

EVALUATION OF FACE RECOGNITION

ALGORITHMS ON EMBEDDED SYSTEMS

by

Ahmet ÖZDİL

A thesis submitted to

the Graduate Institute of Sciences and Engineering

of

Melikşah University

in partial fulfillment of the requirements for the degree of

Master of Science

In

Electrical and Computer Engineering

January 2015

Kayseri, Turkey

This is to certify that I have read the thesis titled “Evaluation of Face Recognition

Algorithms on Embedded Systems” by Ahmet ÖZDİL and that in my opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science in

Electrical and Computer Engineering, the Graduate Institute of Science and

Engineering, Melikşah University.

Jan 13, 2015 Asst. Prof. Metin Mete ÖZBİLEN

Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Jan 13, 2015 Prof. Dr. Murat UZAM

Head of Department

Examining Committee Members

Title and Name Approved

Asst. Prof. Metin Mete ÖZBİLEN Jan 13, 2015 ____________________

Asst. Prof. Kadir Aşkın PEKER Jan 13, 2015 ____________________

Asst. Prof.. Rıfat KURBAN Jan 13, 2015 ____________________

It is approved that this thesis has been written in compliance with the formatting

rules laid down by the Graduate Institute of Science and Engineering.

Doç Dr. Ahmet UYAR

Substitute Director

January 2015.

iii

EVALUATION OF FACE RECOGNITION

ALGORITHMS ON EMBEDDED SYSTEMS

Ahmet ÖZDİL

M.S. Thesis - Electrical and Computer Engineering

January 2015

Supervisor: Yrd. Doç. Dr. Metin Mete ÖZBİLEN

Co-Supervisor: Yrd. Doç. Dr. Kadir Aşkın PEKER

ABSTRACT

The identification of a face from a video or image source is a study of computer

vision known as face detection and recognition. By the development of computing

power, face detection and recognition has become popular in recent years. Face

recognition has a wide range of applications including: biometrics, content-based image

retrieval systems, photography and video processing.

Computing and visual sensing technologies in today’s world has reached to a state

that is inexpensive, reliable and accurate. Embedded systems are used in daily life much

more than that we know. Home appliances, furniture, buildings, cars, etc. all of them are

served with an embedded system or in some cases more than one. Since embedded

systems are small and can be easily applicable to nearly everywhere, adding face

recognition capabilities makes them more convenient. Many embedded systems(which

have about 1GHz or mode clock rate and at least 256MB of capacity) integrated with

CMOS camera can be used in face detection systems. Due to the heavy computing

process, more developed versions of embedded systems should be used in face

recognition.

In this study, the performance of embedded systems on face recognition is

explored. Two different ARM-based embedded systems and an x86 based system are

compared in different performance metrics. A video file is used as image source. Firstly,

face detection is implemented on all of three systems and their timing performances are

measured. Three different face recognition algorithms: Fisherfaces, Eigenface, and

Local Binary Pattern Histograms (LBPH) are studied. The timing performances and

iv

accuracies of algorithms are compared in order to find out how the embedded systems

perform face recognition. How they perform face recognition and how to improve their

performance are also studied.

Keywords: Face Recognition, Face Detection, Fisherfaces, Eigenfaces, LBPH,

Embedded System, Pandaboard, BeagleBone Black

v

GÖMÜLÜ SİSTEMLERDE YÜZ TANIMA

ALGORİTMALARI İNCELEMESİ

Ahmet ÖZDİL

Yüksek Lisans Tezi – Elektrik ve Bilgisayar Mühendisliği

Ocak 2015

Tez Yöneticisi: Yrd.Doç.Dr. Metin Mete ÖZBİLEN

Ortak Tez Yöneticisi: Yrd.Doç.Dr. Kadir Aşkın PEKER

ÖZ

Bir video veya resim kaynağından alınan resimlerin tanımlanması, yüz bulma ve

yüz tanıma olarak bilinen bilgisayarla görü çalışmalarıdır. Son yıllarda bilgisayarların

hesaplama gücünün artmasıyla yüz bulma ve tanıma daha popüler hale gelmekte. Bu

durum göz önünde bulundurulduğunda, yüz tanıma birçok kolaylık getirmekte. Çok

geniş uygulama alanları vardır: biyometri, içerik tabanlı görüntü alma sistemleri,

fotoğrafçılık ve video işleme

Günümüz dünyasında bilgisayarla hesaplama ve görsel algılama teknolojileri öyle

bir seviyeye ulaştı ki, ucuz, güvenilir ve kesin çözümler mümkün olmakta. Gömülü

sistemler günlük yaşamda bilinenden daha fazla kullanılmakta. Beyaz eşya, hatta

mobilyalar, binalar, arabalar vb. hepsi bir gömülü sistemler servis vermektedir, hatta

bazı durumlarda birden fazla gömülü system bulunabilmektedir. Gömülü sistemler

küçük ve neredeyse her yere kolaylıkla uygulanabilir olduğu için, yüz tanıma becerileri

eklenmesi onların daha kullanışlı olmasını sağlar. Birçok gömülü sistem yüz bulmada

kullanılabilecek CMOS kamera ile arz edilmektedir ve ağır hesaplamalardan dolayı, yüz

tanıma için daha gelişmiş versiyonları kullanılabilir.

Bu çalışmada, gömülü sistemlerin yüz tanımada nasıl performans gösterdikleri

araştırıldı. İki farklı arm-tabanlı gömülü sistem ve bir tane intel-tabanlı sistem

performans ölçümleri ile karşılaştırıldı. Bir video dosyası resim kaynağı olarak

kullanıldı. İlk olarak bu üç sistemde yüz bulma çalışması uygulandı ve zaman

performansları ölçüldü. Sonra üç farklı yüz tanıma algoritması, Fisherfaces, Eigenfaces

ve Local Binary Pattern Histograms(LBPH), seçildi. Videodan alınmış resimlerden bir

vi

veri tabanı oluşturuldu ve oluşturulan veri tabanı üzerinde seçilen üç algoritma, daha

önce belirtilen üç sistem üzerinde çalıştırıldı. Zamanlama performansı ve algoritmaların

doğruluk oranları karşılaştırıldı ve yüz tanıma söz konusu olunca gömülü sistemlerin

nasıl davrandığı belirlenmeye çalışıldı. Nasıl bir performans sergiledikleri ve

performansın nasıl artırılabileceği araştırıldı.

Anahtar Kelimeler: Yüz Tanıma, Yüz Bulma, Fisherfaces, Eigenfaces, LBPH,

Gömülü Sistem, Pandaboard, BeagleBone Black

vii

 To my beloved family

viii

ACKNOWLEDGEMENT

This project is granted by The Ministry of Science, Industry and Technology

Turkey, with grant number 0370.STZ.2013-2.

I express sincere appreciation to Asst. Prof. Metin Mete ÖZBİLEN and Asst. Prof.

Kadir Aşkın PEKER for their guidance and insight throughout the research.

I express my thanks and appreciation to my family for their understanding,

motivation, and patience.

