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ÖLÜ ZAMANLI SİSTEMLER İÇİN YENİ BİR KURAL TABANI 

DEĞİŞTİRME YÖNTEMİ 

ÖZET 

Ölü zamanlı sistemlerde, sistemden gözlenen bilgi geçmiş bir ana aittir ve bu 
gecikmeli işareti kullanmak, kontrol sistemi uygulamalarında başarısız sonuçlara 
neden olabilir.  Bu çalışma, ölü zaman bilgisinin sistem performansını artırmak adına 
kural tabanının yeniden düzenlenmesinde nasıl kullanılabileceği ile ilgilidir. Temel 
olarak, sistemin ölü zamanından kaynaklanan bilgi gecikmesinin kural tabanının 
uygun şekilde kaydırılması ile telafisi önerilmektedir. Kural tabanı kaydırma 
yöntemini etkileyen değiştirgeler (parametreler) detaylı bir biçimde incelenmiş ve 
kaydırma yöntemi, sistem model değiştirgelerine göre çizelgelenmiştir. Yeni yöntem 
birçok farklı sistemde denenmiş ve etkisi ortaya konmuştur. Yöntemin, ölü zaman 
değişimlerine, yapısal ve ayar değiştirgelerinin değişimlerine ve sistem model 
değiştirgelerindeki belirsizliklere karşı gürbüzlüğü tüm hatlarıyla ortaya konmuştur.  
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A NEW RULE - BASE MODIFICATION SCHEME FOR THE TIME DELAY 

SYSTEMS 

ABSTRACT 

In time delay control systems, the observed information is related to a past instant 
and using this delayed signal may cause unsatisfactory results in control system 
applications. This paper deals with how time delay information can be used in 
reorganizing the rule base so as to improve system performance. Basically, it 
proposes a new scheme of appropriate shifting of the rule base to compensate the 
information lag caused by time delay in the system. The parameters affecting the 
shifting scheme are discussed in detail and the shifting scheme is tabulated with 
respect to system model parameters. Applications of the new methodology in 
different systems are simulated and the effectiveness of the scheme is fully 
illustrated. Robustness in case of time delay changes, structural and design parameter 
variations and system model parameter uncertainties are also discussed intensively. 
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1. INTRODUCTION 

1.1 Introduction 

Following the first fuzzy control application carried by Mamdani [1], fuzzy logic is 

utilized quite often in control problems. During the past few decades, there are many 

successful applications with fuzzy logic controllers(FLCs) in industry. They have 

been reported to be successfully used for a number of complex and non-linear 

processes [2]. Moreover, the experience has shown that, fuzzy control may often be a 

preferred method of designing controllers for dynamic systems even if traditional 

methods can be used [3].  

Between the various types of fuzzy logic controllers, just like the widely used 

conventional proportional integral (PI) controllers in process control systems, PI type 

FLCs are most common and practical [4].  

The research for improving FLC performance spreads over number of areas. But 

simply, we can categorize the design parameters within two groups [5]: 

a) Structural parameters 

b) Tuning parameters. 

Basically, structural parameters include input/output (I/O) variables to fuzzy 

inference, fuzzy linguistic sets, membership functions, fuzzy rules, inference 

mechanism and defuzzification mechanism. Tuning parameters include I/O scaling 

factors (SFs) and parameters of membership functions (MFs). Usually the structural 

parameters are determined during off-line design while the tuning parameters can be 

calculated during on-line adjustments of the controller to enhance the process 

performance, as well as to accommodate the adaptive capability to system 

uncertainty and process disturbance. Unfortunately we still do not have a well-

formulated designing scheme that is globally acceptable.   
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Most of the practical processes under automatic control are nonlinear higher order 

systems and may have considerable dead time [4]. Higher order systems can be 

modeled by a first order counterpart [6] as soon as convenient approximations are 

carried, but control action is unavoidably delayed in a process with dead time. For 

this reason, dead time is recognized as the most difficult dynamic element naturally 

occurring in physical systems [7]. Therefore, any useful technique of designing a 

control system must be capable of dealing with dead time [4]. Conventional PI (or 

PID) controllers are frequently short in managing systems with dead time. To have a 

satisfactory performance the controller output or process input should be a nonlinear 

function of error and change of error. FLCs try to incorporate this nonlinearity by a 

limited number if – then rules [4]. As a result FLCs are used more commonly as the 

time delay or nonlinearity is the matter of concern. 

For the time-delay process, the observed information comes later than desired for 

taking the control action. When used directly, the delayed information from the 

process gives wrong information to the rule base, and hence wrong control to the 

process [8]. To overcome this information lag, Li and Gatland [9] proposed shifting 

upper side of the rule base to left and bottom side to right for one cell. After this 

study Chang and Wang [10], in their Cellular CDMA System, used the same shifting 

strategy. Li and Tso [8] suggest that this method may not be accurate enough and 

requires larger rule bases. If there are too few rules, it is hard to provide proper 

compensation. Finally Zhuang and Roth [11] used the proposed method for their 

Laser Tracking System and find fairly good results for considerably small time 

delays. 

