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FOREWORD

In the thesis, longitudinal and lateral dynamic modes of an Unmanned Aerial Vehicle
(UAV) have been analyzed and different kind of automatic control systems consisted
of Model Reference Adaptive System Design: PI adjustment based on Normalized
MIT rule, PI adjustment based on Lyapunov stability theory and Augmented Optimal
LQR Control System design procedures have been discussed. During the research,
necessary calculations and analyses have been conducted with the help of MATLAB
v7.1.
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SUMMARY

In this study, stability analysis of an Unmanned Aerial Vehicle (UAV) has been
conducted and several control system designs have been suggested for autonomous
flight. In the study, firstly, stability analyses have been carried out for the
longitudinal and lateral flight dynamics. Additionally, for automatic control system
designs, Model Reference Adaptive and Augmented Optimal LQR have been used,
control algorithms have been developed and simulations have been conducted. UAV
flight dynamics have been linearized and linearized equations of motion have been
used in analyses. Adaptive control system design implemented on longitudinal flight
dynamics has been investigated in two parts, where firstly PI adjustment algorithm
based on MIT rule has been executed. Afterwards, PI adjustment algorithm based on
Lyapunov stability theory has been applied and results have been analyzed.
Moreover, Augmented Optimal LQR control system design approach has been
introduced in longitudinal dynamics and in this way the first part of the study has
been concluded. In the second part of the study, equations of motion in lateral flight
have been obtained and stability analyses have been conducted. In this section,
Model Reference Adaptive control system design based on Lyapunov stability theory
has been applied to lateral system dynamics. And finally, with the implementation of
Optimal LQR control system design on the lateral flight dynamics, the study has
been concluded. When obtained results have been compared with the existing results
in the literature, it is witnessed that designed control systems are able to present

remarkable time domain and closed-loop performance characteristics.



OZET

BiR UCAGIN KARARLILIK ANALIiZi VE OTOMATIK KONTROL
SISTEMI TASARIMLARI: UYARLAMALI (ADAPTiF) KONTROL
YAKLASIMI

Bu ¢alismada, temel olarak bir Insansiz Hava Araci (IHA) nin kararlilig1 incelenmis
ve otonom ugus icin ¢esitli kontrol yontemleri Onerilmistir. Calismada ilk olarak,
I[HA’nmin  uzunlamasma ve yanlamasina hareketi icin kararlilk analizleri
gergeklestirilmistir. Buna ek olarak, yanlamasina ugus ve uzunlamasma ugusun
otomatik 1idaresi i¢in, Uyarlamali (Adaptif) Model Referans ve Yeniden
Sekillendirilmis Optimal Lineer Kuadratik Regiilator yontemleri kullanilmis, ¢esitli
otomatik ugus kontrol algoritmalar1 gelistirilmis ve bilgisayar ortaminda
uygulamalar1 yapilmigtir. Tezde incelenen insansiz hava araci dogrusal (lineer) bir
model olarak ele alinmistir ve denklemleri buna gore elde edilmislerdir.
Uzunlamasia hareket i¢in gergeklestirilen Uyarlamali Model Referans kontrol
yontemi uygulamalari iki baglik altinda incelenmis olup ilk asamada MIT kuralina
dayal1 oranti-integral uyarlama algoritmasi uygulanmig ve sonuglari analiz edilmistir.
Daha sonrasinda ise Lyapunov kararlilik teorisine dayali oranti-integral algoritmasi
uzunlamasina hareket dinamiklerine uygulanmis ve sonuglar1 analiz edilmistir.
Ayrica, Yeniden Sekillendirilmis Optimal Lineer Kuadratik Regiilator yontemi ile
uzunlamasina kontrol sistemi tasarlanarak tezin birinci kismi sonlandirilmistir. Tezin
ikinci boliimiinde, yanlamasina hareket dinamikleri elde edilmis ve kararlilik
analizleri gerceklestirilmistir. Bu boliimde Uyarlamali kontrol yontemleri igerisinden
sadece Lyapunov kararlilik teorisine dayali model referans adaptif kontrol tasarimi
gergeklestirilmistir. Ve son olarak yanlamasina hareket i¢in tasarlanan optimal lineer
kuadratik regiilator tasarimi ile tez sonlandirilmistir. Elde edilen sonuglar
literatiirdeki ¢aligsmalarla karsilastirildiginda, oOnerilen yontemlerle gelistirilen
otomatik kontrol sistem tasarimlarinin, kayda deger sonuglar sergiledigi ve

performans kriterlerini fazlasiyla sagladigi gézlenmistir.

X1



INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAVs) are increasingly useful in
different kind of operations starting from observations up to remote sensing
operations. They are cheaper than the manned vehicles and are very suitable for
unsafe missions that would be inevitable for a human pilot, where some specific
applications of UAVs could be summarized as border patrol, search and rescue,

surveillance, communications relaying, and mapping of hostile territory.

The capabilities of UAVs continue to grow with advances in wireless
communications and computing power. Accordingly, research topics in control of
UAVs include efficient vision for real-time computer based computing and
communication strategies for different kind of control techniques, as well as
traditional aircraft-related topics such as collision avoidance and formation flight.
Emerging results in control of UAVs are presented via discussion of different topics,
including particular requirements, challenges, and some promising strategies relating
to each topic. Case studies presented in the thesis, highlight specific solutions and
recent results, ranging from pure simulation to control strategies for UAVs. This

study serves as an overview of current problems of interest [1].

Control system design of small and inexpensive Unmanned Aerial Vehicles (UAVs)
1s of great interest in military and civilian applications, including mapping,
patrolling, search and rescue. These tasks sometimes could be dangerous and
recurring, which makes them ideal for autonomous vehicles. In these types of
applications, control system design, as well as dynamic modeling, has a crucial role
in the behavior of the UAV and in mission accomplishment. Therefore it is vital to
gain knowledge about dynamic properties of the UAV in order to be used in control
system design procedure. In literature, there are several conducted researches on
automatic control system designs of UAVs such as receding horizon control [18],
variable horizon model predictive control [19], control system design using
evolutionary algorithms [20], feedback linearization and linear observer design [21],

cooperative receding horizon control [22], adaptive control system design [23],



control system design using MIMO QFT [24], decentralized non-linear control [25],
robust control system design using coupled stabilities [26], H infinity control and
inverse dynamic system approach [27] and non-linear autopilot design using
dynamic inversion [28], are some of the studies [29]. After an intensive search in
several publications, there were found very limited amount of adaptive control
applications on UAVs and therefore the main goal of the thesis was to demonstrate
the implementation of model reference adaptive control algorithms on UAV

dynamics.

In the first part of the thesis, as an introduction to dynamic modeling, some important
components existing on an aircraft/UAV have been introduced. Following to that, in
the second section of the thesis, a general overview over longitudinal dynamic
modeling of an aircraft (specifically an UAV) will be presented. In modeling part,
firstly, equations of motion of UAV will be obtained, afterwards stability derivatives
will be derived and subsequently longitudinal flight dynamics of UAV will be
originated. During this examination, transfer functions (TFs) of velocity (u), angle of
attack (o) and pitching angle (@) for a given elevator displacement (6.) have been
investigated and obtained results have been analyzed in both time and frequency
domains. In order to construct a fundamental for the automatic control design part,
short period and long (phugoid) period characteristics have been inspected and the
approximated phases have been examined. For each phase, natural frequencies and
corresponding periods have been calculated, TFs of velocity (u), angle of attack (&)
and pitching angle (&) versus elevator displacement (3.) have been obtained, later
bode diagrams have been plotted and necessary comments have been presented in the

conclusion part of the chapter.

As a natural consequence of conducted analyses, the necessity of feedback control
system has aroused. Following to that, in order to improve the stability
characteristics and time domain results of the open loop-nominal plant, two different
control system design procedures have been suggested on the open loop dynamics of
UAV: Model Reference Adaptive Control System Design (MRAS) and Augmented
Optimal LQR control system design. In MRAS control system design, two different
approaches have been presented: PI adjustment based on MIT rule and PI adjustment

based on Lyapunov stability theory. In augmented optimal LQR control system



design, inner loop and outer loop concepts have been used, where the inner loop
(together with an observer mechanism) has been constructed for stability and the
outer loop has been introduced with augmentation in order to improve the
performance characteristics. In each section, performances of MRAS and augmented
optimal LQR controllers have been discussed and the results have been pointed out
in the consequent parts of the thesis. At last, with the presentation of necessary
comments and possible further study steps, the first chapter of the thesis has been

concluded.

In the second chapter, with the similar approach, lateral dynamic model of the UAV
(using state space approach) has been given. Afterwards, lateral automatic control
system of the UAV has been taken into account and MRAS control system design
with the augmented optimal LQR control system design have been put into practice.
Obtained results are given with several analyses and suggestions are presented for

further analyses in the last part of the thesis.



CHAPTER 1

1.1 Components of an Aircraft

1.1.1 Control surfaces

It is a commonly known fact that if the body of an aircraft is required to be changed
from its equilibrium state, external forces and moments should be applied to the
aircraft. Every aircraft needs surfaces placed on the different locations on the aircraft
body, so that when a force is applied to the system through the specified surfaces, a
force or a moment is generated on the aircraft and the body is accelerating in the
desired direction. Such surfaces are called control surfaces and could be mainly
divided into three groups: pitch control surfaces (elevators), yaw control surface
(rudder) and roll control surfaces (ailerons). It is possible to see the defined control

surfaces (elevators, ailerons and rudder) on a conventional aircraft in Figure 1.1.

/’F;;?\
More lift

Less lift $ Yaw

aiﬂiﬁ-@f ... ( \L

Up M -
elevator
|
— | Right

Down Side _ " rudder
force force

Figure 1.1 Control surfaces on the aircraft.

Many modern aircrafts, especially combat aircrafts, are including more control
surfaces that the conventional aircrafts in order to produce additional control forces

or moments. Some of these additional surfaces include horizontal and vertical



canards, spoilers, variable cambered wings, reaction jets, differentially operating
horizontal tails and moveable fins [2]. One of the critical and most important
properties of flight control is that it needs simultaneous usage of different control
surfaces at the same time. When two or more control surfaces are used
simultaneously, the coupling effects are occurring and the system becomes
complicated for control action. The control surfaces are controlled by actuators
which are being fed by electrical signals (fly-by-wire) or by optical devices (fly-by-
light) [2]. But in a conventional aircraft, pilot has links to the control surfaces and is

able to control the surfaces manually in case of emergency.

1.1.2 Servo mechanisms

A servomechanism, usually shortened just as servo, is a device used to provide
mechanical control on the aircraft surface. For example, a servo can be used at a
remote location to proportionally follow the angular position of a control knob. The
connection between the two is not mechanical, but electrical or wireless [3]. The
most common type of servo is that which gives positional control. Servos are
commonly electrical or partially electronic and they are using an electric motor as the
primary means of creating mechanical force, though other types that operate on
hydraulic or magnetic principles are available. Usually, servos operate on the
principle of negative feedback, where the control input is compared to the actual
position of the mechanical system as measured by some sort of transducer at the
output. Any difference between the actual and wanted values (an "error signal") is
amplified and used to drive the system in the direction necessary to reduce or
eliminate the error. A whole science of this type of system has been developed,

known as control theory [2].
1.1.3 Rate gyroscopes

Rate gyroscopes are simple mechanical and rotating systems used in aircrafts. They
use Coriolis Effect of sensor element (vibrating resonator chip) to sense the speed of
rotation (rate of turn) and as a result of the measurement, the signal is being fed into
the control system, where rate gyros are generally used in negative feedback loops.
Rate gyros are single degree of freedom gyros different than the free rotating (two
degree of freedom) gyros and a sample diagram of a rate gyro is shown in Figure 1.2

[4]. The elastic restraint in rate gyros is provided by a torsion bar, fixed to the inner



gimbal and the case. The viscous damper is also added to provide damping of the

transient state [5].

b;

Figure 1.2 Rate gyroscopes have single degree of freedom.

