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ABSTRACT

Many works have been carried out for the study on deadlock prevention (liveness-enforcing)
in flexible manufacturing systems (FMS). Petri nets have been used as a tool to enforce
liveness in FMS so as to make deadlocks impossible to occur. Behavioral permissiveness,
computational complexity and structural complexity are three criteria to evaluate the
performance of a liveness-enforcing Petri net supervisor for FMSs. The reduction of
structural complexity involves the reduction of the number of control places (monitors) in
liveness-enforcing supervisors. Currently there are some important results in the literature to
solve this problem. However, to obtain structurally simple monitors, one has to pay a high
computational price. In this study a new method is proposed for obtaining structurally simple
monitors with a reasonable computational effort via establishing linear relationships that
exist between the place invariants. Structurally simple monitors obtained by the method
proposed here provide optimal or near optimal behavioral permissiveness. The applicability
of the proposed approach is shown by means of several examples for different classes of Petri

nets.

Keywords: Merged place invariants, Deadlock, flexible manufacturing systems (FMS), Petri
nets.



ESNEK URETIM SISTEMLERINDE CANLILIK SAGLAYICI
GOZETICILERIN YAPISAL KARMASIKLIGININ
AZALTILMASI UZERINE BiR CALISMA

Muhammad BASHIR

Yuksek Lisans Tezi — Elektrik ve Bilgisayar Miithendisligi
Haziran 2014

Tez Danismani: Prof. Dr. Murat UZAM
Oz

Esnek dretim sistemlerinde (Flexible Manufacturing Systems — FMS) kordigimiin
onlenmesi (canlilik-yiiriirliige koymak) amaciyla su ana kadar pek ¢ok c¢alisma yapilmistir.
Petri aglar1 FMS’te kordiigiim olusumlarini imkansiz hale getirmek i¢in canlilik saglamak
Uzere kullanilan bir aragtir. FMS’lerde canlilik-saglayan bir Petri net denetg¢isinin
performansmi degerlendirmek ic¢in kullanilan {i¢ kriter davranissal serbestlik, hesaplama
karmasikligi ve yapisal karmasikliktir. Yapisal karmasikligi azaltma, canlilik-uygulayici
denetgilerdeki kontrol mevkilerinin (monitdrlerin) sayisinin azaltilmasini igerir. Su anda bu
sorunu ¢ozmek icin literatiirde bazi dnemli sonuglar vardir. Ancak, yapisal olarak basit
monitorler elde etmek icin yuksek hesaplama bedeli 6demek zorunludur. Mevki degismezleri
arasinda dogrusal iliskiler kurulmasi yoluyla makul bir hesaplama cabasiyla yapisal olarak
basit monitorler elde etmek i¢in bu calismada yeni bir yontem Onerilmistir. Burada 6nerilen
yontem ile elde edilen yapisal olarak basit monitorler, optimum veya optimuma yakin
davranig serbestligi saglarlar. Onerilen yaklagimin farkli Petri ag1 siniflarina uygulanabilirligi

cesitli 6rneklerle gdsterilmistir.

Anahtar Kelimeler: Birlestirilmis mevki degismezleri, Kordiigiim, Esnek iiretim sistemleri,
Petri aglar1.
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CHAPTER 1

INTRODUCTION

In today’s world, the economic situation of a country depends on the diversified
products contributed to the world market, which is due to revolution of modern industry. For
a particular country to involve a transaction with the modern world market, different kinds
of diversified products could be contributed to compete with other countries. This can be
achieved by replacing an old style fixed hardware sequential system with flexible
manufacturing systems (FMSs) which can easily make change to the product design by

configuring a supervisory controller [10].

An FMS usually consists of two main parts; a physical system which includes resources
(such as machines, robots and a transportation system) shared by several jobs. A management
system or decision making system responsible for the control of the physical system to

achieve their goal of productivity and works-in-process level [10].

1.1 AIMS AND SCOPE OF FLEXIBLE MANUFACTURING SYSTEMS (FMSS)

Flexible manufacturing has been introduced primarily to achieve some certain
objectives. These objectives include: decreasing the lead time (i.e. Speed-up the production),
increased machined utilization, improved reliability of the system, increased quality of the
product, increased profitable investment and reduced damage of the product by the systems.
However, due to the high utilization of resources in the flexible manufacturing system results
in the high competition of resources for different jobs. These competition causes the causes

the occurrence of deadlock which might upset the advantages of FMSs [10]



1.2 CONDITION FOR DEADLOCK TO OCCUR

Deadlock is an important issue to be considered in design and control of flexible
manufacturing systems, since their occurrence causes a lot of damage to the system or might
halt the whole system from the operation [5]. In general, Coffman have formulated four
necessary conditions for a deadlock occurrence, which are popularly known as Coffman
conditions [3], [6], [12]:

1) Mutual exclusion condition: a resource can only be used by one process at a time.

2) Hold and wait condition: processes that use some resources may need another new
resource.

3) Non-preemption condition: it is not feasible to remove a resource that is held by a
particular process, but a process can only release a resource by an explicit action of that
process.

4) Circular-wait-condition: when two or more processes form a circular chain where each

process waits for a resources that the next process in the chain holds.

1.3 TOOLSUSED TO DEAL WITH DEADLOCK

Many tools have been developed to deal with deadlocks in FMSs [2], [4], [6], [24].
Petri nets, automata and graph theory are the three main tools. In this study we are concerned
with Petri net based tools. Petri nets become most essential tools for the study of deadlocks
in an FMS. This is due to the fact that they possesses FMS characteristics such as conflicts,
concurrency, and casual dependency [8], [28]. Petri nets are widely used in so many areas
such as computer and communication networks, manufacturing systems, and automation
systems [4], [5]. Generally there are four Petri net based strategies to handle deadlocks in
automated manufacturing systems [6], [12], [19], [26], [28]:
1) Deadlock ignoring,
2) Deadlock detection and recovery,
3) Deadlock avoidance,

4) Deadlock prevention.



Deadlock ignoring: in this case, the occurrence of deadlock is ignored due to the
negligible amount of probability of their occurrence. Deadlock detection and recovery allows
the occurrence of deadlocks, but as soon as the system detects the occurrence of that deadlock
the system can be recovered back to its normal position by simply reallocating the resources
[6], [11], [14]. Deadlock avoidance determines the possible system evolution at each system
state using an online control policy and chooses the correct system evolution [1], [6], [23].
Deadlock prevention is usually achieved by using an off-line computational mechanism to
control the request for resources to ensure that deadlocks never occur. Monitors (control
places) and related arcs are added to the Petri net model of the system to realize such a control
mechanism [2], [3], [5], [6], [11], [28].

Deadlock prevention policies are widely used due to their advantages that the
computational mechanism is obtained off-line and once and for all, i.e. deadlocks are totally
eliminated. Once deadlocks are eliminated, the system can never enter a deadlock state.

1.4 PERFORMANCE EVALUATION FOR DEADLOCK CONTROL POLICY

The performance for deadlock prevention is evaluated based on the following criteria
[5]:
1) Behavioral permissiveness,
2) Structural complexity,

3) Computational complexity.

A maximally permissive supervisor usually leads to sufficient usage of system
resources [4], [5], [6]. A supervisor with the minimal number of control places can decrease
both hardware and software cost in the stage of validation and implementation [24]. A
deadlock control policy with low computational complexity means that it can be applied to

complex systems [6], [7].



1.5 PETRI NET BASED DEADLOCK ANALYSIS TECHNIQUES

There are mainly two PN based analysis techniques used for the study of deadlocks:
[51, [7], [201, [24], [27], [28]:
1 Structural analysis,
2 Reachability graph analysis.

In the structural analysis, Petri net components, namely siphons and resource
transition circuits, are used. Their computation would usually lead to suboptimal behavior of
FMS, but the control policy is simple. To prevent siphons from being insufficiently marked,
some control places and related arcs are added to their places within the siphons [6], [11],
[18]. The number of siphons grows exponentially with the size of the net. In [11] and [12],
elementary siphons based approaches were proposed to reduce the number of siphons
growing within the complex FMS. However that concept does not provide a maximally
permissive behavior. In [14] another concept of avoiding the complete enumeration of
siphons was developed, which is an improved method due to the reduced time computation.
In [15] another concept was developed for selective siphons control. The relations between
uncontrolled siphons and critical markings are identified and a set of siphons is selected by
solving a set covering approach for each iteration, the method provide a maximally

permissive behavior of Petri net modeled. But it suffer from computational complexity.

The reachability graph (RG) analysis enables one to check certain properties of
flexible manufacturing systems (FMS), i.e., liveness, boundedness, synchronization,
concurrency and safeness [13], [25]. On the other hand, the RG analysis requires the
evaluation of a complete or partial enumeration of reachable states. Therefore, it suffers from
the state explosion problem. The theory of regions was developed in [20] as one of the
powerful methods of deadlock prevention for deriving a maximally permissive supervisor.
However, it is computationally expensive by considering too many inequality constraints
[25]. In [21] another policy was developed, which divides the reachability graph into two
parts as a live zone (LZ) and a deadlock zone (DZ). The idea is to find the first met bad
marking (FBM) from the LZ. However the method is an iterative procedure in which at each
iteration an FBM is controlled by adding a control place. The iterations are repeated until the

Petri net model is live. The method does not guarantee maximally permissive behavior. In



[24] a RG based method that leads to a maximally permissive liveness supervisor was
proposed, where a control place is designed to forbid an FBM, it keeps all legal markings by
solving very complex integer linear programming problems (ILPP). Since the method is very
complex, a vector covering approach is developed to reduce the sets of legal markings and
FBMs by partitioning them into two sets: a minimal covering set of legal markings and a
minimal covered set of FBMs. The two sets are the ones considered for designing a
supervisor. However, the method suffers from structural complexity problems. The method
was later improved by finding the minimal number of control places in [3].

Currently, one of the available methods to reduce the structural complexity of a live
Petri net model in the literature was developed in [36]. The method is an iterative procedure
aiming to overcome the structural complexity and to ensure that the live Petri net model has
a maximally permissive behavior if it exist. The method utilized the used of reachability
graph analysis. A vector covering approach is used to compute the minimal covering set of
legal markings and the minimal covered set of FBMs. Then, at each iteration a control place
is design to reduce as many FBMs as possible. The co-efficients of the Pl are computed
using integer linear programming problem (ILPP) that ensured the two conditions stated as
(1) no marking in the minimal covering set of legal marking are prohibited. (ii) the objectives

functions maximizes the number of FBMs that are forbidden by the PI.

In [35], another method was developed for merging two or more siphons for reducing
the structural complexity of a live Petri net model. It provide a maximally permissive
behavior without using reachability graph or solving integer linear programming problem
(ILPP), whereas it relied on the concepts of siphon based control. The method proposed that
two or more siphons can be merged if their forbidden sets of makings can be enforced by the
same linear invariant constraint. The method is an iterative procedure and it utilized the used
of solving first-order equations with the following conditions to be satisfied: (i) a siphon
may have a number of FMs. Only one is selected so as to make others forbidden. For this
selected marking, the linear constraint is set to a constant k to become a linear-first order
equation. (ii) a siphon may have a number of live markings. Only one is selected so as to
make others not forbidden either. For this selected marking, the linear constraint is set to a

constant k—1 to become a linear first-order equation.



In this study, a new method is proposed to reduce the structural complexity in PN based
liveness-enforcing supervisors of FMS. The proposed method is structurally and
computationally simple and can be applied to complex FMSs modelled with different classes
of Petri nets. Some examples are provided to show the significance for the proposed method.
The proposed method makes use of the reachability graph analysis. The major contribution

of this study is to reduce structural complexity of live Petri net model.

The remainder of this thesis is organized as follows. Some basic concepts of Petri nets
are provided in chapter 2. In order to reduce the structural complexity of a given liveness-
enforcing supervisor an algorithm is proposed in chapter 3. Applications of the proposed
method to three S*PR Petri net models are provided in chapter 4. Applications of the proposed
method to some other Petri net classes such as S*PR, G-system, S*R are also considered in
chapter 5. Finally conclusions are given in chapter 6.



CHAPTER 2

BASICS OF PETRI NETS

2.1 DEFINITION OF PETRI NETS

A Petri net N is a four-tuple (P,T,F,W) where P and T are finite and non-empty sets. P
is a set of places and T is a set of transitions with PUT #¢ and PNT =¢.
Fc(PxT)u(T xP) is called a flow relation of the net, represented by arcs with arrows

from places to transitions or from transitions to places. Places are represented by circles while

transitions are represented by bars or square boxes. W : (PxT) U (T x P) —N is a mapping
that assigns a weight to an arc: W(x,y) >0 if (x,y) e F, and W(X, y) =0, otherwise, where
X,y € PUT and N is the set of non-negative integers. N=(P,T,F,W) is called an ordinary

net, denoted as N=(P,T,F), if Vf e F,W(f) =1.

—
pzé\&%/ b

p1(®) p36‘\&/6 p6 é)p8
p4<‘>\8>/ <5 .

t4

Fig. 2.1. A Petri net example.



Example 2.1

In Fig. 2.1, we can define the net as,
P:{p1’ pZ"“’pll}
T ={t1,t2,---,t8}
F :{(pl’tl)!(tll pz)’(pz’tz),(tz! p3),---,(t5, pll)}
VpeP,VteT, W(p,t)<1 or W(t, p)<1.