This thesis work is devoted to enlighten the use of time delay information in shifting 

the rule bases. There exist many aspects to be considered in shifting operation and 

obtaining a better rule base. The shifting amount should be distinct for different time 

delays; it should even vary in between rows, where rows designate Δe. The time 

constant of the plant modeled by first order system should play a key role in 

designing the rule base shifting strategy. With all these in mind one may tabulate the 

shifting amounts of each row with respect to system model parameters: time delay 

value and time constant of the plant. 
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The rest of the thesis work is divided into 5 sections. In Section 2, the most common 

architecture of a FLC is given.  The proposed rule base shifting strategy is detailed in 

Section 3. In Section 4, simulation results are presented. When the FLC structure 

deviates from the very generic structure given in Section 2 or in case of time delay 

and system model parameter uncertainties, the performance of the proposed shifting 

scheme is discussed in Section 5. Finally possible extensions and conclusions are 

given in Section 6.    
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2. ARCHITECTURE OF THE FUZZY LOGIC CONTROLLER 

2.1 Feedback Control Structure 

As it is mentioned in the Introduction section, the conventional PI type controllers 

are the most common controllers used in practical implementations. Among FLCs, PI 

types FLCs are also the best solution for the majority of problems. In all of the 

simulations done in this study, a PI type FLC is used having error (e) and change of 

error (Δe) as inputs and change of control signal (Δu) as output. Corresponding 

model of the overall control loop is shown in Figure 2.1.  

FLC
ke

kde

ko

1
z

z
z -1 Plant-

- +

+r e

 Δe 

Δu u y

 

Figure 2.1: Basic control blocks illustration with PI type FLC 

In the model of the widely used PI controller of Figure 2.1, e stands for error, Δe for 
change of error in the sampling interval, u is the control action, Δu is the change of 
control action in the sampling interval, r is the reference value, y is the output of the 
system and ke, kde, ko are the scaling factors.   

2.2 Universe of Discourse and the Scaling Factors 

The universe of discourse is chosen to be [-1, 1] for all membership functions. The 
input and output parameters are scaled to fit this range through the help of scaling 
factors.  
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Scaling factors can be divided into two groups as input scaling factors (ISFs) and 
output scaling factors (OSFs). ISFs normalize the real world inputs to the range 
membership functions are defined. OSF is used to change the normalized control 
effort to its practical value. The relation between real and normalized values of the 
parameters can be simply given as: 

 eFLC = e * ke    

 ΔeFLC = Δe * kde                (2.1) 

 Δu = ΔuFLC * ko  

where eFLC and ΔeFLC are the normalized parameters entering FLC controller, ΔuFLC 
is the normalized FLC output; e, Δe and Δu are respective actual outputs, and ke, kde, 
ko are the error scaling factor, change of error scaling factor and the control effort 
change scaling factor, respectively.  

2.3 Membership Functions and the Inference Mechanism 

For the development and simulation of the algorithm, throughout the report, 7 fuzzy 
regions are defined for each of the input and output parameters. This structure sums 
up to 49 rules. Actually that many rules is practically feasible and therefore widely 
used in fuzzy control applications. The fuzzy regions are named as NL (Negative 
Large), NM (Negative Medium), NS (Negative Small), Z (Zero), PS (Positive 
Small), PM (Positive Medium), PL (Positive Large). Figure 2.2 gives the MFs of 
input variables and the output variables. The inference mechanism is Takagi-Sugeno 
type and therefore the output membership functions are singleton. Singleton 
membership functions make calculations simpler and they are easier to implement in 
real world applications.  

Although the very generic membership functions are chosen for the fuzzy controller, 
the extensions for these structural parameters are investigated in Section 5. 
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μ (e and Δe)

      NL            NM NS      Z PS PM PL
1

-1 10.750.50.250-0.25-0.5-0.75

                        (a) 

μ  (Δ u) 

      NL       NM      NS        Z       PS      PM      PL
1

-1 10.750.50.250-0.25-0.5-0.75

                    (b) 

Figure 2.2: (a) MFs for e and Δe. (b) MFs for Δu. 

2.4 Rule-Base 

The rule-base for FLC has the most unbiased symmetric structure for the sake of 
generality. (Table 2.1) Basically, when change of error is ‘Zero’ (Δe = Z), the change 
of control effort (Δu) is in the same magnitude and direction with the error (e). This 
Δu value is abbreviated as Δu0. In the other entries of the rule-base Δu is given by the 
following equation, 

 Δu = Δu0 + Δe                  (2.2) 
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          Table 2.1:  Rule-Base for Generic FLC 
 

Δe/e NL NM NS Z PS PM PL 

PL Z PS PM PL PL PL PL 

PM NS Z PS PM PL PL PL 

PS NM NS Z PS PM PL PL 

Z NL NM NS Z PS PM PL 

NS NL NL NM NS Z PS PM 

NM NL NL NL NM NS Z PS 

NL NL NL NL NL NM NS Z 
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3. PROPOSED RULE-BASE SHIFTING STRATEGY 

When a delay is introduced in a system either by the nature of the system or by the 

external devices used, the observed information is from a past instant. Using this 

measured information may cause unsatisfactory results in time delay systems.  But if 

we can guess the actual output information from process trend (from the information 

we have) then we can reorganize our rule base. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Regions for a rule base classified according to signs of (e, Δe). 

