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ABSTRACT 
 

 

 

The Steiner forest problem is one of the important NP-Complete problems in the 

field of approximation algorithms and combinatorial optimization through decades. In 

this work, we devolop three heuristics for Steiner forest problem inspired by the greedy 

algorithms for the problem of finding a minimum spanning tree. According to the 

experimental results on random geometric graphs and real-world geometric graphs, our 

algorithms yield solutions of comparable quality to that of the famous 2-approximate 

algorithm of Agrawal, Klein and Ravi, and a widely used greedy heuristic. Especially, 

for real-world geometric graphs they yield much better running time with similar costs. 
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ÖZ 
 

 

 

Steiner ormanı problemi onlarca yıldır yaklaştırma algoritmaları ve kombinatoryel 

optimizasyon alanındaki önemli NP-Tam problemlerden biridir. Bu çalışmada, Steiner 

ormanı problemi için minimum bir tarayan ağaç bulma problemini çözen açgözlü 

algoritmalardan esinlenen üç adet sezgisel algoritma geliştiriyoruz. Rastgele geometrik 

çizgeler ve gerçek dünya geometrik çizgeleri üzerindeki deneysel sonuçlara göre 

algoritmalarımız Agrawal, Klein ve Ravi’nin ünlü 2 yaklaşık algoritması ve geniş bir 

şekilde kullanılan açgözlü sezgisel algoritma ile karşılaştırılabilir kalitede çözümler 

veriyor. Özellikle, gerçek dünya geometrik çizgeleri için algoritmalarımız benzer 

maliyetlerle çok daha iyi çalışma zamanı veriyor. 

 

Anahtar Kelimeler: Steiner Ormanı, NP-Tam, Yaklaştıma Algoritmaları, 

Kombinatoryel Optimizasyon, Açgözlü Algoritmalar 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

Many optimization problems are NP-hard which means that there is no 

polynomial time algorithm that exactly solves the problem unless P = NP. If P ≠ NP, we 

can’t find optimal solutions in polynomial time for NP hard problems. What can we do 

when we encounter with such NP hard problems? One approach is that we can try to 

find an approximate solution that runs in polynomial time instead of finding optimal 

solution. The goal is to find a solution in polynomial time which is as close as possible 

to the optimal solution under some objective function.  

Definition 1.1: An α-approximation algorithm for an optimization problem is a 

polynomial-time algorithm that for all instances of the problem produces a solution 

whose value is within a factor of α of the value of an optimal solution. [1] 

Here, α is the approximation ratio or approximation factor of the algorithm. α > 1 

for minimization problems while α < 1 for maximization problems. 

Based on this definition, note that an approximation algorithm has to guarantee 

the approximation factor for all instances of the problem. This requirement makes 

approximation algorithms hard and complicated to design and also they may need high 

running time to be implemented. However, very complicated instances (bad cases) are 

generally hard to be found in the real-world.  Hence, to solve real-world problems, we 

can still benefit from other algorithms that even do not have proven approximation 

ratios, but can give reasonably good results in a reasonable running time. 
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In this thesis, we provide novel algorithms for the Steiner forest problem that are 

applicable to real-world data with better running time and comparable quality compared 

to the well known approximation algorithms which we briefly call AKR.  We base our 

algorithms on the well-known minimum spanning tree algorithms of Kruskal, Prim, and 

Boruvka. We give an example in which our algorithms work worse than AKR in a 

specific case. However in real-world instances like the geometric graph representing the 

cities of specific countries, our algorithms work much faster than the primal dual 

algorithm AKR although they have similar costs. Also, our algorithms have very good 

running time for all instances and they are very simple compared to AKR. 

 

1.1 The Steiner Forest Problem  

In this thesis, we deal with the Steiner forest problem which is also known as the 

generalized Steiner tree problem. The Steiner forest problem is a natural generalization 

of the Steiner tree problem. So, we first mention about the Steiner tree problem. 

In the Steiner tree problem, we are given a connected, undirected graph 

G = (V, E) with nonnegative costs    for all edges e ∈ E and a set of terminal vertices 

T ⊆ V.  The vertices of V-T are nonterminal vertices or Steiner vertices. The goal is to 

find a minimum cost tree which contains all terminal vertices in T. 

In the Steiner forest problem, we are given an undirected graph G = (V, E), 

nonnegative edge costs    for all edges e ∈ E. Also we are given a set of k terminal 

pairs R = {(     )   (     )}. The object is to find minimum cost subset of edges 

F ⊆ E such that there is at least one path between each terminal pair    and    for 

1 ≤ i ≤ k. 

The Steiner tree problem is an NP hard problem [2]. Since the Steiner forest 

problem is the natural generalization of the Steiner tree problem, the Steiner Forest 

problem is also an NP hard problem. That is to say, if    =      
for i = 1,…, k-1 the 

Steiner Forest problem reduces to the Steiner tree problem. The Steiner forest problem 

is one of the major problems in the field of approximation algorithms. As we will see, 

there is a 2-approximate algorithm for this problem which is more than 2 decades old. A 

text written by Williamson and Shmoys [1] tells us that obtaining an algorithm having 
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approximation factor strictly less than 2 for the Steiner forest problem is one of the ten 

major open problems in the field. 

 

1.2 Related Work  

The well-known approximation algorithm for the Steiner Forest problem was 

introduced by Agrawal, Klein and Ravi [3]. Approximation ratio of this algorithm is 

2- 
 

 
, where k is the number of terminal pairs. Then, Goemans and Williamson [4] 

introduced an algorithm mimicking this algorithm by using the primal-dual method. The 

approximation ratio of this algorithm is still 2- 
 

 
.  Analogously, recent paper by 

Könemann, Leonardi, Schafer and Van Zwam [5] give us an algorithm having the same 

approximation ratio with this algorithm by using a slightly different LP relaxation. 

Besides of the Steiner forest problem itself, there has been numerous works 

associated with it. Here, we mention about some of them which are popular. 

The multicommodity rent-or-buy problem (MRoB) is a generalization of the 

Steiner Forest problem. In this problem, we are given a weighted graph G = (V, E), 

nonnegative edge costs    for all edges   ∈ E, a set of k terminal pairs R = {(      ),…, 

(      )}, and a parameter M ≥ 1. We are also given a positive demand    for each 

terminal pair (      ) ∈ R for 1 ≤ i ≤ k. The object is to install capacities on the edges of 

G such that for all (      ) ∈ R, we can simultaneously route an amount of flow    from 

        . We can either buy infinite capacity on edge   at cost    ( )  or we can rent 

capacity on an edge   at cost  ( )  ( ), where  ( ) is the flow on edge  . For M = 1 

and unit demands, this problem reduces to the Steiner Forest problem. Kumar, Gupta 

and Roughgarden [6] gave first approximation algorithm for this problem. Later Gupta, 

Kumar, Pal and Roughgarden [7, 8] produced an algorithm whose approximation ratio 

is 12 (Actually, it can be tightened to 8-approximation). Then Becchetti, Könemann, 

Leonardi and Pal [9] gave the improved approximation ratio which is 6.828. Fleischer et 

al. [10] have given the best approximation ratio which is 5 for this problem so far. 

Another well-known problem which is related with the Steiner Forest problem is 

the survivable network design problem. It is the natural generalization of the Steiner 
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forest problem, that is, if we require that there exists    edge-disjoint paths between    

and   , we have the survivable network design problem. For this problem was given a 

2k approximation algorithm by Williamson et al. [11]. Goemans et al. [12] gave a 2   

approximation algorithm, where    = 1 + 
 

 
 + … + 

 

 
. Later, Jain [13] produced a 2 

approximation algorithm for this problem. 
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CHAPTER 2 
 

 

PRELIMINARIES 
 

 

 

2.1 Dijkstra’s Algorithm 

In section 4.1 where we present our algorithms, we will need to compute all the 

shortest paths between terminals. In addition, in section 3.2 where we will talk about a 

well known greedy heuristic, we will need to compute all the shortest paths between all 

terminal pairs. There are several algorithms for finding shortest paths between vertices. 

Here, we consider Dijkstra’s algorithm. Dijkstra’s algorithm is an algorithm which 

solves the single source shortest paths problem on a weighted connected graph G = (V, 

E) with nonnegative weights. This algorithm calculates all the shortest paths from a 

given vertex called the source to all other vertices. In the following, we give the 

pseudocode of Dijkstra’s algorithm [14]. 

