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ABSTRACT 

In a flexible manufacturing system (FMS), an undesirable situation called deadlocks may 

occur due to the existence of shared resources. Petri nets (PN) are popular modeling tool used 

for the analysis, design and control of FMS. In this study, PN models of FMSs are utilized to 

handle deadlocks that may occur in the system. A new method is proposed for deadlock 

prevention by using a Global sink/source place (GP). The proposed method is especially 

effective for a generalized PN classes. All computed control places have weighted arcs due 

to the approach proposed. The GP is used temporarily in the design steps and is removed 

when the liveness of the system is obtained. The aim is to obtain an easy to use deadlock 

prevention policy that will ensure liveness with better behavioral permissiveness while 

maintaining less computational cost. 

Key words: Flexible manufacturing system (FMS), Petri net model (PNM), Global 

sink/source place (GP), deadlock and liveness. 
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ESNEK ÜRETİM SİSTEMLERİNDE CANLILIK SAĞLAYICI 

GÖZETİCİLERİN SENTEZLENMESİ İÇİN OPTİMUMA YAKIN BİR 

YAKLAŞIM  

Tahir Lawan SALEH 

Yüksek Lisans Tezi – Elektrik ve Bilgisayar Mühendisliği 

Haziran 2014 

Tez Danışmanı: Prof. Dr. Murat UZAM 

ÖZ 

Bir esnek üretim sisteminde (Flexible Manufacturing System – FMS), kördüğüm olarak 

adlandırılan istenmeyen bir durum, paylaşılan kaynakların varlığı sebebiyle oluşabilir. Petri 

ağları (Petri nets – PN), FMS’in analizi, tasarımı ve kontrolu için kullanılan popüler bir 

modelleme aracıdır. Bu çalışmada, FMS’lerin Petri ağı modelleri, sistemde oluşabilecek 

kördüğümlerin üstesinden gelmek için kullanılmaktadır. Küresel bir yutak/kaynak mevkisi 

(Global sink/source place – GP) kullanarak kördüğüm önlenmesi için yeni bir yöntem 

önerilmektedir. Önerilen yöntem, özellikle genel Petri ağı sınıflarında etkilidir. Hesaplanan 

tüm kontrol mevkileri önerilen yaklaşım nedeniyle ağırlıklı oklara sahiptir. GP tasarım 

adımlarında geçici olarak kullanılır ve sistemin canlılığı elde edildiğinde kaldırılır. Amaç, az 

hesaplama maliyetiyle daha iyi davranış serbestlikli canlılık sağlayıcı kördüğüm önleme 

ilkesini kolay bir şekilde elde etmektir. 

Anahtar Kelimeler: Esnek üretim sistemleri, Petri ağı modeli, Küresel yutak / kaynak 

mevkisi, kördüğüm, canlılık. 
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CHAPTER 1 

 INTRODUCTION  

1.1 INTRODUCTION  

Rapid change in customer needs on products in time results in continuous modification 

of products so as to meet the customers’ expectations. This is a big challenge to 

manufacturing processes. This also influences the need for flexible and automated 

manufacturing systems. Flexible manufacturing systems (FMS) are widely used by 

manufacturers. An FMS consists of some shared resources such as buffers, fixtures, robots, 

automated guided vehicles (AGV), and other material-handling devices. It usually exhibits a 

high degree of resource sharing in order to increase flexibility such that manufacturers can 

respond to market changes quickly [1]. The use of shared resources in FMS may lead to 

deadlock since different operations may happen at the same instance. Deadlocks cause some 

operations to stop from execution and may cause other operations to stop elsewhere in the 

system. When deadlocks occur, some particular operations will hold on indefinitely waiting 

for a shared resource that is busy elsewhere in the system. An FMS must be deadlock-free to 

ensure reliability and efficiency of the manufacturing process.   

1.2 DEADLOCK HANDLING TECHNIQUES 

A proper model of FMS is done so as to analyze its behavior and make all the necessary 

control activities to handle the deadlock states. There are three main approaches used for 

deadlock handling in FMS [2], [3]: deadlock recovery,  deadlock avoidance and deadlock 

prevention. Deadlock recovery allows deadlocks to occur, and then detects and puts the 

system back to a normal state. Deadlock avoidance is done online where the system evolution 

is determined such that a restriction is enforced to the system to ensure the processing of each 

job is finished [4]. Deadlock prevention is done off-line by proper system design with desired   
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properties that will prevent the system from entering deadlock states. 

There are various tools used for deadlock detection, avoidance and prevention. These 

include; graph techniques, finite state machine based models and Petri nets [5]. Petri nets are 

widely used for the modeling of FMS due to their ability to easily detect the good behavior 

of a system like deadlock-freeness and boundedness [5].  

There are four main Petri net based deadlock prevention techniques in the literature 

[1]: initial marking configuration, reachability graph analysis, structural analysis and 

combination technique [1].  

The initial marking configuration technique was proposed in [6]. The aim is to prevent 

deadlocks in a system based on initial markings of source and shared resource places. 

Initially, the number of tokens in resource places and sink/source places is greater than zero. 

A relation between initial marking of shared resource and sink/source places is established 

at which Petri net model (PNM) of an FMS is live, bounded and reversible [1]. 

A deadlock prevention technique based on structural analysis was proposed in [7]. The 

technique characterizes deadlock situations in terms of unmarked structural objects called 

siphons. The aim is to prevent the PNM from entering deadlock by adding some control 

places (monitors) to the strict minimal siphons (SMS). It ensures that each SMS is not empty 

or unmarked at any reachable marking [1]. The system is live when there is no empty siphon.  

An example to the reachability graph (RG) study of deadlocks using the theory of 

regions was given in [8]. The technique makes use of the behavior of the system from its RG. 

The RG of a PNM is categorized into states that are in a dead zone (DZ), including deadlock 

states and critical states that may lead to deadlocks and a live zone (LZ) representing good 

states [2]. The aim is to ensure that all states in the DZ are prevented and all states in the LZ 

are reachable. It is achieved by adding monitors to the uncontrolled model (off-line). 

A combined technique, proposed in [9], uses siphons and the theory of regions. The aim is 

to develop a hybrid approach that combines siphons control and theory of regions to drive a 

maximally permissible liveness enforcing supervisor for large classes of PNMs. It has two 

stages: the first is siphons control that adds control places to every strict minimal siphon 
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identified in the original net model so that the siphon is controlled. Second, the theory of 

regions is used to determine the net supervisor so as to prevent the deadlocks from occurring 

[9]. 

1.3 OBJECTIVE OF THE THESIS  

There are various approaches for the synthesis of Petri net based liveness enforcing 

supervisors in FMSs, but some of these approaches could not provide the optimal behavior 

for some FMSs. However, it is necessary to propose optimal or near optimal approaches that 

will provide better liveness behavior for FMSs model by generalized PNs. The objective of 

this study is to propose a computationally efficient PNs based deadlock prevention method 

with optimal or near optimal permissive behavior for FMSs that are modeled by generalized 

classes of PNs, such as S4PR. 

The remainder of this thesis is organized as follows. Chapter 2 gives the basics of Petri 

net, which includes some definitions and computational constrains. It also reviews the 

computation of monitors and elimination of redundant monitors. A new synthesis approach 

for liveness enforcing supervisors in generalized PNMs of FMSs is proposed in Chapter 3, 

which gives an optimal or near optimal liveness behavior of a PNM. The applicability and 

efficiency of the proposed method to different generalized classes of PNs are shown in 

Chapter 4. Chapter 5 gives some conclusions.                                                    
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CHAPTER 2 

PETRI NETS BASICS AND COMPUTATION OF MONITORS  

2.1 INTRODUCTION 

In this chapter, basic PN definitions related to this thesis are considered. In addition, 

the computation of monitors based on place invariants and redundancy test used for finding 

redundant monitors for liveness-enforcing supervisors are also recalled.  

 

2.2 PETRI NET DEFINITIONS 

Petri nets are graphical and mathematical tool introduced by Carl Adam Petri in 1962 

[10]. Since then, they have been used in different fields, such as production systems, 

computer networks, traffic systems, communication systems, social services, work flow 

management, etc. [10]. Petri net have been good tool for modeling for modeling due to their 

ability to provide simple, direct, faithful, and convenient graphical representation of Discrete-

event system DESs [11]. They also have the ability to easily detect good behavior of a system 

like deadlock-freeness and boundedness [5].  

A Petri net is a directed bipartite graph which has two nodes representing places 

(symbolized by circles) and transitions (symbolized by bars or square boxes). A place defines 

a condition and a transition defines an action that may occur. Transitions and places are 

connected by directed arcs. Some formal PN definitions are given below [11].  

Definition 2.1 A Petri net is a four-tuple N = (P, T, F, W), where P and T are finite and 

nonempty sets. P is the set of places, and T is the set of transitions with P ∪ T = Ø and P ∩ 

T = Ø. F ⊆ (P × T) ∪ (T × P) is called flow relation of the net, which is represented by arcs 

with arrows from places to transitions or from transitions to places.                            W: (P × 

T) ∪ (T × P) → ℕ is a mapping that assigns a weight to an arc: W(f) > 0 if f ∈ F and  W(f) = 

0 otherwise, where N = {0, 1, 2, ...}. 
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Definition 2.2 A Petri net N = (P, T, F, W) is said to be ordinary if ∀f ∈ F, W(f) = 1. N 

is said to be generalized if ∃∀f ∈ F, W(f) > 1. 

An example of a generalized Petri net with W(t1,p2) = W(p2,t4) = 2, and an ordinary Petri net 

with weighted arcs equal to one (W(f) = 1) are shown in Fig. 2.1 and Fig. 2.2 [12]. 

t1 p3 t2

2
p1

p2 p4

t3t4

p52

1

 

Figure 2.1. A Petri net example. 

t1 p3 t2

p1

p2 p4

t3t4

p5

1

 

Figure 2.2. An ordinary Petri net. 

Definition 2.3 A marking M of a Petri net N is a mapping from P to ℕ. M(p) denotes 

the number of tokens in place p. A place p is marked by a marking M iff M(p) > 0. A subset 

S ⊆ P is marked by M iff at least one place in S is marked by M. The sum of tokens of all 

places in S is denoted by M(S), i.e., M(S) = ∑ p∈S M(p). S is said to be empty at M iff M(S) = 

0. (N,M0) is called a net system or marked net and M0 is called an initial marking of N. 
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Definition 2.4 Let x ∈ P ∪ T be a node of N = (P, T, F, W). The preset of x defined 

as 𝑥 = {𝑦 ∈ 𝑃 ∪ 𝑇|(𝑦, 𝑥) ∈ 𝐹, and the postset of x defined as 𝑥 =  {𝑦 ∈ 𝑃 ∪ 𝑇|(𝑥, 𝑦) ∈ 𝐹}. 

This notation can be extended to a set of nodes as follows: given X ⊆ P ∪ T, •X = ∪𝑥∈ 𝑋 𝑥, 

and 𝑋•  = ∪𝑥∈ 𝑋  𝑥•. Note that ••X is the preset of •X, and X •• is the postset of X •. Given place 

p, we denote max {W (p,t) | t ∈ p•} by max p• 

Definition 2.5 A transition t ∈ T is enabled at a marking M iff ∀p ∈ •t, M(p) ≥ W(p,t). 

This fact is denoted as M[t> . Firing t yields a new marking M' such that ∀p ∈ P, 𝑀′ (𝑝) =

𝑀(𝑝) − 𝑊(𝑝, 𝑡) + 𝑊(𝑡, 𝑝), which is denoted as M[t>M'. M' is called an immediately 

reachable marking from M. Marking M'' is said to be reachable from M if there exist a 

sequence of transitions 𝜎 = t0,t1 . . . tn and markings M1, M2, . . . , and Mn such that 

M[t0>M1[t1>M2 . . . Mn[tn>M''  holds. The set of markings reachable from M in N is called 

the reachability set of Petri net (N,M) and denoted as R(N, M). 

Definition 2.6 A net N = (P, T, F, W) is pure (self-loop free) iff ∀x,y ∈ P ∪ T,    W(x,y) 

> 0 implies W(y,x) = 0. 

Definition 2.7 A pure net N = (P, T, F, W) can be represented by its incidence matrix 

[N], where [N] is a |P| × |T| integer matrix with [N](p,t) = W(t,p) - W(p,t). For a place p 

(transition t), its incidence vector, a row (column) in [N], is denoted by [N](p, ·)([N](·,t)). 

Definition 2.8 A Petri net (N,M0) is safe if ∀M ∈ R(N,M0), ∀ p ∈ P, M(p) ≤ 1 is true. It 

is bounded if ∃k ∈ ℕ+, ∀M ∈ R(N,M0), ∀p ∈ P, M(p) ≤ k. It is said to be unbounded if it is 

not bounded. A net N is structurally bounded if it is bounded for any initial marking. 

Definition 2.9 Given a Petri net (N,M0), t ∈ T is live under M0 iff ∀M ∈ R(N,M0), ∃M' 

∈ R(N,M), M'[t>. (N,M0) is live iff ∀t ∈ T, t is live under M0. (N,M0) is dead under M0 iff ∄t 

∈ T, M0[t>. (N,M0) is deadlock-free (weakly live or live-locked) iff  ∀M ∈ R(N,M0), ∃t ∈ T, 

M[t>. 

Definition 2.10 A P-vector is a column vector I: P → ℤ indexed by P and a T- vector 

is a column vector J: T → ℤ indexed by T, where ℤ is the set of integers. 
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We denote column vectors where every entry equals 0(1) by 0(1). IT and [N]T are the 

transposed versions of vector I and matrix [N], respectively. A P(T)-vector is non-negative 

if no element in it is negative. 

Definition 2.11 P-vector I is called a P-invariant (place invariant) iff I ≠ 0 and IT [N]T 

= 0T. T -vector J is called a T-invariant (transition invariant) iff J ≠ 0 and [N]J = 0. 

Definition 2.12 P-invariant I is a P-semiflow if every element of I is non-negative. ||I|| 

= {p|I(p) ≠ 0} is called the support of I. ||I||+ = {p|I(p) > 0} denotes the positive support of P-

invariant I and ||I||- = {p|I(p) < 0} denotes the negative support of I. I is called a minimal P-

invariant if ||I|| is not a superset of the support of any other one and its components are 

mutually prime. 

Definition 2.13 T-invariant J is a T-semiflow if every element of J is non-negative. ||J|| 

= {t|J(t) = 0} is called the support of J. ||J||+ = {t|J(t) > 0} denotes the positive support of T-

invariant J and ||J||- = {t|J(t) < 0} denotes the negative support of J. J is called a minimal T-

invariant if ||J|| is not a superset of the support of any other one and its components are 

mutually prime. A P-invariant corresponds to a set of places whose weighted token count is 

a constant for any reachable marking. It follows immediately from the state equation. 

