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Supervisor: Prof. Dr. Murat UZAM 
 

 

 

ABSTRACT 

 

 

Many works have been carried out for the study on deadlock prevention (liveness-enforcing) 

in flexible manufacturing systems (FMS). Petri nets have been used as a tool to enforce 

liveness in FMS so as to make deadlocks impossible to occur. Behavioral permissiveness, 

computational complexity and structural complexity are three criteria to evaluate the 

performance of a liveness-enforcing Petri net supervisor for FMSs. The reduction of 

structural complexity involves the reduction of the number of control places (monitors) in 

liveness-enforcing supervisors. Currently there are some important results in the literature to 

solve this problem. However, to obtain structurally simple monitors, one has to pay a high 

computational price. In this study a new method is proposed for obtaining structurally simple 

monitors with a reasonable computational effort via establishing linear relationships that 

exist between the place invariants. Structurally simple monitors obtained by the method 

proposed here provide optimal or near optimal behavioral permissiveness. The applicability 

of the proposed approach is shown by means of several examples for different classes of Petri 

nets.  

Keywords: Merged place invariants, Deadlock, flexible manufacturing systems (FMS), Petri 

nets. 
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ESNEK ÜRETİM SİSTEMLERİNDE CANLILIK SAĞLAYICI 

GÖZETİCİLERİN YAPISAL KARMAŞIKLIĞININ 

AZALTILMASI ÜZERİNE BİR ÇALIŞMA 
 

Muhammad BASHIR 

 

Yüksek Lisans Tezi – Elektrik ve Bilgisayar Mühendisliği 

 

Haziran 2014 

 

Tez Danışmanı: Prof. Dr. Murat UZAM 

 

ÖZ 

 

Esnek üretim sistemlerinde (Flexible Manufacturing Systems – FMS) kördüğümün 

önlenmesi (canlılık-yürürlüğe koymak) amacıyla şu ana kadar pek çok çalışma yapılmıştır. 

Petri ağları FMS’te kördüğüm oluşumlarını imkansız hale getirmek için canlılık sağlamak 

üzere kullanılan bir araçtır. FMS’lerde canlılık-sağlayan bir Petri net denetçisinin 

performansını değerlendirmek için kullanılan üç kriter davranışsal serbestlik, hesaplama 

karmaşıklığı ve yapısal karmaşıklıktır. Yapısal karmaşıklığı azaltma, canlılık-uygulayıcı 

denetçilerdeki kontrol mevkilerinin (monitörlerin) sayısının azaltılmasını içerir. Şu anda bu 

sorunu çözmek için literatürde bazı önemli sonuçlar vardır. Ancak, yapısal olarak basit 

monitörler elde etmek için yüksek hesaplama bedeli ödemek zorunludur. Mevki değişmezleri 

arasında doğrusal ilişkiler kurulması yoluyla makul bir hesaplama çabasıyla yapısal olarak 

basit monitörler elde etmek için bu çalışmada yeni bir yöntem önerilmiştir. Burada önerilen 

yöntem ile elde edilen yapısal olarak basit monitörler, optimum veya optimuma yakın 

davranış serbestliği sağlarlar. Önerilen yaklaşımın farklı Petri ağı sınıflarına uygulanabilirliği 

çeşitli örneklerle gösterilmiştir. 

Anahtar Kelimeler: Birleştirilmiş mevki değişmezleri, Kördüğüm, Esnek üretim sistemleri, 

Petri ağları. 
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CHAPTER 1 

 

INTRODUCTION 

 

 
In today’s world, the economic situation of a country depends on the diversified 

products contributed to the world market, which is due to revolution of modern industry. For 

a particular country to involve a transaction with the modern world market, different kinds 

of diversified products could be contributed to compete with other countries. This can be 

achieved by replacing an old style fixed hardware sequential system with flexible 

manufacturing systems (FMSs) which can easily make change to the product design by 

configuring a supervisory controller [10].  

 

An FMS usually consists of two main parts; a physical system which includes resources 

(such as machines, robots and a transportation system) shared by several jobs. A management 

system or decision making system responsible for the control of the physical system to 

achieve their goal of productivity and works-in-process level [10]. 

 

1.1 AIMS AND SCOPE OF FLEXIBLE MANUFACTURING SYSTEMS (FMSS) 

Flexible manufacturing has been introduced primarily to achieve some certain 

objectives. These objectives include: decreasing the lead time (i.e. Speed-up the production), 

increased machined utilization, improved reliability of the system, increased quality of the 

product, increased profitable investment and reduced damage of the product by the systems. 

However, due to the high utilization of resources in the flexible manufacturing system results 

in the high competition of resources for different jobs. These competition causes the causes 

the occurrence of deadlock which might upset the advantages of FMSs [10] 
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1.2  CONDITION FOR DEADLOCK TO OCCUR  

 Deadlock is an important issue to be considered in design and control of flexible 

manufacturing systems, since their occurrence causes a lot of damage to the system or might 

halt the whole system from the operation [5]. In general, Coffman have formulated four 

necessary conditions for a deadlock occurrence, which are popularly known as Coffman 

conditions [3], [6], [12]: 

1) Mutual exclusion condition: a resource can only be used by one process at a time. 

2) Hold and wait condition: processes that use some resources may need another new 

resource. 

3) Non-preemption condition: it is not feasible to remove a resource that is held by a 

particular process, but a process can only release a resource by an explicit action of that 

process. 

4) Circular-wait-condition: when two or more processes form a circular chain where each 

process waits for a resources that the next process in the chain holds. 

 

 

1.3   TOOLS USED TO DEAL WITH DEADLOCK 

Many tools have been developed to deal with deadlocks in FMSs [2], [4], [6], [24]. 

Petri nets, automata and graph theory are the three main tools. In this study we are concerned 

with Petri net based tools. Petri nets become most essential tools for the study of deadlocks 

in an FMS. This is due to the fact that they possesses FMS characteristics such as conflicts, 

concurrency, and casual dependency [8], [28]. Petri nets are widely used in so many areas 

such as computer and communication networks, manufacturing systems, and automation 

systems [4], [5]. Generally there are four Petri net based strategies to handle deadlocks in 

automated manufacturing systems [6], [12], [19], [26], [28]: 

1) Deadlock ignoring, 

2) Deadlock detection and recovery,  

3) Deadlock avoidance, 

4) Deadlock prevention. 
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Deadlock ignoring: in this case, the occurrence of deadlock is ignored due to the 

negligible amount of probability of their occurrence. Deadlock detection and recovery allows 

the occurrence of deadlocks, but as soon as the system detects the occurrence of that deadlock 

the system can be recovered back to its normal position by simply reallocating the resources 

[6], [11], [14]. Deadlock avoidance determines the possible system evolution at each system 

state using an online control policy and chooses the correct system evolution [1], [6], [23]. 

Deadlock prevention is usually achieved by using an off-line computational mechanism to 

control the request for resources to ensure that deadlocks never occur. Monitors (control 

places) and related arcs are added to the Petri net model of the system to realize such a control 

mechanism [2], [3], [5], [6], [11], [28]. 

Deadlock prevention policies are widely used due to their advantages that the 

computational mechanism is obtained off-line and once and for all, i.e. deadlocks are totally 

eliminated. Once deadlocks are eliminated, the system can never enter a deadlock state.  

 

 

1.4 PERFORMANCE EVALUATION FOR DEADLOCK CONTROL POLICY 

The performance for deadlock prevention is evaluated based on the following criteria 

[5]: 

1) Behavioral permissiveness,  

2) Structural complexity,  

3) Computational complexity.  

A maximally permissive supervisor usually leads to sufficient usage of system 

resources [4], [5], [6]. A supervisor with the minimal number of control places can decrease 

both hardware and software cost in the stage of validation and implementation [24]. A 

deadlock control policy with low computational complexity means that it can be applied to 

complex systems [6], [7]. 
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1.5  PETRI NET BASED DEADLOCK ANALYSIS TECHNIQUES 

There are mainly two PN based analysis techniques used for the study of deadlocks: 

[5], [7], [20], [24], [27], [28]:   

1 Structural analysis, 

2  Reachability graph analysis.  

In the structural analysis, Petri net components, namely siphons and resource 

transition circuits, are used. Their computation would usually lead to suboptimal behavior of 

FMS, but the control policy is simple. To prevent siphons from being insufficiently marked, 

some control places and related arcs are added to their places within the siphons [6], [11], 

[18]. The number of siphons grows exponentially with the size of the net. In [11] and [12], 

elementary siphons based approaches were proposed to reduce the number of siphons 

growing within the complex FMS. However that concept does not provide a maximally 

permissive behavior. In [14] another concept of avoiding the complete enumeration of 

siphons was developed, which is an improved method due to the reduced time computation. 

In [15] another concept was developed for selective siphons control. The relations between 

uncontrolled siphons and critical markings are identified and a set of siphons is selected by 

solving a set covering approach for each iteration, the method provide a maximally 

permissive behavior of Petri net modeled. But it suffer from computational complexity. 

The reachability graph (RG) analysis enables one to check certain properties of 

flexible manufacturing systems (FMS), i.e., liveness, boundedness, synchronization, 

concurrency and safeness [13], [25]. On the other hand, the RG analysis requires the 

evaluation of a complete or partial enumeration of reachable states. Therefore, it suffers from 

the state explosion problem. The theory of regions was developed in [20] as one of the 

powerful methods of deadlock prevention for deriving a maximally permissive supervisor. 

However, it is computationally expensive by considering too many inequality constraints 

[25]. In [21] another policy was developed, which divides the reachability graph into two 

parts as a live zone (LZ) and a deadlock zone (DZ). The idea is to find the first met bad 

marking (FBM) from the LZ. However the method is an iterative procedure in which at each 

iteration an FBM is controlled by adding a control place. The iterations are repeated until the 

Petri net model is live.  The method does not guarantee maximally permissive behavior.  In 
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[24] a RG based method that leads to a maximally permissive liveness supervisor was 

proposed, where a control place is designed to forbid an FBM, it keeps all legal markings by 

solving very complex integer linear programming problems (ILPP). Since the method is very 

complex, a vector covering approach is developed to reduce the sets of legal markings and 

FBMs by partitioning them into two sets: a minimal covering set of legal markings and a 

minimal covered set of FBMs. The two sets are the ones considered for designing a 

supervisor. However, the method suffers from structural complexity problems. The method 

was later improved by finding the minimal number of control places in [3]. 

Currently, one of the available methods to reduce the structural complexity of a live 

Petri net model in the literature was developed in [36]. The method is an iterative procedure 

aiming to overcome the structural complexity and to ensure that the live Petri net model has 

a maximally permissive behavior if it exist. The method utilized the used of reachability 

graph analysis. A vector covering approach is used to compute the minimal covering set of 

legal markings and the minimal covered set of FBMs. Then, at each iteration a control place 

is design to reduce as many FBMs as possible.  The co-efficients of the PI are computed 

using integer linear programming problem (ILPP) that ensured the two conditions stated as 

(i) no marking in the minimal covering set of legal marking are prohibited. (ii) the objectives 

functions maximizes the number of FBMs that are forbidden by the PI.  

In [35], another method was developed for merging two or more siphons for reducing 

the structural complexity of a live Petri net model. It provide a maximally permissive 

behavior without using reachability graph or solving integer linear programming problem 

(ILPP), whereas it relied on the concepts of siphon based control.  The method proposed that 

two or more siphons can be merged if their forbidden sets of makings can be enforced by the 

same linear invariant constraint. The method is an iterative procedure and it utilized the used 

of solving first-order equations with the following conditions to be satisfied: (i)  a siphon 

may have a number of FMs. Only one is selected so as to make others forbidden. For this 

selected marking, the linear constraint is set to a constant k to become a linear-first order 

equation.  (ii)  a siphon may have a number of live markings. Only one is selected so as to 

make others not forbidden either. For this selected marking, the linear constraint is set to a 

constant k−1 to become a linear first-order equation.  
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In this study, a new method is proposed to reduce the structural complexity in PN based 

liveness-enforcing supervisors of FMS. The proposed method is structurally and 

computationally simple and can be applied to complex FMSs modelled with different classes 

of Petri nets. Some examples are provided to show the significance for the proposed method. 

The proposed method makes use of the reachability graph analysis. The major contribution 

of this study is to reduce structural complexity of live Petri net model. 