1.1.4 Integrating gyroscopes

If the elastic restraint (k) is removed from the rate gyro, leaving only the viscous
damper, the result is referred to as a “rate integrating gyro” or just an “integrating
gyro”. The name integrating gyro arises from the fact that the gimbal angle is
proportional to the time integral of the input angular velocity. Because the integral of
the input angular velocity is the total angle through which the gyro has rotated about
its input axis with respect to inertial space, steady state value of the gyro is

proportional to this angle [5].

Figure 1.3 Integrating gyroscope.



CHAPTER 2

2. Longitudinal Dynamic Modeling
In this section of the thesis, longitudinal equations of motion will be summarized.
2.1 Equations of Motion (EOMs)

In longitudinal dynamic modeling segment, first of all EOM will be derived. If the

Newton’s 2™ Law is taken into account:

Fems e

and by taking all the forces and moments acting on the aircraft into consideration,

general form of EOMs could be expressed as in (2.2) and (2.3).

Z?:%(mﬂ)} 2.2)
S gH
2M=—" (2.3)

If the forces and moments including the steady state values and disturbance values

are redefined, it is found as shown in (2.4a) and (2.4b),

Z;‘:ZE)"'ZA;’ (2.4a)

ZA}ZZAZMZM} (2.4b)

- -
where ZFO and ZM , are summations of the equilibrium forces/moments and

ZAFO and ZAM , are disturbances (from steady state condition) values [5, 6].

Here, it is assumed that the aircraft is flying in an unaccelerated (stick-fixed) flight



regime and all the disturbances are occurring as a result of control surface deflections
or atmospheric effects (wind, gust, turbulence ... etc.). With respect to the mentioned

postulations, equations in (2.2) and (2.3) could be defined as in (2.5) and (2.6).

S AF :%(m ?T)} 2.5)
2AM=— (2.6)

1

Before continuing in derivation of EOMs for the longitudinal flight, assumptions
such as the mass of the aircraft is not changing with time, the aircraft is a rigid body
and the earth is an inertial reference system has been taken into account. If the given

formulations are considered with respect to the earth, it should be obtained

ZAZ*:mE?T} 2.7)

E

From here, if the time rate of change of the velocity vector (VT) with respect to the

earth is calculated, the result is being as given in (2.8),

iVT} -1 9V wer, (2.8)
dr |, dt

where 1y, (dVr/dt) is the change in linear velocity,  is the total angular velocity of
the aircraft with respect to the earth, and ® defines the cross product [5, 6]. If

V. and w is written in expanded form (with respect to the aircraft body axes system

given in Figure 2.1), I7T could be defined as (2.9)

Vie=iU+ jV+kW (2.9)

and in the same way @ could be found as (2.10),

-

w=iP+ jO+kR (2.10)



Figure 2.1 Body fixed axes system.

where 1, j and k are unit vectors; U,V and W are directional velocities and P,Q and R

are rates of change along the aircraft’s X, Y and Z axes, respectively. Then from

(2.8), the acceleration term could be written as (2.11)
> d2 o .
ly, —Vr=iU+jV+kW
dt
and the cross product term is found as (2.12).

i

k
o®V = R
w

< Q) ~u

P
U
If the determinant in (2.12) is calculated, the result leads to (2.13)

w®V 1 =1(OW —RV) = j(PW = RU)+k(PV - QU)

Disturbance forces (z A F ) acting on the airplane could be written as

S AF=iYAF +]Y AF,+kY AF,

(2.11)

(2.12)

(2.13)

(2.14)



If equations (2.11) and (2.13) are placed in (2.14), then force equations governing the

directional motion turn into their final states as given in (2.15).

Y. AF,=m(U +QW —RV)
D AF,=m(V +RU - PW) (2.15)

Y. AF, =m(W + PV - QU)

Similarly, in order to obtain the equations governing the angular motion, it is needed

to define the tangential velocity at first as in (2.16).

> >

Vin = 0® R 2.16)

Following to this, the incremental momentum resulting from this tangential velocity

of the element mass can be expressed as shown in (2.17) [S, 6].

d M = (@®R)dm 2.17)
Then the differential angular momentum becomes

dH=r®w@®R)dm = H=[r®w®R)dn (2.18)

If the extended form of moment arm is introduced

F=ix+jy+kz (2.19)
then the product term becomes
i j k
o®r=P Q R (2.20)
Xy z
If the determinant in (2.20) is calculated
w®r=1(Qz—Ry)— j(Pz— Rx)+k(Py — Ox) (2.21)

10



And if the outer cross product term is introduced into (2.21), the results are being as

shown in (2.22).

- - o ; ] k
rQ@(w®r)= X v z (2.22)
(Qz-Ry) (Pz—Rx) (Py—0x)

If the determinant in (2.22) is calculated, the outer cross product is found as in (2.23).

F®(@® 1) =1 [P(* +2%) = xy0 — xzR]+  [Q(z* + x*) = yzR — xyP]

- (2.23)
+k[R(x* +z*) — xzP — yz(]

By replacing (2.23) in angular momentum term in (2.18), angular momentum (H) is

found as in (2.24),

H:J-i[P(y2 +2%)— xyQ — xzR]

+ [J10(z> +x*) = yzR - xyP] (2.24)
+ jk[R(x2 +2°) = xzP — yz0]

where .[ (y* +z%)dm is defined as the moment of inertia /,, and J.xydm is defined

as the product of inertia J,,. By remembering the assumptions taken into account at
the beginning, the product inertias in Xy and yz coordinates are leading to J,= Jy,= 0,

so that the resulting angular momentum equations are found as in (2.25).

H =PI —RJ_
H,=0I, (2.25)
H_=RI_—-PJ_

It is possible to rewrite (2.3) as
ZAM:1H2—7+0)®H (2.26)

where the components of 1,,dH / dt are

11



dH
t

£=PI —RJ

Y =0l (2.27)

dH.

=RI.-PJ_
dt

If the rigid body assumption for our aircraft is remembered, the time rates of change

of the moments and products of inertias are going to be zero [5, 6]. So that

ik
wo®H=|P O R (2.28)
H, H, H,
If the determinant in (2.28) is calculated
w®H=i(QH,-RH - j(PH, - RH )+ /E(PHy ~QH ) (2.29)
Also ZAJ\} can be written as
SAM =Y AL+ Y AM+EY A (2.30)

By replacing the necessary values in the right hand side, the final equations of

angular motion are found as in (2.31).

Y AL=PI, —RJ_ +QOR(, —1,)-POJ
D AM=QI, +PR(I,~1)-(P*+R*)J, (2.31)

DS AN=RI -PJ_+PO(,~1)+ORJ,
and equations of linear motion has been previously obtained in (2.15) as

Y. AF,=m(U +QW —RV)
D AF,=m(V +RU - PW)

Y. AF, =m(W + PV - QU)

12



Equations in (2.15) and (2.31) are the complete equations of motion for the
longitudinal motion of the aircraft. Next, it will be necessary to linearize and to
expand the left hand-sides of equations in order to obtain the final states of EOMs.

Even if, it is possible to derive the linearized equations of motion and stability
derivatives from beginning, this will not be performed here. At this point, only the
final states of Longitudinal EOMs will be given in the following sections. The reader
could find further and detailed information related with the development of EOMs

and longitudinal stability derivatives in [5, 7-9].

2.2 Derivation the Longitudinal Dynamic Model of the Aircraft

Although it is possible to derive longitudinal equations of motion (EOM) of an
aircraft from (2.15) and (2.31); here, only the final state of the longitudinal EOM will
be presented. The entire derivation could be investigated step by step from [5, 7-9].

While presenting the final values of the longitudinal EOM, firstly the transient
response will be considered and homogenous solution will be evaluated. By

neglecting C, ,C, and C, in homogeneous solution, one should obtain Linearized

and Laplace Transformed longitudinal EOMs as shown in (2.32)

X (%s—cw)'u(s)—cm 'a(s)~Cy (c0s®)O(s) = C, =0
. :

20 —Cyu(s) | (M CCaay c ig(s)
Sq 2u

(2.32)

c.C
H (BT Ayg C,sin® |0(s)=C,. =0
Sq 2u Za

c.C,,

= S_CMa)'a(S)+(

1 c.C
YoM 5)0(s)=C, =0
Sqc 2u ‘

where (u, w) are perturbation velocities in (X, Z) axis’s respectively and

'u =u/U,= Change of velocity in longitudinal flight
'a = w/U,= Change of angle of attack in longitudinal flight

6 = Change of pitch angle from equilibrium condition

Characteristic properties of UAV in Sea Level (~100m) conditions are presented in

Table 1.1.
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Table 1.1 Constants of longitudinal EOMs.

Mass: m =5 [kg] oC,/0a = 0.1249
Velocity: u =12 [m/sec] oC,/6a = 0.0389
Gravity: g=9.807 [m/sec’] oC, /6, = -1.5
Wing area: S =0.4805 [m?] Wing span: b=1.7 [m]
Air density: p=1.225 [kg/m’] Aspect Ratio: AR =6.0146
Dynamic pressure: q = 88.2 [kg/m.sec’] Washout respectto a:  dg/doa=0.0116
Moment of Inertiay: Iy =0.1204 [m*] Allowance factor: K=1.1
Chord length: ¢=0.235 [m] Dist. CG to N. Point: x=0.0587
Length to ¢/4 of tail: Lt=0.235 [m] Static Margin: SM =-0.25
Equilibrium state: O =0 [deg] Dist. from tail to c: L. =1

Corresponding stability derivatives in longitudinal flight are considered as shown in

the followings, where

ac,
u

C, =-2C, U, (2.33)

is the change in force in X direction due to the change in forward velocity, so that

U, is the steady state velocity, C,, is drag coefficient and 0C,, / 0u is the change in

drag coefficient with respect to perturbation velocity.

(2.34)

is the change in force in X direction due to the change in angle of attack, where C, is
lift coefficient and 0C), / Oc is the change in drag coefficient with respect to angle of
attack.

oC,
ou

C, =-2C, -U, (2.35)

is the change in force in Z direction due to the change in forward velocity, where

0C, /ou is the change in lift coefficient with respect to perturbation velocity.

C, =-C,-TLt=_t1 (2.36)
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is the change in force in Z direction due to the change in angle of attack, where

0C, / O« is the change in lift coefficient with respect to angle of attack.

oC de
Cc, =2 mo— .
% [ 0i, J{daj (2.37)

is the effect of rate of change in angle of attack on Z force, where (0C,, /0i,) is the

rate of change of the pitching moment coefficient of the tail with respect to the angle
of incidence and de/dea is the change in downwash with respect to angle of attack.

Theoretical value of de/da is

de 2 (dqj
= (2.38)

da R\ da

where AR is the aspect ratio of the aircraft.

oC
C, = 21{ 8imJ (2.39)

is the change in the Z force due to change in pitching velocity, where K is the

approximate allowance factor for the contribution of the rest of the aircraft to C,

and is usually about 1.1 [5].

C, =(SM )( oC, J (2.40)
“ oa )
is the change in pitching moment due to the change in angle of attack, where SM is
static margin which is equal to x/c, so that x is the distance between the fixed
control neutral point and the center of gravity of the aircraft and ¢ is the mean

aerodynamic chord length of the wing.

oC \del
C, =2 2 |—L 2.41
M ( oi, Jda c (2.41)
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is the effect of rate of change in angle of attack on pitching moment coefficient,

where [/, is the distance between the center of gravity of the aircraft and the

aerodynamic center of tail.

oC, |/
C, = ZK[—.’"]—’ (2.42)
‘ oi, Jc
is the effect on the pitching moment due to a pitching rate.
mg
C,=——7=-C 2.4
Sq k (2.43)
is the weight coefficient, where it is generally assumed as equal to —C, .
After obtaining necessary formulations of stability derivatives, by using

characteristic properties of UAV given in Table 1.1, it is possible to calculate the

numerical values of stability derivatives as given in Table 1.2.

Table 1.2 Stability derivatives of longitudinal EOM.

Cxy =-0.0264 Cgz,=-0.0397
Cxo=1.1181 Cgze=-0.1381
Cp=0.0132  Czq=-3.3000
CL=1.1570 Cype =-0.0397
Cw=-1.1570 Cy,=-0.0312
Czu=-2.3141 Cyq=-3.3000

And finally, elevator displacements (inputs) of the system are given as

Table 1.3 Elevator displacements (inputs) of the UAV system.