Algorithm 2.1.1: Dijkstra’s Algorithm 

  1:      Initialize minimum priority queue(Q) 

  2:      for every vertex   in V 

  3:                    

  4:                       
  5:               Enqueue( ,   ) 

  6:           

  7:      DecreaseKey(Q, s,   ) // s is the element in the priority queue whose priority will be decreased 

  8:      S = ∅ 

  9:      while Q ≠ ∅ 

10:                  DequeueMin(Q) 

11:             S   S ⋃ {   } 

12:             for every vertex   in V – S that is adjacent to   

13:                    if     (   )      

14:                                   (   )          
15:                                          

16:                           DecreaseKey(Q,  ,   )                                                             
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2.2 Disjoint Set Operations 

We will use the disjoint set operations in section 3.1 and 4.1 while giving detailed 

descriptions of algorithms there in. MAKE-SET operation will be used to make a set for 

each terminal. We will use FIND-SET operation to check whether two nodes are in the 

same set and UNION operation to combine two different sets into one set. We usually 

use the definitions and notation from [15]. Below are the main functions that are used 

inside disjoint set operations.  

• MAKE-SET(u): creates a new set whose only member and representative is u. 

• UNION(u, v): combines the different two sets that contain u and v into a new set 

which is the union of these two sets. 

• FIND-SET(u): finds and returns the representative of the set which contain u. 

 

2.3 Minimum Spanning Tree Algorithms 

Before we discuss our algorithms in section 4.1, it is of a great benefit to 

remember the well-known minimum spanning tree algorithms of Kruskal [16], Prim 

[17], and Boruvka [18]. We can choose any one of these algorithms as a basis to form 

our algorithms.  

Kruskal’s algorithm works by sorting the edges in non-decreasing order and 

sequentially processes all of them by starting from the smallest weight edge. The 

algorithm takes the next smallest weight edge and checks whether a cycle is formed. To 

check whether a cycle is formed, a disjoint set data structure is used. If a cycle is not 

formed, it includes the edge into the tree. It repeats this process until finally a tree that 

includes all nodes in graph is formed. Prim’s algorithm achieves the same goal 

differently. It finds the smallest weight edge on the boundary of current set to connect 

this set to the rest of the nodes. This process continues until all of the nodes included to 

the tree. As for Boruvka’s algorithm, it works similar to Kuruskal’s algorithms. At each 

step, the cheapest edges that are going out of each set are considered. At the final 

iteration, algorithm merges the sets appropriately and continues until just one set 

remains which is the minimum spanning tree. The pseudocodes of the algorithms are 

provided as follows: 
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Algorithm 2.3.1: Kruskal’s Algorithm 

   1:  G=(V, E),        
   2:  F    ∅ 
   3:  for each vertex v ∈ V do 
   4:          MAKE-SET(v) 
   5:  Sort the edges of E in non-decreasing order by w 
   6:  for each edge (   v) ∈ E  take  i   o -decreasing order by w do 
   7:         if FIND-SET(u) ≠ FIND-SET(v) then 
   8:               F   F ⋃ {(   v)} 
   9:              UNION(u, v) 
10:  return F 

 

Algorithm 2.3.2: Prim’s Algorithm 

   1:  G=(V, E),       , r 
   2:  F    ∅ 
   3:  S    MAKE-SET(r) 
   4:  while |S| < |V| do 
   5:             ∅   
   6:         for each vertex u in S do 
   7:                       ⋃ {the cheapest edge (  v) such that FIND-SET( ) ≠ FIND-SET(v) } 
   8:         F   F ⋃ {the cheapest edge (  ,   ) in    }  
   9:         UNION(  ,   ) 
10:  return F 

 

Algorithm 2.3.3: Boruvka’s Algorithm 

   1:  G=(V, E),        
   2:  F    ∅  
   3:  for each vertex v ∈ V do 
   4:          MAKE-SET(v) 
   5:  while there are more than 1 set do 
   6:         for each set S do 
   7:                     ∅   
   8:             for each vertex u in S do 
   9:                             ⋃ {the cheapest edge (u,v) such that FIND-SET( ) ≠ FIND-SET(v)} 
10:               F   F ⋃ {the cheapest edge (  ,   ) in   } 
11:         for each set S do 
12:                UNION(  ,   ) 
13:  return F 
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CHAPTER 3  

 

 

ALGORITHMS FOR THE STEINER FOREST PROBLEM 

 

 

 

3.1  A Primal Dual Algorithm for the Steiner Forest Problem  

We now return to the Steiner Forest problem. Recall that in this problem we are 

given an undirected graph   (   ) with nonnegative edge costs    for all edges 

  ∈    and a set of k terminal pairs   = {(     )   (     )} ⊆ V × V. The goal is to 

find a minimum cost subset of edges   ⊆    such that there is at least one path between 

each terminal pair    and    for 1 ≤ i ≤ k.  

Here, we consider the algorithm of Agrawal, Klein, and Ravi [1], which we 

briefly call AKR. AKR provides a 2- 
 

 
 approximate solution for the Steiner Forest 

problem. This algorithm is a primal dual algorithm, that is to say, it performs both a 

feasible integral primal and a feasible dual solution. In the standart integer programming 

formulation of AKR, there is a binary variable    for all edges   ∈    such that this 

variable has value 1 if e is in the resulting forest   ⊆    and   otherwise. A subset 

  ⊆    is a Steiner cut if it separates at least one terminal pair in  . In other words,   is 

a Steiner cut iff there is a pair (   )  ∈    that satisfies  {    }         . Let   be the 

set of all Steiner cuts. Let also  ( ) include all the edges which is one endpoint in   

and other endpoint not in  .  In other words, we define  ( ) to denote the set of edges 

crossing the cut ( , ̅). Now, we can give the following integer linear programming 

formulation for the Steiner Forest problem. 

                  ∑    

 ∈ 

                                 (  ) 

           ∑   

 ∈ ( )

                   ⊆   
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               ∈ {   }          ∈   

In the dual program, there is a variable    for each Steiner cut   ∈   . The 

program tries to maximize the sum of the dual variables    subject to the condition that 

the cost of each edge e in  ( ) can not be smaller than the dual variable   . The dual of 

the linear programming relaxation (LP) of integer programming (IP) is as follows:  

                        ∑  

 ∈ 

                                          ( ) 

                   ∑        

 ∈   ∈ ( )

       ∈    

                                                                  ∈    

At each iteration, the algorithm raises the dual variables    uniformly for each 

Steiner cut   ∈    until the some edge e ∈  ( ) goes tight. It maintains the iterations 

until all terminal pairs are connected. After all iterations are completed and the resulting 

forest   is generated, the algorithm performs the reverse-delete operation. In this 

operation, the algorithm removes the edge or edges from the resulting forest   provided 

that the resulting forest remains feasible; that is, it excludes the edge or edges from the 

the resulting forest as long as all    and    pairs are connected.  

Subsequently, we use the term of “active set” instead of the term of “Steiner Cut”. 

A set is an active set iff it includes a cut that separates at least one terminal pair in  . 

We give the following example to better explain when a set is active or not. 

 

Figure 3.1.1: An example to explain when a set is active or not 

 



10 

 

 

 Initially, the following four sets are active: {1}, {2}, {3}, and {4} and each of 

these active sets has the dual variable      . In the first iteration, the algorithm raises 

the dual variables by 2 for each active set and the edge between the nodes 1 and 2 goes 

tight. It then adds this edge to resulting forest F. The sets {1} and {2} replace {1,2} as a 

set. However, the set {1,2} isn’t an active set any more because it doesn’t separate any 

terminal pair. So, this set doesn’t have the dual variable any longer. The active sets are 

{3} and {4}. When the dual variables are raised by 1.5, edge between 3 and 4 goes tight 

and the sets {3} and {4} replace {3,4} as a set.  The algorithm adds this edge to 

resulting forest. We now have a feasible solution since all    and    pairs (1-2) and (3-4) 

are connected. 

 In the following, we give pseudocode of the primal dual algorithm for the Steiner 

forest problem [1]. 