The remainder of this thesis is organized as follows. Some basic concepts of Petri nets 

are provided in chapter 2. In order to reduce the structural complexity of a given liveness-

enforcing supervisor an algorithm is proposed in chapter 3. Applications of the proposed 

method to three S3PR Petri net models are provided in chapter 4. Applications of the proposed 

method to some other Petri net classes such as S4PR, G-system, S4R are also considered in 

chapter 5. Finally conclusions are given in chapter 6. 
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CHAPTER 2 
 

BASICS OF PETRI NETS 
 

 

 

2.1 DEFINITION OF PETRI NETS 

 

A Petri net N is a four-tuple (P,T,F,W) where P and T are finite and non-empty sets. P 

is a set of places and T is a set of transitions with TP  and .TP  

)()( PTTPF   is called a flow relation of the net, represented by arcs with arrows 

from places to transitions or from transitions to places. Places are represented by circles while 

transitions are represented by bars or square boxes.  )()( : PTTPW ℕ is a mapping 

that assigns a weight to an arc: 0),( yxW  ,),( if Fyx   and ,0),( yxW  otherwise, where 

TPyx ,  and ℕ is the set of non-negative integers. N=(P,T,F,W) is called an ordinary 

net, denoted as N=(P,T,F), if .1)( ,  fWFf  

p2

t1

t2

p3

t3

p10

p9

p7

p6

t8

t7

t6

.

.p1

p4

t4 t5

p5

p8

p11.

3 3

 
                               Fig. 2.1. A Petri net example. 
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Example 2.1  

 

In Fig. 2.1, we can define the net as,  

},,,{ 1121 pppP   

},,,{ 821 tttT   

)},(,),,(),,(),,(),,{( 11532222111 ptpttppttpF   

1),(or     1),(   , ,  ptWtpWTtPp . 

 

The places in a Petri net model of an FMS, as the one shown in Fig. 2.1, can be 

partitioned into three parts namely process idle places )(
0

P , activity places )( AP  and 

resource places )( RP . In Fig. 2.1, we have },,{ 81

0 ppP   } ,  ,,{ 731 pppPA   and 

},,{ 11109 pppPR  . 

 

2.1.1 Definition 1:  Preset and Postset  

 

Let TPx   be a node in .(P,T,F,W)N   The preset of ,x  denoted by ,.x is defined 

as }),/({. FxyTPyx   and the postset of x , denoted by  ,.x is defined as

}),/({ . FyxTPyx  . Generally, for a set of node X, we have  

                                               X         and          X  ..
XX

.. xx
xx




     

 

x
ix

xxx

xxxxxxx

xni

n

n

.
    xas written be alsocan  and   X                              

  X                              

 then,}, ... ,,,,,,{X      if                      
 is,That 

x} , ,2,1{

21

654321

..
....














     

 

 

 

Example 2.2 

 

In Fig. 2.1, we can compute the Preset and Postset of some transitions and places as follows: 

 

 

 

 

 

 

}{t },     pp{p} ,   t{t },     p{pt

} {t p},    p{pt} , {t p},   p{pt
....
....

339322221

23102212911

,

,,




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2.1.2    Definition 2: Marking 

  

A marking (m) of a Petri net ),,,( WFTPN   is a mapping from P to ℕ where ℕ =

},  2, ,1 ,0{   and m is a vector of a dimension (1x 𝑛) where 𝑛 is the size of places in the net. 

Using Fig. 2.1, by redefining Petri net as a marked net or net system with ),,( mN where 

).,,,( WFTNN   

 

2.1.3 Definition 3:  Enabled Transition 

  

Let Tt  be a transition in  ) , , ,( WFTPN  at a marking m. Transition t  is said to 

be enabled ). ,()( ,  . tpWpmtpif   

 

Example 2.3 

 

In Fig. 2.2(a), according to Definition 3, t  is not enabled as condition three is not 

satisfied.  

) ,()(                         3) ,(                2)(
) ,()(                         2) ,(                2)(

) ,()(                          1) ,(                 1)(

} , ,{
1

133133

122122

11111
1

321
.

tpWpmtpWpm
tpWpmtpWpm

tpWpmtpWpm

pppt








 

 

It is clear that )( 1pm  and )( 2pm  satisfy but )( 3pm  does not satisfy the enabling 

condition. Hence 1t  is not enabled in Fig. 2.2(a).  

 

p1 p2 p3

2 31 21
1

2  3

t1

p4 p4

t1

2
1

2 3

p1 p2 p3

 
     (a)                           (b) 

            Fig. 2.2.  A Petri net model (a)  1t  is not enabled,   (b)  1t  is enabled. 
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By considering Fig. 2.2(b), according to the Definition 3, 

  

) ,()(                         3) ,(                4)(
) ,()(                         2) ,(                3)(
) ,()(                          1) ,(                 2)(

} , ,{

133133

122122

111111

3211

.

tpwpmtpWpm
tpwpmtpWpm
tpwpmtpWpm

pppt







 

 

)( ),( 21 pmpm  and )( 3pm  all satisfy the enabling condition and thus 1t  is enabled.  

 

2.1.4      Definition 4: Firing rule 

 

          An enabled  t can fire, leading to a new marking  ,m i.e, ,Pp  

),()()( ptWpmpm  ).,( tpW  In Fig. 2.3, 11)( cpm  , 22 )( cpm   and .)( 3 dpm   

Transition t  is enabled when 11 ac  and 22 ac  . Then according to the Definition 4, 

111 -)( acpm  , 222 -)( acpm   and 13 )( bdpm  . The reachability set of 

,),( as  denoted  ),,( 00 mNRmN  is the set of reachable markings from the initial marking .0m  

Note that in order to represent the number of tokens in a place the symbol ''  is also used 

widely. For example )( 1pm  represents the number of tokens in place .1p  Instead, the same 

is also represented by .1  

 

c1

c2

d

t

p1

p2

a1

a2

b1

 
                                                  Fig. 2.3.  A generalized Petri net. 

 

 

2.1.5      Definition 5: Boundedness  

 

           A place  kmNRmifPp   ),,(   bounded be  tosaid is 0 ℕ .)( ),0( kpmk   

A Petri net is said to be k-bounded if the number of tokens in each place does not exceed a 

finite number ‘k’ at every reachable marking. 
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..

t2

t1

p2p1

t2

p2
p1

t1

.
2

 
                                             (a)                                                    (b) 

                            Fig. 2.4 (a) Bounded net example and  (b) Unbounded net example.    

         

            Fig 2.4(a) shows a typical example of bounded net in which the number of tokens in 

circulation are constantly maintained. In Fig. 2.4(b), the reachability graph the of net keeps 

expanding and it can never be terminated. Hence we can conclude that it is unbounded. 

 

2.1.6      Definition 6: Safeness  

 

         A place 1)(    ),,(   safe be  tosaid is  0  pmmNRmifPp . A Petri net is said to be 

safe if all of its places are safe. A place ‘p’ is safe if it contains no more than one token.  

 

2.1.7      Definition 7: Liveness 

 

         Let Tt  be a transition in ).,( 0mN  Transition t  is said to be live 

),,(),,( 00 mNRmmNRmif   such that ),(  .[ 0mNtm   is live tTtif  ,   is live. A 

transition is said to be live if for all markings of the Petri net there is a firing sequence, which 

takes the net to a marking, in which the transition is enabled. 

 

2.1.8      Definition 8:  Deadlock 

 

         N  is dead under 0M  iff  ∄ ,Tt  M0[t> holds. t is not enabled. A deadlock is usually 

an undesirable condition that when occurring, it blocks the whole or a part of the running 

processes. It might also cause a catastrophic result such as long downtime and low utilization 

of resources. Another idea is deadlocks-freeness, in which some transitions are firable while 

some are totally dead. Fig. 2.5 shows all these three cases. 

 

 



12 
 

 
 

2.2 MATHEMATICAL TREATMENT OF PETRI NET USING LINEAR 

ALGEBRA 

 

 

2.2.1 Definition 9:  Incidence matrix 

 

       Let ),,,( WFTPN   be a net system. Its incidence matrix, denoted by ],[ N  is the 

matrix of size TP     with W(p,t)W(t,p)p,tN )]([ , where P  is the cardinality of 

TP   and   is the cardinality of .T  However ][N can be divided into two matrices as  

    ,][][][   NNN  

   ][  where N is the integer matrix of directed inputs arcs. 

    ][ N  is the integer matrix of directed outputs arcs. 

.

p1

t1

t2

p2

t3

p5

p6

p4

p3

t6

t5

t4

p1

t3

p3

t1

p2

t2

t4 t4

t1 t2 t1t2

p1 p2

t1

t2

t4

p3

t3

p4
p5

. . .
.

.

.

t3

t3

t6

t6

t1 t4

t2

t1 t4

t5t1t4

m0

m1 m2

m3

m4

m5

m6 m7
deadlock state

m0

m1 m2

m1

m0m2

t3

 

(a)                                              (b)                                                 (c)                                                                                                                                                   

                  m0=p1+p4+p5                         m0=p5+p6,   m5=p4+p5                            m0=p1 

                  m1=p2+p4                                m1=p1+p5,    m6=p1+p2                           m1=p3 

                  m2=p1+p3                                m2=p3+p6,    m7=p3+p4                           m2=p2 

                                                                  m4=p1+p3 

 

Fig. 2.5. (a) a live Petri net, (b) Deadlock in a Petri net system and (c) A deadlock free Perti 

net (live locked Petri net).  
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The incidence matrix of the Petri net shown in Fig. 2.5(b) is as follows. 
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6

5

4
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654321

110011
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110000
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000011

][][][  Hence,

                                                                            

p

p

p

p

p

p

NNN

 tttttt



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
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




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

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
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
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

   

Due to the flexibility of Petri nets as a mathematical tool, it is possible to develop a 

software package to simulate the behavior of an FMS. 

 

2.2.2 Definition 10: Firing sequence 

 

  Let  be a transition sequence. Then the parikh vector of , denoted by 𝜎⃗, is given as 

 𝜎⃗ =  )],(#,   ),(#),([# 21 nttt   and ,nT  where # (ti) denotes the number of 

appearances in the sequence  .    

By considering the net system shown in Fig. 5(b),  Tm

pppppp

001100

                

7

654321


. Hence, the 

firing sequence and parikh vector corresponding to that marking are given as 454 ttt  and 

 𝜎⃗ =
].012000[ 

                654321 tttttt
 The advantage of parikh vector is that any marking can be found 

given an incidence matrix and the initial marking as  

                               

   ].[0 Nmm  𝜎⃗                                                 ……………………………  (2.1) 
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By considering Fig. 5(b), we can prove Eq. (2.1) by using the incidence matrix and the initial 

marking are given as   

                     
  

110011

011110

110000

011000

000110

000011

][  

       t    t     t    t      t    t          
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0
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To find the new marking 7m  using  𝜎⃗ =  T012000 , we have 
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 Tm 0011007  .   Hence, we prove it as given above. 

 

2.2.3 Definition 11:  Place invariant 

 

A P-vector is a column vector L: P ℤ, denoted by P.  P, L(p)p ℤ and a P-vector 

L is a place invariant if L  ,0][L   and 0 T TN  where ℤ={…, -2, -1, 0, 1, 2, … }. The major 

advantage of a place invariant (PI) is to keep the capacity of tokens to be in circulation within 

it. In Fig. 2.1, the PIs and their supports are, 
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2.2.4 Definition 12: T-invariant 

 

A T-vector is a column vector TH : ℤ, denoted by T.  )(  , tHTt ℤ and a T-

vector H  is the transition invariant .0 and   0][  HHNif  By considering a T-vector, its 

advantage is to return to the initial marking from a certain marking. In Fig. 2.1, the T-vectors 

are:  
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However, since [ .   ,0 ]  HHN  By considering the equation above, we have 

 HHNmm      where][                                         0  

  Hence, 0 mm   

 

2.2.5 Definition 13:  Siphons 

 

Let  PS   be a non-empty set of places. S is called a siphon if 
.. SS  , where  

                                     S         and          S ....
ss

pp
pp




  

A siphons is a set of places, which remains permanently unmarked once the all tokens 

are lost. When this occurs, the transitions associated with the siphon are permanently 

disabled. For this reason siphons are extensively studied in the literature [15]. Siphons play 

a very important role in deadlock prevention due to their feature related to a deadlock. All 

existing PI satisfy the definition of siphons but there are marked siphons. By considering the 

net in Fig. 2.1, let us check whether 321  and , SSS  are siphons or not.   

                                                
},,{
},{

},,{

11,10743

11,10,642

11,109,741

ppppS
ppppS

pppppS



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We have 

                               

siphon. a is   and   Therefore 
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siphon.  anot  is  and   Therefore 
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ttttttppppS
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However, an emptied siphon is the one that cause deadlocks (dead transitions). For that 

reason siphons are classified into minimal siphons and strict minimal siphons. A siphon is 

said to be minimal if there does not exist a siphon contained in it as a proper subset. While a 

siphon is said to be strict minimal if it is minimal and does not contain a marked trap. A strict 

minimal siphon is denoted as SMS for short [7]. However, among the strict minimal siphons 

they are still divided into essential siphons and dominated siphons. Hence only essential 

siphons get emptied and need to be controlled to avoid deadlock occurrence. To control 

siphons, a complementary set of a  siphon is evaluated, which stands as place invariant for 

that siphon.  

