
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�STANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY 

IDENTIFICATION AND CHARACTERIZATION  
OF CHICKEN NEURONAL P80 KATANIN 

M.Sc. Thesis  by 
Ay�egül YILDIZ, B.Sc. 

 

Department: Advanced Technologies in Engineering 

Programme: Molecular Biology-Genetics  and Biotechnology 

 

Supervisor : Assoc. Prof. Dr. Arzu KARABAY KORKMAZ 

 

JUNE 2006 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�STANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY 

IDENTIFICATION AND CHARACTERIZATION  
OF CHICKEN NEURONAL P80 KATANIN 

M.Sc. Thesis  by 
Ay�egül YILDIZ, B.Sc. 

(521031203) 
 

Department: Advanced Technologies in Engineering 

Programme: Molecular Biology-Genetics  and Biotechnology 

 

Supervisor : Assoc. Prof. Dr. Arzu KARABAY KORKMAZ 

 

JUNE 2006 



 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

�STANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY 
 

M.Sc. Thesis  by 
Ay�egül YILDIZ, B.Sc. 

(521031203) 

 

Supervisor: Assoc. Prof. Dr. Arzu KARABAY KORKMAZ 

Members of the Examining Committee: Assoc. Prof. Dr. Hakan GÜRV�T (�.Ü.) 

 Assist. Prof. Dr. Eda TAH�R TURANLI  (�.T.Ü.) 

  

 

JUNE 2006 

 

IDENTIFICATION AND CHARACTERIZATION  
OF CHICKEN NEURONAL P80 KATANIN 

Date of submission: 8 May 2006 

Date of defence examination: 8 June 2006 



  

 
 

İSTANBUL TEKNİK ÜNİVERSİTESİ ���� FEN BİLİMLERİ ENSTİTÜSÜ 

TAVUK NÖRONAL P80 KATANİNİN TANIMLANMASI 
VE KARAKTERİZASYONU 

 

YÜKSEK LİSANS TEZİ 
Ayşegül YILDIZ, B.Sc. 

(521031203) 

HAZİRAN 2006 
 

Tezin Enstitüye Verildiği Tarih :    8 Mayıs 2006 
Tezin Savunulduğu Tarih :    8 Haziran 2006 

 

      Tez Danışmanı: Doç. Dr. Arzu KARABAY KORKMAZ 

Diğer Jüri Üyeleri: Doç. Dr. Hakan Gürvit (İ.Ü.) 

 Yar. Doç. Dr. Eda TAHİR TURANLI (İ.T.Ü.) 

  

  

 



 ii

ACKNOWLEDGEMENTS 

I would like to thank my advisor, Assoc.Prof.Dr.Arzu Karabay-Korkmaz for guiding 
and supporting me and also for sharing her invaluable experiences with me during 
my studies. 

I want to thank Şirin Korulu and Ayşegül Dilsizoğlu for their valuable friendship and 
also for their helps.  

I would also like to acknowledge the funding agencies. This study was supported by 
TUBİTAK and Turkish State Planning Organization (Molecular Biology – Genetics 
and Biotechnology Program as part of Advanced Technologies in Engineering 
Program). 

I also want to thank Mustafa Kolukırık for his motivation and morale support all the 
time. 

Finally, I would like to thank my family for supporting and encouraging me 
throughout my life.  

 
June, 2006                                                                                            Ayşegül YILDIZ 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iii

TABLE OF CONTENTS 

 

ABBREVATIONS    v 
LIST OF TABLES  vi 
LIST OF FIGURES                                                                                                  vii   
LIST OF SYMBOLES    ix 
SUMMARY    x 
ÖZET   xi 
 
1. INTRODUCTION  1 
    1.1. Cytoskeleton    1 
    1.2. Microtubule                                                                        2 
        1.2.1. Structure and dynamics of microtubules    2 
        1.2.2. Microtubule functions    4 
    1.3. Katanin                                                                                             7 
        1.3.1. Structure and functions of katanin                                                               7 
        1.3.2. Katanin subunits                                                                                       11 
    1.4. Aim of the Study                                                                                            13 
 
2. MATERIALS AND METHODS                                                                  15 
    2.1. Materials   15 
         2.1.1. Equipments                                                       15 
         2.1.2. Chemicals                                                                                                   16 
         2.1.3. Enzymes and buffers                                                                                  16 
         2.1.4. Kits                                                                                                             17 
         2.1.5. Buffers and solutions                                                                                 17 
         2.1.6. Bacterial strains                                                                                         17 
         2.1.7. Bacterial culture media                                                                             17 
         2.1.8. T/A Cloning vector                                                                                   18 
         2.1.9. pEGFP-N1 expression vector                                                                   19 
    2.2. Methods                                                                                                            20 
         2.2.1. Brain dissection                                                                                       20 
         2.2.2. RNA isolation from brain tissue                                                         21 
         2.2.3. Denaturing RNA formaldehyde gel                                                      22 
         2.2.4. Determination of purity and integrity of RNA                                    23 
         2.2.5. cDNA synthesis                                                                                    24 
         2.2.6. Determination of the integrity of cDNA                                               26 
         2.2.7. Agarose gel electrophoresis                                                                  26 
         2.2.8. Primer design                                                                                        27 
         2.2.9. PCR cloning                                                                                           28 
         2.2.10. Determination of nucleic acid concentraiton                                      30 
         2.2.11. DNA fragment isolation from agarose                                               30 
         2.2.12. Preparation of chemically competent cells (calcium chloride method)   31 

 



 iv 

         2.2.13. T/A cloning                                                                                             32 
                  2.2.13.1. Ligation for T/A cloning                                                             33 
                  2.2.13.2. Transformation for T/A cloning 33 
                  2.2.13.3. Colony PCR for T/A cloning 34 
         2.2.14. Plasmid DNA preparation (small scale)                 35 
         2.2.15. DNA sequencing                                                                                      37 
         2.2.16. Sequence PCR purification                                                                      38 
         2.2.17. Sequence alignments                                                                               38 
         2.2.18. Subcloning of p80-katanin into pDSRed2-N1 expression vector           39 
                  2.2.18.1. DNA cleavage with restriction endonucleases for  
                         pDSRed2-N1 vector                                                                            39 
                  2.2.18.2. Ligation                                                                                        40 
                  2.2.18.3. Transformation                                                                            41 
                  2.2.18.4. Colony PCR                                                                               41 
         2.2.19. Subcloning of p80-katanin into pEGFP-N1 expression vector            42 
                  2.2.19.1. Restriction reaction for pEGFP-N1 vector                              42 
                  2.2.19.2. Ligation                                                                                   43 
                  2.2.19.3. Transformation                                                                        44 
                  2.2.19.4. Colony PCR                                                                                 44 
 
3. RESULTS                                                                     46 
    3.1. RNA Isolation From Chicken Brain                                                            46 
    3.2. cDNA Synthesis From Isolated RNA   47 
    3.3. PCR Cloning of Katanin p80 Subunit  48 
    3.4. DNA Sequencing                                                                   49 
    3.5. Subcloning of p80 into pEGFP-N1 Fluorescent Expression Vector           51 
 
4. DISCUSSION  56 
    4.1. RNA Isolation  56 
    4.2. PCR Optimization                                                     58 
    4.3. Restriction-Digestion Reactions                                                                    61 
 
5. CONCLUSIONS                                                                                                    62 
 
REFERENCES                                                                                                           63 
 
RESUME                                                                                                                    66   
 



 v 

ABBREVIATIONS 

AAA : ATPases Associated with various cellular Activities 
ADP : Adenosine Diphosphate 
ATP : Adenosine Triphospahe 
BLAST : Basic Local Alignment Search Tool 
cDNA : Complementary Deoxyribonucleic Acid 
CMV : Cytomegalovirus 
DEPC : Diethyl Pyrocarbonate 
dNTP : Deoxyribonucleotide Triphosphate 
EDTA : Ethylenediaminetetraacetic Acid 
EtBr : Ethidium Bromide 
GC : Guanine Cytosine 
gDNA : Genomic Deoxyribonucleic Acid 
GFP . Green Fluorescent Protein 
GTP : Guanosine Triphospahte 
HSV TK : Herpes Simplex Virus Thymidine Kinase 
IPTG : Isopropyl-b D- thiogalactopyranoside 
LB media : Luria Bertani Media 
MAP : Microtubule Associated Protein 
MCS . Multiple Cloning Site 
mRNA . Messenger Ribonucleic Acid 
OD : Optical Density 
PCR : Polymerase Chain Reaction 
PEG : Polyethylene Glycol 
RNase : Ribonuclease 
RT-PCR : Reverse Transcriptase Polymerase Chain Reaction 
SOC : Super Optimal Catabolite Repression Broth 
SV40 : Simian Virus 40 
TAE : Tris Acetate EDTA 
TBS : Tris Buffered Saline 

 



 vi 

 LIST OF TABLES 

  Page No. 
Table 2.1. Equipments 15 
Table 2.2. Chemicals 16 
Table 2.3. Enzymes and buffers 16 
Table 2.4. Kits 17 
Table 2.5. Buffers and solutions 17 
Table 2.6. Stock and working solution of antibiotics 18 
Table 2.7. Compounds of control PCR reaction 23 
Table 2.8. Control PCR conditions 24 
Table 2.9. cDNA synthesis reaction mixture contents 25 
Table 2.10. cDNA synthesis reaction mixture contents 

(continued) 
25 

Table 2.11. PCR Primer Pairs 28 
Table 2.12. Compounds of PCR reaction for p80 cloning    29 
Table 2.13. PCR reaction conditions for p80 cloning 29 
Table 2.14. CaCl2 solution 32 
Table 2.15. Compounds of ligation reaction for T/A 

cloning 
33 

Table 2.16. Contents of colony PCR reaction for T/A 
cloning 

34 

Table 2.17. Colony PCR conditions for T/A cloning 35 
Table 2.18. Contents of DNA sequencing PCR reaction 37 
Table 2.19. Sequencing PCR conditions 38 
Table 2.20. Restriction reaction mixture 40 
Table 2.21. Ligation reaction mixture 40 
Table 2.22. Colony PCR reaction mixture 41 
Table 2.23. Colony PCR conditions 42 
Table 2.24. Restriction reaction mixture for Sma I 43 
Table2.25. Restriction reaction mixture for Hind III 43 
Table 2.26. Ligation reaction mixture contents 43 
Table 2.27. Colony PCR reaction mixture 44 
Table 2.28. Colony PCR conditions 45 
Table 3.1. Chicken neuronal p80 katanin sequence 50 
Table 3.2. Amino acid sequence of chicken neuronal 

p80 katanin 
51 

 



 vii 

                               
LIST OF FIGURES  

Page No 
Figure 1.1       : Cytoskeletal structure in a typical cell...................................... 1 
Figure 1.2       : The structure of a microtubule and its subunit, tubulin  2 
Figure 1.3       : Polymerization of tubulin nucleated by �-tubulin ring  

complexes.................................................................................... 3 
Figure 1.4       : Dynamic instability as a result of the structural differences 

between a growing and a shrinking microtubule end .................. 4 
Figure 1.5 : Orientation of microtubules in a mitotic (A) and an interphase 

(B) cell........................................................................................... 5 
Figure 1.6       : Microtubule structure and orientation in neurons.................... 6 
Figure 1.7       : Model for microtubule severing by katanin ............................... 8 
Figure 1.8 : Correlation between katanin ATPase activity, katanin 

oligomerization and severing........................................................ 9 
Figure 1.9    : Microtubule reorganization and redistribution in neurons.......... 10 
Figure 1.10 : The ‘cut and run’ model for microtubule reconfiguration.......... 11 
Figure 1.11     : Rattus norvegicus p60-katanin amino acid sequence………….. 12 
Figure 1.12 : Rattus norvegicus p80-katanin amino acid sequence………….. 12 
Figure 2.1      : pTZ57R/T cloning vector map............................................... 19 
Figure 2.2      : pEGFP-N1 vector map and multiple cloning site....................... 20 
Figure 3.1      : Isolated 18S and 28S rRNA bands on denaturing agarose gel... 46 
Figure 3.2      : PCR was performed to check genomic DNA contamination   

using RNA as a template.............................................................. 47 
Figure 3.3      : Control PCR for sytnhesized cDNA........................................... 47 
Figure 3.4       : Cloned p80 katanin subunit was run on agarose gel. ................. 48 
Figure 3.5       : Colony PCR results were observed by agarose gel 

electrophoresis............................................................................. 
 