Algorithm 3.1.1: Primal-dual Algorithm for the Steiner forest problem 

  1:       0 

  2:  F    ∅ 

  3:        0 

  4:  while not all       pairs are connected in (V, F) do 

  5:              + 1 

  6:        Let S be the set of all connected components C of (V, F) such that |C {      }| = 1 

  7:        for some   

  8:        Increase    for all C in S uniformly until for some    ∈  (  )   ∈ S, 

  9:           
  ∑       ∈ ( )  

10:            {  } 

11:       

12:  for     down to 1 do 

13:         if        is a feasible solution then 

14:                Remove    from    

15:  Return    

 

Line 1 initializes the dual variable to 0. Line 2 initializes the resulting forest F to 

empty set and line 3 initializes the variable   to 0. Until all terminal pairs (   -   ) are 
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connected, the algorithm maintains the while loop of line 4-10. Each time through the 

“while” loop of lines 4-10, line 5 raises the variable l by 1, lines 8 and 9 increase the 

dual variable     uniformly for all connected components (active sets)   until the dual 

equality provide for some edge e ∈  ( ) and line 10 adds this edge to resulting forest  . 

Each time through the “for” loop of lines 12-14, the algorithm removes the edge if the 

solution is still feasible when this edge is removed from the resulting forest  . Finally, 

line 15 returns the solution. 

In the following, we give an example on which we explain how the primal-dual 

algorithm works. 

 

Figure 3.1.2: An example to explain how AKR works 

 

Initially, the following four sets are active: {1}, {4}, {5}, and {6} and each of 

these active sets has the dual variable      . In the first iteration, the algorithm raises 

the dual variables by 1 for each active set and the edge between the nodes 1 and 7 goes 

tight. In the second iteration, it then adds this edge to resulting forest F and the active 

set {1} and the set {7} replace {1,7} as an active set.  

 

Figure 3.1.3: Illustration of union 1 and 7 
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The active sets are {1,7}, {4}, {5} and {6}. When the dual variables are raised by 

1, edge between 5 and 8 goes tight. The algorithm adds this edge into resulting forest 

and the active set {5} and the set {8} replace {5,8} as an active set as follows:  

 

Figure 3.1.4: Illustration of union 5 and 8 

 

The active sets are {1,7}, {4}, {5,8} and {6}. When the dual variables are raised 

by 5, edges (1-2) and (1-5) go tight at same time. Let’s assume that the algorithm select 

the edge between 1 and 2 first. In the next iteration, it adds this edge into resulting forest 

and the active set {1,7} and the set {2} replace {1,7,2} as an active set. In the next 

iteration, it adds edge (1-5) into resulting forest and the active set {1,7,2} and the active 

set {5,8} replace {1,2,7,5,8} as an active set as follows: 

 

Figure 3.1.5: Union of the sets corresponding to 1, 2 and 5 
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The active sets are {1,2,7,5,8}, {4}, and {6}. When the dual variables are raised 

by 0.5, edge between 4 and 6 goes tight. The algorithm adds this edge into resulting 

forest and the active set {4} and the active set {6} replace {4,6} as an active set as 

follows: 

 

Figure 3.1.6: Illustration of union 4 and 6 

 

The active sets are {1,2,7,5,8} and {4,6}. When the dual variables are raised by 

0.5, edges (2-3), (3-4) and (3,6) go tight at same time. Let’s assume that the algorithm 

select the edge between 3 and 6 first. In the next iteration, it adds this edge into resulting 

forest and the active set {4,6} and the set {3} replace {4,6,3} as an active set. Then, let 

the algorithm select the edge between 3 and 4. Since set 3 and set 4 are in same set, the 

algorithm can not add this edge into resulting forest. In the next iteration, it adds edge 

(2-3) into resulting forest.  We now have a feasible solution since all    and    pairs 

(1-4) and (5-6) are connected. In the reverse-delete step, edges (1-7) and (5-8) are 

excluded from resulting forest. Finally, solution obtained by the algorithm includes 

edges (1-2), (2-3), (3-6), (1-5), (4-6). The cost of this solution is 45. Edges which the 

solution includes are marked thick: 
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Figure 3.1.7: Illustration of the solution returned by AKR 

 

The dual variables in the primal dual algorithm have a very nice geometric 

interpretion as growing moats. We can interpret the dual variables    as moats in order 

to better understand the primal dual algorithm for the Steiner forest problem. Initially 

each    and    considers as a component and each of them has a moat. At each iteration, 

moats are grown uniformly around the components and each time during the growing, if 

they cover an edge e, it is added to the solution F. Moats continue to grow until collision 

occurs. After the collision, these moats are considered as a single component. 

Figure 3.1.8 illustrates us how the idea of growing moats works on a specific example.  
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Figure 3.1.8: Illustration of growing moats on the specific example 

 

In the following, we give a specific example for which the cost of the solution 

returned by AKR is as bad as   
 

 
 times the cost of the optimum solution. In this 

example, all terminal pairs    and    are adjacent to each other with cost of     

for        . Also the distances between both   ,      and   ,      are 1 for   

       . The example is shown in Figure 3.1.9. 
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Figure 3.1.9: Bad example for AKR 

 

AKR first takes all the edges with cost of 1, a total of 2k. Then it takes one of the 

edges whose costs are    . Therefore, the total cost of the solution returned by AKR 

is       . However, the cost of the optimum solution is  (   ); where k is the 

number of terminal pairs and (   ) is the distance between each of them. The solution 

returned by AKR and the optimum solution is shown in Figure 3.1.10 and Figure 3.1.11, 

respectively. 

 

Figure 3.1.10: Illustration of the solution returned by AKR 
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Figure 3.1.11: Illustration of optimum solution 

 

 

3.2 A Greedy Heuristic  

In this section, we give a greedy heuristic for the Steiner Forest problem. This 

algorithm is a well known algorithm which has 2-approximation factor for the Steiner 

tree problem. It is fairly simple algorithm compared to AKR. Also, running time of this 

algorithm is in practice much better than AKR. However, this algorithm is not a 

2-approximation algorithm for the Steiner forest problem. We will give a specific 

example for which the cost of the solution returned by this algorithm is as bad as 4 

times the cost of the optimum. 

In this algorithm, we first compute the shortest path between    and   . In the next 

iteration, we add all the edges on this shortest path whose weighted lengths are not 

equal to zero into solution and zero out these edges. Then we compute the shortest path 

between    and   , and so on. The iterations are performed for all terminal pairs from 1 

to k. 

In what follows, we give an example on which we explain how the algorithm 

works. 
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Figure 3.2.1: An instance for Greedy Heuristic 

 

In the first iteration, we compute the shortest path between 1 and 4 (   and   ). 

This shortest path includes the edges (1-2), (2-3), and (3-4). In the second iteration, we 

add the edge (1-2) into the solution since this edge is not equal to zero. In the third 

iteration, we change the cost of this edge into zero. In the next iterations, we add the 

edges (2-3) and (3-4) into the solution since the costs of these edges are not equal to 

zero and we change the costs of these edges into zero. The edges included into the 

solution up to this point are shown in Figure 3.2.2, with selected edges and the new 

costs of these edges marked red: 

 

Figure 3.2.2: Illustration of the edges added into solution 

 

In the next iteration, we compute the sorthest path between 5 and 6 (   and   ). 

This shortest path includes the edges (5-2), (2-3), and (3-6). In the next iterations, we 

add all the edges on this shortest path into solution except the edge (2-3) since the cost 
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of this edge is equal to zero and change the costs of these edges into zero as shown in 

the figure below: 

 

Figure 3.2.3: Illustration of the solution returned by Greedy Heuristic 

 

Finally, we obtain the same solution with optimal which total cost is 32. The 

solution includes the edges (1-2), (2-3), (3-4), (5-2), and (3-6). 

Following is the pseudocode of the algorithm. 