CXﬁe: 0
CZﬁe: -0.71
Cmse=-0.71

At this point, if the calculated values given in Table-1 and Table-2 are placed in

(2.32), it is expected to obtain the homogeneous solution of Laplace transformed

EOMs as in (2.44).
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x: (141585 +0.0264) u(s)—1.1181"a(s) +1.1570 6(s) = 0
z: 2.3141'u(s)+(1.4161s +0.1381) 'a(s) — 1.3834s 6(s) =0 (2.44)

M: 0+ (0.0003s+0.0312) "a(s) +(0.0121s> +0.03235) 6(s) = 0

If (2.44) is rewritten in matrix form,

(141585 +0.0264) ~1.1181 1.1570 u(s)
23141 (141615 +0.1381) ~1.3834 'a(s) =0 (2.45)
0 (0.00035+0.0312) (0.01215>+0.0323s) || &(s)

and using (2.45), it is possible to obtain the characteristic equation (CE) of the UAV
system simply by taking the determinant as shown in (2.46).

(141585 +0.0264) ~1.1181 1.1570
23141 (1.41615+0.1381) ~13834  |=0 (2.46)
0 (0.00035+0.0312) (0.0121s> +0.0323s)

By expanding the determinant in (47), the CE is found as

0.0242 s* +0.0684 s> +0.1 s> +0.0859 s +0.0836=0

(2.47)
st +2.82645° +4.13225% +3.5496s +3.4545=0

In order to have better idea related with the open loop characteristic of the aircraft,

using (2.47), it is possible to obtain the roots (poles) of the system such as

5., =-1.3921+0.9226i

2.4
s;,=-0.0181+1.1119i (2.48)

From the corresponding poles of CE, it is likely to see that the system is stable but
has very close complex conjugate poles to the origin, which will lead to highly
oscillatory manner and relatively low damping with frequent oscillations. If complex

conjugate poles (s, ,, 5 ,) are grouped, a compact form is obtained as in (2.49).
[(5+1.3921-0.92261)(s+1.3921+0.92261)][(s +0.0181-1.11191)(s + 0.0181 +1.11191)] = 0

2 ) (2.49)
(s> +2.7842 5 +2.7892) (s> + 0.0362s +1.2367) = 0
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Next, it is possible to introduce the natural frequency and damping ratio concepts

using the general representation as

s’ + 28,5+ 0, =0
(2.50)

(s> +28 0,5+ 0, ) +28,0,5+0,7) =0

and adapting (2.50) to the obtained system, it is found

(s> +2,m, 5+, )= (s> +2.78425+2.7892) (2.51)
(s> + 2%,0,s+ a)npz) = (s* +0.0362s +1.2367 (2.52)

Using (2.51) and (2.52), one could find the natural frequencies and damping ratios
for both short period and phugoid mode. If the necessary calculations are conducted,

it is possible to obtain m, (natural frequency) and & (damping ratio) values such as

&, =0.0163
[0) =1.1121 rad/sec; long period oscillation (2.53)

n_pm

T,, =55.2007 sec

¢, =0.8336
o, ., =1.6701 rad/sec; short period oscillation (2.54)
T,=0.7183 sec

From (2.53) and (2.54), it is apparent that the characteristic behaviours of both

modes are as

v Short period mode of the UAV is adequately damped.
v Phugoid mode of the UAV is lightly damped which indicates an

under-damped case in our situation.

Additionally, another indicator of damping ratio is the time required for one period

of the oscillations, which is commonly defined as

I'=——o (2.55)

Using (2.55), it is credible to obtain the time required for one period such as
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1

T = =0.7183 s (2.56)
” " 0.8336x1.6701

T, = : =55.2007 s (2.57)
" 0.0163x1.1121

From (2.56), it is expected that the short period mode, oscillations with period of 27,
are occurring within every second and a half; while in phugoid mode, time required
for one period is relatively high, nearly 1 minute. In phugoid mode, structures of the
aircraft would be affected seriously due to high oscillations, forces (due to vibration)
and moments, therefore investigation of modes is taking an important role.

In order to obtain related transfer functions (TFs) for given elevator displacements,

elevator deflections/inputs has been introduced in (2.32), whereC, =-0.71,

C, =—0.71 and C,_ =0 (which has been neglected) [S, 6], which yields to

m

x: (141585 +0.0264) u(s) —1.1181 'e(s) +1.1570 O(s) = 0
z: 2.3141'u(s)+ (141615 +0.1381) 'ar(s) —1.3834s 6(s) =—0.715, (2.58)

M: 0+ (0.0003s+0.0312) "a(s)+(0.0121s> +0.03235) 6(s) = —0.715,

where 0, is elevator deflection (rad). The matrix representation is as

(141585 +0.0264) ~1.1181 1.1570 "u(s) 0
23141 (141615 +0.138)) ~1.3834 'a(s) |=| -0.71|6,(s)  (2.59)
0 (0.0003s+0.0312 (0.0121s> +0.0323s) || 6(s) | |-0.71

After obtaining the matrix representation, it is a relatively easy task to obtain TFs for

Longitudinal dynamics. Starting with (2.59) and by using the Cramer’s Rule,

0 ~1.1181 1.1570
~0.71 (1.41615+0.1381) ~1.3834
u(s) ~0.71 (0.0003s5+0.0312) (0.0121s> +0.03235)
S5.(s) |(1.41585+0.0264) ~1.1181 1.1570 (2.60)
2.3141 (141615 +0.1381) ~1.3834
0 (0.00035+0.0312) (0.0121s> +0.03235)

it is possible to obtain the TFs 'u(s)/ o, (s) such as
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u(s) 0.009597 s> -0.0391s - 0.0878
5.(s)  0.024245s* +0.06836s" +0.1s> +0.0859 s +0.0836

2.61)

Corresponding bode plot of 'u(s)/d,(s) could be obtained as shown in Figure 2.2.

Bode plat of u(sj!ﬁetsj
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200 b o1l ol L1l I |

Phase (degiMagnitudes (dB)

REN Ll - 1 - . 3
10 10 10 10 10 10

Freguency (radfzec)
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Figure 2.2 Bode and time domain response plot of 'u(s)/J,(s) .

As it is likely to see from Figure 2.2, for a given J, deflection (input), steady state

velocity of the system is considerably affected in phugoid mode, but in short period
mode is not affected critically. If time domain step and impulse responses of

'u(s)/d,(s) are investigated from Figure 2.2, it can be said that the behaviour of

'u(s) is highly oscillatory as a result of very close poles (2.48) to the imaginary axis.

(1.41585+0.0264) 0 1.1570
2.3141 ~0.71 ~1.3834
"a(s) 0 ~0.71 (0.0121s% +0.0323s)
5.(s) |(1.41585+0.0264) ~1.1181 1.1570 (2.62)
23141 (141615 +0.1381) ~1.3834
0 (0.0003s5+0.0312) (0.0121s +0.0323s)

it is possible to obtain the TFs 'a/(s)/0,(s) such as
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‘a(s) -0.01215s” -1.4235* -0.02654 s -1.901

= 2.63
5.(s) 0.02424s* +0.06836s> +0.1s> +0.0859 s + 0.0836 (2.63)
Corresponding bode plot and time domain response of 'a(s)/d,(s)
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Figure 2.3 Bode and time domain response plot of 'a(s)/0,(s) .

could be obtained as given in Figure 2.3. As it is probable to see from Figure 2.3, for

a given J, deflection (input), angle of attack (« ) is noticeably affected in phugoid

mode, but in short period mode angle of attack is changing quite smoothly.

Moreover, if time domain step and impulse responses of'a/(s)/0,(s) are examined,
from Figure 2.3, it can be observed that 'a(s) has regular oscillations as a result of

very close poles (s, ,) to the origin.

(1.41585+0.0264) ~1.1181 0
2.3141 (141615+0.1381) —0.71
6(s) 0 (0.00035+0.0312) —0.71
5.(s) |(1.41585+0.0264) ~1.1181 1.1570 (2.64)
2.3141 (1.41615+0.1381) ~1.3834
0 (0.00035+0.0312) (0.0121s> +0.03235)
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it is possible to obtain the TFs 6(s)/o,(s) such as

O(s) 1.423s%* +0.1345+1.839 (2.65)
5,(s) 0.02424s* +0.06836s> +0.1s> +0.0859 s +0.0836 '
Corresponding bode plot of 8(s)/0,(s) could be obtained as
Bode plat of &(=) Iﬁe(sj
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Figure 2.4 Bode plot of 8(s)/3,(s) .
As it is likely to see from Figure 2.4 that for a given o, deflection (input), pitching

angle (@) is noticeably affected in phugoid mode, but in short period mode angle of
attack is changing smoothly. If time domain step and impulse responses of

0(s)/ o,(s) are plotted, it is likely to find the graphs as shown in Figure 2.4. It could
also be said that the behaviour of 6(s) has frequent and long-lasting oscillations as a

result of very close poles (2.48) to the imaginary axis. After such assessments, in
order to get a better idea that how UAV is going to behave in short period and
phugoid modes, short period and phugoid mode approximations and their
characteristics might be examined, but it will not be conducted here. For detailed
analysis conducted on short and long period approximations, reader is referred to [2,

5-9] for further reading.
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2.3 Model-Reference Adaptive Control System Design for the Longitudinal
Dynamics of the UAV:

Subsequent to the conclusion of longitudinal dynamic modeling part, in the
following sections of the thesis, automatic control system designs based on Adaptive

control approach will be introduced.

An adaptive control algorithm is simply an adaptive control system design with
adjustable parameters and a mechanism for adjusting the parameters. The controller
itself is becoming nonlinear in the control loop, because of the adaptive parameter
adjustment mechanism. But however, it is a very special formation in terms of
control. Adaptive control systems can be considered as having two different loops in
the control algorithm. One of the loops is the normal feedback with plant outputs and
the controller. But the other loop is for the parameter adjustment purposes. A sample

block diagram for an adaptive control system design (taken from [10]) is given in

Figure 2.5.
I Parameter e
adjustment
Zontroller
parameters
Setpoint
S Chatgat
Controller Flant
™ Control
signal

Figure 2.5 A sample adaptive control system block diagram.

In the following parts of the thesis, as a branch of adaptive control theory, model—
reference adaptive control system (MRAS) design will be introduced and
subsequently will be implemented on longitudinal dynamics of the UAV in order to
improve the stability and performance characteristics of the open loop system.
Model-reference adaptive system (MRAS) control algorithm is an important part of
the adaptive control theory. It might be considered as an adaptive servo system

where the expected performance features are expressed in terms of a reference
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model, which gives the desired response to a given input. A sample block diagram of

a MRAS system is presented in Figure 2.6.

— Iiodel = l

Controller paratmeters

& djustment
mechatiam el

Controller FPlant

Figure 2.6 Sample block diagram of a model-reference adaptive system (MRAS).

The MRAS system itself owns an ordinary feedback loop which is consisted of the
plant-controller and another feedback loop that is used to adjust the controller
parameters in order to reach to the perfect following conditions with the reference
model. Parameters in the adjustment loop are tuned on the basis of feedback from the
error (e), which has been defined as the difference between the output of the plant

(») and the output of the reference model (y, ). In this concept, the ordinary

feedback loop is named as the inner loop, while the parameter adjustment loop is
called as the outer loop. The mechanism for tuning the parameters in a model-
reference system can be obtained in two different ways: by using a gradient method

or by applying stability theory [10, 11].

In the following parts of the thesis, two different control algorithms will be
introduced: PI adjustment based on MIT rule and PI adjustment based on Lyapunov
Stability Theory. But before getting through the adaptive control system design
process, a closer (and a detailed) look into the frequency domain responses of the
nominal plant is necessary and crucial in terms of improving the open-loop time
domain performance specifications. As it is possible to remember from previous

sections, longitudinal flight regime is characterized by 6/, transfer function and by
inspecting frequency domain response of /0, given in Figure 2.4, it is possible to

see that the Phase Margin (PM) and Gain Margin (GM) characteristics are relatively
weak. By examining the Bode Diagram (Figure 2.7) of 8/96,,
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Figure 2.7 Detailed Bode plot of open loop €/6, transfer function.

it is easy to see that the PM value of nominal plant is 20.7 degree (at 7.58 rad/sec)
and the GM is obtained as Infinity dB. With observed characteristic values of
frequency domain, it is possible to mention that the PM and GM characteristics are
inadequate for a control system design and therefore time domain responses of
nominal plant are being quite slow and long lasting. In order to have better
performance index in terms of frequency domain values, compensation of PM and
GM will be suggested in the following lines with the help of Lead compensation

technique.