  49 
 

Figure 3.6       : Restriction map for Ptz57R/T-p80construct.............................. 51 
Figure 3.7 : Restriction map for pDsRed2-N1 vector................................... 52 
Figure 3.8       :Restriction-digestion of DsRed2N1 vector and pTZ57RT-p80 

construct....................................................................................... 52 
Figure 3.9       :Transfomation colonies were checked by colony PCR for the 

presence of p80-DsRED2-N1 construct....................................... 53 
Figure 3.10      :Restriction map for pDsRed2-N1-p80 construct........................ 53 
Figure 3.11     :Restriction map for pEGFP-N1 vector....................................... 54 
Figure 3.12     :Restriction mixtures that were run on agarose gel...................... 54 
Figure 3.13     :pEGFP-N1-p80 construct map.................................................... 54 
Figure 3.14     :Colony PCR results after transformation of  pEGFP-N1-p80 

construct........................................................................................  55 
Figure 4.1     :PCR product was run on agarose gel........................................... 56 



 viii

Figure 4.2     :Control PCR for gDNA contamination....................................... 57 
Figure 4.3    : Control PCR result by using RNA as a template after new 

RNA isolation...............................................................................  58 
Figure 4.4   :PCR result for complete coding sequnce of p80......................... 59 
Figure 4.5   : Touchdown PCR (62°C-60°C) results....................................... 60 
 



 ix 

LIST OF SYMBOLS 

bp : Base pair 
E-site : Exchangeable site 
kb : Kilobase 
kDa : Kilodalton 
MOPS : 3-(N-morpholino)propanesulfonic acid 
PIPES : 2-[4-(2-sulfoethyl)piperazin-1-yl]ethanesulfonic acid 
Tm : Melting Temperature 
Tris : Hydroxymethyl aminomethane 
UV : Ultraviolet 
X-Gal : 5-brom-4-chloro-3-indolyl-beta-D-galactopyranoside 

 



 x 

IDENTIFICATION AND CHARACTERIZATION OF CHICKEN               
NEURONAL P80 KATANIN  

SUMMARY 

Katanin is a heterodimeric protein that severes microtubules by hydrolyzing ATP.  
Katanin consists of 60 kDa and 80 kDa polypeptides. 60 kDa subunit (p60) has the 
enzymatic activity to break microtubules, whereas 80 kDa subunit (p80) has a role in 
localization of the protein complex in the cell. 

Katanin has been shown to have roles for microtubule severing in mitotic cells 
including release of microtubules from centrosome, depolymerization of microtubule 
minus ends in the mitotic spindle.  

In addition to having roles in mitotic cells, katanin is also important for some 
specialized cell types such as neurons. It is thought that katanin provides a source of 
non-centrosomal microtubules that are transported into developing axons and 
dendrites for structural support. 

Since katanin reorganizes microtubule arrays in neurons, it provides the cell 
developing and branching axons and dendrites. This feature of katanin, hence, may 
be utilized to regenerate injured neurons, if both subunits are better studied and well 
understood. p60 katanin has been paid more attention than p80, since it is the subunit 
that has the severing activity itself. Thus, the exact functions of p80 katanin remain 
to be solved. 

In this study, p80 katanin was cloned from Gallus gallus (chicken) brain cDNA and 
then it was transfected into NIH 3T3 cells in order to reveal possible functions of 
p80. 

In the next step of the study, p80 katanin will be transfected into cultured chicken 
embryo primary neurons so as to observe effects of p80 in neuronal cells. In addition 
to this, in situ hybridization will be performed with cryosections of chicken embryos 
to be able to visualize distribution of p80 katanin in the cells through different 
developmental stages of embryos. 
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TAVUK  NÖRONAL P80 KATAN�N�N TANIMLANMASI VE 
KARAKTER�ZASYONU  

ÖZET 

Katanin 60 kDa (p60) ve 80 kDa (p80) büyüklü�ünde iki alt üniteden olu�an ve ATP 
hidrolizleyerek mikrotübülleri parçalayan bir proteindir. p60 enzim aktivitesi ile 
mikrotübülleri keserken, p80 enzimin hücre içindeki lokalizasyonunda görevlidir.  

Mitotik hücrelerde kataninin, mikrotübüllerin sentrozomdan kesilerek serbest 
bırakılması, mikrotübül eksi uçlarının depolimerize edilmesiyle mitoz esnasında 
kromozomların kutuplara çekilmesi gibi hücre içi olaylarda görevli oldu�u 
dü�ünülmektedir.    

Mitotik hücrelerin yanısıra katanin nöronlar gibi bazı özelle�mi� hücreler için de 
oldukça önemlidir. Kataninin sinir hücrelerindeki fonksiyonu, sentrozomda bulunan 
mikrotübülleri keserek serbest bırakmaktır. Daha sonra bu mikrotübüller geli�mekte 
ve dallanmakta olan akson ve dendritlere ta�ınarak onlara yapısal destek 
sa�lamaktadır. 

Katanin nöronlardaki mikrotübül a�ının yeniden düzenlenmesini sa�layarak hücreye 
yeni akson ve dendritler kazandırdı�ından, kataninin bu özelli�inden hasar gören 
sinir hücrelerinin yenilenmesinde fayda sa�lanabilece�i dü�ünülmektedir. Bu da 
ancak iki alt ünitenin fonksiyonlarının da çok iyi bir �ekilde incelenmesi ve 
anla�ılmasıyla mümkün olabilecektir. �imdiye kadar p60 katanin, kendi ba�ına 
mikrotübülleri kesici özelli�e sahip olu�u nedeniyle yapılan çalı�malarda daha fazla 
yer almı�, bu yüzden p80 kataninin fonksiyonları net olarak açıklı�a 
kavu�turulamamı�tır.  

Bu çalı�mada, p80 katanin öncelikle dissekte edilen tavuk beyninden elde edilen 
cDNA dan klonlanmı� ve daha sonra p80’in muhtemel fonksiyonlarını olarak 
gözlemleyebilmek için ilk olarak kültür halindeki NIH 3T3 hücrelerine transfekte 
edilmi�tir.    

Çalı�manın ileri a�amalarında, p80 tavuk embriyosundan elde edilmi� kültür 
halindeki primer sinir hücrelerine de transfekte edilecek ve bu kez p80 fonksiyonları 
bu hücrelerde gözlemlenebilecektir. Bu çalı�manın yanısıra, tavuk embriyosundan 
kriyostatla alınan kesitlerde in situ hibridizasyon uygulanarak p80’in embriyoların 
farklı geli�im evrelerinde hücre içindeki da�ılımları izlenebilecektir. 
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1. INTRODUCTION 

1.1. Cytoskeleton 

Cells organize themselves to be correctly shaped and properly structured internally. 

They have to be able to rearrange their internal components as they grow, divide and 

adapt to changing environment. In eucaryotes, these functions are devoted to a very 

complex system called the “cytoskeleton”.  

 
Figure 1.1: Cytoskeletal structure in a typical cell (Alberts et al.,2002) 

Cytoskeleton pulls the chromosomes apart during mitosis and splits the dividing cell 

into two. It regulates the movement of entire  cells such as sperms and fibroblasts. In 

addition, it is responsible for the transport of organelles and  vesicles from one part 

of the cell to another. It also enables some specialized cells, such as neurons, to 

extend an axon and dendrites.  

Cytoskeleton consists of three major types of  protein filaments. These are 

microfilaments, intermediate filaments and microtubules. However, there are a lot of 

accessory proteins that hold these protein filaments together and link them to other 

cellular components. 

 



 2 

1.2. Microtubule  

1.2.1. Structure and Dynamics of Microtubules 

Microtubules are made of tubulin subunits. The tubulin subunit is a heterodimer that 

consists of two closely related globular proteins called �-tubulin and �-tubulin. A 

microtubule is a hollow cylindirical structure with an outer diameter of 25 nm, 

formed of 13 parallel protofilaments. Each protofilament is composed of alternating 

�-tubulin and �-tubulin molecules. 

 
Figure 1.2: The structure of a microtubule and its subunit, tubulin (Alberts et al.,   

2002) 

Microtubules are nucleated from �-tubulin ring complexes found within the 

pericentiolar region of the centrosomes. Microtubules are nucleated at the 

centrosome at their minus ends, so the plus ends point outward and grow toward the 

cell periphery. Microtubules always grow faster from one end than the other end.  
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Fast-growing end is called “plus end”, while slow-growing end is called “minus 

end”. Because of the intrinsic structural polarity of microtubules, �-tubulins are 

exposed at one end (minus end) and � –tubulins are exposed at the other end (plus 

end).  

 
Figure 1.3: Polymerization of tubulin nucleated by �-tubulin ring complexes 
(Alberts et al., 2002) 

Microtubules have a highly dynamic nature that is attributed to regulated growth and 

shrinkage of the polymer plus ends, a process known as “dynamic instability”. 

Dynamic instability results from GTP hydrolysis by tubulin; a cap of GTP-containing 

tubulin subunits at the microtubule end stabilizes the lattice, but exposure of tubulin-

GDP at ends destabilizes the polymer (Caplow and Shanks, 1996; Desai and 

Mitchison, 1997). 

Dynamic instability is based on hydrolysis of GTP at nucleotide exchangeable site (E 

site) of � –tubulin. GTP hydrolysis at E site produces non-exchangeable GDP and 

makes microtubule end unstable that causes depolymerization of the polymer (Heald 

and Nogales, 2002; Gadde and Heald, 2004). Another consequence of nucleotide 

hydrolysis is the unidirectional flux of subunits known as “treadmilling” (Maiato et 

al., 2004). Treadmillling is the steady state of microtubules at which subunits 

undergo a net assembly at the plus end and a net disassembly at the minus end at an 

identical rate. 
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Figure 1.4: Dynamic instability as a result of the structural differences between a 
growing and a shrinking microtubule end (Alberts et al., 2002) 

Intrinsic dynamic behaviors of microtubules can be altered by a set of proteins that 

binds along the sides of the polymer. These microtubule-associated proteins (MAPs) 

modulate dynamic behavior by binding microtubule wall to promote microtubule 

polymerization by enhancing the rate of microtubule growth (Drechsel et al., 1992; 

Kowalski and Williams, 1993). Besides that, some other types of MAPs promote 

microtubule depolymerization by increasing the frequency of shrinking stages 

(Hartman et al., 1998).  

As mentioned above, MAPs do not only destabilize or stabilize microtubules but 

some of them can also regulate the interaction of microtubules with other cellular 

components. MAPs can inhibit interaction of other MAPs or motor proteins with 

microtubules by binding to microtubules (Baas & Qiang, 2005). 

1.2.2. Microtubule Functions 

Regulation of the dynamic behavior of microtubule filaments allows eucaryotic cells 

to build a variety of structures from a basic filament system.  

Microtubules are required during interphase for organizing intracellular membrane 

compartments such as Golgi apparatus (Ho et al., 1990) as well as for transporting 

small membrane carrier vesicles in the secretory pathways (Vale, 1987).  
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During mitosis, microtubules are primary constituents of the mitotic spindle with 

hundreds of other accessory proteins functioning togehter and are needed for proper 

segregation of chromosomes and for specifying the position of the cleavage furrow 

(Rappaport, 1985). 

Microtubules must be arranged into a bipolar aray with their minus ends at the pole 

and plus ends extending away to capture sister chromatids from opposite spindle 

poles to allow for directed translocation of chromosomes within the spindle (Rieder 

and Salmon, 1998). One model for such spindle assembly is the “search-and-capture” 

model that is based on microtubule dynamic instability. In this proposed model, 

microtubules emanating from a centrosome undergo cycles of growth and shrinkage, 

randomly probing cytoplasm until running into a kinetochore to form a stable 

attachment. When chromosomes segregate, they are carried to distinct poles by 

shortening microtubules. There are two proposed model to explain microtubule 

shortening for chromosome trasnport to the poles. One model, termed “pacman” 

proposes that the kinetochore induces microtubule disassembly at the plus ends, but 

maintains attachments as the fiber depolymerizes, thus chewing its way to the pole. 

In another model, termed “traction fiber”, poleward microtubule flux is harnessed to 

move the chromosome. Both mechanisms contribute to depolymerization of 

kinetochore microtubules (Gadde and Heald, 2004). 

 
Figure 1.5: Orientation of microtubules in a mitotic (A) and an interphase (B) cell 
(Lodish et al., 2000) 

Microtubules have crucial roles in some specialized cell types such as neurons. 

Neurons use their microtubules not for the formation of a mitotic spindle but rather 

for the elaboration of an elongated axon (Karabay et al., 2004).  
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Changes in the configuration and behavior of microtubules within specific regions of 

the neuron underlie important events in axonal differentiation such as elongation, 

retraction, navigation, branching and sprouting (Baas and Buster, 2004). 