ix

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ ... v

ACKNOWLEDGEMENT ... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

LIST OF SYSMBOLS AND ABBREVIATIONS ... xiii

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 FACE RECOGNITION ... 2

1.2 EMBEDDED SYSTEMS .. 4

CHAPTER 2 ... 5

FACE RECOGNITION ALGORITHMS ... 5

2.1 EIGENFACES ALGORITHM ... 5

2.1.1 Principal Component Analysis (PCA) ... 5

2.1.2 Calculating Eigenfaces .. 6

2.2 FISHERFACES ALGORITHM ... 8

2.3 LOCAL BINARY PATTERNS (LBP) ... 9

CHAPTER 3 ..11

EMBEDDED SYSTEM ..11

3.1 INTRODUCTION ..11

3.2 BEAGLEBONE BLACK... 12

3.2.1 Connecting BeagleBone Black .. 13

3.3 PANDABOARD .. 15

3.3.1 Pandaborad ES Technical Specifications ... 16

3.3.2 Installing Linux Pandaboard ES .. 18

3.3.3 Installing OpenCV on Pandaboard ES .. 19

3.3.4 Using Pandaboard ES .. 21

x

CHAPTER 4 ... 23

PC ENVIRONMENT ... 23

4.1 INTRODUCTION ... 23

4.2 INSTALLING OpenCV ON WINDOWS .. 23

CHAPTER 5 ... 28

EXPERIMENTS ... 28

5.1 INTRODUCTION ... 28

5.2 EXPERIMENT 1 - FACE DETECTION ... 29

5.2.1 Haar Cascade Classifier ... 30

5.2.2 Implementation of Detection Experiment ... 31

5.2.3 Comparison Of Detecting Performance Of Systems 35

5.3 EXPERIMENT 2 - FACE RECOGNITION .. 37

5.3.1 DATA SETS ... 41

5.3.2 COMPARISON OF FACE RECOGNITION PERFORMANCES 43

5.4 FUTURE WORK ... 46

CHAPTER 6 ... 48

CONCLUSION ... 48

CHAPTER 7 ... 50

REFERENCES ... 50

xi

LIST OF TABLES

Table 1 Face Detection Results ... 36

Table 2 Distribution of Datasets .. 43

Table 3 Single Track Recognition Experiment Time Durations 43

Table 4 Multi Track Recognition Experiment Time Durations 44

Table 5 Effect Ratio of Timing Performance(Multi Track / Single Track) 44

Table 6 Accuracy Results of Single Track Recognition Experiment 45

Table 7 Accuracy Results of Experiment II Step 2.. 46

xii

LIST OF FIGURES

Figure 1 Eigenfaces Examples [17] ... 7

Figure 2 Fisherfaces Examples [16] .. 8

Figure 3 Basic LBP Operator .. 9

Figure 4 ELBP Operator Examples [18] ... 10

Figure 5 LBP Transform of a Face Image .. 10

Figure 6 BeagleBone Black ... 13

Figure 7 IP Configuration of BeagleBone Black... 14

Figure 8 Pandaboard [22] .. 18

Figure 9 OpenCV Installation 1 .. 19

Figure 10 OpenCV Installation 2 .. 20

Figure 11 Adding New Property Sheet .. 24

Figure 12 Additional Include Directories .. 25

Figure 13 Additional Library Directories .. 25

Figure 14 Additional Dependencies .. 26

Figure 15 Haar Cascade Rectangle Features ... 30

Figure 16 Haar Rectangular Features Application .. 31

Figure 17 Face Detecting Flow Diagram .. 32

Figure 18 Detected Faces .. 35

Figure 19 Extracted Faces ... 35

Figure 20 Flow Diagram of Recognition Experiment ... 38

Figure 21 Buffy Face Track ... 41

Figure 22 Michelle Face Track .. 42

Figure 23 Nicholas Face Track .. 42

file:///D:/Ahmet/yl/meliksah/tez/yaz/ahmet%20hoca%20tez%20to%20be%20proofread.docx%23_Toc408529637

xiii

LIST OF SYSMBOLS AND ABBREVIATIONS

SYMBOL/ABBREVIATION

API Application Programming Interface

ARM Acorn RISC Machine

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

DDR2 Double Data Rate Type 2

DDR3 Double Data Rate Type 3

DDR3L Double Data Rate Type 3 Low Power

DRAM Dynamic Random Access Memory

DSI Display Serial Interface

DVI-D Digital Visual Interface Only Digital

EDR Enhanced Data Rate

eMMC Embedded Multimedia Card

EMTs Emergency Medical Technicians

ELBP Extended Local Binary Patterns

ER Emergency Room

FAT32 File Allocation Table 32 Bits

GB Giga Byte

GCC Gnome C Compiler

GHz Giga Hertz

GPIO General Purpose Input Output

HD High Definition

xiv

HDMI High Definition Multimedia Interface

IDE Integrated Development Environment

JTAG Joint Test Action Group

LBP Local Binary Patterns

LBPH Local Binary Pattern Histograms

LCD Liquid-Crystal Dispaly

LDA Linear Discriminant Analysis

MB Mega Byte

MMC Multimedia Card

OMAP Open Multimedia Applications Platform

OpenCV Open Computer Vision

OpenGL Open Graphics Library

OpenVG Open Vector Graphics

OS Operating System

PC Personal Computer

PCA Principal Component Analysis

PIC Peripheral Interface Controller

PRU Programmable Runtime Unit

RGB Red Green Blue

RJ45 Registered Jack 45

SD Secure Digital

SSH Secure Shell

TV Television

UART Universal Asynchronous Receiver Transmitter

U.S. United States

USB Universal Serial Bus

1

CHAPTER 1

INTRODUCTION

Face recognition is one of the most important and hardest problems in computer

vision. In recent years, it is becoming more and more important; a certain level of

success is reached but under free lighting and exposure conditions face recognition is

still an open research area for development.

Applications of face recognition are used or planned to be used in daily life from

homeland security to healthcare. Some examples of face recognition already applied to

security field are as follows:

The German Federal Police use a face recognition system to allow voluntary

subscribers to pass fully automated border controls at Frankfurt Rhein-Main

international airport to ease the passing of people [1]. U.S. Department of State operates

one of the largest face recognition systems in the world with over 75 million

photographs that is actively used for visa processing [1]. Mexican government

employed face recognition software to prevent voter fraud in the 2000 presidential

election [1]. Face recognition can find many application subjects in security field,

because its identification is very handy.

Passwords are the most important elements of the computer security, yet they can

be easily forgotten. Instead of password, using face recognition makes the security of

computers more convenient. Face recognition systems are also incorporated into

unlocking mobile devices. The Mobile OS android market is working on face

recognition and integrating it into their cell phones. They have created an application

called VisidonApplock. This application allows you to put a face recognition lock on

any of your applications which increases the safety of private apps and contents [1].

2

Another field that face recognition can be utilized is to organize digital images.

Photographing is very easy due to today’s large capacity digital cameras. They can

easily produce large number of images with large sizes. Therefore organizing digital

images is a hard work. Google's Picasa digital image organizer has a built in face

recognition system starting from version 3.5 and onwards. It can associate faces with

persons, so that queries can be run on pictures to return all pictures with a specific group

of people together. Picasaweb.com has also been providing a similar feature to its users

[1]. Sony's Picture Motion Browser (PMB) analyses photo, associates photos with

identical faces so that they can be tagged consequently, and distinguishes between

photos from one person to many and nobody [1]. Apple's iPhoto image organizer has a

feature named Faces which allows users to associate names to faces in a series of

photographs. The software suggests other matching faces and locates it in the photo

library and progressively refines its recognition, according to the user's acceptance,

rejection or renaming of the suggested face [1].

Face can tell many things about health condition. Face recognition comes with the

opportunity for EMTs and ER doctors to access related information instantly, even if the

patient is unconscious. Medical records such as pharmaceutical allergies, family contact

information and other accessible patient data records that can save an emergency

responder time and thus save a patient’s life [2].

1.1 FACE RECOGNITION

Face authentication, face recognition, and face clustering are different from one

another, but they are all called as part of face recognition problems. All of these

problems try to measure the similarity between two images. Especially in security field,

a certain level of success is gained, but there is more to do.

Face recognition process starts by face detection, which is to find face areas in an

image. There are different approaches to face detection depending on elements such as:

3

shape, texture, and color. The most popular approach is Viola-Jones detector, which

uses boosting technique on rectangular attributes. This detector is the first choice in

many applications because of its speed and success, which uses only grey scale images.

Viola-Jones detector has good results on front looking faces, but its success decreases

when face turned more than a certain degree. [3]

Color based face detection techniques are not affected much from turned face.?[4]

In color based detection techniques, skin color models or classifiers which are trained

by the samples including different races, skin colors and lightening conditions are being

developed, after pre-detection usually invalid detections are eliminated according to

blob’s shape and size.

The second step in face recognition process is usually to detect facial features

such as eyes, mouth, and nose. Scaling and aligning according to key points on face,

such as eyes and mouth, are important for accurate and precise comparison of faces.

There are many different approaches to face recognition. Traditional methods use

two dimensional (2D), 24x24 pixels sized examples, but new face recognition methods

use 3D or high definition (HD) approaches.[5]

Feature transformations are utilized commonly in traditional face recognition

methods. Grey-scale image is considered as the feature vector and certain feature

transformations (PCA, LDA, etc.) are applied to the grey-scale image. One of the

traditional methods is Eigenfaces. Eigen-faces or eigen-vectors are obtained with

applying PCA (Principal Component Analysis) to a set of face images. These eigen-face

images constitute a basis vector set for face dataset. These faces, which are expressed as

the basis vector type, are matched by calculating the similitude-distances, using known

distance methods.[6] There is another method named Fisherfaces, where LDA (Linear

Discriminant Analysis) is used as feature transformation and processes are similar to

Eigenfaces.[7] Also, different recognition methods are developed, which use facial

features such as eyes, nose and mouth separately[8], to be more independent from pose.

4

These methods in [8][26][27] increase complexity and affect the robustness and stability

of system negatively. When Viola-Jones detection algorithm is extended to detect turned

faces, the error rate increases dramatically.

1.2 EMBEDDED SYSTEMS

Computer vision algorithms need capacity for both processing and huge storage

for implementing on computers. It is urgent to optimize the computer vision algorithms

for both processing and storage to fulfill the real time requirements[9]. Since face

detection is a computationally resource and time consuming task, an embedded solution

would let different kinds of cheap devices to be used in many applications. [10].

Nowadays, embedded system processors are developed faster than PC processor,

even they can accomplish many PC based tasks. Todays embedded systems are

generally equipped with processors and peripherals based on PIC and ARM architecture

Especially with the development of smart phones, embedded systems are equipped with

a display processor which has multiple cores for high performance. All of these

improvements boosted embedded system popularity and lead it to be used in many

different application areas. For example face recognition in smart phones is really

popular. It has been worked on application level security. Smart phones that have front

camera let this task to be easily deployed. [11]

5

CHAPTER 2

FACE RECOGNITION ALGORITHMS

2.1 EIGENFACES ALGORITHM

Dimensionality reduction is important in image processing, due to big image data.

Image data consists of at least 2-dimensional matrix in computer science. Principal

Component Analysis (PCA) transform is used to reduce dimension in eigenfaces

algorithm. For example; if a face image is represented in g-dimensional space, PCA

transform aims to get an h-dimensional subspace, which answers maximum variance in

the g-dimensional space and where h is too small according to g[12].

Eigenfaces algorithm consists of two steps; first training and second recognition.

