

Figure 3.1.7: Illustration of the solution returned by AKR

The dual variables in the primal dual algorithm have a very nice geometric

interpretion as growing moats. We can interpret the dual variables as moats in order

to better understand the primal dual algorithm for the Steiner forest problem. Initially

each and considers as a component and each of them has a moat. At each iteration,

moats are grown uniformly around the components and each time during the growing, if

they cover an edge e, it is added to the solution F. Moats continue to grow until collision

occurs. After the collision, these moats are considered as a single component.

Figure 3.1.8 illustrates us how the idea of growing moats works on a specific example.

15

Figure 3.1.8: Illustration of growing moats on the specific example

In the following, we give a specific example for which the cost of the solution

returned by AKR is as bad as

 times the cost of the optimum solution. In this

example, all terminal pairs and are adjacent to each other with cost of

for . Also the distances between both , and , are 1 for

 . The example is shown in Figure 3.1.9.

16

Figure 3.1.9: Bad example for AKR

AKR first takes all the edges with cost of 1, a total of 2k. Then it takes one of the

edges whose costs are . Therefore, the total cost of the solution returned by AKR

is . However, the cost of the optimum solution is (); where k is the

number of terminal pairs and () is the distance between each of them. The solution

returned by AKR and the optimum solution is shown in Figure 3.1.10 and Figure 3.1.11,

respectively.

Figure 3.1.10: Illustration of the solution returned by AKR

17

Figure 3.1.11: Illustration of optimum solution

3.2 A Greedy Heuristic

In this section, we give a greedy heuristic for the Steiner Forest problem. This

algorithm is a well known algorithm which has 2-approximation factor for the Steiner

tree problem. It is fairly simple algorithm compared to AKR. Also, running time of this

algorithm is in practice much better than AKR. However, this algorithm is not a

2-approximation algorithm for the Steiner forest problem. We will give a specific

example for which the cost of the solution returned by this algorithm is as bad as 4

times the cost of the optimum.

In this algorithm, we first compute the shortest path between and . In the next

iteration, we add all the edges on this shortest path whose weighted lengths are not

equal to zero into solution and zero out these edges. Then we compute the shortest path

between and , and so on. The iterations are performed for all terminal pairs from 1

to k.

In what follows, we give an example on which we explain how the algorithm

works.

18

Figure 3.2.1: An instance for Greedy Heuristic

In the first iteration, we compute the shortest path between 1 and 4 (and).

This shortest path includes the edges (1-2), (2-3), and (3-4). In the second iteration, we

add the edge (1-2) into the solution since this edge is not equal to zero. In the third

iteration, we change the cost of this edge into zero. In the next iterations, we add the

edges (2-3) and (3-4) into the solution since the costs of these edges are not equal to

zero and we change the costs of these edges into zero. The edges included into the

solution up to this point are shown in Figure 3.2.2, with selected edges and the new

costs of these edges marked red:

Figure 3.2.2: Illustration of the edges added into solution

In the next iteration, we compute the sorthest path between 5 and 6 (and).

This shortest path includes the edges (5-2), (2-3), and (3-6). In the next iterations, we

add all the edges on this shortest path into solution except the edge (2-3) since the cost

19

of this edge is equal to zero and change the costs of these edges into zero as shown in

the figure below:

Figure 3.2.3: Illustration of the solution returned by Greedy Heuristic

Finally, we obtain the same solution with optimal which total cost is 32. The

solution includes the edges (1-2), (2-3), (3-4), (5-2), and (3-6).

Following is the pseudocode of the algorithm.

Algorithm 3.2.1: Greedy Heuristic for Steiner Forest Problem

 1: G=(V, E), { },

 2: F ∅ //Initialize Forest to empty

 3: for i 1 to k do

 4: p shortest path between and

 5: for edge e: all the edges on the path p do

 6: if e cost ≠ then

 7: F F ⋃ {e}

 8: e 0

 9: return F

Line 2 initializes the resulting forest F to empty. Each time through the “for” loop

of lines 3-8, line 4 computes the shortest path between and and lines 5-8 add all the

edges on this path into F if the cost of each edge is not equal to zero and change the cost

of the edge into zero. Finally, line 9 returns the solution.

20

In the following, we provide a specific example which shows that the greedy

heuristic we mention above is worse than AKR with respect to approximation ratio. In

this example, every terminal pairs are adjacent to each other with a cost of as

shown in Figure 3.2.4. The cost of the solution that greedy algorithm finds is worse than

the twice of the cost of the optimum solution.

Figure 3.2.4: Bad example for Greedy Heuristic

 Greedy algorithm takes all the shortest paths between terminal pairs with distance

 . The cost of the solution is () (see Figure 3.2.5). However, the cost of the

optimum solution is (see Figure 3.2.6). Also the cost of the solution given by

AKR is ()() as shown in Figure 3.2.7. So, the cost of the solution

given by greedy algorithm is times as large as the cost of the optimum solution.

21

Figure 3.2.5: Forest returned by Greedy Heuristic

Figure 3.2.6: Optimum solution

22

Figure 3.2.7: Forest returned by AKR

23

CHAPTER 4

NEW ALGORITHMS FOR THE STEINER FOREST

PROBLEM

4.1 The New Algorithms

In this section, we provide three equivalent greedy algorithms for the Steiner

forest problem, which we appropriately name ÇDK-Kruskal, ÇDK-Prim and ÇDK-

Boruvka.

All these algorithms are equivalent and in this section we mainly talk about ÇDK-

Kruskal. In this algorithm, firstly, we make a different set for each terminal, a total of

 sets. Then, we compute all the shortest paths between terminals. That is, for the

number of k terminal pairs (- , - , … , -) we compute a total of (

) shortest

paths between terminals. Then we sort them in non-decreasing order. After this step, we

iteratively check whether the endpoints of the paths are in the same set are or not. If

they are not in the same set, we include the path into the solution and combine them into

one set by using the union operation. If they are in the same set, we skip this path and

continue to the next iteration. This iterations continue until all terminal pairs are

connected. After all terminal pairs are connected, we perform a reverse–delete

operation. In this operation, if there are unnecessary paths which do not violate the

feasibility of the solution, we remove these paths by starting from the last element of

array (resulting forest) that contains the selected paths. Following is an example which

explains the execution of our algorithms in more detail.