The places in a Petri net model of an FMS, as the one shown in Fig. 2.1, can be
partitioned into three parts namely process idle places (P°), activity places (P,) and
resource places (P;). In Fig. 2.1, we have P°={p,,p,}, P.={p,, ps,---, p,} and

PR :{pga Pios pll}'

2.1.1 Definition 1: Preset and Postset

Let xe PUT beanodein N =(P,T,F,W). The preset of x, denoted by "X, is defined
as ‘x={yePuUTI/(y,x)eF} and the postset of x, denoted by x-, is defined as

x"={y e PUT/(x,y) € F}. Generally, for a set of node X, we have

'X=U'x and X'=Ux'

xeX xeX

Thatis,
it X ={X, Xy, X5, Xy, Xg, Xg, .-, X, } then,
X=X UK, U UK
Xl — . i H — "
U x; and can also be writtenas x U
ie{1,2,---,n} Xex
Example 2.2

In Fig. 2.1, we can compute the Preset and Postset of some transitions and places as follows:

ltlz{pppg}’ P, :{t1}1 t, :{pZ’plo}’ Ps :{tz}
t1'={p2}, P, :{t2}7 t; :{ps’pg}’ Ps :{t3}



2.1.2 Definition 2: Marking

A marking (m) of a Petri net N = (P, T, F,w) is a mapping from P to N where N =
{0,1,2, --}, and m is a vector of a dimension (1x n) where n is the size of places in the net.

Using Fig. 2.1, by redefining Petri net as a marked net or net system with (N,m), where

N =(N,T,F,W).

2.1.3 Definition 3: Enabled Transition

Let t T be a transition in N = (P, T, F,w) at a marking m. Transition { is said to
be enabled if Vpe't,m(p) >=W(p,t).

Example 2.3

In Fig. 2.2(a), according to Definition 3, t is not enabled as condition three is not
satisfied.

.tl ={ps, P2, P3}

m(p1)=1 W(p;,t) =1 m(p;) 2W(p;,t))
m(p,) =2 W(p,,t)=2 m(p,) =W (p,.t,)
m(p;) =2 W(p; ;) =3 m(p;g) <W(ps,t)

It is clear that m(p,) and m(p,) satisfy but m(p,) does not satisfy the enabling
condition. Hence t, is not enabled in Fig. 2.2(a).

pl p2 p3 o1 p2 p3
Q, @ Q, o 0
42 3 +2 3
t1 tl
o O
(@ (b)

Fig. 2.2. A Petri net model (a) t, is not enabled, (b) t, isenabled.
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By considering Fig. 2.2(b), according to the Definition 3,

't :{pl’ P, ps}

m(p1)=2 W(p1't1):1 m(pl)ZW(pUtl)
m(pz):?’ W(pZ’tl):Z m(pz)zw(pz’tl)
m(ps):4 W(pB’t1)=3 m(ps)ZW(psytl)

m(p,), m(p,) and m(p,) all satisfy the enabling condition and thus t, is enabled.

2.1.4  Definition 4: Firing rule

An enabled tcan fire, leading to a new marking m', ie, VpeP,

m'(p) =m(p)+W(t, p) -W(p,t). In Fig. 2.3, m(p,)=c,, m(p,)=c, and m(p,)=d.
Transition t is enabled when ¢, >a and c, >a,. Then according to the Definition 4,

m'(p,)=c,-a, m(p,)=c,-a, andm'(p,)=d+b,. The reachability set of

(N, m,), denoted as R(N,m,), is the set of reachable markings from the initial marking m,.

Note that in order to represent the number of tokens in a place the symbol "z is also used

widely. For example m(p,) represents the number of tokens in place p,. Instead, the same

is also represented by ;.
pl
@z
\Etl " G
@
Fig. 2.3. A generalized Petri net.

2.1.5 Definition 5: Boundedness
A place p € Pissaid tobe bounded if ¥Ym e R(N,m,), 3k N (k = 0), m(p) <k.
A Petri net is said to be k-bounded if the number of tokens in each place does not exceed a

finite number ‘k’ at every reachable marking.
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(@) (b)
Fig. 2.4 (a) Bounded net example and (b) Unbounded net example.

Fig 2.4(a) shows a typical example of bounded net in which the number of tokens in
circulation are constantly maintained. In Fig. 2.4(b), the reachability graph the of net keeps
expanding and it can never be terminated. Hence we can conclude that it is unbounded.

2.1.6  Definition 6: Safeness

A place p € P issaid tobesafe if vme R(N,m,), m(p)<1. A Petri net is said to be

safe if all of its places are safe. A place ‘p’ is safe if it contains no more than one token.

2.1.7 Definition 7: Liveness

Let teT be a transition in (N,m,). Transition t is said to be live
if YmeR(N,m,),3m"e R(N, m,), such that m’[t >. (N,m,) is live if VteT,t is live. A

transition is said to be live if for all markings of the Petri net there is a firing sequence, which

takes the net to a marking, in which the transition is enabled.

2.1.8 Definition 8: Deadlock

N is dead under M, iff 2t T, Mo[t> holds. t is not enabled. A deadlock is usually

an undesirable condition that when occurring, it blocks the whole or a part of the running
processes. It might also cause a catastrophic result such as long downtime and low utilization
of resources. Another idea is deadlocks-freeness, in which some transitions are firable while

some are totally dead. Fig. 2.5 shows all these three cases.
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2.2 MATHEMATICAL TREATMENT OF PETRI NET USING LINEAR
ALGEBRA

2.2.1 Definition 9: Incidence matrix
Let N=(P,T,F,W) be a net system. Its incidence matrix, denoted by [N], is the
matrix of size |P|x[T| with [N](p,t) =W(tp)-W(p,t), where |P| is the cardinality of
P and |T| is the cardinality of T. However [N]can be divided into two matrices as
[N]=[NJ" —[N]",
where [N]" is the integer matrix of directed inputs arcs.

[N] s the integer matrix of directed outputs arcs.

m@ p%}g \(I%ps ok

1] [

t2

p3
13
t4 @ t4 t3
tl 2 t2 tl
) ()
@ (b) (©
Mo=P1+pPs+p5 Mo=Ps+Ps, Ms=Pa+Ps Mo=pP1
M1=pP2+pPa M1=p1+pPs, Me=pP1+p2 M1=pP3
M2=pP1+pP3 M2=pP3+pPs, M7=pP3+pP4 M2=p2

M4s=pP1+Ps3

Fig. 2.5. (a) a live Petri net, (b) Deadlock in a Petri net system and (c) A deadlock free Perti
net (live locked Petri net).
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The incidence matrix of the Petri net shown in Fig. 2.5(b) is as follows.

_tl t2 t3 t4 t5 t6_ _tl t2 t3 t4 t5 t6_
1000 0 0]p, 01000 0]p,
01000 0|p, 00100 0|p,
000100 000010
[N - LI - >
00001 0|p, 00000 1|p,
00101 0|p 01010 0|p
0100 0 1]p, 1000 1 0p,
_tl t2 t3 t4 t5 t6_
1 210 0 0 0lp
0 1 -1 0 0 0lp,
0 0 0 1 -1 0
Hence, [N]=[N]* =[N]" = Ps
0 0 0 0 1 -1i|p,
0 -1 1 -1 1 o0]lp,
11 0 0 -1 1]p,

Due to the flexibility of Petri nets as a mathematical tool, it is possible to develop a

software package to simulate the behavior of an FMS.

2.2.2 Definition 10: Firing sequence

Let o be a transition sequence. Then the parikh vector of o, denoted by &, is given as
¢ = [#o(t,) #o(t,), -~ #o(t,)], and [T|=n,where #o () denotes the number of
appearances in the sequence o .

Pr P, P; Py Ps psT. Hence, the

By considering the net system shown in Fig. 5(b), =0 0110 0
;=

firing sequence and parikh vector corresponding to that marking are given as o =t,t.t, and

t, t; t, t

> t t . . .
o= [b 30 42 51 6]. The advantage of parikh vector is that any marking can be found

given an incidence matrix and the initial marking as

m=m,+[N].d (2.1)
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By considering Fig. 5(b), we can prove Eq. (2.1) by using the incidence matrix and the initial

marking are given as

_tl t2 t3 t4 t5 t6 -
1 -1 0 0 0 0lp,
0 1 -1 0 0 o0]lp,
_ P P2 Ps Py Ps P
IN] = 8 g 8 g.) 11 _01 Ej and moz[Ol 02 03 04 15 1]T6
0 -1 1 -1 1 o0]lp,
-1 1 0 0 -1 1]p,

To find the new marking m, using ¢ =[0 0 0 2 1 Of,we have

0] [1 -1 0 0o o o]fo] [0] [07] [o

o/ o 1 -1 0 0 offo] |of |0] |oO

ol o o 0o 1 -1 ofo| o] |1] |1
m,=| [+ = |+ =

o/ [0 0o 0o 0 1 -1f[2] |0 |1] |2

1 o -1 1 -1 1 ofl1] |1 [-1| |o

1] |-1 1 0o o -1 o]lo] (1] |-1] |oO]

m,=[0 0 1 1 0 O]. Hence, we prove it as given above.

2.2.3 Definition 11: Place invariant

A P-vector is a column vector L: P —Z, denoted by P. ¥p € P, L(p) €Z and a P-vector

L is a place invariant if L #0and L'[N]=0", where Z={...,-2,-1,0, 1,2, ... }. The major
advantage of a place invariant (PI) is to keep the capacity of tokens to be in circulation within

it. In Fig. 2.1, the Pls and their supports are,

TS L,=(0 0011000001

||L2||:{p3’p61p10} L,

”Ls”:{pz’pwpg} I—3
||L4||={p1’p21p3'p4} L4:(1 1110000000

00100100010

)
01000010100
)
)

L] = €Ps. Pos Py Pe} =0 0001111000
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2.2.4 Definition 12: T-invariant

A T-vector is a column vector H:T —7Z, denoted by T. VteT, H(tf)eZ and a T-
vector H is the transition invariant if [N]JH =0 and H = 0. By considering a T-vector, its

advantage is to return to the initial marking from a certain marking. In Fig. 2.1, the T-vectors

are:

iy
iy

N
N

w
w

o
(93]

(2]
(2]

~
~

P - Pk P O O O O
R s el

— e~ ~ ~+ e~ e~ ~ -
© N

QD

>

o

T

N

Il

o oo o Bk Bk

oo

However, since [N]H =0,H = o . By considering the equation above, we have
m=m, +[N]H where H o

Hence, m=m,
2.2.5 Definition 13: Siphons

Let S < P be anon-empty set of places. S is called a siphon if *S < S*, where

s=Jp and s=Jp

pes pes

A siphons is a set of places, which remains permanently unmarked once the all tokens
are lost. When this occurs, the transitions associated with the siphon are permanently
disabled. For this reason siphons are extensively studied in the literature [15]. Siphons play
a very important role in deadlock prevention due to their feature related to a deadlock. All
existing Pl satisfy the definition of siphons but there are marked siphons. By considering the
net in Fig. 2.1, let us check whether S,,S, and S, are siphons or not.

S; ={P4: P7 Pss Pro P}

Sz :{p4v Ps, Py, p11}
Ss ={|O4, Pz Py, p11}
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We have

'S, =Py VP Y P U P L Py ={t s bt )
Sll = p4. o p7. o pg. o plO. o p11. ={tl’t2’t3’t4’t5't6’t7’t8}

Therefore 'S, < S," and S, isasiphon.

lsz =P, Y P Y Py Y Py :{tS’t4’t6’t7}
Szl = p4. o pa. % plO. % p11. :{tz’ta’tmts’te’t7}

Therefore °S, = S,"and S, is a siphon.

Sy =P,V PV IP U Py ={t bt )
Sy =p, VP, U Upy =ttt gt}

Therefore 'S, ¢ S;° and S, is nota siphon.

However, an emptied siphon is the one that cause deadlocks (dead transitions). For that
reason siphons are classified into minimal siphons and strict minimal siphons. A siphon is
said to be minimal if there does not exist a siphon contained in it as a proper subset. While a
siphon is said to be strict minimal if it is minimal and does not contain a marked trap. A strict
minimal siphon is denoted as SMS for short [7]. However, among the strict minimal siphons
they are still divided into essential siphons and dominated siphons. Hence only essential
siphons get emptied and need to be controlled to avoid deadlock occurrence. To control
siphons, a complementary set of a siphon is evaluated, which stands as place invariant for

that siphon.

A complementary sets of emptiable siphon is defined as a set of places (set of places
that steal tokens from the siphon) that when added to the structure of emptiable siphon, it
completes the number of place invariants formed by that emptiable siphon. The
complementary sets of emptiable siphons are used as place invariants to control the emptiable

siphons from losing all its tokens. Hence it prevents the siphon from being unmarked.
Example:

To illustrate the structure of emptied siphons and to show the computation of their
complementary sets, the Petri net model shown in Fig. 2.6 is considered. This model has six

siphons three of which can be unmarked. As shown in Fig. 2.7, the emptiable siphons are
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Sl :{p31 pe: p7: p81 p9}1 SZ :{pa’ p5’ pg; pg} and SS :{p2’ pe’ p7’ p8} Wlth the”,
corresponding complementary  sets  [S,1={p,, P,,P., Ps}, [S,1={p,.p,} and

[S.1={p,, P}, respectively.