 

2.3 CONTROL PLACE COMPUTATION USING PLACE INVARIANTS 

In this thesis, control places (monitors) are computed based on a place invariant (PI) 

method proposed in [13]. The method uses two equations for computation; Eq. (2.1) for 

computing the initial markings and Eq. (2.3) for computing the control place arcs connecting 

control place Ci to the transitions in the uncontrolled Petri net model (PNM). 

𝜇𝐶𝑂 + 𝐿𝜇𝑃𝑂 = 𝑏                 (2.1) 

where:  𝜇𝐶𝑂 is the initial marking of the control place, 

 𝜇𝑃𝑂 is the initial marking of the PNM 
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           L is an integer matrix and b is an integer vector representing some place invariant 

constraints. 

Eq. (2.1) can be written as                                                                                                         

𝜇𝑐𝑜 = 𝑏 − 𝐿𝜇𝑃𝑂                                      (2.2) 

𝐷𝐶 = −𝐿𝐷𝑃                (2.3) 

 where 𝐷𝑐 is the control place row matrix representing the connection of control place to the 

transitions. 

 𝐷𝑃 is the incidence matrix of the PNM, 

              L is row matrix representing the place invariants. 

A simple method in [2] is provided which reduces the size of the PNM incidence matrix 

(DP). Since many places may not be used in the incidence matrix (DP) for a particular 

controller computation, the place invariant related incidence matrix (DPI) of the PNM is used. 

Eqs. (2.2) and (2.3) are now modified based on a place invariant related net. 

𝜇𝑐𝑜 = 𝑏 − 𝐿𝑃𝐼𝜇𝑃𝐼𝑂             (2.4) 

where 𝐿𝑃𝐼 is place invariant related integer vector, 

             𝜇𝑃𝐼𝑜 is initial marking of a place invariant related net, 

𝐷𝑐 = −𝐿𝑃𝐼 𝐷𝑃𝐼              (2.5) 

where 𝐿𝑃𝐼 is a j×1 integer row vector representing the invariant related place, 

             𝐷𝑃𝐼 is the incidence matrix (j×k) of a place invariant related net with j places and k 

transitions. 

DC is a k×1 integer vector representing the incidence matrix of the monitor. 

It is known that at initial marking of PNM, the activity places have no tokens, which means 

that 𝜇𝑃𝐼𝑂 = 0. Therefore Eq. (2.4) becomes; 

μ𝑐𝑜 = 𝑏                     (2.6)  
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2.4 REDUNDANCY TEST FOR LIVENESS ENFORCING SUPERVISORS OF FMS 

A number of control places CPs are computed in Petri-net-based approaches for 

deadlock prevention in FMS. It is the fact that some computed control places are redundant 

in a live Petri net (LPN) model. This increases the structural complexity of LPN, and may 

reduce the behavioral permissiveness of the LPN.  A method was proposed in [5]  to identify 

and eliminate redundant control places in a Petri net based liveness enforcing supervisor. In 

this section the redundancy test is recalled from [5]. 

There may exist redundant CPs in a live Petri net (LPN) model, denoted by a net system 

(N0,M0), controlled by n CPs: CP = {C1, C2, …, Cn}. CP is called redundant if removing it 

still keeps the net live. It should be noted that this definition is different from that of a 

redundant place in literature. Removing the latter does not change the net’s reachability 

graph. Also, redundant CPs are not necessarily unique given a set of CPs used to make a 

deadlock-prone net live.  

Redundancy Test Algorithm: Redundancy test for LES of FMS. 

_________________________________________________________________________ 

Input: A live Petri net (LPN) model, denoted by a net system (N0,M0), of an FMS, controlled 

by n CPs; CP = {C1, C2, …, Cn}; 

1) [Define] 0: the number of reachable markings or states of reachability graph (R0) of 

(N0,M0) 

[Defined for Algorithm A] A: the number of reachable markings or states of RA of 

(NA,MA);      n = j + k, where n: the number of CPs of LPN; j: the number of redundant 

CPs; k: the number of necessary CPs;  

[Defined for Algorithm B] B: the number of reachable markings or states of RB of 

(NB,MB);      n = l + m, where n: the number of CPs of LPN; l: the number of redundant 

CPs; m: the number of necessary CPs;  

2) Apply Algorithm A to (N0,M0) and the resultant net system is denoted as (NA,MA). 

3) Apply Algorithm B to (N0,M0) and the resultant net system is denoted as (NB,MB). 

Output:If (j>0) [for Algorithm A] 
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then Output A = an LPN, denoted by a net system (NA,MA), controlled by k necessary 

CPs; there are j redundant CPs;          

          if  A = 0   then the controlled behaviour of (NA,MA) is  

 the same as (N0,M0) 

          if  A > 0   then the controlled behaviour of (NA,MA) is  

                                                 more permissive than (N0,M0) 

 else there is no redundant CPs obtained due to Algorithm A and therefore  

        for Algorithm A: Output = Input; 

If (l>0) [for Algorithm B] 

then Output B = an LPN, denoted by a net system (NB,MB), controlled by m necessary 

CPs; there are l redundant CPs;          

          if  B = 0   then the controlled behaviour of (NB,MB) is  

 the same as (N0,M0) 

          if  B > 0   then the controlled behaviour of (NB,MB) is  

                                                 more permissive than (N0,M0) 

 else there is no redundant CPs obtained due to Algorithm B and therefore  

        for Algorithm B: Output = Input; 

_________________________________________________________________________ 

end Redundancy Test Algorithm  
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Algorithm A: Front-to-Back (FTB) redundancy test for LES of FMS. 

_________________________________________________________________________ 

Input: A live Petri net (LPN) model, denoted by a net system (N0,M0), of an FMS, controlled 

by n CPs;  CP = {C1, C2, …, Cn}; 

1) [Initialize] NA := N0 ; MA := M0;  i = 1;  j = 0; k  = 0; 

2) Remove Ci from (NA,MA). Denote the resultant net system by (Ni,Mi).  

3) Check the liveness property of (Ni,Mi), compute the reachability graph (Ri) of (Ni,Mi) 

and define Ai, i.e., the number of reachable markings of Ri; 

     If (Ni,Mi) is NOT LIVE 

then put Ci back into (Ni,Mi); k = k + 1; which means that Ci is necessary  

        to keep the PN model live,  

     else [i.e., If (Ni,Mi) is LIVE], j = j + 1; which means that Ci is redundant,  

          if  Ai = 0   then the controlled behaviour of (Ni,Mi) is  

 the same as (N0,M0) 

          if  Ai > 0   then the controlled behaviour of (Ni,Mi) is  

                                                 more permissive than (N0,M0) 

 endif 

4) NA := Ni ; MA := Mi  

5) i = i + 1. 

6) If i  n then go to step 2.   

Output:If (j>0)  

then Output = an LPN, denoted by a net system (NA,MA), controlled by k necessary                 

        CPs; there are j redundant CPs;         

          if  A = 0   then the controlled behaviour of (NA,MA) is  

 the same as (N0,M0) 
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          if  A > 0   then the controlled behaviour of (NA,MA) is  

                                                 more permissive than (N0,M0) 

 else there is no redundant CPs and therefore Output = Input; 

_________________________________________________________________________ 

end Algorithm A 

Algorithm B: Back-to-Front (BTF) redundancy test for LES of FMS. 

_________________________________________________________________________ 

Input: A live Petri net model (LPN), denoted by a net system (N0,M0), of an FMS, controlled 

by n CPs; CP = {C1, C2, …, Cn}; 

1) [Initialize] NB := N0 ; MB := M0;  i = n;  l = 0; m  = 0; 

2) Remove Ci from (NB,MB). Denote the resultant net system by (Ni,Mi).  

3) Check the liveness property of (Ni,Mi), compute the reachability graph (Ri) of (Ni,Mi) and 

define Bi, i.e., the number of reachable markings of Ri; 

     If (Ni,Mi) is NOT LIVE 

then put Ci back into (Ni,Mi); m = m + 1; which means that Ci is necessary  

        to keep the PN model live,  

     else [i.e., If (Ni,Mi) is LIVE], l = l + 1; which means that Ci is redundant,  

          if  Bi = 0   then the controlled behaviour of (Ni,Mi) is  

 the same as (N0,M0) 

          if  Bi > 0   then the controlled behaviour of (Ni,Mi) is  

                                                 more permissive than (N0,M0) 

 endif 

4) NB := Ni ; MB := Mi  

5) i = i – 1. 

6) If i  0 then go to step 2.   
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Output:If (l>0)  

then Output = an LPN, denoted by a net system (NB,MB), controlled by m  

        necessary CPs; there are l redundant CPs;          

          if  B = 0   then the controlled behaviour of (NB,MB) is  

 the same as (N0,M0) 

          if  B > 0   then the controlled behaviour of (NB,MB) is  

                                                 more permissive than (N0,M0) 

 else there is no redundant CPs and therefore Output = Input; 

_________________________________________________________________________ 

end Algorithm B 

 The Redundancy Test Algorithm makes use of both Algorithms A and B. The former 

tests each CP starting from number 1 to the end, i.e., to n, while the latter tests each CP 

starting from number n to 1. Both tests may produce the same result or it may be possible to 

obtain different outcomes. It depends on the controlled live net system (N0,M0) considered. 

Of course if there is no redundant CP in an LPN, then the Algorithm Redundancy Test finds 

no redundant CP. In the existence of one or more redundant CP in an LPN, we may obtain 

the following results: 

1. We may obtain the same set of redundant CPs and necessary CPs. In this case, the 

live behaviour of the Petri net model, controlled by the set of necessary CPs, may be 

the same as or more permissive than the original controlled net system, obtained with 

a smaller number of CPs. 

2. We may obtain two different sets of redundant CPs and necessary CPs. The live 

behaviour of the Petri net model obtained with each set of necessary CPs, may be the 

same as or more permissive than the original controlled net system, obtained with a 

smaller number of CPs. 

 The Redundancy Test Algorithm is easy to use, very effective and straight forward. 

Its complexity is, however, exponential with respect to the net size since it requires 

generating the reachability graph. At the worst cases, Algorithm A and Algorithm B, i.e. BTF 
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and FTB redundancy tests respectively, also exhibit the same exponential complexity. When 

dealing with a particular case, their performance may vary significantly. The Redundancy 

Test Algorithm is applicable to any LPN consisting of a PNM, prone to deadlock, of an FMS, 

controlled by means of a set of CPs. It has been applied to a number of LPN currently 

available within the Petri net based deadlock prevention/liveness enforcing literature with 

success. The liveness property can be checked and the reachability analysis can be carried 

out by currently available Petri net analysis tools. In this work, INA [14] is used.  
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  CHAPTER 3  

SYNTHESIS OF PETRI NET BASED LIVENESS ENFORCING 

SUPERVISORS IN FLEXIBLE MANUFACTURING SYSTEMS 

 

3.1 INTRODUCTION 

In this chapter, a new method is proposed for computing a liveness-enforcing 

supervisor for a given Petri net model (PNM) of an FMS prone to deadlocks. There may be 

three groups of places in a PNM of an FMS: resource places, activity places and sink/source 

places.  Resource places represent either shared or non-shared resources and initially there 

are tokens in these places representing the number of available instances. Activity places 

represent an action to process a part in a production sequence by a resource (machine, robot, 

etc.) and initially there are no tokens in these places. Initially, tokens put into sink/source 

places represent the maximal number of concurrent activities which can take place in a 

production sequence. In some models it may be possible not to use them. In cyclic models a 

sink place is also a source place and vice versa.  

The proposed method is especially effective for generalized Petri net classes. All 

computed control places have weighted arcs due to the proposed method. One of the most 

important features of the proposed method is to transform the given PNM into its 

conservative form called TPNM. This transformation is obtained by using Algorithm 1. It 

can be verified that a PNM and its transformed form TPNM obtained by using Algorithm 1 

have isomorphic reachability graphs. This means that when we obtain a liveness-enforcing 

supervisor by using TPNM, the same supervisor is also valid for the original PNM. Then 

Algorithm 2 is used to compute the control places (monitors) based on the TPNM.  
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3.2 TRANSFORMATION OF A PETRI NET MODEL OF AN FMS PRONE TO 

DEADLOCK INTO ITS CONSERVATIVE FORM  

The transformation of a PNM of an FMS prone to deadlocks into its conservative form, 

called TPNM, is necessary within the liveness enforcing method proposed in this study. 

Therefore this transformation is explained in this section. The basic idea behind this 

transformation is to obtain a conservative version of the original PNM, to be used in the 

control place computation. The experimental studies carried out show that for certain 

problems including generalized Petri net classes, the monitors computed by using TPNM 

provide more permissive behavior compared with the ones computed by using PNM. 

Therefore the transformation explained in this section is necessary to obtain a supervisor with 

more permissive behavior.  

It is important to note that the transformation carried out here does not change some 

important properties of the original PNM. The following shows that both PNM and its 

conservative form TPNM have isomorphic (the same) reachability graphs. A Petri net (N,M0) 

is said to be conservative if the total number of tokens in all its places for all reachable 

markings is constant.  

3.2.1 Isomorphic Petri Nets 

Let RG1 (S1,A1) and RG2 (S2,A2) represent two reachability graphs of two Petri net 

models (PNM1 and PNM2). Assume that both PNM1 and PNM2 suffer from deadlock 

problems. Let S1 (respectively S2) represent the number of states of RG1 (respectively RG2) 

and likewise let A1 (respectively A2) represent the number of arcs of RG1 (respectively RG2). 

RG1 and RG2 are said to be isomorphic if there exist a pair of functions 𝑓: 𝑆1 → 𝑆2 and 

𝑔: 𝐴1 → 𝐴2 such that f associates each element in S1 with exactly one element in S2 and vice 

versa; g associates each element in A1 with exactly one element in A2 and vice versa. 

If two reachability graphs RG1 and RG2 of two Petri nets models PNM1 and PNM2 

suffering from deadlock are isomorphic, then they must have:  

(a) The same number of states. 

(b) The same number of arcs. 

(c) The same number of dead states. 
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(d) The same number of bad states in their dead zones (DZs). 

(e) The same number of good states in their live zones (LZs). 

(f) The same number of connected components. 

Now let us consider Algorithm 1 

Algorithm 1: Transformation of a PNM of an FMS prone to deadlocks into its conservative 

form, called TPNM. 

_________________________________________________________________________ 

Input:    A Petri net model (PNM), (N, M0) of an FMS prone to deadlocks. 

Output: Conservative form of the PNM called TPNM, (N',M0). 

Step 1: Identify sink/source (idle) places (PS/S), resource places (PR), and activity places (PA) 

of the PNM.  

Step 2: Based on the number of product types processed in the FMS, find sub-nets SNI (I is 

the number of product types) consisting of P activity places with their input and 

output arcs and T transitions. 

Step 3: Identify the input and output transitions of each sub-net SNI. 