Algorithm 3.2.1: Greedy Heuristic for Steiner Forest Problem 

   1:        G=(V, E), {                   },        

   2:        F    ∅  //Initialize Forest to empty 

   3:        for i   1 to k do 

   4:               p   shortest path between    and    

   5:              for edge e: all the edges on the path p do 

   6:                      if e cost ≠   then 

   7:                             F   F ⋃ {e} 

   8:                             e   0 

   9:        return F  

 

Line 2 initializes the resulting forest F to empty. Each time through the “for” loop 

of lines 3-8, line 4 computes the shortest path between    and    and lines 5-8 add all the 

edges on this path into F if the cost of each edge is not equal to zero and change the cost 

of the edge into zero. Finally, line 9 returns the solution. 
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In the following, we provide a specific example which shows that the greedy 

heuristic we mention above is worse than AKR with respect to approximation ratio. In 

this example, every terminal pairs are adjacent to each other with a cost of      as 

shown in Figure 3.2.4. The cost of the solution that greedy algorithm finds is worse than 

the twice of the cost of the optimum solution.    

 

Figure 3.2.4: Bad example for Greedy Heuristic 

 

 Greedy algorithm takes all the shortest paths between terminal pairs with distance 

   . The cost of the solution is (   )   (see Figure 3.2.5). However, the cost of the 

optimum solution is       (see Figure 3.2.6). Also the cost of the solution given by 

AKR is    (   )(   ) as shown in Figure 3.2.7. So, the cost of the solution 

given by greedy algorithm is   times as large as the cost of the optimum solution. 
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Figure 3.2.5: Forest returned by Greedy Heuristic 

 

 

Figure 3.2.6: Optimum solution  
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Figure 3.2.7: Forest returned by AKR 
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CHAPTER 4 
 

 

NEW ALGORITHMS FOR THE STEINER FOREST 

PROBLEM  
 

 

 

4.1 The New Algorithms 

In this section, we provide three equivalent greedy algorithms for the Steiner 

forest problem, which we appropriately name ÇDK-Kruskal, ÇDK-Prim and ÇDK-

Boruvka.  

All these algorithms are equivalent and in this section we mainly talk about ÇDK-

Kruskal. In this algorithm, firstly, we make a different set for each terminal, a total of 

   sets. Then, we compute all the shortest paths between terminals. That is, for the 

number of k terminal pairs (  -  ,   -  , … ,   -  ) we compute a total of (
  
 

) shortest 

paths between terminals. Then we sort them in non-decreasing order. After this step, we 

iteratively check whether the endpoints of the paths are in the same set are or not. If 

they are not in the same set, we include the path into the solution and combine them into 

one set by using the union operation. If they are in the same set, we skip this path and 

continue to the next iteration. This iterations continue until all terminal pairs are 

connected. After all terminal pairs are connected, we perform a reverse–delete 

operation. In this operation, if there are unnecessary paths which do not violate the 

feasibility of the solution, we remove these paths by starting from the last element of 

array (resulting forest) that contains the selected paths. Following is an example which 

explains the execution of our algorithms in more detail. 

: 
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Figure 4.1.1: Illustration of the specific example. 

 

For this example,     and we have terminal pairs (     ), (     ) and (     ). 

For each terminal, the algorithm creates a set indicated by the node number as 

shown in the figure below. 

 

Figure 4.1.2: Illustration of sets. 

 

Then, it computes all the shortest paths between terminals and then sorts them in 

non-decreasing order. Following is the result of this computation. 



25 

 

 

 

 

Figure 4.1.3: Sorted shortest paths between terminals  

 

The algorithm first checks whether 3 and 4 sets are in the same set. They are not 

in the same set, so it adds this path into solution and combines 3 and 4 into one set by 

using the union operation which can be seen in the following illustration (Figure ). 

 

Figure 4.1.4: Illustration of union 3 and 4 

 

Then, it checks whether 3 and 1 sets are in the same set. Since they are not in the 

same set, it adds this path into solution and combines 3 and 1 into one set by using the 

union operation as shown in the following figure: 
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Figure 4.1.5: Illustration of union 1 and 3 

 

Then, it checks 4 and 6. Since they are not in the same set, it adds this path into 

the solution and combines into one set as follows: 

 

Figure 4.1.6: Illustration of union 4 and 6 

 

Then, it does not add the paths 4-1 and 3-6 since they are already in the same set. 

Because 6 and 11 are different sets, it adds 6-11 path into the solution and combines 

them into one set as follows: 

 

Figure 4.1.7: Illustration of union 6 and 11 
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Eventually, it adds 6-9 path into the solution since 6 and 9 sets are not in the same 

set. It then combines them into one set by using the union operation as shown in the 

figure below:  

 

Figure 4.1.8: Union of the sets 6 and 9 

 

Since all terminal pairs are connected at this point, the algorithm terminates. So 

far, the paths taken by the algorithm are (3-4), (3-1), (4-6), (6-11), (6-9). 

Then, in order to exclude unnecessary paths from solution, the algorithm performs 

a reverse-delete operation. In this operation, it excludes the paths as long as the solution 

remains feasible, that is, if all terminal pairs are still connected. It tries to remove the 

paths in the reverse order in which they were added into the solution. We sequentially 

exclude the paths from the solution and then check whether k pairs (  -  ,   -  ,…,   -

  ) are still in the same set. If even only one terminal pair is not in the same set, it 

means that the excluded path is necessary for the solution so we can not remove this 

path. If all of the terminal pairs are still connected, it means that the excluded path is 

unnecessary and we can remove it from the solution.  

For this example, we first check 6-9 path which is added last into the solution. If 

we remove this path, there is no connection between   -   so we can’t remove this path. 

We then check whether 6-11 path is removed from the solution and we see that we can 

not remove this path since there is no connection between   -   when we remove this 

path. We then check whether third path 4-6 is removed, and so on. Only 3-4 path is 

unnecessary because when we exclude it, each terminal pair   -   for 1 ≤ i ≤ 3 are still 

connected. So, we remove this path. If any of the remaining paths (3-1, 4-6, 6-11, 6-9) 

is removed, all of terminal pairs will still not be connected, so we don’t remove any of 
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them. For this example, our algorithm finds the solution which includes the paths 3-1, 

 - , 6-11, and 6-9. 

We now provide the pseudocodes of the algorithm ÇDK-Kruskal, ÇDK-Prim and 

ÇDK-Boruvka.  

Let H be an adjunct graph derived from the input graph G. H represents all the 

shortest paths between all terminals. It includes 2k vertices and (
  
 

) edges, that is, it is 

a complete graph. In the following, we give a procedure named ComputeAdjunct. This 

procedure forms the adjunct graph H. We will use this procedure in all of our 

algorithms. 

 

Algorithm 4.1.1: ComputeAdjunct 

   1:  G=(V, E), R = {                   },        

   2:  H = (  ,    ,    ) 

   3:  for i   1 to k do 

   4:         for j   i+1 to k do 

   5:              c   compute the cost of the shortest path between           

   6:              H.AddEdge(     , c) 

   7:              c   compute the cost of the shortest path between           

   8:              H.AddEdge (     , c)  

   9:         for j   1 to k do 

10:               c   compute the cost of the shortest path between           

11:               H.AddEdge (     , c) 

12:  return H 

 

We give pseudocodes of our algorithms ÇDK-Kruskal, ÇDK-Prim and ÇDK-

Boruvka as follows: 
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Algorithm 4.1.2: ÇDK-Kruskal Algorithm 

   1:  G=(V, E), R = {                   },        
   2:  F    ∅  //Initialize Forest to empty 
   3:      0 
   4:  for each r ∈ R do 
   5:          MAKE-SET(r) 
   6:  H = (  ,    ,    )   ComputeAdjunct(G, R, w) 

   7:  ∑    (
  
 

)    sort the edges of    in non-decreasing order by    

   8:  for i   1 to (
  
 

) do 

   9:         p   ∑      //Let ∑    be the path betwee    ∈ R a d v ∈ R   
10:         if FIND-SET(p.u) ≠ FIND-SET(p.v) then 
12:                     + 1 
13:               F   F ⋃ {  } 
14:               UNION(u,v) 
15:         if all    and    are connected via F then 
16:             break 
17:  for     down to 1 do    //Reverse-Delete Step  

18:         if        is a feasible solution then 

19:               Remove    from F 

20:  return F 

 

 

Algorithm 4.1.3: ÇDK-Prim Algorithm 

   1:  G=(V, E), R = {                   },       , r 
   2:  F    ∅  //Initialize Forest to empty 
   3:      0 
   4:  S   MAKE-SET(r)           
   5:  H = (  ,    ,    )   ComputeAdjunct(G, R, w) 

   6:  ∑    (
  
 