Fig. 2.6. A Petri net example.
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O O O place in a siphon
p7 place in the complementary
p1 p6 set of a siphon
t7 v Y

: é\@/&s : é\@/&s
6\@4 : psé\@"é :

(a) (b)

Fig. 2.7 (a) Siphon S, and its complementary set [S,]. (b) Siphon S, and its complementary
set[S,]. (c) Siphon S, and its complementary set [S,].

2.2.6 Definition 14: Control Depth Variable

The controlled depth variable is defined as the least number of tokens that place
invariants can hold obviously is equal to or greater than 1 to achieve a control purposed

[12]. It is represented by the symbol #.



CHAPTER 3

THE PROPOSED ALGORITHM FOR STRUCTURAL COMPLEXITY
REDUCTION OF LIVENESS-ENFORCING SUPERVISOR

In this study, the aim is to develop a method that would generate a maximally
permissive behavior or near-optimal behavior with a minimal supervisory structure, i.e., a
supervisory structure that has fewer number of control places and directed arcs. The major
advantages of generating fewer number of control places and fewer number of arcs are stated
as follows [36]:

) It reduces the cost of implementation and validation drastically in a flexible
manufacturing system due to the use of a very compact supervisor.

i) It reduces the running costs of daily maintenance for the plant of flexible
manufacturing industries because of the less number of monitors to be controlled.

iii) It also reduces the time taken for a particular product to be produced as a result

of a small number of a controller to be used.

In our study, the idea is to compute the set of control places for a particular net using a
first-met bad marking (FBM) based method. The control places computed are the objective
constraint that would be reduced to a number as minimum as possible. The main idea is to
identify the place invariants that should be merged to form a resultant place invariant. A
linear relationship is built up among the sets of place invariants that have been identified to
be merged. A systematic approach would follow to reduce these sets of control places to be

possibly minimum which has the same behavior with the original sets of control places.

Two or more place invariants can be merged together if they have a common

intersecting elements between them. This stands as a core condition. However, there are some

19
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supporting conditions that play very vital role for merging two or more place invariants
named as subsidiary conditions. These subsidiary conditions are: (i) structural orientation of
place invariants and (ii) the initial number of tokens of place invariants.

Let us explain these two subsidiary conditions. Consider a Petri net model with two
processes A and B running in an opposite manner with shared resources between them.

Process A has an elements of p,, p;, p,,and p, and are connected consecutively, while
process B has an elements of p,, pg, py,and p,,which are connected in a consecutive
manner. Assume that the place invariants are given as follows: Pl, =, +p, <2,
Pl, =, + 4, <2 and Pl, = u, + 1y < 2. First of all, the core condition is satisfied because
of the common intersecting element i.e. p,. For structural orientation of place invariants
Pl,, Pl, and Pl,, the elements that are not part of the common intersecting element (i.e.
P,, Pg, Py) are belong to one process and is connected consecutively. Such kind of structural

place invariants can be easily merged together. Place invariants with the same initial number
of tokens could be originating from one strict minimal siphon. For example if

Pl,, P, and Pl have the same number of initials tokens. Then it may be possible to merge

these PIs. In general, for two or more place invariants to be merged, the elements that are not
part of the common intersecting elements (i.e. non-intersecting elements among the place

invariants to be merged) should be connected consecutively.

For each possible set of place invariants, linear equations between the possible merged
place invariants are established. In forming the linear equations, the number of tokens of a

first-met bad marking (a,) play a vital role for finding the relationship between the unknown

co-efficients and the initial number of tokens of a merged place invariant. After obtaining the
relationship between the unknown co-efficients of merged place invariants, possible values
would be assigned to the co-efficients for obtaining a final merged place invariant. The
assigned values should be as minimum as possible and most of the time it takes the values of

the cardinalities in the set of place invariants.
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Example 3.1

Let us consider the Petri net model in Fig. 3.1(a) together with place invariants
computed using an FBM based method. The Petri net model 1 has five control places shown
in Table 3.1 together with their place invariants. To analyze the importance of the subsidiary
conditions in identifying the place invariants that could be merged, let us consider place
invariants Pl , Pl,, and Pl . Place invariants Pl , Pl,and PI, have a common intersecting
element (i.e. p,), that satisfied the core-condition for merging two or more place invariants.
For subsidiary condition (i.e. S.C. 1), let us consider PI,, Pl,,and Pl,. The intersecting
element belongs to one particular process while the rest of the elements (i.e. p,;, p,,,and p,,
) belong to another particular process. From the structural orientation, p,,, p,,,and p,, are

connected consecutively. This kind of structural orientation of the place invariants can easily

be merged together.

,
he}
s
©
\Eﬁ
©
s
N

(@)
Fig. 3.1 (a) Petri net model 1 used to illustrate the possible merged place invariants. (b)

Petri net model 2 used it to illustrate some place invariants that cannot be merged.
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Table 3.1. Place invariants and control places computed for the PNM shown in Fig. 3.1(a).

FBM; Pl; C, 0% Mo
M =1 =1 Pli=y,+p; <1 Cp |t |t |1
ty =1 p=1 | Pl,=p,+ 1, <1 | C, | t5,t5 | t,, 1, |1
My =L g, =1 | Ply=p, + 44, <1 Cy | 4,8 | 1,8y |1
Mo =L gy =1 | Ply=p, + ;<11 Cpl t,tg | tyt | 1
My =1 gy =1 Ply=p, +py, <1 | G5 | t,,t; | U1, 1

Table 3.2 Place invariants and Control places computed for the S®PR shown in Fig. 3.1(b).

o =1

FBM; PI ‘C o Mo
My =1 gy, =1 Ply = gt + 11y, <1 L5, b, Lty 1
Hy =1, =1 Pl =y, + 1, <1 U3 b 1
My =1 py =1, 4, =1 Ply =1, + ps + 1, <2 L b 2
ty =1y =1 11, =1 Pl, =, +py + 1y, <2 [TV t,t, 2
Ms =1 pg =1, 4ty =1, p11, =1 <P|§>:ﬂ5+ﬂ6+ﬂ9+ﬂ10 .t tts,ty | 3
My =1 1 =1, 1y =1,y =1 P|3e =Myt He t Hg T b | LTt tytety | 3
<
My =1 ps =1, g =1, g =1 <P|37:/13+ﬂ5+ﬂ9+ﬂ10 ts, tt,t | 3
Mo =Ly =1 ptg =L g =1 | Plg =i, + pty + s + g | Ut 0,4, | Ut ty | 4

Secondly, let us consider Petri net model 2 in Fig 3.1.(b) together with control places

and place invariants computed using an FBM based method. The Petri net model 2 has eight

control places shown in Table 3.2 together with their place invariants. To show the

importance of the subsidiary conditions in identifying the place invariants that could be

merged together, let us consider place invariants PI,and Pl,. Both place invariants

Pl and Pl have common intersecting elements (i.e. p,, p,) that satisfy the core condition

for merging two or more place invariants. For subsidiary conditions, let us analyze the

structural orientation of the place invariants Pl and Pl,. Both intersecting elements (i.e.
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P,, p,) belong to one particular process while the rest of the elements i.e. p,, p, and p,, are

not connected consecutively. Hence, structurally it is not possible to merge the place

invariants PI, and Pl,, Even though, they satisfy the core condition.

If some place invariants cannot be merged, then they are left as they are. It is to say that, all
the place invariants computed using FBM based method should all be covered in the final

simplified set of merged place invariants.

In the following algorithm it is assumed that, an uncontrolled Petri net model (PNM)
with a set of control places obtained by an FBM based method together with their related
place invariants (PI) are given. Our objective is to reduce the set of control places such that

the supervisory structure is reduced.

3.1 ALGORITHM: STRUCTURAL COMPLEXITY REDUCTION OF
LIVENESS ENFORCING SUPERVISORS

Input: The PN model of an FMS prone to deadlocks, a set of monitors (C,,C,,---,C,)to

enforce liveness on this PNM obtained by an FBM based method together with their related

place invariants (Pls) i.e. PI,,PI,,....,PI,.

Output: reduced monitors, i.e. [C,,C,,...,C,], m<n, to enforce liveness on the PNM with

similar behavioral permissiveness.

1. ldentify Z, ={Z,,Z,,Z;,--}
Where Z, is the set of possible place invariants that can be merged together.
2. Foreach Z,
2.1.1. If Zi=PI1NnPI2NPI3N---=¢
Exit

Else 2.i.2. Atentative draft resulting merged place invariant (mPI,) is computed as:

MPl, = oy p + o, + oty +-+a,p, <K 3.1



2.1.3.

2.1.4.

2.1.5.

2.1.6.

2.1.7.
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Where «,,a,,a,,--- are the co-efficients of merged place invariants.

k is the initial number of tokens for merged placed invariants.

L, 1y, s, -+~ are the possible elements of merged place invariants.

Establish a linear equation between the possible merged place invariants as

follows:
ao +a,a, +a,o,+-+a,a, =k+1 e (3.2)
a,a, +a,0, +a,0, ++a, &, =K+1 . (3.3)
0, +a,0, tao ++a, ., =K+1 .. (34)

Where a,,a,,a,,---,a,,a,,,,a,,,,a are FBM co-efficients of each

n1 A A2 Angzn T 70
element in the set of possible place invariants that would be merged.
Compute a linear relationship that exists among the co-efficients of resultant

merged place invariants.

assign values to the co-efficients of the linear relationship that exists among

them.
Evaluate the value of k in any one of the equations.

Substitute the corresponding value for each co-efficient in the resultant draft

possible merged place invariant has formulated.

Compute the monitor C, by using the mPI ..
End of algorithm.
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3.2 RULES TO BE CONSIDERED IN THE IMPLEMENTATION OF THE
PROPOSED ALGORITHM

Rule 1.
To evaluate the co-efficients for each element of the resultant merged place invariant,
it is assumed that all possible co-efficients for each place invariant to be merged would be

equated to a one more than a certain constant (i.e. k +1) to form a linear equation.

Example 3.2.1.

For better understanding, let us illustrate rule 1 by an example. Assume that the
following place invariants are identified to be merged together. g + s + g + 14y <3,
My + g + o + 14 <3, g + s + 1y + 14, < 3. Then according to the rule 1, the right hand
side of all place invariants should be equated to k +1 as follows:

Hs + H + o + flig <K +1

My + Mg + o + fy <K +1

s + s + o + g <K +1
Rule 2.

There are some exceptions to the Rule 1. This is due to the control depth variable, the
value used for control depth variable is greater than one for some few place invariants. In

such case, all possible co-efficients for each place invariant to be merged would be equated

to a value used for a control depth more than a certain constant (i.e. k + 7).

Example 3.2.2.

For better understanding, let us illustrate the rule 2 by an example. Assume that the

following place invariants are identified to be merged together. rs + 1, + 14, <1, and

My + My + 1, + 14, < 2. It is clear to see that the control depth variable (i.e. 7) used is all

more than one. Then according to the rule 2, the right hand side of all the place invariants

should be equated to k +7 as follows:
Ha + phy + pyp, <K +2

My + My + Hy + fy SK+2
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Rule 3.

Despite the fact that, the number of variables of co-efficients to be solved is greater
than the number of equations generated from the co-efficients of possible place invariants to
be merged, an alternative approach would follow to simplify the computation. It is assumed
that all their common elements have equal value for the co-efficient in the resulting merged

place invariant.

Example 3.2.3.
For better understanding, let us illustrate rule 3 by an example. Assume that the

following equations are given to evaluate the unknown variables.
Hs + Mg + Hy + pyg <K +1

Mo+t + g + 1o SK+1
It is well known that to evaluate the unknown variables in mathematics, the number
of variables should be equal to the number of equations to be generated. In this example the
unknown variables are five while the number of equations generated are only two. Hence to
solve that problem, rule 3 take care of that case by assuming all the common elements within

the equations to be evaluated must have equal values.

Rule 4.
To have a maximally permissive behavior or near optimal behavior, the value of the
co-efficient for their common elements among the possible place invariants to be merged

together should be greater than or equal to their cardinalities.

Example 3.2.4.
For clear understanding of the rule 4, let us illustrate it by an example. Assume that

the following equations are given to evaluate the unknown variables as follows:
Hs + Mo + My + pyo <K +1
My + Mg + o + fyo <K +1
There are some common elements between the two equations i.e. s, 1y, and z,,.

Hence their values are the cardinality of the elements (i.e. 1, t4y,and £, in the given sets
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of the equations. In this case the cardinality of the elements in the given equations is two.

Hence their values for s, 14, and g, are all two.

Rule 5.

There are some exceptions to the rule 4. Some place invariants (i.e. computed using
first-met bad marking based method) belong to one particular process. In such case, to have
maximally permissive behavior with reduced structure, the value of the co-efficients of their
common elements among the possible place invariants to be merged should be one less than
the total cardinalities or greater than that value.