Step 4: for (i = 1; i ≤ I; i ++)                                            

 { 

                     for (n = 1; n ≤ T; n ++)    

   { 

      /* in the first iteration the input transition of SNI is used */ 

       Identify the weight of input arc for activity place pn: 

       𝑊(𝑡𝑛, 𝑝𝑛) =  ∑ 𝑊(𝑝𝑗 , 𝑡𝑛)𝐽
𝑗=1 − ∑ 𝑊(𝑡𝑛, 𝑝𝑘)

𝐾
𝑘=1  

       /* J is the number of input places of tn */ 

       /* K is the number of output places of tn except for pn */ 

       𝑊(𝑝𝑛, 𝑡𝑛+1) =  𝑊(𝑡𝑛, 𝑝𝑛) 
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       /* the weight of the output arc from activity place pn is equal to the weight of 

the input   arc of the same activity place pn */ 

      } 

 } 

Step 5: Based on the computed input and output arc weights of the activity places, establish 

TPNM, i.e., a conservative form of the PNM. 

_________________________________________________________________________ 

end of Algorithm 1. 

3.3 A NEW SYNTHESIS APPROACH FOR THE LIVENESS ENFORCING IN 

GENERALIZES PETRI NET MODELS OF FMS 

In this section, a new method is proposed for computing a liveness-enforcing 

supervisor for a given Petri net model (PNM) of an FMS prone to deadlocks. In the monitor 

computation steps of Algorithm 2, a global sink/source place (GP) is used to make the 

necessary computation easily in an iterative way. At each iteration, the reachability graph 

(RG) of the related net is computed. If the net is not live, the RG is divided into dead zone 

(DZ) and live zone (LZ) as in [8]. The former may contain deadlock states (markings), partial 

deadlock states, and states which inevitably lead to deadlocks or livelocks. The latter 

constitutes remaining good states of the RG representing the optimal system behaviour. The 

control policy is based on the exclusion of the DZ from the RG, while making sure that every 

state within the LZ can still be reached. All states in the DZ are considered as bad markings 

(BM) and they are prevented from being reached by means of the simplified invariant-based 

control method explain in Chapter 2. 

From a BM we consider only the markings of activity places. Then, our objective is to 

prevent the marking of the subset of the activity places of the BM from being reached. 

Therefore, the marking of the subset of the activity places is characterized as a PI of the 

PNM. In the PI relating to a BM, the sum of tokens within the subset of the activity places 

has to be at most one token less than their current value within the BM in order not to reach 

the BM. A PI can be implemented by a control place with its related arcs and initial marking. 
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The redundancy test recalled in Chapter 2 is used to find out if there are any redundant 

monitors within computed control places in the computation procedures. 

Finally, a live controlled Petri net is obtained by including all necessary control places 

in the PNM. Although not explained in Algorithm 2, in order to simplify very big PNMs so 

as to make necessary computation easily as in [2], the Petri net reduction approach can be 

used. The reachability graph analysis of PNMs can be carried out by currently available Petri 

net analysis tools. In this work, INA [14] is used, in which we are provided with both LZ, as 

the first strongly connected component, and DZ, as the strongly connected components other 

than the first one, of a given PNM. The DZ is then considered as the collection of all bad 

markings (BMi, i= 1, 2, . . .). 

Algorithm 2: Synthesis of liveness-forcing supervisor with weighted arcs 

_________________________________________________________________________ 

Input:    A Petri net model (PNM) of an FMS prone to deadlocks 

Output: Liveness enforcing supervisor with weighted arcs for the PNM 

Step 1: Transform the given PNM into its conservative form TPNM by using Algorithm 1. 

Step 2: Define input and output transitions of all sink/source places PS/S. Add a global 

sink/source place (GP) to the TPNM. The input transitions of the GP are input 

transitions of all sink/source places PS/S. Likewise output transitions of the GP are 

output transitions of all sink/source places PS/S. Thus a new net system NB  = TPNM 

+ GP is obtained, where 𝐵 ∈ ℕ  

Step 3: for (B = 1; B ≤ k; B ++) 

 /* B is the number of tokens in GP and k is the sum of initial tokens in all sink/source 

places PS/S */ 

 { 

3.B.1. Compute the reachability graph RGB of NB. If NB is live, then consider 

net NB next net with B + 1, i.e., go to step 3.B.1. Otherwise, define the 

LZB and DZB of RGB. 

  3.B.2. Define a PI for each bad marking (BM) within DZB, from the subset of 

marked activity places of BM. 
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  3.B.3. Compute a monitor C for each PI using the simplified invariant-based 

control method. 

  3.B.4. If the number of monitors computed for NB is greater than 1, then carry 

out the redundancy test using the method proposed in [5] to find out the 

set of necessary monitors CB,i ; i = 1, 2, 3, . . 

  3.B.5. Augment all necessary monitors computed in the previous step into NB     

(NB: = NB + CB,i , i = 1, 2, 3, . . . ). 

  } 

Step 4: Obtain a live controlled PNM by augmenting all necessary monitors computed in 

step 3 into the PNM. 

Step 5: Exit 

_________________________________________________________________________ 

end of Algorithm 2. 

3.4 ILLUSTRATIVE EXAMPLE 

In order to show the applicability of the proposed synthesis approach, an example is 

considered in this section. Fig. 3.1 shows a simple uncontrolled System of Simple Sequential 

Processes with Resource (S3PR) PNM of an FMS from [15]. This model suffers from 

deadlocks. It can be verified that there are 95 states in the RG of this PNM, 11 of which are 

bad states representing the DZ, while 84 of which are good states representing the LZ. This 

means that an optimal liveness-enforcing supervisor should provide 84 good states for this 

PNM. Let us now apply the proposed method to the PNM. 
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Figure 3.3. S3PR model of FMS from [15]. 

Step 1: The PNM shown in Fig. 3.1 is considered by Algorithm 1 and then the transformed 

PNM (TPNM) shown in Fig. 2 is obtained. It is verified that the RG of the TPNM 

has 95 states, whose DZ includes 11 bad states, and LZ contains 84 good states.  
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Figure 3.4. Transformed PNM (TPNM). 
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Step 2: Input transitions of sink/source places p1 and p5 are p1= {t4} and p5 = {t5}. 

Likewise output transitions of p1 and p5 are p1 = {t1} and p5 = {t8}. Therefore the 

input and output transitions of the GP are GP = {t4, t5} and GP  = {t1, t8}. When 

the GP is added within the TPNM, a new net structure NB = TPNM + GP is obtained 

as shown in Fig. 3.3. 
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Figure 5.3. The net NB with NB = TPNM + GP (S3PR net). 

Step 3: 

(B = 1) 

Step 3.1.1.  When one token is deposited in the GP within the net N1 shown in Fig. 3.3, the 

net   N1   is live with 7 good states. Then B: = B + 1 = 2. 

(B = 2) 

Step 3.2.1. When two tokens are deposited in the GP within the net N2 shown in Fig. 3.3, the 

net N2 is live with 25 good states. Then B: = B + 1 = 3. 
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(B = 3) 

Step 3.3.1. When three tokens are deposited in the GP within the net N3 shown in Fig. 3.3, 

the net N3 is not live. There are 55 states within the RG3 of N3. DZ3 includes 2 

bad states BM1 and BM2 and LZ3 contains 53 good states. 

Step 3.3.2.  The markings of the activity places of BM1 and BM2 are shown in Table 3.1. 

Table 3.1 The markings of activity places of BM1 and BM2. 

State number p2 p3 p4 p6 p7 p8 

s22 4 0 0 0 2 0 

s46 0 2 0 0 0 4 

 

In order not to reach BM1 and BM2 the following place invariants are established 

respectively: 

PI1 = μ2 + μ7 ≤ 5 

PI2 = μ3 + μ8 ≤ 5 

Step 3.3.3. Monitors C1 and C2 are computed in order to enforce PI1 and PI2 respectively as 

follows. 

                       t1   t2   t6    t7                       

                    𝐷𝑃𝐼1 = [
2
0

̵2
0

0
̵2

0
2
]
p2
p7

     

                                  p2   p7                      

                    𝐿𝑃𝐼1 = [1 1] 

                    𝐷𝑐1 = −𝐿𝑃𝐼1. 𝐷𝑃𝐼1  =   −[1 1] [
2
0

̵2
0

0
̵2

0
2
] 

                    𝐷𝐶1 = −[ 2 ̵2 ̵2 2]                                                                  

                                 t1   t2    t6   t7 

                    𝐷𝐶1 = [ ̵2 2 2 ̵2] 

                      μ0(𝑐1) = 5 
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                       t2    t3   t7   t8                

                    𝐷𝑃𝐼2 = [
2
0

 
̵2
0

0
̵2

0
2
]
p3
p8

                          

                       p3   p8 

                    𝐿𝑃𝐼2 = [1 1] 

                    𝐷𝐶2 = −𝐿𝑃𝐼2. 𝐷𝑃𝐼2  =   −[1 1] [
2
0

̵2
0

0
̵2

0
2
] 

                    𝐷𝐶2 = −[ 2 ̵2 ̵2 2] 

                                 t2    t3   t7   t8 

                    𝐷𝐶2 = [ ̵2 2 2 ̵2] 

                    μ0(𝑐2) = 5 

The computed monitors are shown in Table 3.2. 

Table 3.2. Computed monitors C1 and C2. 

Ci 𝑐𝐼 𝑐𝐼  μ0(𝑐𝑖) 

C1 2t2, 2t6 2t1, 2t7 5 

C2 2t3, 2t7 2t2, 2t8 5 

 

Step 3.3.4. The redundancy test shows that both computed monitors C1 and C2 are necessary. 

Step 3.3.5. When the computed necessary monitors C1 and C2 are augmented in the 

uncontrolled model N3, the controlled model of N3 is obtained as follows:     N3:= 

N3 + C1 + C2 and is shown in Fig. 3.4. 
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Figure 3.6. The controlled model N3 (N3: = N3 + C1 + C2). 

It is verified that the controlled model N3 shown in Fig. 3.4 is live with 53 good states. 

This is the optimal live behavior for the controlled model N3. 

Step 3.4.1. The net N4 considered in this step is shown in Fig. 3.5. It is obtained by increasing 

the number of tokens in GP as shown in Fig. 3.4. 
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Figure 3.7. The net N4 (S3PR net). 
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The net N4 is not live. There are 77 states in the RG4 of N4. The DZ4 includes 1 bad 

marking (BM3) and LZ4 contains 76 good states. 

Step 3.4.2. The markings of the activity places of BM3 are shown in Table 3.3. 

Table 3.3. The markings of the activity places of BM3. 

State number p2 p3 p4 p6 p7 p8 

s22 4 0 0 0 0 4 

 

In order not to reach BM3, the following place invariant is established: 𝑃𝐼3 = μ2 + μ8 ≤ 7. 

Step 3.4.3. Monitor C3 is computed in order to enforce PI3 as follows.                    

                      t1   t2    t7   t8                

                   𝐷𝑃𝐼3 = [
2
0

̵2
0

0
̵2

0
2
]
p2
p8

                       

                                p2   p8 

                   𝐿𝑃𝐼3 = [1 1] 

                   𝐷𝐶3 = −𝐿𝑃𝐼3. 𝐷𝑃𝐼3  =   −[1 1] [
2
0

̵2
0

0
̵2

0
2
] 

                   𝐷𝐶3 = −[ 2 ̵2 ̵2 2] 

                               t1   t2    t7   t8 

                   𝐷𝐶3 = [ ̵2 2 2 ̵2] 

                      μ0(𝑐3) = 7 

The computed monitor C3 is shown in Table 3.4. 

Table 3.4. Computed monitor C3. 

Ci 𝑐𝐼 𝑐𝐼  μ0(𝑐𝑖) 

C3 2t2, 2t7 2t1, 2t8 7 

 

Step 3.4.4. No need to do redundancy test as there is only one monitor computed. 
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Step 3.4.5 When the computed monitor C3 is augmented in the uncontrolled model N4 shown 

in Fig. 3.5. The controlled model of N4 is obtained as follows: N4 = N4 + C3 and 

is shown in Fig. 3.6. 
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Figure 3.8. The controlled model N4 (N4: = N4 + C3). 

It is verified that the controlled model N4 shown in Fig. 3.6 is live with 76 good states. 

This is the live optimal behavior for the controlled model N4 

Step 3.5.1. The net N5 considered in this step is shown in Fig. 3.7. It is obtained by increasing 

the number of tokens in GP shown in Fig. 3.6. 
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                                                    Figure 3.9. The net N5 (S
3PR net). 

The net N5 is live with 84 good states. Likewise the net N6, N7, N8, N9, and N10 are all 

live with 84 good states. 

Step 4. The live controlled S3PR PNM shown in Fig. 3.8 is obtained by augmenting 3 

necessary monitors provided in Table 3.5 into the uncontrolled model PNM shown 

in Fig. 3.1. It is live with 84 good states. Permissiveness of the controlled PNM is 

(84/84) × 100 = 100%.  This is the optimal live behavior for PNM. The liveness 

enforcing procedure applied for the PNM is provided in Table 3.6. 
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Figure 3.10. The controlled S3PR net. 

 

Table 3.5. Necessary monitors for the PNM shown in Fig. 3.1. 

Ci 𝑐𝐼 𝑐𝐼  μ0(𝑐𝑖) 

C1 2t2, 2t6 2t1, 2t7 5 

C2 2t3, 2t7 2t2, 2t8 5 

C3 2t2, 2t7 2t1, 2t8 7 

 

 

Table 3.6. The liveness enforcing procedure applied for the PNM shown in Fig. 3.1. 

B Included C Is the 

net live? 

# of 

states in 

RG 

# of 

states in 

DZ 

# of 

states in 

LZ 

Computed C # of states within 

controlled net 

RG = LZ UR 

1 – YES 7 0 7 –   

2 – YES 25 0 25 –   

3 – NO 55 2 53 C1,C2 53 0 

4 C1, C2 NO 77 1 76 C3 76 0 

5 C1, C2, C3 YES 84 0 84 –   

6 C1, C2, C3 YES 84 0 84 –   

7 C1, C2, C3 YES 84 0 84 –   

8 C1, C2, C3 YES 84 0 84 –   

9 C1, C2, C3 YES 84 0 84 –   

10 C1, C2, C3 YES 84 0 84 –   
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CHAPTER 4 

APPLICATION EXAMPLES 

4.1 INTRODUCTION 

In this chapter, some example of generalized classes of PNMs such as Weighted 

Automated Marked Graph (WAMG), Systems of Sequential Systems with Shared Resources 

(S4PR) and G-System from the literature are used to show the applicability and effectiveness 

of the proposed liveness-enforcing approach. 