:

24

Figure 4.1.1: Illustration of the specific example.

For this example, and we have terminal pairs (), () and ().

For each terminal, the algorithm creates a set indicated by the node number as

shown in the figure below.

Figure 4.1.2: Illustration of sets.

Then, it computes all the shortest paths between terminals and then sorts them in

non-decreasing order. Following is the result of this computation.

25

Figure 4.1.3: Sorted shortest paths between terminals

The algorithm first checks whether 3 and 4 sets are in the same set. They are not

in the same set, so it adds this path into solution and combines 3 and 4 into one set by

using the union operation which can be seen in the following illustration (Figure).

Figure 4.1.4: Illustration of union 3 and 4

Then, it checks whether 3 and 1 sets are in the same set. Since they are not in the

same set, it adds this path into solution and combines 3 and 1 into one set by using the

union operation as shown in the following figure:

26

Figure 4.1.5: Illustration of union 1 and 3

Then, it checks 4 and 6. Since they are not in the same set, it adds this path into

the solution and combines into one set as follows:

Figure 4.1.6: Illustration of union 4 and 6

Then, it does not add the paths 4-1 and 3-6 since they are already in the same set.

Because 6 and 11 are different sets, it adds 6-11 path into the solution and combines

them into one set as follows:

Figure 4.1.7: Illustration of union 6 and 11

27

Eventually, it adds 6-9 path into the solution since 6 and 9 sets are not in the same

set. It then combines them into one set by using the union operation as shown in the

figure below:

Figure 4.1.8: Union of the sets 6 and 9

Since all terminal pairs are connected at this point, the algorithm terminates. So

far, the paths taken by the algorithm are (3-4), (3-1), (4-6), (6-11), (6-9).

Then, in order to exclude unnecessary paths from solution, the algorithm performs

a reverse-delete operation. In this operation, it excludes the paths as long as the solution

remains feasible, that is, if all terminal pairs are still connected. It tries to remove the

paths in the reverse order in which they were added into the solution. We sequentially

exclude the paths from the solution and then check whether k pairs (- , - ,…, -

) are still in the same set. If even only one terminal pair is not in the same set, it

means that the excluded path is necessary for the solution so we can not remove this

path. If all of the terminal pairs are still connected, it means that the excluded path is

unnecessary and we can remove it from the solution.

For this example, we first check 6-9 path which is added last into the solution. If

we remove this path, there is no connection between - so we can’t remove this path.

We then check whether 6-11 path is removed from the solution and we see that we can

not remove this path since there is no connection between - when we remove this

path. We then check whether third path 4-6 is removed, and so on. Only 3-4 path is

unnecessary because when we exclude it, each terminal pair - for 1 ≤ i ≤ 3 are still

connected. So, we remove this path. If any of the remaining paths (3-1, 4-6, 6-11, 6-9)

is removed, all of terminal pairs will still not be connected, so we don’t remove any of

28

them. For this example, our algorithm finds the solution which includes the paths 3-1,

 - , 6-11, and 6-9.

We now provide the pseudocodes of the algorithm ÇDK-Kruskal, ÇDK-Prim and

ÇDK-Boruvka.

Let H be an adjunct graph derived from the input graph G. H represents all the

shortest paths between all terminals. It includes 2k vertices and (

) edges, that is, it is

a complete graph. In the following, we give a procedure named ComputeAdjunct. This

procedure forms the adjunct graph H. We will use this procedure in all of our

algorithms.

Algorithm 4.1.1: ComputeAdjunct

 1: G=(V, E), R = { },

 2: H = (, ,)

 3: for i 1 to k do

 4: for j i+1 to k do

 5: c compute the cost of the shortest path between

 6: H.AddEdge(, c)

 7: c compute the cost of the shortest path between

 8: H.AddEdge (, c)

 9: for j 1 to k do

10: c compute the cost of the shortest path between

11: H.AddEdge (, c)

12: return H

We give pseudocodes of our algorithms ÇDK-Kruskal, ÇDK-Prim and ÇDK-

Boruvka as follows:

29

Algorithm 4.1.2: ÇDK-Kruskal Algorithm

 1: G=(V, E), R = { },
 2: F ∅ //Initialize Forest to empty
 3: 0
 4: for each r ∈ R do
 5: MAKE-SET(r)
 6: H = (, ,) ComputeAdjunct(G, R, w)

 7: ∑ (

) sort the edges of in non-decreasing order by

 8: for i 1 to (

) do

 9: p ∑ //Let ∑ be the path betwee ∈ R a d v ∈ R
10: if FIND-SET(p.u) ≠ FIND-SET(p.v) then
12: + 1
13: F F ⋃ { }
14: UNION(u,v)
15: if all and are connected via F then
16: break
17: for down to 1 do //Reverse-Delete Step

18: if is a feasible solution then

19: Remove from F

20: return F

Algorithm 4.1.3: ÇDK-Prim Algorithm

 1: G=(V, E), R = { }, , r
 2: F ∅ //Initialize Forest to empty
 3: 0
 4: S MAKE-SET(r)
 5: H = (, ,) ComputeAdjunct(G, R, w)

 6: ∑ (

) sort the edges of in non-decreasing order by

 7: while not all () pairs are connected via F do
 8: ∅
 9: for each vertex u in S do
10: ⋃ {the cheapest edge (v) i ∑ s ch that FIND-SET() ≠ FIND-SET(v) }
11: + 1
12: the cheapest edge (,) in
13: F F ⋃ { }
14: UNION(,)
15: for down to 1 do //Reverse-Delete Step