Example 3.2.5.
For clear understanding of rule 5. Let us illustrate it by an example. Assume that the

following equations are given to evaluate the unknown variables as follows:

M+ <1

My + g, <1
If 1, and 4, are connected consecutively and belong to a particular process, in that case the
values for their common element (i.e. £4,) should be one less than the cardinality of the

element in the given equations. In this example the cardinality of the common intersecting

element is two, while the value of the common intersecting element (i.e. ;) is one.

3.3 ILLUSTRATIVE EXAMPLE

To demonstrate the proposed structural complexity reduction method, let us consider
the PNM of an FMS [29] shown in Fig. 3.2, monitors are due to FBM variant Liveness-

enforcing supervisor [34]. The net has 14 places and 10 transitions. Their places can be
considered to be the collection of P° ={p,, p..}, P.={P,. Ps, Ps: Ps: Pio» Pis» Pros Pist
and P, ={ps, P;, Pg, Ps}- The net has 48 reachable states in which there are 17 bad states

and 31 good states.
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Control places (monitors) computed for this PNM shown in Fig. 3.2 are provided in
Table 3.3, together with their Pls. The controlled PNM obtained by including the five control
places shown in Table 3.3 into the uncontrolled PNM shown in Fig. 3.2 is live and can reach
31 good state.

Table 3.3. Place invariants and control places computed for the PNM shown in Fig. 3.2.

FBM: PI; c.[c [c [Mo
ty =1 p3=1 | Ply=p, + 1, <1 | C, | t,,t, | t;, 1, |1
My =1 =1 | Pl =+, <11 C, | byt | 4t | 1
My =1 i, =1 Ply=p, +p4, <1 | Cy | 1,5 | L1, |1
=1 p=11Pl,=p, +p,<1|C, | t,,ty | t5,t, |1
My =L gy =1 | Plg=p, +p, <1 | Cq | t,,t, | L,y |1

B

Pl pl4
(4) © 4
A

\%
5\@/5

t5 <+

Fig 3.2. A Petri net model (PNM) of an FMS.
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Step 1:
The possible set for place invariants to be merged together are evaluated as follows:
Remarks:

By looking the place invariants computed in Table 3.3, the place invariants
Pl,,Pl,,and Pl have common intersecting element i.e. ( p,) that satisfies the core-
condition. The non-intersecting elements i.e. p,;, p,,,and p,;are connected consecutively
that satisfies the structural orientation for merged place invariants. These would enable the
place invariants PI,,Pl;,and P, to be merged easily. Also it is the same thing when
considering PI,,and PI, it has common intersecting element of ( p,;) with a satisfied
structural orientation of a place invariants.

Z, ={PI1,,Pl;,Pl.}
z, ={Pl1,,Pl,}

Step 2: (i =1, first iteration)
Let us consider Z, first to apply the procedure step by step from 2.1.1to0 2.1.8

Step 2.1.1:

Z, has an elements of PI, Pl and Pl. The intersecting element among these place
invariants are as:
Pl,nPl,nPI, ={p,}
Step 2.1.2:
A draft merged place invariant mPI,should have a form as in Eq. 3.1.1.
MPL, = o, 11, + Q) + Oty + Oatls < K (3.1.1)
Step 2.1.3:
In this step, linear equations are established by using the co-efficients of the possible
place invariants to be merged.
a,=1a,=1a,=1anda,=1
a, +a,=k+1 (3.1.2)
a, +a,=k+1 (3.1.3)
a,+o,;, =k+1 (3.1.4)
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Step 2.1.4:
This step provide a linear relationship that exists among the co-efficients to be solved
in the equations generated in the step 2.1.3.

By equating Egs. (3.1.2) and (3.1.3), the relationship exists between the unknown co-
efficients can be solved:
Oy T 03 =0, + 0,

U3 = Uy

Also, by equating Egs. (3.1.2) and (3.1.3), to get the relationship exists between the co-
efficients to be solved.
a, +0!12 =0, +all
Q3 =Qypp

Hence, this shows that o =0y, =0y (3.1.5)

Step 2.1.5:

To have a minimum structure the values for «,,,,;, and &, should be as minimum as
possible. Let us assume that «, = «,, = @;;=1. Also the values of the co-efficients for the

common element should be greater than or equal to the value of its cardinality according to

the rule 3 in order to obtain a maximally permissive or near optimal behavior i.e. «, > 3.

Step 2.1.6:
By considering Eq. (3.1.1), the value of k can be obtained as:
a, +a,,=k+1
a,+1=k+1
a, =k
Since, |p,| =3, if o, =3, then the value of k =3.
Step 2.1.7:

Finally after computing all the co-efficients for the resultant merged place invariants,

the resultant merged place invariant can be written as:
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MPly =3, + sy + sy, + p3 <3 (3.1.7)

Step 2.1.8:
The monitor C; is computed for mPI, as follows:

#,(Cy) =3
DCl == LmPll . DmPll
tl t2 7 t 8 t9 tl
1 -10 0 0 0]p,
p2 pll plZ p13 O 0 _1 1 0 O pll
De,=—3 111 |g o0 0 -1 1 0|p,
00 0 0 -1 1]|p,

t1 t2 t7 t8 t9 t1
De,=[-3 310 0 -1
Step 2: (i =2, second iteration).

Z,is considered in the second iteration.

Step 2.2.1:

Z, has elements of PI, and PI,. The intersection between these place invariant is:

Plz M P|4 :{p13}

Step 2.2.2:

This step presents the resulting draft possible merge place invariant.

MPl, = atapty + o iy + tyaphs <K (3.1.8)

Step 2.2.3:
In this step, linear equations are formed between the co-efficients of ossible place

invariants to be merged as follows:
a;,=la,=%anda,=1

o+, =k+1 (3.1.9
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a, +a,=k+1 (3.1.10)

Step 2.2.4:
This step aims to find the linear relationships that exist among the unknown co-
efficients in Egs. (3.1.9) and (3.1.10). This is done by equating Eq. (3.1.9) and (3.1.10):

o, +o,=a, +0y,
o, =q,

Step 2.2.5:

To have a minimum structure, the values for «, and «, should be as minimum as
possible. Let us assume that o, = o, =1. Also the values of the co-efficients for the common

element should be greater than or equal to the cardinality according to the rule 3 in order to
obtain a maximally permissive behavior i.e. «, > 2.

Step 2.2.6:
By considering Eq. (3.1.9), the value of k can be obtained as:

o+, =k+1
o, +1=k+1
a3 =K

Since, | py| =2, if a;; =2, then the value of k = 2.

Step 2.2.7:
Finally after computing all co-efficients, the resultant merged place invariant can be

written as:
MPl, = g3 + g1, + 244, <2 (3.1.11)

Step 2.2.8:

The monitor Cz is computed for mPI, :
#,(C,) =2
Dc, =-L

mPl, * Do )
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t2 t3 t4 1:9 th

-1 0 0 0 |p,
1 -1 0 O0|p,

0 0 -1 1 |pg;

Ps Py Pis

1
0
Dc,=-f1 1 2] 0

Finally after applying the above algorithm, the net has only two merged place invariants
mPl, and mPl,as shown in Egs. (3.1.7) and (3.1.11). These merged Pls and monitors
computed are shown in Table 3.4. When this first set of reduced monitors C, and C; are

added to the PNM given in Fig. 3.2 the controlled model is obtained. It is verified that the

controlled model is live with maximally permissive behavior.

Table 3.4. The merged Pls and computed monitors.
Ci mPI. 'C C: Mo

C1 MPly =3, + g4y + py, + p3 <3 3, 3.ty |3
C> MPl, = gty + 41, + 244, <2 t,, 2t, t,, 2t, |2




CHAPTER 4

APPLICATION TO S°PR PETRI NET MODEL EXAMPLES

In order to show the applicability of the proposed method, this chapter includes some
application examples related to S®PR Petri net models for different manufacturing systems.

The examples considered have been studied in several research papers and research works.

4.1 EXAMPLE 4.1

The S®PR Petri net model (PNM) of an FMS [29] is shown in Fig. 4.3, with the set of
control places computed using FBM variant liveness-enforcing supervisor [34]. The net has
20 places and 15 transitions. Their places can be considered to be the collection of
P® ={py, Ps, Pu} Py ={P2, P3, Ps: Pss P72 Pg» Pos Pros Pras Piss Pras Pus} and
P; ={Pis, P17+ Pig» Pigs Poot The net has 354 reachable states in which there are 65 bad states

and 289 good states.

Control places (monitors) computed for this PNM shown in Fig. 4.1 are provided in
Table 4.1, together with their Pls. The controlled PNM obtained by including eight control
places shown in Table. 4.1 into the uncontrolled PNM shown in Fig. 4.1 is live and can reach

289 good state.

Table 4.1. Place invariants and control places computed for the PNM shown in Fig. 4.1.

FBM; Pl; Ci Ci Ci* Mo
=1 =1 uu=1 o+ 3+ py <2 Cl |[t4 tl 2
=1 =1 =1 Lo+ s+ g <2 C2 |12,14,18 t1,t3,t7 |2
=1 =1 =1 U3+ p+ g <2 C3 |t3,t7,19 12,16,t8 | 2
=1 =1 m3=1 U3+ 9 + pu3 <2 C4 |t3,19 t13 |t2,18,t12 |2

34
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=1 =1 =1 Ly + pg+ pg <2 C5 |19 t6 2
s=1 =1 ms3=1 g + o + pn3 <2 C6 |19,t13 17, t12 2
=1 g2 =1, ga=1 | g+ o+ ma <2 | C7 | 17,112, t14 :613’3 U
p2=1,m3=1, s =1 | o+ 3+ s <2 | C8 | 14 t11 2
th
p21
p2 plO r5 p12
rl
/ \M t15 s
t
924/7
\ 6 r4
p3 r2 09 / ‘ pl3
p6 é Pl - éI/ p23 /tsvél % t7 D) pit

Fig. 4.1 An S°PR Petri net model (PNM).

Step 1:
In this step, it is necessary to identify the possible place invariants that could be merged

together, such that we have a minimum structure.

Z, ={P1,,Pl,}
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Z, ={Pl,,PI,,PI,,Pl }
Z, ={PI,,Pl;}

Step 2: (i =1, first iteration).

In the first iteration, let us consider Zi.

Step 2.1.1:
The common intersecting elements among the place invariants Pl, and PI, are as
follows:
Pl, "Pl, ={p,, p,}
Step 2.1.2:

A tentative equation for a merged place invariant can be written as:

MPl, = o, p1, + ot 1t + oyt + 0g p1; <K (4.1.1)

Step 2.1.3:
Linear equations are established by using the co-efficients of possible place invariants
to be merged:

a,+a,+a, =k+1 (4.1.2)

o, +a, +ag =k+1 (4.1.3)
2 4 8

Step 2.1.4:
In this step, a linear relationship is established that exists between the co-efficients of

possible place invariants to be merged by using Egs. (4.1.2) and (4.1.3).

a,ta,+ta,=a,+a, +og
o, =0y (4.1.4)
Also, accordingtorule 3. o, =, (4.1.5)

Remarks.
By default, for maximally permissive or near optimal behavior the common elements
have a value more than or equal to their cardinalities in their place invariants to be merged.

However according to the rule 5, if any one of the place invariants involved only one
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particular process, their values for common intersecting elements should be one less than the

cardinalities or greater than that value.

Step 2.1.5:

Having obtaining the linear relationships among the unknown co-efficients, a suitable
value is selected for the co-efficients in Egs. (4.1.4) and (4.1.5), the possible values to choose
should be the values of the cardinality of the elements in the place invariants under
consideration. Although, it is not necessary to choose the values of the cardinalities of the
elements in the set of place invariants under considerations. However choosing a small value

is more desirable because it yields a minimal structure.

|p,|=2, and |p,|=2
Hence, let o, =0y =1
By the rule 5, a,=a,=1
Step 2.1.6:
By using Eq. (4.1.2), the value of k can be computed as:
a, +a,+a, =k+1

k=2

Step 2.1.7:

The resulting merged place invariant mPl,is:

MPly = pi, + i3 + gty + 1t <2 (4.1.6)

Step 2.1.8:

The monitor Cy is computed for mPI, :

H,(C,) =2

Dcl =-L ) Dm|=>|1

mPI,
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oottt ot
11000 0]p,

PP PaPs [0 1 -1 0 0 0
De, =1 1 1 1] Ps
00 1 -10 0lp,

00 0 0 1 -1|p,

Step 2: (i = 2, second iteration).
In the second iteration, let us consider Z».