 

4.2 WAMG MODEL 

Fig. 4.1 shows an uncontrolled WAMG PNM of an FMS from [16]. This model is 

prone to deadlocks. It can be verified that there are 15571 states in the RG of the PNM in 

which 4159 are bad states representing the DZ, and 11412 are good states representing the 

LZ. This means that the optimal solution should provide a live net with 11412 good states 

for this PNM. Now, the proposed method is applied to this model. 
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Figure 4.1 WAMG model from [16]. 

Step 1: The PNM shown in Fig. 4.1 is transformed into its conservative form (TPNM) by 

using the Algorithm 1. The TPNM is shown in Fig. 4.2. It is verified that the RG of 

the TPNM has 15571 states, whose DZ includes 4159 bad states, and LZ contains 

11412 good states.  
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Figure 0. The TPNM. 

 

Step 2: Input transitions of sink/source places p1, p5 and p14 are p1= {t4}, p5 = {t12} and 

p14 = {t18} respectively. Likewise output transitions of sink/source places p1, p5 

and p14 are p1 = {t1}, p5 = {t5} and p14 = {t13} respectively. Therefore the 

input and output transitions of the GP are GP = {t4, t12, t18} and GP  = {t1, t5, 

t13}. When the GP is added within the TPNM, a new net structure NB = TPNM + 

GP is obtained as shown in Fig. 4.3. 
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Figure 4.3. The net NB with NB = TPNM + GP (WAMG net). 

Step 3: 

(B = 1) 

Step 3.1.1.  When one token is deposited in the GP within the net N1 shown in Fig. 4.3, the 

net N1 is live with 20 good states. Then B: = B + 1 = 2. 

(B = 2) 

Step 3.2.1. When two tokens are deposited in the GP within the net N2 shown in Fig. 4.3, the 

net N2 is live with 181 good states. Then B: = B + 1 = 3. 

(B = 3) 

Step 3.3.1. When three tokens are deposited in the GP within the net N3 shown in Fig. 4.3, 

the net N3 is not live. There are 931 states within the RG3 of N3. DZ3 includes 21 

bad states BM1, BM2, BM3, . . . , BM21 and LZ3 contains 910 good states. 
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Step 3.3.2. The bad markings of the activity places of BM1, BM2,  . . . , BM21 are shown in 

Table 4.1. 

 

Table 4.1. Markings of activity places of BM1, BM2,  . . . , BM21. 

State 

number 

p 

2 

p 

3 

p 

4 

p 

6 

p 

7 

p 

8 

p 

9 

p 

10 

p 

11 

p 

12 

p 

13 

p 

15 

p 

16 

p 

17 

p 

18 

p 

19 

S32 4 0 0 0 0 0 3 0 0 3 0 0 0 0 0 0 

S50 0 3 0 0 6 0 0 0 0 6 0 0 0 0 0 0 

S182 0 0 0 0 0 6 0 0 6 0 0 0 0 2 0 0 

S632 0 0 0 0 0 0 0 3 3 0 0 0 4 0 0 0 

S869 0 0 0 2 0 0 0 0 0 0 0 0 0 0 4 0 

S31 4 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 

S49 0 3 0 0 6 0 0 3 0 3 0 0 0 0 0 0 

S181 0 0 0 0 0 6 3 0 3 0 0 0 0 2 0 0 

S631 0 0 0 0 0 0 0 3 3 0 0 3 2 0 0 0 

S633 0 0 0 0 0 0 3 3 0 0 0 0 4 0 0 0 

S30 4 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 

S48 0 3 0 0 6 3 0 0 0 3 0 0 0 0 0 0 

S183 0 0 0 0 3 6 0 0 3 0 0 0 0 2 0 0 

S630 0 0 0 0 0 0 3 3 0 0 0 3 2 0 0 0 

S776 0 0 0 0 3 0 0 3 0 0 0 0 4 0 0 0 

S47 0 3 0 0 6 3 0 3 0 0 0 0 0 0 0 0 

S179 0 0 0 0 3 6 3 0 0 0 0 0 0 2 0 0 

S775 0 0 0 0 3 0 0 3 0 0 0 3 2 0 0 0 

S892 0 3 0 0 6 6 0 0 0 0 0 0 0 0 0 0 

S178 0 0 0 0 6 6 0 0 0 0 0 0 0 2 0 0 

S180 0 0 0 0 0 6 6 0 0 0 0 0 0 2 0 0 

 

NOTE: Places p7 and p8 are not considered at the same time for determining the PI relations, 

only one of them is taken at a time in order to obtain bounded behavior of the net. Also, in 

order not to reach bad markings BM1, BM2,  . . , BM21, the following place invariants are 

established respectively: 

PI1 = μ2 + μ9 + μ12 ≤ 9 

PI2 = μ3 + μ7 + μ12 ≤ 14 

PI3 = μ8 + μ11 + μ17 ≤ 13 
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PI4 = μ10 + μ11 + μ16 ≤ 9 

PI5 = μ6 + μ18 ≤ 5 

PI6 = μ2 + μ9 + μ10 ≤ 9 

PI7 = μ3 + μ7 + μ10 + μ12 ≤ 14 

PI8 = μ8 + μ9 + μ11 + μ17 ≤ 13 

PI9 = μ10 + μ11 + μ15 + μ16    ≤ 10 

PI10 = μ9 + μ10 + μ16 ≤ 9 

PI11 = μ2 + μ8 + μ9 ≤ 9 

PI12 = μ3 + μ7 + μ12 ≤ 11 (μ8 is ignored) 

PI13 = μ8 + μ11 + μ17 ≤ 10 (μ7 is ignored) 

PI14 = μ9 + μ10 + μ15 + μ16 ≤ 10 

PI15 = μ7 + μ10 + μ16    ≤ 9 

PI16 = μ3 + μ7 + μ10 ≤ 11 (μ8 is ignored) 

PI17 = μ8 + μ9 + μ17 ≤ 10 (μ7 is ignored) 

PI18 = μ7 + μ10 + μ15 + μ16 ≤ 10 

PI19 = μ3 + μ7 ≤ 8 (μ8 is ignored) 

PI20 = μ8 + μ17 ≤ 7 (μ7 is ignored) 

PI21 = μ8 + μ9 + μ17 ≤ 13 

Step 3.3.3. Monitors C1, C2, .  . C21 are computed in order to enforce PI1, PI2, . .  , PI21 

respectively as follows: 
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                      t1   t2   t7   t9  t10  t11                      

                   𝐷𝑃𝐼1 = [
2 ̵2
0 0
0 0

0 0
3 ̵3
0 0

0 0
0 0
3 ̵3

]

p2
p9
p12

    

                                  p2  p9  p12                    

                    𝐿𝑃𝐼1 = [1 1 1] 

                    𝐷𝐶1 = −𝐿𝑃𝐼1. 𝐷𝑃𝐼1  =   −[1 1 1] [
2 ̵2
0 0
0 0

0 0
3 ̵3
0 0

0 0
0 0
3 ̵3

] 

                      t1   t2   t7   t9   t10  t11                      

                   𝐷𝐶1 = [  ̵2 2 ̵3 3  ̵3  3  ]            

                μ0(C1)  = 9 

                      t2   t3   t6   t7  t10  t11                      

                   𝐷𝑃𝐼2 = [
3 ̵3
0 0
0 0

0 0
3 ̵3
0 0

0 0
0 0
3 ̵3

]
p3
p7
p12

    

                                  p3  p7  p12                    

                    𝐿𝑃𝐼2 = [1 1 1] 

                    𝐷𝐶2 = −𝐿𝑃𝐼2. 𝐷𝑃𝐼2  =   −[1 1 1] [
3 ̵3
0 0
0 0

0 0
3 ̵3
0 0

0 0
0 0
3 ̵3

] 

                      t2   t3    t6   t7   t10  t11                      

                   𝐷𝐶2 = [  ̵3 3 ̵3 3  ̵3  3  ]                                   

                μ0(C2)  = 14 

                      t6   t8   t9   t11   t15   t16                      

                   𝐷𝑃𝐼3 = [
3 ̵3
0 0
0 0

0  0
3 ̵3
0  0

 
 0  0
0 0
2 ̵2

]

p8
p11
p17

    

                                 p8   p11  p17                    

                    𝐿𝑃𝐼3 = [1  1  1] 

                    𝐷𝐶3 = −𝐿𝑃𝐼3. 𝐷𝑃𝐼3  =   −[1 1 1] [
3 ̵3
0 0
0 0

0  0
3 ̵3
0  0

 
 0  0
0 0
2 ̵2

] 

                      t6   t8   t9   t11   t15  t16                      

                   𝐷𝐶3 = [  ̵3 3 ̵3 3  ̵2   2  ]              
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                μ0(C3)  = 13 

                      t8   t9   t10  t11  t14   t15                      

                   𝐷𝑃𝐼4 = [
3 0
0 3
0 0

̵3  0
0  ̵3
0  0

 
 0  0
0 0
2 ̵2

]

p10
p11
p16

    

                                 p10   p11  p16                    

                    𝐿𝑃𝐼4 = [1   1    1] 

                    𝐷𝐶4 = −𝐿𝑃𝐼4. 𝐷𝑃𝐼4  =   −[1 1 1] [
3 0
0 3
0 0

̵3  0
0  ̵3
0  0

 
 0  0
0 0
2 ̵2

] 

                      t8   t9   t10  t11  t14   t15                     

                   𝐷𝐶4 = [  ̵3 ̵3 3 3   ̵2   2  ]              

                μ0(C4)  = 9 

                       t5     t6  t16   t17                       

                    𝐷𝑃𝐼5 = [
2
0

  
̵2
0

0
2

 
0 
̵2
]

p6
p18

     

                                  p6  p18                      

                    𝐿𝑃𝐼5 = [ 1 1 ] 

                    𝐷𝐶5 = −𝐿𝑃𝐼5. 𝐷𝑃𝐼5  =   −[1 1] [
2
0

  
̵2
0

0
2

 
0 
̵2
] 

                                  t5   t6  t16  t17 

                    𝐷𝐶5 = [  ̵2 2 ̵2  2 ] 

                μ0(C5)  = 5 

                      t1   t2    t7  t8   t9    t10                      

                   𝐷𝑃𝐼6 = [
2 ̵2
0 0
0 0

0 0
3 0
0 3

0 0
̵3 0
0 ̵3

]

p2
p9
p10

    

                                  p2   p9  p10                    

                    𝐿𝑃𝐼6 = [1  1  1] 

                    𝐷𝐶6 = −𝐿𝑃𝐼6. 𝐷𝑃𝐼6  =   −[1 1 1] [
2 ̵2
0 0
0 0

0 0
3 0
0 3

0 0
̵3 0
0 ̵3

] 

                      t1   t2   t7   t8    t9    t10                      

                   𝐷𝐶6 = [  ̵2 2 ̵3 ̵3  3  3  ]            
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                μ0(C6)  = 9 

                      t2   t3   t6    t7   t8    t10  t11                    

                   𝐷𝑃𝐼7 = [

3
0
0
0

̵3
0
0
0

0
3
0
0

0
̵3
0
0

 

0
0
3
0

 

0
0
̵3
3

 

0
0
0
̵3

]

p3
p7
p10
p12

    

                                  p3  p7  p10  p12                    

                    𝐿𝑃𝐼7 = [1 1  1 1] 

                    𝐷𝐶7 = −𝐿𝑃𝐼7. 𝐷𝑃𝐼7  =   −[1 1  1 1] [

3
0
0
0

̵3
0
0
0

0
3
0
0

0
̵3
0
0

 

0
0
3
0

 

0
0
̵3
3

 

0
0
0
̵3

] 

                      t2   t3   t6   t7   t8   t10  t11          

                   D𝐂𝟕 = [ ̵3 3 ̵3 3 ̵3 0 3  ]            

                μ0(C7)  = 14 

                       t6   t7    t8    t9   t11  t15  t16                    

                   𝐷𝑃𝐼8 = [

3
0
0
0

 

0
3
0
0

 

̵3
0
0
0

 

0
̵3
3
0

  

0
0
̵3
0

 

0
0
0
2

 

0
0
0
̵2

]

p8
p9
p11
p17

    

                                  p8   p9  p11 p17                    

                    𝐿𝑃𝐼8 = [1 1  1 1] 

                    𝐷𝐶8 = −𝐿𝑃𝐼8. 𝐷𝑃𝐼8  =   −[1 1  1 1] [

3
0
0
0

 

0
3
0
0

 

̵3
0
0
0

 

0
̵3
3
0

  

0
0
̵3
0

 

0
0
0
2

 

0
0
0
̵2

] 

                     t6    t7   t8   t9   t11   t15  t16          

                   𝐷𝐶8 = [ ̵3 ̵3 3 0 3 ̵2  2  ]            

                μ0(C8)  = 13 

                       t8   t9    t10   t11   t13  t14  t15                    

                   𝐷𝑃𝐼9 = [

3
0
0
0

 

0
3
0
0

 

̵3
0
0
0

  

0
̵3
0
0

  

0
0
3
0

  

0
0
̵3
2

 

0
0
0
̵2

]

p10
p11
p15
p16

                                     

                                  p10  p11  p15 p16                    

                    𝐿𝑃𝐼9 = [1  1   1  1] 
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                    𝐷𝐶9 = −𝐿𝑃𝐼9. 𝐷𝑃𝐼9  =   −[1 1  1 1] [

3
0
0
0

 

0
3
0
0

 

̵3
0
0
0

  

0
̵3
0
0

  

0
0
3
0

  

0
0
̵3
2

 

0
0
0
̵2

] 

                     t8   t9    t10  t11  t13   t14  t15            

                   𝐷𝐶9 = [ ̵3 ̵3 3  3  ̵3 1  2  ]            

                μ0(C9)  = 10 

                        t7    t8   t9   t10   t14   t15                      

                   𝐷𝑃𝐼10 = [
3 0
0 3
0 0

 
̵3   0
0  ̵3
0  0

 
 0  0
0 0
2 ̵2

]

p9
p10
p16

    

                                   p9   p10   p16                    

                    𝐿𝑃𝐼10 = [1   1    1] 

                    𝐷𝐶10 = −𝐿𝑃𝐼10. 𝐷𝑃𝐼10  =   −[1 1 1] [
3 0
0 3
0 0

 
̵3   0
0  ̵3
0  0

 
 0  0
0 0
2 ̵2

] 

                     

                        t7   t8   t9   t10  t14   t15                     

                   𝐷𝐶10 = [  ̵3 ̵3 3 3  ̵2   2  ]              

                μ0(C10)  = 9 

                         t1    t2    t6    t7   t8     t9                      

                   𝐷𝑃𝐼11 = [
 2  ̵2
0 0
0 0

 
0 0
3 0
0 3

 0  0
̵3 0
0 ̵3

]

p2
p8
p9

    

                                    p2    p8    p9                    

                    𝐿𝑃𝐼11 = [1   1    1] 