The main characteristic of lead compensation is that it is used to reshape the
frequency-response curve in order to maintain adequate phase-lead angle to offset the
excessive phase lag associated with the components of the fixed system [13]. The
procedure of designing a lead compensator by the frequency response approach for
lead compensation has been given in [13] in detail and it is only going to be

summarized for the longitudinal flight as the followings:

1) Transfer function of the lead compensator has been considered as
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s+
Gc (S) = Kc

where 0 < <1 (2.66)

S+ —
ol

2) From Figure 2.7 it is possible to see that the PM of the nominal plant
1s 20.7 degrees and relatively insufficient. The main aim will be to

pull PM over 50° and to have GM greater than 7dB. In this case
necessary PM value is ¢, =50—20.7 ~30° +5° =35 (5° has been

added for the compensation for the shift in gain cross over frequency.)

. . l-a . . .
3) Since sing, = " , after some iterative procedures, it is found that
+

sin(35°) corresponds to a =0.2792.

4) Once the attenuating factor -« is obtained, the next step will be to

obtain the corner frequencies (w=1/T and w=1/(aT)) of the lead

1 1
Ja V02792

corresponds to @ =6.78 rad/sec=w,. This is going to be the new

compensator. =1.8927dB and |G(ja))| =-1.8927 dB

cross over frequency w, =1/(al’) and following to that it is found

1/T =w,Na =3.5823 and 1/ a = @, /Na =12.8323.

Using (2.66) the lead compensator, with preferred K, =1.6428, is found as

7 1.6428(s +3.5823) G (s) = 1.6428s +5.885

= .
s+12.8323 s+12.8323 (2.67)

ol

After deriving the lead compensation transfer function, time domain plots could be

obtained of compensated and uncompensated plants as shown in Figure 2.8.
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Figure 2.8 Lead compensated nominal plant and bode diagram plots.

From Figure 2.8, it is quite easy to see the phase shift effect of the lead compensator
in frequency domain. This property also influences the time domain response as well
and the transient behaviour is more considerable than the uncompensated plant. After
obtaining such an improvement in frequency domain characteristics and in open-loop
system dynamics, it is possible to go through the automatic control system design

procedures based on model-reference adaptive control algorithms.
2.3.1 PI Adjustment Based on MIT Rule

The MIT rule is the original approach to model-reference adaptive control system
design, where it is mainly based on gradient evaluation. The name of the rule is given
in this way because the theory of the method has been derived in the Instrumentation
(now Drapper) Laboratory of Massachusetts Institute of Technology (MIT) for the
first time; therefore it has been named like the MIT Rule.

In the presentation of MIT rule, an adjustable parameter 6 will be taken into
account. In system dynamics, desired closed performance is defined as the output of

the reference model- y, . In MIT rule, it is considered that the error, e, is defined as

the difference between the plant output, y, and reference model, y, . Considering an
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optimal control approach to the problem, it is possible to tune the parameters of the

systems in a way so that the loss function
1,
J(0)= Ee (2.68)

1s minimized. In order to be able to make J small enough, system parameters should

be changed in the descending direction (negative gradient) of J, leading to

do o] . oe

a0 _ .o _ . de 2.
a0 "0 (2.69)

and (2.69) is called as the MIT rule, where 7 is gain constant, J is the cost function
(described in (2.68)) and e is the error between output of the reference model (y,, )
and nominal plant (y). Here Oe/06 partial derivative is called the sensitivity

derivative of the system and is telling how the error is affected by the adjustable

parameter, €.

Considering the given mathematical foundation related with the MIT rule, in the
following sections, it is possible to obtain the adaptive control law necessary to shape
the open loop dynamics. For this purpose, a MATLAB® Simulink block diagram has

been suggested as shown in Figure 2.9.

" G.(8) |

= Lo oG-

&, le—-

Figure 2.9 Partial simulink block diagram for MIT rule.

With the help of Figure 2.9, it is possible to figure out that the control law has been
suggested as u=6u,—6,y. Also the plant output could be easily obtained as

¥ =G(s)u and reference model output is gained as y, =G, (s)u,, where u_ is the

command input, u is the control signal, G(s) is the transfer function of the nominal
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plant (including elevator servo TF- [15/(s+15)]), G, (s) is the transfer function of

the reference model, 6, is the command signal adjustment parameter and &, is the
closed loop feedback adjustment parameter. In order to be able to obtain the MIT
rule for the closed-loop system, sensitivity derivates (0e/06, and de/06,) should be

obtained, and for this purpose a step-by-step procedure in obtaining sensitivity

derivatives has been summarized as the followings:

y=Gs)u, y, =G, (u,, y=G(s)(Ou,—0,y) = y+G(s)0,y = G(s)0u,

2.70
— G(S)el uc , e:y_ym je:Muc_Gm(s)ug ( )
1+G(s)6, 1+G(5)0,

From (2.70), sensitivity derivatives could be obtained as

PO u.~G,(s)u,, o 9 G)G u, =G, (s)u,
1+ G(s)6, 00, 06,,[1+G(5)0,

de _G(s)1+G()0) ~_ Ge _ Gls)

00, (1+G()6,)’ 86, 1+G(s)0, ¢

(2.71)
Oe 3 G(s)0,G(s) A — G(s) 0,G(s) u
00, 1+ G0, ° 1+G)0,|1+G(s)0, °
| ——
Y
oe — G(s)
= y

00, 1 + G(s)0,

It is known that using pole placement technique from classical control theory, it is
possible to find such a feedback gain like 7, which will shape the open loop
eigenvalues (poles) and lead to G, (s)=7 G(s)/(1+G(s)8,). If (2.71) is

recomposed in the light of the given information, it is possible to obtain such

representation as shown in (2.72).

de  G(s) y _ 7 G(s) y _ 1] 7G(s) L = de G, (s)u,
00, 1+G(s)8, © 71+G()8, © 7|1+G)8, | < a6, ¥
%f_/
o) (2.72)
de ~ =G(s) 7y =G(s) -1 yG(s) N oe -G, (s)y
00, 1+G(9)8,” 71+G)6,° 7 |1+G)6 [ 06, 7
G, (5)
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After obtaining the theoretical demonstration of sensitivity derivatives, by using the
MIT Rule (2.69), it is possible to obtain the adaptive control algorithm based on the
MIT rule as shown in (2.73).

d0 . Oe dO . Oe do, . Oe

—=-je—=>—1=—Je—and —2=-Je—
a0 @ %80 M ar T 70,

=

dt o0,
do, . oe A{_Gm(s)y}

46, = —77eg =—y e{m} =—=eG, (s)u, = del =-yeG, (s)u, (2.73)

AT e

~

Ry

eGm(s>y:»d7‘?=yeGm(s>y

where y=7/%. As it could be easily seen from (2.73), the adaptation rule is

dependent only on the reference model parameters, which clearly indicates that even
if the nominal plant-G(s) parameters become unknown at certain time t, the
controller will still be able to control the system and adjust the system parameters to
reach the desired reference model parameters. But in (2.73) the selection of
adaptation gain () is crucial and the preferred gain value usually depends on the
command signal levels. In order to make the MIT rule less dependent on the

command signal levels, it has been modified as shown in (2.74) and has been named

as ‘Normalized MIT Rule’.

do ype
—=—""—— where ¢ =—0e/060 and a >0
. goT(p Q (2.74)

In (2.74), parameter « >0 has been introduced to avoid difficulties when ¢ is small.

It should also be noticed that (2.74) has been written in a way so that when @ is a

vector, ¢ also becomes a vector in the same size and dimension [10]. By applying

the given rules in (2.74), it is possible to obtain adjustment parameters of the nominal

plant as shown in (2.75).
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5 ¢ MO
. T AT AN A
T
dt a+ [ o+ (_g)(_ ﬁ) o+ (_ Gm (f) u, )(_ Gm (NS) uc)
06, 06, % v (2.75a)
(d_elj - _ 71 Gm (S) uce = (6 ) — _j 7/1 Gm (‘S) uce dt
dt norm o+ (7/2Gm (S)uc )2 e o+ (}/ZGm (S) uc )2
where y, =y/y and y,=1/y and
.. O . G, (s
o,  jpe 720 : _[_ ;WD@
2 _ _ 2 _
dt a+g'p . Oey ey Gm(S)yj(Gm(S)yj (2.75b)
00 00, 7 7
(@j L 1Gve ) _j[_nGatre },t
2 Jnorm
dt norm a+ (}/4Gm (S)y)2 a+ (7/4Gm (S) y)2

where y, =y/7 and y, =1/y . Having a closer look at the adjustment parameters

(d6,/dt and d6,/dt) will give valuable information, so that the adjustment

algorithm is consisted just of an ‘integral’ action, which could only be used to
improve the steady state error of the closed-loop system. Therefore, in order to be
able to enhance the performance specifications and to increase the bandwidth of the
closed loop system, ‘proportional’ part should be introduced beside obtained
‘integral’ control action, which will lead to a ‘PI adjustment’ control algorithm in

adaptive control theory and is shown in (2.76) [10].

0(0)=-yu.(Oe(t) - 7, [u (t)e(r) dz

Proportional part

Integral part

0.t =y, (0) e(t)—yzj%dt (2.76)

~ ¢deo
0,(0) ==y (De(t) =y, [~z

After obtaining necessary information related with the parameter adjustment
algorithms, Simulink block diagram of PI adjustment algorithm based on MIT rule

has been constructed and is given in Appendix-A.

31



If obtained PI adjustment algorithms based on normalized MIT rules are going to be
applied to the nominal plant dynamics, obtained control system performance and

time domain results are being as shown in Figure 2.10.
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Figure 2.10 Closed-loop time domain responses of model-reference adaptive control
system design: PI adjustment based on normalized MIT rule.

From Figure 2.10, it is easy to see that the PI adjustment based on normalized MIT
rule adaptation algorithm is working properly and remarkably. It is also possible to
see that adaptive control rule is able to adapt and control the system parameters and
match them with the desired closed loop states, so that the settling time is
approximately 10 seconds and the maximum actuator effort is nearly 0.2 Newton,
which are acceptable values for a control system design. Additionally, from the
second plot in Figure 2.10, the change of error signal, where it is adapting itself to

stay at zero (0) and fixed to the reference model, could be observed as well.
2.3.2 PI Adjustment Based on Lyapunov Stability Theory

There is no guarantee that an adaptive controller based on the MIT rule will give a
stable closed-loop system. For this purpose Lyapunov Stability Theory has been

introduced in order to guarantee stability in model-reference adaptive control
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systems. In this section only the main characteristics of Lyapunov Stability Theory

will be presented, but for further and detailed information one could refer to [13, 14].

Let’s consider nonlinear and Linear Time-Invariant (LTI) differential equation
dx/dt = f(x). Let’s assume that the system has a solution like /(0)=0 for x, =0,
where this kind of conditions are called “equilibrium state conditions”. In order to
guarantee the stability for states starting out of range of equilibrium conditions, some
conditions are needed. For the existence and uniqueness of the solution, there are

some restrictions on f(x) for x,#0, which guarantee the existence and the
uniqueness of the solution. A necessary condition could be defined like f(x) is

, where L is a number

satisfying Lipschitz conditions as || f(x)—f( y)|| < L||x -y

small enough for the analysis and 0< L <oo. Here a stability analysis could be
conducted for non-linear functions satisfying Lipschitz conditions. Also stability
analysis could be conducted for perturbed systems whether they are going to turn
back to their equilibrium states or not. But there is a boundary for going through the
equilibrium states and if this boundary is overtaken, system dynamics may not be
able to come back to old equilibrium points and could find some other equilibrium
points. In other words, if a ball is going to be released from an arbitrary point and
following to that if it comes to stability at a certain point and if this point is within
the boundary of equilibrium conditions, then this is called “asymptotic stability
condition” for systems. Another interesting situation is that if the ball doesn’t come
to stability but also if it doesn’t get far away from the equilibrium states as well (in
other words, if it exhibits periodic motion), in this situation the motion is stable as
well. But this is only stable condition (not asymptotically stable). If a ball is released
from an arbitrary point, it will stop when its kinetic energy decreases to “0”. In that
case, the equilibrium stability point is the point where the kinetic energy becomes
“0”. If the ball is shifted somewhere in the neighborhood of the equilibrium point, it
will gain energy and motion will occur. However, if it looses its energy again and
stops as a result of this motion, then it is called asymptotically stable. But for
example, let’s consider that the ball stopped in another equilibrium point, where its
kinetic energy becomes “0” and turn into potential energy. Then this equilibrium

point is stable but it is not asymptotically stable.
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In all of the stated discussions, energy functions are positive definite functions. But
the rest condition of a system is representing that its kinetic energy is “0”. From here
it can be summarized that if kinetic energy of a system is changing in a descending
direction (-) with time, then it corresponds to an “asymptotically stable” equilibrium
point. Also Lyapunov stability theory depends on the property that the kinetic
function of a system is descending and changing in a descending direction with time

(Figure 2.11).