)    sort the edges of    in non-decreasing order by    

   7:  while not all (     ) pairs are connected via F do 
   8:             ∅   
   9:         for each vertex u in S do 
10:                       ⋃ {the cheapest edge (  v) i  ∑ s ch that FIND-SET( ) ≠ FIND-SET(v) } 
11:               + 1 
12:              the cheapest edge (  ,   ) in        
13:         F   F ⋃ {  } 
14:         UNION(  ,   ) 
15:  for     down to 1 do    //Reverse-Delete Step 

16:         if        is a feasible solution then 

17:               Remove    from F 

18:  return F 
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Algorithm 4.1.4: ÇDK-Boruvka Algorithm 

   1:  G=(V, E), R = {                   },        
   2:  F    ∅  //Initialize Forest to empty 
   3:      0 
   4:  for each r ∈ R do 
   5:          MAKE-SET(r) 
   6:  H = (  ,    ,    )   ComputeAdjunct(G, R, w) 

   7:  ∑    (
  
 

)    sort the edges of    in non-decreasing order by    

   8:  while not all (     ) pairs are connected via F do 
   9:         for each set S do 
10:                    ∅   
11:                       ⋃ {the cheapest edge (  v) i  ∑ s ch that FIND-SET( ) ≠ FIND-SET(v) } 
12:               + 1 
13:              the cheapest edge (  ,   ) in        
14:         F   F ⋃ {  } 
15:         UNION(  ,   ) 
16:  for     down to 1 do    //Reverse-Delete Step 

17:         if        is a feasible solution then 

18:               Remove    from F 

19:  return F 

 

 

4.2 The Equivalence of the Algorithms 

In this section, we give a proof that our algorithms are equivalent. 

Let    {         
(  

 
)
} be the set of edges in increasing order. We argue by 

induction on  , the number of edges selected by ÇDK-Kruskal throughout its execution. 

For    , ÇDK-Kruskal selects   . Let    (   ). Consider ÇDK-Boruvka and ÇDK-

Prim at a stage in which   and   are not in the same set, and the edges that are adjacent 

to   and   are considered. Since    is the smallest weight edge, it will be included in the 

forests that the aforementioned two algorithms compute by their very definition. This 

settles the base case of the induction. Assume, as the induction hypothesis that, before 

ÇDK-Kruskal selects the (   )st edge, it has already selected the set    

{            } and all the other edges up to     excluding    are not selected, and the set 

of selected edges and unselected edges are the same for ÇDK-Boruvka and ÇDK-Prim. 

If there is an edge between     and      
 in the ordering, say   (   ), then this edge is 

not selected by ÇDK-Kruskal because it creates a cycle, i.e.   and   are in the same set. 
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Consider the execution of ÇDK-Boruvka and ÇDK-Prim when this edge is considered. 

Since we know by induction hypothesis that   and   will be in the same set for these 

algorithms via the edges in   ,   will not be selected. Otherwise, we get that one of the 

edges in    will not be selected by these algorithm which contradicts the induction 

hypothesis. All that remains is to show that      
 is selected ÇDK-Boruvka and 

ÇDK-Prim. Let      
 (   ) and consider the stage in which these algorithms consider 

the edges adjacent to   and   (clearly,   and   are not in the same set). Since,      
 is 

the smallest weight edge which does not create a cycle by the choice of ÇDK-Kruskal, 

it will also be selected by the other two algorithms. Finally, note that the termination 

condition of all the algorithms is equivalent: all the terminal pairs are connected. 

 

4.3 A Bad Example for Our Algorithms 

In this section, we give a particular example on which our algorithms do not even 

give a constant factor approximation. Suppose that we have a graph with 

nodes              . The distances between     and       are 1 for           

and    has distance 2 from all other nodes. Then, replace               with       

pairs with distance epsilon between them except    which should be replaced with 

      with distance 3. The example is shown below: 

 

Figure 4.3.1: Bad example for ÇDK-Kruskal 
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For this example, our algorithms take all paths (k-1 paths) with distance epsilon. 

Then it takes all paths (k-2 paths) with distance 1. Then, it takes 2 paths with distance 2. 

The solution found by our algorithms is shown below: 

 

Figure 4.3.2: Illustration of the forest returned by ÇDK-Kruskal 

 

The cost of the solution found by our algorithms is (   )    (   )      

(   )    (   ). However; the optimum solution is   (   )   . The 

optimum solution is shown below: 

 

Figure 4.3.3: Optimum forest 
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CHAPTER 5 
 

 

EXPERIMENTAL RESULTS 
 

 

 

In this section, we discuss experiments that we have conducted by running Greedy 

Heuristic, ÇDK-Kruskal and AKR. The experiments are performed on a computer with 

specifications as listed below: 

Processor   : Intel Core i5=3470 CPU  @ 3.20GHz 

Ram    : 4 GB 

System type  : 64 bit operating system 

Operating System : Windows 7 64 bit 

 

The implementations of the algorithms are done on Java NetBeans IDE 7.4 

platform. In the following, we first summarize these three algorithms and then discuss 

the condition in which AKR work slower. 

How does ÇDK-Kruskal work? 

Firstly, it makes a set for each terminal and then calculates the shortest paths 

between all the terminals. There are  (
  
 

) shortest paths that need to be calculated. 

Then it sequentially checks all the paths from the smallest weight to the largest. If the 

endpoints of the path checked are not in the same set, it includes the path into the forest 

and combines these two sets into one set. This process is continuously done until all s-t 

pairs are connected.  

How does AKR work? 

At the beginning, it forms active sets for all the terminals. Then it determines the 

shortest edge that comes out from the active sets since the smallest edge will become 

tight first. If nodes that are at the endpoints of this edge are not in the same set, the edge 
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is included to the forest and the nodes of this edge is included to the active set. Then, 

the edges are updated by substracting the weight of the selected edge from the weights 

of all the edges. This process is performed iteratively until all s-t pairs are connected. 

How does Greedy Heuristic works? 

In the first iteration, it calculates the shortest path between    and   . In the next 

iteration, the cost of the edges that are not zero are included to the resulting forest. 

Then, it changes the value of the selected edges to zero, that is, it contracts the   -   

pair. In the next iteration, it applies the same procedure to the   -   pair. These 

iterations are performed up to      . 

 

5.1 Experiment 1 

In all of our experiments, we compare the solution costs and the running times of 

the three algorithms, showing them on a table and also providing a figure for ease of 

resresentation. 

In this specific experiment 

 We created a random graph in the Erdös-Renyi model with 1000 nodes. 

 The probabilities of having an edge between two nodes are 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. For each probability value, a graph with 

1000 nodes is created. Hence, using the probability values, we created 9 

different random graphs. 

 Edge weights are integers and randomly choosen between 1 and 10000. 

 We formed k random s-t pairs for k={2, 3, 5, 10, 20, 30, 40 and 50}. For 

instance, for k=2, we selected 2 s-t pairs (4 terminals) randomly from the 

nodes in the graph.  

Greedy Heuristic, ÇDK-Kruskal, and AKR have fairly similar costs with AKR 

being slightly better. However, if we take a look at their running time, we can 

see that Greedy Heuristic and ÇDK-Kruskal are closer to each other than they 

are to AKR. Greedy Heuristic is faster than ÇDK-Kruskal since it does not 

compute an adjunct graph. As for AKR, it works much slower than these two 



35 

 

 

 

algorithms. The reason is that, when edge weights span on wide interval, 

which in this case 1-10000, causes AKR to execute too many iterations. Recall 

that, AKR updates every node and edge by substacting the weight of the 

newly added edge from their weights. So, the more varied the edge weights, 

the larger the number of updates, which slows down the algorithm. 
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Table 5.1.1: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.1 and Edge Weights 1-10000 

k 

Probability of edge existance: 0.1 
Edge weights: 1-10000  

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 1058 1091 1086 156 103 1290 

3 2653 3687 3313 59 97 727 

5 4072 5258 5041 83 195 3521 

10 6870 7626 7127 162 324 2822 

20 13758 14423 13373 208 681 18516 

30 18341 19494 17946 429 1135 3660 

40 24283 26415 24655 427 1312 18225 

50 25585 25810 23821 722 1646 6631 

 

 

Figure 5.1.1: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.1 

 

 