 

In Figure 3.1, a regular rule base is divided into 4 regions besides Δe is equal to 

‘zero’ row. In R1 region, error is positive and decreasing in magnitude since change 

of error is negative. Therefore, for non-zero time delay, the actual (e, Δe) pair should 

lie somewhere in the left side of the measured one. To compensate this deviation, the 

rules corresponding to R1 can be shifted to right. If shifting amount is correct, then 

Δe/e large              N             small small                   P            large 

large 

P 

small 

     

             R3 

         

                   R4 

Z   

small 

N 

large 

 

             R2 

   

                    R1 
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the controller performs appropriate actions. In R2, error and change of error are both 

negative and error magnitude has tendency to increase. Again the actual point is in 

the left of the observed one and shifting the rules to right may fit if it is in correct 

amounts. Similar arguments are valid for the upper side of rule base. In R3 and R4 the 

actual points are to the right of observed ones and rule base shifting should be to the 

left.  When Δe is ‘zero’, than that row is unbiased and no shifting is needed. 

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t(sec)

y

nominal plant
0.5s time delay

1

2

3

 

Figure 3.2: Arbitrary system step response in the absence of time delay (straight 

line) and the measured data with a delay of 0.5 seconds (dashed line) 

In Figure 3.2, time delay effect is modeled as a shift in the plane for an arbitrarily 

chosen plant.  At around t = 1s, the arrow labeled 1, shows the difference of error 

magnitudes. This point corresponds somewhere at R1 region in Figure 3.1. A crisp 

error value of about 0.8 is measured, whereas, the actual error value around 0.4 

which implies a deviation of %100 from the actual value. However, since it is known 

that the system has positive error and have tendency to overcome this (since Δe is 

negative), one can assume that the delayed system error must have been decreased. 

Then the question is how much is this decrease? Li and Gatland [9] shifted all the 

rules except for the ones in Δe equals to ‘zero’ row for one cell. This shifting scheme 
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yields better performances for some systems but since it requires shifting even for 

small error changes (around the set point) it can cause oscillatory behavior and 

chattering. Also if the delay value is too high, this shifting amount may not be 

adequate.  

The proposed rule-base shifting strategy is a consequence of various parameters 

affecting the system response. As a matter of fact, the shifting amount depends on 

error magnitude, time delay magnitude, change of error magnitude and time constant 

of the (first order) plant under control. In this section these parameters are discussed 

in detail one by one. Next, tabulation will be given covering all the aspects touched. 

3.1. Effect of Error Change Rate  

It is easily seen that the difference of the two responses in terms of error magnitude 

is not same at each point if one carefully examines the points illustrated by the three 

arrows in Figure 3.2. At the arrow labeled as 1, error change rate is quite high and 

the response curve climbs up very rapidly to the set point in the delay time of 0.5s. 

At arrow labeled as 2, we measure to be at the set point value, but considering the 

time delay and interpreting change of error correctly we can feel that the actual 

system response value must be somewhere above that point. Similarly at arrow 

labeled as 3, as system response gets closer to the steady state region (very low 

change of error), the difference between the two graphs becomes nearly zero. Thus, 

as the error change (between sampling intervals) increases, does the difference of 

system responses between nominal and actual one. Therefore, the amount of shifting 

must be kept ‘low’ as system gets closer to the steady state region (when Δe is low) 

and it should be ‘high’ when the response rate of change of the system is high. No 

rule base shifting is appropriate for the small values of change of error to prevent 

oscillations and decrease chattering effect. Therefore, the shifting amount is, as it 

must be, not same for all the rows of the upper or lower halves of the rule base. In 

this study, the rows designate Δe changes.  
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3.2. Effect of Time Delay Magnitude 

Time delay magnitude also plays an important role in predicting the actual response 

of the system. The two graphs of Figure 3.2 depart farther away from each other for 

higher delay values and thus the difference between the actual and measured values 

increases. Similarly, the two graphs get close to each other for a smaller time delay 

and the difference between the actual and measured values decreases. This is 

illustrated in Figure 3.3. In short, the shifting amounts must be adjusted in correlation 

with time delay values.  

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t(sec)

y

nominal plant
0.5s time delay

1

2

3

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

t(sec)

nominal plant
1s time delay

1

2

3

 

           (a)        (b) 

Figure 3.3 (a) Arbitrary system step response in the absence of time delay (straight 

line) and the measured data with a delay of 0.5 seconds (dashed line). (b) Same 

system step response with time delay is increased to 1s.  