— .
V(x)=const

(

Figure 2.11 Lyapunov stability theory representation in phase domain.

Thus, if KE of a system is decreasing, it means that the system is approaching to an
asymptotic stability point. And Lyapunov stability simply is based on characteristic
of a decreasing (descending) KE function. Since it is very hard to derive KE function

of a complex system, if one can define such functions (V' (x)) representing the

characteristics of KE functions, and if those functions are in a decreasing
characteristic along the trajectory of KE functions, then one can guarantee that the
solution of the differential equation will always give us stable solutions and then

V(x) will be called Lyapunov function.

In other words, with the language of mathematics, if V(x) is suggested as
V(x)=x"Px and %= Ax+Bu, where u=—-Kx and 4= A-BK, then for each
symmetric positive-definite matrix @, there exists a unique symmetric positive-

definite matrix P such that
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A"P+ P4 =-0 leading to ¥ (x) =—x"Ox and V(x) <0 for t>0 (2.77)

then the system is called asymptotically stable and V(x) is called a Lyapunov

function satisfying ¥ (x) <0 condition.

Next step, after a brief introduction of the Lyapunov stability theory, is the derivation
of parameter adjustment rules for longitudinal flight control system design based on
Lyapunov stability theory. In order to do this and in order to satisfy perfect matching

conditions (between 4 and 4, ), the candidate Lyapunov function (taken from [15])

has been suggested as given in (2.78).
V(x)=e Pe+Tr[(A4-BL—A4,)" N(A-BL-4,)] (2.78)

where N is the weighting matrix and 77 is the “Trace” of a matrix, which has been

defined as the sum of the diagonal elements of a matrix such as

A=|a, a, ay|=>Tr(4A)=(a,+a,, +a,;) 2.79)

a3 4y dy

Under perfect matching conditions, it has been assumed (and calculated) that there
exists such L~ which will lead nominal system dynamics to 4—BL —> 4, , so that
L is the constant feedback gain obtained by LQR or a similar control algorithm.
And adaptive parameter adjustment algorithm-L in (2.78) has been defined as

L=L +AL, where AL is representing the parameter adjustment uncertainties [29-
31]. In this way, by simply introducing adjustment parameter uncertainties,
robustness characteristics have also been also introduced in adjustment system

dynamics of adaptive control system design.

It is easy to see from (2.78) that the main aim is to find such feedback parameter
L=L +AL, which will shape and help the nominal plant to reach the system

parameters to the desired level, which is the reference-model. In this way, perfect
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matching conditions will be satisfied and as it has been mentioned in previous lines,

the main goal will be satisfied. Therefore, the derivative of Lyapunov function will
always be negative (¥ (x) < 0) and will lead to guaranteed stability. For this purpose,

derivative of the candidate Lyapunov function has been taken and the procedure has
been summarized step-by-step in (2.81). But before that step, change of error

function (e ) with respect to time (€ ) should be obtained as shown in (2.80).

e=y-y,=>é=y-y,=(Ay+Bu)-(4,y, +B,u_)

u=u,—Ly, L=L +AL

ée=Ay+Bu,.—-Ly)-A,y,, —B,u.=Ay+Bu.—BLy—-A,y, —B,u.=y,=y—e
é=Ay+Bu,—BLy—A4,(y-e)—B,u,=Ay+Bu, —BLy—A4,y+A4,e—B u, (2.80)
é=A,e+(A-BL—A,)y+(B-B,)u,=B=8,

é=Ae+(A-BL-A)y=L=L +AL and A- A, =BL

é=A,e+(A-A,—-B(L +AL)y=A,e+(BL —BL — BAL))y

é=A,e—BALy

And derivative of the candidate Lyapunov function has been constructed as in

(2.81a-b).

V(x)=e' Pe+Tr|(A—BL—A4,) N(A-BL-A,)]
A-BL-A4, =(A—A )—BL=BL —BL=B(L-AL)—BL=BL—BAL—-BL
V(x)=e' Pe+Tr|(—-BAL) N(~BAL)|=¢” Pe+Tr[(BAL) N(BAL))
V(x)=¢&" Pe+e” Pe+Tr[(BAL)” N(BAL)+(BAL)" N(BAL))
V(x)=[A,e— BALy|" Pe+e" P[4, e— BALy]
+ Tv|(BAL)" N(BAL) + (BAL)" N(BAL)]
V(x)=e" 4, Pe—y" AL" B" Pe+e" PA e—e” PBALy
+ Tr|(BALY" N(BAL)+ (BAL)" N(BAL)) (2.81a)

y'AL'B"Pe=e"PBALy and Tr|(BAL)' N(BAL)|=Tr|(BAL)" N(BAL)|
therefore,
V(x)=e' (A4,"P+PA,)e—2y" AL B' Pe+ 2Tr|(BAL)” N(BAL)]

-0

T
—N

V(x)=—-e"Qe—2y"AL" B" Pe+ 2Tr(AL" (B" NB)AL))
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V(x) = —¢" Qe 2" AL" B" Pe + 2Tr|AL TAL
' : 2.81
V(x)=—¢ Qe+ 2Tr[- AL B" Pey” + AL'TAL] (2.810)

One of the most important point that should be stressed on in (2.81b) is the definition

of T=(B"NB),_ . Itis a very important term, because if it hadn’t been defined in

nxn *

this way (i.e. as a square matrix), in the following sections of derivation of parameter

adjustment rule, (B"), term would be left alone, where the Pseudo Inverse

mxn

operation would be necessary due to the reason that the term B is not a square matrix
(it is actually a matrix in dimensions of mxn). As it is known from linear algebra, if a
matrix is not a square matrix, the inverse of the matrix cannot be found very easily.
For that reason, in order to be able to find the inverse of a non-square matrix, Pseudo
Inverse has been defined in literature and the reader can refer to [10, 14] for further

and detailed information related with Pseudo Inverse. By simply defining

T =(B"NB),.,, the complexity of the equation has been reduced and a non-square

nxn 2

matrix possibility has been wiped out.

In (2.81b) e is the error function between output of the nominal plant (y) and
reference model (y,), P and O are the symmetric positive definite matrices

obtained and defined in Lyapunov function, respectively. From (2.81b) it is possible

to see that if the term
Trl- AL" B" Pey” + AL’ TAL |= 0= AL" (-B" Pey” +TAL) =0 (2.82)

then the candidate Lyapunov function becomes V(x)=—e'Qe, so that V(x) will

always be V(x)<0 and stable. For that reason, equality AL’ (—=B" Pey” + TAL)=0
should be satisfied. If it is remembered that the main goal was to derive
suchL =L +AL, which will lead to perfect matching conditions; only

AL (=B"Pey” +TAL)=0 will be taken into account, because when such L's are
obtained from AL" (-B” Pey” + TAL)=0, and then V(x)=—-e"Qe will automatically

satisfy Lyapunov stability condition (¥ (x) <0).
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After such analyses, it is time to apply the given theoretical background into the
longitudinal flight dynamics, but before getting into the process, it will be suitable to
present the state-space matrices of the longitudinal flight system for simplicity in
calculations. State-space matrixes of longitudinal flight system dynamics (including

elevator servo TF, 15/(s+15)) has been obtained from 6(s)/J,(s) TF and are as

shown in (2.83).

-30.6528 -275.1114 -661.2977 -896.4313 -778.2264 -663.9486 -15.0
1.0000 0 0 0 0 0 -12.83
A= 0 1.0000 0 0 0 0 = cig(d, )= -1.39+0.92i
e 0 0 1.0000 0 0 0 fons -1.39-0.92i
0 0 0 1.0000 0 0 -0.01+1.111 (283)
0 0 0 0 1.0000 0 -0.01-1.11i

Bu.=[l 0 0 000 ad C,,=[0 0 566,14 2081,4 922,53 2620,9]

ng =

From (2.83), it is likely to see that A-(compensated) state matrix is 6x6 and B-input

(control) matrix is (6x1), which leads the parameter adjustment matrix-L to be (1x6)

L:[Ln L, Ls L L Llé](lxé)
for compatibility of dimensions. Next, if the necessary calculations are conducted in
(2.82), the adaptive parameter adjustment rule based on Lyapunov stability is

obtained as

Trl- AL" B Pey” + AL'TAL|=0=> AL" (~B" Pey” +TAL) =0
—B"Pey” +TAL=0= TAL = B" Pey”

AL=T"'B"Pey" =(B"NB) "' B" Pey”

L=L+AL=L=AL

AL=L=T"B"Pey” =(B"NB)" B" Pey”

(2.84)

Here L has been found as L =AL, because L  is a constant parameter and is not
changing with time. From (2.84), it is also possible to see that the parameter
adjustment rule is only dependent on the output of the plant (y) and the error
function (e), which makes the parameter adjustment system dynamics independent

of information related to A-state matrix.
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From here it is possible to see that the PI adjustment rule based on Lyapunov

stability theory is obtained as the followings, where the control law is defined as

u:uc—gy.

0(0) =y (e) + 7, [u (D)e(r)dr =
yie (e

Proportional part

Integral part

0(1)=yu, (t)e(t)+7,Ly(t)

(2.85)

Before getting into the time domain analysis of closed-loop system response,

MATLAB® Simulink block diagram has been constructed (Figure 2.12) for PI

adjustment control algorithm.
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Figure 2.12 Simulink block diagram of PI adjustment based on Lyapunov Stability.

In some cases, output of the nominal plant may have some difference from the

reference signal, which is called as steady state error (e ) and which is also the case

in our system dynamics for longitudinal flight. In order to eliminate the occurring
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steady state error it is possible to scale the input to make it equal to the steady state
response. This scaling factor is often called as Nbar and it has been introduced into
the system dynamics as shown in Figure 2.12. Nbar has been calculated using a
Matlab program which has been taken from [32]. Following to that, if time domain

responses of adaptive control system design based on Lyapunov stability are plotted,

they should be obtained as given in Figure 2.13.
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Figure 2.13 Closed-loop time domain responses of model-reference adaptive control
system design: PI adjustment based on Lyapunov stability.
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From Figure 2.13, it is possible to see that time domain responses of PI adjustment
rule based on Lyapunov stability are remarkable, so that the settling time is nearly
2.5 seconds and the maximum actuator signal is obtained as 1.5 Newton. Also the
evolution of error signal is considerable and given in the second plot of Figure 2.13.
Moreover, tracking and disturbance rejection characteristics are noteworthy, where a
disturbance to the output has been introduced with a 25% magnitude of input signal

at t =20 sec.

2.4 Augmented Optimal LQR Control System Design: Longitudinal Dynamics

In this part of the thesis, an augmented optimal LQR control system design, taken
from [16], will be investigated with further details, and afterwards using derived
mathematical model, the theory will be implemented on the longitudinal flight

dynamics of the UAV.

In physical environment, it is not always possible to measure all the states of an
aircraft during the flight and because of that reason, sometimes complexities and
several anomalies could arise in automatic control process due to lack of state and
feedback information. Therefore, in order to suppress the effects of lack of
measurement, an observer mechanism is used in order to compensate measurement
insufficiencies and to obtain a theoretical estimation of necessary states those
couldn’t be measured. This option will also be used in augmented optimal LQR
control system design in order to suppress measurement effects and in order to obtain

an estimated model for better performance characteristics.