 Figure 5.1.2: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.1 
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Table 5.1.2: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.2 and Edge Weights 1-10000 

k 

Probability of edge existance: 0.2 
Edge weights: 1-10000 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 506 506 506 53 76 123 

3 1186 1273 1483 91 214 582 

5 1926 2179 1975 122 361 3588 

10 3385 3779 3509 298 600 1756 

20 7614 7855 7169 353 975 11391 

30 8412 9132 8355 552 2011 4939 

40 10176 10221 9505 769 2509 11042 

50 11842 12443 11718 965 2919 30617 

 

 

Figure 5.1.3: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.2 

 

 

Figure 5.1.4: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.2 

0

2000

4000

6000

8000

10000

12000

14000

2 3 5 10 20 30 40 50

Cost 

k 

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

25000

30000

35000

2 3 5 10 20 30 40 50

Time 

k 

Greedy Heuristic

CDK-Kruskal

AKR



38 

 

 

 

Table 5.1.3: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.3 and Edge Weights 1-10000 

k 

Probability of edge existance: 0.3 
Edge weights: 1-10000 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 466 471 466 68 140 4181 

3 849 1134 1134 125 241 787 

5 1216 1560 1341 203 352 4179 

10 2988 3464 3024 265 912 4184 

20 4611 4683 4325 560 2090 4946 

30 6263 6720 6243 689 2848 14917 

40 7174 7285 6709 1109 3170 6153 

50 10031 10234 9572 1273 3967 31722 

 

 

Figure 5.1.5: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.3 

 

 

Figure 5.1.6: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.3 

0

2000

4000

6000

8000

10000

12000

2 3 5 10 20 30 40 50

Cost 

k 

Greedy Heuristic

CDK-Kruskal

AKR

0

5000

10000

15000

20000

25000

30000

35000

2 3 5 10 20 30 40 50

Time 

k 

Greedy Heuristic

CDK-Kruskal

AKR



39 

 

 

 

Table 5.1.4: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.4 and Edge Weights 1-10000 

k 

Probability of edge existance: 0.4 
Edge weights: 1-10000 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 327 353 325 208 188 590 

3 502 628 502 144 359 804 

5 976 1338 1198 174 529 3653 

10 2128 2561 2323 327 1206 5216 

20 2983 3114 2803 655 2406 4479 

30 4504 5114 4532 1745 3278 6892 

40 5632 5715 5330 1315 3922 20575 

50 6396 6490 6028 1669 5228 11751 

 

 

Figure 5.1.7: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.4 

 

 

Figure 5.1.8: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.4 
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Table 5.1.5: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.5 and Edge Weights 1-10000 

k 

Probability of edge existance: 0.5 
Edge weights: 1-10000 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 324 399 351 111 289 460 

3 510 583 503 146 429 633 

5 719 864 759 213 664 3332 

10 1687 2092 1904 380 1332 6559 

20 3032 3068 2819 903 2889 7527 

30 4157 4513 4226 1863 3684 18653 

40 4819 5071 4722 1331 4956 24492 

50 5851 5989 5470 1818 6414 17499 

 

 

Figure 5.1.9: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.5 

 

 

Figure 5.1.10: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.5 
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Table 5.1.6: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.6 and Edge Weights 1-10000 

k 

Probability of edge existance: 0.6 
Edge weights: 1-10000 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 294 435 405 117 289 1058 

3 349 460 418 163 480 1119 

5 607 725 688 342 743 2877 

10 1322 1362 1230 493 1797 3439 

20 2185 2327 2151 1034 3792 6977 

30 3138 3493 3172 1467 5180 9271 

40 3955 4157 3696 1804 7193 23761 

50 4257 4311 3994 2519 7946 6069 

 

 

Figure 5.1.11: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.6 

 

 

Figure 5.1.12: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.6 
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Table 5.1.7: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.7 and Edge Weights 1-10000 

k 

Probability of edge existance: 0.7 
Edge weights: 1-10000 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 169 169 169 1382 291 858 

3 372 426 394 176 493 1164 

5 406 546 482 339 858 699 

10 1004 1199 1133 585 2156 2511 

20 1796 1888 1702 1085 3782 4483 

30 2645 2870 2581 1618 5828 8980 

40 3386 3485 3214 1951 7237 16816 

50 4203 4335 4004 2736 9424 20525 

 

 

Figure 5.1.13: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.7 

 

 

Figure 5.1.14: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.7 
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Table 5.1.8: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.8 and Edge Weights 1-10000 

k 

Probability of edge existance: 0.8 
Edge weights: 1-10000 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 204 272 261 147 415 1064 

3 233 288 282 274 467 2327 

5 507 585 557 402 993 2224 

10 849 978 920 663 2377 7722 

20 1874 2048 1861 1275 4714 6753 

30 2300 2434 2261 1868 6502 27047 

40 2882 2915 2641 2470 8607 9482 

50 3458 3423 3199 2894 10606 9738 

 

 

Figure 5.1.15: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.8 

 

 

Figure 5.1.16: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.8 
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Table 5.1.9: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.9 and Edge Weights 1-10000 

k 

Probability of edge existance: 0.9 
Edge weights: 1-10000 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 136 201 136 147 410 551 

3 240 324 254 194 608 252 

5 479 659 593 359 1127 3858 

10 890 950 887 632 2348 6145 

20 1498 1658 1496 1279 4796 14068 

30 1967 2203 2005 1684 6464 14657 

40 2428 2528 2335 2373 9074 22726 

50 2472 2638 2447 3082 11750 15493 

 

 

Figure 5.1.17: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.9 

 

 

Figure 5.1.18: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.9 
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5.2 Experiment 2 

In this experiment 

 We created a random graph in the Erdös-Renyi model with 1000 nodes. 

 The probabilities of having an edge between two nodes are 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. For each probability value, a graph with 

1000 nodes is created. Hence, using the probability values, we created 9 

different random graphs. 

 Edge weights are integers and randomly choosen between 1 and 100. 

 We formed k random s-t pairs for k={2, 3, 5, 10, 20, 30, 40 and 50. For 

instance, for k=2, we selected 2 s-t pairs (4 terminals) randomly from the 

nodes in the graph.   

Specifications of this experiment are the same with first experiment except the 

edge weight interval. In this case, while the cost results of the three algorithms are still 

similar, the running times are significantly different. In this experiment AKR is the 

fastest algorithm.While the edge weight interval is smaller, AKR does a smaller number 

of updates, which makes its running time better compared to the previous experiment. 

In general, we see that ÇDK-Kruskal is not well suited for these type of graphs. 
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Table 5.2.1: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.1 and Edge Weights 1-100 

k 

Probability of edge existance: 0.1 
Edge weights: 1-100 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 22 26 24 163 99 141 

3 35 40 37 57 97 464 

5 39 48 43 101 126 105 

10 106 108 105 126 297 229 

20 176 198 179 230 592 146 

30 271 306 280 272 818 182 

40 331 356 327 483 1053 333 

50 399 387 365 565 1302 219 

 

 

Figure 5.2.1: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.1 

 

Figure 5.2.2: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.1 
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Table 5.2.2: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.2 and Edge Weights 1-100 

k 

Probability of edge existance: 0.2 
Edge weights: 1-100 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 14 14 14 118 77 87 

3 21 31 27 97 259 135 

5 31 37 35 136 411 114 

10 64 71 66 218 707 182 

20 112 118 112 380 1350 182 

30 168 173 159 594 2006 289 

40 227 232 217 1040 1950 282 

50 270 257 241 869 2917 209 

 

 

Figure 5.2.3: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.2 

 

 

Figure 5.2.4: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.2 
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Table 5.2.3: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0. and Edge Weights 1-100 

k 

Probability of edge existance: 0.3 
Edge weights: 1-100 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 9 14 14 75 163 67 

3 14 17 14 99 232 83 

5 29 34 32 159 487 96 

10 51 55 50 324 1147 166 

20 103 107 99 409 1481 298 

30 146 148 137 593 2134 293 

40 176 164 153 745 2779 336 

50 223 212 202 1317 3413 419 

 

 

Figure 5.2.5: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.3 

 

 

Figure 5.2.6: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.3 
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Table 5.2.4: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.4 and Edge Weights 1-100 

k 

Probability of edge existance: 0.4 
Edge weights: 1-100 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 11 12 11 104 263 538 