Step 2.2.1:
The common intersecting element among the place invariants Pl ,, PI,, Pl and Pl as

follows:
Pl,nPlI,nPl, nPl, ={p,}
Step 2.2.2:
A tentative equation for a merged place invariant can be written as:
MPl, = aapt; + aq p1y + Ol g + Qg g + Oy flys <K (4.1.7)
Step 2.2.3:

Linear equations are established by using the co-efficients of possible place invariants

to be merged as:

o, +0, +ay =k+1 (4.1.8)
o+, +a,=kK+1 (4.1.9)
o, +ag+a, =k+1 (4.1.10)
ag+ay+a,=k+1 (4.1.11)

Step 2.2.4:

Relationships are established that exist between the co-efficients of the place invariants
to be merged.
By equating Egs. (4.1.8) and (4.1.9):
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O; +0; +0g =03 + 0 + Q3
o, =0y, (4.1.12)
By equating Egs. (4.1.9) and (4.1.11):
O +0g + 03 =0g +0yg + 04y
a, =a, (4.1.13)
Step 2.2.5:
It is clear to see that one of the place invariants to be merged belongs to a particular
process, o > 3.
|| =4
Let o, =a,=2
o, =ay =1

According to therule 3. a4 =

Step 2.2.6:
Eq. (4.1.8) is used to find the value of k.
o, +0, +a, =k+1
1+2+3=k+1
k=5
Step 2.2.7:
Finally the resultant merged place invariant i.e. mPI, is:

MPl, = 2, + 244, + ptg + 34ty + 244, <5 (4.1.14)

Step 2.2.8:

The monitor Cz is computed for mPI, as:

/uo(cz) =5
Dc, =-L

mPl, DmPI )
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_t2 3 t8 9 12 13 _
1 -1 0 0 0 0 0 O |p;

01 -1 0 000 0
Dy Ps Ps Po Py Pr
De,=—[1°2 13 2l0 0 1 -1 0 00 0]|p,
0 O 0 1 -1 0 0 O0|pg
00 0 0 0 01 -1fp,

Step 2: (i =3, third iteration).
In the third iteration, let us consider Zs.

Step 2.3.1:

The common intersecting elements between the place invariants Pl, and Pl are as follows:

I3'7 M Pls :{p12’ p14}

Step 2.3.2:

A tentative equation for a merged place invariant can be written as:

MPly = a; 417 + oty + sty + Aty <K (4.1.15)

Step 2.3.3:
Linear equations are established by using the co-efficients of possible place invariants

to be merged as:

o, +a,+a,=k+1 (4.1.16)
a,+o oy, =k+1 (4.1.17)
Step 2.3.4:

A relationship is established that exist between the unknown co-efficients of place

invariants to be merged. By equating Eqgs. (4.1.16) and (4.1.17), we have:

Q7 + Oy 0y =0y H Q3+
o, =y, (4.1.18)

Also, according to the rule 3. a,=a, (4.1.19)
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Remarks:

In choosing the values for the unknown co-efficients of a merged place invariant, a
suitable value must be selected. The suitable value should be the cardinalities of the elements
among the set of place invariants under consideration. Is does not mean that, it is the only
value that can satisfy the liveness of the Petri net model, whereas it is the minimum value
that satisfied both the liveness and provide a minimal structure as well as maximally

permissive behavior.

Step 2.3.5:
Since one of the place invariants to be merged together is belong to a one particular

process, a,, >1.
|p,|=2 and |py,|=2
Let o, =a,;=1
Accordingtotherule 3. o, =¢;, =1
Step 2.3.6:
Eq. (4.1.16) is used to find the value of k as follows:
o, o, +o, =k+1
1+1+1=k+1
k=2

Step 2.3.7:
Finally, the resulting merged place invariant i.e. mPl, is:

MPly = 417 + oy, + py3 + p1, < 2 (4.1.20)

Step 2.3.8.

The monitor Cz is computed for mPI, as:

1o(Cy) =2

Dc, = _LmPI3 : DmPl3
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t6 t7 t1l t12 t13 tl4
1 -100 0 0]p,

Pz Pz Pz Pu 0 0 1 -1 0 0 |py,
11 1]
0 0 0 1 -1 0|ps
0 00 0 1 -1|p,
t6 t? t11 t12 t13 t14
De,=[-1 1 -1 0 0 1]

Finally after applying the proposed algorithm, three merged place invariants namely
mPl,, mPl,and mPl,as shown in Egs. (4.1.6), (4.1.14) and (4.1.20) are computed. For these
merged Pls and monitors computed by using these Pls shown in Table 4.2. When monitors
C1, C2 and Cz are added to the PNM given in Fig. 4.1 the controlled model is obtained. It is
verified that this controlled model is live, with maximally permissive behavior, which has

289 good states.

Table 4.2 The merged Pls and computed monitors.

mPli Ci 'C (o Mo
MPli=0 + 3+ pua + pa + p1g <2 C1 t4, t8 t1, t7 2
MPla=p3 + 27 + g + 3 + 24013 <5 | C2 t3, t7, 3t9, 2t13 | t2, 2t6, 218, 2t12 | 5
MPls=g7 + puo + tn3+ pna<?2 C3 t7, 114 t6, t11 2

Table 4.3 compares the original monitors computed by using an FBM variant method
with that of obtained by the proposed method. From the Table 4.3, it is clear to observe that
the number of control places obtained with the proposed method is as minimum as possible

when compared with the original monitors computed by using FBM variant method.

Table 4.3 Performance comparison between the original monitors and the reduced reduced

monitors obtained with the proposed method.

LES # monitors | #arcs | #tokens | % permissiveness
Original monitors 8 34 16 100
Reduced monitors 3 22 9 100
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4.2 EXAMPLE 4.2

The S°PR Petri net model (PNM) of an FMS [2] is shown in Fig. 4.2, with the set of

control places computed by using an FBM variant method [34]. The net has 19 places and

14 transitions. Places can be considered to be the collection of P°={p,, p},

Pr ={Pu P15 Prgo - Prot  and Py ={P,, Pss ==+ P72 Pg»++» Pis}. The net has 282

reachable states in which there are 77 bad states and 205 good states.

Control places (monitors) computed for this PNM shown in Fig. 4.2 are provided in
Table 4.4, together with their Pls. The controlled PNM obtained by including the eight
control places shown in Table 4.4 into the uncontrolled PNM shown in Fig. 4.2 is live and
can reach 205 good states.

Table 4.4. Place invariants and control places computed for the S®PR shown in Fig. 4.2.

FBM; Pl; Ci |G Ci* Mo
=1 1 =1 M3+ g <1 Cl |t5,t12 12, t11 1
=1, =1 i+ e <1 C2 | 113 t11 1
=1 3=1 =1 Lo+ 3+ puy <2 C3 | 4,15 tl 2
=1 =1 m=1 Lo+ g+ o <2 C4 |t2,14,t13 | t1, t12 2
wus=1, =1, po=1, po=1| ps + pts + po + p10 <3 | C5 | 17,111 t4,t5,t199 |3
=1 =1, =1, po=1| 3+ ps + po + p110 <3 | C6 | 15, 17,111 | t2,16,19 | 3
w=1 us= 1, uo=1, no=1| 3+ ps + p9 + 1110 <3 | C7 | 16, t11 t2,14,19 |3
=1 =1, e =1, o =1, | o+ pua + s + 19 + cs t2, t4, 7, 116,19 |4
=1 Lo <4 t11
Step 1:

It is necessary to identify the possible place invariants that could be merged:
Z, ={PI;,PI,,PI.,Pl;}
Z,={P1,Pl,}
Z, ={P1,,Pl1,}

Step 2: (i =1, first iteration).

In the first iteration, let us consider Z;.
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Fig. 4.2. A S°PR Petri net model of an FMS [2].

Step 2.1.1:
The common intersecting elements among the place invariants PI,Plg, Pl and Pl

are as follows:

Pl nPl,API, NPl ={py, P;o}

Step 2.1.2:
A tentative equation for a merged place invariant can be written as:

MPl, =@,y + Ayt + Oy ply + Qs s + Ot g + Ao g + Uity <K (4.2.1)

Step 2.1.3:
Linear equations are established by using the co-efficients of possible place invariants

to be merged.



o +0og+ag+o,=k+1
oy +og+ag+o,,=K+1
Oy +0+ay+oy,,=K+1

a, +a,+a; +og+a, =kK+1

Step 2.1.4:
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(4.2.2)
(4.2.3)
(4.2.4)

(4.2.5)

Linear relationships are established that exist among the unknown co-efficients of a

place invariants to be merged.
By equating Egs. (4.2.2) and (4.2.3).

O + Qg + 0y + 0y =043 T 0g + 0y + 0
s = O

Also, by equating Eqgs. (4.2.3) and (4.2.4):

O; +0g +0g +0Cy =03 +0s +0y + 0y
Qs = O
Hence, it shows that o, =0 =0

Also, by equating Egs. (4.2.3) and (4.2.5)

O, +0g+og+a,,=a,+a, +a, +a, +ay,
o, =a,+a,

Also according to the rule 3. oy =y,

Step 2.1.5:

(4.2.6)

(4.2.7)
(4.2.8)

Having obtaining the linear relationships among the unknown co-efficients, a suitable

value is selected for the co-efficients in Eqgs. (4.2.6) and (4.2.7). The possible values to choose

should be the values of the cardinality of the elements in the place invariants under

consideration.

|pg| =4 and |p,|=4

Let a,=a,=1
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oy, =0; =0y =2

According to rule 4. oy =0, =4

Step 2.1.6:
By using Eq. (4.2.2), the value of k can be computed as:

o +0og+ag+o,=k+1
24+2+4+4=k+1
k=11
Step 2.1.7:

Finally, the resulting merged place invariant mPI, is:

MNP, = g1, + 2415 + pty + 245 + 2t + A4ptg + 4y <11 (4.2.9)

Step 2.1.8:

The monitor C, is computed for mPI, as follows:

Ho (Cl) =11

DCl == LmPll . DmPIl

I N O VN R L T TR T Y
1 - 210 0 0 0 0 0 07p,
01 0 0 -10 000 0]|p,
00 1 10 0 000 0
D, Ds Pu D5 Ps Do Pig Pa
De,=-[1° 2 1 2 2 4 410 0 0 1 1 -1 0 0 0 0]/p.
0 O 0 0 0 1 -1 0 O 0 | ps
0 O 0 0 0 0 0 1 -1 0|p
00 0 0 0 0 00 1 -1/p,
t t2 t3 t4 t5 t6 t t9 th tll

De,=[-1 -1 0 -1 0 O 2 -4 0 4

Step 2: (i =2, second iteration).

In the second iteration, let us consider Z».
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Step 2.2.1:
The common intersecting element between the place invariants Pl and PI, is as
follows:
Pl, nPl, ={p,,}
Step 2.2.2:

A tentative equation for a merged place invariant can be written as follows:

MPl, = oy + oyt + ool <K (4.2.10)

Step 2.2.3:
Linear equations are established by using the co-efficients of possible place invariants
to be merged.

o, +o,;, =k+1 (4.2.11)

o, +a,=k+1 (4.2.12)

Step 2.2.4:

Relationships are established that exists among the unknown co-efficients of place
invariants to be merged.
By equating Egs. (4.2.11) and (4.2.12).

O3+ =y T A,
o, =a, (4.2.13)
Also according to the rule 5. a,, 21
Step 2.2.5:
By selecting a value that is suitable for the co-efficient in Eq. (4.2.13), the possible

values to be choose should be the values of the cardinality of the elements in the place

invariants under consideration.
|p11| =2
Let oa,=0,=1

According to the rule 5. o, =1
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Step 2.2.6:
Eq. (4.2.11) is used to find the value of k as:

o, +a, =k+1
1+1=k+1
k=1
Step 2.2.7:
Finally, the resulting merged place invariant mPI, is:

mPl, = g, + 4, + 14, <1 (4.2.14)

Step 2.2.8:

The monitor C, is computed for mPI, as follows:

14, (C,) =1
DCz == LmPl2 . DmP|2
t, o oty t, 1,
1 -1 0 0 O0|p,
DCZZ_% Fua pﬁ 0 0 1 -1 0/py,
0O 0 01 -1fp,

Step 2: (i =3, thirditeration).
Let us now consider Z3, which has elements of PI, and PI,.

Step 2.3.1:

The common intersecting elements between the place invariants Pl , and Pl that could

be merged are computed as:

Pl AP, ={p,, .}

Step 2.3.2:

A tentative equation of a merged place invariant can be written as:
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MPl, = a, 1, + Qg pts + ot 10, + i, <K (4.2.15)
Step 2.3.3:
Linear equations are established by using the co-efficients of place invariants to be
merged as:
a, +a,+a, =k+1 (4.2.16)
a,+a, +a, =k+1 (4.2.17)
Step 2.3.4:

Relationships are established that exists among the unknown co-efficients of a place
invariant to be merged.
By equating Egs. (4.2.16) and (4.2.17), we have
o, +ra,+a, =a,+ad+a,
o, =a, (4.2.18)
Also according to therule 3. o, =,

Also according to the rule 5. a, 21

Step 2.3.5:
Having obtaining the linear relationships among the unknown co-efficients, a suitable
value is selected for the co-efficients in Eq. (4.2.18). The possible values to choose should

be the values of the cardinality of the elements in the place invariants under consideration.
|p,|=2 and |p,|=2
Let o;=a,=1

According to the rule 5. a,=a,=1

Step 2.3.6.
Eq. (4.2.16) is used to find the value of k .
a, +a,+ad=k+1
1+1+1=k+1
k=2



Step 2.3.7:

Finally, the resulting merged place invariant mPI, is:
MPly = g1, + piy + 1y + g1, <2

Step 2.3.8:

The monitor C, is computed for mPI, as follows:

1 (C3) =2
Dcs - LmPI3 *Ympr,
Lottt tot, t
1 -1 -1 0 0 0 O0]|p,
P, Ps Py Prp 0 1 0 0 -10 0/ps
Dc; =1 Ifo o 1 -1 0 0 0]p,
0O 0 0 0 0 1 -1fp,
Lot ot tot, t,
Dc,=[-1 0 0 1 1 -1 1]
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(4.2.19)

Finally after applying the proposed algorithm, three merged place invariants namely

mPl,, mPIl,and mPl,as shown in Egs. (4.2.6), (4.2.14) and (4.2.20) are computed. These

merged Pls and monitors computed by using these Pls are shown in Table 4.5. When

monitors Ci, C, and Cz are added to the PNM given in Fig. 4.2 the controlled model is

obtained. It is verified that this controlled model is live, with maximally permissive behavior,

which has 205 good states.