A complementary sets of emptiable siphon is defined as a set of places (set of places 

that steal tokens from the siphon) that when added to the structure of emptiable siphon, it 

completes the number of place invariants formed by that emptiable siphon. The 

complementary sets of emptiable siphons are used as place invariants to control the emptiable 

siphons from losing all its tokens. Hence it prevents the siphon from being unmarked. 

Example:  

To illustrate the structure of emptied siphons and to show the computation of their 

complementary sets, the Petri net model shown in Fig. 2.6 is considered. This model has six 

siphons three of which can be unmarked. As shown in Fig. 2.7, the emptiable siphons are 
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},,,,{ 987631 pppppS  , },,,{ 98532 ppppS   and },,,{ 87623 ppppS   with their 

corresponding complementary sets },,,{][ 54211 ppppS  , },{][ 422 ppS   and 

},{][ 513 ppS  , respectively. 
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              Fig. 2.6. A Petri net example. 
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              (a)                                 (b)                                     (c) 

Fig. 2.7 (a) Siphon 1S  and its complementary set ][ 1S . (b) Siphon 2S  and its complementary 

set ][ 2S .  (c) Siphon 3S  and its complementary set ][ 3S . 

 

2.2.6 Definition 14: Control Depth Variable  

The controlled depth variable is defined as the least number of tokens that place 

invariants can hold obviously is equal to or greater than 1 to achieve a control purposed 

[12]. It is represented by the symbol .  
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CHAPTER 3 

 

THE PROPOSED ALGORITHM FOR STRUCTURAL COMPLEXITY 

REDUCTION OF LIVENESS-ENFORCING SUPERVISOR 

 

In this study, the aim is to develop a method that would generate a maximally 

permissive behavior or near-optimal behavior with a minimal supervisory structure, i.e., a 

supervisory structure that has fewer number of control places and directed arcs. The major 

advantages of generating fewer number of control places and fewer number of arcs are stated 

as follows [36]: 

i) It reduces the cost of implementation and validation drastically in a flexible 

manufacturing system due to the use of a very compact supervisor. 

ii) It reduces the running costs of daily maintenance for the plant of flexible 

manufacturing industries because of the less number of monitors to be controlled. 

iii) It also reduces the time taken for a particular product to be produced as a result 

of a small number of a controller to be used. 

 

In our study, the idea is to compute the set of control places for a particular net using a 

first-met bad marking (FBM) based method. The control places computed are the objective 

constraint that would be reduced to a number as minimum as possible. The main idea is to 

identify the place invariants that should be merged to form a resultant place invariant.  A 

linear relationship is built up among the sets of place invariants that have been identified to 

be merged. A systematic approach would follow to reduce these sets of control places to be 

possibly minimum which has the same behavior with the original sets of control places. 

 

Two or more place invariants can be merged together if they have a common 

intersecting elements between them. This stands as a core condition. However, there are some 
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supporting conditions that play very vital role for merging two or more place invariants 

named as subsidiary conditions. These subsidiary conditions are: (i) structural orientation of 

place invariants and (ii) the initial number of tokens of place invariants. 

 

Let us explain these two subsidiary conditions. Consider a Petri net model with two 

processes A and B running in an opposite manner with shared resources between them. 

Process A has an elements of 5432  and ,,, pppp  and are connected consecutively, while 

process B has an elements of 10987  and ,,, pppp which are connected in a consecutive 

manner. Assume that the place invariants are given as follows: 2721  PI , 

2822  PI  and 2923  PI . First of all, the core condition is satisfied because 

of the common intersecting element i.e. 2p . For structural orientation of place invariants

321 and,  PI  PIPI , the elements that are not part of the common intersecting element (i.e. 

) , , 987 ppp  are belong to one process and is connected consecutively. Such kind of structural 

place invariants can be easily merged together. Place invariants with the same initial number 

of tokens could be originating from one strict minimal siphon. For example if 

321 and,  PI  PIPI  have the same number of initials tokens. Then it may be possible to merge 

these PIs. In general, for two or more place invariants to be merged, the elements that are not 

part of the common intersecting elements (i.e. non-intersecting elements among the place 

invariants to be merged) should be connected consecutively. 

 

For each possible set of place invariants, linear equations between the possible merged 

place invariants are established. In forming the linear equations, the number of tokens of a 

first-met bad marking )( na  play a vital role for finding the relationship between the unknown 

co-efficients and the initial number of tokens of a merged place invariant. After obtaining the 

relationship between the unknown co-efficients of merged place invariants, possible values 

would be assigned to the co-efficients for obtaining a final merged place invariant. The 

assigned values should be as minimum as possible and most of the time it takes the values of 

the cardinalities in the set of place invariants. 
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Example 3.1  

Let us consider the Petri net model in Fig. 3.1(a) together with place invariants 

computed using an FBM based method. The Petri net model 1 has five control places shown 

in Table 3.1 together with their place invariants. To analyze the importance of the subsidiary 

conditions in identifying the place invariants that could be merged, let us consider place 

invariants 531  and , , PIPIPI . Place invariants 531  and , , PIPIPI  have a common intersecting 

element (i.e. 2p ), that satisfied the core-condition for merging two or more place invariants. 

For subsidiary condition (i.e. S.C. 1), let us consider 531  and , , PIPIPI . The intersecting 

element belongs to one particular process while the rest of the elements (i.e. 131211  and , , ppp

) belong to another particular process. From the structural orientation, 131211  and , , ppp  are 

connected consecutively. This kind of structural orientation of the place invariants can easily 

be merged together. 

 

 

Fig. 3.1 (a) Petri net model 1 used to illustrate the possible merged place invariants. (b) 

Petri net model 2 used it to illustrate some place invariants that cannot be merged. 
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Table 3.1. Place invariants and control places computed for the PNM shown in Fig. 3.1(a). 

 

FBMi PIi 
iC  C.  .C  M0 

1  ,1 132    11321  PI  1C  
92  , tt  101  , tt  1 

1  ,1 133    11332  PI  2C  
93  , tt  102  , tt  1 

1  ,1 122    11223  PI  3C  82  , tt  91  , tt  1 

1  ,1 134    11344  PI  4C  
94  , tt  103  , tt  1 

1  ,1 112    11125  PI  5C  72  , tt  81  , tt  1 

 

Table 3.2 Place invariants and Control places computed for the S3PR shown in Fig. 3.1(b). 

 

FBMi PI C.  .C  M0 

1 ,1 113    11131  PI  125  , tt  112  , tt  1 

1 ,1 1211    112112  PI  13t  11t  1 

1 1, ,1 432    24323  PI  54  , tt  1t  2 

1 1, ,1 1242    212424  PI  
1342  , , ttt  121  , tt  2 

1 ,1 1, ,1 10965    
3

109655


 PI  117  , tt  954  , , ttt

 

3 

1 ,1 1, ,1 10963    
3

109636


 PI  1175 ,, ttt  962 ,, ttt  3 

1 ,1 1, ,1 10953    
3

109537


 PI  116  , tt  942  , , ttt

 

3 

1
,1 ,1 1, ,1

10

9642







 
410

96428





PI

 11742  , , , tttt

 

961  , , ttt  4 

                                                                                                                                                             

 

Secondly, let us consider Petri net model 2 in Fig 3.1.(b) together with control places 

and place invariants computed using an FBM based method. The Petri net model 2 has eight 

control places shown in Table 3.2 together with their place invariants. To show the 

importance of the subsidiary conditions in identifying the place invariants that could be 

merged together, let us consider place invariants . and 83 PIPI  Both place invariants 

83  and PIPI  have common intersecting elements (i.e. 42  , pp ) that satisfy the core condition 

for merging two or more place invariants. For subsidiary conditions, let us analyze the 

structural orientation of the place invariants . and 83 PIPI  Both intersecting elements (i.e. 
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42  , pp ) belong to one particular process while the rest of the elements i.e. 1093  and  , ppp  are 

not connected consecutively. Hence, structurally it is not possible to merge the place 

invariants , and 83 PIPI  Even though, they satisfy the core condition. 

If some place invariants cannot be merged, then they are left as they are. It is to say that, all 

the place invariants computed using FBM based method should all be covered in the final 

simplified set of merged place invariants. 

 

In the following algorithm it is assumed that, an uncontrolled Petri net model (PNM) 

with a set of control places obtained by an FBM based method together with their related 

place invariants (PI) are given. Our objective is to reduce the set of control places such that 

the supervisory structure is reduced.  

 

 

3.1 ALGORITHM: STRUCTURAL COMPLEXITY REDUCTION OF  

LIVENESS ENFORCING SUPERVISORS   

 

Input:  The PN model of an FMS prone to deadlocks, a set of monitors ), ,,( 21 nCCC  to 

enforce liveness on this PNM obtained by an FBM based method together with their related 

place invariants (PIs) i.e. ...., ,, 21 nPIPIPI  

Output: reduced monitors, i.e.  ], ... ,,[ 21 mCCC , m<n, to enforce liveness on the PNM with 

similar behavioral permissiveness. 

 

1. Identify },,,{ 321 ZZZZ i   

Where iZ  is the set of possible place invariants that can be merged together. 

2. For each iZ  

2.i.1. If  321  PIPIPIZi  

Exit  

Else  2.i.2. A tentative draft resulting merged place invariant )( imPI  is computed as:  

 

kmPI nni   332211       ….………………      (3.1) 
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Where ,,, 321   are the co-efficients of merged place invariants. 

              k  is the initial number of tokens for merged placed invariants. 

              ,,, 321   are the possible elements of merged place invariants. 

2.i.3. Establish a linear equation between the possible merged place invariants as 

follows: 

 

1332211  kaaaa nn    ………….......... (3.2)                                                     

111443322   kaaaa nn    …………............ (3.3)

122554433   kaaaa nn      …………............    (3.4) 

  

    

Where  ,,,,,,,, 321321  nnnn aaaaaaa  are FBM co-efficients of each 

element in the set of possible place invariants that would be merged. 

2.i.4. Compute a linear relationship that exists among the co-efficients of resultant 

merged place invariants.  

2.i.5. assign values to the co-efficients of the linear relationship that exists among 

them.  

2.i.6. Evaluate the value of k in any one of the equations. 

2.i.7. Substitute the corresponding value for each co-efficient in the resultant draft 

possible merged place invariant has formulated.  

2.i.8. Compute the monitor iC   by using the imPI . 

End of algorithm. 
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3.2 RULES TO BE CONSIDERED IN THE IMPLEMENTATION OF THE 

PROPOSED ALGORITHM 

 

Rule 1. 

To evaluate the co-efficients for each element of the resultant merged place invariant, 

it is assumed that all possible co-efficients for each place invariant to be merged would be 

equated to a one more than a certain constant (i.e. )1k  to form a linear equation. 

Example 3.2.1. 

For better understanding, let us illustrate rule 1 by an example. Assume that the 

following place invariants are identified to be merged together. 310965   ,  

310963   , 3 10953   . Then according to the rule 1, the right hand 

side of all place invariants should be equated to 1k  as follows: 

110965  k  

110963  k  

                                                1 10953  k  

 

Rule 2. 

There are some exceptions to the Rule 1. This is due to the control depth variable, the 

value used for control depth variable is greater than one for some few place invariants. In 

such case, all possible co-efficients for each place invariant to be merged would be equated 

to a value used for a control depth more than a certain constant (i.e. )k . 

Example 3.2.2. 

For better understanding, let us illustrate the rule 2 by an example. Assume that the 

following place invariants are identified to be merged together. 112113   , and

212432   . It is clear to see that the control depth variable (i.e.  ) used is all 

more than one. Then according to the rule 2, the right hand side of all the place invariants 

should be equated to k  as follows: 

212113  k  

212432  k  
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Rule 3. 

Despite the fact that, the number of variables of co-efficients to be solved is greater 

than the number of equations generated from the co-efficients of possible place invariants to 

be merged, an alternative approach would follow to simplify the computation. It is assumed 

that all their common elements have equal value for the co-efficient in the resulting merged 

place invariant. 

Example 3.2.3. 

For better understanding, let us illustrate rule 3 by an example. Assume that the 

following equations are given to evaluate the unknown variables.  