3 14 17 14 144 413 685 

5 20 31 30 207 676 194 

10 46 54 51 413 1313 89 

20 95 98 90 1096 2042 279 

30 124 132 127 980 3401 179 

40 155 148 140 1167 4364 211 

50 209 188 181 1270 4959 543 

 

 

Figure 5.2.7: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.4 

 

 

Figure 5.2.8: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.4 
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Table 5.2.5: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.5 and Edge Weights 1-100 

k 

Probability of edge existance: 0.5 
Edge weights: 1-100 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 9 11 11 103 254 95 

3 14 16 16 170 504 195 

5 18 27 26 222 724 85 

10 38 44 45 438 1447 423 

20 80 90 88 923 3385 149 

30 121 117 111 1393 4577 213 

40 160 159 154 1620 4940 364 

50 195 179 173 2188 7126 395 

 

 

Figure 5.2.9: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.5 

 

 

Figure 5.2.10: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.5 
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Table 5.2.6: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.6 and Edge Weights 1-100 

k 

Probability of edge existance: 0.6 
Edge weights: 1-100 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 8 12 12 112 287 111 

3 11 14 14 169 511 162 

5 22 26 23 292 997 296 

10 33 43 37 431 1576 113 

20 76 77 76 958 3565 302 

30 109 113 108 1292 4658 297 

40 135 141 132 1592 5491 410 

50 176 157 153 2302 8643 415 

 

 

Figure 5.2.11: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.6 

 

 

Figure 5.2.12: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.6 
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Table 5.2.7: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.7 and Edge Weights 1-100 

k 

Probability of edge existance: 0.7 
Edge weights: 1-100 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 8 11 8 128 346 127 

3 11 17 16 172 522 186 

5 17 23 21 342 1093 107 

10 31 37 37 606 2257 275 

20 66 75 74 1077 3974 362 

30 100 107 102 1605 6223 451 

40 135 133 129 2311 8056 453 

50 159 154 149 2462 9240 534 

 

 

Figure 5.2.13: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.7 

 

 

Figure 5.2.14: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.7 
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Table 5.2.8: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.8 and Edge Weights 1-100 

k 

Probability of edge existance: 0.8 
Edge weights: 1-100 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 7 7 6 128 346 76 

3 10 12 14 218 616 336 

5 16 27 25 302 1031 107 

10 35 46 42 620 2208 164 

20 68 75 73 1380 3615 304 

30 98 106 101 1991 5914 401 

40 125 126 120 2012 7123 394 

50 153 146 145 2982 10982 399 

 

 

Figure 5.2.15: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.8 

 

 

Figure 5.2.16: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.8 
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Table 5.2.9: Results of Cost and Running Time of Three Algorithms  

with Probability of Edge Existence 0.9 and Edge Weights 1-100 

k 

Probability of edge existance: 0.9 
Edge weights: 1-100 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 8 10 9 148 413 224 

3 11 15 15 204 636 266 

5 13 19 19 305 1047 129 

10 32 43 40 720 2175 203 

20 65 78 76 1292 4380 346 

30 90 100 97 1766 6816 1200 

40 126 122 117 2429 8984 476 

50 157 147 143 3490 10872 510 

 

 

Figure 5.2.17: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on 

Random Graph with Probability of Edge Existance 0.9 

 

 

Figure 5.2.18: Running Time Comparison of AKR, Greedy and ÇDK-Kruskal 

Algorithms on Random Graph with Probability of Edge Existance 0.9 
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5.3 Experiment 3 

In this experiment, we test the algorithms on a real-world geometric graph. 

 We have obtained our data from the National TSP Collection website [19]. 

In this website, there exist TSP data of 25 different countries. Among 

these countries, we have chosen Uruguay that has 734 cities. We would 

like to note that the results that we have derived from several other 

countries are similar to the one we present here. So, we have decided that 

it is sufficient to give results for a single country. 

 We created a geometric graph in the usual sense. First, we calculated the 

maximum distance between any two cities. Then, we multiply the 

maximum distance with 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0. If the distance 

between two cities is less than the result of this multiplication, we include 

the edge into the graph. Note that for multiplication with    , we have a 

complete graph.  

 The data that we get from the website is fractional, but here while creating 

the graph, we round them to the nearest whole number. 

We see from the results that our algorithm ÇDK-Kruskal has a very good running 

time compared to AKR albeit they have almost identical costs. Also ÇDK-Kruskal and 

AKR give better cost results than Greedy Heuristic. 

The reason of high running time of AKR is the same as the reason we have 

mentioned in Experiment 1: the edge weights span a wide interval in real-world 

geometric graphs. In general, we see that ÇDK-Kruskal is a very good alternative to 

AKR in real-world geometric graphs since it gives comparable solution costs, but its 

running time is much better. 
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Figure 5.3.1: The Map of Uruguay [20] 

 

 

Figure 5.3.2: The Point Set of Uruguay [21] 
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Table 5.3.1: Results of Cost and Running Time of Three Algorithms on TSP-Uruguay 

Graph with Edge Weights less than 0,1 times maximum distances 

k 

The biggest weight x 0.1 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 3525 3525 3525 286 72 2302 

3 6387 7309 7309 31 51 4081 

5 7065 6710 6710 38 85 1756 

10 15520 14632 14632 71 167 6035 

20 20360 17729 17729 101 292 3677 

30 25529 21116 21116 135 474 3300 

40 31431 25409 25409 196 718 3420 

50 34753 27183 27183 217 635 5219 

 

 

Figure 5.3.3: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP 

Uruguay Graph with edge weights which are smaller than the biggest distance x     

 

 

Figure 5.3.4: Running Time Comparison of the three Algorithms on TSP Uruguay 

Graph with edge weights which are smaller than the biggest distance x     
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Table 5.3.2: Results of Cost and Running Time of Three Algorithms on TSP-Uruguay 

Graph with Edge Weights less than 0,2 times maximum distances 

k 

The biggest weight x 0.2 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 6687 6845 6845 44 99 27969 

3 4932 4973 4973 61 172 10533 

5 8219 6897 6897 86 263 11889 

10 14913 11964 11964 164 585 22107 

20 20798 16641 16641 308 1092 26068 

30 25405 19186 19186 443 1685 14505 

40 34036 26815 26815 602 2259 24731 

50 34858 27091 27091 784 2970 27661 

 

 

Figure 5.3.5: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP 

Uruguay Graph with edge weights which are smaller than the biggest distance x     

 

 

Figure 5.3.6: Running Time Comparison of the three Algorithms on TSP Uruguay 

Graph with edge weights which are smaller than the biggest distance x     
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Table 5.3.3: Results of Cost and Running Time of Three Algorithms on TSP-Uruguay 

Graph with Edge Weights less than 0,4 times maximum distances 

k 

The biggest weight x 0.4 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 4876 5410 5410 66 159 155856 

3 6185 6283 6467 107 310 90351 

5 7745 6748 6748 173 535 147420 

10 13681 11756 11756 250 915 67835 

20 19037 16151 16151 684 2515 78827 

30 27353 22401 22401 643 2159 88209 

40 33068 24000 24000 1520 3652 49592 

50 35003 26569 26569 1359 4681 84602 

 

 

Figure 5.3.4: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP 

Uruguay Graph with edge weights which are smaller than the biggest distance x     

 

 

Figure 5.3.8: Running Time Comparison of the three Algorithms on TSP Uruguay 

Graph with edge weights which are smaller than the biggest distance x     
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Table 5.3.4: Results of Cost and Running Time of Three Algorithms on TSP-Uruguay 

Graph with Edge Weights less than 0,6 times maximum distances 

k 

The biggest weight x 0.6 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 1651 1707 1707 99 253 2405 

3 5153 5124 5124 206 693 56888 

5 7739 7286 7286 259 892 170808 

10 15296 11857 11857 612 2284 69025 

20 22411 17693 17693 655 2137 124553 

30 27970 19848 19848 1294 5163 80048 

40 29842 22701 22701 2765 9873 116657 

50 35897 26800 26800 3344 12775 110849 

 

 

Figure 5.3.9: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP 

Uruguay Graph with edge weights which are smaller than the biggest distance x     

 

 