Table 4.5. The merged Pls and computed monitors

mPIi Ci |C c Mo
“2';'11:/‘12 *2U ¥ g 24t 2pts + Ape F Ao | oq | o7 a1 |1, 12, t4, 419 | 11
MPlo=y3 + g1 + g2 <1 C2 | t5, 113 12, t11 1
MPlz=y16 + 13 + pu+ pn2<2 C3 [t4,t5t13 | t1,t12 2
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Table 4.6 compares original monitors computed by using an FBM variant method
with that of obtained by the proposed method. From the Table 4.6, it is clear to observe that
the number of control places obtained with the proposed method is as minimum as possible

when compared with the original monitors computed by using an FBM variant method.

Table 4.6 Performance comparison between the original monitors and the reduced monitors

obtained with the proposed method.

LES # monitors | #arcs | #tokens | % permissiveness
Original monitors 8 37 19 100
Reduced monitors 3 22 14 100

4.3 EXAMPLE 3

The S°PR Petri net model (PNM) of an FMS [30] is shown in Fig. 4.3, with the set of
control places computed by using an FBM variant method [34]. The net has 26 places and 20

transitions. Places can be considered to be the collection of P°={p,, ps, P}

Pe ={P20: Pa1s Pazs Pass Pass Pass Pt @nd Pa ={P,, Py Pas Pes s Prgs Pass ooy Prot. The
net has 9572 reachable states in which there are 4177 bad states and 5395 good states.

Control places (monitors) computed for this PNM shown in Fig. 4.3 are provided in
Table 4.7, together with their Pls. The controlled PNM obtained by including the thirteen
control places shown in Table 4.7 into the uncontrolled PNM shown in Fig. 4.3 is live and

can reach 3475 good states.

Table 4.7. Place invariants and control places computed for the S*PR shown in Fig. 4.3.

FBM; Pl; Ci °Ci C 10(Ci)
p2=1 ms=1 2+ s <1 Cl |19,tl16 18, t15 1
3=1 ms=1 3+ s <1 C2 |t10,t16 |19, t15 1
=1 =1 Lt + tne <1 C3 | 19,117 t8, t16 1
=1 m7=1 i+ n7 <1 C4 |18, t18 t7, t17 1
=1 =1 1+ pne <1 C5 |18, t17 t7, 116 1
=1 ms=1 fn + s <1 C6 |18, tl6 t7, t15 1
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(5= 2, s =1 13+ 115 <2 C7 413 |32 |2
=1 13=2 Lo+ 3 <2 C8 |13 t11 2
w=1 =1, g =1, pns = | 3 + pg + py + pus + c9 t5, t13,|t3, tl12, 4
1, me=1 e <4 t17 t15
=1 =1, ;o =1, pus = | po + 3 + o + pus + c10 t5, t13, [t4, tl1, 4
1, me=1 e <4 t17 t15
/ZIGT 1, =2, pn1 =1, 18 Zle T T s S| 019 | (3,17, 119 |11, 117 | 4
Ho=1, =2, s =1, o = | o + g+ prs+ g+ | 05 |15, 17,11, 15,
1, 15 = 1, e = 1, 118 = 1 pis + e + pus <7 117, 119 118
=1, pr=2, y9 = 2, puns = | pe + i + L9 + pns + c13 t3, t5, t7, | t1, 4, 7
1, me=17=1 e+ w7 <7 t18 t15

y p14

11) PS

Fig. 4.3 An S°PR Petri net model from [30].
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Step 1:
Possible place invariants that could be merged are identified as follows:

Z, ={PIl,,Pl,, Pl }

Z, ={Pl,,Pl.}
Z,={Pl,,PIl;}
z,={P1,,Pl}
Z, ={Pl,,Pl}

Z6 :{PIlZ’ P|l3}
Step 2: (i =1, firstiteration).

Firstly, let us consider Z1, which has elements of PI,,PI, and PI.

Step 2.1.1:

The common intersecting elements among the place invariants PI, Pl, and Pl are:

Pl,nPl, nPl, ={p,:}

Step 2.1.2:
A tentative equation for a merged place invariant can be written as:
MPl, = @, 44; + Qi + Quatlis + Qs <K (4.3.1)
Step 2.1.3:

Linear equations are established by using the co-efficients of possible place invariants

to be merged.

o, +oys =k+1 (4.3.2)
o +oys =k+1 (4.3.3)
o, +as=k+1 (4.3.4)

Step 2.1.4:
Linear relationships are established that exist among the unknown co-efficients of place

invariant to be merged.
By equating Egs. (4.3.2) and (4.3.3), we have



54

Oy T Oy = O3+ 045
a, =0,
Also, by equating Egs. (4.3.3) and (4.3.4), we have
Oz + 0y = Oy T Oys
a3 =0
Hence, it shows that o =0y, =0,y (4.3.5)

Also according to the rule 4. o, >3

Step 2.1.5:
Having obtained the linear relationships among the unknown co-efficients, a suitable

value is selected for the co-efficients in Eq. (4.3.5). The possible values to choose should be
the values of the cardinality of the elements in the place invariants under consideration.

|p15| =3
Let o,=0a0,=0,=1

According to the rule 4. o =3

Step 2.1.6:
By using Eq. (4.3.2), the value of k can be computed as:

o, +os =k+1
1+3=k+1

k=3
Step 2.1.7:
The resulting merged place invariant mPI, is:

MPly = 26, + g4, + 3+ 3145 <3 (4.3.6)

Step 2.1.8:

The monitor C, is computed for mPI, as follows:
#,(C;) =3

DC1 == LmPll . DmPIl
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t, gty b, ts U
1 -1 0 0 0 O0|py,
P11 P12 P13 Pys 01 -10 0 0/pg,
Dc, = Ilfo o 1 -1 0 0|pg,
0 0 0 0 1 -1ip;
t, to ts

Step 2: (i =2, second iteration).

Let us consider Z, which has elements of Pl and PI..

Step 2.2.1:
The common intersecting element between the places invariants PI, and Pl that could

be merged together is defined as:
P|3 M Pls :{p16}

Step 2.2.2:

A tentative equation for a merged place invariant can be written as:

MPL, = a4, + Qg + gt <K (4.3.7)

Step 2.2.3:
Linear equations are established by using the co-efficients of possible place invariants

to be merged as:
a,+o,s=k+1 (4.3.8)
o, +a,,=k+1 (4.3.9)
Step 2.2.4:
A relationship is established that exist among the unknown co-efficients of place

invariants to be merged.
By equating Egs. (4.3.8) and (4.3.9), we have

Qpy + g =0y + Qg

U, =y (4.3.10)
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Also according to the rule 4. «,, > 2

Step 2.2.5:

Having obtained the linear relationships among the unknown co-efficients, a suitable
value is selected for the co-efficients in Eq. (4.3.10). The possible values to choose should
be the values of the cardinality of the elements in the place invariants under consideration.

[Pyl =2
Let o,=0,=1

According to the rule 4. o, =2

Step 2.2.6:
By using Eq. (4.3.8), the value of k can be computed as:
o, +os=k+1
o, =k

k=2

Step 2.2.7:
Finally, the resulting merged place invariants mPl, is:

MPl, = sy + phyy + 2445 <2 (4.3.11)

Step 2.2.8:
The monitor C, is computed for mPI, as follows:

14 (Cy) =2

Dc,=-L

mPl, - DmPl2

1 -1 0 0 0]p,
pe2= {1 1 PO T -1 0 0p,
00 0 1 -1|p,

t7 t8 t9 t16 t17
Dc,=[-1 0 1 -2 2]
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Step 2: (i =3, thirditeration).

Let us consider Zs, which has elements of PI. and PI,.

Step 2.3.1:

The common intersecting elements between the place invariants PI, and Pl that could be

merged is defined as:
Pl; APl ={p,}

Step 2.3.2:
A tentative equation for a merged place invariant can be written as:

MPl, = o, 1, + oty i + g1t <K (4.3.12)

Step 2.3.3:

Linear equations are established by using the co-efficients of possible place invariants
to be merged.
Remarks:

In all previous examples considered, the number of tokens of FBMs were all 1 for the
elements. This shows that the value of “a” in establishing linear equations is “one”.

Therefore no value was attached to the unknown co-efficients in the previous examples.

However, in this example, some values of tokens in the FBMs are greater than one.

a, =2
20, + g =k +1 (4.3.13)
a, +2a, =k+1 (4.3.14)

Step 2.3.4:
A relationship is established that exists between the unknown co-efficients of place

invariant to be merged.

By equating Egs. (4.3.13) and (4.3.14), we have
20, + oy = a, + 20,

ag =a, (4.3.15)
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Also according to the rule 4. «,, > 2

Step 2.3.5:
Having obtained the linear relationships among the unknown co-efficients, a suitable
value is selected for the co-efficients in Eq. (4.3.15). The possible values to choose should

be the values of the cardinality of the elements in the place invariants under consideration.

|ps[ =2
Let o,=0=1

According to the rule 4. oy =2

Step 2.3.6:
By using Eq. (4.3.13), the value of k can be computed as:
20, +ag =k +1
20, =k
k=4

Step 2.3.7:

Finally, the resulting merged place invariants mPl, is:

MPl, =, + 24, + p; < 4 (4.3.16)

Step 2.3.8:

The monitor C, is computed for mPl, as follows:

1 (C3) =4

Dc,=—L,p. .D

mPl; * ZmPl,

tS t4 tll t12 tlS
P2 Ps Ps

00 1 -1 0]p,
De,=—[1 2 1]

00 0 1 -1|p,
1 -10 0 0|p,
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Step 2: (i =4, fourthiteration).

In the fourth iteration Z4 is considered, which has an elements of P, and PI, .

Step 2.4.1:

The common intersecting element between the place invariants PI, and Pl is defined

as:
Pl, nPl, ={p,;}
Step 2.4.2:
A tentative equation for a merged place invariant can be written as:
MPl, = g ptg + oty + 0ty fly; + Qo fl, + g llig <K (4.3.17)
Step 2.4.3:

Linear equations are established by using the co-efficients of possible place invariants

to be merged as:
8 =a; =a; =a,=1,a,=2
o, +a,=k+1 (4.3.18)
ag+20;, +a, +og=k+1 (4.3.19)
Step 2.4.4:

A relationship is established that exists between the unknown co-efficients of place

invariants to be merged.

By equating Egs. (4.3.18) and (4.3.19).

o, +o; =0+ 20, +a; oy

o, =0+ 20, + g (4.3.20)

Also according to the rule 4. «,, > 2
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Having obtained the linear relationships among the unknown co-efficients, a suitable

value is selected for the co-efficients in Eq. (4.3.20). The possible values to choose should

be the values of the cardinality of the elements in the place invariants under consideration.

|p17| =2
Let oy=0,=0,=1
Hence, a,, =4

According to the rule 4. o, =4

Step 2.4.6:
EQ. (4.3.18) is used to find the value of k as:
o, +a, =k+1
4+4=k+1
k=7
Step 2.4.7:
Finally, the resulting merged place invariants mPI, is:

MPl, = ptg + 1, +4py, + 80, + p1g <7

Step 2.4.8:

The monitor C, is computed for mPI, as follows:

Ho (C4) =7
DC4 == LmPl4 . DmPI4
_ t ot f
1 -1 O
0O 1 -1
0 0 0

-1 0
0 O
1 -1
0 O
0 O

O B O O oY

t18 t19 -
0 0
0 0
0 0
-1 0
1 -1

(4.3.21)

Ps
P;
Pis
Py7

| P1g
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Step 2: (i =5, fifthiteration).

In the fifth iteration, let us consider Zs which has elements of Pl, and PI .

Step 2.5.1:

The common intersecting elements between the place invariants Pl, and PI,, that

could be merged are as follows:

P|9 M PIlO :{p31 Pgs P15, plG}

Step 2.5.2:
A tentative equation for a merged place invariant can be written as:
MPlg = o, 11, + Qg pty + g fly + Ug g + Qs flys + Ayl <K (4.3.22)
Step 2.5.3:

Linear equations are established by using the co-efficienst of possible place invariants
to be merged.

A+ +ay+a+a,, =k+1 (4.3.23)

o, +a;+ag+o+os =k+1 (4.3.24)

Step 2.5.4:
A relationship is established that exists between the unknown co-efficients of place

invariants to be merged.
By equating Egs. (4.3.23) and (4.3.24).