3.3. Effect of Fuzzy Resolution 

The resolution of the membership functions plays another key in rule base shifting. 
The non-linearity effect of the time delay process can be more precisely fit if more 
fuzzy regions are defined for each parameter. Figure 3.4 illustrates the variation of 
the shifting in infinite resolution case. That is impractical in real world applications 
and this can only be achieved by the use of limited number linguistic variables. It is 
obvious that adjusting the shifting amounts for Δe rows is more logical and efficient 
for higher resolutions. Naturally, on the other side of the argument, there lays 
computational complexity and this trade of should be handled by the designer. In this 
work 7 fuzzy regions are defined for each variable as discussed in detail in Section 2. 
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Figure 3.4: Ideal shifting mechanism for infinite resolution. 

3.4. Effect of System Time Constant 

For a generic tabulation of the shifting amounts, information from the structure of the 

plant under control should also be used. Since a first-degree counterpart can model 

systems, the plants in this study are chosen or approximated to be first order for the 

ease of calculations. The transfer function can be given as follows, 

sL-e
1

)(
Ts

KsG
+

=                (3.1) 

where L is delay time, K is the gain and T is the time constant for the process model. 

Then, the time constant is the sole parameter determining the system characteristics. 

For a fair judgment about the magnitude of the time delay, it must be evaluated in 

conjunction with the time constant. That is, for a system having 0.05 seconds as time 

constant, 1 second of time delay is rather big, whereas, for a slower system having 3 

seconds as time constant, same value of time delay has much smaller deterioration 
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effect on the system performance. To combine time constant and time delay 

information the following proportion τ  is used, to normalize time delay value, 

 
TL

L
+

=τ                  (3.2) 

The new parameter τ  also normalizes the time delay value to the range defined on 

the interval [0, 1]. This quantity is called the normalized dead time or controllability 

ratio. It has generally and roughly been found out that processes with small τ are 

easy to control and the difficulty in controlling the system increases asτ increases. 

[15] 

3.5. The Rule-Base Shifting Scheme 

For the controller developed in Section 2, several shifting schemes are investigated 
for many time delay values and performance indexes. Some of the shifted versions of 
the rule-base of Table 2.1 are given in Table 3.1. The shifting amounts are equal and 
opposite in direction in lower and upper sides of Δe = Z (zero) row. For instance, in 
Table 3.1.b., all the rows are not shifted equally; that is, the neighbouring rows of Δe 
equals to ‘Zero’ are not shifted, and the others are shifted for one cell in appropriate 
directions. This shifting scheme is coded as 011(shifted number of cells from low 
values to high values of Δe) and the corresponding controller is abbreviated as 
FLC_011. Table 3.1 includes four shifting schemes for FLCs that will be compared 
throughout the paper.    

Table  3.1: Different Shifting Schemes For Rule - Base of Generic FLC (a) 
FLC_001 (b) FLC_011, (c) FLC_023(d)FLC_033 

  

                                    (a) 
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                            Table  3.1 (CONTINUED)   

   

       

   (b) 

 

   (c)                                            

   

     (d) 
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In the light of all these results given up to now, the proposed shifting amounts with 
respect toτ are given in Table 3.2. The performance index used for the tabulation is 
in very generic form having a weighting factor for each performance measure, 

esstrtsmp
PI

10063100
1000

+++
=                 (3.3) 

where mp is the maximum overshoot, ts is the settling time (%2 settle band is used), tr 

is the rise time (time passing between the response reaches %10 to %90 of its final 

value) and ess is the steady state error. 

The proposed shifting scheme is consistent with our presumptions. Actually, these 
regions are not crisp for all cases, but changes slightly for different configurations of 
the membership functions and rules. Moreover, when a biased performance index 
specialized for improving either of the performance measures is used, the borders 
may change too.   

Actually, since the extreme rules are rarely fired, a change made in the shifting 

scheme related to the small and medium values of Δe will naturally make the most 

important effect on the system performance. Moreover, for Δe is equal to NS or PS, 

no shift is convenient to prevent oscillatory behavior. One can easily observe these 

two criteria in Table 3.2.  

Table 3.2: Proposed Shifting Schemes 

        τ  Appropriate shift 

τ  < 0.05 001 

0.05 <= τ  < 0.15 011 

0.15 <= τ  < 0.7 023  

τ >= 0.7 033 

 

 



 16

4. SIMULATION RESULTS 

In this section, simulation results are given. The most commonly used controller 
given in Section 2 is used for the simulations. The scaling factors shown in Figure 
2.1 are tuned for each case separately. The input scaling factor ke is chosen to be 
unity in all cases since reference is unit step and error is already normalized to [-1, 
1]. Unfortunately there is no commonly accepted method for choosing the other 
scaling factors. Therefore, they are usually found by trial error techniques. In this 
study, the scaling factors maximizing the performance index of Eq. 3.3 is used:  
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Figure 4.1: Effect of rule base shifting for a time delay value of 0.05s. τ is 0.047 in 
this case. 
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In Eq. 3.1, using K equal to 1 (compensated through output scaling factor) and 
choosing T = 1s to simplify the simulations, the equation becomes: 

sL-e
1

1)(
s

sG
+

=         (4.1) 

In all simulations, sampling time is 0.1s. For systems having 1s as time constant, this 
value is fair enough to reveal system characteristics. Simulation time varies for the 
specific example in order to fully justify controller performance.  