Figure 5.3.10: Running Time Comparison of the three Algorithms on TSP Uruguay 

Graph with edge weights which are smaller than the biggest distance x     
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Table 5.3.5: Results of Cost and Running Time of Three Algorithms on TSP-Uruguay 

Graph with Edge Weights less than 0,8 times maximum distances 

k 

The biggest weight x 0.8 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 4140 4487 4487 101 286 98610 

3 5305 5879 4936 245 839 61061 

5 9323 8414 8414 169 612 268368 

10 16664 13736 13736 657 2476 210610 

20 22708 18032 17638 1219 4511 238231 

30 27719 21100 21100 1767 6802 166786 

40 38726 26709 26709 2443 7611 140340 

50 37633 25992 26027 2717 9969 133018 

 

 

Figure 5.3.11: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP 

Uruguay Graph with edge weights which are smaller than the biggest distance x     

 

 

Figure 5.3.12: Running Time Comparison of the three Algorithms on TSP Uruguay 

Graph with edge weights which are smaller than the biggest distance x     
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Table 5.3.6: Results of Cost and Running Time of Three Algorithms on TSP-Uruguay 

Graph with Edge Weights less than 1,0 times maximum distances 

k 

The biggest weight x 1.0 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 2489 3205 3205 141 447 47499 

3 6248 5875 5875 151 462 159850 

5 10608 10750 10750 240 867 205106 

10 15976 14331 14331 553 2143 124357 

20 22304 18269 18269 1310 4917 113558 

30 29026 22790 22790 1364 4806 142498 

40 33763 23600 23600 2892 6681 125293 

50 40540 26979 26979 2944 9480 120993 

 

 

Figure 5.3.13: Cost Comparison of AKR, Greedy and ÇDK-Kruskal Algorithms on TSP 

Uruguay Graph with edge weights which are smaller than the biggest distance x     

 

 

Figure 5.3.14: Running Time Comparison of the three Algorithms on TSP Uruguay 

Graph with edge weights which are smaller than the biggest distance x     
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5.4 Experiment 4 

In this experiment, we test the algorithms on a random geometric graph. 

 We form a graph with 1000 nodes. 

 We determine by selecting from the interval 0-1000 x and y coordinates of 

a node which the graph will include.  

 The distance between two nodes is specified by their Euclidean distance. 

 To determine whether an edge exist between two nodes, first we calculate 

the maximum distance between all the nodes in the graph. Then, we 

multiply the maximum distance with 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0. If the 

distance of two nodes is less than the result of this multiplication, we 

include the edge into the graph.  

The result of this section are very similar to those of previous section except the 

fact that for the multiplication factor 1 (where we have a complete graph), the running 

time of AKR gets closer to ÇDK-Kruskal. Overall, ÇDK-Kruskal turns out to be a very 

good alternative to AKR especially on sparse random geometric graphs and real-world 

geometric graphs.  
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Table 5.4.1: Results of Cost and Running Time of Three Algorithms on Geometric 

Random Graph with Edge Weights less than 0,1 times maximum distances 

k 

The biggest weight x 0.1 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 1078 1099 1099 184 61 2924 

3 1690 1611 1611 60 105 1589 

5 1939 1624 1624 75 165 1764 

10 3169 2730 2730 112 328 1335 

20 5078 4217 4217 204 633 1795 

30 6386 5379 5379 296 745 2076 

40 7815 6086 6086 375 703 3007 

50 8200 6639 6639 443 1493 1969 

 

 

Figure 5.4.1: Cost Comparison of the three Algorithms on Geometric Random Graph 

with edge weights which are smaller than the biggest distance x     

 

 

Figure 5.4.2: Running Time Comparison of the three Algorithms on Geometric Random 

Graph with edge weights which are smaller than the biggest distance x     
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Table 5.4.2: Results of Cost and Running Time of Three Algorithms on Geometric 

Random Graph with Edge Weights less than 0,2 times maximum distances 

k 

The biggest weight x 0.2 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 1068 1147 1147 90 212 11014 

3 1848 1848 1848 126 354 18951 

5 2073 1828 1828 187 541 12366 

10 3053 2568 2568 332 1184 8221 

20 5692 4215 4215 404 1376 11204 

30 6753 5269 5269 941 1789 12350 

40 7470 5930 5930 1274 3422 7805 

50 9078 6655 6655 1525 3807 8323 

 

 

Figure 5.4.3: Cost Comparison of the three Algorithms on Geometric Random Graph 

with edge weights which are smaller than the biggest distance x     

 

 

Figure 5.4.4: Running Time Comparison of the three Algorithms on Geometric Random 

Graph with edge weights which are smaller than the biggest distance x     
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Table 5.4.3: Results of Cost and Running Time of Three Algorithms on Geometric 

Random Graph with Edge Weights less than 0,4 times maximum distances 

k 

The biggest weight x 0.4 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 1100 1100 1100 145 376 25464 

3 1241 1251 1251 154 509 32494 

5 1940 2013 1946 291 899 66867 

10 3865 3244 3183 732 2912 41165 

20 4694 4017 4017 893 2694 26140 

30 6889 5134 5134 2019 3941 24370 

40 7808 6101 6101 1546 6423 21898 

50 8558 6257 6257 2745 10181 28652 

 

 

Figure 5.4.5: Cost Comparison of the three Algorithms on Geometric Random Graph 

with edge weights which are smaller than the biggest distance x     

 

 

Figure 5.4.6: Running Time Comparison of the three Algorithms on Geometric Random 

Graph with edge weights which are smaller than the biggest distance x     
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Table 5.4.4: Results of Cost and Running Time of Three Algorithms on Geometric 

Random Graph with Edge Weights less than 0,6 times maximum distances 

k 

The biggest weight x 0.6 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 1199 1225 1225 176 503 113857 

3 1803 1466 1466 252 848 36524 

5 2269 2156 2156 508 1278 73105 

10 3455 2727 2727 946 3803 91906 

20 5397 4003 4003 1439 5440 63906 

30 6970 5342 5342 2216 9040 32943 

40 7884 5993 5993 3029 9141 31322 

50 8259 6157 6157 3863 14517 82427 

 

 

Figure 5.4.7: Cost Comparison of the three Algorithms on Geometric Random Graph 

with edge weights which are smaller than the biggest distance x     

 

 

Figure 5.4.8: Running Time Comparison of the three Algorithms on Geometric Random 

Graph with edge weights which are smaller than the biggest distance x     
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Table 5.4.5: Results of Cost and Running Time of Three Algorithms on Geometric 

Random Graph with Edge Weights less than 0,8 times maximum distances 

k 

The biggest weight x 0.8 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 262 262 262 208 514 1732 

3 1722 1695 1695 288 910 65194 

5 2424 2376 2376 496 1766 143164 

10 3299 3054 3054 991 4024 83026 

20 5330 4374 4374 1620 6625 38187 

30 6296 5145 5155 2226 8600 55763 

40 7653 5956 5956 4594 13307 35233 

50 8597 6313 6313 4448 12292 49798 

 

 

Figure 5.4.9: Cost Comparison of the three Algorithms on Geometric Random Graph 

with edge weights which are smaller than the biggest distance x     

 

 

Figure 5.4.10: Running Time Comparison of the three Algorithms on Geometric 

Random Graph with edge weights which are smaller than the biggest distance x     
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Table 5.4.6: Results of Cost and Running Time of Three Algorithms on Geometric 

Random Graph with Edge Weights less than 1,0 times maximum distances 

k 

The biggest weight x 1.0 

COST RUNNING TIME(ms) 

Greedy Heuristic ÇDK-Kruskal AKR Greedy Heuristic ÇDK-Kruskal AKR 

2 1134 1412 1412 265 805 54279 

3 2105 2153 2153 306 1084 174682 

5 3012 2840 2840 607 2139 127667 

10 3366 2978 2978 849 3233 66796 

20 5082 4298 4298 1712 6174 48771 

30 6225 4711 4711 2708 8953 59389 

40 8366 6326 6326 4132 14385 52029 

50 8797 6743 6743 4060 15759 29929 

 

 

Figure 5.4.11: Cost Comparison of the three Algorithms on Geometric Random Graph 

with edge weights which are smaller than the biggest distance x     

 

 

Figure 5.4.12: Running Time Comparison of the three Algorithms on Geometric 

Random Graph with edge weights which are smaller than the biggest distance x    
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