16: if is a feasible solution then

17: Remove from F

18: return F

30

Algorithm 4.1.4: ÇDK-Boruvka Algorithm

 1: G=(V, E), R = { },
 2: F ∅ //Initialize Forest to empty
 3: 0
 4: for each r ∈ R do
 5: MAKE-SET(r)
 6: H = (, ,) ComputeAdjunct(G, R, w)

 7: ∑ (

) sort the edges of in non-decreasing order by

 8: while not all () pairs are connected via F do
 9: for each set S do
10: ∅
11: ⋃ {the cheapest edge (v) i ∑ s ch that FIND-SET() ≠ FIND-SET(v) }
12: + 1
13: the cheapest edge (,) in
14: F F ⋃ { }
15: UNION(,)
16: for down to 1 do //Reverse-Delete Step

17: if is a feasible solution then

18: Remove from F

19: return F

4.2 The Equivalence of the Algorithms

In this section, we give a proof that our algorithms are equivalent.

Let {
(

)
} be the set of edges in increasing order. We argue by

induction on , the number of edges selected by ÇDK-Kruskal throughout its execution.

For , ÇDK-Kruskal selects . Let (). Consider ÇDK-Boruvka and ÇDK-

Prim at a stage in which and are not in the same set, and the edges that are adjacent

to and are considered. Since is the smallest weight edge, it will be included in the

forests that the aforementioned two algorithms compute by their very definition. This

settles the base case of the induction. Assume, as the induction hypothesis that, before

ÇDK-Kruskal selects the ()st edge, it has already selected the set

{ } and all the other edges up to excluding are not selected, and the set

of selected edges and unselected edges are the same for ÇDK-Boruvka and ÇDK-Prim.

If there is an edge between and
 in the ordering, say (), then this edge is

not selected by ÇDK-Kruskal because it creates a cycle, i.e. and are in the same set.

31

Consider the execution of ÇDK-Boruvka and ÇDK-Prim when this edge is considered.

Since we know by induction hypothesis that and will be in the same set for these

algorithms via the edges in , will not be selected. Otherwise, we get that one of the

edges in will not be selected by these algorithm which contradicts the induction

hypothesis. All that remains is to show that
 is selected ÇDK-Boruvka and

ÇDK-Prim. Let
 () and consider the stage in which these algorithms consider

the edges adjacent to and (clearly, and are not in the same set). Since,
 is

the smallest weight edge which does not create a cycle by the choice of ÇDK-Kruskal,

it will also be selected by the other two algorithms. Finally, note that the termination

condition of all the algorithms is equivalent: all the terminal pairs are connected.

4.3 A Bad Example for Our Algorithms

In this section, we give a particular example on which our algorithms do not even

give a constant factor approximation. Suppose that we have a graph with

nodes . The distances between and are 1 for

and has distance 2 from all other nodes. Then, replace with

pairs with distance epsilon between them except which should be replaced with

 with distance 3. The example is shown below:

Figure 4.3.1: Bad example for ÇDK-Kruskal

32

For this example, our algorithms take all paths (k-1 paths) with distance epsilon.

Then it takes all paths (k-2 paths) with distance 1. Then, it takes 2 paths with distance 2.

The solution found by our algorithms is shown below:

Figure 4.3.2: Illustration of the forest returned by ÇDK-Kruskal

The cost of the solution found by our algorithms is () ()

() (). However; the optimum solution is () . The

optimum solution is shown below:

Figure 4.3.3: Optimum forest

33

CHAPTER 5

EXPERIMENTAL RESULTS

In this section, we discuss experiments that we have conducted by running Greedy

Heuristic, ÇDK-Kruskal and AKR. The experiments are performed on a computer with

specifications as listed below:

Processor : Intel Core i5=3470 CPU @ 3.20GHz

Ram : 4 GB

System type : 64 bit operating system

Operating System : Windows 7 64 bit

The implementations of the algorithms are done on Java NetBeans IDE 7.4

platform. In the following, we first summarize these three algorithms and then discuss

the condition in which AKR work slower.

How does ÇDK-Kruskal work?

Firstly, it makes a set for each terminal and then calculates the shortest paths

between all the terminals. There are (

) shortest paths that need to be calculated.

Then it sequentially checks all the paths from the smallest weight to the largest. If the

endpoints of the path checked are not in the same set, it includes the path into the forest

and combines these two sets into one set. This process is continuously done until all s-t

pairs are connected.

How does AKR work?

At the beginning, it forms active sets for all the terminals. Then it determines the

shortest edge that comes out from the active sets since the smallest edge will become

tight first. If nodes that are at the endpoints of this edge are not in the same set, the edge

34

is included to the forest and the nodes of this edge is included to the active set. Then,

the edges are updated by substracting the weight of the selected edge from the weights

of all the edges. This process is performed iteratively until all s-t pairs are connected.

How does Greedy Heuristic works?

In the first iteration, it calculates the shortest path between and . In the next

iteration, the cost of the edges that are not zero are included to the resulting forest.

Then, it changes the value of the selected edges to zero, that is, it contracts the -

pair. In the next iteration, it applies the same procedure to the - pair. These

iterations are performed up to .

5.1 Experiment 1

In all of our experiments, we compare the solution costs and the running times of

the three algorithms, showing them on a table and also providing a figure for ease of

resresentation.

In this specific experiment

 We created a random graph in the Erdös-Renyi model with 1000 nodes.

 The probabilities of having an edge between two nodes are 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. For each probability value, a graph with

1000 nodes is created. Hence, using the probability values, we created 9

different random graphs.

 Edge weights are integers and randomly choosen between 1 and 10000.

 We formed k random s-t pairs for k={2, 3, 5, 10, 20, 30, 40 and 50}. For

instance, for k=2, we selected 2 s-t pairs (4 terminals) randomly from the

nodes in the graph.