Microtubules also provide a support for transporting organelles in both directions 

within the axon. 

 
Figure 1.6: Microtubule structure and orientation in neurons (Lodish et al., 2000) 

Unlike mitotic cells, neurons do not display a radial array of microtubules nucleating 

from a centrosome (Baas, 1999). Instead, microtubules are abundant throughout the 

cell body of the neuron (Yu and Baas, 1994). In fact, microtubules destined for the 

axons and dendrites are nucleated at the centrosome, then released and then actively 

transported into the processes (Yu et al., 1993). However, the inherent dynamic 

properties of the microtubules is not sufficient for explaining mechanisms such as 

release from centrosome and transport in neurons. There are some other important 

mechanisms that influence the microtubule dynamics. For instance, severing of 

microtubules and release of their minus ends play an important role in both cases. In 

addition to that, movement of released microtubules is generated by a minus end 

directed motor such as cytoplasmic dynein (Keating et al., 1997). 
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1.3. Katanin 

1.3.1. Structure and Functions of Katanin 

Katanin is a member of the AAA adenosine triphosphatase (ATPases Associated 

with various celular Activities) superfamily. It was first purified from sea urchin eggs 

and named “katanin” from katana, the Japanese word for samurai sword (McNally 

and Vale, 1993). It severes microtubules by using ATP hydrolysis energy. 

AAA ATPases disassemble stable protein-protein interactions and play important 

roles in numerous cellular activities including proteolysis, protein folding, membrane 

trafficking, cytoskeletal regulation, organelle biogenesis, DNA replication and 

intracellular motility. The unifying feature of the AAA superfamily is an ATPase 

domain of ~ 220 amino acids. There is a strong sequence conservation in this domain 

(~ 30% identity) (Vale, 2000 ; Hartman and Vale, 1999). 

AAA proteins function as oligomers, in most cases by forming hexamer rings. In 

addition, the AAA core structure is highly conserved and that subunit-subunit 

interactions are likely to be important in the enzymatic mechanism (Vale, 2000). 

The AAA enzyme katanin is the only known microtubule-stimulated ATPase 

(McNally and Vale, 1993). It is a heterodimeric protein that consists of 60 and 80 

kDa subunits. 

Katanin breaks stable tubulin-tubulin interactions in the wall of a microtubule 

(Hartman et al.,1998). Severing of a microtubule along its length requires thirteen or 

so subunits around the circumference of the tubule each to be dissociated from 

thightly bound neighbours above, below and two sides. 

There is a model suggested for microtubule severing by katanin (Hartman and Vale, 

1999) : microtubules act as a scaffold upon which katanin oligomerizes as hexameric 

rings after it has exchanged its ADP for ATP. Once a complete katanin ring is 

assembled on the microtubule, the ATPase activity of katanin is stimulated.  
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After ATP hydrolysis and subsequent phophate release, the katanin undergoes a 

conformational change leading to destabilization of tubulin-tubulin contacts 

(Quarmby, 2000). Disassembled tubulin subunits are capable of repolymerizing since 

katanin does not proteolyze or modify tubulin (McNally and Vale, 1993). 

 
Figure 1.7: Model for microtubule severing by katanin (Hartman and Vale, 1999) 

Microtubule binding site for katanin hexamer is unknown but there are possible 

binding sites include the outside of the microtubule, the microtubule lumen or the 

sides of dimers exposed by holes in the lattice (McNally, 2000). The latter two 

possibilities suggest that katanin might act on specific defective sites within the 

microtubule lattice. This hypothesize that katanin exploits local defects and promotes 

loss of tubulin at the defect site until the two microtubule segments are held together 

so weakly that mechanically unconstrained microtubules kink at the defect site 

(Davis et al., 2002).  

Oligomerization of katanin monomers is most efficient in the presence of 

microtubules which act as a scaffold for promoting oligomerizaton. However, 

ATPase activity of katanin displays a complex stimulation by microtubules. At low 

microtubule concentrations (< 2�M), ATPase activity increases with increasing 

microtubule concentration but at higher microtubule concentrations, ATPase activity 

dicreases until it approaches basal levels because of prevention katanin 

oligomerization through the sequestration of katanin monomers at discontiguous, low 

affinity binding sites on microtubules (Hartman et al., 1998; Hartman and Vale, 

1999).  
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Figure 1.8: Correlation between katanin ATPase activity, katanin oligomerization 
and severing (Hartman and Vale, 1999) 

Katanin has potential roles for microtubule severing including release of 

microtubules from centrosomes (Kitanishi-Yumura and Fukui, 1987; Belmond et al., 

1990), depolymerization of microtubule minus ends in the mitotic spindle as a 

component of poleward flux (Mitchison, 1989), acceleration of microtubule turnover 

at the G2/M transition of the cell cycle and finally providing a source of non-

centrosomal microtubules in neurons (Hartman and Vale, 1999 ; Quarmby, 2000). 

During cell cycle, katanin is thought to release centrosomal microtubules and 

facilitate the rapid disassembly of the interphase array as cells enter mitosis. In 

addition to being localized at centrosomes, katanin is also found in a microtubule-

dependent manner at mitotic spindle poles (McNally and Thomas, 1998) and it is 

thought that katanin plays a crucial role during depolymerization of spindle 

microtubules at their minus ends, a process important for anaphase chromosome 

segregation ( Waters et al., 1996 ; Desai et al., 1998).  

In some other  types of cells that have highly specialized microtubule arrays, such as 

neurons, katanin is thought to provide an important source of non-centrosomal 

microtubules that are very critical for the activity of the terminally postmitotic 

neurons. All microtubules in the neuron are nucleated from centrosome, then 

released by katanin and conveyed into developing axons and dendrites (Baas, 2005). 
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The axonal and dendritic processes of neurons require a supply of non-centrosomal 

microtubules both for structural support and for transport of materials (Quarmby, 

2000). 

 
Figure 1.9: Microtubule reorganization and redistribution in neurons (Baas, 2005) 

 

Studies on several cell types support a model called “cut and run” for microtubule 

severing activity of katanin which is very important for microtubule reorganization 

and regulation in various cell types. This model proposes that long microtubules are 

relatively immobile, whereas short microtubules are quite mobile. Hence, the long 

microtubules are severed into short pieces that rapidly move into new configuration 

in order to transform a cell’s microtubule array from one type of organization to 

another. After being reorganized, the short microtubules can again elongate and lose 

their mobility (Baas, 2005).  
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Figure 1.10: The ‘cut and run’ model for microtubule reconfiguration (Baas, 2005) 

1.3.2. Katanin Subunits 

Katanin is a heterodimeric protein that consists of 60 kDa (p60) and 80 kDa (p80) 

subunits. p60 has the enzymatic activity to severe microtubules by hydrolyzing ATP 

whereas p80 has a role in localization of the protein complex in the cell. 

Due to the presence of a conserved 230-residue C- terminal part, p60 katanin has 

been shown to be a member of the AAA family (McNally and Vale, 1993).  

Rat p60 katanin has been shown to be a 491 amino acid long peptide and it has a 

conserved C terminal AAA domain (underlined amino acids 249-491; Karabay et al., 

2004). 
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Figure 1.11: Rattus norvegicus p60-katanin amino acid sequence 

p60 katanin functions as an oligomeric ring complex and oligomerizes upon 

microtubules with its N-terminal domain. Then, ATP hydrolysis occurs and this leads 

to breakage of microtubule lattice (Hartman and Vale, 1999; Quarmby, 2000). 

p80 katanin is composed of an N-terminal WD40 domain, a central proline-rich 

domain and a C-terminal domain (McNally et al., 2000).  

Rat p80 (Yu et al., 2005) contains six WD40 repeats. WD40 repeats are conserved 

domains that consist of 40-60 amino acid which are initiated by a glycine-histidine 

(GH) dipeptide and end with a tryptophan-aspartic acid (WD) dipeptide at C 

terminus. 40 amino acid conserved core sequence is between the GH and the WD 

dipeptides (Li and Roberts, 2001). 

 

Figure  1.12: Rattus norvegicus p80-katanin amino acid sequence 

The N-terminal WD40 domain of p80 targets the enzyme to the centrosome (Hartman et 

al., 1998) and it is also required for spindle pole localization. On the other hand, this N-

terminal WD40 domain acts as a negative regulator of microtubule disassembly activity 

(McNally et al., 2000). 

The C-terminal region of p80 did not exhibit significant amino acid identity to any 

previously described protein. This C-terminal 130 amino acid part of p80 is suggested to be 

involved in the dimerization with p60 (Hartman et al., 1998). Although p60 can severe 

microtubules even in the absence of p80, further investigations indicated that severing is 
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more efficient in the presence of p80 (McNally et al., 2000; Yu et al., 2005). It may be due 

to enhancement of p60’s microtubule affinity by increasing the number of microtubule 

binding sites with p80 ( McNally et al., 2000).  

1.4. Aim of the Study 

Katanin is thought to have important roles in variety of cell types. In mitotic cells, 

katanin reorganizes microtubules, whereas it is responsible for elongation and 

elaboration of axons and possibly branching of dendrites in neurons. 

Since neurons are terminally differentiated, they can not divide. Hence their injuries 

cause irreversible paralysis of body parts. 

Nerve regenerations may become possible only if there are newly branching axons 

and dendrites that require reorganization of microtubule structure within a cell. This 

mechanism requires severing proteins, like katanin. 

Katanin is a heterodimeric protein that consists of 60 kDa (p60) and 80 kDa (p80) 

subunits. p60 has the enzymatic activity to break the microtubule lattice. p80 has no 

severing activity of its own but it targets p60 to the centrosome. However, recent 

studies revelaed that p80 subunit is widely distributed throughout all compartments 

of the neuron, suggesting that it may have possible additional functions besides 

targeting, such as increasing or supressing severing activity of p60 by binding to this 

subunit with its different domains. 

Since regulation mechanism of severing activity is an important and unressolved 

issue, p80 katanin was chosen for this study to better understand its possible role in 

this mechanism. 

On the other hand, chicken (Gallus gallus) was chosen as a model organism to study 

p80 function. After the analysis of chicken genome, it was understood that about 

60% of the chicken protein-coding genes have human equivalents. Hence, chicken 

genome gives surprising insights into human genome and it can be used as an 

invaluable tool to better identify and characterize similar sequences in humans. 
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In addition to this similarity, chicken embryo dorsal root ganglion (DRG) is the most 

suitable model system to determine the katanin function, since it does not have 

intrinsic branching feature.  

For these purposes, it was first aimed to clone p80 katanin from chicken brain. After 

that, it was aimed to transfect cloned p80 into cultured fibroblasts and chicken 

embryo primary neurons such as DRGs to elucidate the possible functions of p80 

katanin in regeneration of neurons. 

Furthermore, chicken embryo is a unique model to study vertebrate development. 

Thus, it was also aimed to take cryosections from chicken embryos and label these 

sections with riboprobes specifically designed for p80 katanin mRNA. It would 

enable us to visualize distribution of p80 katanin in cells with in situ hybridization. 
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2. MATERIALS AND METHODS 

2.1. MATERIALS 

2.1.1. Equipments 

The equipments used in the study are demonstrated in the table below: 

Table 2.1. Equipments 

Electrophoresis Gel System E-C Apparatus Corporation, EC250-90 
Minicell Primo 

Thermal Cycler Applied Biosystems, GeneAmp PCR 
System 2700 

Microcentrifuge Beckman Coultier 
Water Bath Memmert 
UV Transilluminator BioRad UV Transilluminator 2000 
UVIPhotoMW Version 99.05 for  
Windows 95 & 98 

UVItec Ltd. 