                    𝐷𝐶11 = −𝐿𝑃𝐼11. 𝐷𝑃𝐼11  =   −[1 1 1] [
 2  ̵2
0 0
0 0

 
0 0
3  0
0 3

 0  0
̵3 0
0 ̵3

] 

                     

                        t1   t2   t6   t7   t8    t9         

                   𝐷𝐶11 = [  ̵2 2 ̵3 ̵3 3 3  ]              

                μ0(C11)  = 9 
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                         t2    t3    t6    t7   t10   t11                      

                   𝐷𝑃𝐼12 = [
 3  ̵3
0 0
0 0

 
0 0
3  ̵3
0 0

 0  0
0 0
3 ̵3

]
p3
p7
p12

    

                                    p3    p7   p12                    

                    𝐿𝑃𝐼12 = [1   1    1] 

                    𝐷𝐶12 = −𝐿𝑃𝐼12. 𝐷𝑃𝐼12  =   −[1 1 1] [
 3  ̵3
0 0
0 0

 
0 0
3  ̵3
0 0

 0  0
0 0
3 ̵3

] 

                     

                        t2    t3   t6   t7   t10  t11         

                   𝐷𝐶12 = [  ̵3 3 ̵3 3 ̵3 3  ]              

                μ0(C12)  = 11 

                                   t6   t8   t9   t11   t15   t16                      

                   𝐷𝑃𝐼13 = [
3 ̵3
0 0
0 0

0  0
3 ̵3
0  0

 
 0  0
0 0
2 ̵2

]

p8
p11
p17

    

                                   p8  p11  p17                    

                    𝐿𝑃𝐼13 = [1  1  1] 

                    𝐷𝐶13 = −𝐿𝑃13. 𝐷𝑃13  =   −[1 1 1] [
3 ̵3
0 0
0 0

0  0
3 ̵3
0  0

 
 0  0
0 0
2 ̵2

] 

                       t6    t8   t9  t11  t15   t16          

                   𝐷𝐶13 = [  ̵3 3 ̵3 3  ̵2   2  ]              

                μ0(C13)  = 10                  

                        t7   t8   t9   t10  t13  t14  t15                    

                   𝐷𝑃𝐼14 = [

3
0
0
0

0
3
0
0

3
0
0
0

0
̵3
0
0

  

0
0
3
0

 

0
0
̵3
2

 

0
0
0
̵2

]

p9
p10
p15
p16

    

                                   p9   p10  p15  p16                    

                    𝐿𝑃𝐼14 = [1  1   1  1] 
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                    𝐷𝐶14 = −𝐿𝑃𝐼14. 𝐷𝑃𝐼14  =   −[1 1  1 1] [

3
0
0
0

0
3
0
0

3
0
0
0

0
̵3
0
0

 

0
0
3
0

 

0
0
̵3
2

 

0
0
0
̵2

] 

                       t7   t8   t9  t10  t13  t14  t15          

                   𝐷𝐶14 = [ ̵3 ̵3 3 3 ̵3  1  2  ]            

                μ0(C14)  = 10 

                        t6   t7   t8   t10   t14  t15                      

                   𝐷𝑃𝐼15 = [
3 ̵3
0 0
0 0

0 0
3 ̵3
0 0

 
 0  0
0 0
2 ̵2

]

p7
p10
p16

    

                                   p7  p10  p16                    

                    𝐿𝑃𝐼15 = [1  1  1] 

                    𝐷𝐶15 = −𝐿𝑃15. 𝐷𝑃15  =   −[1 1 1] [
3 ̵3
0 0
0 0

0  0
3 ̵3
0  0

 
 0  0
0 0
2 ̵2

] 

                     

                        t6    t7  t8   t10  t14   t15          

                   𝐷𝐶15 = [  ̵3 3 ̵3 3  ̵2   2  ]              

                μ0(C15)  = 9         

                         t2     t3    t6    t7    t8   t10                      

                   𝐷𝑃𝐼16 = [
 3  ̵3
0 0
0 0

 
0 0
3  ̵3
0 0

 0  0
0 0
3 ̵3

]
p3
p7
p10

    

                                   p3    p7    p10                    

                    𝐿𝑃𝐼16 = [1   1    1] 

                    𝐷𝐶16 = −𝐿𝑃𝐼16. 𝐷𝑃𝐼16  =   −[1 1 1] [
 3  ̵3
0 0
0 0

 
0 0
3  ̵3
0 0

 0  0
0 0
3 ̵3

] 

                     

                        t2   t3   t6    t7   t8   t10         

                   𝐷𝐶16 = [  ̵3 3 ̵3 3 ̵3 3  ]              

                μ0(C16)  = 11 
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                        t6   t7   t8    t9    t15   t16                      

                   𝐷𝑃𝐼17 = [
3 0
0 3
0 0

̵3  0
0 ̵3
0  0

 
 0  0
0 0
2 ̵2

]

p8
p9
p17

    

                                    p8   p9  p17                    

                    𝐿𝑃𝐼17 = [1  1  1] 

                    𝐷𝐶17 = −𝐿𝑃𝐼17. 𝐷𝑃𝐼17  =   −[1 1 1] [
3 0
0 3
0 0

̵3  0
0 ̵3
0  0

 
 0  0
0 0
2 ̵2

] 

                        t6   t7   t8   t9   t15   t16          

                   𝐷𝐶17 = [  ̵3 ̵3 3 3  ̵2   2  ]              

                μ0(C17)  = 10 

                        t6   t7   t8   t10  t13  t14  t15                    

                   𝐷𝑃𝐼18 = [

3
0
0
0

̵3
0
0
0

0
3
0
0

0
̵3
0
0

 

0
0
3
0

 

0
0
̵3
2

 

0
0
0
̵2

]

p7
p10
p15
p16

    

                                   p7   p10  p15  p16                    

                    𝐿𝑃𝐼18 = [1  1   1  1] 

                    𝐷𝐶18 = −𝐿𝑃𝐼18. 𝐷𝑃𝐼18  =   −[1 1  1 1] [

3
0
0
0

̵3
0
0
0

0
3
0
0

0
̵3
0
0

 

0
0
3
0

 

0
0
̵3
2

 

0
0
0
̵2

] 

                    

                       t6   t7   t8  t10  t13  t14  t15          

                   𝐷𝐶18 = [ ̵3 3 ̵3 3 ̵3  1  2  ]           

                μ0(C18)  = 10 

                         t2    t3   t6     t7                       

                    𝐷𝑃𝐼19 = [
3
0

  
̵3
0

0
3

 
0 
̵3
]
p3
p7

     

                                    p3   p7                      

                    𝐿𝑃𝐼19 = [ 1 1 ] 

                    𝐷𝐶𝐼19 = −𝐿𝑃𝐼19. 𝐷𝑃𝐼19  =   −[1 1] [
3
0

  
̵3
0

0
3

 
0 
̵3
] 
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                                   t2    t3   t6    t7 

                    𝐷𝐶19 = [  ̵3 3 ̵3  3 ] 

                μ0(C19)  = 8 

                         t6    t8   t15  t16                       

                    𝐷𝑃𝐼20 = [
3
0

  
̵3
0

0
2

 
0 
̵2
]

p8
p17

     

                                    p8  p17                      

                    𝐿𝑃𝐼20 = [ 1 1 ] 

                    𝐷𝐶𝐼20 = −𝐿𝑃𝐼20. 𝐷𝑃𝐼20  =   −[1 1] [
3
0

  
̵3
0

0
2

 
0 
̵2
] 

                                   t6    t8   t15  t16 

                    𝐷𝐶20 = [  ̵3 3 ̵2  2 ] 

                μ0(C20)  = 7 

                                  t6    t7  t8    t9     t15   t16                      

                   𝐷𝑃𝐼21 = [
3 0
0 3
0 0

̵3  0
0 ̵3
0  0

 
 0  0
0 0
2 ̵2

]

p8
p9
p17

    

                                   p8   p9   p17                    

                    𝐿𝑃𝐼21 = [1 1  1] 

                    𝐷𝐶21 = −𝐿𝑃21. 𝐷𝑃21  =   −[1 1 1] [
3 0
0 3
0 0

̵3  0
0 ̵3
0  0

 
 0  0
0 0
2 ̵2

] 

                        t6   t7    t8   t9   t15   t16            

                   𝐷𝐶21 = [  ̵3 ̵3 3 3  ̵2   2  ]              

                μ0(C21)  = 10                  
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The computed monitors are shown in Table 4.2. 

Table 4.2 Computed monitors for N3. 

Ci ci ci  μ0(ci) 

C1 2t2, 3t9, 3t11 2t1, 3t7, 3t10 9 

C2 3t3, 3t7, 3t11 3t2, 3t6, 3t10 14 

C3 3t8, 3t11, 2t16 3t6, 3t9, 2t15 13 

C4 3t10, 3t11, 2t15 3t8, 3t9, 2t14 9 

C5 2t6, 2t17 2t5, 2t16 5 

C6 2t2, 3t9, 3t10 2t1, 3t7, 3t8 9 

C7 3t3, 3t7, 3t11 3t2, 3t6, 3t8 14 

C8 3t8, 3t11, 2t16 3t6, 3t7, 2t15 13 

C9 3t10, 3t11, t14, 2t15 3t8, 3t9, 3t13 10 

C10 3t9, 3t10, 2t15 3t7, 3t8, 2t14 9 

C11 2t2, 3t8, 3t9 2t1, 3t6, 3t7 9 

C12 3t3, 3t7, 3t11 3t2, 3t6, 3t10 11 

C13 3t8, 3t11, 2t16 3t6, 3t9, 2t15 10 

C14 3t9, 3t10, t14, 2t15 3t7, 3t8, 3t13 10 

C15 3t7, 3t10, 2t15 3t6, 3t8, 2t14 9 

C16 3t3, 3t7, 3t10 3t2, 3t6, 3t8 11 

C17 3t8, 3t9, 2t16 3t6, 3t7, 2t15 10 

C18 3t7, 3t10, t14, 2t15 3t6, 3t8, 3t13 10 

C19 3t3, 3t7 3t2, 3t6 8 

C20 3t8, 2t16 3t6, 2t15 7 

C21 3t8, 3t9, 2t16 3t6, 3t7, 2t15 13 

 

Step 3.3.4.  Redundancy test is carried out on the monitors and found that 14 monitors are    

necessary. These include: C1, C4, C5, C6, C9, C10, C11, C12, C13, C14, C15, C18, C19 

and C20. 

Step 3.3.5. When the computed necessary monitors are augmented in the uncontrolled 

model N3, the controlled model of N3 is obtained as follows: N3 = N3 + C1 + C4 

+ C5 + C6 + C9 + C10 + C11 + C12 + C13 + C14 + C15 + C18 + C19 + C20, and is 

shown in Fig. 4.4. 
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Figure 4.4. The controlled model of N3 (N3:= N3 + 14 necessary computed monitors). 

It is verified that the controlled model of N3 shown in Fig. 4.4 is live with 847 good 

states.  

Step 3.4.1. The net N4 considered in this step is shown in Fig. 4.5. It is obtained by increasing 

the number of tokens in GP as shown in Fig. 4.4 
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Figure 4.5. The net N4 (WAMG net). 

 

The net in N4 is not live. There are 2495 states in the RG4 of the N4. The DZ4 includes 14 bad 

marking (BM22, BM23,  . . . , BM35) and the LZ4 contains 2481 good states. 

Step 3.4.2. The bad markings of the activity places are shown in Table 4.3. 
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Table 4.3. The markings of the activity places of BM22, BM23, . . . , BM35. 

State 

number 

p 

2 

p 

3 

p 

4 

p 

6 

p 

7 

p 

8 

p 

9 

p 

10 

p 

11 

p 

12 

p 

13 

p 

15 

p 

16 

p 

17 

p 

18 

p 

19 

S322 2 0 0 0 6 6 0 0 0 0 0 0 2 0 0 0 

S757 0 0 0 2 0 3 0 0 3 0 0 0 0 2 2 0 

S1099 0 0 0 0 0 6 3 0 3 0 0 0 4 0 0 0 

S1931 4 0 0 0 6 0 0 3 0 3 0 0 0 0 0 0 

S1324 2 0 0 0 6 6 0 0 0 0 0 3 0 0 0 0 

S1106 0 0 0 0 0 6 3 0 3 0 0 3 2 0 0 0 

S1930 4 0 0 0 6 3 0 0 0 3 0 0 0 0 0 0 

S1402 0 0 0 2 0 3 3 0 0 0 0 0 0 2 2 0 

S1105 0 0 0 0 3 6 0 0 3 0 0 3 2 0 0 0 

S2121 4 0 0 0 6 3 0 3 0 0 0 0 0 0 0 0 

S2222 0 0 0 2 3 3 0 0 0 0 0 0 0 2 2 0 

S1371 0 0 0 0 3 6 3 0 0 0 0 3 2 0 0 0 

S1367 0 0 0 0 3 6 3 0 0 0 0 0 4 0 0 0 

S1098 0 0 0 0 3 6 0 0 3 0 0 0 4 0 0 0 

 

In order not to reach bad markings BM22, BM23, . . . , BM35, the following place invariants 

PIs are established respectively: 

PI22 = μ2 + μ8 + μ16 ≤ 9 (μ7 is ignored) 

PI23 = μ6 + μ8 + μ11 + μ17 + μ18 ≤ 11 

PI24 = μ8 + μ9 + μ11 + μ16 ≤ 15 

PI25 = μ2 + μ7 + μ10 + μ12 ≤ 15 

PI26 = μ2 + μ7 + μ15 ≤ 10 (μ8 is ignored) 

                        PI27 = μ8 + μ9 + μ11 + μ15 + μ16 ≤ 16 

PI28 = μ2 + μ7 + μ12 ≤ 12 (μ8 is ignored) 

PI29 = μ6 + μ8 + μ9 + μ17 + μ18 ≤ 11 

PI30 = μ8 + μ11 + μ15 + μ16 ≤ 13 (μ7 is ignored) 

PI31 = μ2 + μ7 + μ10 ≤ 12 (μ8 is ignored) 

PI32 = μ6 + μ8 + μ17 + μ18 ≤ 8 (μ7 is ignored) 

PI33 = μ8 + μ9 + μ15 + μ16 ≤ 13 (μ7 is ignored) 
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PI34 = μ8 + μ9 + μ16 ≤ 12 (μ7 is ignored) 

PI35 = μ8 + μ11 + μ16 ≤ 12 (μ7 is ignored) 

Step 3.4.3. Monitors are computed in order to enforce place invariance PIs as follows. 