Greedy Heuristic, ÇDK-Kruskal, and AKR have fairly similar costs with AKR

being slightly better. However, if we take a look at their running time, we can

see that Greedy Heuristic and ÇDK-Kruskal are closer to each other than they

are to AKR. Greedy Heuristic is faster than ÇDK-Kruskal since it does not

compute an adjunct graph. As for AKR, it works much slower than these two

35

algorithms. The reason is that, when edge weights span on wide interval,

which in this case 1-10000, causes AKR to execute too many iterations. Recall

that, AKR updates every node and edge by substacting the weight of the

newly added edge from their weights. So, the more varied the edge weights,

the larger the number of updates, which slows down the algorithm.

36

Table 5.1.1: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.1 and Edge Weights 1-10000

k

Probability of edge existance: 0.1
Edge weights: 1-10000

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 1058 1091 1086 156 103 1290

3 2653 3687 3313 59 97 727

5 4072 5258 5041 83 195 3521

10 6870 7626 7127 162 324 2822

20 13758 14423 13373 208 681 18516

30 18341 19494 17946 429 1135 3660

40 24283 26415 24655 427 1312 18225

50 25585 25810 23821 722 1646 6631

Figure 5.1.1: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.1

 Figure 5.1.2: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.1

0

5000

10000

15000

20000

25000

30000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

37

Table 5.1.2: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.2 and Edge Weights 1-10000

k

Probability of edge existance: 0.2
Edge weights: 1-10000

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 506 506 506 53 76 123

3 1186 1273 1483 91 214 582

5 1926 2179 1975 122 361 3588

10 3385 3779 3509 298 600 1756

20 7614 7855 7169 353 975 11391

30 8412 9132 8355 552 2011 4939

40 10176 10221 9505 769 2509 11042

50 11842 12443 11718 965 2919 30617

Figure 5.1.3: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.2

Figure 5.1.4: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.2

0

2000

4000

6000

8000

10000

12000

14000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

25000

30000

35000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

38

Table 5.1.3: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.3 and Edge Weights 1-10000

k

Probability of edge existance: 0.3
Edge weights: 1-10000

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 466 471 466 68 140 4181

3 849 1134 1134 125 241 787

5 1216 1560 1341 203 352 4179

10 2988 3464 3024 265 912 4184

20 4611 4683 4325 560 2090 4946

30 6263 6720 6243 689 2848 14917

40 7174 7285 6709 1109 3170 6153

50 10031 10234 9572 1273 3967 31722

Figure 5.1.5: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.3

Figure 5.1.6: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.3

0

2000

4000

6000

8000

10000

12000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

25000

30000

35000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

39

Table 5.1.4: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.4 and Edge Weights 1-10000

k

Probability of edge existance: 0.4
Edge weights: 1-10000

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 327 353 325 208 188 590

3 502 628 502 144 359 804

5 976 1338 1198 174 529 3653

10 2128 2561 2323 327 1206 5216

20 2983 3114 2803 655 2406 4479

30 4504 5114 4532 1745 3278 6892

40 5632 5715 5330 1315 3922 20575

50 6396 6490 6028 1669 5228 11751

Figure 5.1.7: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.4

Figure 5.1.8: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.4

0

1000

2000

3000

4000

5000

6000

7000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

25000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

40

Table 5.1.5: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.5 and Edge Weights 1-10000

k

Probability of edge existance: 0.5
Edge weights: 1-10000

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 324 399 351 111 289 460

3 510 583 503 146 429 633

5 719 864 759 213 664 3332

10 1687 2092 1904 380 1332 6559

20 3032 3068 2819 903 2889 7527

30 4157 4513 4226 1863 3684 18653

40 4819 5071 4722 1331 4956 24492

50 5851 5989 5470 1818 6414 17499

Figure 5.1.9: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.5

Figure 5.1.10: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.5

0

1000

2000

3000

4000

5000

6000

7000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

25000

30000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

41

Table 5.1.6: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.6 and Edge Weights 1-10000

k

Probability of edge existance: 0.6
Edge weights: 1-10000

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 294 435 405 117 289 1058

3 349 460 418 163 480 1119

5 607 725 688 342 743 2877

10 1322 1362 1230 493 1797 3439

20 2185 2327 2151 1034 3792 6977

30 3138 3493 3172 1467 5180 9271

40 3955 4157 3696 1804 7193 23761

50 4257 4311 3994 2519 7946 6069

Figure 5.1.11: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.6

Figure 5.1.12: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.6

0

1000

2000

3000

4000

5000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

25000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

42

Table 5.1.7: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.7 and Edge Weights 1-10000

k

Probability of edge existance: 0.7
Edge weights: 1-10000

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 169 169 169 1382 291 858

3 372 426 394 176 493 1164

5 406 546 482 339 858 699

10 1004 1199 1133 585 2156 2511

20 1796 1888 1702 1085 3782 4483

30 2645 2870 2581 1618 5828 8980

40 3386 3485 3214 1951 7237 16816

50 4203 4335 4004 2736 9424 20525

Figure 5.1.13: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.7

Figure 5.1.14: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.7

0

1000

2000

3000

4000

5000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

25000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

43

Table 5.1.8: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.8 and Edge Weights 1-10000

k

Probability of edge existance: 0.8
Edge weights: 1-10000

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 204 272 261 147 415 1064

3 233 288 282 274 467 2327

5 507 585 557 402 993 2224

10 849 978 920 663 2377 7722

20 1874 2048 1861 1275 4714 6753

30 2300 2434 2261 1868 6502 27047

40 2882 2915 2641 2470 8607 9482

50 3458 3423 3199 2894 10606 9738

Figure 5.1.15: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.8

Figure 5.1.16: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.8

0

1000

2000

3000

4000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

25000

30000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

44

Table 5.1.9: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.9 and Edge Weights 1-10000

k

Probability of edge existance: 0.9
Edge weights: 1-10000

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 136 201 136 147 410 551

3 240 324 254 194 608 252

5 479 659 593 359 1127 3858

10 890 950 887 632 2348 6145

20 1498 1658 1496 1279 4796 14068

30 1967 2203 2005 1684 6464 14657

40 2428 2528 2335 2373 9074 22726

50 2472 2638 2447 3082 11750 15493

Figure 5.1.17: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.9

Figure 5.1.18: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.9

0

500

1000

1500

2000

2500

3000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

25000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

45

5.2 Experiment 2

In this experiment

 We created a random graph in the Erdös-Renyi model with 1000 nodes.