110965  k  

110963  k  

It is well known that to evaluate the unknown variables in mathematics, the number 

of variables should be equal to the number of equations to be generated. In this example the 

unknown variables are five while the number of equations generated are only two. Hence to 

solve that problem, rule 3 take care of that case by assuming all the common elements within 

the equations to be evaluated must have equal values. 

 

Rule 4. 

To have a maximally permissive behavior or near optimal behavior, the value of the 

co-efficient for their common elements among the possible place invariants to be merged 

together should be greater than or equal to their cardinalities. 

Example 3.2.4. 

For clear understanding of the rule 4, let us illustrate it by an example. Assume that 

the following equations are given to evaluate the unknown variables as follows: 

        110965  k  

  110963  k  

There are some common elements between the two equations i.e. 1096  and, ,  . 

Hence their values are the cardinality of the elements (i.e. 1096  and, ,  ) in the given sets 
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of the equations. In this case the cardinality of the elements in the given equations is two. 

Hence their values for 1096  and, ,   are all two. 

 

Rule 5. 

There are some exceptions to the rule 4. Some place invariants (i.e. computed using 

first-met bad marking based method) belong to one particular process. In such case, to have 

maximally permissive behavior with reduced structure, the value of the co-efficients of their 

common elements among the possible place invariants to be merged should be one less than 

the total cardinalities or greater than that value. 

Example 3.2.5. 

For clear understanding of rule 5. Let us illustrate it by an example. Assume that the 

following equations are given to evaluate the unknown variables as follows: 

1113    

     11211    

If 1211  and   are connected consecutively and belong to a particular process, in that case the 

values for their common element (i.e. 11 ) should be one less than the cardinality of the 

element in the given equations. In this example the cardinality of the common intersecting 

element is two, while the value of the common intersecting element (i.e. 11 ) is one. 

 

 

3.3 ILLUSTRATIVE EXAMPLE 

To demonstrate the proposed structural complexity reduction method, let us consider 

the PNM of an FMS [29] shown in Fig. 3.2, monitors are due to FBM variant Liveness-

enforcing supervisor [34]. The net has 14 places and 10 transitions. Their places can be 

considered to be the collection of } ,{ 141

0 ppP  , },,,,, , ,{ 131211105432  p p p p ppppPA   

and }. , , ,{ 9876 ppppPR   The net has 48 reachable states in which there are 17 bad states 

and 31 good states.  
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Control places (monitors) computed for this PNM shown in Fig. 3.2 are provided in 

Table 3.3, together with their PIs. The controlled PNM obtained by including the five control 

places shown in Table 3.3 into the uncontrolled PNM shown in Fig. 3.2 is live and can reach 

31 good state. 

 

Table 3.3. Place invariants and control places computed for the PNM shown in Fig. 3.2. 

 

FBMi PIi 
iC  C.  .C  M0 

1  ,1 132    11321  PI  1C  
92  , tt  101  , tt  1 

1  ,1 133    11332  PI  2C  
93  , tt  102  , tt  1 

1  ,1 122    11223  PI  3C  82  , tt  91  , tt  1 

1  ,1 134    11344  PI  4C  
94  , tt  103  , tt  1 

1  ,1 112    11125  PI  5C  72  , tt  81  , tt  1 
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     Fig 3.2. A Petri net model (PNM) of an FMS.  
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Step 1: 

The possible set for place invariants to be merged together are evaluated as follows: 

Remarks: 

By looking the place invariants computed in Table 3.3, the place invariants 

531  and ,, PIPIPI  have common intersecting element i.e. ( 2p ) that satisfies the core-

condition. The non-intersecting elements i.e. 131211  and , , ppp are connected consecutively 

that satisfies the structural orientation for merged place invariants. These would enable the 

place invariants 531  and ,, PIPIPI  to be merged easily. Also it is the same thing when 

considering 42  and , PIPI  it has common intersecting element of ( 13p ) with a satisfied 

structural orientation of a place invariants. 

},,{ 5311 PIPIPIZ   

},{ 422 PIPIZ   

 

Step 2:  iteration)first   ,1( i  

Let us consider 1Z first to apply the procedure step by step from 2.1.1 to 2.1.8 

 

Step 2.1.1: 

1Z  has an elements of 531  and , PIPIPI . The intersecting element among these place 

invariants are as: 

}{ 2531 pPIPIPI   

Step 2.1.2: 

A draft merged place invariant 1mPI should have a form as in Eq. 3.1.1. 

kmPI  131312121111221            (3.1.1) 

Step 2.1.3: 

In this step, linear equations are established by using the co-efficients of the possible 

place invariants to be merged.  

   1and,1,1,1 1312112   a  a aa  

1132  k          (3.1.2) 

    1122  k          (3.1.3) 

            1112  k                   (3.1.4) 
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Step 2.1.4: 

This step provide a linear relationship that exists among the co-efficients to be solved 

in the equations generated in the step 2.1.3. 

 

By equating Eqs. (3.1.2) and (3.1.3), the relationship exists between the unknown co-

efficients can be solved: 

       122132     

                 1213        

 

Also, by equating Eqs. (3.1.2) and (3.1.3), to get the relationship exists between the co-

efficients to be solved. 

    112122    

             1213        

Hence, this shows that                131211                                                        (3.1.5) 

 

Step 2.1.5: 

To have a minimum structure the values for 131211  and ,   should be as minimum as 

possible. Let us assume that 131211   =1. Also the values of the co-efficients for the 

common element should be greater than or equal to the value of its cardinality according to 

the rule 3 in order to obtain a maximally permissive or near optimal behavior i.e. .32    

Step 2.1.6: 

By considering Eq. (3.1.1), the value of k can be obtained as: 

      

                                     1132  k      

                                     112  k     

                                       k2  

Since, ,32 p  if 32  , then the value of 3k . 

Step 2.1.7: 

Finally after computing all the co-efficients for the resultant merged place invariants, 

the resultant merged place invariant can be written as: 
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   33 13121121  mPI                  (3.1.7) 

 

Step 2.1.8: 

The monitor C1 is computed for 1mPI  as follows: 

 

          3)( 10 C  

                                          

                                
11

 .  1 mPImPI DLDc   

                     
  1113

           

1

1312112

Dc

 p p pp

13

12

11

2

1098721

110000

011000

001100

000011

  

    

p

p

p

p
    t   t    t     t     tt   



























 

 

                                                               100133
               

1

1098721

Dc
   t   t   t t t   t

 

 

 

Step 2: .iteration) second  ,2( i  

2Z is considered in the second iteration.  

 

Step 2.2.1: 

2Z  has elements of 42  and PIPI . The intersection between these place invariant is:  

 

}{ 1342 pPIPI   

 

Step 2.2.2: 

This step presents the resulting draft possible merge place invariant. 

 

        kmPI  131344332          (3.1.8) 

 

Step 2.2.3: 

In this step, linear equations are formed between the co-efficients of ossible place 

invariants to be merged as follows:  

          1 and ,1 ,1 1343  aaa  

1133  k                                         (3.1.9) 
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               1134  k                                      (3.1.10) 

 

Step 2.2.4: 

This step aims to find the linear relationships that exist among the unknown co-

efficients in Eqs. (3.1.9) and (3.1.10). This is done by equating Eq. (3.1.9) and (3.1.10):  

 

    134133     

                   43     

 

Step 2.2.5: 

To have a minimum structure, the values for 43  and   should be as minimum as 

possible. Let us assume that 43   =1. Also the values of the co-efficients for the common 

element should be greater than or equal to the cardinality according to the rule 3 in order to 

obtain a maximally permissive behavior i.e. .22    

 

Step 2.2.6: 

By considering Eq. (3.1.9), the value of k can be obtained as: 

      

                                     1133  k      

                                     1113  k     

                                       k13  

Since, ,213 p  if 213  , then the value of 2k . 

 

Step 2.2.7: 

Finally after computing all co-efficients, the resultant merged place invariant can be 

written as: 

22 13432  mPI        (3.1.11) 

 

Step 2.2.8: 

The monitor C2 is computed for :2mPI  

    2)( 20 C  

     
22

 .  2 mPImPI DLDc   
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Finally after applying the above algorithm, the net has only two merged place invariants 

1mPI  and 2mPI as shown in Eqs. (3.1.7) and (3.1.11). These merged PIs and monitors 

computed are shown in Table 3.4. When this first set of reduced monitors C1 and C2 are 

added to the PNM given in Fig. 3.2 the controlled model is obtained. It is verified that the 

controlled model is live with maximally permissive behavior.  

 

Table 3.4. The merged PIs and computed monitors. 

Ci 
imPI  C.  .C  M0 

C1 33 13121121  mPI  72  ,3 tt  101  ,3 tt  3 

C2 22 13432  mPI  94 2 , tt  102 2 , tt  2 
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CHAPTER 4 

APPLICATION TO S3PR PETRI NET MODEL EXAMPLES 

 

In order to show the applicability of the proposed method, this chapter includes some 

application examples related to S3PR Petri net models for different manufacturing systems. 

The examples considered have been studied in several research papers and research works. 

 

 

4.1 EXAMPLE 4.1 

The S3PR Petri net model (PNM) of an FMS [29] is shown in Fig. 4.3, with the set of 

control places computed using FBM variant liveness-enforcing supervisor [34].  The net has 

20 places and 15 transitions. Their places can be considered to be the collection of 

}, , ,{ 1161

0 pppP   } , , , , , , , , , , ,{ 15141312109875432 ppppppppppppPA   and 

} , , , ,{ 2019181716 pppppPR   The net has 354 reachable states in which there are 65 bad states 

and 289 good states.  

Control places (monitors) computed for this PNM shown in Fig. 4.1 are provided in 

Table 4.1, together with their PIs. The controlled PNM obtained by including eight control 

places shown in Table. 4.1 into the uncontrolled PNM shown in Fig. 4.1 is live and can reach 

289 good state. 

 

       Table 4.1. Place invariants and control places computed for the PNM shown in Fig. 4.1. 

 

FBMi PIi Ci
 Ci Ci

 M0 

2 = 1, 3 = 1, 4 = 1 2 + 3 + 4  2 C1 t4 t1 2 

2 = 1, 4 = 1, 8 = 1 2 + 4 + 8  2 C2 t2, t4, t8 t1, t3, t7 2 

3 = 1, 7 = 1, 9 = 1 3 + 7 + 9  2 C3 t3, t7, t9 t2, t6, t8 2 

3 = 1, 9 = 1, 13 = 1 3 + 9 + 13  2 C4 t3, t9, t13 t2, t8, t12 2 
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7 = 1, 8 = 1, 9 = 1 7 + 8 + 9  2 C5 t9 t6 2 

8 = 1, 9 = 1, 13 = 1 8 + 9 + 13  2 C6 t9, t13 t7, t12 2 

7 = 1, 12 = 1, 14 = 1 7 + 12 + 14  2 C7 t7, t12, t14 
t6, t11, 

t13 
2 

12 = 1, 13 = 1, 14 = 1 12 + 13 + 14  2 C8 t14 t11 2 
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  Fig. 4.1    An S3PR Petri net model (PNM). 

 

Step 1: 

In this step, it is necessary to identify the possible place invariants that could be merged 

together, such that we have a minimum structure. 

 

},{ 211 PIPIZ   
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},,,{ 65432 PIPIPIPIZ   

},{ 873 PIPIZ   

 

Step 2: .iteration)first  ,1( i  

In the first iteration, let us consider Z1.  

 

Step 2.1.1: 

The common intersecting elements among the place invariants 1PI  and 2PI  are as 

follows: 

   },{ 4221 ppPIPI   

Step 2.1.2: 

A tentative equation for a merged place invariant can be written as:  

kmPI  884433221          (4.1.1) 

 

Step 2.1.3: 

Linear equations are established by using the co-efficients of possible place invariants 

to be merged: 

1432  k           (4.1.2) 

   1842  k           (4.1.3) 

 

Step 2.1.4: 

In this step, a linear relationship is established that exists between the co-efficients of 

possible place invariants to be merged by using Eqs. (4.1.2) and (4.1.3).  

 

    842432    

                                                    83           (4.1.4) 

            Also, according to rule 3.      42           (4.1.5) 

Remarks. 

By default, for maximally permissive or near optimal behavior the common elements 

have a value more than or equal to their cardinalities in their place invariants to be merged. 

However according to the rule 5, if any one of the place invariants involved only one 
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particular process, their values for common intersecting elements should be one less than the 

cardinalities or greater than that value. 

 

Step 2.1.5: 

Having obtaining the linear relationships among the unknown co-efficients, a suitable 

value is selected for the co-efficients in Eqs. (4.1.4) and (4.1.5), the possible values to choose 

should be the values of the cardinality of the elements in the place invariants under 

consideration. Although, it is not necessary to choose the values of the cardinalities of the 

elements in the set of place invariants under considerations. However choosing a small value 

is more desirable because it yields a minimal structure. 