Oy + Qg+ 0y + Qs+ g =0y + 0y + Qg+ Oy + g
a, =y (4.3.25)

But according to the rule 3. a; =ay = = a4

Also according to the rule 4. o, >2

Step 2.5.5:
Having obtained the linear relationships among the unknown co-efficients, a suitable
value is selected for the co-efficients in Eq. (4.3.25). The possible values to choose should

be the values of the cardinality of the elements in the place invariants under consideration.

|p3|=2, |p9|:2| |p15|:2 and |p16|:2
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Let oa,=a5=1
Accordingtotherule 4. o, =ay=a;; =a,5 =2

Step 2.5.6:

Eq. (4.3.23) is used to find the value of k as:

A+ +ay+a+a,, =k+1
2+1+2+2+2=k+1
k=8

Step 2.5.7:

Finally, the resulting merged place invariants mPI is:
MPl. = g0, + 20, + ptg + 209 + 200, + 211, <8 (4.3.26)
Step 2.5.8:

The monitor C, is computed for mPI as follows:

,uo(Cs):g

DC5 == LmPI5 . DmP|5
_t3 t4 t5 t11 t12 t13 t15 th t17_
00 01 -1020 0 0]p,
00 00 1 -10 0 0]p,

P, Ps Py Po Pis P (1 -1 0 0 0 0 0 0 0/p,

De,=-[1 2 1 2 2 2]lp 1 -1 0 0 0 0 O O]|p,
00 00 0 0 1 -1 0|pg,
00 0 0 0 0 0 1 -1|p,
t, t, ot ot t, t. tg tgt

3 1 2 6 “17
De,=[-1 -1 2 -1 -1 2 -2 0 2]

Step 2: (i =6, sixth iteration).
In the sixth iteration, let us consider Ze¢ which has an element of Pl , and Pl ;.
Step 2.6.1:

The common intersecting elements between the place invariants Pl , and Pl that

could be merged as:
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I3'12 M P|13 :{pm Pz, Pgs P15, p16}

Step 2.6.2:
A tentative equation for a merged place invariant can be written as:

MPlg = ag ity + oy by + gty + Qg plg + Ay plis + Ayl + Qg ply; + Aygllis <K (4.3.27)

Step 2.6.3:
Linear equations are established by using the co-efficients of possible place invariants

to be merged.

a, =2, 8,=2
O +2a, +og +ag +a+oys+a =K+1 (4.3.28)
s+ 20, + 204+ 0+ + o, =K +1 (4.3.29)

Step 2.6.4:
A relationship is established that exists between the unknown co-efficients of place
invariants to be merged.
By equating Egs. (4.3.28) and (4.3.29).
O +2a, +ag +0y + oy + 0y + Qg =0 + 20, + 200 + s + 00 + Q4

Ay + Qg = Qg + 0y (4.3.30)

But according tothe rule 3. o =a, =0y = a5 = a4

Also according to the rule 4. o >2

Step 2.6.5:

Having obtained the linear relationships among the unknown co-efficients, a suitable
value is selected for the co-efficients in Eq. (4.3.30). The possible values to be choose should
be the values of the cardinality of the elements in the place invariants under consideration.

1ps| =2, [p,[=2, |ps|=2, [ps| =2 and [p,g| = 2
Let o, =a,=1

According to therule 4. o, =ay =, =05 =2
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Hence, «a;=2

Step 2.6.6:
Eq. (4.3.23) is used to find the value of k as:
o +20, +ag +0g + Qs+ o+ =K +1
24+4+2+2+2+2+1=k+1
k=14

Step 2.6.7:
Finally, the resulting merged place invariants mPI is:

MPlg =24 + 24, + 24ty + 24tg + 245 + 2ty + Ly + fg <14 (4.3.31)

Step 2.6.8:

The monitor C; is computed for mPI, as follows:

Ho(Cg) =14

DCG == LmPle . DmPI5
_tl t2 t3 t4 t5 t7 t15 th tl7 tlB t19 -
1 -1 0 0 0 -10 0 O O O]|ps
o1 -1 0 0 O O O O O O]|p
0o 0 1 -1 0 0 O O O O O]fpg

De, :_[p§ %7 p28 p29 p215 p216 2175’18 00 0 1 -1 000 0 0 O0fp,

00 0 0 0 0 1-10 0 0]pg
00 0 0 0 00 1 -1 0 0]pg
00 0 0 0 000 1 -1 0]|p,
000 0 0 0 000 0 1 -1]p,

L ot ot b bt g L
Decg=[-2 0 0 0 2 2 -2 0 1 0 1]

Finally after applying the above algorithm, the net has only six merged place invariants

mPIl,, mPl,, mPl,, mPl,, mPl;and mPI, as shown in Egs. (4.3.6), (4.3.11), (4.3.16),
(4.3.21), (4.3.26) and (4.3.31).. These merged Pls and monitors computed are shown in Table
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4.8. When this set of reduced monitors Cy, Cz, C3, C4, Cs and Ce are added to the PNM given
in Fig. 4.3 the controlled model is obtained. It is verified that this controlled model is live,

with the same sub-optimal behavior, which has 3475 good states.

Table 4.8 The merged Pls and computed monitors.

Pli Ci |C Mo
mPl1=gu1 + 12 + 013 + 305 <3 Cl1 |t10, 3tl6 t7, 3t15 3
MPlo=gu1 + g0 + 2106 <2 C2 |19, 2t13 t7, 2t16 2
MPls=gp + 243 + 18<4 C3 | t4, 2t13 t3,t11,t12 | 4
MPla=pe+ w7 + 4pna + 4pny + pns <7 C4 ﬁ’g 418, 38, t1, 3t7, 4t17 | 7
_ 2t5, 2t13, | t3, t4, tl1,

MPls=pp +2u3 + g + 219 + 2405 + 21n6 <8 | C5 2117 112, 2t15 8
MPle=2us +2u7 + 28 + 2119 + 24115 + 2116 + c6 2t5, 2t7, t17, 211, 2115 14
2un7 + 2ng <14 t19

Table 4.9 compares original monitors computed by using an FBM variant method with

that of obtained by the proposed method. From the Table 4.9, it is clear to observe that the

number of control places obtained with the proposed method is as minimum as possible when

compared with the original monitors computed by using an FBM variant method.

Table 4.9 Performance comparison between the original monitors and the reduced monitors

obtained with the proposed method.

LES # monitors #arcs | #tokens | % permissiveness
Original monitors 13 61 36 64.41
Reduced monitors 6 59 38 64.41




CHAPTER 5

APPLICATION OF THE PROPOSED METHOD TO DIFFERENT
CLASSES OF PETRI NET MODELS FOR FMSS

5.1 INTRODUCTION

Petri nets have become one of the most powerful tools to handle deadlock problems in
flexible manufacturing systems (FMS). Different types of Petri net sub-classes proposed such
as S°PR, S*PR, SR, WS®PR, ES®PR, LS°PR etc [3]. All these types of Petri net sub-classes
are used to study deadlock problems in flexible manufacturing systems.

Three S®PR Petri net models are considered in the previous chapter to show the application
of the proposed method. This chapter shows the applicability of the method to other sub-

classes of Petri nets apart from the S®PR Petri nets considered in the previous chapter.

52 AN S*PR PETRI NET EXAMPLE

The S*PR Petri net model (PNM) of an FMS [31] is shown in Fig. 5.2, with a set of
control places computed by using the an FBM variant method [34]. The net has 25 places

and 19 transitions, there places can be considered to be the collection of p° ={Ps: Pizs Poots

PR :{plS' P1gs s pzs} and PA :{pll Poso P7y Posy Prgs Prgs Prgs o p17}- The net has
9378 reachable states in which there are 546 bad states and 8832 good states.

Control places (monitors) computed for this PNM shown in Fig. 5.1 are provided in
Table 5.1, together with their Pls. The controlled PNM obtained by including the eight
control places shown in Table 5.1 into the uncontrolled PNM shown in Fig. 5.1 is live and

can reach 8576 good states.
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Fig. 5.1. A Petri net model of an S*PR net [31].

Table 5.1. Place invariants and control places for the S*PR shown in Fig. 5.1.

FBM; Pl; Ci |°Ci Ci* Mo
pe =1, us =2 Uy + s < 2 Cl |t2,t7,t17 |t1,116 2
w=1, u7=2, =1 us+pu7 +uiz<3 C2 | t4,19,t15 | t3,18,t14 | 3
Me=Lpe=L e =1, fhetpstpet Wt s | ool g 49 115 | 12,17, 114 | 4
w=1msz=1 <4
Me=Lips=Lpe =1, fpetpatpe vt | oy | g 19 116 | 12, 17,115 | 4
pr=1,pms=1 <4
pi=1, p=1, us =1, w1+ p2+ p3+ pr+ s+ c5 t4, t7, t9, | t1, 18, 5
pr=1,pmi3=1 ms=1| ws<5 115, t17 114, t16
H]-: 11 sz 11 H3 = 11 Hl + HZ + HS + H7 + H14 + C6 t4| t7) tg’ tl t8 t15 5
=1, =1 ws=1] ps<5 t17 P
pi=1, pus=1, ue=1, w7 | 1+ p3+ we + p7 + paz + c7 t2, t4, 19, | t1, t3, 5
=1, m3=1,ws=1 pis <5 115, t17 114, t16
=1, ue=1, w6 =1, pu7 | po+ ps+ pe + p7 + pag + cs t2, t4, t9,

t1,t3,t15 | 5
=l pe=1 ms=1 ps <5 t17

67
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Step 1:
Possible place invariants that could be merged are identified as:
Z, ={Pl.,Pl,,PIl,, Pl.}

Z,={Pl,,Pl,,Pl,}

Step 2: (i =1, firstiteration).

In the first iteration, let us consider Z;.

Step 2.1.1:
The common intersecting elements among the place invariants Pl., Pl , Pl and PI,
are:
Pl. nPl;PI, NPl ={p,, P3, P7, Pis}
Step 2.1.2:
A tentative equation for a merged place invariant can be written as:

MPly = oy 1ty + 0y 1y + s fly + Olg g + Otz g + Oty + Ol flyy + Oy s S K (5.1.1)

Step 2.1.3:
Linear equations are established by using the co-efficients of possible place invariants

to be merged.

o, o, +a,+a, o, +as =k+1 (5.1.2)
o, +a,+a,+a, oy, o =k+1 (5.1.3)
o, +oas+o,+a, +a, o =k+1 (5.1.4)
o +a,+og+a, +oy, o =k+1 (5.1.5)

Step 2.1.4:

Linear relationships are established that exists among the unknown co-efficients of
place invariants to be merged.
By equating Egs. (5.1.2) and (5.1.3):

Oy +0, +0; +0; +OQ 3 Qs =0y T Ay, +0; 04 Ay 05

Gz =y (5.1.6)
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Also, by equating Egs. (5.1.3) and (5.1.5).
a, +0€2 +a3 +0£7 +al4 +0€15 =0 +0£3 +0€6 +a7 +0€14 +0£15
a, =a, (5.1.7)

Also according to the rule 3. o =0y =0; =0 (5.1.8)

Step 2.1.5:

Having obtained the linear relationships among the unknown co-efficients, a suitable
value is selected for the co-efficients in Egs. (5.1.6), (5.1.7) and (5.1.8). The possible values
to be selected should be the values of the cardinality of the elements in the place invariants

under consideration.
|pg| =4 and |p,|=4
Let oa;=a,=3
a,=0,=3
Accordingtotherule4. o, =a,=a,=a;;=4
Step 2.1.6:
Eq. (5.1.2) is used to find the value of k as:
o+, +a,+a, o, +as =k+1
4+3+4+4+3+4=k+1
k=21
Step 2.1.7:
Finally, the resulting merged place invariant mPl, is:
MPl, =444 +3p, + 441, +3pg + 411, + 314, + 31, +444. <21 (5.1.9)

Step 2.1.8:

The monitor c, is computed for mpi, as follows:

#(C) =21

Dc,=-L

mPl, - DmPll
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b ; b3ty b, te U b,
1-10 0-10 02020 0 0]p,
01 -1 0 0 0 00 O0 0 O0]lp,
P, D5 Pe PrPisPps|0 01 -1 0 0 0 0 0 0 0)p,
pe, -5 8 525 |0 0 0 0 1 1000 0 o D,
00 0 0 0 1 -1020 0 O0]lp,
00 0 0 0 0 0 1 -1 0 0]|pg
00 0 0 0 0 00 1 -1 0]|p,g,
00 0 0 0 0 0 0 0 1 -1]pg

Step 2: (i = 2, second iteration).

In the second iteration, let us consider Z».

Step 2.2.1:

The common intersecting elements between the place invariants Pl,, Pl, and PI, is

as follows:
Pl, nPl, nPl, ={p,, p,}
Step 2.2.2:
A tentative equation for a merged place invariant can be written as:
MPL, = o, 1ty + Aty + Qg Ll + Oyl + Oatlys + Ot <K (5.1.10)
Step 2.2.3:

Linear equations are established by using the co-efficients of possible place invariants
to be merged.
a, +20, +a,,=K+1 (5.1.11)

o, +a,+as+a, +a,,=Kk+1 (5.1.12)

a,+a,+og+a, +o, =k+1 (5.1.13)



Step 2.2.4:
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Linear relationships are established that exist among the unknown co-efficients of place

invariants to be merged.
By equating Egs. (5.1.11) and (5.1.12).

o, +20, ta;=0, to; +as+a, +a,

o, =a, +a,

Also, by equating Egs. (5.1.12) and (5.1.13).