In training step, a set of subspace images is calculated, and in second step, a new image

is projected to subspace and compared with the training sets, to find the closest face set

to assign[6].

2.1.1 Principal Component Analysis (PCA)

Principal Component Analysis is used to reduce the components, and select

principal ones. So PCA tries to find the appropriate dimension to reduce dataset. In

multidimensional data, PCA can find a linear relation. PCA steps:

 Find 1st dimension which the data varies most.

 Find 2nd dimension which the data varies most and is perpendicular to 1st

dimension.

 Continue finding the dimensions which the data varies most and is

perpendicular to all previous dimensions.

These dimensions are called as Principal Components. They cause the data

deconstruct into eigenvectors and eigenvalues. Eigenvector is the direction of the

component. Eigenvalue is the number that tells the variance of that eigenvector.

6

Dimensionality reduction is performed by projecting the data points on the

eigenvector as shown in Figure 1.

Figure 1 PCA Projection

2.1.2 Calculating Eigenfaces

A grayscale image I(x,y) is N by N 2-dimensional array can be used as N2 vector.

This means that the image is represented in N2-space with a point.[6]

Working on this huge dimensional space is not feasible. Image can be represented

in lower dimensional space. This can be done with PCA as described above. PCA

determines the vectors that represent the image in the subspace. This subspace is called

as “face space”. N by N images represented by N2 length vectors, and these vectors are

linear combination of original images. These vectors are the eigenvectors forming the

covariance matrix of original face images. They are called as “Eigenfaces” since they

bear resemblance to human faces as it can be seen in Figure 2[6].

Mean centered images are calculated by subtracting the normalized training

images from the calculated mean image. If W is the matrix of mean centered training

images Wi (i = 1, 2, ... L) and L is the number of training images, covariance matrix D is

calculated from W as in Equation 2.1[12].

𝐷 = 𝑊𝑊𝑇 (2.1)

7

To reduce the size of covariance matrix D, D = WTW can be used instead.

Eigenvectors ei and their corresponding eigenvalues λi are obtained from covariance

matrix D.

𝑧𝑖 = 𝐸𝑇 𝑤𝑖 (𝑖 = 1,2, … , 𝐿) (2.2)

In the Equation 2.2, E is the matrix containing the eigenvectors and their largest

eigenvalues, zi represents the new feature vector of the new lower dimensional subspace

[12].

Figure 2 Eigenfaces Examples [17]

There is a negative aspect of this method, that it tries to maximize inter class

scattering and also intra class scattering. Inter class scattering is good for classification

while intra class scattering is not. In face recognition, if there is a variance of

illumination, this increases intra class scattering very high, even classes seems stained,

and causes low classification[13]. If there is illumination variance, performance

decreases, and classes may smear together.

8

2.2 FISHERFACES ALGORITHM

When it comes to illumination variance, inter class difference comes forth for

success rate. In different lighting conditions, classes smear together they cannot be

separated. Linear Discriminant Analysis (LDA) or fisherfaces aims to increase inter

class differences, not data representation. This means that LDA calculates a scatter for

classifying the data more accurate. Therefore, class discrimination feature vectors are

calculated as follows.[12]

𝑆𝑤 = ∑ ∑(𝑥𝑖
𝑗

− 𝜇𝑗)(𝑥𝑖
𝑗

− 𝜇𝑗)
𝑇

𝑀𝑗

𝑖=1

𝑅

𝑗=1

 (2.3)

𝑆𝑏 = ∑(𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)
𝑇

𝑅

𝑗=1

 (2.4)

The formulas above are intra class (Equation 2.3) and inter class (Equation 2.4)

scatter matrices respectively. The indices, j is class and i is image number. μj is the mean

of class j, and μ is mean of all classes. Mj shows the number images in class j, and R is

the number of classes. Sb is maximized while Sw is minimized for the classification to be

done [12].

Figure 3 Fisherfaces Examples [16]

In Figure 3, fisherfaces of a dataset is shown.

9

2.3 LOCAL BINARY PATTERNS (LBP)

Local Binary Patterns (LBP) was first presented by Ojala et al. in [14] to use in

texture description. The basic method, labels each pixel with decimal values called

LBPs or LBP codes, to describe the local structure around pixel. As illustrated in Figure

4, value of the center pixel is subtracted from the 8 neighbor pixels' values, if the result

is negative the binary value is 0, otherwise 1. The calculation starts from the pixel at the

top left corner of the 8-neighborhood and continues in clockwise direction. After

calculating with all neighbors, an eight digit binary value is produced. When this binary

value is converted to decimal, the LBP code of the pixel is generated, and placed to the

coordinates of pixel in matrix [15].

2 9 3
Threshold

0 1 0

Binary: 01010000

Decimal: 80 4 7 8 0 1

1 6 5 0 0 0

Figure 4 Basic LBP Operator

In Figure 4, basic algorithm of LBP is presented. There is a drawback of LBP

which uses 8-neighborhood (3x3) that cannot cover large-scale structures. To take into

account texture of different size structures, the method is generalized. In [18] Ojala et

al. revised the method to be flexible for any radius and any number of sampling points

and named the new method as Extended LBP(ELBP). Figure 5 shows different

examples of ELBP operator, and P represents the number of neighbors and R represents

the radius of a circle on which neighbors are located.

10

Figure 5 ELBP Operator Examples [18]

Figure 6 LBP Transform of a Face Image

The histograms of LBP are used for face recognition since LBP histograms

contain information about the distribution of local micro patterns. Because the face

image is too big for LBP calculation, dividing the image into small regions is proposed

in [19]. Some parts of face (like eyes, mouth) contain more information for face

recognition. Yang et al. proposes to train and allocate different weights for face parts, by

their information covering and then concatenating them end to end to build up global

description of face. This helps to collect local pattern information with spatial details of

the whole image.

To decide whether two face images are belong to the same person, the images'

histograms are compared. By default nearest neighbor approach is used to find the right

class of the new image..

11

CHAPTER 3

EMBEDDED SYSTEM

3.1 INTRODUCTION

Embedded systems have different architecture than PCs and limited resources

such as storage, processing capacity, etc. Thus, software developing for embedded

systems has its characteristic difficulties. Today’s developing embedded systems has PC

environment capabilities, but every embedded systems has its own software

environment, constraints, and supported libraries. Therefore embedded software

development itself becomes a research and development area. Embedded systems can

vary much on memory, i/o units, hardware properties such as device interfaces, and

related software components. Developing on embedded system, learning these

properties and applying the software is a problem. It is a difficult problem to realize

complex algorithms on embedded systems such as image processing and face

recognition.

Today, Google presents the most commonly used embedded development

environment with Android platform. Android platform has a rich application interface,

but there are some performance constraints due to multivariate hardware platform

support. Linux platforms can fully utilize the hardware if they are specially compiled

for a specific hardware. Commonly used embedded systems have more than one

compiled Linux systems. A development tool “gc++” is used for code development in

Linux environment. Android platform uses Java as a development environment and

Google provides more than one development tool. While developing code on embedded

systems, usually the code is developed on PC and then copied to embedded system with

an interface. Also Google provides a restricted emulator that works on PC. Therefore,

there is a need for powerful PC system that will run embedded system emulator with the

12

development environment of embedded systems for PC.

3.2 BEAGLEBONE BLACK

BeagleBone Black is a low-cost, community-supported development platform for

developers and hobbyists.[20] The Beaglebone Black has some differences from the

regular version by providing an onboard micro HDMI port, 512MB of DDR3L DRAM,

4GB onboard flash memory, an AM3358 processor at 1GHz, and making JTAG optional

with a user supplied header. The features are listed below:

1. Processor: AM335x 1GHz ARM® Cortex-A8

2. 512MB DDR3 RAM

3. 4GB 8-bit eMMC on-board flash storage

4. 3D graphics accelerator

5. NEON floating-point accelerator

6. 2x PRU 32-bit microcontrollers

7. Connectivity

a. USB client for power & communications

b. USB host

c. Ethernet

d. HDMI

e. 2x 46 pin headers

8. Software Compatibility

a. Debian

b. Android

c. Ubuntu

d. Cloud9 IDE on Node.js w/ BoneScript library

In Figure 7, BagleBone Black is presented. It can be seen in Figure 7 that it is credit

card sized(8.6x4.8 cm). This makes it useful and easy to implement for many

projects.[21] Necessary programs(like OpenCV, gcc…) are pre-installed on BeagleBone

Black. This make it easy to implement code on BeagleBone Black.

13

Figure 7 BeagleBone Black

3.2.1 Connecting BeagleBone Black

Since g++ compiler and OpenCV library are pre-installed on BeagleBone Black,

only thing should be known is how to connect to BeagleBone Black.

The board can be used as a PC, when a mouse and a keyboard is connected from

USB port and a monitor is connected from mini-HDMI port. After attaching all devices,

BeagleBone Black can be powered on and if the board recognizes the devices, it boots

its built-in OS. This is rather not a preferred way since BeagleBone Black’s capacity is

limited. Running an operating system with a graphical interface is very resource

consuming task.