In general sense, state-space mathematical model of a system is defined as

Gs) {)'c(t) = Ax(t) + Bu(t) (285)

y(1) = Cx(?)

and estimation mechanism transfer function could be named as G(S) , where nominal
states of the plant are classified as x and estimated plant states are named as X. As a

result of the observer mechanism, it is expected to have limx—x=0 [12], which

t—0

leads to adequate observation condition. Following to that, it is possible to construct
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a MATLABO Simulink block diagram of estimated (observed) system as shown in
Figure 2.14.

()

L

J -
: 2
o0 J I

Figure 2.14 Nominal plant and observer mechanism.

But before getting into control system design process, due to the reason that the
observer mechanism has been suggested to be included in system dynamics, it has to
be checked and guaranteed that the nominal plant is fully observable and

controllable.

2.4.1 Observability and controllability of system dynamics: Longitudinal flight

During the optimal control system design process, which is going to be presented in
the next section, an observer scheme will be used in order to estimate the outputs
those may not be measured during the flight. And just before getting into the control
system design part, the observability and the controllability characteristics of the

UAYV system will be investigated in the following parts.

Observability matrix of a system is defined as,

Obs=0,=|C c4 ca ... ca'|
(2.86)

where C is the output matrix and A is the state matrix of the nominal plant [13]. In

the light of the observability matrix (O, ), a system is described observable if (2.87)

is satisfied.

Rank(0,)=n (2.87)

Using the 0(s)/0,(s) TF and elevator servo TF [15/(s +15) ] of system dynamics, it

is possible to obtain state space system representation of longitudinal flight dynamics
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with the help of tf2ss MATLABO command. If necessary calculations are
conducted, state matrix-A and output matrix-C of longitudinal flight dynamics are
obtained as shown in (2.83). Using (2.83) and replacing in (2.86), observability

matrix is attained as

C [0 0  0.0088 0.0008 0.0114

C4 0  0.0088 0.0008 0.0114 0
Obs=0,=|C4A* |=10°*| 0.0088 0.0008 0.0114 0 0 (2.88)

-0.1561 -0.3976 -0.5764 -0.4986 -0.4557

cA™! | 2.3846  6.6729 9.7189 8.3830 8.0778 |

where the rank of the system becomes Rank(On): 5=n showing that the system is

fully observable. As a confirmation, it is also possible to calculate the number of
unobservable states from (2.89),

UnOb = Length(A,, ) — Rank(0,)=5-5=0 (2.89)

which simply states that there are no unobservable states (i.e. all of the states could
be observed). Thus, it is feasible to verify that an observer mechanism can be used in
estimation of the states of open-loop dynamics in longitudinal flight, where

mathematical model of an observer mechanism can be simply defined as [12],

) X(t) = A%(0)+ Bu(t) + H(y(0) = (1)),
G(s) =(A—HC)X(t)+ Bu(t) + H y(¢) (2.90)
=A(t)

y() =Cx(@)

Additionally, controllability of the system dynamics should be verified as well, so
that there will be no theoretical obstacle to get into the optimal control system design

process. It is known that controllability matrix of a system is defined in [13] as

C =|B 4B 4’B ... 4"'B| (2.91)

so that the controllability matrix must satisfy (2.92)
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Rank(C,)=n (2.92)

and in this way the system is called reachable or controllable. If the given

controllability conditions are applied, controllability matrix is obtained as

[0.0001 -0.0018 0.0271 -0.4070 6.1044]
0 0.0001 -0.0018 0.0271 -0.4070
C =B 4B 4B ... 47'B]=10**| 0 0 0.0001 -0.0018 00271 | (2.93)
0 0 0 0.0001 -0.0018
0 0 0 0 00001 |

where the rank of the system is calculated as Rank(C,):S =n leading to a fully

controllable system dynamics.

With such observability and controllability analyses, it has been proved that the
longitudinal UAV system is both controllable and observable, which grants the
opportunity to use an observer (estimation) mechanism in control system design

process.
2.4.2 Augmented optimal LQR control system design: Integral control

In this section of the thesis, an augmented optimal LQR control system design with
an observer (estimation) mechanism will be presented using integral control
technique and subsequently will be implemented on longitudinal flight dynamics of

an UAV.
Generally speaking, state space representation of a system could be given like

x=Ax+ Bu+ Gw
(2.94)

y=Cx
and the feedback error could be given such as e =y —r, which is negative in sign
(and different) than the usual feedback convention, e =7 —y. It can be shown that

the feedback control rule could be obtained in a way so that the plant could be

augmented with an extra integral state (x, ), which simply obeys the integral equation
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X, =Hx-r=e
(2.95)

and leading to
t
x, = [ed (2.95)
Then the augmented state equations become
X, 0 C|x . 0 . 0 506
= u w )
X 0 A4|x B G (2.96)
where the feedback control law becomes
Xy
=K K] @97

Accordingly, control structure using the integral control action design technique

results in as showed in Figure 2.15 [12, 16].

G5

Figure 2.15 Integral control block diagram for robust tracking and disturbance
rejection.

After obtaining some mathematical background related with the robust tracking and
disturbance rejection in system dynamics, it is time to implement it inside the
optimal LQR control system design. In optimal control system design process, the

main goal will be to determine the optimal feedback gain

U =K, X(t) (2.98)

which will eliminate the error between the reference and the feedback signals, so that

the cost function will become
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J(u(®)) = f(y(t) = ()" Q((®) = () ~u(®)" Ru(r)dt (2.99)

where O and R are positive-definite weighting matrices. This problem cannot be

solved without each a-priori-knowledge and/or without restriction of the reference

signal r(¢), because r(¢) can be for example an unstable signal and therefore the

integral (2.99) will result in no finite value [12]. However, the problem can be solved

as a modified sequence regulation problem for unknown 7(¢). The solution exists

within the expansion of the closed-loop through a filter K, , so that using general

formula of a closed TF from input to output

Y(s)
R(s)

— Clst - (4= BK )" BK ;= Gy (5) (2.100)

it is possible to obtain the value of K ;, as

K =—{cl4-BK )] "B} (2.101)

The just described regulator design is for undisturbed rule as well as for rule without
and/or with small model uncertainties well suited. A demand often placed in the
practice is the capacity of the closed-loop to be able to compensate constant-not
measurable disturbances [12]. The well known idea out of the classic theory in
compensation of disturbances is to expand the regulator around an Integral-control
loop, where the structure of integral control had been given previously in Figure

2.15.

If augmented system dynamics are going to be reorganized from (2.96), it should be

obtained

oo 0 —ZN EN

=1, x(t)+ u(t)— xX(t)+Bu(r) (2.102a)
v =y C]xm 5%’

where y is a scalar weighting factor (y > 0) and
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() =K, 3(0)=[-K, K% (2.102b)

It should be noted that, in order to have a usual sign convention (e=r—y) in the

outer loop of the augmented plant dynamics (Figure 2.16), output matrix-C has been

assigned with a negative (-) sign convention in (2.102a).

After having implemented classical integral control method into optimal LQR
control system dynamics, it is time to see the results in longitudinal flight dynamics.
In optimal control system design procedure, nominal plant parameters, (2.83), has

been used and corresponding K ., gain value has been calculated from (2.101) as

filt

K, =0.8664. Positive-definite weighting functions (Q and R ), which are going to

Silt

minimize the cost function-.J , and y parameter have been selected as

O=diag([l 1 200 200 20 20]), R=0.3800 and y =10
(2.103)

Using the chosen Q, R and y values, calculated K, has been obtained with the

help of 1gr command in MATLAB® as

K =[1.6222 1 6.7195 141.0039 711.8341 254.3036 894.9278]
K, =1.6222 (2.104)
K, =[6.7195 141.0039 711.8341 2543036 894.9278]

The last thing to do before getting into the time domain responses is to define the
characteristics of observer (estimation) mechanism. As it is possible to see from
(2.90), observer mechanism is included with a pole placement weighting matrix-H,
which is going to place the nominal plant poles to the desired places. It is desired to

place poles of the estimation mechanism at

[ -15.0000
-1.7925+1.1873i
eig(G(s)) =| -1.7925-1.1873i (2.105)

-0.7070+0.7072i
| -0.7070-0.7072i |

and corresponding pole placement gain ( H ) is obtained as
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H =[0.0268 -0.0301 -0.0217 0.0252 0.0169] (2.1006)

After every parameter has been found, Simulink block diagram of augmented

optimal LQR control system design has been suggested as shown in Figure 2.16.

]

oS

1= Distubance "ON"
- 0 = Disturbance "OFF*

Reference Signal
v
outt pif180% 0 3 S04pi* U E
F 3

2deg - Step Lin. theta
Gs(s
Linearized Plant

]
!

¥
c

Gs7[s)

Estimated Flant

Figure 2.16 Simulink block diagram of augmented optimal control system design.

where estimation algorithm’s Simulink block diagram has been constructed as

all
H* L g

Integrator

¥

Figure 2.17 Simulink block diagram of estimation (observer) mechanism.

Now, it is time to see the closed-loop time domain results of augmented optimal

LQR control system design, and obtained results have been presented in Figure 2.18.

From Figure 2.18, it can be seen that the settling time of the designed control system
1s approximately 1.5 seconds and the maximum actuator force is nearly 0.25 Newton,
which are remarkable performance values for a control system design. Moreover,

without any (lead/lag) compensation, control system is able to suppress lightly
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damped modes of the nominal plant and to shape system dynamics efficiently.

Disturbance rejection and signal tracking properties of controller are also significant.

An optimal LOR control systern design for longitudinal flight
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Figure 2.18 Time domain response of augmented optimal LQR control system
design.

2.5 Comparison of Automatic Control System Designs: Longitudinal Dynamics

After obtaining time domain responses of each automatic control system designs, it

will be suitable to plot responses all together for comparison purposes (Figure 2.19).

Comparison of closed-loop time domain responses of longitudinal flight
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Figure 2.19 Closed-loop time domain responses of designed automatic control
systems: Comparison analysis.
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Furthermore, it is possible to present performance characteristics of obtained

controllers as given in Table 2.1.

Table 2.1 Comparison of characteristic properties of designed controllers: Longitudinal dynamics

RiseTime PeakTime  SettlingTime Max.Overshoot Max.Actuator

[sec] [sec] [sec] [%] Force [N]
Norm. PI Adj. 5.5 7.6 10 1.86 0.2
Lyap. PI Adj. - 1 2 2 1.5
Aug. LQR. 1.33 1.45 1.56 0.24 0.26

As it is possible to see from Table 2.1, best performance has been obtained with the
augmented optimal LQR control system design together with the adaptive PI

adjustment based on Lyapunov stability.
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CHAPTER 3

3. Lateral Dynamic Modeling

In this section of the thesis, lateral equations of motion will be summarized. In this
part, state space approach has been preferred in dynamical modeling of lateral flight
in order to have a convenient representation of EOMs for the automatic control
system design part. In that sense, state space equations, which have been derived and
used in this section of the thesis, have been taken from [2, 6]. By using the given
representation, the lateral dynamic state space equations could be obtained easily and

TFs could be derived straightforwardly.