Shaker Forma 
pH Meter Mettler Toledo MP220 
Precision weigher Precisa 620C SCS 
Vortex Heidolph, Reaxtop 
DNA Sequencer Applied Biosciences 3100-Avant 
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2.1.2. Chemicals 

The chemicals used in the study are shown in the table below: 

Table 2.2. Chemicals 

3-(N-morpholino)propanesulfonic acid(MOPS) Acros Organics 
DEPC 
IPTG 

AppliChem 

PIPES 
MgSO4 

BDH Laboratory Supplies 

GC Melt Clontech 
MgCl2 
PEG4000 
dNTP mix 
DNA Ladder 
DNA Loading Dye 

 
Fermentas 

Isopropanol 
CaCl2 
Glycerol 
NaCl 
Glacial Acid 

Fluka 

P60-p80 specific primers Integrated DNA Technologies 
M13F/R universal primers Invitrogen 
Tryptone Lab M TM 
Glucose 
EDTA 
EtBr 
Tris base 
Yeast extract 
Agar 
KCl 
MgCl2 

 
 
Merck 

DNA Ladder Promega 
Agarose 
RNA Loading Dye 

Sigma 

2.1.3. Enzymes and Buffers 

Enzymes and their buffers which were used in the study are shown in the table below:  

Table 2.3. Enzymes and buffers 
Taq Polymerase 
Kpn I restriction enzyme 
Sal I restriction enzyme 
Sma I restriction enzyme 
Hind III restriction enzyme 
BamHI Buffer 
10 X Buffer Tango  
Taq Polymerase Buffer 

Fermentas 

T4 Ligase 
T4 Ligase Buffer 

New England Biolabs 
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2.1.4. Kits 

Special kits used in this study are demonsrated in the table below: 

Table 2.4. Kits 

High Pure RNA Tissue Kit Roche 
cDNA Synthesis Kit Fermentas 
Qiaquick Gel Extraction Kit Qiagen 
High Pure Plasmid Purification Kit Roche 
Big Dye Terminator v 3.1 Cycle 
Sequencing Kit 

Applied Biosystems 

InsT/A Cloning Kit Fermentas 

2.1.5. Buffers and Solutions 

Buffers and solutions used in the study are shown in the table below:  

Table 2.5. Buffers and solutions 

  Contents 
TAE Buffer (50X) 40 mM Tris base 
 20 mM glacial acetic acid 
 1 mM EDTA (pH 8.0) 
 H2O  
5X Formaldehyde Gel Running Buffer 0.1 M 3-(N-morpholino)propanesulfonic 

acid (MOPS) pH 7.0 
 50 mM Sodium acetate 
 5 mM EDTA pH 8.0  
 H2O 
CaCl2 Solution 60 mM CaCl2 
 10 mM PIPES 
 15% glycerol 

2.1.6. Bacterial strains 

Escherichia coli (E.coli) strain XL1 Blue [recA1 endA1 gyrA96 thi-1 hsdR17 

supE44relA1 lac [F' proAB lacIqZ�M15 Tn10 (Tetr)]], Novagen 

2.1.7. Bacterial culture media 

LB medium was prepared by dissolving 10 gram (gr) tryptone, 5 gram yeast extract, and 

10 gram NaCl in distilled water. Distilled water was added to a final volume of 1 liter 
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(l). The LB medium was sterilized by autoclaving for 15 minutes. In order to make 

selection media, antibiotic was added to the LB medium according to the concentration 

described in Table 2.1, and the antibiotic containing LB was stored at 4ºC. 

LB-agar plate was prepared by adding 15 gram/l of agar to LB medium and sterilized by 

autoclaving as described above. 

SOC medium was used to cultivate E.coli for 1 hour after temperature shock during 

transformation. It was prepared by dissolving 2 gr of tryptone, 5 gr of yeast extract, 

0.058 gr of NaCl, 0.0186 gr of KCl, 0.095 gr of MgCl2, 0.24 gr of MgSO4, 0.36 gr of 

glucose in distilled water. Distilled water was added to a final volume of 100 mililiter 

(ml). The SOC medium was sterilized by autoclaving at 120°C for 15 minutes. When 

required, antibiotic was added to the medium in order to make selection (Table 2.6.). 

Table 2.6. Stock and working solution of antibiotics 
Antibiotic Stock   solution concentration Working concentration 

Kanamycin 10miligram(mg)/ml in water 50 microgram (�g)/ml 

Amphicillin 10 mg/ml in water 50 �g/ml 

2.1.8. T/A cloning vector 

pTZ57R/T is a specifically designed cloning vector. The vector has been pre-cleaved 

with Eco32I (an isoschizomer of EcoRV) and treated with terminal deoxynucleotidyl 

transferase to create 3’-ddT overhangs at both ends. When a PCR fragment with 3’-dA 

overhangs is ligated into the vector, a circular molecule with two nicks  is produced.The 

circular product can be used directly to transform E.coli cells with high efficiency. An 

additional advantage of this approach is that the T-overhangs prevent recircularization of 

the vector during the ligation procedure. As a result, the yields of the recombinants are 

typically as high as 90%. The DNA insert can be readily excised from the versatile 

polylinker of pTZ57R/T and subcloned into other vectors, as well as sequenced using 

standard M13/pUC primers. 

 

 



 19 

 

 

 

 

 

 

 

Figure.2.1: pTZ57R/T cloning vector map.  

2.1.9. pEGFP-N1 Expression Vector 

pEGFP-N1 encodes a red-shifted variant of wild-type GFP (1–3) which has been 

optimized for brighter fluorescence and higher expression in mammalian cells. 

(Excitation maximum = 488 nanometer (nm); emission maximum = 507 nm.) pEGFP-

N1 encodes the GFPmut1 variant which contains the double-amino-acid substitution of 

Phe-64 to Leu and Ser-65 to Thr. The coding sequence of the EGFP gene contains more 

than 190 silent base changes which correspond to human codon-usage preferences. 

Sequences flanking EGFP have been converted to a Kozak consensus translation 

initiation site to further increase the translation efficiency in eukaryotic cells. The MCS 

in pEGFP-N1 is between the immediate early promoter of CMV ( PCMV IE) and the 

EGFP coding sequences. Genes cloned into the MCS will be expressed as fusions to the 

N-terminus of EGFP if they are in the same reading frame as EGFP and there are no 

intervening stop codons. SV40 polyadenylation signals downstream of the EGFP gene 

direct proper processing of the 3' end of the EGFP mRNA. The vector backbone also 

contains an SV40 origin for replication in mammalian cells expressing the SV40 T 

antigen. A neomycin-resistance cassette (Neor), consisting of the SV40 early promoter, 

the neomycin/kanamycin resistance gene of Tn5, and polyadenylation signals from the 

Herpes simplex virus thymidine kinase (HSV TK) gene, allows stably transfected 

eukaryotic cells to be selected using G418.  

 

 



 20 

A bacterial promoter upstream of this cassette expresses kanamycin resistance in E. coli. 

The pEGFP-N1 backbone also provides a pUC origin of replication for propagation in E. 

coli and an f1 origin for single-stranded DNA production. 

 

 
 

 
Figure.2.2: pEGFP-N1 vector map and multiple cloning site. 

2.2. METHODS 

2.2.1. Brain dissection 

Adult chicken (Gallus gallus) was sacrificed. After providing a sterile environment, the 

skin and underlying tissue were carefully removed from cranium and the skull was 

exposed. Then the skull was cut into small pieces with bone cutting and dissecting 

scissors and brain was removed by using fine forceps and a probe. 
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2.2.2. RNA Isolation from Brain Tissue  

Isolating intact RNA is a prerequisite for the analysis of gene expression. Frequently 

applied techniques like Reverse Transcriptase-PCR (RT-PCR), Northern blotting, and 

RNase protection require the use of intact undegraded RNA. Tissue samples are 

disrupted and homogenized in the presence of a strong denaturing buffer containing 

guanidine hydrochloride to instantaneously inactivate RNases, and to ensure isolation of 

intact RNA. After adding ethanol, RNA binds selectively to a glass fiber fleece in the 

presence of a chaotropic salt (guanidine HCI). Residual contaminating DNA is digested 

by DNase I, applied directly on the glass fiber fleece. During a series of rapid ”wash-

and-spin” steps to remove contaminating cellular components the RNA remains bound 

to the glass fiber fleece. Finally, low salt elution removes the nucleic acids from the 

glass fiber. “Roche High Pure RNA Tissue Kit” was used for this purpose and protocol 

is as described below:  

1-400 µl Lysis/Binding Buffer and the appropriate amount of frozen tissue (maximum 

20–25 mg)was added to a nuclease-free 1.5 ml microcentrifuge tube; the tissue was 

disrupted and homogenized using a homogenizer. 

2-Lysate was centrifuged for 2 minutes (min) at maximum speed in a microcentrifuge 

and only the collected supernatant was used for subsequent steps . 

3-200 µl absolute ethanol was added to the lysate supernatant and mixed well. 

4-The High Pure Filter Tube and the Collection Tube were combined and the entire 

sample was pipetted in the upper reservoir. 

5-It was centrifuged for 30 seconds (s) at maximal speed (13,000 x g) in a standard table 

top microcentrifuge. 

6-The flowthrough was discarded and again the Filter Tube and the used Collection 

Tube were reassembled. 

12-300 µl Wash Buffer I I was added to the upper reservoir of the Filter Tube, and 

centrifuged for 2 min at maximum speed (approx. 13,000 x g) to remove residual Wash 

Buffer. 
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13-The column was carefully removed from the Collection Tube so that the column did 

not contact the flowthrough as this would result in carryover of ethanol. Residual 

ethanol may interfere with subsequent reactions. 

14-The Collection Tube was discarded. The Filter Tube was inserted in a nuclease-free 

1.5 ml reaction tube.  

15-100 µl Elution Buffer was added  to the upper reservoir of the Filter Tube. 

16-It was centrifuged 1 min a t 8000 x g. The microcentrifuge tube contained the eluted 

RNA was stored at -80°C for later analysis. 

2.2.3. Denaturing RNA Formaldehyde Gel 

The overall quality of an RNA preparation may be assessed by electrophoresis on a 

denaturing agarose gel; this will also give some information about RNA yield. A 

denaturing gel system is suggested because most RNA forms extensive secondary 

structure via intramolecular base pairing, and this prevents it from migrating strictly 

according to its size. 

In order to check the integrity and purity of isolated RNA, denaturing RNA 

formaldehyde gel was prepared as follows: 

-  500 ml 5X Formaldehyde gel running buffer was prepared. 

5X formaldehyde gel running buffer : 

0.1 Molar (M) 3-(N-morpholino)propanesulfonic acid (MOPS) (pH 7.0)  

       50 miliMolar (mM) Sodium acetate 

       5 mM EDTA (pH 8.0)  

10.3 gr MOPS was dissolved in 400 ml DEPC-treated  50 mM  sodium acetate. pH was 

adjusted to 7.0 with 2N NaOH. Then  10 ml DEPC-treated 0.5 M EDTA (Ph 8.0) was 

added. The volume of solution was adjusted to 500 ml with DEPC-treated water. 

Finally, the solution was filter-sterilized by using 0.2 micron Milipore filter and stored at 

room temperature protected from light. 
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     -  2.2 M %37  Formaldeyhe was prepared form 12,3 M formaldehyde stock 

solution. 

        -  Then, 50 ml formaldehyde agarose gel was prepared as follows: 

0.5 gr. Agarose was heated in 31 ml DEPC-treated water until dissolved, then it was 

cooled to 60 °C. 10 ml 5X formaldehyde gel running buffer and 9 ml formaldehyde 

solution were added to the mixture. 

   - The prepared gel was poured using a comb that will form wells. Then gel was 

assembled in the tank, an appropriate amount of 1X MOPS running buffer was added to 

cover the gel by a few millimeters. 

         - RNA sample was prepared by using Sigma RNA sample loading buffer (5X) : 

1 volume of RNA sample and 2 –5 volume of sample loading buffer were mixed. Then 

mixture was heated to 65°C for 10 minutes.After that, it was chilled on ice immediately. 

         - Before loading the sample, the gel was prerun for 5 minutes at 5V/cm. After that 

sample was immediately loaded into the lane of the gel. The gel was run for 40 minutes 

at 70 V/cm. Then, it was visualised on a  UV transilluminator. 

2.2.4. Determination of the purity and integrity of RNA 

To check the isolated RNA for any genomic DNA contamination, control Polymerase 

Chain Reaction(PCR) was performed by using RNA as template. The reaction was 

prepared in a sterile PCR tube by adding the compounds shown in Table 2.7. below: 

 

 

 

 



 24 

Table 2.7. Compounds of control PCR reaction  
Contents Amount Volume, �l 
10XTaq reaction buffer 1X 2,5 
10 mM dNTP mixture 0,2 mM each 0,5 
Template (RNA) 10 pg-1 �g 1 
Primer (forward) 1 �M 0.25 
Primer (reverse) 1 �M 0.25 
Taq polymerase  1,25u/50 �l 0.5 
Water   X 20 
Total reaction volume  25 

The PCR reaction was performed using a thermal cycler with the program in Table 2.8.: 

Table 2.8. Control PCR conditions 

Cycles Temperature Time 

1 94 ºC 2 minutes 

35 94 ºC 30 seconds 

 61 ºC 30 seconds 

 68 ºC 2 minutes 

Final extention 68 ºC 7 minutes 

Final hold 4 ºC ---------- 

 

2.2.5. cDNA Synthesis 

“Fermentas The RevertAid™ First Strand cDNA Synthesis Kit” was used to synthesize 

cDNA from isolated RNA. Kit is designed for preparation of full-length first strand 

cDNA from RNA templates. 