In the first example (Figure 4.1), the delay time is small in comparison to the time 
constant. As Table 4.1 reveals, 001 shift slightly improves the performance index 
value. Since the extreme rules have little influence on the controller this result seems 
to be reasonable. 
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Figure 4.2: Effect of rule base shifting for 0.1s delay time. 

Figure 4.2 illustrates the case when 0.1s delay is introduced to system. This 
corresponds to a normalized dead time (τ ) of 0.09 and the proposed shifting scheme 
is 011.  As a result shorter rise time yielded about 20% improvement. 
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Table 4.1: Performance Results for Generic FLC (Eq. 3.3) 

Delay time τ  Controller  Performance Index 

FLC         111.11 0.05s 0.046 

FLC_001         123.00 

FLC          93.00 0.1s 0.09 

FLC_011        109.97 

FLC         65.18 

FLC_011         84.24 

0.2s 0.17 

FLC_023         90.78 

FLC         26.83 0.9s 0.47 

FLC_023         37.02 

FLC         17.33 

FLC_023         23.08 

1.75s 0.64 

FLC_033         22.97 

FLC         11.76 3s 0.75 

FLC_033         15.72 

 

If time delay value is 0.2s, thenτ becomes 0.17 and Table 3.1 proposes 023 shift. It 
provides 40% improvement in the performance index. However, since these borders 
are not crisp and not discontinuous from one another, 011 shift gives also good 
results. This is illustrated in Figure 4.3. The performance index values for the three 
rule bases are given in Table 4.1.  
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Figure 4.3: Effect of rule base shifting for 0.2s delay time. 
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Figure 4.4: Effect of rule base shifting for 0.9s delay time. 
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Figure 4.4 shows the case when delay value and time constant are close to each 
other. In that case normalized dead time is 0.47. Once more, the proposed shifting 
scheme yields improved results. Especially the settling time of the proposed rule-
based system is fairly good. Overall, the improvement is 38%. Actually, as in most 
of the cases, for this case rise time seems to be deteriorated a little, too. This is 
expectable since the new structure assumes that the system ‘rose’ more than the 
observed and so the control action is somehow softer than that of the nominal 
controller’s, in region R1 of Figure 3.1.  

For a time delay value of 1.75 seconds, τ  is 0.64. This case is illustrated in Figure 
4.5. The rule-base shifting tabulation proposes 023 shift, but since τ  is close to 0.7 
(where the shifting scheme switches to 033), 033 shift gives almost same results.   
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Figure 4.5: Effect of rule base shifting for 1.75s delay time. 

Increasing the time delay far beyond the time constant of the plant is simulated in 
Figure 4.6.  
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Figure 4.6: Effect of rule base shifting for 3s delay time. 

 



 22

5. ROBUSTNESS AND PERFORMANCE ANALYSIS 

5.1. Robustness 

Although, it is derived for the most commonly used and unbiased design parameters 
for the sake of generality, the idea behind the proposed shifting scheme is valid even 
for the deviations in design parameters, imprecision in system model parameters and 
changes in the performance index measures. That is not to say the tabulation given in 
Table 3.1 is the best for all cases, instead, the point is, that the proposed scheme is 
better even if the design parameters vary. The designer should work with his \ her 
own parameters and own performance index in order to optimize shifting scheme and 
tuning parameters.  

In this section, all these aspects in a controller system design will be covered and the 
rule-base shifting scheme is shown to be robust for all the fluctuations in parameters. 
In all scenarios the other parameters affecting the design are assumed to be constant. 
For each case one or two examples are simulated.  

5.1.1. Robustness to Changes in Time Delay (L) 

Because of the external devices used or nature of the system, the time delay 
magnitude in the system model can change. Using the shifted rule-base in the 
controller yields improved results even in case of time delay variations. In Figure 
5.1, for a time delay of 1.75 seconds, responses of the system to variations on the 
time delay are simulated. The system response and performance index is given in 
Figure 4.5 and Table 4.1, respectively. In Figure 5.1.a, after the optimization of the 
parameters for L = 1.75s, time delay is increased 15% (2 seconds) with no parameter 
retuning. Normally, both system responses corrupted. However, the result of the 
proposed method still outperforms its nominal counterpart in the same amount 
(33%). In a similar but opposite manner, if the time delay is decreased to 1.5 
seconds, with other parameters remaining the same, proposed method gives better 
system responses. (Figure 5.1.b and Table 5.1) 

 



 23

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

t(sec)

y

FLC
FLC 023

      (a) 

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

t(sec)

y

FLC
FLC 023

 

      (b) 

Figure 5.1: Effect of time delay variations (All SFs are optimized for L = 1.75s) (a) 
L = 2s, (b) L = 1.5 
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  Table 5.1: Performance Results for Changes in Time Delay Magnitude (Eq. 3.3) 