 The probabilities of having an edge between two nodes are 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. For each probability value, a graph with

1000 nodes is created. Hence, using the probability values, we created 9

different random graphs.

 Edge weights are integers and randomly choosen between 1 and 100.

 We formed k random s-t pairs for k={2, 3, 5, 10, 20, 30, 40 and 50. For

instance, for k=2, we selected 2 s-t pairs (4 terminals) randomly from the

nodes in the graph.

Specifications of this experiment are the same with first experiment except the

edge weight interval. In this case, while the cost results of the three algorithms are still

similar, the running times are significantly different. In this experiment AKR is the

fastest algorithm.While the edge weight interval is smaller, AKR does a smaller number

of updates, which makes its running time better compared to the previous experiment.

In general, we see that ÇDK-Kruskal is not well suited for these type of graphs.

46

Table 5.2.1: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.1 and Edge Weights 1-100

k

Probability of edge existance: 0.1
Edge weights: 1-100

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 22 26 24 163 99 141

3 35 40 37 57 97 464

5 39 48 43 101 126 105

10 106 108 105 126 297 229

20 176 198 179 230 592 146

30 271 306 280 272 818 182

40 331 356 327 483 1053 333

50 399 387 365 565 1302 219

Figure 5.2.1: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.1

Figure 5.2.2: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.1

0

100

200

300

400

500

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

200

400

600

800

1000

1200

1400

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

47

Table 5.2.2: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.2 and Edge Weights 1-100

k

Probability of edge existance: 0.2
Edge weights: 1-100

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 14 14 14 118 77 87

3 21 31 27 97 259 135

5 31 37 35 136 411 114

10 64 71 66 218 707 182

20 112 118 112 380 1350 182

30 168 173 159 594 2006 289

40 227 232 217 1040 1950 282

50 270 257 241 869 2917 209

Figure 5.2.3: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.2

Figure 5.2.4: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.2

0

50

100

150

200

250

300

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

500

1000

1500

2000

2500

3000

3500

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

48

Table 5.2.3: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0. and Edge Weights 1-100

k

Probability of edge existance: 0.3
Edge weights: 1-100

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 9 14 14 75 163 67

3 14 17 14 99 232 83

5 29 34 32 159 487 96

10 51 55 50 324 1147 166

20 103 107 99 409 1481 298

30 146 148 137 593 2134 293

40 176 164 153 745 2779 336

50 223 212 202 1317 3413 419

Figure 5.2.5: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.3

Figure 5.2.6: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.3

0

50

100

150

200

250

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

1000

2000

3000

4000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

49

Table 5.2.4: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.4 and Edge Weights 1-100

k

Probability of edge existance: 0.4
Edge weights: 1-100

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 11 12 11 104 263 538

3 14 17 14 144 413 685

5 20 31 30 207 676 194

10 46 54 51 413 1313 89

20 95 98 90 1096 2042 279

30 124 132 127 980 3401 179

40 155 148 140 1167 4364 211

50 209 188 181 1270 4959 543

Figure 5.2.7: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.4

Figure 5.2.8: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.4

0

50

100

150

200

250

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

1000

2000

3000

4000

5000

6000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

50

Table 5.2.5: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.5 and Edge Weights 1-100

k

Probability of edge existance: 0.5
Edge weights: 1-100

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 9 11 11 103 254 95

3 14 16 16 170 504 195

5 18 27 26 222 724 85

10 38 44 45 438 1447 423

20 80 90 88 923 3385 149

30 121 117 111 1393 4577 213

40 160 159 154 1620 4940 364

50 195 179 173 2188 7126 395

Figure 5.2.9: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.5

Figure 5.2.10: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.5

0

50

100

150

200

250

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

2000

4000

6000

8000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

51

Table 5.2.6: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.6 and Edge Weights 1-100

k

Probability of edge existance: 0.6
Edge weights: 1-100

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 8 12 12 112 287 111

3 11 14 14 169 511 162

5 22 26 23 292 997 296

10 33 43 37 431 1576 113

20 76 77 76 958 3565 302

30 109 113 108 1292 4658 297

40 135 141 132 1592 5491 410

50 176 157 153 2302 8643 415

Figure 5.2.11: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.6

Figure 5.2.12: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.6

0

50

100

150

200

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

2000

4000

6000

8000

10000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

52

Table 5.2.7: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.7 and Edge Weights 1-100

k

Probability of edge existance: 0.7
Edge weights: 1-100

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 8 11 8 128 346 127

3 11 17 16 172 522 186

5 17 23 21 342 1093 107

10 31 37 37 606 2257 275

20 66 75 74 1077 3974 362

30 100 107 102 1605 6223 451

40 135 133 129 2311 8056 453

50 159 154 149 2462 9240 534

Figure 5.2.13: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.7

Figure 5.2.14: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.7

0

50

100

150

200

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

2000

4000

6000

8000

10000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

53

Table 5.2.8: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.8 and Edge Weights 1-100