The RevertAid™ first strand cDNA synthesis kit relies on a genetically engineered 

version of the Moloney Murine Leukemia Virus reverse transcriptase (RevertAid™ M-

MuLV RT) with low RNase H activity. This allows the synthesis of full-length cDNA 

from long templates (up to 13kb). RevertAid™ M-MuLV RT synthesizes first strand 

cDNA at sites determined by the type of primer used.  

 

 



 25 

In this study, oligo(dT)18 primers were used. Thus, only mRNA’s with 3’- poly(A) tails 

were used as templates for cDNA synthesis. cDNA Synthesis procedure was performed 

by following instructions of the manufacturer:  

1-The reaction mixture in Table 2.9. was prepared in a tube on ice : 

Table 2.9. cDNA synthesis reaction mixture contents 

Contents Amount Volume, �l 
 Total RNA 10ng-5 �g 10 �l 
Oligo(dt)18 primer 0.5 �g/ �l 1 �l 
DEPC-treated water  1 �l 
Total reaction volume  12 �l 

      2-The mixture was mixed gently and spinned down for 3-5 seconds in a 

microcentrifuge. 

3-The mixture was incubated at 70°C for 5 minutes, Then it was chilled on ice. 

4-Reaction tube was placed on ice and the compounds shown in Table 2.10. was 

added : 

 

Table 2.10. cDNA synthesis reaction mixture contents (continued) 
Contents Amount Volume , �l 

5x Reaction buffer 1X 4 �l 

Ribonuclease inhibitor  

(20 U/ �l) 

20 U 1 �l 

10 mM dNTP mix 1 mM 2 �l 

Total reaction volume  19 �l 

5-This reaction mixture was incubated at 37°C  for 5 minutes.  

6-1 �l reverse transcriptase enzyme (200u/ �l) was added. 20 �l mixture was 

incubated at 45 °C for 60 minutes. 

7-The reaction was stopped by heating the mixture to 70°C for 10 minutes to 

inactivate the enzyme. 

8-It was stored at -20°C. 



 26 

2.2.6. Determination of the integrity of cDNA 

PCR reaction was performed to see whether or not the  synthesized cDNA worked well. 

For this purpose 587 bp part of beta-actin gene which is a house-keeping one, was  

cloned from cDNA. The result was seen with agarose gel electrophoresis.  

2.2.7. Agarose Gel Electrophoresis 

Electrophoresis is used to separate molecules by some property. DNA molecules are 

seperated based on their size. DNA has a negative charge in solution, so it will migrate 

to the positive pole in an electric field. In agarose gel electrophoresis the DNA is forced 

to move through a sieve of molecular proportions that is made of agarose. The result is 

that large pieces of DNA move slower than small pieces of DNA. The place in the gel 

that the DNA migrated to is observable under ultraviolet light when the current is turned 

off and the gel is stained with ethidium bromide.  

To prepare 1% agarose gel, 0.4 g of low melting point: 

• Agarose was dissolved in 40 ml (small gel) 1x TAE (Tris-acetate-EDTA) buffer.  

• The agarose was solubilized in a microwave oven until the agarose was 

completely dissolved. 

• Gel was cooled to � 45ºC and ethidium bromide was added to a final 

concentration of 0.5 �g/ml and mixed through gentle swirling.  

• The agarose gel was then poured into a horizontal gel tray, and a comb for 

forming the sample slots was placed into the gel.  

• The gel was solidified for about 30 minutes and then placed into an 

electrophoresis tank, where the gel was covered by 1x TAE buffer used to make 

the gel. 

The DNA was mixed with loading dye  and the sample was placed into a well on the 

agarose gel. As fragment size control, a MassRuler™ DNA Ladder, Mix (80bp-10kb) 

and Promega Benchtop 1 kb DNA Ladder were used. Electrophoretic separation was 

achieved by constant current at 90 mV for 40 minutes. 
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DNA within agarose gels is only visible when stained with ethidium bromide and can 

then be visualized under UV light. The gel was placed onto an UV ilumuminator that 

emits UV light at 302 nm and photographed with a camera connected to a computer. 

Image files were saved with UVIPhotoMW Version 99.05 for Windows 95 & 98, 

UVItec Ltd. and subsequently analyzed. The size of the DNA was determined by 

comparing their mobility with the fragments of the MassRuler and Promega. 

2.2.8. Primer Design 

The gene of interest has to be amplified from genomic or vector DNA by PCR. The first 

step is the design of the necessary primers. There are some important features while 

designing the primers : 

· Primer Sequence : The 3'-end of the primer molecule has a crucial role for the 

specificity and sensitivity of PCR  It is recommended not to have 3 of more G or C bases 

at this position. This may stabilize nonspecific annealing of the primer and also it should 

not have a 3' thymidine, since it is more prone to mispriming than the other nucleotides. 

Primer pairs should be checked for complementarity at the 3'-end. This often leads to 

primer-dimer formation. 

· Primer length : A primer length of 18-30 bases is usually optimal for most PCR 

applications. Shorter primers could lead to increased amplification of nonspecific PCR 

products. 

· Melting temperature (Tm): The specificity of PCR depends on the melting temperature 

(Tm) of the primers. 

· GC content : The GC content of a primer should be between 40 and 60%. 
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The 3 primer pairs that were designed in the light of these informations are shown in 

Table 2.11. below: 

Table 2.11. PCR Primer Pairs 
Primer name Primer sequence Tm (ºC)  GC% 
Forward primer 1  
(Chp80F1) 

5’CGGGAGATGGCAGCGGC3’ 62,5 76 

Forward primer 2  
(Chp80F2) 

5’GCAGCCTTGATTTCCATCCTTACG3’ 58,3 50 

Forward primer 3 
(Chp80F3) 

5’CAAAGGAAGCAGTGAAGCCTAACC3’ 58,2 50 

Rewerse primer 1 
(Chp80R1) 

5’GCAGATGTTTGCCTTGTGACC3’ 57 52,4 

Rewerse primer 2 
(Chp80R2) 

5’AGGTTGGTTAGGCTTCACTGCTTCC3’ 61 52,2 

Rewerse primer 3 
(Chp80R3) 

5’TCACTCCAGCACAGCCATGAG3’ 59,5 57,1 

2.2.9. PCR Cloning 

Several PCR reactions were performed in order to clone katanin p80 subunit from 

chicken brain cDNA. Cloning of p80 subunit was achieved by touchdown, hotstart PCR.  

Touchdown PCR is a method which increases specificity of PCR reactions. Touchdown 

PCR cycles begin with higher annealing temperatures than the calculated annealing 

temperatures of primers. The annealing temperature is decreased by 1 degree Celsius for 

every subsequent 2 cycles. The primer will anneal at the highest and therefore, least-

permissive of nonspecific binding temperature at which it is able. Thus, the first 

sequence amplified is the one between the regions of greatest primer specificity; it is 

most likely that this is the sequence of interest. These fragments will be further 

amplified during subsequent cycles at lower temperatures, and will swamp out the 

nonspecific sequences to which the primers will bind at those lower temperatures. If the 

primer initially binds to the sequence of interest at a low temperature, subsequent rounds 

of PCR can be performed upon the product to further amplify those fragments. 

The HotStart PCR involves withholding Taq DNA Polymerase until it has been heated 

to 95° C. This reduces the occurrence of mis-primes, primer dimers, and premature 

annealing. A hotstart and touchdown PCR was performed in a sterile PCR tube by 

adding the compounds shown in the table below: 
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Table 2.12. Compounds of PCR reaction for p80 cloning     
Contents Amount Volume, �l 
10x PCR buffer 1x 2,5  
MgCl2 (25mM) 3 mM 1,5  
10x GC Melt  1x 2,5 
dNTP(10mM each) 0,2 mM each 0,5 
Chp80F1 primer 1 mM 0,5 
Chp80R1 primer 1 mM 0,5 
Template DNA 10pg-1�g 1 
Taq DNA Polymerase 1,25u/50 �l 0,5 
ddH2O X 15,5 
Total reaction volume  25 

The PCR reaction was performed using a thermal cycler with the program in the table 

below and the result of PCR reaction was observed by agarose gel electrophoresis: 

Table 2.13. PCR reaction conditions for p80 cloning 
Cycles Temperature Time 
1 94 ºC 2 minutes 
3 94 ºC 30 seconds 
 67 ºC 30 seconds 
 68 ºC 3 minutes 
3 94 ºC 30 seconds 
 66 ºC 30 seconds 
 68 ºC 3 minutes 
3 94 ºC 30 seconds 
 65 ºC 30 seconds 
 68 ºC 3,5 minutes 
3 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 3,5 minutes 
6 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 4 minutes 
6 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 4,5 minutes 
5 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 5 minutes 
5 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 5,5 minutes 
6 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 6 minutes 
Final extention 68 ºC 10 minutes 
Final hold 4 ºC ---------- 
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2.2.10. Determination of nucleic acid concentration 

Concentrations of nucleic acids were measured by gel electrophoresis. After running 

several amounts of nucleic acids on agarose gel along with a known amount of DNA, 

the intensity of the sample band was compared to the band with the known amount of 

DNA. DNA ladders provided such a standard for a more accurate estimation of DNA 

concentration. 

2.2.11. DNA Fragment Isolation from Agarose 

Nucleic acids bind specifically to the surface of glass or silica materials in the presence 

of a chaotropic salt. The binding reaction occurs due to the disruption of the organized 

structure of water molecules and the interaction with the nucleic acids. Since the binding 

process is specific for nucleic acids, impurities are efficiently washed away, and the pure 

DNA is simply eluted with Tris buffer or water. 

DNA fragments from agarose gels were isolated by using “QIAquick Gel Extraction 

Kit”. The QIAquick system combines the convenience of spin-column technology with 

the selective binding properties of a silica-gel membrane. Isolation procedure was 

performed by following instructions of the manufacturer. 

1. The DNA fragment from the agarose gel  was excised with a clean, sharp scalpel. 

2. The gel slice was weighed in a colorless tube. Three volumes of agarose volume 

solubilization buffer was added to one volume of gel (100 mg ~ 100 µl). 

3. It was incubated at 50°C for 10 min (or until the gel slice has completely dissolved).  

4. After the gel slice was dissolved completely, it was checked that the color of the 

mixture was yellow. 

5. One gel volume of isopropanol was added to the sample and mix. 

6. A QIAquick spin column was placed in a provided 2 ml collection tube. 

7. The sample was applied to the QIAquick column to bind DNA, and centrifuged for 1 

min. 

8. Flow-through was discarded  and QIAquick column was placed back in the same 

collection tube. 
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9. 0.5 ml of agarose volume solubilization buffer was added to QIAquick column and 

centrifuged for 1 min. 

10. 0.75 ml of washing buffer was added to QIAquick column to wash and centrifuged 

for 1 min. 

11 The flow-through was discarded  and the QIAquick column was centrifuged for an 

additional 1 min at �10,000 x g (~13,000 rpm). 

12. QIAquick column was placed into a clean 1.5 ml microcentrifuge tube. 

13. 50 µl of Buffer EB (10 mM Tris·Cl, pH 8.5) or H2O was added to the center of the 

QIAquick membrane to elute DNA and  the column was centrifuged for 1 min at 

maximum speed.  

2.2.12. Preparation of Chemically Competent Cells (calcium chloride method) 

Since DNA is a very hydrophilic molecule, it will not normally pass through a bacterial 

cell's membrane. In order to make bacteria take in the plasmid, they must first be made 

"competent" to take up DNA. This is done by creating small holes in the bacterial cells 

by suspending them in a solution with a high concentration of calcium.We homemade 

competent cells according to the following protocol, provided by Sambrook et al 

(Sambrook et al., 1989).  

• Working aseptically, XL1 Blue cells (taken from a glycerol stock culture) were 

streaked out on an LB plate and incubated overnight at 37°C.  

• The next day, one bacterial colony was picked and inoculated into 10 ml of LB 

medium containing tetracyclin in a Falcon tube, and the overnight culture was 

grown.  

• The next day 100 ml LB medium was inoculated with 4 ml of overnight culture 

solution and was incubated at 37°C in a rotatory shaker. Cell density was 

measured by a spectrophotometer at OD600. When an OD600 of 0.6 was reached, 

the bacteria were transferred to 50 ml prechilled sterile ultracentrifuge tubes and 

incubated on ice for 10 min. 

• The cells were spun down at 1600 x g for 10 minutes at 4ºC, the supernatant was 

discarded 
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• Bacterial pellet was resuspended in 10 ml ice-cold CaCl2 (pH 7, the solution was 

filter sterilized through a filter of 0.45 �m pore size) and incubated on ice for 30 

minutes. 