Instead of running a graphical operating system, just connecting with a terminal to

BeagleBone Black over a medium is an easier way. BeagleBone Black lets three

different connection as [21]:

14

1. Serial connection:

a. Putty is installed from http://sourceforge.net/projects/putty.mirror/

b. BeagleBone Black is connected from serial port to PC over USB

interface.

c. In Putty’s “Connection Type” menu, “Serial” type is selected and the

COM Port number of connected BeagleBone Black is entered

d. On the left menu, under “Connection”, in “Serial” tab below settings

entered:

 Speed(baud): 115200

 Data Bits: 8

 Stop bits: 1

 Parity: None

 Flow Control None

2. SSH using an Ethernet cable:

a. Connecting to BeagleBone Black with SSH over Ethernet needs to know

BeagleBone Black’s IP address. There are different ways to learn and

assign a static IP address of BeagleBone Black; accessing the board over

serial connection, or booting the graphical OS on the board, and

assigning a static IP address by router.

b. To assign a static IP address to BeagleBone Black these steps should be

followed:

 In terminal execute “ifconfig” code, the output of the code as follows:

Figure 8 IP Configuration of BeagleBone Black

 Execute “cat /etc/network/interfaces” code to see if static IP or DHCP

15

configuration enabled. “iface eth0 inet dhcp” line means DHCP

service is enabled. “iface eth0 inet static” line means static IP is

enabled.

 Static IP address can be assigned by editing “/etc/network” file. The

lines below should be added to “network” file. The address and

netmask can be found with “ifconfig” command at the first step.

iface eth0 inet static

address xxx.xxx.xxx.xx

netmask xxx.xxx.xxx.x

After rebooting BeagleBone Black these setting should take effect.

Then BeagleBone Black can be accessible over Ethernet.

3. SSH using USB cable:

a. This is the easiest way to connect BeagleBone Black. The only

requirement is to connect board to PC with a USB cable. Then

BeagleBone Black powers on automatically. After power on process is

completed, the board is accessible with SSH from “192.168.7.2” IP

address. “root” user name with no password is used to login SSH.

b. After SSH terminal is ready, on BeagleBone Black, the only thing to do

is to develop the code. The code can be written on BeagleBone Black

from terminal by using programs like vi, vim, etc. An easier way is to

prepare the code on PC and compile it on BeagleBone Black.

Compiling code on BeagleBone Black can be done with the following code:

$g++ -o hello_opencv hello_opencv.cpp `pkg-config --cflags --libs opencv`

In the code above, a c++ source file named as “hello_opencv.cpp” is being

compiled by g++ compiler with using “opencv” library.

3.3 PANDABOARD

Pandaboard is an Open OMAP™ 4 mobile software development platform.[22]

The PandaBoard is a low-power, low-cost single-board computer development platform

16

based on the Texas Instruments OMAP4430 system on a chip (SoC). The PandaBoard

ES is a newer version based on the OMAP4460 SoC, with the CPU and GPU running at

higher clock rates. The Pandaboard ES is used in this thesis as it has more processing

capacity and flexibility.

3.3.1 Pandaborad ES Technical Specifications

Processing:

1. Core Logic OMAP4460 applications processor. Dual-core ARM®

Cortex™-A9 MPCore™ with Symmetric Multiprocessing (SMP) at 1.2

GHz each. Allows for 150% performance increase over previous ARM

Cortex-A8 cores.

2. Full HD (1080p) multi-standard video encode/decode

3. Imagination Technologies’ POWERVR™ SGX540 graphics core

supporting all major API's including OpenGL® ES v2.0, OpenGL ES

v1.1, OpenVG v1.1 and EGL v1.3 and delivering 2x sustained

performance compared to the previous SGX530 core

4. Low power audio

Display:

1. HDMI v1.3 Connector (Type A) to drive HD displays

2. DVI-D Connector (can drive a 2nd display, simultaneous display; requires

HDMI to DVI-D adapter)

3. LCD expansion header

4. DSI Support

Memory:

1. 1 GB low power DDR2 RAM

2. Full size SD/MMC card cage with support for High-Speed & High-

Capacity SD cards

Audio:

1. 3.5" Audio in/out

2. HDMI Audio out

17

3. Stereo audio input support

Connectivity:

1. Onboard 10/100 Ethernet

2. 802.11 b/g/n (based on WiLink™ 6.0)

3. Bluetooth® v2.1 + EDR (based on WiLink™ 6.0)

Expansion:

1. 1x USB 2.0 High-Speed On-the-go port

2. 2x USB 2.0 High-Speed host ports

3. General purpose expansion header (I2C, GPMC, USB, MMC, DSS, ETM)

4. Camera expansion header

5. LCD signal expansion using a single set of resistor banks

Debug:

1. JTAG

2. UART/RS-232

3. 2 status LEDs (configurable)

4. 1 GPIO Button

5. Sysboot switch available on board

Dimensions:

1. Height: 4.5" (114.3 mm)

2. Width: 4.0" (101.6 mm)

3. Weight: 2.88 oz (81.5 grams)

18

Figure 9 Pandaboard [22]

3.3.2 Installing Linux Pandaboard ES

Pandaboard is shipped without a working OS on it. So a special kernel

compilation is needed. Currently available compilations are not working properly on

Pandaboard ES. That’s because there are some driver changes in new version and no

pre-compiled Linux kernels contains that changes. This gives a rise to a new kernel

compilation. Compiling a new kernel is very complex and open to any mistakes that can

fail compilation. Two different kernel compilations are merged by working parts, to

discard compilation troubles. Ubuntu 12.04 is installed on a microSD card and boot

folder of installation is changed with manufacturer’s working one.

19

The basic steps to install pre-built Ubuntu for Pandaboard is as follows[23]:

1. Ubuntu 12.04 Precise Pangolin Ubuntu Core is downloaded from:

http://cdimage.ubuntu.com/ubuntu-core/releases/12.04/release/

2. The downloaded image is written on an empty SD(microSD) card. To write the

image to the SD card, the card must be un-mounted like /dev/sde. Then this code

is executed:

zcat ./ubuntu-12.04-preinstalled-desktop-armhf+omap4.img.gz |sudo dd bs=4M of=/dev/sde ;

sudo sync

3. In this installation, there are some problems with “boot” folder. The folder is

replaced with manufacturers working one. This helped overcome incompatibility

problems.

3.3.3 Installing OpenCV on Pandaboard ES

Installing OpenCV library on Pandaboard ES as follows[24]:

Install arm-linux-gcc cross compiler.

“arm-linux-gcc-4.3.2.tgz” file is downloaded from: http://www.friendlyarm.net/,

and extracted into “/usr/local/arm/4.3.2/…”

In terminal the following code executed to add the install directory of the arm-

linux-gcc to system bash so that the arm-linux-gcc/arm-linux-g++ command can be

Figure 10 OpenCV Installation 1

20

recognized:

vi /etc/bash.bashrc

This code is added to the last line of bashrc file:

export PATH=$PATH:/usr/local/arm/4.3.2/bin/

The arm-linux-gcc is tested if included in the default path, in the terminal:

arm-linux-gcc -v

The result of the above code is shown in Figure 11, which explains the compiler is

ready for use:

Figure 11 OpenCV Installation 2

Obtaining OpenCV source code

Current version of OpenCV library at the time of writing is a version 2.0.0.

OpenCV source code can be downloaded with web browser from OpenCV-

SourceForge.net(http://sourceforge.net/projects/opencvlibrary/), or wget command to

acquire a source code directly on the command line:

#wget http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.9/opencv-2.4.9.zip

tar xvjf opencv-2.4.9.zip

cd root/Desktop/OpenCV-2.4.9/

~/Desktop/OpenCV-2.4.9# mkdir output

Compilation and installation of OpenCV binaries

21

~/Desktop/OpenCV-2.4.9#export PKG_CONFIG_PATH=/ usr/local/arm/4.3.2/arm-none-linux

gnueabi/libc/armv4t/usr/lib/pkgconfig

~/Desktop/OpenCV-2.4.9#./configure

--prefix=/root/Desktop/armOpenCV/output --host=arm-linux CPPFLAGS=-I/root/Desktop/

OpenCV-2.4.9/output/include LDFLAGS=-L/root/Desktop/ OpenCV-2.4.9/output/lib --with-python=no --

with-ffmpeg=no --with-imageio=no --with-gtk=no --with-carbon=no --with-unicap=no --with-gthread=no

~/Desktop/OpenCV-2.4.9#make –j3

~/Desktop/OpenCV-2.4.9#make install

4 folders namely bin, include, lib, share are created in /root/Desktop/OpenCV-

2.4.9/output

Copying OpenCV library above to target:

mkdir /usr/include

mkdir /usr/lib

Copy all the files from /root/Desktop/OpenCV-2.4.9/output/include/opencv of

host to /usr/include of target and /root/Desktop/OpenCV-2.4.9/output /lib of host to

/usr/lib of target.

This last step makes OpenCV ready to use.

3.3.4 Using Pandaboard ES

Pandaboard ES is more powerful than BeagleBone Black. So it can be used with a

graphical operating system, which is called desktop mode. Recommended setup for

desktop mode of Pandaboard is as follows:

1. 5V power supply

2. SD card 4GB or more

3. USB to Serial adapter or Serial cable

4. Ubuntu (10.04 or above) host PC is recommended but any Linux debian-

based system can work

5. RJ45 Ethernet cable

6. USB cable (Mini-A to Type-A USB)

7. DVI (HDMI Type-A to DVI-D) or HDMI (Type-A to Type-A)

8. USB keyboard

22

9. USB mouse

10. Display with HDMI or DVI support

After all setup is done, Pandaboard is ready to be used. There is a point to

consider which is heat. The board should be placed as it can run without facing high

temperatures. If some cooling mechanism is installed, Pandaboard can have a longer

life.