k

Probability of edge existance: 0.8
Edge weights: 1-100

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 7 7 6 128 346 76

3 10 12 14 218 616 336

5 16 27 25 302 1031 107

10 35 46 42 620 2208 164

20 68 75 73 1380 3615 304

30 98 106 101 1991 5914 401

40 125 126 120 2012 7123 394

50 153 146 145 2982 10982 399

Figure 5.2.15: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.8

Figure 5.2.16: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.8

0

50

100

150

200

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

2000

4000

6000

8000

10000

12000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

54

Table 5.2.9: Results of Cost and Running Time of Three Algorithms

with Probability of Edge Existence 0.9 and Edge Weights 1-100

k

Probability of edge existance: 0.9
Edge weights: 1-100

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 8 10 9 148 413 224

3 11 15 15 204 636 266

5 13 19 19 305 1047 129

10 32 43 40 720 2175 203

20 65 78 76 1292 4380 346

30 90 100 97 1766 6816 1200

40 126 122 117 2429 8984 476

50 157 147 143 3490 10872 510

Figure 5.2.17: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on

Random Graph with Probability of Edge Existance 0.9

Figure 5.2.18: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal

Algorithms on Random Graph with Probability of Edge Existance 0.9

0

50

100

150

200

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

2000

4000

6000

8000

10000

12000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

55

5.3 Experiment 3

In this experiment, we test the algorithms on a real-world geometric graph.

 We have obtained our data from the National TSP Collection website [19].

In this website, there exist TSP data of 25 different countries. Among

these countries, we have chosen Uruguay that has 734 cities. We would

like to note that the results that we have derived from several other

countries are similar to the one we present here. So, we have decided that

it is sufficient to give results for a single country.

 We created a geometric graph in the usual sense. First, we calculated the

maximum distance between any two cities. Then, we multiply the

maximum distance with 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0. If the distance

between two cities is less than the result of this multiplication, we include

the edge into the graph. Note that for multiplication with , we have a

complete graph.

 The data that we get from the website is fractional, but here while creating

the graph, we round them to the nearest whole number.

We see from the results that our algorithm ÇDK-Kruskal has a very good running

time compared to AKR albeit they have almost identical costs. Also ÇDK-Kruskal and

AKR give better cost results than Greedy Heuristic.

The reason of high running time of AKR is the same as the reason we have

mentioned in Experiment 1: the edge weights span a wide interval in real-world

geometric graphs. In general, we see that ÇDK-Kruskal is a very good alternative to

AKR in real-world geometric graphs since it gives comparable solution costs, but its

running time is much better.

56

Figure 5.3.1: The Map of Uruguay [20]

Figure 5.3.2: The Point Set of Uruguay [21]

57

Table 5.3.1: Results of Cost and Running Time of Three Algorithms on TSP-Uruguay

Graph with Edge Weights less than 0,1 times maximum distances

k

The biggest weight x 0.1

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 3525 3525 3525 286 72 2302

3 6387 7309 7309 31 51 4081

5 7065 6710 6710 38 85 1756

10 15520 14632 14632 71 167 6035

20 20360 17729 17729 101 292 3677

30 25529 21116 21116 135 474 3300

40 31431 25409 25409 196 718 3420

50 34753 27183 27183 217 635 5219

Figure 5.3.3: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP

Uruguay Graph with edge weights which are smaller than the biggest distance x

Figure 5.3.4: Running Time Comparison of the three Algorithms on TSP Uruguay

Graph with edge weights which are smaller than the biggest distance x

0

10000

20000

30000

40000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

1000

2000

3000

4000

5000

6000

7000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

58

Table 5.3.2: Results of Cost and Running Time of Three Algorithms on TSP-Uruguay

Graph with Edge Weights less than 0,2 times maximum distances

k

The biggest weight x 0.2

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 6687 6845 6845 44 99 27969

3 4932 4973 4973 61 172 10533

5 8219 6897 6897 86 263 11889

10 14913 11964 11964 164 585 22107

20 20798 16641 16641 308 1092 26068

30 25405 19186 19186 443 1685 14505

40 34036 26815 26815 602 2259 24731

50 34858 27091 27091 784 2970 27661

Figure 5.3.5: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP

Uruguay Graph with edge weights which are smaller than the biggest distance x

Figure 5.3.6: Running Time Comparison of the three Algorithms on TSP Uruguay

Graph with edge weights which are smaller than the biggest distance x

0

10000

20000

30000

40000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

25000

30000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

59

Table 5.3.3: Results of Cost and Running Time of Three Algorithms on TSP-Uruguay

Graph with Edge Weights less than 0,4 times maximum distances

k

The biggest weight x 0.4

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 4876 5410 5410 66 159 155856

3 6185 6283 6467 107 310 90351

5 7745 6748 6748 173 535 147420

10 13681 11756 11756 250 915 67835

20 19037 16151 16151 684 2515 78827

30 27353 22401 22401 643 2159 88209

40 33068 24000 24000 1520 3652 49592

50 35003 26569 26569 1359 4681 84602

Figure 5.3.4: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP

Uruguay Graph with edge weights which are smaller than the biggest distance x

Figure 5.3.8: Running Time Comparison of the three Algorithms on TSP Uruguay

Graph with edge weights which are smaller than the biggest distance x

0

10000

20000

30000

40000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

50000

100000

150000

200000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

60

Table 5.3.4: Results of Cost and Running Time of Three Algorithms on TSP-Uruguay

Graph with Edge Weights less than 0,6 times maximum distances

k

The biggest weight x 0.6

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 1651 1707 1707 99 253 2405

3 5153 5124 5124 206 693 56888

5 7739 7286 7286 259 892 170808

10 15296 11857 11857 612 2284 69025

20 22411 17693 17693 655 2137 124553

30 27970 19848 19848 1294 5163 80048

40 29842 22701 22701 2765 9873 116657

50 35897 26800 26800 3344 12775 110849

Figure 5.3.9: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP

Uruguay Graph with edge weights which are smaller than the biggest distance x

Figure 5.3.10: Running Time Comparison of the three Algorithms on TSP Uruguay

Graph with edge weights which are smaller than the biggest distance x

0

10000

20000

30000

40000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

50000

100000

150000

200000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

61

Table 5.3.5: Results of Cost and Running Time of Three Algorithms on TSP-Uruguay

Graph with Edge Weights less than 0,8 times maximum distances

k

The biggest weight x 0.8

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 4140 4487 4487 101 286 98610