Delay time Controller  Performance Index 
1.75s FLC         17.33 
 FLC_023         23.08 
2s FLC         10.92 
 FLC_023         14.51 
1.5s FLC         18.03 
 FLC_023         21.60 

5.1.2. Robustness to Imprecision in Time Constant (T)  

Time constant is the sole model parameter for a first order plant. Time constant of 
the real world plant can deviate from the model because of the measurement errors or 
physical constraints. A control algorithm should be robust to these parameter 
uncertainties. As illustrated by Figure 5.2 and Table 5.2, the proposed shifting 
scheme has robustness in terms of time constant fluctuations. In the plant simulated 
in Figure 5.2, time constant is increased to 1.1 seconds causing the normalized dead 
time, τ , to decrease to 0.61. Therefore, as suggested by Table 3.1, again 023 shifting 
scheme is used for the simulations.  
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Figure 5.2: Effect of time constant increment (T is increased by 10% for L = 1.75s 
case) 
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Table 5.2: Performance Results for Time Constant Increment (Eq. 3.3) 

Delay Time Time Constant Controller  Performance Index 
FLC         16.47 1.75s 1.1s 
FLC_023         18.53 

5.1.3. Robustness to Changes in Knowledge Base of the Controller 

In the simulations of Section 4, the FLC has the most general structure. The rule-base 
and MFs are chosen to be in most unbiased manner. In this section robustness of the 
shifting scheme in terms of MFs and rule-bases will be illustrated.  

5.1.3.1. Changes in Membership Functions 

In this part, instead of the membership functions given in Figure 2.2, for input and 
output variables, symmetric triangles with equal base and 50% overlap with 
neighboring MFs are used. (Figure 5.3) The inference mechanism is Mamdani type. 
The other parameters, including the rule-base, remain the same. 

μ  (e , Δ e a n d Δu  ) 

1

0 0.33 0.66 1-0 .33-0 .66-1

N L P LP MP SZN SN M

Figure 5.3: Another set of MFs for e, Δe and Δu. 

The borders of the tabulation given in Table 3.1 may change slightly for different 
structural parameters, but the sequence is the same. The comparison to show the 
improvement with rule base shifting for a delay of 1.75 seconds is given in Figure 
5.4. In this illustration the parameters are optimized for each controller by using the 
new MFs and the same performance index given in equation 3.3. The improvement 
in terms of the performance index is about 10%. The system with the shifted 
controller has better rise time compared to nominal one. The other measures seem to 
be close to each other.  
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Figure 5.4: Effect of change MFs (The MFs of Figure 5.3 are used) (L = 1.75s) 

Table 5.3: Performance Results for Different MFs (Eq. 3.3) 

Delay Time Controller  Performance Index 
FLC         20.74 1.75s 
FLC_023         22.24 

 

5.1.3.2. Changes in Rule-Base  

5.1.3.2.1. Variation of Rules 

The rule- base of Table 2.1 is structured in a most unbiased manner. Though, most of 
the time, the rule-base is reorganized for different design purposes. In this part, 
shifting scheme will be simulated in two different rule – bases. The first one will be 
the rule-base that Li and Gatland [9] used for their thermal process is given in Table 
5.4. The response of the system is divided in regions according to signs of e and Δe 
(as in Figure 3.1) and the sign of the control increment is proposed directly or in 
terms of signs of e or Δe.  [9, 10, 13, 14] Control signal magnitude is given as,  

Δu = Δu0 + Δe + C                            (5.1) 
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where Δu is the change of control signal (output of the FLC), Δu0 is the control 
magnitude when Δe is equals to zero (Z), and C is the compensation term. Δu0 has 
the same fuzzy value as e. (i.e. if e is PM and Δe is Z, then Δu0 is PM, if e is NL and 
Δe is Z, then Δu0 is NL ) 

Table 5.4: Rule-Base of Li&Gatland [9]   a) FLC , b) FLC_023 

Δe/e NL NM NS Z PS PM PL 

PL Z PS PS PM PM PL PL 

PM NS Z PS PS PM PL PL 

PS NM NS Z PS PS PL PL 

Z NL NM NS Z PS PM PL 

NS NL NL NS NS Z PS PM 

NM NL NL NM NS NS Z PS 

NL NL NL NM NM NS NS Z 

      (a) 

Δe/e NL NM NS Z PS PM PL 

PL PM PM PL PL PL PL PL 

PM PS PS PM PL PL PL PL 

PS NM NS Z PS PS PL PL 

Z NL NM NS Z PS PM PL 

NS NL NL NS NS Z PS PM 

NM NL NL NL NL NM NS NS 

NL NL NL NL NL NL NM NM 

      (b) 
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The compensation term C is chosen zero (Z) for most cases, but there are exceptions: 

i. when the magnitude of error (for both negative and positive values) is large, 
then C can be chosen to speed up the response [9]. In this example this 
modification is not carried and C is assumed to be Z for the corresponding 
cases. 

ii. when the magnitude of error (for both negative and positive values) is 
small, then C can be chosen to decrease |u| to prevent intolerable overshoot 
[9]. This is a precaution for chattering and oscillatory behavior.   