23

CHAPTER 4

PC ENVIRONMENT

4.1 INTRODUCTION

Developing code on an embedded system is not an easy task due to its limited

capacity of processing and memory and of course the heating problem. So that a PC

system is used for developing the necessary code for face recognition. After a bug-free

code is composed, it is moved to the embedded systems for compiling and testing.

The development environment in PC is composed with OpenCV library and

Microsoft Visual C++ 2010 Express.

Microsoft Visual C++ 2010 Express has a standard installation procedure, but

OpenCV must be identified by system.

4.2 INSTALLING OpenCV ON WINDOWS

OpenCV can be downloaded from the link in [25](the latest version 2.4.9). There

are two different ways of installing OpenCV on windows system. The first way is to

build the library from source files. The second and easier way is to download and install

pre-built library. If no problem occurs while using pre-built library, this way should be

selected. If some problems occur while installing from pre-built library, the first way

should be selected, for a healthy installation.

After installing the OpenCV library on windows system, two settings should be

done. First step is to add OpenCV to system path and second is to configure Microsoft

Visual C++.

For the first setting, two environment variables should be set and OpenCV path

should be added to the system path. To do this in “Environment Variables” editor, under

“System Variables” table, click on the “New” button and set name as “OPENCV_DIR”

24

and value as “C:\opencv\build\x86\vc10” and click “OK”. The second variable will be

the version of OpenCV with the same procedure as previous. The name of variable is

“OPENCV_VER” and its value is “249”. Then add the code below to the end of the

“Path” variable and click “OK”:

;%OPENCV_DIR%

In a Microsoft Visual C++ project, some settings should be done to show how the

OpenCV library will be used to the IDE. There are two ways of doing this, global and

local. The global one takes effect to all projects, thus it is not recommended especially if

multiple projects are being developed in same IDE. The local way steps are described

below.

Every project has its own rule packet to build separately from others. In the rule

packets every information is stored for IDE to build the project. There is two build

modes, “Release” and “Debug”. These two modes are different from each other by their

characteristics. The debug mode is more comprehensive since it enables to find bugs

inside code. The release mode is more strict to make the application faster and smaller

on disk. That’s why these modes have different rule packets. Rule packets named as

project properties and can be modified in “Property Manager” Microsoft Visual Studio.

Once a rule packet is generated, it can be used for same kind of projects.

In “Property Manager” a new project property sheet is added by right clicking to

“Debug” and selecting “Add New Project Property Sheet” and it is named as

“OpenCV_Debug”, as shown in Figure 12.

Figure 12 Adding New Property Sheet

25

The properties menu of “OpenCV_Debug” property sheet is opened and in

“C/C++” group’s “General” tab, in the “Additional Include Directories” line

“$(OPENCV_DIR)\..\..\include” is added, as shown in Figure 13 below.

Figure 13 Additional Include Directories

The environment variable “OPENCV_DIR” is used to let adding the property

sheet to a different project easily. Because the environment variable is changed with its

value during runtime.

Then in “Linker” group’s “General” tab, in the “Additional Library Directories”

line “$(OPENCV_DIR)\lib” is added as shown in Figure 14.

Figure 14 Additional Library Directories

After this, again in “Linker” group, but this time in “Input” tab, in the “Additional

Dependencies” line necessary modules are added. Below a few samples of necessary

modules are listed and Figure 15 show how the listed necessary modules can be added

to project:

1. opencv_core249d.lib

2. opencv_imgproc249d.lib

26

3. opencv_highgui249d.lib

4. opencv_ml249d.lib

5. opencv_video249d.lib

6. opencv_features2d249d.lib

7. opencv_calib3d249d.lib

8. opencv_objdetect249d.lib

9. opencv_contrib249d.lib

10. opencv_legacy249d.lib

11. opencv_flann249d.lib

Figure 15 Additional Dependencies

After confirming the dialog boxes the property sheet for debug mode is ready, and

can be found under project directory. The “OpenCV_Debug.props” file is ready to use.

It can be copied to a new project directory and can be used without any editing.

27

As an example for a test program of OpenCV, these steps may be followed. Right

click to project and follow this path “Add → New Item... → Visual C++ → C++ File”.

Give a name to the new file and click “Add”. Insert the following code into the new file

and then press F5 to run the code.:

#include <opencv2/highgui/highgui.hpp>

#include <iostream>

using namespace cv;

using namespace std;

int main()

{

 Mat im = imread("c:/full/path/to/an image");

 if (im.empty())

 {

 cout << "Cannot load image!" << endl;

 return -1;

 }

 imshow("Image", im);

 waitKey(0);

}

28

CHAPTER 5

EXPERIMENTS

5.1 INTRODUCTION

Experiments are classified in two groups. First class is detecting and extracting

faces. Second class is recognition of faces.

In detecting experiments, only the performance of systems are compared since the

same detecting and extracting code is executed on PC, Pandaboard, and BeagleBone

Black. The faces used in the experiment are extracted form a TV Series Buffy season 5

episode 2. Then two different experiment is done.

In recognition experiments, three algorithms (Figenfaces, Fisherfaces, and LBPH)

are compared by performance and accuracy. For recognition experiments, 3 different

characters’ all face images are picked up from image pool which are extracted in first

experiment and face recognition is applied to these images. The movie characters,

Buffy, Michelle, and Nicholas are selected for experiments. In experiment dataset total

of 753 images belongs to character Buffy, Michelle’s 624 images, and Nicholas’s 205

images. Images total number is 1582. As male faces are better suited for face

recognition algorithms, Nicholas is added to test bed so that at least one male character

exist in test bed.

The experiments are named with illustrative words in the rest of the thesis for

better understanding. The first experiment is named as “Detection”. The experiment 2 is

named as “Recognition” and step 1 is named as “Single Track” and step 2 is named as

“Multi Track”.

29

5.2 EXPERIMENT 1 - FACE DETECTION

Detecting and extracting faces from a video stream is a really challenging task.

There is a great deal of data to process. Standard videos have 25 frames in a second.

This means that there are 25 pictures for image processing in every second.

For example, the selected TV series is 42 minutes 6 seconds long. This makes

2526 seconds, and if it is multiplied with 23 frames (as this video’s frames per second is

23), in total the video consists of 58098 images. This amount of data need huge

processing power. Since this thesis focuses on embedded systems, some performance

improvement is necessary.

The first applied performance improvement is capturing 1 frame in every 12

frames. So this solution reduces the dataset approximately 12 times. The number is still

very high. Because the time taken to process this number of images is long for real time

applications. A second performance improvement is: processing all the images as in

greyscale. Since RGB images has 3 dimensions and greyscale images has 2 dimensions.

This reduces the dataset by three times. Applying the two performance improvement

reduces the data set 36 times. But in some cases more performance solutions can be

needed. In that case decreasing sample rate as in the first performance solution can be

helpful, like capturing 1 frame in every 25 images or more. While decreasing sample

rate, the problem’s characteristics should be considered. The characteristics of the

problem can vary, for example if the scenes of the video are changing fast, decreasing

sample rate can lead to track loss.

Haar cascade face detector has proven itself as a fast and accurate face detector

and thus, is the most popular face detection method. That’s way this method has used in

this thesis for detecting faces in video frames. More detail about haar cascade classifier

is given in the following topic.

30

5.2.1 Haar Cascade Classifier

Haar feature-based cascade classifier is an effective and thus mostly preferred

method for object detection in image processing systems. This method is based on

machine learning. So it needs a training set for both true and false samples. After

training, features extracted by using rectangle features shown in Figure 16 [3]:

Figure 16 Haar Cascade Rectangle Features

Each feature is used to calculate a value by subtracting sum of pixels covered by

white rectangle from sum of pixels covered by black rectangle. Calculating these

features requires too much calculation, which makes the method unfeasible. This

problem is solved by using integral image in [3]. Integral image value of a pixel is

calculated by summing up all pixels’ values which are above and left of the calculated

pixel. The pixel p at location (x,y) is calculated with the Equation 5.1:

𝑝(𝑥, 𝑦) = ∑ 𝑝,(𝑥 ,, 𝑦 ,)

𝑥 ,≤𝑥,𝑦,≤𝑦

 (5.1)

𝑝(𝑥, 𝑦) is the integral value of the pixel located at (x,y) and 𝑝,(x,y) is original

image. Using the formulas in Equation 5.2 and 5.3, the integral image calculation can

be done faster:

𝑠(𝑥, 𝑦) = 𝑠(𝑥, 𝑦 − 1) + 𝑝,(𝑥, 𝑦) 5.2

𝑝(𝑥, 𝑦) = 𝑝(𝑥 − 1, 𝑦) + 𝑠(𝑥, 𝑦) 5.3

31

In the above formula 𝑠(𝑥, 𝑦) is the cumulative row sum, 𝑠(𝑥, −1) = 0, and

𝑝(−1, 𝑦) = 0. The integral image is computed with one loop throughout the original

image. Integral image enables calculating rectangular images with only four point

values of integral image. Eight points are enough to calculate the rectangular feature

since it is calculated by subtracting white rectangular area values from black rectangular

area values. In Figure 17, how haar rectangular features are applied is shown.