                         t1    t2    t6    t8   t14   t15 

                   𝐷𝑃𝐼22 = [
 2  ̵2
0 0
0 0

 
0  0
3  ̵3
0  0

 0  0
0 0
2 ̵2

]

p2
p8
p16

    

                                    p2    p8    p16                    

                    𝐿𝑃𝐼22 = [1   1    1] 

                    𝐷𝐶22 = −𝐿𝑃𝐼22. 𝐷𝑃𝐼22  =   −[1 1 1] [
 2  ̵2
0 0
0 0

 
0  0
3  ̵3
0  0

 0  0
0 0
2 ̵2

] 

                     

                        t1    t2    t6   t8   t14   t15         

                   DC22 = [  ̵2 2 ̵3 3 ̵2 2  ]              

                μ0(C22)  = 9 

                        t5   t6    t8     t9   t11  t15  t16  t17  

                   𝐷𝑃𝐼23 =

[
 
 
 
 
2
0
0
0
0

 

̵2
3
0
0
0

 

0
̵3
0
0
0

 

0
0
3
0
0

  

0
0
̵3
0
0

 

0
0
0
2
0

 

0
0
0
̵2
2

 

0
0
0
0
̵2]
 
 
 
 

p6
p8
p11
p17
p18

    

                                    p6   p8   p11  p17  p18 

                    𝐿𝑃𝐼23 = [  1 1  1  1  1  ] 

         𝐷𝐶23 = −𝐿𝑃𝐼23. 𝐷𝑃𝐼23  =   −[ 1 1  1  1  1]

[
 
 
 
 
2
0
0
0
0

 

̵2
3
0
0
0

 

0
̵3
0
0
0

 

0
0
3
0
0

  

0
0
̵3
0
0

 

0
0
0
2
0

 

0
0
0
̵2
2

 

0
0
0
0
̵2]
 
 
 
 

 

 

                     

 

                        t5    t6    t8    t9   t11  t15  t16   t17         

                   𝐷𝐶23 = [  ̵2 ̵1 3 ̵3  3 ̵2 0 2]              
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                μ0(C26)  = 11 

                        t6    t7    t8    t9    t11  t14  t15                    

                   𝐷𝑃𝐼24 = [

3
0
0
0

 

0
3
0
0

 

̵3
0
0
0

 

0
̵3
3
0

  

0
0
̵3
0

 

0
0
0
2

 

0
0
0
̵2

]

p8
p9
p11
p16

     

                                   p8   p9   p11  p16                    

                    𝐿𝑃𝐼24 = [1  1  1 1] 

                    𝐷𝐶24 = −𝐿𝑃𝐼24. 𝐷𝑃𝐼24  =   −[1  1  1 1] [

3
0
0
0

 

0
3
0
0

 

̵3
0
0
0

 

0
̵3
3
0

  

0
0
̵3
0

 

0
0
0
2

 

0
0
0
̵2

] 

                       t6   t7     t8   t9  t11  t14  t15          

                   𝐷𝐶24 = [ ̵3 ̵3 3 0 3 ̵2  2  ]            

                μ0(C24)  = 15 

                        t1    t2    t6    t7    t8    t10  t11                    

                   𝐷𝑃𝐼25 = [

2
0
0
0

 

̵2
0
0
0

 

0
3
0
0

 

0
̵3
0
0

  

0
0
3
0

 

0
0
̵3
3

 

0
0
0
̵3

]

p2
p7
p10
p12

    

                                   p2    p7  p10  p12                    

                    𝐿𝑃𝐼25 = [1  1  1 1] 

                    𝐷𝐶25 = −𝐿𝑃𝐼25. 𝐷𝑃𝐼25  =   −[1 1  1 1] [

2
0
0
0

 

̵2
0
0
0

 

0
3
0
0

 

0
̵3
0
0

  

0
0
3
0

 

0
0
̵3
3

 

0
0
0
̵3

] 

                       t1    t2   t6    t7  t8    t10  t11         

                   𝐷𝐶25 = [ ̵2 2 ̵3 3 ̵3 0  3  ]            

                   μ0(C25)  = 15 

                        t1    t2    t6    t7    t13   t14                      

                   𝐷𝑃𝐼26 = [
2 ̵ 2
0 0
0 0

 
0  0
3  ̵3
0  0

 
 0  0
0 0
3 ̵3

]

p2
p7
p15

  

                                  

                                   p2     p7    p15                    

                    𝐿𝑃𝐼26 = [1   1    1] 
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                    𝐷𝐶26 = −𝐿𝑃𝐼26. 𝐷𝑃𝐼26  =   −[1 1 1] [
2 ̵ 2
0 0
0 0

 
0  0
3  ̵3
0  0

 
 0  0
0 0
3 ̵3

] 

                     

                        t1   t2   t6    t7   t13   t14                     

                   𝐷𝐶26 = [  ̵2 2 ̵3 3  ̵3   3   ]                            

                μ0(C26)  = 10 

                       t6    t7    t8     t9   t11  t13  t14   t15  

                   𝐷𝑃𝐼27 =

[
 
 
 
 
3
0
0
0
0

 

0
3
0
0
0

 

̵3
0
0
0
0

 

0
̵3
3
0
0

  

0
0
̵3
0
0

 

0
0
0
3
0

 

0
0
0
̵3
2

 

0
0
0
0
̵2]
 
 
 
 

p8
p9
p11
p15
p16

    

                                     p8   p9   p11  p15  p16 

                    𝐿𝑃𝐼27 = [  1 1  1  1  1  ] 

         𝐷𝐶27 = −𝐿𝑃𝐼27. 𝐷𝑃𝐼27  =   −[1 1  1  1  1]

[
 
 
 
 
3
0
0
0
0

 

0
3
0
0
0

 

̵3
0
0
0
0

 

0
̵3
3
0
0

  

0
0
̵3
0
0

 

0
0
0
3
0

 

0
0
0
̵3
2

 

0
0
0
0
̵2]
 
 
 
 

 

                        t6     t7    t8   t9    t11  t13  t14  t15         

                   𝐷𝐶27 = [  ̵3 ̵3 3 0  3  ̵3 1 2]              

                μ0(C27)  = 16 

                         t1    t2    t6    t7   t10    t11                      

                   𝐷𝑃𝐼28 = [
 2  ̵2
0 0
0 0

 
0 0
3  ̵3
0 0

 0  0
0 0
3 ̵3

]
p2
p7
p12

    

                                    p2    p7   p12                    

                    𝐿𝑃𝐼28 = [1   1    1] 

                    𝐷𝐶28 = −𝐿𝑃𝐼28. 𝐷𝑃𝐼28  =   −[1 1 1] [
 2  ̵2
0 0
0 0

 
0 0
3  ̵3
0 0

 0  0
0 0
3 ̵3

] 

                      

                        t1   t2   t6    t7   t10  t11        

                   𝐷𝐶28 = [  ̵2 2 ̵3 3 ̵3 3  ]              
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                μ0(C28)  = 12 

                       t5    t6     t7    t8    t9   t15  t16  t17  

                   𝐷𝑃𝐼29 =

[
 
 
 
 
2
0
0
0
0

 

̵2
3
0
0
0

 

0
0
3
0
0

 

0
̵3
0
0
0

  

0
0
̵3
0
0

 

0
0
0
2
0

 

0
0
0
̵2
2

 

0
0
0
0
̵2]
 
 
 
 

p6
p8
p9
p17
p18

    

                                   p6    p8    p9    p17  p18 

                    𝐿𝑃𝐼29 = [  1 1  1  1  1  ] 

𝐷𝐶29 = −LPI29. DPI29 =   −[ 1 1  1  1  1]

[
 
 
 
 
2
0
0
0
0

 

̵2
3
0
0
0

 

0
0
3
0
0

 

0
̵3
0
0
0

  

0
0
̵3
0
0

 

0
0
0
2
0

 

0
0
0
̵2
2

 

0
0
0
0
̵2]
 
 
 
 

 

                        t5    t6     t7   t8    t9   t15  t16  t17         

                   𝐷𝐶29 = [  ̵2 ̵1 ̵3 3  3 ̵2 0 2]              

                μ0(C29)  = 11 

                        t6   t8    t9    t11   t13  t14  t15                    

                   𝐷𝑃𝐼30 = [

3
0
0
0

 

̵3
0
0
0

 

0
3
0
0

  

0
̵3
0
0

  

0
0
3
0

  

0
0
̵3
2

 

0
0
0
̵2

]

p8
p11
p15
p16

    

                                   p8   p11  p15  p16                    

                    𝐿𝑃𝐼30 = [1  1   1  1] 

                    𝐷𝐶30 = −𝐿𝑃𝐼30. 𝐷𝑃𝐼30  =   −[1 1  1 1] [

3
0
0
0

 

̵3
0
0
0

 

0
3
0
0

  

0
̵3
0
0

  

0
0
3
0

  

0
0
̵3
2

 

0
0
0
̵2

] 

                    

                      t6   t8    t9    t11   t13  t14  t15            

                   𝐷𝐶30 = [ ̵3 3 ̵3  3  ̵3 1  2  ]            

                μ0(C30)  = 13 

 

                         t1    t2     t6   t7     t8    t10                      

                   𝐷𝑃𝐼31 = [
 2  ̵2
0 0
0 0

 
0 0
3  ̵3
0 0

 0  0
0 0
3 ̵3

]
p2
p7
p10
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                                    p2    p7   p10                    

                    𝐿𝑃𝐼31 = [1   1    1] 

                    𝐷𝐶31 = −𝐿𝑃𝐼31. 𝐷𝑃𝐼31  =   −[1 1 1] [
 2  ̵2
0 0
0 0

 
0 0
3  ̵3
0 0

 0  0
0 0
3 ̵3

] 

                        t1    t2   t6   t7   t8   t10 

         𝐷𝐶31 = [  ̵2 2 ̵3 3 ̵3 3  ]              

                μ0(C31)  = 12 

                        t5    t6    t8   t15   t16  t17                   

                   𝐷𝑃𝐼32 = [

2
0
0
0

 

̵2
3
0
0

 

0
̵3
0
0

 

0
0
2
0

  

0
0
̵2
2

 

0
0
0
̵2

]

p6
p8
p17
p18

    

                                   p6     p8   p17   p18                    

                    𝐿𝑃𝐼32 = [1  1    1   1] 

                    𝐷𝐶32 = −𝐿𝑃𝐼32. 𝐷𝑃𝐼32  =   −[1 1  1 1] [

2
0
0
0

 

̵2
3
0
0

 

0
̵3
0
0

 

0
0
2
0

  

0
0
̵2
2

 

0
0
0
̵2

] 

                       t5   t6    t8   t15  t16  t17                   

                   𝐷𝐶32 = [ ̵2 ̵1 3 ̵2 0 2  ]            

                μ0(C32)  = 8  

                        t6    t7    t8     t9    t13   t14  t15                    

                   𝐷𝑃𝐼33 = [

3
0
0
0

 

0
3
0
0

 

̵3
0
0
0

  

0
̵3
0
0

  

0
0
3
0

  

0
0
̵3
2

 

0
0
0
̵2

]

p8
p9
p15
p16

    

                                   p8    p9   p15  p16                    

                    𝐿𝑃𝐼33 = [1  1   1  1] 

                    𝐷𝐶33 = −𝐿𝑃𝐼33. 𝐷𝑃𝐼33  =   −[1 1  1 1] [

3
0
0
0

 

0
3
0
0

 

̵3
0
0
0

  

0
̵3
0
0

  

0
0
3
0

  

0
0
̵3
2

 

0
0
0
̵2

] 

                       t6   t7    t8    t9    t13   t14  t15          

                   𝐷𝐶33 = [ ̵3 ̵3 3  3  ̵3 1  2  ]            
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                μ0(C33)  = 13 

                         t6    t7    t8    t9   t14   t15                      

                   𝐷𝑃𝐼34 = [
 3  0
0 3
0 0

 
̵3 0
0  ̵3
0 0

 0  0
0 0
2 ̵2

]

p8
p9
p16

    

                                   p8     p9   p16                    

                    𝐿𝑃𝐼34 = [1   1    1] 

                    𝐷𝐶34 = −𝐿𝑃𝐼34. 𝐷𝑃𝐼34  =   −[1 1 1] [
 3  0
0 3
0 0

 
̵3 0
0  ̵3
0 0

 0  0
0 0
2 ̵2

] 

                        t6    t7   t8   t9   t14  t15             

         𝐷𝐶34 = [  ̵3 ̵3 3 3 ̵2 2  ]              

                μ0(C34)  = 12 

                         t6    t8     t9   t11  t14   t15                      

                   𝐷𝑃𝐼35 = [
 3  ̵3
0 0
0 0

 
0 0
3  ̵3
0 0

 0  0
0 0
2 ̵2

]

p8
p11
p16

    

                                   p8    p11   p16                    

                    𝐿𝑃𝐼35 = [1   1    1] 

                    𝐷𝐶35 = −𝐿𝑃𝐼35. 𝐷𝑃𝐼35  =   −[1 1 1] [
 3  ̵3
0 3
0 0

 
0 0
̵3  0
0 0

 0  0
0 0
2 ̵2

] 

                        t6    t8   t9  t11   t14  t15             

         𝐷𝐶35 = [  ̵3 3 ̵3 3  ̵2 2  ]              

                μ0(C35)  = 12 
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The computed monitors are shown in Table 4.4. 

Table 4.4 Computed monitors for N4. 

Ci 𝑐𝐼 𝑐𝐼  μ0(𝑐𝑖) 

C22 2t2, 3t8, 2t15 2t1, 3t6, 2t14 9 

C23 3t8, 3t11, 2t17 2t5, t6, 3t9, 2t15 11 

C24 3t8, 3t11, 2t15 3t6, 3t7, 2t14 15 

C25 2t2, 3t7, 3t11 2t1, 3t6, 3t8 15 

C26 2t2, 3t7, 3t14 2t1, 3t6, 3t13 10 

C27 3t8, 3t11, t14, 2t15 3t6, 3t7, 3t13 16 

C28 2t2, 3t7, 3t11 2t1, 3t6, 3t10 12 

C29 3t8, 3t9, 2t17 2t5, t6, 3t7, 2t15 11 

C30 3t8, 3t11, t14, 2t15 3t6, 3t9, 3t13 13 

C31 2t2, 3t7, 3t10 2t1, 3t6, 3t8 12 

C32 3t8, 2t17 2t5, t6, 2t15 8 

C33 3t8, 3t9, t14, 2t15 3t6, 3t7, 3t13 13 

C34 3t8, 3t9, 2t15 3t6, 3t7, 2t14 12 

C35 3t8, 3t11, 2t15 3t6, 3t9, 2t14 12 

 

Step 3.4.4.  Redundancy test is carried out on the monitors and it is found that 7 out of 14 

monitors are necessary. These include: C22, C26, C28, C30, C31, C32, and C33. 

Monitors C12 and C13 of previous step are also found redundant in this step. 

Removal of C12 and C13 increase the number of live states in N4 from 2481 to 

2554 (addition of 81 live states).   