In Table 5.4, the entries with non-zero compensating terms (C) are shaded.  

The simulations results show that proposed shifting scheme performs well for this 
modification, too. (Figure 5.5 and Table 5.5) Although the improvement in terms of 
performance index (Equation 3.3) appears to be decreased, one must remember that 
the shifting scheme is developed for the very generic structure given in Section 2. In 
this part, the shifting algorithm is shown to be robust to changes in both structural 
and tuning parameters. For a fair judgment, one should check the maximums (or 
minimums) of the own performance index used with the own design parameters.   
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Figure 5.5: Results for rule-base of Table 5.4 (L = 1.75s) 

 



 29

Table 5.5: Performance Results for Rule-Bases of Table 5.4 (Eq.3.3)  

Delay Time Controller  Performance Index 
FLC         19.70 1.75s 
FLC_023         21.33 

 

Table 5.6: Rule-base of Chopra et all. [15]      a) FLC , b) FLC_023  

Δe/e NL NM NS Z PS PM PL 

PL Z PS PS PM PL PL PL 

PM NS Z PS PM PM PM PL 

PS NM NS Z PS PS PM PL 

Z NL NM NS Z PS PM PL 

NS NL NM NS NS Z PS PM 

NM NL NM NM NM NS Z PS 

NL NL NL NL NM NS NS Z 

            (a) 

Δe/e NL NM NS Z PS PM PL 

PL PM PL PL PL PL PL PL 

PM PS PM PM PM PL PL PL 

PS NM NS Z PS PS PM PL 

Z NL NM NS Z PS PM PL 

NS NL NM NS NS Z PS PM 

NM NL NL NL NM NM NM NS 

NL NL NL NL NL NL NL NM 

           (b) 
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The second rule base is from Chopra et al. [15] (Table 5.6). The simulation is for a 
considerably small amount of delay time, 0.2 seconds, and the results revealed by 
Figure 5.6 and Table 5.7 are extremely satisfactory. (Shaded entries of Table 5.6 
designates the different cells from Table 2.1) 
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Figure 5.6: Results for the rule-base of Table 5.6. (L = 0.2s) 

Table 5.7: Performance Results for Rule-Base of Table 5.6 (Eq. 3.3) 

Delay Time Controller  Performance Index 
FLC         67.44 0.2s 
FLC_023         95.60 

 

5.1.3.2.2. Variation of the Size of the Rule-Base 

Rule-base shifting scheme has more effect as the variables are defined on more fuzzy 
regions.  This is because of the fact that with more resolution, non-linear structure of 
the shifting scheme can be fit more precisely. However, this work is based on the 
case where 7 fuzzy regions are defined for each parameter. Actually, the 
improvement achieved by increasing the number of fuzzy regions may not 
compensate the computational complexity. In Figure 5.7, for a FLC having 81 rules 
(9 fuzzy regions for each input and output parameter), 1.75 seconds of delay is 
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simulated. 0233 shift yields the best results in terms of performance index of 
Equation 3.3. The improvement, as seen numerically in Table 5.8, is not so much in 
comparison with 49 – rule counterpart. (Table 4.1)  
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Figure 5.7: Comparison of the controllers with 9 fuzzy region for L = 1.75s.  

Table 5.8: Performance Results for controller with 9 fuzzy regions (Eq. 3.3) 

Delay Time Controller  Performance Index 

FLC         17.64 

FLC_023         23.08 

1.75s 

FLC_0233         24.18 

5.1.4. Robustness to Imprecision in Scaling Factor (SF)  

The tuning parameters are optimized with global search algorithms or exhausted 
search. Because of the incapability of the search methods, the scaling factors can be 
found in the vicinity of the optimum values or, rather, limitations of physical 
constraints to implement number precisions can lead small deviations from the ideal 
values. A robust design should compensate such little number imprecision. To test  
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the proposed shifting scheme, all the optimum scaling factors are increased by 10% 
(Figure 5.8) and the performance index results are given in Table 5.9.   
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Figure 5.8: Performance Results for 10% increased SFs for L = 1.75s case 

Table 5.9: Performance Results for 10% increased SFs (Eq. 3.3) 

Delay Time Controller  Performance Index 

FLC         13.35 1.75s 

FLC_023         15.27 

5.2. Performance Analysis  

Up to this point in all simulations, the performance index given by Equation 3.3 is 
used. This performance index is widely used and accepted. However, one may 
change the weightings of the parameters for design purposes. Moreover it is possible 
to use a completely different performance index. For example, if one tries to design a 
controller for a system in which total error and overshoot are critical, then he / she 
may use a performance index utilizing integral absolute error, integral time square 
error and maximum overshoot: 

mpITSEIAE
PI

×++
=

100
1000

2       (5.2)   
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In this part, modified versions of Equation 3.3 and new performance index PI2 will 
be used in simulations. The simulations are held for L = 0.2, and as Table 3.1 says, 
023 shift is used. Actually for different rule-bases the borders may move or even the 
shifting schemes can change. Here these exceptions are neglected but the designer 
need to know that for different performance indexes, reorganization of Table 3.1 can 
be crucial.  