Figure 17 Haar Rectangular Features Application

5.2.2 Implementation of Detection Experiment

Below the face detection algorithm flow diagram is shown in Figure 18. As it can

be seen in the figure, first the video frames are extracted from a video stream then the

frames are processed with haar cascade classifier.

32

Figure 18 Face Detecting Flow Diagram

Necessary libraries for OpenCV functions are below:

#include <opencv2/objdetect/objdetect.hpp>

#include <opencv2/highgui/highgui.hpp>

#include <opencv2/imgproc/imgproc.hpp>

Necessary libraries for C++ functions are below:

#include <iostream>

#include <stdio.h>

#include <direct.h>

#include <time.h>

#include <fstream>

“iostream” and “stdio.h” are used for standard input-output functions. “direct.h” is

needed for directory operations. “time.h” contains the time functions which are used to

calculate the time for processing. “fstream” is needed for writing the results to a file.

For naming the extracted images with numbers and strings, the below code is

implemented:

detect faces and save

to disk

start

read frame

finish

true false

train face detector

33

string IntToStr(int n)

{

 stringstream result;

 result << n;

 return result.str();

}

The “IntToStr” function is needed while naming the extracted images. Because

C++ does not allow strings and integers to concatenate directly.

Video stream is split into frames for face detection end extraction. OpenCV’s

“CvCapture” class is used to get frames from stream:

CvCapture* capture = cvCaptureFromFile("buffy_s5_e2.mp4");

A function named “skipNFrames” is defined to realize the first performance

solution:

IplImage* skipNFrames(CvCapture* capture, int n)

{

 for(int i = 0; i < n; ++i)

 if(cvQueryFrame(capture) == NULL)

 return NULL;

 return cvQueryFrame(capture);

}

In “main” function the results of “skipNFrames” function is processed in a while

loop:

captureFrame = skipNFrames(capture, 12);

while(!captureFrame.empty())

{

 detectFaces(captureFrame,i);

 captureFrame = skipNFrames(capture, 12);

 cout << "frame :"+IntToStr(i) << endl;

 i++;

}

As it can be seen in the code, the face detecting and extracting process is done in

main function. The function is described below and the code can be seen in APPENDIX

A:

34

Define variables;

Get the current time as “start_time”;

Generate a “CascadeClassifier”;

Load "haarcascade_frontalface_alt.xml" and train the classifier;

Generate path for storing images;

Generate “CvCapture” for capturing frames from video file;

Use “skipNFrames” function to get a frame from video stream;

While captured frame is not empty

{

 Convert captured frame to greyscale;

 Equalize histogram of greyscale frame;

 Detect faces on equalized frame and store to “faces” vector with “detectMultiScale” function;

 Write original image to disk;

 If there is detected face(s)

 {

 For each element of “faces” vector

 {

 Draw rectangle for face area on frame;

 Write face area as separate file to disk;

 }

 Write original frame with rectangles to disk;

 }

 Capture next frame;

}

Get current time and subtract start_time to calculate processing time;

 “Haar Cascade Frontalface” library is used to detect faces. All detected faces are

saved as separate files with fixed to 112x92 size. On the processed frame all detected

face regions are marked with a rectangle and saved as a separate file. The

“detect_faces_struct” structure is used to get return information of “detectFaces”

function. “detect_faces_struct” is declared as follows:

struct detect_faces_struct

{

 Mat frame;

35

 std::vector<Rect> faces;

 bool is_detected;

 detect_faces_struct(): is_detected(false) {}

};

Figure 19 Detected Faces

In Figure 19 it is shown that how “detectFaces” function finds and marks the face

areas on frames. Detected and extracted face regions are saved in grayscale format as

seen Figure 20.

Figure 20 Extracted Faces

5.2.3 Comparison Of Detecting Performance Of Systems

The presented code in previous section is executed in three different systems: x86

system, arm based (Pandaboard), and arm based (BeagleBone Black).

36

Since detection and extraction process need huge amount of memory, the memory

of BeagleBone Black was not large enough. A usb flash drive is attached to the

BeagleBone Black to overcome the memory problem. This solution caused another

problem. BeagleBone Black was able to compile the code of first experiment on usb

flash drive, but it was not able to execute the program. Since the usb flash drive is

formatted as non-linux format FAT32, the file permission for execute is not allowed.

Another solution is added by copying the code to BeagleBone Black’s home directory

and generating the image processing outputs to usb flash drive. Of course the TV Series

is accessed from usb flash drive. This is because there is not free disk space on

BeagleBone Black even for the video file. The code is updated accordingly.

The PC system’s configuration as follows:

1. Windows 7 Professional 64 bit operating system

2. Intel® Core™ i5-2520M CPU @ 2.50GHz

3. 4 GB of ram

4. 160 GB of disk

5. Intel® HD Graphics 3000

Since Pandaboard and BeagleBone Black configurations are described in relevant

sections, they will not be mentioned again.

Metrics
Intel Arm-Pandaboard Arm-BeagleBone Black

Time For Detection

Process(seconds)
1789 9960 15000

Frames Captured

From Video
4658 4658 4658

Face-Found Frames 3020 3020 2990

Detected Faces From

All Captured Frames
3989 3997 3970

Table 1 Face Detection Results

In Table 1, the performance evaluations of Detection experiment are shown. The

intel machine has the most processing power so it surpasses the embedded systems as

37

expected. Of course Pandaboard is at the second place, because it has more processing

power than BeagleBone Black.

In Detection experiment BeagleBone Black had a disadvantage because of the

insufficient memory space for the video that will be extracted and for the output files of

the experiment. Therefore, these processes(reading the video file and saving the output

files) are done on an external usb flash drive. Reading and writing speed of usb flash

drive is lower than an internal memory. Without this drawback it is expected from

BeagleBone Black to finish the experiment in %20-25 percent later than Pandaboard

which means if Pandaboard finishes the experiment in 9960 seconds, BeagleBone Black

should finish the experiment in about 12000 seconds, but it is ended up with 15000

which is about %34 more than Pandaboard, due to the low speed of usb flash drive.

Since the same video processed in all systems, the extracted frame counts are the

same, 4658.

When it comes to the number of detected faces, the systems show some

difference. This difference arises from false detections and misses, and OpenCV library

versions differences.

5.3 EXPERIMENT 2 - FACE RECOGNITION

In Recognition experiment, performances of face recognition algorithms and

systems are compared. So the three algorithms are executed on two different datasets

one by one, and for each system this process is repeated. 18 measurements are gained.

Eigenfaces, Fisherfaces, and LBPH algorithms in OpenCV library need a training

dataset for recognizing. 1582 images are split into two datasets, one for training set,

other for test set. The dataset split into train and test sets in two different ways, this

makes experiment with two steps.

38

Figure 21 Flow Diagram of Recognition Experiment

The necessary library files for OpenCV functions are included as follows:

#include "opencv2/core/core.hpp"

#include "opencv2/contrib/contrib.hpp"

#include "opencv2/highgui/highgui.hpp"

The main structure of face recognition program consists of the paths of training

files and their class labels are presented in two different vectors and these two vectors

are passed to training method. When training is finished, the faces in the test set are sent

to recognition method.

predict the class of

test image and store

it to a file

start

read faces from

test class

finish

read train set

train the recognition class

true false

39

The two vectors for paths of training images and labels of training labels are

defined as follows:

vector<Mat> images;

vector<int> labels;

“Mat” is a special OpenCV structure for storing images and necessary

information. Since the size of training set is not fixed for different runs, defining the

image array as “vector” enables to extend the size. And of course, the true labels are

needed for training the recognizer. Buffy is labeled as class “0”, Michelle is labeled as

class “1” and Nicholas is labeled as class “2”.

As it can be seen in the code below, a “FaceRecognizer” class is generated with

“createEigenFaceRecognizer” for recognition using Eigenfaces algorithm.

Ptr<FaceRecognizer> model = createEigenFaceRecognizer();

model->train(images, labels);

In face recognition experiment only this part of the code needs to be changed for

three different algorithms. Next two algorithms’ codes are below:

Fisherface:

Ptr<FaceRecognizer> model = createFisherFaceRecognizer();

 model->train(images, labels);

LBPH:

Ptr<FaceRecognizer> model = createLBPHFaceRecognizer();

model->train(images, labels);

After training part is done, face recognition process is started. The code explained

below shows the steps of face recognition process for one character, in this case Buffy.

“predictedLabel” and “testLabel” is used to store if the recognition is correct or

false, in a text file. “predictedLabel” is the answer of previously trained system and

“testLabel” is the true class. “line” is used to hold the result string which will be stored

in the result file. “myfile” is the file stream for the result file.

40

int predictedLabel;

Mat testSample;

int testLabel;

string line;

ofstream myfile;

The code below is an example of predicting(recognizing) Buffy. First the “buffy”

filestream is defined to read the paths of face images of buffy from

“dataset1\\buffy\\buffy.txt”.