• Centrifugation was performed again for 5 minutes at the same speed as 

previously, and the cells were resuspended in 2 ml of CaCl2.  

• The cells were used immediately for transformation and/or distributed into 

prechilled sterile microfuge tubes. The competent cells were stored at – 80ºC in 

40 �l aliquots. 

Table 2.14. CaCl2 solution 

Contents Concentration Amount 

CaCl2 60 mM 0.33 g 

PIPES 10mM 0.15 g 

Glycerol 15% 7.5 ml 

water X up to 50 ml 

2.2.13. T/A Cloning 

T/A Cloning takes advantage of the terminal transferase activity of some DNA 

polymerases such as Taq polymerase. This enzyme adds a single, 3'-A overhang to each 

end of the PCR product. This makes it possible to clone this PCR product directly into a 

linearized cloning vector with single, 3'-T overhangs. The PCR products with dA 

overhang, are mixed with this vector in high proportion. The complementary overhangs 

of "T" vector and PCR product will be ligated with T4 DNA ligase. 

In order to clone p80 into a cloning vector, “Fermentas InsT/Aclone™ PCR Product 

Cloning Kit” was used. The Kit is based on a specially designed (linearized and ddT-

tailed) cloning vector pTZ57R/T. The 3’-ddT overhangs prevent recircularization of the 

vector during ligation, resulting in high cloning yields. Ligated PCR fragment is directly 

transformed into competent  XL1Blue cells. Besides that recombinant clones can be 

identified by blue/white selection, since the vector is lacZ genetically marked. 
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2.2.13.1. Ligation for T/A Cloning 

Ligation is the process in which linear DNA fragments join together with covalent 

bonds. More specifically, DNA ligation involves creating a phosphodiester bond 

between the 3' hydroxyl of one nucleotide and the 5' phosphate of another. 

T4 DNA ligase is the enzyme that is used to ligate DNA fragments, which originates 

from the T4 bacteriophage. This enzyme will ligate DNA fragments having 

overhanging, cohesive ends that are annealed together. 

Ligation mixture was made by adding compounds depicted in the table below and 

ligation mixture was incubated  overnight at room temperature: 

Table 2.15. Compounds of ligation reaction for T/A cloning 
Contents Amount Volume, �l 
pTZ57R/T  
Plasmid DNA 
(0,055 �g/ �l) 

0,165 �g 1,5 

Insert DNA 0,755 �g 5 
10 x buffer 1x 1,5 
Ligase 20000u/ �l 0,5 
Total reaction volume  15 

2.2.13.2. Transformation for T/A Cloning 

The term, transformation, is used to describe the introduction of plasmid DNA into 

bacterial cell which can be performed either by an electrical or by a chemical method. In 

this study, the chemical method  which consists of a heat shock to introduce the DNA 

into the host was used. A short protocol is as follows:   

      1-40 �l of cells per transformation were thawed on ice.   

2-1/5 volume of a DNA Ligation reaction was added to each tube. The mixture was 

incubated on ice for 30 minutes.  

3-Then tubes were heat shocked in a 42°C water bath for 45 seconds.  

4-Tubes were returned to ice for 2 minutes.  

5-80 �l SOC was added to each tube and the eppendorf tube was shaked at 250 rpm 

for 1 hour at 37°C.  
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6-IPTG/X-Gal solution was added to the mixture so as to select recombinant proteins 

via blue/white selection method. 

7-100 �l of the reaction mixture was plated onto LB agar containing selective 

antibiotics and incubated at 37ºC overnight (16 hours).  

2.2.13.3. Colony PCR for T/A Cloning 

Colony PCR is used to determine whether or not a specific colony on a plate has desired 

sequence.  Either universal primers or sequence specific primers can be used for this 

purpose. In this study, both M13 F/R Universal primers (Invitrogen) and p80 sequence 

specific primers were used. A brief procedure of colony PCR is shown below: 

- After overnight incubation of transformed cells at 37 °C, ten white colonies 

which were supposed to have the sequence of interest were selected. 

- Each of ten colonies was picked and resuspended in 50 µl sterile water in sterile 

eppendorf tubes. 

- Then resuspended cells were heated for 5 minutes at 100°C to disrupt the 

bacterial cells. 

- A PCR master mix was prepared for all ten colonies by adding the compounds in 

the table below: 

Table 2.16. Contents of colony PCR reaction for T/A cloning 
Contents Amount Volume, �l 
10x PCR buffer 1x 25  
MgCl2 (25mM) 3 mM 15  
10x GC Melt  1x 25 
dNTP(10mM each) 0,2 mM each 5 
M13 forward primer 1 mM 5 
M13 reverse primer 1 mM 5 
Taq DNA Polymerase 1,25u/50 �l 2 
ddH2O X 158 
Total reaction volume  240 

      

- Prepared master mix was distributed equally into each tube and added to PCR 

tubes. 

- After that, 1 µl of resuspended cells of each colony was added to PCR mixture.  

- Colony PCR reactions were performed using a thermal cycler with the program 

in Table 2.17. and the results of PCR reactions were observed on %1 agarose gel:    
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Table 2.17. Colony PCR conditions for T/A cloning 

Cycles Temperature, °C Time 

1 94 2 minutes 

6 94 30 seconds 

 55 30 seconds 

 68 3 minutes 

6 94 30 seconds 

 55 30 seconds 

 68 3,5 minutes 

6 94 30 seconds 

 55 30 seconds 

 68 4 minutes 

6 94 30 seconds 

 55 30 seconds 

 68 4,5 minutes 

5 94 30 seconds 

 55 30 seconds 

 68 5 minutes 

5 94 30 seconds 

 55 30 seconds 

 68 5,5 minutes 

6 94 30 seconds 

 55 30 seconds 

 68 6 minutes 

Final extention 68 10 minutes 

Final hold 4 --------------- 

2.2.14. Plasmid DNA Preperation ( small scale) 

Plasmid mini preparation was performed using “Roche High Pure Plasmid Isolation Kit” 

for small-scale (mini) preparations, following instructions of the manufacturer. The 

principle of this purification is as follows: alkaline lysis releases plasmid DNA from 

bacteria and RNase removes all the RNA in the lysate. Then, in the presence of a 

chaotropic salt (guanidine HCl), plasmid DNA binds selectively to glass fiber fleece in a 

centrifuge tube.  
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The DNA remains bound while a series of rapid “wash-and-spin” steps remove 

contaminating bacterial components. Finally, low salt elution removes the DNA from 

the glass fiber fleece. 

The protocol is as follows: 

• A single bacterial colony was picked and inoculated into 6 ml LB media (with 

amphicilline) containing Falcon tube, and grown overnight with shaking (250 

rpm) at 37ºC.  

• The following day, 4 ml of the culture was distributed into 2 eppendorf  tubes (2 

ml each tube), and the bacteria were recovered by centrifugation for 5 minutes at 

14.000 x g. The supernatants were  discarded.  

• The bacterial pellet was resuspended in 50 �l of suspension buffer in each 

eppendorf tube separately and then collected to one eppendorf tube (250 �l 

suspension buffer in total). Suspension buffer contains RNase which removes 

bacterial RNA.  

• To lyse the cells, 250 �l lysis buffer was added (contains NaOH), mixed by 

inverting the tube 6 times and incubated at room temperature for up to 5 minutes.   

• Lysis was stopped by addition of 350 �l ice-cold binding buffer. Tube was again 

inverted 6 times and incubated on ice for up to 5 minutes.   

• The mixture was centrifuged for 10 minutes at 14.000 x g and the supernatant 

was transferred to a filter tube. Chromosomal DNA was precipitated with 

cellular debris during centrifugation and this supernatant contains the plasmid 

DNA.  

• Again centrifugation for 1 minute at maximum speed was performed.  Plasmid 

DNA is bound to the glass fibers pre-packed in the filter tube. Supernatant was 

discarded from the collection tube.  

• To wash the cells, 700 �l of wash buffer was added to the filter tube and 

centrifuged at maximum speed for 1 minute. Supernatant from collection tube 

was discarded.   

• To elute the DNA  100 �l elution buffer was added, and the DNA solution was 

obtained by centrifugation for 1 minute at full speed. 
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2.2.15. DNA Sequencing 

DNA sequencing enables to perform a thorough analysis of DNA because it provides the 

most basic information about the sequence of nucleotides.  

DNA sequencing method is based on the use of dideoxynucleotides(ddNTP’s) in 

addition to the normal nucleotides (NTP’s) found in DNA. Dideoxynucleotides are 

essentially the same as nucleotides except they contain a hydrogen group on the 3’ 

carbon instead of a hydroxyl group (OH). These modified nucleotides, when integrated 

into a sequence, prevent the addition of further nucleotides. (Speed, 1992).This occurs 

because a phosphodiester bond cannot form between the dideoxynucleotide and the next 

incoming nucleotide, and thus the DNA chain is terminated. In this method, all the 

reactions start from the same nucleotide and end with a specific base. Thus in a solution 

where the same chain of DNA is being synthesized over and over again, the new chain 

will terminate at all positions where the nucleotide has the potential to be added because 

of the integration of the dideoxynucleotides (Russell, 2002). In this way, bands of all 

different lengths are produced and DNA fragments are marked and the sequence can be 

detected by excitation with a laser and detection with photodiodes in a sequencing 

machine. 

The constructed plasmid was verified by DNA sequencing using Big Dye Terminator v 

3.1 Cycle Sequencing Kit (Applied Biosystems). The sequence reaction was prepared in 

a sterile PCR tube by adding the compounds shown in the Table 2.18 and PCR was 

carried out using the program in Table 2.19: 

Table 2.18. Contents of DNA sequencing PCR reaction 

Contents Amount Volume, �l 

Big dye reaction mix X 2 

5X sequence mixture X 2 

Template DNA 360 ng 1 

M13forward or reverse  25 mM 0.5 

Water X 4.5  

Total reaction volume X 10 



 38 

Table 2.19. Sequencing PCR conditions 

Cycles Temperature Time 

1 95 ºC 5 minutes 

40 95 ºC 45 seconds 

 55 ºC 45 seconds 

 60 ºC 4 minutes 

Final extention 4 ºC  

2.2.16. Sequence PCR Purification 

After sequence PCR was completed, PCR product was purified by using following 

protocol: 

1- 2 µl 3 M NaAc and 50 µl 95% cold ethanol and PCR product were mixed in an 

eppendorf tube. 

2- The mixture was incubated for 30 minutes on ice. 

3- Then it was centrifuged for 30 minutes at 14.000 rpm. 

4- Supernatant was discarded and pellet was resuspended in 250 µl 70% cold 

ethanol. 

5- It was centrifuged for 30 minutes at 14.000 rpm. 

6- Supernatant was discarded and pellet was dried at 95 ºC for 5 minutes. 

7- Then pellet was resuspended in 20 µl formamide and denatured at 95 ºC for 2-3 

minutes. 

2.2.17. Sequence Alignments 

Nucleotide alignments were made with ClustalW tool, available at 

http://www.ebi.ac.uk/clustalw/index.html and also with BLAST tool, available at 

http://www.ncbi.nlm.nih.gov/BLAST/ (nucleotide-nucleotide BLAST (blastn)). 
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2.2.18. Subcloning of p80-katanin into DsRed2-N1 expression vector 

2.2.18.1. DNA cleavage with restriction endonucleases for  pDSRed2-N1 vector 

Restriction endonucleases were first discovered in E. coli strains that appeared to be 

restricting the infection by certain bacteriophages. Restriction enzymes therefore are 

believed to be a mechanism evolved by bacteria to resist viral attack and to help in the 

removal of viral sequences. A restriction enzyme cuts only double-helical segments that 

contain a particular nucleotide sequence, and it makes its incisions only within that 

sequence known as a "recognition sequence". Once it encounters its particular specific 

recognition sequence, it will bond to the DNA molecule and makes one cut in each of 

the two sugar-phosphate backbones of the double helix. The positions of these two cuts, 

both in relation to each other, and to the recognition sequence itself, are determined by 

the identity of the restriction endonuclease used to cleave the molecule in the first place. 

Some enzymes make strand incisions immediately opposite one another, producing 

"blunt end" DNA fragments. Most enzymes make slightly staggered incisions, resulting 

in "sticky ends", out of which one strand protrudes. 

In this study, p80 was cloned into pTZ57R/T cloning vector, but, in reverse orientation. 