 

    2     and   ,2 42  pp  

                    Hence, let                   183   

                    By the rule 5,               142   

 

Step 2.1.6: 

  By using Eq. (4.1.2), the value of k can be computed as: 

     1432  k   

      2k  

 

 

Step 2.1.7: 

The resulting merged place invariant 1mPI is: 

   284321  mPI          (4.1.6) 

 

Step 2.1.8: 

The monitor C1 is computed for :1mPI  

   2)( 10 C  

   
111 mPImPI DLDc   
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Step 2: .iteration) second ,2( i  

In the second iteration, let us consider Z2.  

 

Step 2.2.1: 

The common intersecting element among the place invariants 6543 and  PI, PI, PIPI  as 

follows: 

        }{ 96543 pPIPIPIPI   

 

Step 2.2.2: 

A tentative equation for a merged place invariant can be written as:  

kmPI  1313998877332         (4.1.7) 

 

Step 2.2.3: 

Linear equations are established by using the co-efficients of possible place invariants 

to be merged as: 

   1973  k            (4.1.8) 

    11393  k           (4.1.9) 

    1987  k                   (4.1.10) 

    11398  k                      (4.1.11) 

 

Step 2.2.4: 

Relationships are established that exist between the co-efficients of the place invariants 

to be merged.  

 By equating Eqs. (4.1.8) and (4.1.9):  
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1393973    

                                                     137                                         (4.1.12) 

By equating Eqs. (4.1.9) and (4.1.11):   

 

    13981393    

                                                     83                     (4.1.13) 

 

Step 2.2.5: 

It is clear to see that one of the place invariants to be merged belongs to a particular 

process, .39   

       49 p  

    Let       2137   

     183    

  According to the rule 3.      39   

 

Step 2.2.6: 

Eq. (4.1.8) is used to find the value of k. 

 

    1973  k  

       1321  k  

              5k   

 

Step 2.2.7: 

Finally the resultant merged place invariant i.e. 2mPI  is:  

  5232 1398732  mPI              (4.1.14) 

 

Step 2.2.8: 

The monitor C2 is computed for 2mPI  as: 

     

   5)( 20 C  

   
222 mPImPI DLDc   
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Step 2: .iteration)  third,3( i  

In the third iteration, let us consider Z3.  

 

Step 2.3.1: 

The common intersecting elements between the place invariants 7PI  and 8PI  are as follows: 

    

    },{ 141287 ppPIPI   

 

Step 2.3.2: 

A tentative equation for a merged place invariant can be written as:  

kmPI  141413131212773                     (4.1.15) 

 

Step 2.3.3: 

Linear equations are established by using the co-efficients of possible place invariants 

to be merged as:  

    114127  k                   (4.1.16) 

    1141312  k                 (4.1.17) 

 

Step 2.3.4: 

A relationship is established that exist between the unknown co-efficients of place 

invariants to be merged. By equating Eqs. (4.1.16) and (4.1.17), we have:   

 

14131214127    

                                                     137          (4.1.18) 

  Also, according to the rule 3. 1412                     (4.1.19) 
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Remarks: 

In choosing the values for the unknown co-efficients of a merged place invariant, a 

suitable value must be selected. The suitable value should be the cardinalities of the elements 

among the set of place invariants under consideration. Is does not mean that, it is the only 

value that can satisfy the liveness of the Petri net model, whereas it is the minimum value 

that satisfied both the liveness and provide a minimal structure as well as maximally 

permissive behavior. 

 

Step 2.3.5: 

Since one of the place invariants to be merged together is belong to a one particular 

process, .112   

     212 p  and  214 p  

     Let         1137   

   According to the rule 3.     11412   

Step 2.3.6: 

Eq. (4.1.16) is used to find the value of k as follows: 

114127  k  

         1111  k  

             2k   

 

Step 2.3.7: 

Finally, the resulting merged place invariant i.e. 3mPI  is:  

   214131273  mPI                  (4.1.20) 

 

Step 2.3.8. 

The monitor C2 is computed for 3mPI  as: 

 

   2)( 30 C  

   
333 mPImPI DLDc   
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Finally after applying the proposed algorithm, three merged place invariants namely 

1mPI , 2mPI and 3mPI as shown in Eqs. (4.1.6), (4.1.14) and (4.1.20) are computed. For these 

merged PIs and monitors computed by using these PIs shown in Table 4.2. When monitors 

C1, C2 and C3 are added to the PNM given in Fig. 4.1 the controlled model is obtained. It is 

verified that this controlled model is live, with maximally permissive behavior, which has 

289 good states.  

 

Table 4.2 The merged PIs and computed monitors. 

mPIi Ci C.  .C  M0 

mPI1=2 + 3 + 4 + 4 + 8  2 C1 t4, t8 t1, t7 2 

mPI2=3 + 27 + 8 +  39 + 213  5 C2 t3, t7, 3t9, 2t13 t2, 2t6, 2t8, 2t12 5 

mPI3=7 + 12 + 13+ 14 2 C3 t7, t14  t6, t11 2 

 

 

Table 4.3 compares the original monitors computed by using an FBM variant method 

with that of obtained by the proposed method. From the Table 4.3, it is clear to observe that 

the number of control places obtained with the proposed method is as minimum as possible 

when compared with the original monitors computed by using FBM variant method. 

 

Table 4.3 Performance comparison between the original monitors and the reduced reduced 

                 monitors obtained with the proposed method. 

LES #  monitors # arcs # tokens % permissiveness 

Original monitors 8 34 16 100 

Reduced monitors 3 22 9 100 
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4.2 EXAMPLE 4.2 

 

The S3PR Petri net model (PNM) of an FMS [2] is shown in Fig. 4.2, with the set of 

control places computed by using an FBM variant method [34].  The net has 19 places and 

14 transitions. Places can be considered to be the collection of } ,{ 81

0 ppP  , 

} , , , ,{ 19161514 ppppPR   and } , , , ,  , ,{ 139732 ppppppA  . The net has 282 

reachable states in which there are 77 bad states and 205 good states.  

 

Control places (monitors) computed for this PNM shown in Fig. 4.2 are provided in 

Table 4.4, together with their PIs. The controlled PNM obtained by including the eight 

control places shown in Table 4.4 into the uncontrolled PNM shown in Fig. 4.2 is live and 

can reach 205 good states. 

 

Table 4.4. Place invariants and control places computed for the S3PR shown in Fig. 4.2. 

 

FBMi PIi Ci
 Ci Ci

 M0 

3 = 1, 11 = 1 3 + 11  1 C1 t5, t12 t2, t11 1 

11= 1, 12 = 1 11 + 12  1 C2 t13 t11 1 

2= 1, 3 = 1, 4 = 1 2 + 3 + 4  2 C3 t4, t5 t1 2 

2= 1, 4 = 1, 12 = 1 2 + 4 + 12  2 C4 t2, t4, t13 t1, t12 2 

5= 1, 6= 1, 9 = 1, 10 = 1 5 + 6 + 9 + 10   3 C5 t7, t11  t4, t5, t9 3 

3= 1, 6= 1, 9 = 1, 10 = 1 3 + 6 + 9 + 10  3 C6 t5, t7, t11 t2, t6, t9 3 

3= 1, 5= 1, 9 = 1, 10 = 1 3 + 5 + 9 + 10  3 C7 t6, t11 t2, t4, t9 3 

2= 1, 4= 1, 6 = 1, 9 = 1, 

 10 = 1 

2 + 4 + 6 + 9 +  

10  4 
C8 

t2, t4, t7, 

 t11 
t1, t6, t9 4 

 

 

Step 1: 

It is necessary to identify the possible place invariants that could be merged: 

    },,,{ 87651 PIPIPIPIZ   

    },{ 212 PIPIZ   

    },{ 433 PIPIZ   

 

Step 2: .iteration)first   ,1( i  

In the first iteration, let us consider Z1. 
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              Fig. 4.2. A S3PR Petri net model of an FMS [2]. 

 

Step 2.1.1: 

The common intersecting elements among the place invariants 8765  and ,, PIPIPIPI  

are as follows: 

},{ 1098765 ppPIPIPIPI   

 

Step 2.1.2: 

A tentative equation for a merged place invariant can be written as: 

    kmPI  10109966554433221           (4.2.1) 

 

Step 2.1.3:  

 Linear equations are established by using the co-efficients of possible place invariants 

to be merged.  
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   110965  k                    (4.2.2) 

   110963  k              (4.2.3) 

   110953  k                 (4.2.4) 

   1109642  k                 (4.2.5) 

 

Step 2.1.4: 

Linear relationships are established that exist among the unknown co-efficients of a 

place invariants to be merged. 

By equating Eqs. (4.2.2) and (4.2.3). 

 

1096310965    

      35    

Also, by equating Eqs. (4.2.3) and (4.2.4): 

     

    1095310963    

           65    

Hence, it shows that        653           (4.2.6) 

Also, by equating Eqs. (4.2.3) and (4.2.5) 

    

    10964210963    

     423            (4.2.7) 

 Also according to the rule 3. 109             (4.2.8) 

 

Step 2.1.5:  

Having obtaining the linear relationships among the unknown co-efficients, a suitable 

value is selected for the co-efficients in Eqs. (4.2.6) and (4.2.7). The possible values to choose 

should be the values of the cardinality of the elements in the place invariants under 

consideration. 

     49 p  and  410 p  

    Let            142   
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     2653    

             According to rule 4.     4109   

 

Step 2.1.6: 

By using Eq. (4.2.2), the value of k can be computed as: 

    

    110965  k  

       14422  k  

     11k  

Step 2.1.7: 

Finally, the resulting merged place invariant 1mPI  is: 

  1144222 109654321  mPI        (4.2.9) 

 

Step 2.1.8: 

The monitor 1C  is computed for 1mPI  as follows: 

 

 11)( 10 C  
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Step 2: .iteration) second  ,2( i  

In the second iteration, let us consider Z2.   
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Step 2.2.1: 

The common intersecting element between the place invariants 21  and PIPI  is as 

follows: 

}{ 1121 pPIPI   

 

Step 2.2.2: 

A tentative equation for a merged place invariant can be written as follows: 

kmPI  12121111332              (4.2.10) 

 

Step 2.2.3: 

Linear equations are established by using the co-efficients of possible place invariants 

to be merged. 

    1113  k                                 (4.2.11) 

    11211  k                                 (4.2.12) 

 

Step 2.2.4:     

Relationships are established that exists among the unknown co-efficients of place 

invariants to be merged. 

By equating Eqs. (4.2.11) and (4.2.12). 

 

    1211113    

            123                      (4.2.13) 

 Also according to the rule 5.    111     

 

Step 2.2.5: 

By selecting a value that is suitable for the co-efficient in Eq. (4.2.13), the possible 

values to be choose should be the values of the cardinality of the elements in the place 

invariants under consideration.  

     211 p  

    Let       1123   

             According to the rule 5.  111   
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Step 2.2.6: 

Eq. (4.2.11) is used to find the value of k as: 

    

                1113  k  

           111  k  

              1k  

 

Step 2.2.7: 

Finally, the resulting merged place invariant 2mPI  is: 

  1121132  mPI                          (4.2.14) 

 

Step 2.2.8: 

The monitor 2C  is computed for 2mPI  as follows: 

  1)( 20 C  
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Step 2: .iteration)   third,3( i  

Let us now consider Z3, which has elements of 43  and PIPI . 

Step 2.3.1: 

The common intersecting elements between the place invariants 43  and PIPI  that could 

be merged are computed as: 

},{ 4243 ppPIPI   

 

Step 2.3.2: 

A tentative equation of a merged place invariant can be written as: 
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       kmPI  12124433223                  (4.2.15) 

 

Step 2.3.3: 

Linear equations are established by using the co-efficients of place invariants to be 

merged as:  

1432  k                          (4.2.16) 

    11242  k                       (4.2.17) 

 

Step 2.3.4:     

Relationships are established that exists among the unknown co-efficients of a place 

invariant to be merged. 

By equating Eqs. (4.2.16) and (4.2.17), we have 

122432 4    

             123                                  (4.2.18) 

            Also according to the rule 3.      42     

 Also according to the rule 5.       12     

 

Step 2.3.5: 

Having obtaining the linear relationships among the unknown co-efficients, a suitable 

value is selected for the co-efficients in Eq. (4.2.18). The possible values to choose should 

be the values of the cardinality of the elements in the place invariants under consideration. 

       22 p  and 24 p  

   Let                1123   

            According to the rule 5.        142   

 

Step 2.3.6. 

Eq. (4.2.16) is used to find the value of k . 