//predict buffy

cout << "Predicting buffy." << endl;

std::ifstream buffy("dataset2\\buffy\\buffy.txt", ifstream::in);

if (!buffy)

string error_message = "No valid input file was given, please check the given filename.";

 myfile.open ("buffy_results2_fisherfaces.txt");

 testLabel = 0;

The “while” loop below reads every test file of Buffy and sends the image to

recognition system. Then the recognition result(predicted class), actual class, and the

path of image is stored in result file.

while (getline(buffy, line))

{

 testSample = imread(line, 0);

 predictedLabel = model->predict(testSample);

 string result_message = format(";Predicted class = %d ; Actual class = %d", predictedLabel,

testLabel);

 myfile << line << result_message << endl;

}

41

The code explained above is executed for three algorithms on three different

systems with two different data sets. All results are stored in text files, and then these

text files are used to evaluate the results.

5.3.1 DATA SETS

In the Single Track Recognition experiment, one face track from each three

characters is selected. In a scene of a video, a consecutive faces of one character are

called a face track. The selected face tracks of the characters Buffy, Michelle, and

Nicholas are shown in Figure 22, Figure 23, and Figure 24 below respectively:

Figure 22 Buffy Face Track

42

Figure 23 Michelle Face Track

Figure 24 Nicholas Face Track

In Single Track Recognition step Buffy has 14 images, Michelle has 18 images

and Nicholas has 13 images in train set. All 45 of these images are used for training step

and the rest is used for testing.

43

The Multi Track Recognition step is different than the Single Track Recognition

step. 60% of the whole images are selected uniformly for training and 40% is left for

testing. Uniformly means it is aimed to pick train images from nearly every face track.

For training set, 451 images of Buffy, 375 images of Michelle, and 123 images of

Nicholas are selected. This makes total 949 images for training and the rest for testing.

5.3.2 COMPARISON OF FACE RECOGNITION PERFORMANCES

 Single Track Multi Track

Characters Train(# of face

images)

Test(# of face

images)

Train(# of face

images)

Test(# of face

images)

Buffy 14 739 451 302

Michelle 18 606 375 249

Nicholas 13 192 123 82

TOTAL 45 1537 949 633

Table 2 Distribution of Datasets

As it can be seen from the Table 2, the difference of Single Track Recognition and

Multi Track Recognition, enables us to learn the impact of number and characteristics of

elements for training.

Using one face track for training shows the effect of lighting conditions. This is

because in one face track, the illumination does not change too much, since all images

are under the same illumination but when the scene is changed, the illumination differs

drastically, even human eyes have trouble for recognition.

Methods

Intel (seconds) Arm-BeagleBone Black

(seconds)

Arm-Pandaboard

(seconds)

Eigenfaces 1.91 30.65 22.11

Fisherfaces 5.96 8.3 3.88

LBPH 55.02 136.52 58.36

Table 3 Single Track Recognition Experiment Time Durations

44

First, the time durations of Recognition experiment is presented in Table 3 above.

In Table 3, it is clearly seen that Fisherfaces algorithm has a superior timing

performance in Single Track Recognition experiment. As it is expected intel-based

system has a global superiority about timing to arm-based systems. It is because the

Intel processor has more capacity since arm processor are designed for mobile devices

and for consuming minimum energy. If there is a gain from energy, this means there is a

loss from performance. In order to improve performance of embedded systems, some

solutions should be applied appropriate for embedded system specifications. For

example, Pandaboard’s cpu has 2 cores, so this can be used to speed up the processing.

However, this solution does not work for BeagleBone Black, since it does not have 2

cores inside its cpu.

Methods

Intel

(seconds)

Arm-BeagleBone Black

(seconds)

Arm-Pandaboard

(seconds)

Eigenfaces 432.08 3600 2128.78

Fisherfaces 549.84 3360 1836

LBPH 143.61 907.02 370.87

Table 4 Multi Track Recognition Experiment Time Durations

In Table 4, the performance sequence changes, since the dataset is changed. This

shows how the dataset affects the performance of algorithm. In general view the amount

of the training set has negative effect on performance. All the algorithms are effected

from training set size change according to algorithm characteristics. This situation gives

some clues for selecting the proper algorithm for a certain problem or project.

Methods Intel Arm-BeagleBone Black Arm-Pandaboard

Eigenfaces 226.22 117.46 95.28

Fisherfaces 92.25 404.82 473.2

LBPH 2.6 6.64 6.35

Table 5 Effect Ratio of Timing Performance(Multi Track / Single Track)

45

In Table 5, the time results of all three algorithms in Single Track and Multi Track

experiments from Table 3 and Table 4 are compared. The value of Table 4 is divided

with the value of Table 3. It can be seen from the Table 5, the most robust algorithm is

LBPH algorithm. Since Eigenfaces and Fisherfaces algorithms’ performances change by

92 to 473 times, LBPH algorithm’s performance changes only 2.6 to 6.64 times.

Methods True Answers False Answers Hit Ratio (%)

Eigenfaces 509 1028 33

Fisherfaces 519 1018 34

LBPH 679 858 44

Table 6 Accuracy Results of Single Track Recognition Experiment

In Table 6, accuracy measurements of the Single Track Recognition Experiment is

shown. It can be indicated that LBPH algorithm is superior to other methods. LBPH

algorithm has gained %10 more accuracy than other algorithms. Since there are three

different classes (three different persons), the accuracy level about %33 is like random

guessing. This level of accuracy is not acceptable. There should be some improvements

more than random guessing if some special algorithms are implemented. The failure of

the algorithms in Single Track Recognition experiment is not due to their inadequacy,

but they should be implemented in an appropriate way in which the algorithm works

better. This means that the experiment environment should be adjusted according to the

algorithms’ needs, where the algorithm can run more efficiently. It can be figured out

that while implementing an algorithm, all the needs of the algorithm should be fulfilled.

After that it can run better and give more healthy results for what it is intended to.

Another result that can be derived from Table 6 is that the illumination variance

has a huge negative effect on recognition success of all selected three algorithms. This is

because selecting one face track for training is not sufficient. In a face track the

illumination of the scene does not change so much. So the algorithm is trained only for

one illumination condition and when illumination changes, the algorithm fails to

46

recognize the face correctly. Even human eyes has troubles while recognizing faces in

different illumination conditions.

Methods True Answers False Answers Hit Ratio (%)

Eigenfaces 586 47 93

Fisherfaces 540 93 85

LBPH 594 39 94

Table 7 Accuracy Results of Experiment II Step 2

In Table 7, accuracy results of Multi Track Recognition experiment are shown.

While selecting training sets, it is considered that the set should have members from

nearly all face tracks. With this in mind, the illumination variance effect could be

reduced. Because every scene has different characteristics, having members from all

scenes is helpful to face recognition algorithm for learning different light conditions,

and how the face looks like in those illumination conditions. It is like human vision, if a

person is seen once(one face track), recognizing that face is hard, but if that person is

seen many times in many different places, it is easy to recognize even in very hard

situations like darkness or one way light source.

In Multi Track Recognition experiment, LBPH surpasses other two algorithms,

both in time performance and accuracy rate. Of course, all three algorithms gained very

high accuracy. This is because the training set enables the algorithms to learn the

classes(characters) very well in detail.

In problems that can provide a training set these algorithms are very handy.

Especially LBPH has a superior performance than other two algorithms.

5.4 FUTURE WORK

Eigenfaces, Fisherfaces and LBPH methods require a training class for face

recognition. In real world applications many times using a training set is not feasible, if

the system should be used on many different image sources. Training set makes system

slower and needs more storage place. Because of this, using unsupervised classification

47

could help improve this limitations. Image clustering is an alternative solution for face

recognition systems which are faced with faces that are not in the training set.

Clustering also needs some methods to be able to use the features of images. Different

feature extraction methods can be implemented and different clustering methods can be

used on the image feature database.

Timing results of algorithms should be increased. This can be done using

multithreading and parallel processing techniques. BeagleBone Black has single core so

implementing parallel processing on it, is not feasible, but multithreading can be applied

to all three different systems. Pandaborad has A9 cortex, which means it has two cores.

These cores enable both multithreading and parallel processing. This feature enables

Pandaboard to be more appropriate for solutions with multithreading and parallel

processing.

48

CHAPTER 6

CONCLUSION

In this thesis, face recognition is studied both how different algorithms

demonstrate performance and how different system architectures affect performance.

The main aim of this thesis is to investigate the face recognition algorithms on

embedded systems. Therefore, one intel based PC system and two arm based embedded

systems are used. The intel based PC system is selected as a control class, if the

performance metrics of embedded systems are low or high when compared to intel

based PC system’s performance metrics.

Three different algorithms are selected to expose the effects of algorithms on face

recognition systems since the face recognition has been searched on embedded systems

in this thesis.

When all the results of Detection and Recognition experiments are considered,

some inferences can be exposed.

In the Detection experiment, it is proved how the system’s architecture and

capacity affects the performance. There is a negative effect of embedded architecture on

timing performance, in both Detection and Recognition experiments. As it can be seen

in “Table 1 Face Detection Results” even the Pandaboard which is among high

performance embedded systems, has shown performance about 4 times slower than the

intel based PC system. Thus, there are urgent challenges in face detection on embedded

systems to be improved.

In the Recognition experiment, there are two steps, which are also different

experiments actually. Since their scopes are the same, they are both put in one

experiment as two steps. The difference of the two steps is the training and test datasets.

In Single Track step, one face track is selected as train set for each character. This

makes the train set 2.8% of the dataset when three characters’ train sets are calculated.