3 5305 5879 4936 245 839 61061

5 9323 8414 8414 169 612 268368

10 16664 13736 13736 657 2476 210610

20 22708 18032 17638 1219 4511 238231

30 27719 21100 21100 1767 6802 166786

40 38726 26709 26709 2443 7611 140340

50 37633 25992 26027 2717 9969 133018

Figure 5.3.11: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP

Uruguay Graph with edge weights which are smaller than the biggest distance x

Figure 5.3.12: Running Time Comparison of the three Algorithms on TSP Uruguay

Graph with edge weights which are smaller than the biggest distance x

0

10000

20000

30000

40000

50000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

50000

100000

150000

200000

250000

300000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

62

Table 5.3.6: Results of Cost and Running Time of Three Algorithms on TSP-Uruguay

Graph with Edge Weights less than 1,0 times maximum distances

k

The biggest weight x 1.0

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 2489 3205 3205 141 447 47499

3 6248 5875 5875 151 462 159850

5 10608 10750 10750 240 867 205106

10 15976 14331 14331 553 2143 124357

20 22304 18269 18269 1310 4917 113558

30 29026 22790 22790 1364 4806 142498

40 33763 23600 23600 2892 6681 125293

50 40540 26979 26979 2944 9480 120993

Figure 5.3.13: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP

Uruguay Graph with edge weights which are smaller than the biggest distance x

Figure 5.3.14: Running Time Comparison of the three Algorithms on TSP Uruguay

Graph with edge weights which are smaller than the biggest distance x

0

10000

20000

30000

40000

50000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

50000

100000

150000

200000

250000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

63

5.4 Experiment 4

In this experiment, we test the algorithms on a random geometric graph.

 We form a graph with 1000 nodes.

 We determine by selecting from the interval 0-1000 x and y coordinates of

a node which the graph will include.

 The distance between two nodes is specified by their Euclidean distance.

 To determine whether an edge exist between two nodes, first we calculate

the maximum distance between all the nodes in the graph. Then, we

multiply the maximum distance with 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0. If the

distance of two nodes is less than the result of this multiplication, we

include the edge into the graph.

The result of this section are very similar to those of previous section except the

fact that for the multiplication factor 1 (where we have a complete graph), the running

time of AKR gets closer to ÇDK-Kruskal. Overall, ÇDK-Kruskal turns out to be a very

good alternative to AKR especially on sparse random geometric graphs and real-world

geometric graphs.

64

Table 5.4.1: Results of Cost and Running Time of Three Algorithms on Geometric

Random Graph with Edge Weights less than 0,1 times maximum distances

k

The biggest weight x 0.1

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 1078 1099 1099 184 61 2924

3 1690 1611 1611 60 105 1589

5 1939 1624 1624 75 165 1764

10 3169 2730 2730 112 328 1335

20 5078 4217 4217 204 633 1795

30 6386 5379 5379 296 745 2076

40 7815 6086 6086 375 703 3007

50 8200 6639 6639 443 1493 1969

Figure 5.4.1: Cost Comparison of the three Algorithms on Geometric Random Graph

with edge weights which are smaller than the biggest distance x

Figure 5.4.2: Running Time Comparison of the three Algorithms on Geometric Random

Graph with edge weights which are smaller than the biggest distance x

0

2000

4000

6000

8000

10000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

500

1000

1500

2000

2500

3000

3500

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

65

Table 5.4.2: Results of Cost and Running Time of Three Algorithms on Geometric

Random Graph with Edge Weights less than 0,2 times maximum distances

k

The biggest weight x 0.2

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 1068 1147 1147 90 212 11014

3 1848 1848 1848 126 354 18951

5 2073 1828 1828 187 541 12366

10 3053 2568 2568 332 1184 8221

20 5692 4215 4215 404 1376 11204

30 6753 5269 5269 941 1789 12350

40 7470 5930 5930 1274 3422 7805

50 9078 6655 6655 1525 3807 8323

Figure 5.4.3: Cost Comparison of the three Algorithms on Geometric Random Graph

with edge weights which are smaller than the biggest distance x

Figure 5.4.4: Running Time Comparison of the three Algorithms on Geometric Random

Graph with edge weights which are smaller than the biggest distance x

0

2000

4000

6000

8000

10000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

66

Table 5.4.3: Results of Cost and Running Time of Three Algorithms on Geometric

Random Graph with Edge Weights less than 0,4 times maximum distances

k

The biggest weight x 0.4

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 1100 1100 1100 145 376 25464

3 1241 1251 1251 154 509 32494

5 1940 2013 1946 291 899 66867

10 3865 3244 3183 732 2912 41165

20 4694 4017 4017 893 2694 26140

30 6889 5134 5134 2019 3941 24370

40 7808 6101 6101 1546 6423 21898

50 8558 6257 6257 2745 10181 28652

Figure 5.4.5: Cost Comparison of the three Algorithms on Geometric Random Graph

with edge weights which are smaller than the biggest distance x

Figure 5.4.6: Running Time Comparison of the three Algorithms on Geometric Random

Graph with edge weights which are smaller than the biggest distance x

0

2000

4000

6000

8000

10000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

20000

40000

60000

80000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

67

Table 5.4.4: Results of Cost and Running Time of Three Algorithms on Geometric

Random Graph with Edge Weights less than 0,6 times maximum distances

k

The biggest weight x 0.6

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 1199 1225 1225 176 503 113857

3 1803 1466 1466 252 848 36524

5 2269 2156 2156 508 1278 73105

10 3455 2727 2727 946 3803 91906

20 5397 4003 4003 1439 5440 63906

30 6970 5342 5342 2216 9040 32943

40 7884 5993 5993 3029 9141 31322

50 8259 6157 6157 3863 14517 82427

Figure 5.4.7: Cost Comparison of the three Algorithms on Geometric Random Graph

with edge weights which are smaller than the biggest distance x

Figure 5.4.8: Running Time Comparison of the three Algorithms on Geometric Random