    1432  k  

          1+ 111  k  

              2k  
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Step 2.3.7: 

Finally, the resulting merged place invariant 3mPI  is: 

2124323  mPI                 (4.2.19) 

 

Step 2.3.8: 

The monitor 3C  is computed for 3mPI  as follows: 
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Finally after applying the proposed algorithm, three merged place invariants namely 

,1mPI 2mPI and 3mPI as shown in Eqs. (4.2.6), (4.2.14) and (4.2.20) are computed. These 

merged PIs and monitors computed by using these PIs are shown in Table 4.5. When 

monitors C1, C2 and C3 are added to the PNM given in Fig. 4.2 the controlled model is 

obtained. It is verified that this controlled model is live, with maximally permissive behavior, 

which has 205 good states.  

 

Table 4.5. The merged PIs and computed monitors. 

mPIi Ci C.  .C  M0 

mPI1=12 + 23 + 4 + 25 + 26 + 49 + 410 

 11 
C1 2t7, 4t11 t1, t2, t4, 4t9 11 

mPI2=3 + 11 + 12  1 C2 t5, t13 t2, t11 1 

mPI3=2 + 3 + 4+ 12 2 C3 t4, t5, t13 t1, t12 2 
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Table 4.6 compares original monitors computed by using an FBM variant method 

with that of obtained by the proposed method. From the Table 4.6, it is clear to observe that 

the number of control places obtained with the proposed method is as minimum as possible 

when compared with the original monitors computed by using an FBM variant method. 

 

Table 4.6 Performance comparison between the original monitors and the reduced monitors 

                obtained  with the proposed method. 

LES #  monitors # arcs # tokens % permissiveness 

Original monitors 8 37 19 100 

Reduced monitors 3 22 14 100 

 

 

4.3 EXAMPLE 3 

 

The S3PR Petri net model (PNM) of an FMS [30] is shown in Fig. 4.3, with the set of 

control places computed by using an FBM variant method [34]. The net has 26 places and 20 

transitions. Places can be considered to be the collection of } , ,{ 1451

0 pppP  , 

} , , , , , ,{ 26252423222120 pppppppPR   and } , , , , , , , ,{ 1915136432 ppppppppA  . The 

net has 9572 reachable states in which there are 4177 bad states and 5395 good states.  

 

Control places (monitors) computed for this PNM shown in Fig. 4.3 are provided in 

Table 4.7, together with their PIs. The controlled PNM obtained by including the thirteen 

control places shown in Table 4.7 into the uncontrolled PNM shown in Fig. 4.3 is live and 

can reach 3475 good states. 

 

Table 4.7. Place invariants and control places computed for the S3PR shown in Fig. 4.3. 

FBMi PIi Ci
 Ci Ci

 0(Ci) 

12 = 1, 15 = 1 12 + 15  1 C1 t9, t16 t8, t15  1 

13 = 1, 15 = 1 13 + 15  1 C2 t10, t16 t9, t15  1 

12 = 1, 16 = 1 12 + 16  1 C3 t9, t17 t8, t16  1 

11 = 1, 17 = 1 11 + 17  1 C4 t8, t18 t7, t17  1 

11 = 1, 16 = 1 11 + 16  1 C5 t8, t17 t7, t16 1 

11 = 1, 15 = 1 11 + 15  1 C6 t8, t16 t7, t15 1 
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3= 2, 8 = 1 3 + 8  2 C7 t4, t13 t3, t12  2 

2= 1, 3 = 2 2 + 3  2 C8 t13 t11  2 

3= 1, 8= 1, 9 = 1, 15 = 

1, 16 = 1 

3 + 8 + 9 + 15 + 

16  4 
C9 

t5, t13, 

t17 

t3, t12, 

t15 
4 

2= 1, 3= 1, 9 = 1, 15 = 

1, 16 = 1 

2 + 3 + 9 + 15 + 

16  4 
C10 

t5, t13, 

t17 

t4, t11, 

t15 
4 

6= 1, 7 = 2, 17 = 1, 18 

= 1 

6 + 7 + 17 + 18  

4 
C11 t3, t7, t19 t1, t17 4 

6= 1, 7= 2, 8 = 1, 9 = 

1, 15 = 1, 16 = 1, 18 = 1 

6 + 7 + 8 + 9 + 

15 + 16 + 18  7 
C12 

t5, t7, 

t17, t19 

t1, t15, 

t18 
7 

6= 1, 7= 2, 9 = 2, 15 = 

1, 16 = 1, 17 = 1 

6 + 7 + 9 + 15 + 

16 + 17  7 
C13 

t3, t5, t7, 

t18  

t1, t4, 

t15 
7 
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        Fig. 4.3  An S3PR Petri net model from [30]. 
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Step 1: 

Possible place invariants that could be merged are identified as follows: 

    

} , ,{ 6211 PIPIPIZ   

    } ,{ 532 PIPIZ   

} ,{ 873 PIPIZ                                                                                         

},{ 1144 PIPIZ   

    },{ 1095 PIPIZ   

    } ,{ 13126 PIPIZ   

     

Step 2: .iteration)first   ,1( i  

Firstly, let us consider Z1, which has elements of . and , 621 PIPIPI  

 

Step 2.1.1: 

The common intersecting elements among the place invariants 621  and , PIPIPI  are: 

}{ 15621 pPIPIPI   

Step 2.1.2: 

A tentative equation for a merged place invariant can be written as: 

      kmPI  15151313121211111                 (4.3.1) 

 

Step 2.1.3: 

Linear equations are established by using the co-efficients of possible place invariants 

to be merged.  

11512  k                       (4.3.2) 

    11513  k                       (4.3.3) 

    11511  k                       (4.3.4) 

 

Step 2.1.4: 

Linear relationships are established that exist among the unknown co-efficients of place 

invariant to be merged. 

By equating Eqs. (4.3.2) and (4.3.3), we have 
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    15131512    

             1312    

Also, by equating Eqs. (4.3.3) and (4.3.4), we have 

     

    15111513    

             1113    

Hence, it shows that        131211             (4.3.5) 

 Also according to the rule 4.  315      

 

Step 2.1.5: 

Having obtained the linear relationships among the unknown co-efficients, a suitable 

value is selected for the co-efficients in Eq. (4.3.5). The possible values to choose should be 

the values of the cardinality of the elements in the place invariants under consideration. 

     315 p   

    Let       1131211    

             According to the rule 4.  315   

 

Step 2.1.6: 

By using Eq. (4.3.2), the value of k can be computed as: 

    

     11512  k  

     131  k  

          3k  

 

Step 2.1.7: 

The resulting merged place invariant 1mPI  is: 

   33 151312111  mPI         (4.3.6) 

 

Step 2.1.8: 

The monitor 1C  is computed for 1mPI  as follows: 

3)( 10 C  

 

                         
11

 .  1 mPImPI DLDc   
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Step 2: .iteration) second  ,2( i  

Let us consider Z2, which has elements of . and 53 PIPI  

 

Step 2.2.1: 

The common intersecting element between the places invariants 53  and PIPI that could 

be merged together is defined as: 

}{ 1653 pPIPI   

 

Step 2.2.2: 

A tentative equation for a merged place invariant can be written as: 

kmPI  1616121211112           (4.3.7) 

 

Step 2.2.3: 

Linear equations are established by using the co-efficients of possible place invariants 

to be merged as:  

    11612  k           (4.3.8) 

    11611  k           (4.3.9) 

 

Step 2.2.4: 

A relationship is established that exist among the unknown co-efficients of place 

invariants to be merged. 

By equating Eqs. (4.3.8) and (4.3.9), we have 

 

    16111612    

             1112                                 (4.3.10)  
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Also according to the rule 4.  216   

  

Step 2.2.5: 

Having obtained the linear relationships among the unknown co-efficients, a suitable 

value is selected for the co-efficients in Eq. (4.3.10). The possible values to choose should 

be the values of the cardinality of the elements in the place invariants under consideration. 

     216 p   

    Let       11211   

             According to the rule 4.  216   

 

Step 2.2.6: 

By using Eq. (4.3.8), the value of k can be computed as: 

     11612  k  

     k16  

       2k  

 

 

Step 2.2.7: 

Finally, the resulting merged place invariants 2mPI  is: 

   22 1612112  mPI            (4.3.11) 

 

Step 2.2.8: 

The monitor 2C  is computed for 2mPI  as follows: 
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Step 2: .iteration)   third,3( i  

Let us consider Z3, which has elements of . and 87 PIPI  

 

Step 2.3.1: 

The common intersecting elements between the place invariants 87  and PIPI  that could be 

merged is defined as: 

}{ 387 pPIPI   

 

Step 2.3.2: 

A tentative equation for a merged place invariant can be written as: 

kmPI  8833223                 (4.3.12) 

 

Step 2.3.3: 

Linear equations are established by using the co-efficients of possible place invariants 

to be merged.  

Remarks:  

In all previous examples considered, the number of tokens of FBMs were all 1 for the 

elements. This shows that the value of  “a” in establishing  linear equations is “one”. 

Therefore no value was attached to the unknown co-efficients in the previous examples. 

However, in this example, some values of tokens in the FBMs are greater than one.  

           23 a  

    12 83  k                 (4.3.13) 

    12 32  k                        (4.3.14) 

 

Step 2.3.4: 

A relationship is established that exists between the unknown co-efficients of place 

invariant to be merged. 

 

By equating Eqs. (4.3.13) and (4.3.14), we have 

 3283 22    

             28                       (4.3.15)
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Also according to the rule 4.  216   

  

Step 2.3.5: 

Having obtained the linear relationships among the unknown co-efficients, a suitable 

value is selected for the co-efficients in Eq. (4.3.15). The possible values to choose should 

be the values of the cardinality of the elements in the place invariants under consideration. 

 

     23 p   

    Let       182   

             According to the rule 4.  23   

 

Step 2.3.6: 

By using Eq. (4.3.13), the value of k can be computed as: 

      12 83  k  

     k32  

       4k  

 

Step 2.3.7: 

Finally, the resulting merged place invariants 3mPI  is: 

   42 8323  mPI                    (4.3.16) 

 

Step 2.3.8: 

The monitor 3C  is computed for 3mPI  as follows: 
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Step 2: .iteration)fourth   ,4( i  

In the fourth iteration Z4 is considered, which has an elements of .  and 114 PIPI  

 

Step 2.4.1: 

The common intersecting element between the place invariants 114  and PIPI  is defined 

as: 

}{ 17114 pPIPI   

 

Step 2.4.2: 

A tentative equation for a merged place invariant can be written as: 

      kmPI  18181717111177664          (4.3.17) 

 

Step 2.4.3: 

Linear equations are established by using the co-efficients of possible place invariants 

to be merged as:  

                         11817116  aaaa , 27 a  

    11711  k               (4.3.18) 

   12 181776  k                   (4.3.19) 

 

Step 2.4.4: 

A relationship is established that exists between the unknown co-efficients of place 

invariants to be merged. 

 

By equating Eqs. (4.3.18) and (4.3.19). 

                                           1817761711 2    

      187611 2                     (4.3.20)

  

Also according to the rule 4.  217   
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Step 2.4.5: 

Having obtained the linear relationships among the unknown co-efficients, a suitable 

value is selected for the co-efficients in Eq. (4.3.20). The possible values to choose should 

be the values of the cardinality of the elements in the place invariants under consideration. 

     217 p   

    Let       11876    

   Hence,  411   

            According to the rule 4.  417    

 

Step 2.4.6: 

Eq. (4.3.18) is used to find the value of k as: 

                11711  k  

     144  k  

       7k  

 

Step 2.4.7: 

Finally, the resulting merged place invariants 4mPI  is: 

  744 181711764  mPI              (4.3.21) 

 

Step 2.4.8: 

The monitor 4C  is computed for 4mPI  as follows: 
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Step 2: .iteration)fifth   ,5( i  

In the fifth iteration, let us consider Z5 which has elements of . and 109 PIPI  

 

Step 2.5.1: 

The common intersecting elements between the place invariants 109  and PIPI  that 

could be merged are as follows: 

},,,{ 161593109 ppppPIPI   

 

Step 2.5.2: 

A tentative equation for a merged place invariant can be written as: 

kmPI  16161515998833225       (4.3.22) 

 

Step 2.5.3: 

Linear equations are established by using the co-efficienst of possible place invariants 

to be merged.  

   11615983  k                    (4.3.23) 

   11615932  k                   (4.3.24) 

 

Step 2.5.4: 

A relationship is established that exists between the unknown co-efficients of place 

invariants to be merged. 

By equating Eqs. (4.3.23) and (4.3.24). 