3.1 Equations of Motion (EOMs)

Using the fundamental state space representation as shown in (2.85), it is possible to
construct the state-space form of the lateral flight model. For the lateral flight case,

the matching state vector has been defined as

x=[ppr ¢ vl G

where £ is the side slip angle, p is the roll rate, » is the yaw rate, ¢ is the roll

angle and y is the yaw angle. The input vector has been defined as

u=ls, 5] 52)

where O, is the aileron input and o, is the rudder input. For the lateral dynamic

system, state matrix-A has been given as
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Y 0 -1 5 0
UO
L, L' L. 0 0
A = (3.3)
“ |N'y N', N'. 0 0
0 1 0 0 0
0 0 1 0 0]
where primed stability derivatives are defined as
L'y=L +1,N, N'y=N ;+1,L,
L',=L +I;N, N',=N +1,L,
L' =L +I,N, N' =N +1I,L, (3.4)
L's =Ls;+I;N; N's=N;+I,L;
L's =L;+I;N; N's =N;+I1,L;
IA = Ixz /Ixx
IBEIxz/Izz (35)
and the accompanying stability derivatives are given below, so that
_pU,S
YV - 2m Ve (36)
is side force coefficient with side slip motion,
2
_pU,Sb
L, _—21” G, (3.7)
is rolling moment coefficient with a change in side slip angle,
_ Ly+(./1,)N,
(where it should be noted that L', = 5
1 - ((IXZ) / IXXIZZ)
2
pU,"Sb
=—C 3.8
B 2122 ny ( )
is yawing moment coefficient with a change in side slip angle,
_ pU,SP’
L,= ﬁC,p (3.9)
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is rolling moment coefficient with a change in rolling velocity,

pU,Sb’
N, =—"—C 3.10
= G (3.10)
1s yawing moment coefficient with a change in rolling velocity,
pU,Sh*
L =—"—C 3.11
o4t (3.11)
is rolling moment coefficient with a change in yawing velocity,
pU,Sb*
N =—"—-2C 3.12
r 4122 n, ( )

is yawing moment coefficient with a change in yawing velocity, where p is the air
density, U, is the speed, S is the reference area of wing surface, b is the wing span,
I . is the moment of inertia around x, 7/ _ is the moment of inertia around xz and /_

XX

is the moment of inertia around z of the UAV.

Next, the control matrix-B could be shown as

0 Y*,
L'(SA L'(SR
B, = N'gA N'(;R = Y*5R =7 /U, (3.12)
0 0
where
U,’s
y,="¢c (3.13)
2m -

is the side force control coefficient with rudder/aileron deflection,

_pU,Sh
21 "

XX

L (3.14)

is the rolling moment control coefficient with rudder/aileron deflection,
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2
pU,"Sb
5= #Cnﬁ (3.15)

is the yawing moment control coefficient with rudder/aileron deflection. The output

matrix-C can be presented as,

C,=[t 0 0 0 0]
c,=[0 1 0 0 0]
y=C,x = C=[0 0 1 0 0] (3.16)
c,=[0 0 0 1 0]
c,=[0 0 0 0 1]

If all the given state space matrixes (4, B, C and D) are going to be replaced in

(2.85), the whole system representation is obtained as

Y, 0 —1Uioﬂ 0 Y,
0 ] '

r, ', r, o ofP| [Fa L
= 1 ' | +/N'; N' ! (3.17a)
o 1 0o o of? o 0

L0 0 o ol L O O]

(1 0 0 0 Ofp]

0100 0fp
y=[0 0 1 0 Ofr~ (3.17b)
0001 0|¢

00 0 0 1]y

Characteristic values with corresponding inputs were previously given in Table-1.

Stability derivatives for lateral flight have been calculated and selected from [5] as,

Table 3.1 Lateral stability derivatives and inputs of UAV.

Cy =-0.1829 C_  =0.0158 C =0.5765 C,_ =0.6000

B Vs, Yy &

C, =-0.0450 C, =0.0131 C, =0.0000 C, =-0.0100
B S (44 oa

C, =-0.1200 C, =-0.0800 C, =-0.0710 I, =0.0860
C, =0.1441 C, =0.0000 I =0.1806 1. =0.0000
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but different than the longitudinal flight, it is assumed that in lateral flight the UAV
is flying with the speed of 17m/s. Using the specified values in Table 1.1 and Table

2.1, it is possible to construct state space matrixes starting from state matrix-A (3.3),

[ -0.1830 0 -1.0000 0.5769 0
-75.6611 -10.0881 12.1165 0 0
A, = 0.8006 -2.8416 -0.1321 0 0 (3.18)
0 1.0000 0 0 0
0 0 1.0000 0 0
control matrix-B, using (3.12), is found as
0 0.0158]
1008.8 22.026
B, =|-8.0065 -64.052 (3.19)
0 0
output matrix-C is gained as
(1 0 0 0 O]
01 0 0O
C,=/0 01 00 (3.20)
0 0 010
100 0 0 1]
and direct transmission matrix-D is attained as
D=0 (3.21)

From the calculated state space matrixes (4, B, C and D), it is possible to obtain all

necessary TFs,

B(s) pls) r(s) #(s) w(s)
5(s)” 8(s)” 8(s)” 8(s)” S(s)

for given o

aileron

and o, Inputs, respectively. But before obtaining the

corresponding TFs, the eigenvalues of state matrix-A should be analyzed and the
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poles of the open loop system should be investigated. Using Matlab command eig it

is possible to obtain the poles of the system such as,

p, =0.0000
p, =—9.4057

py =—0.4985+5.3667 i (3.22)
p, =—0.4985-53667 i

ps =—0.0006

It should be noticed that the open loop system is stable but has a pole lying at the
origin (0,0), which makes the system a marginally stable one. Such system with a
pole on the origin (0,0), could easily be detonated and become unstable with a little
disturbance. In order to prevent any instability and to suppress the effects of “zero

type system”, automatic controller with good disturbance rejection will be required.

If the poles of the UAV are going to be named according to the modes of lateral
flight, it should be found

Spuenron, = —0.4985+5.3667 i
Spuenron, = —0.4985~5.3667 i

5., =—9.4057
=~ 0.0006

spiral —

(3.23)

S

In analysis of lateral dynamic model of UAV, three degree of freedom assumption
will be acknowledged, which yields to a characteristic equation (CE) representation

such as

T

r s

(52 + 2Ly, 5+ @'y (s +i>(s+ri) -0 (3.24)

By using the representation in (3.24), the CE equation of the three-degree of freedom

system could be constructed as the followings,
(s* +0.9969 5 +29.0504)(s +9.4057)(s + 0.0006) = 0 (3.25)

where
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CE ponron = (8> +0.9969 5 +29.0504) = 0 (3.26)

symbolizes the CE of the Dutch Roll Mode (DRM) of the UAV. The corresponding

natural frequency (@, ), damping frequency (@), ) and damping ratio (g, ) of the

DRM are established as

@, = 5.3898 rad /sec

np,

Cpr = 0.0925 (3.27)

w, =, \1-{p =5.1346 rad/sec

From (3.27), it is probable to see that the DRM of the UAV has an oscillatory

behaviour with relatively small periods as

2
Trs :w—:1.1657 sec (3.28)

"pR

As a characteristic property signifying the performance of the UAV, time constants

for roll (7,,, ) and spiral modes (7, ) could be offered. If the time constants of both

roll and spiral modes are calculated, it is possible to find the final values such as

1
T piral = 00002 1666.7 sec (3.29)
Toon = m =0.1855 sec (330)

Additionally, in DRM

#(s) 5() _ #(s)
5(s) Bs)  B(s)

(3.31)

ratio can tell if the DRM is composed of mostly yawing motion, mostly rolling
motion or approximately equal contribution of each [8]. Via (3.31), the ratio could be

calculated as

gis) |G, 1, 1 |
B(s) _[Cnﬂ I onj—4-5378 (3.32)
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From (3.32), it is possible to witness that the ¢(s)/ S(s) ratio is higher than 1, which

leads to a rolly Dutch Roll Mode characteristic and is generally because of a high

degree of lateral stability [8].

After such analyses, it is time to get into time responses of the open loop system. But

just before that, it is also possible to construct the TFs for each control surface

(aileron/rudder) deflection.

Using MATLAB® and ss2tf command, one is able to obtain all the TFs for aileron

deflection as,

B(s) -1421x10™s* +8.006s° +35295> +20.92s
S.(s) s +10.4s* +38.435° +273.35>+0.1698s

p(s)  1009s* +220.9s° +208.65° +3.345x10" s
5,(s) s°+10.4s" +38.435° +273.35* +0.1698 s

r(s)  -8.006s"-29495’-539.45> +116.5s
5.(s) s +10.4s*+38.43s° +273.35> +0.1698s

P(s)  -1.599x10™"* s* +1009s’ +220.95> +208.65
5.(s) s°+10.4s*+38.43s° +273.35> +0.1698 s

w(s) -1.776x10""s" -8.006s" -29495s” -539.45+116.5

o,(s) - s’ +10.4s* +38.435 +273.3s” +0.1698 s
and the TFs for rudder deflection are gained as

B(s)  0.01581s* +64.21s° +7225% - 4465
S(s) s +10.4s*+38.43s’ +273.3s% +0.1698s

p(s)  22.03s*-770.3s° -4970s” -1.183x10™" s
5,(s) s’ +10.4s*+38.435° +273.35° +0.1698s

r(s)  -64.05s"-720.55-126.25> - 2786
5.(s) s +10.4s" +38.43s’ +273.3s% +0.1698 s

#(s)  8.882x10™° s* +22.035"-770.35% -4970s
5.(s) s°+10.4s*+38.43s°+273.3s* +0.1698s

w(s) 1.599x10"s*-64.05s -720.55° -126.2'5- 2786
0,(s) s +10.4s* +38.43s” +273.3s” +0.1698s
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From both TF sets, it is likely to see that in the numerator part, there are zeros at the
origin (0,0), which might be cancelled with the poles at the origin (0,0) in the
denominator part. Due to the fact that, the cancellation of poles and zeros will reduce
the order of the system and will lead to a significant change in the characteristic of
the system; the elimination hasn’t been done here and the obtained TFs have been

used.

If the corresponding time domain step response graphs of the found TFs are plotted,

they should be obtained as shown in Figure 3.1.

Step Response Step Response
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Figure 3.1 Open-loop time domain step responses for a given deflection.

From time domain step responses, it is likely to observe that the poles at the origin
are causing oscillatory, lightly damped (under-damped) and unstable behaviours in
several cases. As it is also probable to witness from the open loop time domain
responses, the flight control system needs an efficiently weighted control system,
which can also verify the robustness of the system. As a result of this need, an
adaptive control system based on Lyapunov stability and an augmented optimal LQR

control system will be designed and applied to the lateral flight dynamics,
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respectively. The results will also be investigated and compared in the following

sections.

3.2 Model-Reference Adaptive Control System Design for the Lateral Dynamics
of the UAV

In the previous chapter, where longitudinal flight dynamics have been discussed,
both MIT rule and Lyapunov stability approaches have been implemented on
longitudinal flight dynamics. Considering the fact that the lateral flight system is a
Multi-Input-Multi-Output (MIMO) system, which has two inputs and five outputs,
and the longitudinal flight is a Single-Input-Single-Output (SISO) system, which has
only one input and one output; in this section MIT rule will not be taken into account
because of weak controllability effect in high order and complex systems (which is
also the case in lateral flight dynamics). Therefore, only (more robust) adaptive
control system approach based on Lyapunov stability theory, will be implemented on

lateral flight dynamics.
3.2.1 MRAS Design based on Lyapunov stability

In this part of the thesis, adaptation rules based on Lyapunov stability theory will be

derived.

The mathematical background of Lyapunov stability theory was simply and briefly
discussed previously in section 2.3.2; therefore, here only the derivation of

adaptation rules and adjustment parameters will be given.

For the lateral flight dynamics, the same candidate Lyapunov function that has been

formerly used in longitudinal dynamics has been suggested as shown in (2.78).
V(x)=e'Pe+Tr[(A4~BL—A4,)" N(A-BL-4,)| (3.43)

From earlier calculations in (2.80), it is known that the time derivative of error

function has been derived as

é=A e—BALy (3.44)

It is possible to construct the derivative of given Lyapunov function as in (2.81).

60



V(x)=e' (4, P+ Pd,)e—2y" AL' B" Pe+2Tr|(BAL) N(BAL)|
-0

T
——

V(x)=—e"Qe—2y"AL" B" Pe+2Tr(AL" (B" NB)AL)) (3.45)
V(x)=—e"Qe—2y"AL" B" Pe + 2Tr[ALTTAL]
V(x) =—e Qe+ 2Tr[— AL'B" Pey" + ALTTAL]

where AmTP+ PA, =-Q. From here, in order to guarantee that V'(x) will always be

V(x) <0, condition AL" (—B" Pey” +TAL)=0 should be satisfied. Next step will be

to conduct some dimension analysis in order to obtain the size of L. If nominal plant
(no servo mechanism included) state matrix-A is taken into account from (3.18), it is
easy to see that the system has 5 states (5x5). If servo mechanism’s TFs of aileron
and rudder actuators are considered, then the system will be consisted of 7 states
(7x7), where also the newly shaped output matrix-B will have 7 states (7x2) as well.
In order to have compatibility in terms of matrix dimensions in (3.43), parameter

adjustment feedback gain-L should be constructed in dimensions of (2x7), leading to

L:{LH le L13 L14 LlS Llé L17j| (3.46)
(2x7)

LZI L22 L23 L24 L25 L26 L27

Afterwards, if necessary calculations are conducted in AL (~B” Pey” + TAL) =0, the
elements of parameter adjustment matrix-L are going to be obtained as given in
(3.47).