Hence, it had to be subcloned into pEGFP-N1 fluorescent expression vector changing its 

orientation. Selection of appropriate restriction enzymes for this purpose should have 

been done according to the following requirements: 

- they have to cut both T/A and expression vectors; 

- their sequence in the vectors should be different, i.e. 5’ restriction site on T/A 

vector should be in 3’ compared to another restriction site on expression 

vector; 

- restriction endonucleases should not cut inside the p80 subunit, preferably. 
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Since there were not any suitable enzymes  that provided these requirements, p80 had to 

be first subcloned into another suitable fluorescent expression vector to change its 

orientation. DsRed2-N1 vector and Sal I and Kpn I enzymes met the requirements for 

restriction reaction. 

Normally DNA was cleaved at 37ºC for 4 hours with 1 X buffer (supplied by the 

manufacturer).  

Table 2.20. Restriction reaction mixture 
Contents Amount Volume, �l 
Plasmid DNA (DsRed2-N1) 3 �g 20 
Sal I 3 units 2 
Kpn I 8 units 2 
BamHI buffer (10x) 1x 3 
Water  3 
Total reaction volume  30 
Plasmid DNA(pTZ57R/T-
p80) 

4 �g 20 

Sal I 3 units 2 
Kpn I 8 units 2 
BamHI buffer (10x) 1x 3 
Water  3 
Total reaction volume  30 

 2.2.18.2. Ligation 

After restriction reaction was completed, digested DNA fragments were run on agarose 

gel and desired DNA bands were isolated from agarose as decribed before.  

Ligation reaction was performed by adding compounds in the table below: 

Table 2.21. Ligation reaction mixture 
Contents Amount Volume, �l 

Plasmid DNA 

(DsRed2-N1) 

100 ng 1 

Insert DNA(p80) 300ng 5 

10 x buffer 1x 1 

Ligase 20000u/µl 1 

Water  2 

Total reaction volume  10 
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2.2.18.3. Transformation  

Ligation mixture was transformed into competent XL1 Blue cells as described in T/A 

Cloning section. The only difference is that IPTG/X-Gal solution was not added while 

plating transformation mixture, since plasmid DNA did not have blue/white selection 

system. 

2.2.18.4. Colony PCR 

10 colonies were selected from transformation plate and resuspended in water. Then a 

PCR master mix was prepared by adding the compounds in the table below: 

Table 2.22. Colony PCR reaction mixture 

Contents Amount Volume, �l 
10x PCR buffer 1x 25  
MgCl2 (25mM) 3 mM 15  
10x GC Melt  1x 25 
dNTP(10mM each) 0,2 mM each 5 
Chp80F1 primer 1 mM 5 
Chp80R1 primer 1 mM 5 
Taq DNA Polymerase 1,25u/50 �l 2 
ddH2O X 158 
Total reaction volume  240 

Prepared master mix was distributed equally into each tube and added to PCR tubes. 

After that, 1 µl of resuspended cells of each colony was added to PCR mixture. Colony 

PCR reactions were performed using a thermal cycler with the program in the Table 

2.23. and result of PCR reaction was observed on agarose gel : 
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Table 2.23. Colony PCR conditions 
Cycles Temperature Time 
1 94 ºC 2 minutes 
3 94 ºC 30 seconds 
 67 ºC 30 seconds 
 68 ºC 3 minutes 
3 94 ºC 30 seconds 
 66 ºC 30 seconds 
 68 ºC 3 minutes 
6 94 ºC 30 seconds 
 65 ºC 30 seconds 
 68 ºC 3,5 minutes 
6 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 4 minutes 
6 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 4,5 minutes 
5 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 5 minutes 
5 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 5,5 minutes 
6 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 6 minutes 
Final extention 68 ºC 10 minutes 
Final hold 4 ºC ---------- 

2.2.19. Subcloning of p80-katanin into pEGFP-N1 expression vector 

2.2.19.1. Restriction reaction for pEGFP-N1 vector 

Restriction enzymes that were suitable for cleaving pEGFP-N1 vector and DsRed2N1-

p80 at the same time were Sma I and Hind III. A sequencial restriction was performed 

since Sma I works at 30ºC while Hind III works at 37ºC.  

Firstly, restriction reaction was performed for Sma I for 2 hours at 30ºC then Hind III 

and some other compounds were added to mixture and incubated for 2 hours at 37ºC. 

Restriction reactions for Sma I and Hind III are shown in the tables below: 
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Table 2.24. Restriction reaction mixture for Sma I  
Contents Amount Volume, �l 
Plasmid DNA(pEGFP-N1) 4 �g 20 
Sma I 1,2 units 1 
10xBuffer Tango 1x 2,5 
Water  1,5 
Total volume  25 
DsRed2N1-p80 3 �g 20 
Sma I 1,2 units 1 
10xBuffer Tango 1x 2,5 
Water  1,5 
Total volume  25 

 Table 2.25. Restriction reaction mixture for Hind III 

Contents Amount Volume, �l 
PlasmidDNA(pEGFP-N1)reaction 
mixture 

4 �g 25 

Hind III 10 units 2 
10xBuffer Tango 1x 0,5 
Water  2,5 
Total volume  30 
DsRed2N1-p80 
reaction mixture 

3 �g 25 

Hind III 10 units 2 
10xBuffer Tango  0,5 
Water  2,5 
Total volume  30 

2.2.19.2. Ligation  

Digested DNA fragments were run on agarose gel and desired DNA bands were isolated 

from agarose as decribed before.  

Since Sma I creates blunt ends, PEG solution that is known to enhance blunt-end 

ligation was added to the ligation reaction. Ligation reaction was performed by adding 

compounds in the table below: 

Table 2.26. Ligation reaction mixture contents 
Contents Amount Volume, �l 
Plasmid DNA 
(pEGFP-N1) 

50 ng 1 

Insert DNA(p80) 200 ng 7 
10 x buffer 1x 1,5 
Peg 4000 %10 1,5 
Ligase 20000u/ �l 2 
Water  2 
Total reaction volume  15 
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2.2.19.3. Transformation  

Ligation mixture was transformed into competent XL1 Blue cells as described previous 

sections. 

2.2.19.4. Colony PCR 

10 colonies were selected from transformation plate and resuspended in water. Then a 

PCR master mix was prepared by adding the compounds in Table 2.27: 

Table 2.27. Colony PCR reaction mixture 
Contents Amount Volume, �l 

10x PCR buffer 1x 25  
MgCl2 (25mM) 3 mM 15  
10x GC Melt  1x 25 
dNTP(10mM each) 0,2 mM each 5 
Chp80F1 primer  
(20 micromolar) 

1 mM 5 

Chp80R1 primer  
(20 micromolar) 

1 mM 5 

Taq DNA Polymerase 1,25u/50 �l 2 
ddH2O X 158 
Total reaction volume  240 

Prepared master mix was distributed equally into each tube and added to PCR tubes. 

After that, 1 µl of resuspended cells of each colony was added to PCR mixture. Colony 

PCR reactions were performed using a thermal cycler with the program in the table 

below and the result of PCR reaction was observed on agarose gel: 
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Table 2.28. Colony PCR conditions 
Cycles Temperature Time 
1 94 ºC 2 minutes 
3 94 ºC 30 seconds 
 67 ºC 30 seconds 
 68 ºC 3 minutes 
3 94 ºC 30 seconds 
 66 ºC 30 seconds 
 68 ºC 3 minutes 
6 94 ºC 30 seconds 
 65 ºC 30 seconds 
 68 ºC 3,5 minutes 
6 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 4 minutes 
6 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 4,5 minutes 
5 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 5 minutes 
5 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 5,5 minutes 
6 94 ºC 30 seconds 
 64 ºC 30 seconds 
 68 ºC 6 minutes 
Final extention 68 ºC 10 minutes 
Final hold 4 ºC ---------- 
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3. RESULTS  

3.1. RNA Isolation From Chicken Brain 

Adult chicken brain was dissected. 20 mg brain tissue was first weighed then it was 

disrupted and homogenized by a homogenizer in the lysis buffer. RNA isolation was 

performed from lysate by using “Roche High Pure RNA Tissue Kit”.  

Integrity and purity of the isolated RNA were checked by agarose denaturing gel 

electrophoresis technique. 18S and 28S Ribozomal RNAs appeared as two sharp 

bands on denaturing gel (Figure 3.1). 

 
Figure 3.1: Isolated 18S and 28S rRNA bands on denaturing agarose gel. 

In addition to this, PCR was also performed by using isolated RNA as a template to 

see whether there was genomic DNA (gDNA) contamination. PCR result was 

observed on agarose gel and no amplification product was seen on the gel, except 

primer dimers due to annealing of primer pairs to each other as a result of 

complementary sequences (Figure 3.2). It confirmed that there was not genomic 

DNA contamination in the RNA preparation.  
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Figure 3.2: PCR was performed to check genomic DNA contamination using RNA 
as a template. (Lane 1: Fermentas  Mass Ruler Mix, DNA Marker, Lane 2: PCR 
result). 

3.2. cDNA Synthesis From Isolated RNA 

cDNA was synthesized from chicken brain RNA by using “Fermentas RevertAid™ 

H Minus First Strand cDNA Synthesis Kit” which is designed for reverse 

transcriptase PCR. Oligo(dT) primers were used for this purpose.  

After cDNA synthesis reaction, a control PCR was performed to see if  synthesized 

cDNA would work well. For this reason, a 587 bp fragment of beta-actin gene which 

is a housekeeping one, was cloned with beta-actin specific primers. After agarose gel 

electrophoresis, 587 bp fragment was observed on the gel ( Figure 3.3), as expected.  

 
Figure 3.3: Control PCR for sytnhesized cDNA. (Lane 1: Fermentas  Mass Ruler 
Mix, DNA Marker, Lane 2: 587 bp beta-actin band). 
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3.3. PCR Cloning of Katanin p80 Subunit 

In order to clone 1974 bp neuronal katanin p80 subunit, specific primers were 

designed at first. Predicted mitotic katanin p80 sequence data from 

http://www.ncbi.nih.gov/ (NCBI- XM_413997.)  was used to design the primers.  

After numerous PCR reactions were performed for optimization, 1974 bp katanin 

p80 subunit was cloned by using specifically designed primers. Reaction mixture 

was run on agarose gel and  1974 bp band was observed ( Figure 3.4). 

 
Figure 3.4: Cloned p80 katanin subunit was run on agarose gel. (Lane 1: Promega 
BenchTop 1 kb DNA Ladder, Lane 2: top band indicates p80 and other lower bands 
indicates unspecific amplification products). 

Cloned p80 was then ligated into pTZ57R/T cloning vector included in “Fermentas 

Ins T/A Cloning Kit”. Ligation was performed mixing DNA at a 1:5, vector:insert 

molar ratio into 15 �l reaction volume. This construct, is then, transfected into 

competent E.Coli XL1Blue Strain and 10 of the transformation colonies were 

selected from selective ampicillin plates by using blue/white screening method. 

Colony PCR was performed with these colonies using M13 Forward/Reverse 

Universal primers (Invitrogen). After that, PCR reactions were run on agarose gel 

and it was shown that all of ten colonies had the 1974 bp p80 insert (Figure 3.5). 

Plasmid-p80 construct was then purified from one of these colonies with “Roche 

High Pure Plasmid Isolation Kit”. 
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Figure 3.5: Colony PCR results were observed by agarose gel electrophoresis.( Lane 
1: Promega BenchTop 1 kb DNA Ladder, Lane 2-11: PCR results of different 
colonies). 

3.4. DNA Sequencing 

Sequence PCR was performed in order to confirm the sequence of p80 katanin by 

using both M13F/R Universal Primers and sequence specific primers. After PCR 

purification of the product, sequencing was carried out with Applied Biosciences 

3100-Avant DNA Sequencer.  

The obtained nucleotide sequence for chicken neuronal p80 katanin was submitted to 

GenBank with the accession number DQ410670. Sequence result was aligned with a 

sequence of p80 cloned from mitotic chicken bursal lymphocyte cells (Source: 

http://www.ncbi.nih.gov/ Reference number: NCBI- NM_001030559) by using 

ClustalW tool, available at http://www.ebi.ac.uk/clustalw/index.html and BLAST 

tool, available at http://www.ncbi.nlm.nih.gov/BLAST/ (nucleotide-nucleotide 

BLAST (blastn)).Alignment results showed  high similarity of 99% between two p80 

sequences. 
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Sequence of cloned chicken katanin p80 is shown in the Table 3.1. below:  

Table 3.1. Chicken neuronal p80 katanin sequence 
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DNA sequence of p80 was converted into amino acid sequence by using 

TRANSLATOR tool, available at http://www.justbio.com/tools.php. P80 amino acid 

sequence is shown in Table 3.2. below:  

Table 3.2. Amino acid sequence of chicken neuronal p80 katanin 

 

3.5. Subcloning of p80 into pEGFP-N1 Fluorescent Expression Vector   

P80 was cut out from pTZ57R/T cloning  vector with appropriate restriction enzymes 

in order to be subcloned into pEGFP-N1 expression vector. The orientation of p80 

had to be changed while subcloning it into pEGFP-N1 since it was ligated in reverse 

orientation into pTZ57R/T. Appropriate restriction enzymes for this purpose were 

not easily available to us. Hence p80, first, cut out and ligated into a suitable vector, 

DsRed2-N1 to change solely its orientation.  