 

  16159321615983    

              82                                 (4.3.25) 

 But according to the rule 3.  161593    

          Also according to the rule 4.   23    

 

Step 2.5.5: 

Having obtained the linear relationships among the unknown co-efficients, a suitable 

value is selected for the co-efficients in Eq. (4.3.25). The possible values to choose should 

be the values of the cardinality of the elements in the place invariants under consideration. 

   23 p , 29 p , 215 p  and 216 p  
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    Let       182   

  According to the rule 4.  2161593    

Step 2.5.6: 

Eq. (4.3.23) is used to find the value of k as: 

       11615983  k  

           122212  k  

             8k  

Step 2.5.7: 

Finally, the resulting merged place invariants 5mPI  is: 

  82222 161598325  mPI           (4.3.26) 

Step 2.5.8: 

The monitor 5C  is computed for 5mPI  as follows: 

 

  8)( 50 C  

 

                         
55

 .  5 mPImPI DLDc   

 
] 2     2     2     1      2      1 [

                  
             

5

16159832

Dc
  p  ppp  p  p 

16

15

9

8

3

2

171615131211543

110000000

011000000

000000110

000000011

000110000

000011000
   

p

p

p

p

p

p
   t   t   t   t   t    t    t     tt







































 

    
2]    0    2-     2     1    1    2      1    1[

          

5

171615131211543

Dc
  t  t   t    t    t    t     t     t  t    

 

Step 2: .iteration)sixth   ,6( i  

In the sixth iteration, let us consider Z6 which has an element of . and 1312 PIPI  

 

Step 2.6.1: 

The common intersecting elements between the place invariants 1312  and PIPI  that 

could be merged as: 
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},,,,{ 16159761312 pppppPIPI   

 

Step 2.6.2: 

A tentative equation for a merged place invariant can be written as: 

kmPI  1818171716161515998877666      (4.3.27) 

 

Step 2.6.3: 

Linear equations are established by using the co-efficients of possible place invariants 

to be merged.  

    2  ,2 97  aa  

  12 1816159876  k           (4.3.28) 

  122 171615976  k              (4.3.29) 

 

Step 2.6.4: 

A relationship is established that exists between the unknown co-efficients of place 

invariants to be merged. 

By equating Eqs. (4.3.28) and (4.3.29). 

 

 1716159761816159876 222    

             179188                   (4.3.30)

  

But according to the rule 3.    1615976    

Also according to the rule 4.   26    

 

Step 2.6.5: 

Having obtained the linear relationships among the unknown co-efficients, a suitable 

value is selected for the co-efficients in Eq. (4.3.30). The possible values to be choose should 

be the values of the cardinality of the elements in the place invariants under consideration. 

  26 p , 27 p , 29 p , 215 p  and 216 p  

    Let          11817   

  According to the rule 4.  2161593    
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    Hence,      28   

 

Step 2.6.6: 

Eq. (4.3.23) is used to find the value of k as: 

   12 1816159876  k  

    11222242  k  

       14k  

 

Step 2.6.7: 

Finally, the resulting merged place invariants 6mPI  is: 

     14222222 1817161598766  mPI       (4.3.31) 

 

Step 2.6.8: 

The monitor 6C  is computed for 6mPI  as follows: 

 

  14)( 60 C  
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Finally after applying the above algorithm, the net has only six merged place invariants 

1mPI ,  2mPI , 3mPI , 4mPI , 5mPI and 6mPI  as shown in Eqs. (4.3.6), (4.3.11), (4.3.16), 

(4.3.21), (4.3.26) and (4.3.31).. These merged PIs and monitors computed are shown in Table 
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4.8. When this set of reduced monitors C1, C2, C3, C4, C5 and C6 are added to the PNM given 

in Fig. 4.3 the controlled model is obtained. It is verified that this controlled model is live, 

with the same sub-optimal behavior, which has 3475 good states.  

 

Table 4.8   The merged PIs and computed monitors. 

PIi Ci C  M0 

mPI1=11 + 12 + 13 + 315  3 C1 t10, 3t16 t7, 3t15 3 

mPI2=11 + 12 + 216  2 C2 t9, 2t13 t7, 2t16 2 

mPI3=2 + 23 + 8 4 C3 t4, 2t13 t3, t11,t12 4 

mPI4=6+ 7 + 411 + 417 + 18  7 C4 
t3, 4t8, 3t18, 

t19 
t1, 3t7, 4t17 7 

mPI5=2 +23 + 8 + 29 + 215 + 216  8 C5 
2t5, 2t13, 

2t17  

t3, t4, t11, 

t12, 2t15 
8 

mPI6=26 +27 + 28 + 29 + 215 + 216 + 

217 + 218  14 
C6 

2t5, 2t7, t17, 

t19 
2t1, 2t15 14 

 

 

Table 4.9 compares original monitors computed by using an FBM variant method with 

that of obtained by the proposed method. From the Table 4.9, it is clear to observe that the 

number of control places obtained with the proposed method is as minimum as possible when 

compared with the original monitors computed by using an FBM variant method. 

 

Table 4.9 Performance comparison between the original monitors and the reduced monitors 

                 obtained  with the proposed method. 

LES #  monitors # arcs # tokens % permissiveness 

Original monitors 13 61 36 64.41 

Reduced monitors 6 59 38 64.41 
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CHAPTER 5 

APPLICATION OF THE PROPOSED METHOD TO DIFFERENT 

CLASSES OF PETRI NET MODELS FOR FMSS 

 

 

 
5.1 INTRODUCTION 

Petri nets have become one of the most powerful tools to handle deadlock problems in 

flexible manufacturing systems (FMS). Different types of Petri net sub-classes proposed such 

as S3PR, S4PR, S4R, WS3PR, ES3PR, LS3PR etc [3]. All these types of Petri net sub-classes 

are used to study deadlock problems in flexible manufacturing systems.  

Three S3PR Petri net models are considered in the previous chapter to show the application 

of the proposed method. This chapter shows the applicability of the method to other sub-

classes of Petri nets apart from the S3PR Petri nets considered in the previous chapter. 

 

 

5.2 AN  S4PR PETRI NET EXAMPLE 

The S4PR Petri net model (PNM) of an FMS [31] is shown in Fig. 5.2, with a set of 

control places computed by using the an FBM variant method [34]. The net has 25 places 

and 19 transitions, there places can be considered to be the collection of }, , ,{ 20128

0 pppP   

} , , ,{ 251918 pppPR   and  } ,,,, ,, , , , ,{ 171413119721 ppppppppPA  . The net has 

9378 reachable states in which there are 546 bad states and 8832 good states.  

 

Control places (monitors) computed for this PNM shown in Fig. 5.1 are provided in 

Table 5.1, together with their PIs. The controlled PNM obtained by including the eight 

control places shown in Table 5.1 into the uncontrolled PNM shown in Fig. 5.1 is live and 

can reach 8576 good states.
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Fig. 5.1.  A Petri net model of an S4PR net [31]. 

 

Table 5.1. Place invariants and control places for the S3PR shown in Fig. 5.1. 

FBMi PIi Ci
 Ci Ci

 M0 

1 = 1, 15 = 2 1 + 15  2 C1 t2, t7, t17 t1, t16 2 

3= 1, 7 = 2, 13 = 1 3 + 7 + 13  3 C2 t4, t9, t15 t3, t8, t14 3 

2= 1, 3 = 1, 6 = 1,  

7 = 1, 13 = 1 

2 + 3 + 6 + 7 + 13  

 4 
C3 t4, t9, t15 t2, t7, t14 4 

2= 1, 3 = 1, 6 = 1,  

7 = 1, 14 = 1 

2 + 3 + 6 + 7 + 14  

 4 
C4 t4, t9, t16 t2, t7, t15 4 

1= 1, 2= 1, 3 = 1,  

7 = 1, 13 = 1, 15 = 1 

1 + 2 + 3 + 7 + 13 + 

 15  5 
C5 

t4, t7, t9, 

t15, t17 

t1, t8, 

t14, t16 
5 

1= 1, 2= 1, 3 = 1, 

 7 = 1, 14 = 1, 15 = 1 

1 + 2 + 3 + 7 + 14 + 

 15  5 
C6 

t4, t7, t9, 

t17 
t1, t8, t15 5 

1= 1, 3= 1, 6 = 1, 7 

= 1, 13 = 1, 15 = 1 

1 + 3 + 6 + 7 + 13 + 

15  5 
C7 

t2, t4, t9, 

t15, t17 

t1, t3, 

t14, t16 
5 

1= 1, 3= 1, 6 = 1, 7 

= 1, 14 = 1, 15 = 1 

1 + 3 + 6 + 7 + 14 + 

15  5 
C8 

t2, t4, t9, 

t17 
t1, t3, t15 5 
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Step 1: 

Possible place invariants that could be merged are identified as: 

    },,,{ 87651 PIPIPIPIZ   

    },,{ 4322 PIPIPIZ   

     

Step 2: .iteration)first   ,1( i  

In the first iteration, let us consider Z1. 

 

Step 2.1.1: 

The common intersecting elements among the place invariants 8765  and ,, PIPIPIPI  

are: 

},,,{ 157318765 ppppPIPIPIPI   

 

Step 2.1.2: 

A tentative equation for a merged place invariant can be written as: 

kmPI  15151414131377663322111        (5.1.1) 

 

Step 2.1.3: 

Linear equations are established by using the co-efficients of possible place invariants 

to be merged.  

115137321  k             (5.1.2) 

   115147321  k             (5.1.3) 

   115137631  k             (5.1.4) 

   115147631  k               (5.1.5) 

 

Step 2.1.4: 

Linear relationships are established that exists among the unknown co-efficients of 

place invariants to be merged. 

By equating Eqs. (5.1.2) and (5.1.3): 

 

1514732115137321    

      1413                         (5.1.6) 
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Also, by equating Eqs. (5.1.3) and (5.1.5). 

     

   1514763115147321    

           62            (5.1.7) 

Also according to the rule 3.              15731           (5.1.8) 

 

Step 2.1.5: 

Having obtained the linear relationships among the unknown co-efficients, a suitable 

value is selected for the co-efficients in Eqs. (5.1.6), (5.1.7) and (5.1.8). The possible values 

to be selected should be the values of the cardinality of the elements in the place invariants 

under consideration. 

                                                       49 p  and  410 p  

    Let       31413   

      362   

            According to the rule 4.      415731    

 

Step 2.1.6: 

Eq. (5.1.2) is used to find the value of k as: 

        115137321  k  

    1434434  k  

     21k  

 

Step 2.1.7: 

Finally, the resulting merged place invariant 1mPI  is: 

2143343434 151413763211  mPI       (5.1.9) 

 

Step 2.1.8: 

The monitor 
1C  is computed for 

1mPI  as follows: 

 

   21)( 10 C  

 

                          
11

 .  1 mPImPI DLDc   
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Step 2: .iteration) second  ,2( i  

In the second iteration, let us consider Z2. 

 

Step 2.2.1: 

The common intersecting elements between the place invariants 432  and   , PIPIPI  is 

as follows: 

},{ 73432 ppPIPIPI   

Step 2.2.2: 

A tentative equation for a merged place invariant can be written as: 

kmPI  14141313776633222        (5.1.10) 

 

Step 2.2.3: 

Linear equations are established by using the co-efficients of possible place invariants 

to be merged.  

12 1372  k                           (5.1.11) 

    1137632  k            (5.1.12) 

    1147632  k            (5.1.13) 
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Step 2.2.4:     

Linear relationships are established that exist among the unknown co-efficients of place 

invariants to be merged. 

By equating Eqs. (5.1.11) and (5.1.12). 

 

   1376321373 2    

            627                (5.1.14) 

 

Also, by equating Eqs. (5.1.12) and (5.1.13). 

 

  137632147632    

            1413                           (5.1.15) 

          According to the Rule 3:       73           (5.1.16) 

Also according to the rule 5. 33     

 

Step 2.2.5: 

Having obtained the linear relationships among the unknown co-efficients, a suitable 

value is selected for the co-efficients in Eqs. (5.1.14), (5.1.15) and (5.1.16). The possible 

values to be selected should be the values of the cardinality of the elements in the place 

invariants under consideration. 

     33 p   and  37 p  

    Let       262   

    4         7    

               According to the rule 4.   473   

Step 2.2.6: 

By using Eq. (4.1.11), the value of k can be computed as: 

   12 1373  k  

         1384  k  

    14k  

 

Step 2.2.7: 

Finally, the resulting merged place invariant 2mPI  is:  
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   14334242 141376322  mPI               (5.1.17) 

 

Step 2.2.8: 

The monitor 
2C  is computed for 2mPI  as follows: 

 

 14)( 20 C  
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Finally after applying the above algorithm, the net has only two merged place invariants 

1mPI  and 2mPI one other place invariant as shown in Eqs. (5.1.9) and (5.1.17). These merged 

PIs and monitors computed are shown in Table 5.2. When this set of reduced monitors C1, 

C2 and C3 are added to the PNM given in Fig. 5.1 the controlled model is obtained. It is 

verified that this controlled model is live, with a near optimal behavior, which has 8576 good 

states.  