5.2.1. Modifications in the Performance Index 

5.2.1.1. Effect of Changing the Weighting Factor of the Settling Time 

The settling band for Equation 3.3 was 2%. One may not need it to be so tight. In 
Figure 5.9 and Table 5.10, the case with the same performance index of Equation 
3.3 only having 5% as settling band is used.  
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Figure 5.9: Comparison of the controllers for 5% settling band.  

Table 5.10: Performance Results for 5% Settling Band (Eq. 3.3) 

Delay Time Controller  Performance Index 

FLC         83.80 0.2 

FLC_023         96.00 
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5.2.1.2. Effect of Changing the Weighting Factor of the Rise Time  

To improve the rise time criterion for design purposes, the designer must increase 
the weighting factor of the rise time. The following is a illustration of the 
weighting factor of rise time increased by 50%. (Figure 5.10 and Table 5.11) Then 
the performance index function becomes,  
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Figure 5.10: Comparison of the controllers. (Scaling factors are optimized with 
respect to Equation 5.3.) 

Table 5.11: Performance Results for Equation 5.3  

Delay Time Controller  Performance Index 

FLC         56.09 0.2s 

FLC_023         72.91 
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5.2.1.3.Effect of Changing the Weighting Factor of the Steady - State Error  

If steady state error is fatal to the design, one must increase the penalty factor for 
steady state error value. To simulate this, in the performance index of Equation 
3.3, weighting factor of steady state error is multiplied by three,  

esstrtsmp
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30063100
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The results for simulations are given in Figure 5.11 and Table 5.12. 
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Figure 5.11: Comparison of the controllers. (Scaling factors are optimized with 
respect to Equation 5.4) 

Table 5.12: Performance Results for Equation 5.4 

Delay Time Controller  Performance Index 

FLC         64.28 0.2s 

FLC_023         90.40 
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5.2.1.4.Effect of Changing the Weighting Factor of the Overshoot 

For less overshoot, Equation 3.3 can be modified as,  

esstrtsmp
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The results for simulations are given in Figure 5.12 and Table 5.13. 
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Figure 5.12: Comparison of the controllers. (Scaling factors are optimized with 
respect to Equation 5.5) 

Table 5.13: Performance Results for Equation 5.5 

Delay Time Controller  Performance Index 

FLC         63.50 0.2s 

FLC_023         89.21 

 

5.2.2. Performance Index Utilizing Errors 

If the performance index of Equation 5.2 is used to optimize scaling factors, (Figure 
5.13 and Table 5.14) the improvement seems to be limited compared to others.  
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Figure 5.13: Comparison of controllers. (Scaling factors are optimized with 
respect to PI2 (Equation 5.2)) 

Table 5.14: Performance Results for PI2 (Eq. 5.2) 

Delay Time Controller  Performance Index 

FLC         61.96 0.2s 

FLC_023         66.02 
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6. CONCLUSIONS AND DISCUSSIONS 

A fuzzy rule-base shifting scheme in the presence of time delay is proposed. The 
effects of the time delay value, the system time constant, and the magnitude of error 
change are discussed for time delay systems in detail. Combining all of these aspects, 
the shifting scheme is tabulated with respect to the normalized dead time. The 
simulation results show that proposed rule-base shifting scheme improves system 
performance in considerable amounts. 

Although, it is derived for the most commonly used and unbiased design parameters 
for the sake of generality, the idea behind the proposed shifting scheme is valid even 
for the deviations in structural parameters. At the transitions of Table 3.1, reasonable 
performance indices give continuous results from one shifting scheme to another. 
Moreover, these borders can be moved for design purposes or different performance 
indexes. 

Shifting all rows by one cell (Li and Gatland [9]) yields improved results rarely. Still, 
their results are not as good as the ones tabulated in Table 3.1. In fact, when no 
manipulation on the FLC structure is executed, it generally worsens the results. 
Therefore, Li and Gatland [9] proposed two sets of scaling factors (for transient and 
steady state responses) and changing some entries of the rule base by utilizing a 
compensation term over equal shifting of all rows and then some more performance 
ameliorations are observed. However, the new controller produced simply by using 
the tabulation in Table 3.1 provides better results even in very generic form.   

Rule-base shifting scheme has more effect as the variables are defined on more fuzzy 
regions.  This is because of the fact that with more resolution, non-linear structure of 
the shifting scheme can be fit more precisely.  

The main idea of rule base shifting is predicting the actual information of the plant 
by using the delayed one. Actually, rule-base shifting is not the only way to achieve 
this. In the light of the investigations done in this paper, one may study on the 
structure and position of MFs and / or tuning of the scaling factors.  
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