Step 3.4.5.  When the computed necessary monitors are augmented in the uncontrolled model 

N4, the controlled model of N4 is obtained as follows: N4:= N4 + C22 + C26 + C28 

+ C30 + C31 + C32 + C33 – C12 – C13, and is shown in Fig. 4.6. 
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Figure 4.6. The controlled model N4 (N4: = N4 + C22 + C26 + C28 + C30 + C31 + C32 + C33 – 

C12 – C13). 

It is verified that the controlled model of N4 shown in Fig. 4.6 is live with 2554 good states. 

This is the live optimal behavior for the controlled model N4. 
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Step 3.5.1. The net N5 considered in this step is shown in Fig. 4.7. It is obtained by increasing 

the number of tokens in the GP shown in Fig. 4.6. 
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Figure 4.7. The net N5 (WAMG net). 
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The net N5 is not live. There are 5065 states in the RG5 of N5. The DZ5 includes 12 bad 

marking (BM36, BM37, . . . ,  BM47) and the LZ5 contains 5053 good states. 

Step 3.5.2. The markings of the activity places are shown in Table 4.5. 

Table 4.5. The markings of the activity places of BM36, BM37, . . . . , BM47. 

state 

number 

p 

2 

p 

3 

p 

4 

p 

6 

p 

7 

p 

8 

p 

9 

p 

10 

p 

11 

p 

12 

p 

13 

p 

15 

p 

16 

p 

17 

p 

18 

p 

19 

S492 0 0 0 2 0 3 0 0 3 0 0 0 4 0 2 0 

S491 0 0 0 2 0 3 3 0 0 0 0 0 4 0 2 0 

S882 0 0 0 2 0 3 0 0 3 0 0 0 4 2 0 0 

S883 0 0 0 2 0 3 0 0 3 0 0 3 2 0 2 0 

S490 0 0 0 2 3 3 0 0 0 0 0 0 4 0 2 0 

S881 0 0 0 2 0 3 0 0 3 0 0 3 2 2 0 0 

S1630 0 0 0 2 0 3 3 0 0 0 0 0 4 2 0 0 

S1631 0 0 0 2 0 3 3 0 0 0 0 3 2 0 2 0 

S1629 0 0 0 2 0 3 3 0 0 0 0 3 2 2 0 0 

S2953 0 0 0 2 3 3 0 0 0 0 0 0 4 2 0 0 

S2954 0 0 0 2 3 3 0 0 0 0 0 3 2 0 2 0 

S2952 0 0 0 2 3 3 0 0 0 0 0 3 2 2 0 0 

 

In order not to reach the bad markings BM36, BM37, . . , BM47, the following place invariants 

PIs are established respectively: 

                        PI36 = μ6 + μ8 + μ11 + μ16 + μ18 ≤ 13 

PI37 = μ6 + μ8 + μ9 + μ16 + μ18 ≤ 13 

PI38 = μ6 + μ8 + μ11 + μ16 + μ17 ≤ 13 

PI39 = μ6 + μ8 + μ11 + μ15 + μ16 + μ18 ≤ 14 

PI40 = μ6 + μ8 + μ16 + μ18 ≤ 10 (μ7 is ignored) 

PI41 = μ6 + μ8 + μ11 + μ15 + μ16 + μ17 ≤ 14 

PI42 = μ6 + μ8 + μ9 + μ16 + μ17 ≤ 13 

PI43 = μ6 + μ8 + μ9 + μ15 + μ16 + μ18 ≤ 14 

PI44 = μ6 + μ8 + μ9 + μ15 + μ16 + μ17 ≤ 14 

PI45 = μ6 + μ8 + μ16 + μ17 ≤ 10 (μ7 is ignored) 
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PI46 = μ6 + μ8 + μ15 + μ16 + μ18 ≤ 11 (μ7 is ignored) 

PI47 = μ6 + μ8 + μ15 + μ16 + μ17 ≤ 11 (μ7 is ignored) 

Step 3.5.3. Monitors are computed in order to enforce place invariance PIs as follows. 

                                t5     t6    t8    t9    t11  t14  t15  t16  t17  

         DPI36 = 
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.                                  p6    p8  p11  p16  p18                  

                    𝐿𝑃𝐼36 = [1   1 1 1 1] 

    𝐷𝐶36 = −𝐿𝑃𝐼36. 𝐷𝑃𝐼36  =   −[1   1 1 1 1]
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                                   t5   t6    t8     t9   t11 t14  t15  t16  t17         

                   𝐷𝐶36 = [  ̵2 ̵1 3 ̵3 3 ̵2  2 ̵2 2  ]              

                μ0(C36)  = 13                               

                               t5     t6    t7    t8     t9   t14  t15  t16  t17  

        DPI37 = 
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. 

                                   p6    p8    p9  p16  p18                  

                    𝐿𝑃𝐼37 = [1   1 1 1 1] 

    𝐷𝐶37 = −LPI37. DPI37  =   −[1   1 1 1 1]
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                        t5    t6    t7    t8   t9   t14  t15  t16  t17         

                   𝐷𝐶37 = [  ̵2 ̵1 ̵3 3 3 ̵2  2 ̵2 2  ]              
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               μ0(C37)  = 13  

                        t5   t6     t8    t9    t11  t14  t15  t16          

                   𝐷𝑃𝐼38 =
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                                    p6   p8   p11  p16  p17 

                    𝐿𝑃𝐼38 = [1 1  1  1 1 ] 

     𝐷𝐶38 = −𝐿𝑃𝐼38. 𝐷𝑃𝐼38      =   −[1 1  1  1 1]
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                        t5    t6    t8   t9    t11  t14  t15  t16          

                   DC38 = [  ̵2 ̵1 3 ̵3  3 ̵2 0 2  ]            

                μ0(C38)  = 13 

                        t5   t6     t8    t9   t11  t13  t14  t15  t16  t17 

                   𝐷𝑃𝐼39 =
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                                    p6    p8    p11  p15  p16  p18 

                    𝐿𝑃𝐼39 = [  1   1   1   1 1 1  ] 

𝐷𝐶39 = −𝐿𝑃𝐼39. 𝐷𝑃𝐼39  
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                        t5    t6     t8    t9   t11 t13  t14  t15  t16  t17         

                   𝐷𝐶39 = [  ̵2  ̵1  3  ̵3 3 ̵3  1 2 ̵2  2]              
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                μ0(C39)  = 14 

                        t5    t6    t8    t14   t15  t16   t17                    

                   𝐷𝑃𝐼40 = [
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                    𝐿𝑃𝐼40 = [1  1   1 1] 

                    𝐷𝐶40 = −LPI40. DPI40  =   −[1  1   1 1] [
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                       t5   t6    t8   t14   t15  t16  t17          

                   𝐷𝐶40 = [ ̵2 ̵1 3  ̵2  2 ̵2  2 ]            

                μ0(C40)  = 10 

                                       t5     t6    t8    t9   t11  t13  t14  t15  t16  
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. 

                                   p6   p8   p11 p15 p16 p17                 

                    LPI41 =  [1  1  1  1  1  1] 

 𝐷𝐶41 = −𝐿𝑃𝐼41. 𝐷𝑃𝐼41 =  −[1  1  1  1  1  1]
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                        t5    t6    t8    t9   t11  t13   t14  t15  t16         

                   DC41 = [  ̵2 ̵1 3 ̵3 3 ̵ 3  1 0 2  ]              

               μ0(C41)  = 14 
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                        t5   t6    t7    t8     t9   t14  t15  t16          

                   𝐷𝑃𝐼42 =
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                                   p6   p8    p9   p16  p17 

                    𝐿𝑃𝐼42 = [1 1  1  1 1 ] 

      𝐷𝐶42 = −𝐿𝑃𝐼42. 𝐷𝑃𝐼42  =   −[ 1 1  1  1 1]
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                        t5    t6    t7    t8   t9   t14  t15  t16          

                   𝐷𝐶42 = [  ̵2 ̵1 ̵3 3  3 ̵2 0 2  ]            

                μ0(C42)  = 13 

                        t5  t6    t7    t8   t9    t13  t14  t15  t16  t17 

                   𝐷𝑃𝐼43 =
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                                   p6    p8   p9   p15  p16  p18 

                    𝐿𝑃𝐼43 = [1   1   1   1 1  1] 

                     𝐷𝐶43 = −𝐿𝑃𝐼43. 𝐷𝑃𝐼43 = 

                    −[ 1   1   1   1 1 1]
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                       t5     t6    t7     t8   t9   t13  t14  t15  t16  t17         

                   𝐷𝐶43 = [  ̵2  ̵1  ̵3  3 3 ̵3  1 2 ̵2  2]              

                μ0(C43)  = 14 
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                                    t5    t6    t7    t8    t9   t13  t14  t15  t16  

         DPI44      = 

[
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. 

                                   p6   p8   p9   p15 p16 p17                 

                   𝐿𝑃𝐼44 = [1  1  1  1  1  1] 

                  𝐷𝐶44 = −𝐿𝑃𝐼44. 𝐷𝑃𝐼44  =              

                    −[1  1  1  1  1  1]

[
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                        t5    t6    t7    t8    t9   t13  t14  t15  t16         

                  𝐷𝐶44 = [  ̵2 ̵1 ̵3 3 3 ̵ 3  1 0 2  ]              

                μ0(C44)  = 14 

                        t5    t6    t8   t14  t15  t16                   

                   𝐷𝑃𝐼45 = [
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                    𝐿𝑃𝐼45 = [1 1    1   1] 

                    𝐷𝐶45 = −𝐿𝑃𝐼45. 𝐷𝑃𝐼45  =   −[1 1    1   1] [
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                       t5    t6    t8   t14  t15  t16                   

                     𝐷𝐶45 = [ ̵2 ̵1  3 ̵2 0 2]            

                     μ0(C45)  = 10 
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                        t5   t6    t8    t13  t14  t15  t16  t17          

                   𝐷𝑃𝐼46 =
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                                    p6   p8   p15  p16  p18 

                    𝐿𝑃𝐼46 = [1 1  1  1 1 ] 

         𝐷𝐶46 = −𝐿𝑃𝐼46. 𝐷𝑃𝐼46  =   −[1 1  1  1 1]
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                        t5   t6    t8    t13  t14  t15  t16  t17          

                   𝐷𝐶46 = [  ̵2 ̵1 3 ̵3  1 2 ̵2 2  ]            

                μ0(C6)  = 11 

                        t5   t6    t8    t13  t14  t15  t16            

                   𝐷𝑃𝐼47 =
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                                    p6  p8   p15  p16  p17 

                    LPI47 =  [1 1  1  1 1 ] 

            DC47 = −LPI47. DPI47  =   −[1 1  1  1 1]
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                         t5   t6    t8  t13  t14  t15  t16         

                   DC47 = [  ̵2 ̵1 3 ̵3  1 0 2  ]            

                μ0(C47)  = 11 
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The computed monitors are shown in Table 4.6. 

Table 4.6 Computed monitors for N5. 

Ci 𝑐𝐼 𝑐𝐼  μ0(𝑐𝑖) 

C36 3t8, 3t11, 2t15, 2t17 2t5, t6, 3t9, 2t14, 2t16 13 

C37 3t8, 3t9, 2t15, 2t17 2t5, t6, 3t7, 2t14, 2t16 13 

C38 3t8, 3t11, 2t16 2t5, t6, 3t9, 2t14 13 

C39 3t8, 3t11, t14, 2t15 2t17 2t5, t6, 3t9, 3t13, 2t16 14 

C40 3t8, 2t15, 2t17 2t5, t6, 2t14, 2t16 10 

C41 3t8, 3t11, t14, 2t16 2t5, t6, 3t9, 3t13 14 

C42 3t8, 3t9, 2t16 2t5, t6, 3t7, 2t14 13 

C43 3t8, 3t9, t14, 2t15 2t17 2t5, t6, 3t7, 3t13, 2t16 14 

C44 3t8, 3t9, t14, 2t16 2t5, t6, 3t7, 3t13 14 

C45 3t8, 2t16 2t5, t6, 2t14 10 

C46 3t8, t14, 2t15, 2t17 2t5, t6, 3t13, 2t16 11 

C47 3t8, t14, 2t16 2t5, t6, 3t13 11 

 

 

Step 3.5.4.  Redundancy test is carried out on the monitors and it is found that 4 monitors, 

C40, C45, C46, and C47, are necessary.  

Step 3.5.5.  When the computed necessary monitors are augmented in the uncontrolled model 

N5, the controlled model of N5 is obtained as follows: N5:= N5 + C40 + C45 + C46 

+ C47, and is shown in Fig. 4.8. 
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Figure 4.8. The controlled model N5 (N5: = N5 + C40 + C45 + C46 + C47). 

It is verified that the controlled model of N5 shown in Fig. 4.8 is live with 5053 good 

states. This is the live optimal behavior for the controlled model N5.  



66 
  

 
 

  

Step 3.6.1. The net N6 considered in this step is shown in Fig. 4.9. It is obtained by increasing 

the number of tokens in GP shown in Fig. 4.8.  
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Figure 4.9. The net N6 (WAMG net). 

The net N6 is live with 7386 good states.  
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Step 3.7.1. The net N7 considered in this step is shown in Fig. 4.10. It is obtained by 

increasing the number of tokens in GP shown in Fig. 4.9. 
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Figure 4.10. The net N7 (WAMG net). 
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The net N7 is live with 8836 good states. The net N8 (with GP = 8) has 9461 good states. 

The net N9 (with GP = 9) has 9643. N10 (with GP = 10) has 9676. N11 (with GP = 11) has 

9679 and N12 (with GP = 12) has 9679. The nets N13, N14, . . , N20 with GPs having 13, 14, . 

. , 20 tokens respectively are all live with 9679 good states. This shows the maximum number 

of good states that can be reachable for WAMG model using this method. 

Step 4: The live controlled WAMG PNM shown in Fig. 4.11 is obtained by augmenting all 

the 23 necessary monitors provided in Table 4.7 into the uncontrolled WAMG 

model shown in Fig. 4.1. The net is live with 9679 good states. This is the live 

behavior for the WAMG PNM using the proposed method. 
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Figure 4.11. The controlled WAMG model. 
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Table 4.7 the necessary monitors computed for WAMG model. 