 

Table 5.2. The merged PIs and computed monitors. 

PI1 and mPIi Ci C.  .C  M0 

mPI1=41 + 32 + 43 + 36 + 47+ 313 + 314+ 

415   21 
C1 

t2, 4t4, 

t7,4t9,  

4t17 

4t1, t3, t8, 

3t14, t16 
21 

mPI2=22 + 43+ 26 + 47+ 313 + 314 14 C2 
4t4, 4t9, 

3t16 

2t2, 2t3, 2t7, 

2t8, 2t14 
14 

PI1=1 + 15  2 C3 t2, t7, t17 t1, t16 2 
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Table 5.3 compares the original monitors computed by using an FBM variant method 

with that of the proposed method. From the Table 5.3, it is clear to observe that the number 

of control places obtained with the proposed method is as minimum as possible when 

compared with the original monitors computed by using an FBM variant method. 

 

Table 5.3 Performance comparison between the original monitors and the reduced monitors 

                 obtained with the proposed method. 

LES #  monitors # arcs # tokens % permissiveness 

Original monitors 8 55 33 97.10 

Reduced monitors 3 50 37 97.10 

 

 

5.3 A G-SYSTEM PETRI NET EXAMPLE 

The G-system Petri net of an FMS [32] is shown in Fig. 5.2, with the set of control 

places computed by using anFBM variant method [34]. The net has 23 places and 18 

transitions. There places can be considered to be the collection of }, , ,{ 181711

0 pppP   

} , , ,{ 272322 pppPR  and   , , , , , , , , , , , , , ,{ 10161210646421 ppppppppppPA 

 , , , 1612 pp   } , , , 171413 ppp   The net has 68531 reachable states in which there are 2131 

bad states and 66400 good states.  

 

Control places (monitors) computed for this PNM shown in Fig. 5.2 are provided in 

Table 5.4, together with their PIs. The controlled PNM obtained by including the eleven 

control places shown in Table 5.4 into the uncontrolled PNM shown in Fig. 5.2 is live and 

can reach 62682 good states. 
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Table 5.4. Place invariants and monitors for the G-System net shown in Fig. 5.2. 

 

FBMi PIi Ci
 Ci Ci

 M0 

1 = 2, 14 = 2 1 + 14  3 C1 t2, t6, t16 t1, t15 3 

2 = 1, 6 = 1, 13 = 3 2 + 6 + 13  4 C2 t3, t7, t15 t2, t6, t14 4 

2 = 1, 3 = 1, 6 = 1, 12 

= 1, 13 = 2 

2 + 3 + 6 + 12 + 

13  5 
C3 t4, t7, t15 t2, t6, t13 5 

2 = 1, 6 = 1, 7 = 1, 12 

= 1, 13 = 2 

2 + 6 + 7 + 12 + 

13  5 
C4 t3, t8, t15 t2, t6, t13 5 

3 = 2, 7 = 1,  12 = 3 3 + 7 + 12  5 C5 t4, t8, t14 t3, t7, t13 5 

1 = 2, 2 = 1,            13 

= 3, 14 = 1 

1 + 2 + 13 + 14 

 6 
C6 t3, t6, t16 t1, t14 6 

1 = 2, 6 = 1,            13 

= 3, 14 = 1 

1 + 6 + 13 + 14 

 6 
C7 t2, t7, t16 t1, t14 6 

1 = 2, 2 = 1, 3 = 1,            

12 = 1, 13 = 2, 14 = 1 

1 + 2 + 3 + 12 + 

13 + 14  7 
C8 t4, t6, t16 t1, t13 7 

1 = 2, 6 = 1, 7 = 1,            

12 = 1, 13 = 2, 14 = 1 

1 + 6 + 7 + 12 + 

13 + 14  7 
C9 t2, t8, t16 t1, t13 7 

1 = 2, 3 = 1, 6 = 1,            

12 = 1, 13 = 2, 14 = 1 

1 + 3 + 6 + 12 + 

13 + 14  7 
C10 t2, t4, t7, t16 t1, t3, t13 7 

1 = 2, 2 = 1, 7 = 1,            

12 = 1, 13 = 2, 14 = 1 

1 + 2 + 7 + 12 + 

13 + 14  7 
C11 t3, t6, t8, t16 t1, t7, t13 7 
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Fig. 5.2. The simplified G-System net (PNM) from [32]. 

Step 1: 

Possible place invariants that could be merged are identified as:  

   

    },,,{ 1110981 PIPIPIPIZ   

    },,{ 5432 PIPIPIZ   

    },{ 763 PIPIZ   

     

The same procedure of the previous examples are applied to the set . and  , 321 ZZZ The 

net has only three merged place invariants namely, 321  and  , mPImPImPI  together with the 

remaining two place invariants (i.e. place invariants that could not be merged with any given 

place invariant in Table 5.4). 
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These merged PIs with two other place invariants 21  and ( PIPI ) and monitors 

computed are all shown in Table 5.5. When this set of monitors C1, C2, C3, C4 and C5 are 

added to the PNM given in Fig. 5.2 the controlled model is obtained. It is verified that this 

controlled model is live, with a near optimal behavior, which has 63859 good states.  

 

Table 5.5. The merged PIs and computed monitors. 

PIi  and mPIi Ci Ci  Ci
 M0 

mPI1=22 + 23 + 26 + 27 + 312 + 314  14 C1 
2t4, 2t8, 

3t15 
2t2, 2t6, 3t13  14 

mPI2=21 +2+ 6 + 213+ 214 12 C2 
t2, t3, t6, t7, 

2t16 
2t1, 2t14  12 

mPI3=41 + 22 + 23+ 26 + 27 +412 +4 13 + 

414 27 
C3 

2t2, 2t4, 2t6, 

2t8, 4t16 
4t1, 4t13 27 

PI1=1 + 14  3 C4 t2, t6, t16 t1, t15 3 

PI2=2+ 6 + 13  4 C5 t3, t7, t15 t2, t6, t14 4 

 

 

Table 5.6 compares the original monitors computed by using an FBM variant method 

with that of the proposed method. From the Table 5.6, it is clear to observe that the number 

of control places obtained with the proposed method is as minimum as possible when 

compared with the original monitors computed by using an FBM variant method. 

 

Table 5.6 Performance comparison between the original monitors and the reduced monitors 

                 obtained with the proposed method. 

LES #  monitors # arcs # tokens % permissiveness 

Original monitors 11 63 62 94.40 

Reduced monitors 5 55 60 96.17 

 

 

5.4 AN S4R PETRI NET MODEL EXAMPLE 

The S4R Petri net model of an FMS [33] is shown in Fig. 5.3, control places (monitors) 

are due to an FBM variant method [34]. The net has 23 places and 18 transitions. There places 
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can be considered to be the collection of },,,{ 13510 pppP   } , , ,{ 231918 pppPR   and 

} , , , , , , , ,{ 1714126432 pppppppPA  . The net has 19300 reachable states in which there 

are 935 bad states and 18365 good states.  

 

Control places (monitors) computed for the PNM shown in Fig. 5.3 are provided in 

Table 5.7, together with their PIs. The controlled PNM obtained by including the eleven 

control places shown in Table 5.7 into the uncontrolled PNM shown in Fig. 5.3 is live and 

can reach 17101 good states. 
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Fig.  5.3. An S4R Petri net model (PNM) from [33]. 
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Table 5.7. Place invariants and monitors computed for the S4R net shown in Fig. 5.3. 

FBMi PIi Ci
 Ci Ci

 M0 

2 = 2, 3 = 1 2 + 3  2 C1 t3 t1 2 

8 = 2, 15 = 2 8 + 15  3 C2 t9, t16 t7, t15 3 

10 = 2, 14 = 2 10 + 14  3 C3 t11, t15 t9, t14 3 

6 = 1, 8 = 1, 15 

= 2, 16 = 1 
6 + 8 + 15 + 16  4 C4 t6, t9, t17 t5, t15 4 

2 = 1, 3 = 1, 8 

= 2, 15 = 1 
2 + 3 + 8 + 15  4 C5 t3, t9, t16 t1, t7, t15 4 

2 = 1, 3 = 1, 10 

= 1, 14 = 2 
2 + 3 + 10 + 14  4 C6 t3, t11, t15 t1, t9, t14 4 

8 = 2, 10 = 1, 14 

= 2, 15 = 1 
8 + 10 + 14 + 15  5 C7 t11, t16 t7, t14 5 

2 = 1, 3 = 1, 6 

= 1, 7 = 1, 8 = 

1, 15 = 1, 16 = 1 

2 + 3 + 6 + 7 + 8  

+ 15 + 16  6 
C8 t3, t8, t9, t17 t1, t5, t15 6 

6 = 1, 7 = 1, 8 

= 1, 10 = 1, 14 = 

2, 15 = 1, 16 = 1 

6 + 7 + 8 + 10 + 14 

 + 15 + 16  7 
C9 t8, t11, t17 t5, t14 7 

 

 

Step 1: 

Possible place invariants that could be merged are identified as: 

   

    },{ 731 PIPIZ   

    },{ 612 PIPIZ   

    },{ 523 PIPIZ   

    },{ 844 PIPIZ   
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The same procedure of the previous examples are applied to the set . and  Z , 4321 ZZZ

The net has only four merged place invariants namely 4321  and  , , mPImPImPImPI  together 

with the remaining one place invariant  (i.e. place invariant ( 9PI ) that could not be  merged 

with any given place invariant in the set). 

    

These four merged PIs with one place invariant and monitors computed are all shown 

in Table 5.8. When this set of monitors C1, C2, C3, C4 and C5 are added to the PNM given in 

Fig. 5.3 the controlled model is obtained. It is verified that this controlled model is live, with 

17244 good states.  

 

Table 5.8. The merged PIs and computed monitors. 

mPIi+PI9 Ci C.  .C  M0 

mPI1=8 + 310 + 314 + 15  11 C1 3t11, 2t15, t16 t7, 2t9, 3t14 11 

mPI2=32 + 33+ 10 + 14 8 C2 3t3, t11, t15 3t1, t9, t14 8 

mPI3=2 + 3 + 28 + 215  7 C3 t3, 2t9, 2t16 t1, 2t7, 2t15 7 

mPI4=2 + 3 + 36 + 7 + 38+ 315 + 

316 14 
C4 

t3, 2t6, t8, 3t9, 

3t17 
t1, 3t5, 3t15 14 

PI9=6 + 7 + 8 + 10 +14+ 15  7 C5 t8, t11, t17 t5, t14 7 

 

 

Table 5.9 compares the original monitors computed by using an FBM variant method 

with that of the proposed method. From the Table 5.9, it is clear to observe that the number 

of control places obtained with the proposed method is as minimum as possible when 

compared with the original monitors computed by using an FBM variant method. 

 

Table 5.9 Performance comparison between the original monitors and reduced monitors 

                   obtained with the proposed method. 

LES #  monitors # arcs # tokens % permissiveness 

Original net 9 43 38 93.11 

Reduced net 5 54 47 93.89 
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CHAPTER 6 

 

CONCLUSIONS 

 

 

In this thesis, a new method has been proposed for reducing the structural complexity 

of a given Petri net based Liveness-enforcing supervisor of an FMS suffering from deadlocks. 

It is assumed that an uncontrolled PNM of an FMS suffering from deadlocks is given together 

with a liveness-enforcing supervisor consisting of a set of monitors and their place invariants 

(PIs). Then the proposed structural complexity reduction algorithm considers the PIs from 

which some of the PIs are merged based on some criteria. From the merged PIs new set of 

monitors are computed. Experimental studies show that the number of monitors are greatly 

reduced while maintaining the same or better behavioral permissiveness compared with the 

ones obtained with the original liveness-enforcing supervisor.  

 

The proposed method requires solving some simple linear equalities. Therefore it is 

computationally simpler than the methods currently available in the literature. It is shown 

that the proposed method is not confined to a sub-class of Petri nets. Therefore it is applicable 

to reduce the structural complexity of Petri net based supervisors of all Petri net classes 

currently available in the literature. 

 

The main assumption of the proposed method is that the given liveness-enforcing 

supervisor must be computed by using an FBM variant method. Therefore further studies are 

necessary to extend the proposed method in order to reduce liveness enforcing supervisors 

computed by using other synthesis approaches.    
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