Kpn I and Sal I restriction endonucleases were chosen to be the most appropriate 

ones for this purpose. Kpn I and Sal I cut out p80 from pTZ57R/T by cutting the 

vector from positions 627. and 667. ,  respectively. DsRed2-N1 was also cut with Sal 

I and Kpn I at positions 639 and 649., respectively.  

 
Figure 3.6: Restriction map for pTZ57R/T-p80 construct. 
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Figure 3.7: Restriction map for  pDsRed2-N1 vector. 

Restriction reactions were performed with these enzymes for both pTZ57R/T- p80 

and DsRed2-N1. After restrictions were completed, they were run on agarose gel and 

fragments close by size to pTZ57R/T vector part (2,9 kb) and p80 insert part (1,98 

kb) and opened up DsRed2-N1 part (4,7 kb) appeared (Figure 3.8). Then p80 and 

opened up DsRed2-N1 were extracted from agarose gel for ligation procedure. 

 
Figure 3.8: Restriction-digestion of DsRed2N1 vector and pTZ57RT-p80 construct. 
(Lane 1: 4,7 kb. opened up DsRed2N1, Lane 2:bottom band belongs to 1980 bp. p80, 
Lane 3: Fermentas, Fast Ruler, High Range Dna Ladder). 

p80-DsRed2-N1 construct was obtained by ligation reaction and this construct was 

transformed into E.Coli XL1 Blue Strain.10 of the transformation colonies, then, 

were selected in order to perform colony PCR. PCR results were observed on 

agarose gel (Figure 3.9). It was shown that all ten colonies had the insert. p80-

DsRed2-N1 was purified from transformation colonies with “Roche High Pure 

Plasmid Purification Kit”. 
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Figure 3.9: Transfomation colonies were checked by colony PCR for the presence of 
p80-DsRED2-N1 construct. (Lane 1: Fermentas, Mass Ruler, High Range DNA 
Ladder, Lane 2-11: PCR results of different colonies,).  

After that, p80 was cut out from DsRed2-N1 with Hind III and Sma I restriction 

endonucleases, while pEGFP-N1 was opened up with the same enzymes. Hind III cut 

DsRed2-N1 at position 622, whereas Sma I cut at position 658.  

 

 
Figure 3.10: Restriction map for pDsRed2-N1-p80 construct. 

Similar to that, Hind III and Sma I opened up pEGFP-N1 by cutting at positions 623 

and 659 bp., respectively.  
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Figure 3.11: Restriction map for pEGFP-N1 vector. 

Restriction mixtures were run on agarose gel and bands indicating p80 part and 

opened up pEGFP-N1 part were extracted from agarose gel (Figure 3.12). 

 
Figure 3.12: Restriction mixtures that were run on agarose gel. (Lane 1: Fermentas, 
Mass Ruler, High Range Dna Ladder, Lane 2: cut out p80 band, Lane 3: opened up 
pEGFP-N1 vector band). 

p80 was ligated into pEGFP-N1 and then transformed into E.Coli XL1 Blue Strain.  

 
Figure 3.13: pEGFP-N1-p80 construct map. 
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ten of the transformation colonies, then, were selected in order to perform colony 

PCR. PCR results were observed on agarose gel (Figure 3.14).   

It was shown that all ten colonies had  the desired  insert but only one colony had a 

bright band, the other p80 bands were very weak due to taking approximate amounts 

of cells from colonies while performing colony PCR. p80-pEGFP-N1 was then 

purified from transformants by using “Roche High Pure Plasmid Purification Kit”. 

 
Figure 3.14: Colony PCR results after transformation of  pEGFP-N1-p80 construct. 
(Lane 1: Fermentas, Mass Ruler, High Range Dna Ladder, Lane 2-9: Colony PCR 
results).  
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4. DISCUSSION 

4.1. RNA Isolation 

After cDNA was synthesized from isolated RNA, several PCR optimizations were 

performed with this cDNA in order to clone p80 subunit but every time a smear 

occured  from beginning to the end of the lane that were loaded with PCR product 

on the gel (Figure.4.1).  

 
               Figure 4.1: PCR product was run on agarose gel. (Lane 1: Fermentas  Mass Ruler 

Mix, DNA Marker, Lane 2 : Smeared PCR product). 

               Since this smear could be resulted from gDNA which might have been  isolated 

together with RNA from brain tissue, a control PCR was performed by using RNA 

as template to understand if there was any DNA contamination. It was expected to 

see any amplification as a band or a smear on gel in case of gDNA contamination. 

This control PCR resulted in smeared PCR product caused by gDNA (Figure.4.2).  
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Figure 4.2: Control PCR for gDNA contamination. (Lane 1 : Fermentas  Mass Ruler 
Mix, DNA Marker, Lane 2 : Smear indicated gDNA contamination during RNA 
isolation). 

When RNA is being isolated from tissues, genomic DNA (gDNA) in the cells is 

isolated together with RNA. Since gDNA interferes with further steps like cDNA 

synthesis and PCR cloning, it should be eliminated during RNA isolation. Therefore, 

there is a DNase I treatment step in the RNA isolation procedures to digest residual 

contaminating DNA. According to the followed "Roche High Pure RNA Tissue Kit" 

manufacturer’s instructions, DNase I treatment should be done for 15 minutes at 

room temperature after lysis of the cells but, in this experiment, it was seen that this 

time was not enough to get rid of all gDNA. Even though purified RNA was 

checked on denaturing agarose gel to see its purity and integrity, gDNA 

contamination could not be seen on the gel. Since gDNA was too large, gel running 

time was not enough for gDNA to migrate through the gel. Hence, it could not be 

visualized under UV Transilluminator. 

               Thus, a new RNA isolation was performed and DNase I incubation time was 

extended from 15 minutes to 45 minutes for higher efficiency. The achieved RNA 

was again used as template for control PCR and any PCR product was not seen on 

agarose gel, except primer dimers (Figure.4.3). 
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Figure 4.3: Control PCR result by using RNA as a template after new RNA 
isolation. (Lane 1 : Fermentas  Mass Ruler Mix Range DNA Marker, Lane 2 : No 
PCR product was observed).  

               4.2. PCR Optimization 

               Firstly, a 740 bp -C terminal  part and a 943 bp middle part of p80 that contained the 

four conserved WD 40 repeats were chosen to be cloned. Since it is easier to clone 

smaller fragments with PCR  than bigger ones, choosing these two fragments of p80 

was thought to be advantageous for the beginning of the study. For this purpose, 

specific internal primers were used. Since the exact chicken neuronal p80 sequence 

was not known, a predicted p80 sequence that was submitted on 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi, was used in order to design the 

specific primers. Melting temperatures of primer pair for 740 bp part were as 

follows: 

Chp80F3: 58,2 °C 

Chp80R3: 59,5 °C 

               Melting temperatures of primer pair for 943 bp part were as follows: 

Chp80F2: 58,2 °C 

Chp80R2: 59,5 °C 

               Hence, 54 °C was used as annealing temperature of the reactions and an extention 

time ranging from 2 minutes to 4,5 minutes was used in PCR.  
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               As a result, 740 bp part appeared as a sharp and bright band on the gel whereas 947 

bp part band was very weak with a smear on the lane. In order to optimize  this, 

annealing temperature was increased from 54 °C to 57 °C and an extention time 

ranging from 3 minutes to 6 minutes was used to increase the specificity of the 

annealing and to dicrease the smearing. PCR result was observed on agarose gel and 

947 bp bright band was appeared. After sequence analysis of these two regions of 

p80, four conserved WD 40 repeats were observed, as expected.  

               These preliminary results ensured p80 existence in cDNA library which made 

further steps easier. 

               Melting temperatures of the primers that were used to clone complete coding 

sequence of p80: 

Chp80F1:62,5 °C 

Chp80R3:59,5°C 

               59 °C annealing temperature was first chosen in order to clone p80. It was expected   

to see 1974 bp band that would indicate p80 on agarose gel after PCR, but there  

were  unspecific 500 bp and 750 bp bands and a very weak 1974 bp band 

(Figure.4.4).  

 

 
               Figure 4.4: PCR result for complete coding sequnce of p80. (Lane 1: Promega 

BenchTop 1 kb DNA Ladder, Lane 2: Top weak band idicates p80 and lower 
brighter bands indicate unspecific products). 
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               Since p80 DNA sequence is 46% GC base-rich, it was possible for two strands of 

DNA not to dissociate completely during denaturation step of PCR. Because there is 

three hydrogen bonds between G and C bases and these bonds are stronger then the 

bonds between A and T bases thus it is difficult to dissociate. As a result of 

incompleted dissociation of two strands, there may have been partial cloning of p80 

and it may have been seen as smaller unspecific products on agarose gel. A PCR 

component known as "GC Melt" was used so as to make dissociation of two strands 

easier. Its efficiency was controlled by performing the same reactions with and 

without GC Melt at the same time. It was seen that GC Melt made dissociation of 

two strands easier.  

               Another adjustment was done to increase the primer annealing specificity. A 

"touchdown PCR" was performed with an annealing temperature ranging from 62 

°C to 60 °C to determine the most suitable and critical annealing temperature for the 

primers. This time, expected 1974 bp. band was observed on the gel but it was weak 

and there were 500 bp. and 750 bp. bands again (Figure.4.5).  

 
               Figure 4.5: Touchdown PCR (62°C-60°C) results. (Lane 1: Promega BenchTop 1 

kb DNA Ladder, Lane 2 : top weak band idicates p80 and lower brighter bands 
indicate unspecific products). 
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               Different touchdown PCR reactions were performed to get rid of unspecific smaller 

bands and to have a brighter desired band. Finally, a touchdown PCR with an 

annealing temperature range between 67 °C and 64 °C provided the best result. 

Although unspecific bands did not disappeared completely, they got very weak and a 

sharp 1974 bp. band was observed on the gel. It was sufficient for sequence analysis. 

After sequencing, it was shown that obtained sequence had a 99% similarity with the 

submitted mitotic p80 sequence. Consequently, chicken neuronal p80 sequence was 

cloned for the first time.  

               Unspecific smaller fragments’ sequences were, too, analyzed and it was shown that 

these fragments were not a region or a part of p80 but they belonged to two different 

proteins that have roles in nerve system, too.  

              4.3. Restriction-Digestion Reactions 

               Since p80 was in reverse orientation in pTZ57R/T cloning vector, restriction 

enzymes should have been chosen in a way that the orientation of p80 would change 

while ligating into pEGFP-N1. The suitable enzymes for this purpose were not 

avaliable. Hence, it was thought to subclone p80 into another suitable vector in order 

to change the orientation at first. It would make subcloning p80 into pEGFP-N1 

expression vector possible. The most appropriate vector was DsRed2-N1 for this 

purpose and  p80 was first ligated into DsRed2N1 in its normal orientation then it 

was cut out with suitable restriction endonucleases and ligated into pEGFP-N1. 
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5. CONCLUSIONS 

               Since katanin is a microtubule severing protein, it may be utilized to regenerate 

injured neurons. p80 subunit of katanin is thought to have an important role in 

regulation of the severing activity of katanin. However, exact functions of p80 

subunit are not well understood. In order to better understand its possible role in 

regulation mechanism, in this study, chicken neuronal p80 katanin was successfully 

cloned from brain tissue for the first time. Sequence of p80 was analyzed and 

submitted to GenBank with the accession number DQ410670 ( Yildiz A., Baas 

P.W., Karabay A.). After that, p80 katanin was subcloned into pEGFP-N1 

fluorescent expression vector in the right orientation to be able to visualize its 

functions in the living environment, and pEGFP-N1-p80 construct was obtained. 

               Cell culture studies are currently underway. Obtained construct is being transfected 

into HeLa cells for preliminary studies. Then, it will also be transfected into chicken 

embryo primary neurons to determine the possible roles of katanin in neuron 

regeneration. Furthermore, in situ hybridization will be carried out with chicken 

embryo cryosections to visualize p80 katanin  distribution in cells. 

These studies will enable us to better understand the vital roles of katanin in 

neurons. In the light of these studies, katanin may become a key to the riddle of 

repair and regeneration of injured neurons in the future. 
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