This makes the system not to be trained very well for the whole dataset. In fact, there

are three different faces’ examples in the train set, which brings to mind that it should be

49

enough to recognize. This is not true at all. Because using one track does not take the

illumination effect into consideration. In one track the illumination does not change at

all, besides the face does not move too much. So the algorithm cannot train itself

enough. That’s why the algorithms could not show good performance, even close to

random selection.

In Multi Track Recognition step, the success rate of the three algorithms can be

seen as required(85%, 93%, and 94%). This is because there is enough member in

training set for both challenges, illumination and pose. In Multi Track step, the train set

is chosen as it will be 60% of the whole dataset. The images are chosen homogenous.

This allows algorithms to be able to learn the faces for different illumination conditions

and different poses.

In conclusion, face recognition is at an acceptable level for some algorithms such

as LBPH. However, face detection process requires some improvements which is

subject for further research.

50

CHAPTER 7

REFERENCES

[1] Wikipedia, Online, Available:

http://en.wikipedia.org/wiki/Facial_recognition_system, 12.12.2013

[2] Topcoder, Online, Available: http://www.topcoder.com/blog/about-face-how-

will-innovators-use-facial-recognition-technology/, 15.12.2013

[3] V. Paul and M. J. Jones, «Robust real-time face detection,» International

journal of computer vision, pp. 137-154, 2004.

[4] Pham-Ngoc, Phuong-Trinh, and K.-H. Jo, «Color-based face detection using

combination of modified local binary patterns and embedded hidden markov

models,» SICE-ICASE, 2006. International Joint Conference. IEEE, 2006.

[5] A. F. Abate, M. Nappi, D. Riccio, and G. Sabatino, «2D and 3D face

recognition: A survey,» Pattern Recognition Letters, volume 28, no. 14, pp.

1885-1906, 2007.

[6] M. A. Turk and A. P. Pentland, «Face recognition using eigenfaces,» Computer

Vision and Pattern Recognition, 1991.

[7] P. Belhumeur, J. Hespanha, and D. Kriegman, «Eigenfaces vs. Fisherfaces:

recognition using class specific linear projection,» Pattern Analysis and

Machine Intelligence, IEEE Transactions, volume 19, no. 7, pp. 711 - 720, 1997.

[8] O. Yamaguchi and K. Fukui, «Smartface-A Robust Face Recognition System

under Varying Facial Pose and Expression,» The trans. of the Institute of

Electronics, Information and Communication Engineers D-II, volume E86-D,

no. 1, pp. 1045-1052, 2001.

[9] Aby P.K, Jose A.., Jose B., Dinu L.D, J. John, and Sabarinath G,

«Implementation and Optimization of Embedded Face Detection System,»

Proceedings of 2011 International Conference on Signal Processing,

Communication, Computing and Networking Technologies, 2011.

[10] Bigdeli A., Sim C., Biglari-Ahbari M,. and Lovell B.C., «Face Detection on

Embedded Systems,» Embedded Software and Systems Lecture Notes in

51

Computer Science, volume 4523, pp. 295-308, 2007.

[11] N. Aaraj, P. U. N. Dept. of Electr. Eng., S. Ravi, S. Raghunathan ve N. Jha,

«Architectures for Efficient Face Authentication in Embedded Systems,» %1

içinde Design, Automation and Test in Europe, 2006.

[12] M. Sharkas, M. Abou Elenien, “Eigenfaces vs. Fisherfaces vs. ICA for Face

Recognition; A Comparative Study,” 9th International Conference on Signal

Processing, 2008, ICSP 2008., 2008, pp. 914–919

[13] P. N. Belhumeour, J. P. Hespanha, and D. J. Kriegman, “Eigenface vs.

Fisherfaces: Recognition Using Class Specific Linear Projection”, IEEE Trans.

on PAMI, 19(7), pp. 71 I-720, 1997

[14] T. Ojala, M. Pietikäinen, and D. Harwood (1994), "Performance evaluation of

texture measures with classification based on Kullback discrimination of

distributions", Proceedings of the 12th IAPR International Conference on

Pattern Recognition (ICPR 1994), vol. 1, pp. 582 – 585

[15] D. Huang , C. Shan , M. Ardabilian , Y. Wang and L. Chen "Local binary

patterns and its application to facial image analysis: A survey", IEEE Trans.

Syst., Man, Cybern., C, vol. 41, pp.765 -781 2011

[16] OpenCV, Online, Available:

http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html#eigenf

aces, 20.12.2014

[17] Eyalarubas, Online, Available: http://eyalarubas.com/face-detection-and-

recognition.html, 20.12.2014

[18] T. Ojala, M. Pietikäinen, and T. Maenpaa, “Multiresolution gray-scale and

rotation invariant texture classification with local binary patterns,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002.

[19] [6] H. Yang and Y. Wang, “A LBP-based face recognition method with

Hamming distance constraint,” in Proc. Int. Conf. Image Graph., Aug., 2007, pp.

645–649.

[20] BeagleBoard, Online, Available: http://beagleboard.org/BLACK, 21.12.2014

[21] Elinux, Online, Available: http://elinux.org/Beagleboard:BeagleBoneBlack,

52

21.12.2014

[22] Pandaboard, Online, Available: http://pandaboard.org/, 21.12.2014

[23] Omappedia, Online, Available: http://omappedia.org/wiki/Main_Page,

21.12.2014

[24] Do Van Quyen Online, Available:

https://dovanquyen.wordpress.com/2012/12/11/installing-opencv-on-arm-board/,

21.12.2014

[25] OpenCV, Online, Available: http://opencv.org/downloads.html, 22.08.2014

[26] F. Samaria and A.C. Harter, “Parameterisation of a stochastic model for human

face identification,” Proc. Second IEEE Workshop Applications of Computer

Vision, 1994.

[27] S. Tamura, H. Kawa, and H. Mitsumoto, “Male/Female identification from 8_6

very low resolution face images by neural network,” Pattern Recognition, vol.

29, pp. 331-335, 1996.

53

APPENDIX A

CODE OF DETECING FACES

int main(int argc, const char** argv)

{

 int i = 0, count = 0;

 detect_faces_struct detected_faces;

 Mat captureFrame;

 Mat* point_mat;

 string path;

///

 //get date for result file names

 time_t rawtime;

 struct tm * timeinfo;

 char buffer[80];

 time (&rawtime);

 timeinfo = localtime (&rawtime);

 strftime(buffer,80,"%Y-%m-%d",timeinfo);

 std::string date_str(buffer);

///

 //open file for results

 ofstream myfile;

 myfile.open ("results_face_detect.txt");

 clock_t lbph_Start = clock();

 //setup image files used in the capture process

 Mat grayscaleFrame;

 Mat face;

 //create the cascade classifier object used for the face detection

 CascadeClassifier face_cascade;

 //use the haarcascade_frontalface_alt.xml library

 face_cascade.load("haarcascade_frontalface_alt.xml");

54

 //create a vector array to store the face found

 std::vector<Rect> faces;

 path = "imagesmain";

 mkdir(path.c_str());

 //create a loop to capture and find faces

 CvCapture* capture = cvCaptureFromFile("buffy_s5_e2.mp4");

 captureFrame = skipNFrames(capture, 12);

 while(!captureFrame.empty())

 {

 //convert captured image to gray scale and equalize

 cvtColor(captureFrame,grayscaleFrame,CV_BGR2GRAY);

 equalizeHist(grayscaleFrame,grayscaleFrame);

 //find faces and store them in the vector array

 face_cascade.detectMultiScale(grayscaleFrame, faces, 1.1, 3,

CV_HAAR_SCALE_IMAGE, Size(40,40));

 imwrite(path+"/frame_"+IntToStr(i)+"_orj.jpg", captureFrame);

 if(0 < faces.size())

 {

 //draw rectangle for all found faces in the vector array on the original image

 for(int i_face = 0; i_face < faces.size(); i_face++)

 {

 Point pt1(faces[i_face].x + faces[i_face].width, faces[i_face].y +

faces[i_face].height);

 Point pt2(faces[i_face].x, faces[i_face].y);

 rectangle(captureFrame,pt1,pt2, cvScalar(0,255,0,0),1,8,0);

 putText(captureFrame, IntToStr(i_face), pt1,

FONT_HERSHEY_COMPLEX_SMALL, 0.8, cvScalar(200,200,250), 1, CV_AA);

 //extract face

 Rect ROI (faces[i_face].x, faces[i_face].y, faces[i_face].width,

55

faces[i_face].height);

 Mat imageROI = grayscaleFrame(ROI);

 //resize image to 92*112

 resize(imageROI, imageROI, Size(92, 112), 0, 0, INTER_CUBIC);

 //write image to folder

 imwrite(path+"/frame_" + IntToStr(i) + "_face_" + IntToStr(i_face) +

".bmp", imageROI);

 }

 imwrite(path+"/frame_"+IntToStr(i)+"_rect.jpg", captureFrame);

 }

 //detectFaces(captureFrame,i);

 if(i % 100 == 0) cout << "main() frame :"+IntToStr(i) << endl;

 captureFrame = skipNFrames(capture, 12);

 i++;

 }

 myfile << "Time taken for face detecting : " << (double)(clock() -

lbph_Start)/CLOCKS_PER_SEC;

 cout << "Time taken for face detecting : " << (double)(clock() -

lbph_Start)/CLOCKS_PER_SEC;

 myfile.close();

 system("PAUSE");

 return 0;

}