Graph with edge weights which are smaller than the biggest distance x

0

2000

4000

6000

8000

10000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

20000

40000

60000

80000

100000

120000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

68

Table 5.4.5: Results of Cost and Running Time of Three Algorithms on Geometric

Random Graph with Edge Weights less than 0,8 times maximum distances

k

The biggest weight x 0.8

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 262 262 262 208 514 1732

3 1722 1695 1695 288 910 65194

5 2424 2376 2376 496 1766 143164

10 3299 3054 3054 991 4024 83026

20 5330 4374 4374 1620 6625 38187

30 6296 5145 5155 2226 8600 55763

40 7653 5956 5956 4594 13307 35233

50 8597 6313 6313 4448 12292 49798

Figure 5.4.9: Cost Comparison of the three Algorithms on Geometric Random Graph

with edge weights which are smaller than the biggest distance x

Figure 5.4.10: Running Time Comparison of the three Algorithms on Geometric

Random Graph with edge weights which are smaller than the biggest distance x

0

2000

4000

6000

8000

10000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

50000

100000

150000

200000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

69

Table 5.4.6: Results of Cost and Running Time of Three Algorithms on Geometric

Random Graph with Edge Weights less than 1,0 times maximum distances

k

The biggest weight x 1.0

COST RUNNING TIME(ms)

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR

2 1134 1412 1412 265 805 54279

3 2105 2153 2153 306 1084 174682

5 3012 2840 2840 607 2139 127667

10 3366 2978 2978 849 3233 66796

20 5082 4298 4298 1712 6174 48771

30 6225 4711 4711 2708 8953 59389

40 8366 6326 6326 4132 14385 52029

50 8797 6743 6743 4060 15759 29929

Figure 5.4.11: Cost Comparison of the three Algorithms on Geometric Random Graph

with edge weights which are smaller than the biggest distance x

Figure 5.4.12: Running Time Comparison of the three Algorithms on Geometric

Random Graph with edge weights which are smaller than the biggest distance x

0

2000

4000

6000

8000

10000

2 3 5 10 20 30 40 50

Cost

k

Greedy Heuristic

CDK-Kruskal

AKR

0

50000

100000

150000

200000

2 3 5 10 20 30 40 50

Time

k

Greedy Heuristic

CDK-Kruskal

AKR

70

REFERENCES

[1] David P. Williamson and David B. Shmoys, The Design of Approximation

Algorithm, Cambridge, 2011.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

[3] A. Agrawal, P. N. Klein, and R. Ravi, “When trees collide: An approximation

algorithm for the generalized steiner problem on networks”, SIAM J. Comput.,

Vol. 24, pp. 440-456, 1995.

[4] M. X. Goemans and D. P. Williamson, “A general approximation technique for

constrained forest problems”, SIAM J. Comput., Vol. 24, pp. 296-317, 1995.

[5] J. Könemann, S. Leonardi, G. Schafer, and S. H. M. Van Zwam, A group-

strategy proof cost sharing mechanism for the Steiner forest game, SIAM J.

Comput., 37 (2008), pp. 1319-1341.

[6] A. Kumar, A. Gupta, And T. Roughgarden, A constant-factor approximation

algorithm for the multicommodity rent-or-buy problem, in FOCS, 2002, pp.

333-344

[7] A. Gupta, A. Kumar, M. Pal, And T. Roughgarden, Approximation via cost-

sharing: A simple approximation algorithm for the multicommodity rent-or-buy

problem, in FOCS, 2003, pp. 606-615

[8] A. Gupta, A. Kumar, M. Pal, And T. Roughgarden, Approximation via cost

sharing: Simpler and better approximation algorithms for network design, J.

ACM, 54 (2007), p. 11.

[9] L. Becchetti, J. Könemann, S. Leonardi, And M. Pal, Sharing the cost more

efficiently: Improved approximation for multicommodity rent-or-buy, ACM

Transactions on Algorithms, 3 (2007).

[10] L. Fleischer, J. Könemann, S. Leonardi, And G. Schafer, Strict cost sharing

schemes for steiner forest, SIAM J. Comput., 39 (2010), pp. 3616-3632.

[11] D. P. Williamson, M.X. Goemans, M. Mihail, And V. V. Vazirani, A primal-

dual approximation algorithm for generalized steiner network problems,

Combinatorica, 15 (1995), pp. 435-454.

71

[12] M. X. Goemans, A. V. Goldberg, S. A. Plotkin, D. B. Shmoys, E. TARDOS,

AND D. P. WILLIAMSON, Improved approximation algorithms for network

design problems, in SODA, 1994, pp. 223-232.

[13] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network

problem, Combinatorica, 21 (2001), pp. 39-60.

[14] A. Levitin, Introduction to the Design & Analysis of Algorithms (3. ed.),

Pearson Press, 2012.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms (3. ed.), MIT Press, 2009.,

[16] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling

salesman problem, Proc. AMS, 7 (1956), pp. 48-50.

[17] R. C. Prim, Shortest connection networks and some generalizations, Bell Syst.

Tech. Journal, 36 (1957), pp. 1389-1401.

[18] J. Nesetril, E. Milkov, and H. Nesetrilov, Otakar boruvka on minimum spanning

tree problem translation of both the 1926 papers, comment, history, Discrete

Mathematics, 233 (2001), pp. 3-36.

[19] http://www.math.uwaterloo.ca/tsp/world/countries.html

[20] http://www.math.uwaterloo.ca/tsp/world/uymap.html

[21] http://www.math.uwaterloo.ca/tsp/world/uypoints.html

http://www.math.uwaterloo.ca/tsp/world/countries.html
http://www.math.uwaterloo.ca/tsp/world/uymap.html
http://www.math.uwaterloo.ca/tsp/world/uypoints.html