Ci 𝑐𝐼 𝑐𝐼  μ0(𝑐𝑖) 

C1 2t2, 3t9, 3t11 2t1, 3t7, 3t10 9 

 C4 3t10, 3t11, 2t15 3t8, 3t9, 2t14 9 

C5 2t6, 2t17 2t5, 2t16 5 

C6 2t2, 3t9, 3t10 2t1, 3t7, 3t8 9 

C9 3t10, 3t11, t14, 2t15 3t8, 3t9, 3t13 10 

C10 3t9, 3t10, 2t15 3t7, 3t8, 2t14 9 

C11 2t2, 3t8, 3t9 2t1, 3t6, 3t7 9 

C14 3t9, 3t10, t14, 2t15 3t7, 3t8, 3t13 10 

C15 3t7, 3t10, 2t15 3t6, 3t8, 2t14 9 

C18 3t7, 3t10, t14, 2t15 3t6, 3t8, 3t13 10 

C19 3t3, 3t7 3t2, 3t6 8 

C20 3t8, 2t16 3t6, 2t15 7 

C22 2t2, 3t8, 2t15 2t1, 3t6, 2t14 9 

C26 2t2, 3t7, 3t14 2t1, 3t6, 3t13 10 

C28 2t2, 3t7, 3t11 2t1, 3t6, 3t10 12 

C30 3t8, 3t11, t14, 2t15 3t6, 3t9, 3t13 13 

C31 2t2, 3t7, 3t10 2t1, 3t6, 3t8 12 

C32 3t8, 2t17 2t5, t6, 2t15 8 

C33 3t8, 3t9, t14, 2t15 3t6, 3t7, 3t13 13 

C40 3t8, 2t15, 2t17 2t5, t6, 2t14, 2t16 10 

C45 3t8, 2t16 2t5, t6, 2t14 10 

C46 3t8, t14, 2t15, 2t17 2t5, t6, 3t13, 2t16 11 

C47 3t8, t14, 2t16 2t5, t6, 3t13 11 

 

The liveness enforcing procedure applied for the PNM is provided in Table 4.8  

Table 4.8. The liveness enforcing procedure applied for WAMG model. 

B Included C 

Is 

the 

net 

live? 

# of 

states 

in RG 

# of 

states 

in DZ 

# of 

states 

in LZ 

Computed C 

# of states 

within 

controlled net 

RG = 

LZ 
UR 

1 – YES 20 0 20 –   

2 – YES 181 0 181 –   

3 – NO 931 21 910 

C1, C2, C3, 

C4, C5, C6, 

C7, C8, C9, 

C10, C11, C12, 

C13, C14, C15, 

C16, C17, C18, 

C19, C20, C21,  

847 63 
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Table 4.8 continue. 

      

Necessary 

(C1, C4, C5, 

C6, C9, C10, 
C11, C12, C13, 

C14, C15, C18, 

C19, C20) 

  

4 

C1, C4, C5, C6, 

C9, C10, C11, 

C12, C13, C14, 

C15, C18, C19, 

C20 

NO 2495 14 2481 

C22, C23, C24, 

C25, C26, C27, 

C28, C29, C30, 

C31, C32, C33, 

C34, C35. 

Necessary 

(C22,  C26, 

C28, C30, C31, 

C32, C33) 

2554 0 

5 

C1, C4, C5, C6, 

C9, C10, C11, 

C12, C13, C14, 

C15, C18, C19, 

C20, C22,  C26, 

C28, C30, C31, 

C32, C33 

NO 5065 12 5053 

C36, C37, C38, 

C39, C40, C41, 

C42, C43, C44, 

C45, C46, C47, 

Necessary 

(C40, C45, 

C46, C47) 

5053 0 

6 

C1, C4, C5, C6, 

C9, C10, C11, 

C12, C13, C14, 

C15, C18, C19, 

C20, C22,  C26, 

C28, C30, C31, 

C32, C33, C40, 

C45, C46, C47 

YES 7386 0 7386 –   

7 ǀǀ YES 8836 0 8836 –   

8 ǀǀ YES 9461 0 9461 –   

9 ǀǀ YES 9643 0 9643 –   

10 ǀǀ YES 9676 0 9676 –   

11 ǀǀ YES 9679 0 9679 –   

12 ǀǀ YES 9679 0 9679 –   

13 ǀǀ YES 9679 0 9679 –   

14 ǀǀ YES 9679 0 9679 –   

15 ǀǀ YES 9679 0 9679 –   

16 ǀǀ YES 9679 0 9679 –   

17 ǀǀ YES 9679 0 9679 –   

18 ǀǀ YES 9679 0 9679 –   

19 ǀǀ YES 9679 0 9679 –   

20 ǀǀ YES 9679 0 9679 –   



72 
  

 
 

  

The controlled model of the WAMG net using this method is live with 9679 good 

states. There are 1733 unreachable states which should have been provided by an optimal 

live behavior of the WAMG model. The permissiveness of controlled net is (9679/11412) × 

100 = 84.81%. 

 

4.3 S4PR NET EXAMPLE     

An S4PR model is considered in this section in order to show the applicability of the 

proposed liveness-enforcing method. Fig. 4.12 shows an S4PR model of an FMS from [17]. 

This model is prone to deadlocks. There are 9378 states within the RG of these PNM, 546 of 

these states are in the DZ, while the remaining 8832 states are in the LZ. 
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Figure 4.12.  A Petri net model of an S4PR net from [17]. 

The proposed method is applied to the S4PR model shown in Fig. 4.12. The controlled 

model of the S4PR net is obtained by augmenting 8 necessary monitors that are computed 

following the steps provided in the proposed method. Table 4.9 shows the liveness enforcing 
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procedure applied to the net and Table 4.10 shows the necessary monitors computed for the 

S4PR model respectively.  

 Table 4.9. The liveness enforcing procedure applied for the S4PR net. 

B Included C 

Is the 

net 

live? 

# of 

states 

in RG 

# of 

states 

in DZ 

# of 

states 

in LZ 

Computed C 

# of states 

within 

controlled net 

RG = LZ UR 

1 – YES 16 0 16 –   

2 – YES 119 0   119  –   

3 – NO 551 1 550 C1 550 0 

4 C1 NO 1750 4 1746 
C2, C3, C4, 

C5 
1746 0 

5 C2, C3 NO 4002 18 3984 

C6, C7, C8, 

C9, C10, C11, 

C12, C13, C14, 

C15, C16, C17, 

C18, C19, C20, 

C21, C22, C23 

Necessary 

(C11, C20)  

3984 0 

6 
C1, C3, C11, 

C20 
NO 6609 12 6597 

C24, C25, C26, 

C27, C28, C29, 

C30, C31, C32, 

C33, C34, C35 

Necessary 

(C27, C28, 

C33, C34 )             

6597 0 

7 

C1, C3, C11, 

C20, C27, C28, 

C33, C34 

YES 8269 0 8269 –   

8 

C1, C3, C11, 

C20, C27, C28, 

C33, C34 

YES 8776 0 8776 –   

9 ǀǀ YES 8832 0 8832 –   

10 ǀǀ YES 8832 0 8832 –   

. . . . . . .   

. . . . . . .   

15 ǀǀ YES 8832 0 8832 –   
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Table 4.10. Necessary monitors for the S4PR net. 

Ci 𝑐𝐼 𝑐𝐼  μ0(𝑐𝑖) 

C1 3t2, 3t7, 2t17 3t1, 2t16 6 

C2 2t4, 2t9, 4t15 2t3, 2t8, 4t14 9 

C3 2t4, 2t9, 4t16 2t2, 2t7, 4t15 11 

C4 2t4, 2t9, 4t15 2t2, 2t7, 4t14 11 

C5 t2, 2t4, 3t7, 2t16, 2t17, 2t9 3t1, 2t8, 4t15 14 

C6 3t2, 2t4, t7, 2t9, 2t16, 2t17 3t1, 2t3, 4t15 14 

C7 t2, 2t4, 3t7, 2t9, 4t15, 2t17 3t1, 2t8, 4t14, 2t16 14 

C8 3t2, 2t4, t7, 2t9, 4t15, 2t17 3t1, 2t3, 4t14, 2t16 14 

The controlled S4PR PNM in this example is live with 8832 good states. The 

permissiveness of the controlled net is (8832/8832) × 100 = 100%. This is the optimal live 

behavior of the S4PR model in this example obtained by using the proposed method. 

 

4.4 G-SYSTEM NET EXAMPLE  

Fig. 4.13 shows a G-System net example from [18]. The model is prone to deadlocks.  
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Figure 4.13. A G-System net example from [18]. 
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There are 68531 states within the RG of this model, of which 2131 are bad states. The 

optimal solution should provide a live behavior with 66400 good states. The controlled model 

of the G-System net is obtained by augmenting 17 necessary monitors that are computed 

following the steps provided in the proposed method. Table 4.11 shows the liveness enforcing 

procedure applied to the G-System net and Table 4.12 shows the necessary monitors 

computed for the G-system net respectively. 

Table 4.11. The liveness enforcing procedure applied for the G-system net. 

B Included C 

Is the 

net 

live? 

# of 

states 

in RG 

# of 

states 

in DZ 

# of 

states 

in LZ 

Computed C 

# of states 

within 

controlled net 

RG = 

LZ 
UR 

1 – YES 15 0 15 –   

2 – YES 117 0 117 –   

3 – YES 618 0 618 –   

4 – NO 2398 1 2397 C1 2397 0 

5 C1 NO 7138 3 7135 

C2, C3, C4 

Necessary 

(C2, C4) 
7135 0 

6 C1, C3 NO 16645 10 16635 

C5, C6, C7, 

C8, C9, C10, 

C11, C12, C13, 

C14 

Necessary 

(C6, C10, C12) 

16635 0 

7 
C1, C3, C6, 

C10, C12 
NO 30881 8 30873 

C15, C16, C17, 

C18, C19, C20, 

C21, C22 

Necessary 

(C16, C18, 

C19, C21,) 

30867 6 

8 

C1, C3, C6, 

C10, C12, C16, 

C18, C19, C21 

NO 46399 4 46395 
C23, C24, C25, 

C26 
46395 0 

9 

C1, C3, C6, 

C10, C12, C16, 

C18, C19, C21, 

C23, C24, C25, 

C26 

NO 58258 4 58254 
C27, C28, C29, 

C30, 
58250 4 
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Table 4.11 continue. 

10 

C1, C3, C6, 

C10, C12, C16, 

C18, C19, C21, 

C23, C24, C25, 

C26, C27, C28, 

C29, C30, 

YES 64077 0 64077 –   

11 ǀǀ YES 65681 0 65681 –   

12 ǀǀ YES 65888 0 65888 –   

13 ǀǀ YES 65888 0 65888 –   

14 ǀǀ YES 65888 0 65888 –   

15 ǀǀ YES 65888 0 65888 –   

 

Table 4.12 Necessary monitors for the G-system net. 

Ci 𝑐𝑖 𝑐𝑖  μ0(𝑐𝑖) 

C1 3t2, 3t6, 2t16 3t1, 2t15 9 

C2 2t3, 2t7, 3t15  2t2, 2t6, 3t14 12 

C3 2t3, 2t8, 3t15 2t2, 2t6, 2t13, t14 13 

C4 2t4, 2t8, 2t14    2t3, 2t7, 2t13 11 

C5 2t4, 2t7, 3t15 2t2, 2t6, 2t13, t14 13 

C6 2t4, 2t8, 3t15 2t2, 2t6, 2t13, t14 14 

C7 t2, 2t3, 3t6, t15, 2t16  3t1, 3t14 18 

C8 3t2, t6, 2t7, t15, 2t16 3t1, 3t14 18 

C9 2t4, 2t8, 2t14 2t2, 2t6, 2t13 13 

C10 t2, 2t3, 3t6, 2t8, t15, 2t16 3t1, 2t7, 2t13, t14 19 

C11 3t2, 2t4, t6, 2t7, t15, 2t16 3t1, 2t3, 2t13, t14 19 

C12 t2, 2t4, 3t6, t15, 2t16 3t1, 2t13, t14 19 

C13 3t2, t6, 2t8, t15, 2t16 3t1, 2t13, t14 19 

C14 t2, 2t4, 3t6, 2t8, t15, 2t16 3t1, 2t13, t14 20 

C15 3t2, 2t4, t6, 2t8, t15, 2t16 3t1, 2t3, 2t13, t14 20 

C16 t2, 2t4, 3t6, 2t8, 2t14, 2t16 3t1, 2t7, 2t13, 2t15 19 

C17 3t2, 2t4, t6, 2t8, 2t14, 2t16 3t1, 2t3, 2t13, 2t15 19 

The controlled G-System net in this example is live with 65888 good states. There 512 

unreachable states which should have been provided by an optimal live behavior. The 

permissiveness of the controlled net is (65888/66400) × 100 = 99.23%.  
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4.5 DISCUSSION  

The results obtained for the examples given in this Chapter are summarized in Table 

4.13. 

Table 4.13 Summary of results.  

PNM 

# of 

reachable 

states 

# of 

unreachable 

states 

Permissiven

ess (%) 

# of 

necessary 

monitors 

Liveness 

behavior 

S3PR 84 0 100 3 Optimal 

WAMG 

net 
9679 1793 84.81 23 

Near 

optimal 

S4PR 8832 0 100 8 Optimal 

G-System 65888 512 99.23 17 
Near 

optimal 

 

The performance comparisons of the deadlock control polices for the examples in the 

literature and the method proposed in this study are shown in Tables 4.14, 4.15, 4.16 and 

4.17. It is clear that the proposed policy can lead to a more permissive behavior for liveness-

enforcing Petri net supervisor compared with the other supervisors obtained by using other 

policies except for the G-System net example. 

For WAMG PNM in Fig. 4.1, the comparisons are based on the results from [16]. 

Table 4.14 Performance comparisons for the WAMG net. 

Parameters 

 Control 

policy of 

[18] 

Control 

policy of  

[19] 

Control 

policy of 

[16]  

The proposed 

method 

# monitors added 7 12 6 23 

# of reachable 

states 
6834 7683 8428 9679 

Permissiveness 

(%) 
59.88 67.32 73.85 84.81 
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For S4PR PNM in Fig. 4.12, the comparisons are based on the results from [20]. 

Table 4.15 Performance comparisons for the S4PR model. 

Parameters 

 Control 

policy of 

[21] 

Control 

policy of 

[20] (a) 

Control 

policy of 

[20] (b) 

The proposed 

method 

# monitors added 6 2 2 8 

# of reachable 

states 
1952 2570 5198 8832 

Permissiveness 

(%) 
22.10 29.10 58.85 100 

 

For G-system in Fig. 4.13, the comparisons are based on G-System net in [18] where 

the sink and source places are removed. 

Table 4.16. Performance comparisons for the G-system net. 

Parameters 
 Control policy      

of [18] 
The proposed method 

# monitors added 5 17 

# of reachable states 11035 65888 

Permissiveness (%) 16.62 99.23 
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CHAPTER 5 

CONCLUSIONS 

In this thesis, a new method is proposed to obtain an optimal or near-optimal solution 

for the synthesis of liveness enforcing supervisor in flexible manufacturing systems (FMS) 

modeled with generalized classes of Petri nets. The applicability of the proposed approach is 

shown by means of examples from the literature. The proposed method is not restricted to a 

particular class of Petri nets. It is tested successfully against different generalized classes of 

Petri nets including S3PR, S4PR, WAMG, G-System and other classes of Petri nets currently 

available in the literature. The proposed method is generally applicable, easy to use and 

provides very high behavioral permissiveness. The drawback of the resulting control places 

is that they are all generalized, i.e., they all have weighted arcs.  
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