Oy, +0; +0g +0;7 Ty =0y, +05; +0g +0; +0;

Q3 =0y
According to the Rule 3: a; =a,

Also according to the rule 5. o, >3

Step 2.2.5:

(5.1.14)

(5.1.15)
(5.1.16)

Having obtained the linear relationships among the unknown co-efficients, a suitable
value is selected for the co-efficients in Egs. (5.1.14), (5.1.15) and (5.1.16). The possible

values to be selected should be the values of the cardinality of the elements in the place

invariants under consideration.
|ps|=3 and |p,|=3
Let a,=as=2
a, =4
Accordingtotherule 4. o, =a, =4

Step 2.2.6:

By using Eq. (4.1.11), the value of k can be computed as:

o, +20, +a,,=k+1
4+8+3=k+1
k=14

Step 2.2.7:

Finally, the resulting merged place invariant mPI, is:
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MPl, =24, + 44, + 20 + 441, + 3145+ 3, <14 (5.1.17)

Step 2.2.8:

The monitor ¢, is computed for mP1, as follows:

Hy (Cz) =14

DCz == LmPl2 . DmPlz

1, t, t o lg bs bg _
1 -1 0 0 0 0 O O O]|p,
Fz Ps Ps Pz P13 Pis 01 -100 000 0jp,
De,=-[2 4 2 433]lp 0 0 1-100 0 0]p,
0 0 001 -10 O O0O]p,
0 0 0 0 0 0 1 -1 O |pg;
0o 0 0 0 0 0 0 1 -1jpy,

t2 t3 t4 t7 t8 t9 t14 t15 t16
Dc,=[-2 -2 4 -2 -2 4 =3 0 3]

Finally after applying the above algorithm, the net has only two merged place invariants
mPl, and mPI, one other place invariant as shown in Egs. (5.1.9) and (5.1.17). These merged
Pls and monitors computed are shown in Table 5.2. When this set of reduced monitors Cy,
C. and Cs are added to the PNM given in Fig. 5.1 the controlled model is obtained. It is

verified that this controlled model is live, with a near optimal behavior, which has 8576 good

states.
Table 5.2. The merged Pls and computed monitors.
Pl. and mPli Ci |'C C Mo
_ t2, 4t4,

MP11=4n + 3o + 4z + 3ue + 4+ 3z + 3pust 411, t3, t8,

Cl |t7,419, 21
4uns <21 4117 3t14, t16

4t4, 419, | 2t2, 2t3, 2t7,

MP1=20 + dpz+ 216 + 4+ 3103 + 311414 C2 3t16 218, 214 14
Pli=u1 + tns <2 C3 | t2,t7,117 | t1, t16 2
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Table 5.3 compares the original monitors computed by using an FBM variant method
with that of the proposed method. From the Table 5.3, it is clear to observe that the number
of control places obtained with the proposed method is as minimum as possible when

compared with the original monitors computed by using an FBM variant method.

Table 5.3 Performance comparison between the original monitors and the reduced monitors

obtained with the proposed method.

LES # monitors | #arcs | #tokens | % permissiveness
Original monitors 8 55 33 97.10
Reduced monitors 3 50 37 97.10

53 A G-SYSTEM PETRI NET EXAMPLE

The G-system Petri net of an FMS [32] is shown in Fig. 5.2, with the set of control
places computed by using anFBM variant method [34]. The net has 23 places and 18

transitions. There places can be considered to be the collection of P° ={p,,, p,;, Pz}

P :{pzz’ Pags p27}and Py :{p11 P2y s Pas Pes~+s Pa» Per =5 Pros Przs s Pags Pros
Pios  *y Pigs  Pizs Pigs--» Pi7 The net has 68531 reachable states in which there are 2131
bad states and 66400 good states.

Control places (monitors) computed for this PNM shown in Fig. 5.2 are provided in
Table 5.4, together with their Pls. The controlled PNM obtained by including the eleven
control places shown in Table 5.4 into the uncontrolled PNM shown in Fig. 5.2 is live and

can reach 62682 good states.



Table 5.4. Place invariants and monitors for the G-System net shown in Fig. 5.2.
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FBM; Pl; Ci °Ci C* Mo
p=2, na=2 pr+ s <3 Cl | t2,t6,t16 t1, t15 3
=1 =1, n3=3 p2 + we + piz < 4 C2 | t3,t7,t15 12,16,t14 |4
me=1ps=1ipe =1 po et petps tpzt | o3 1447 115 2,16, t13 | 5
=1, nz=2 piz <5

me=Lops=L =1 e e +pstw+pet| o, |ig 49 45 2,16, 113 | 5
=1, nz=2 piz <5

w=2,u7=1, n2=3 ps+ 7+ ue <5 C5 |[t4,18,114 t3,t7,t13 | 5
=22 =1, His | Ha ¥ M2 + Has + Hid | o5 | 4s 46 116 t1.t14 |6
=3, ms=1 <6

ML=2,pe =1, i |+ s ¥ s Y | oy | 7 116 114 |6
=3, us=1 <6

M= 2 ke = Lo =Lt ettt b og e e 1,13 |7
m2=1,p3=2,pa=1 | paz+pa <7

me=2pe = 1w =Lt ettt 0 548116 | 11,113 |7
mi2=1,p3=2,pa=1 | paz+pa <7

me=2 0 = 1ope = Lt st et et o0 Lo 14 17,116 | 1, 63,113 | 7
miz=1,p3=2,pa=1 | paz+pa <7

me=2 2 = Lo = Lkt w09 s 618 116 |1, (7, 113 | 7

m2 =1, p3=2,na =1

piz + pa <7
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pl6

114

Fig. 5.2. The simplified G-System net (PNM) from [32].

Step 1:

Possible place invariants that could be merged are identified as:

Z, ={Pl,,Pl4,Pl,, Pl }
Z, ={PI,,P1,,PI.}
Z,={Pl,,Pl.}

The same procedure of the previous examples are applied to the set Z,,Z, and Z,. The
net has only three merged place invariants namely, mPI , mPl, and mPI, together with the

remaining two place invariants (i.e. place invariants that could not be merged with any given

place invariant in Table 5.4).
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These merged Pls with two other place invariants (Pl,and Pl,) and monitors

computed are all shown in Table 5.5. When this set of monitors Cy, C,, C3, Cs4 and Cs are
added to the PNM given in Fig. 5.2 the controlled model is obtained. It is verified that this

controlled model is live, with a near optimal behavior, which has 63859 good states.

Table 5.5. The merged Pls and computed monitors.

Pli and mPli Ci °Ci G Mo
— 2t4, 2t8,
MP1=20 + 23 + 2 + 247 + 3102 + 314 <14 C1 3t15 2t2, 2t6, 3t13 | 14
MPL=241 + 1+ 15 + 2pn5+ 241012 c2 t22t'1é3' ®, . | 11, 2t14 12
MPIs=4 + 20 + 23+ 26 + 2407 +4 1012 +4 1113 + 2t2, 2t4, 2t6,
411427 C3 218, 4116 4t1, 4t13 27
Pli=pn + 104 <3 C4 | t2, t6, t16 t1, t15 3
Plo=10+ pe + 3 <4 C5 | t3,17,115 12, t6, t14 4

Table 5.6 compares the original monitors computed by using an FBM variant method
with that of the proposed method. From the Table 5.6, it is clear to observe that the number
of control places obtained with the proposed method is as minimum as possible when

compared with the original monitors computed by using an FBM variant method.

Table 5.6 Performance comparison between the original monitors and the reduced monitors

obtained with the proposed method.

LES # monitors | # arcs | # tokens | % permissiveness
Original monitors | 11 63 62 94.40
Reduced monitors | 5 55 60 96.17

54 AN S’R PETRI NET MODEL EXAMPLE

The S*R Petri net model of an FMS [33] is shown in Fig. 5.3, control places (monitors)

are due to an FBM variant method [34]. The net has 23 places and 18 transitions. There places
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can be considered to be the collection of Py ={p,, ps, Pz}, Pz ={Pis Pg -+ P2} and

P, ={P,, P3, P4s Pgs-**» Pios Pusr-++» P17 }- The net has 19300 reachable states in which there

are 935 bad states and 18365 good states.

Control places (monitors) computed for the PNM shown in Fig. 5.3 are provided in
Table 5.7, together with their Pls. The controlled PNM obtained by including the eleven
control places shown in Table 5.7 into the uncontrolled PNM shown in Fig. 5.3 is live and

can reach 17101 good states.

t5'I:| t18
p20 /

p6 p17

o N
21

p8 b /

pl6

P13y

_TD 6 |:|
| |us (8

p7 O
N

A

p9 () p19 9 plo

p15

é> A\ & é\@/é
4_/ u e

Fig. 5.3. An S*R Petri net model (PNM) from [33].



Table 5.7. Place invariants and monitors computed for the S*R net shown in Fig. 5.3.

FBM; Pl; Ci °Ci Ci* Mo
=2, 3=1 Mo+ 3 <2 Cl |t3 tl 2
Mg =2, tus =2 g + s <3 C2 | 19,116 t7, 115 3
H10 =2, pia =2 Mo+ s <3 C3 | tl1,t15 19, t14 3
oy ;11 o Lous | ot o+ s+ ms <4 |C4 |16,19,t17 |t5,t15 |4
o= ; o Lot b st g+ s <4 | C5 |13,19,t16 | tL, (7,115 | 4
H2 1: j{ ”j; Lo | b st ot e <4 | C6 |31 H5 |t 19,114 | 4
He =2, pno=1, pna <5 | C7 |t11, 116 t7,t14 |5
=2 ms=1 Mg + pno + pua + pus <5 , ,

=1, 3=1, yo po + 3+ s+ 7+ s

=1, =1 s = C8 [13,18,19,t17 |t1,t5,t15 | 6
1, s =1, pug=1 |+ Has+ 6 <6

Mo =1, 41 =1, 8 | yg + g1y + pg + puo + s

=1, mo=1, nsa = C9 |8, t11,t17 t5, t14 7

2, s =1, ne =1

+ s+ pne <7

Step 1:

Possible place invariants that could be merged are identified as:

Z, ={PI,,Pl,}
Z, ={PI,,Pl.}
Z,={Pl,,Pl}
zZ,={PI1,,Pl;}
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The same procedure of the previous examples are applied to the set Z,,Z, Z, and Z,.
The net has only four merged place invariants namely mPI,, mPI,, mPI, and mPI, together

with the remaining one place invariant (i.e. place invariant (Pl ) that could not be merged

with any given place invariant in the set).

These four merged Pls with one place invariant and monitors computed are all shown
in Table 5.8. When this set of monitors Cy, Cz, Cs, C4 and Cs are added to the PNM given in
Fig. 5.3 the controlled model is obtained. It is verified that this controlled model is live, with
17244 good states.

Table 5.8. The merged Pls and computed monitors.

mPli+Plg Ci 'C c Mo

mPl1=ug + 3n0 + 34 + puus <11 C1 | 3t11, 2t15,t16 | t7, 2t9, 3t14 | 11

MP12=3up + 33+ o + p14<8 C2 3t3, t11, t15 3t1, 9, t14 8

MPlz=p0 + 13 + 218 + 24115 <7 C3 t3, 219, 2t16 | t1, 2t7,2t15 | 7

MPls=g2 + 3 + 3us + 7 + s+ 3pus + ca t3, 2t6, t8, 3t9, {1, 3t5, 3t15 | 14
<14 3t17

Plo=ue + 17 + pg + pno +ina+ tns <7 C5 t8, t11, t17 t5, t14 7

Table 5.9 compares the original monitors computed by using an FBM variant method
with that of the proposed method. From the Table 5.9, it is clear to observe that the number
of control places obtained with the proposed method is as minimum as possible when

compared with the original monitors computed by using an FBM variant method.

Table 5.9 Performance comparison between the original monitors and reduced monitors

obtained with the proposed method.

LES # monitors | # arcs | # tokens | % permissiveness
Original net 9 43 38 93.11
Reduced net 5 54 47 93.89




CHAPTER 6

CONCLUSIONS

In this thesis, a new method has been proposed for reducing the structural complexity
of a given Petri net based Liveness-enforcing supervisor of an FMS suffering from deadlocks.
It is assumed that an uncontrolled PNM of an FMS suffering from deadlocks is given together
with a liveness-enforcing supervisor consisting of a set of monitors and their place invariants
(PI1s). Then the proposed structural complexity reduction algorithm considers the Pls from
which some of the Pls are merged based on some criteria. From the merged PIs new set of
monitors are computed. Experimental studies show that the number of monitors are greatly
reduced while maintaining the same or better behavioral permissiveness compared with the

ones obtained with the original liveness-enforcing supervisor.

The proposed method requires solving some simple linear equalities. Therefore it is
computationally simpler than the methods currently available in the literature. It is shown
that the proposed method is not confined to a sub-class of Petri nets. Therefore it is applicable
to reduce the structural complexity of Petri net based supervisors of all Petri net classes

currently available in the literature.

The main assumption of the proposed method is that the given liveness-enforcing
supervisor must be computed by using an FBM variant method. Therefore further studies are
necessary to extend the proposed method in order to reduce liveness enforcing supervisors

computed by using other synthesis approaches.
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