Trl— AL" B Pey” + AL'TAL|=0=> AL" (—-B" Pey” +TAL) =0

—B"Pey” +TAL =0= TAL = B" Pey”

AL =T"'B" Pey” =(B"NB)™" B" Pey" (3.47)
L=L+AL=L=AL

AL=L=T"B"Pey" =(B"NB)" B" Pey”

Before getting into the time domain analysis of closed-loop system response,
MATLAB® Simulink block diagram has been constructed (Figure 3.2) for MRAS

design based on Lyapunov stability adjustment control algorithm.
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Figure 3.2 Simulink block diagram of MRAS based on Lyapunov stability.

It should be noted that in lateral control system design process, instead of PI
adjustment, only Lyapunov stability based control rules have been implemented into
system dynamics. Following to that, if time domain responses of MRAS control
design based on Lyapunov stability are plotted, they should be obtained as given in
Figure 3.3.

As it is possible to see from Figurer 3.3, perfect matching conditions have been
satisfied and the nominal plant has been adapted with respect to the reference-model
in a remarkable way. From error signal plot, it also possible to see that the error
signal is being diminished within 2 second and the nominal plant is behaving such as
reference-model when ¢ — . From Figure 3.3 it is possible to see that the time
domain behaviours of MRAS design based on Lyapunov stability are remarkable so
that the settling time is nearly 1.5 seconds and the maximum actuator signal is
obtained as 1 Newton. Also the change of error signal could be easily observed from
the second plot in Figure 3.3. Evolution of adjustment parameter-L has been plotted
and could be investigated in Appendix-A. Also the code of Embedded Matlab

Function has been given in Appendix-B.
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Figure 3.3 Closed-loop time domain responses (A-B) of model-reference adaptive

control system design: Based on Lyapunov stability.
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3.3 Optimal LQR Control System Design: Lateral Dynamics

In this part of the thesis, optimal LQR control system design will be implemented on
lateral dynamics of the UAV.

3.3.1 Observability and controllability of system dynamics: Lateral flight

Observability matrix of a system has been previously defined in (2.83) as

Obs =0, = [C CA CA*... CA”‘I]T and the system had been called observable if
Rank(On):n is satisfied. Using state matrix-A from (3.18) and identity output

matrix-C from (3.20), it is possible to construct the observability matrix. It is
calculated and given in Appendix-A, where the rank of the observability matrix is
five and equal to the states of the nominal plant showing that the system is fully
observable. As a confirmation, it is also possible to calculate unobservable states

from (2.89) as UnOb = Length(A, ) — Rank(O,)=5—-5=0 which simply states that

there are no unobservable states (i.e. all of the states could be observed). Thus, it is
feasible to verify that an observer mechanism can be used in estimation of the states
of open-loop dynamics in lateral flight, as well. Additionally, controllability of the
system dynamics should be verified as well, so that there will be no theoretical

obstacle to get into the optimal control system design process. It is known from

(2.91) that controllability —matrix of a system is defined as
C, :[B AB A’B ... A'HB] and it must satisfy Rank(C,)=n condition. Using
state matrix-A from (3.18) and input (control) matrix-B from (3.19), controllability
matrix is obtained as shown in Appendix-A, where the rank of the system is

calculated as Rank(C, ) =5 =n leading to a fully controllable system dynamics.

With such observability and controllability analyses, it has been proved that the
lateral UAV system is both controllable and observable, which grants the opportunity

to use an observer (estimation) mechanism in control system design process.
3.3.2 Optimal LQR control system design: Classical approach

In this section of the thesis, an optimal LQR control system design with an observer
(estimation) mechanism will be presented and subsequently will be implemented on

lateral flight dynamics of the UAV.
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Here, unfortunately augmented optimal LQR control technique based on integral
control cannot be applied to lateral dynamics, because it is not possible to apply
integral control action to a plant that has a zero at the origin [17], which is
unfortunately the case in our lateral system dynamics. Therefore only a single
optimal LQR control loop will be implemented on the lateral flight dynamics

together with an observer (estimation) algorithm.

As a first step before getting into the time domain responses of closed loop system,
the characteristics of observer (estimation) mechanism have been defined. As it is
possible to see from (2.90), observer mechanism has been constructed with a pole
placement weighting matrix-H which is going to place the nominal plant poles to the
desired places and estimate plant parameters. It is desired to place poles of the

estimation mechanism at

-2

-15

-3.7729 +3.8491i
eig(G(s)) =|-3.7729-3.8491i (3.48)
-0.6
-15.0000
-15.0000

and corresponding pole placement gain - H is obtained as

35899 -3.8491 -1  0.57688 0 0 0.061232 |
-71.812 -6.3152 12.117 0 0 3907.1  85.305
0.80065 -2.8416 1.8679 0 0 -31.009 -248.07
H=| 0 1 0 15 0 0 0 (3.49)
0 0 1 0 0.6 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0

Positive-definite weighting functions (Q and R ), which are going to minimize the

cost function-J have been selected as

O =diag([20 20 80 135 30 10 30]), R =diag([1.15 1.50])
(3.50)
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Using the chosen Q and R values, calculated K, has been obtained with the help

of 1gr command in MATLAB® as

o _[ 00108 40024 -0.2693 111900 0.9857 §6.1137 2.7624
w 1R =1 09985 0.1160 -7.3695 -04777 -4.3881 2.1179 27.4056| -1

After every parameter of control system has been found, Simulink block diagram of

optimal LQR control system design has been suggested as shown in Figure 3.4.

1 = Distubance "ON"
0= Disturbanee "OFF"
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v

= u
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Saturation Lin. thets
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Linezrized Flant
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Gs7(s)
Estimated Flant

Klat_lgr* u }47

Figure 3.4 Simulink block diagram of optimal LQR control system design.

where estimation algorithm’s Simulink block diagram has been constructed as
formerly shown in Figure 2.17. And now, it is time to see the closed-loop time
domain results of optimal LQR control system design, and obtained results have been

presented in Figure 3.5.

As it could be seen from Figure 3.5, closed-loop time domain results of optimal LQR
control system design are considerable, where the settling time is approximately 7
seconds and the maximum actuator force is 1 Newton with acting time of ~0.5
seconds. It should be noted that during the construction of system dynamics, it has
been considered for the lateral system dynamics that the maximum actuator force
should be 1 [N] and will be limited with 1 [N], thus saturation has been used in the
block diagram in the feed-forward path. Also is it likely to see that, without any
(lead/lag) compensation in the nominal plant, the control system is able to suppress
the frequent and sustained oscillations in nominal plant and is able to shape system

dynamics efficiently.
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Figure 3.5 Time domain response of optimal LQR control system design.
3.4 Comparison of Automatic Control System Designs: Lateral Dynamics

After obtaining the time domain responses of each automatic control system designs,

it will be convenient to plot the closed-loop responses all together for comparison

purposes (Figure 3.6).
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Figure 3.6 Closed-loop time domain responses of designed automatic control
systems: Comparison analysis.
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Furthermore, it is possible to present performance characteristics of obtained

controller as given in Table 3.1.

Table 3.1 Comparison of characteristic properties of designed controllers: Lateral dynamics

SettlingTime [sec] Max.Actuator Force [N]
MRAS Lyapunov 2 1
Optimal LQR 5 1

As it is possible to see from Table 3.1, best performance has been obtained with the

MRAS design based on Lyapunov stability theory.
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CHAPTER 4

4.1 CONCLUSIONS AND DISCUSSIONS

In the thesis, mainly, dynamical modeling of an UAV and subsequently automatic

control system designs has been discussed widely.

After a short introduction in the first chapter, in the second chapter longitudinal
dynamic model of the UAV has been constructed. It has been obtained from the open
loop longitudinal dynamic model that the system has very close poles to the origin
leading to highly oscillating behaviours. In order to suppress those oscillatory effects
in open-loop dynamics two automatic control system design approaches have been
implemented on longitudinal flight dynamics of the UAV: Model Reference
Adaptive Control System PI Adjustment design based on MIT Rule and based on
Lyapunov Stability together with Augmented Optimal LQR Control approach.
Obtained time domain results of designed controllers are stating that PI adjustment
based on MIT rule is not able to guarantee stability in closed-loop dynamics, but PI
adjustment based on Lyapunov stability is capable of guaranteeing the stability.
Moreover, the results of augmented optimal LQR control system design are stating
that augmentation of open loop system dynamics is introducing robustness into the
system dynamics, and therefore suppression of disturbances and tracking of reference

signal is relatively better than the other approaches.

In the third chapter, lateral dynamic model of the UAV using state space approach
has been obtained. Dutch roll, roll and spiral modes have been investigated and as a
result of weak open loop performance, firstly, automatic control system based on
adaptive PI adjustment rule based on Lyapunov stability has been introduced. It has
been witnessed that the Lyapunov stability approach is able to compensate all the
outputs and obtain relatively remarkable performance in time domain. In order to
suppress high coupling effect and reduce the uncertainties in the system, an

augmented optimal LQR control system design was supposed to be implemented on
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system dynamics but because of the lateral flight dynamics were including a zero at
the origin, Integral control approach couldn’t be applied as a result of theoretical
limitations. Thus, classical optimal LQR control approach has been introduced into
the lateral dynamics, but it has been seen that it was not able to shape the open-loop
system dynamics as much as adaptive control system design based on Lyapunov

stability could do.

Some of the obtained results from the thesis have been published in 9™ International
WSEAS Conference on Automatic Control, Modeling and Simulation, May 27-29,
2007, Istanbul, Turkey.
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APPENDIX-B

Sample Matlab-M code for longitudinal flight dynamics: MRAS design based on Lyapunov
stability:

%% FLIGH STABILITY AND CONTROL - PROJECT #1

$%%

$%% Kamran Turkoglu, Istanbul Technical University,

$%% Istanbul, TURKEY, turkogluk@itu.edu.tr, kturkoglu@yahoo.com
%%% February 7th, 2007, Wed

5555555555555 %55555%55555555555555555%55%555%5%5%5%5%%%

clear all, close all, clc;
syms s

o°
o°

o
o

o

o
o

o°
o°

o

The constants
m=5%*0.0685217659 $[slugs]%%%
UAV is~ 3-6kg)
u=12%*3.2808399 %$[ft/s]%%%% 1 m/s = 3.2808399 ft/s (velocity) (Approximate velovicity
of UAV is~18-19 m/sn)

g=9.807%32.1751969 % [ft / s"2] %%% Gravity constant in Emperial units ~ 9.807 m/s"2
A=0.4805%*10.7639104 % [ft"2] (wing surface area) 1Im"2 = 10.7639104 ft*2 (The wing
area of the UAV is ~0.1293 m"2)

rho=1.225%*0.0624279606 % [lb/ft"3] %%%% Density at sea level 1 kg/m"3 =
0.0624279606 1b/ ft"3

g=(rho*u”2) / 2 % Dynamic pressure

Iy=0.120396634 % 0.0888 [slug.ft"2]%%%% (Moment of Inertia around y)
c=0.235%*3.2808399 % [ft] %%%% The chord length of the UAV = 0.235m
Lt=c%*3.2808399 % [ft] The length from CG to the tail mean avg chord is ~0.235m
theta=0 % it is assumed no theta angle change (neglected), so

cos (theta)=cos (0)=1 and sin(theta)=sin(0)=0 will be taken constant

Cd=0.0132 % Drag coefficient

Cl=(m*g)/ (A*qg) % Lift coefficient [There is such an equation in Blakelock 1991,
pp.37, such as Cw=-Cl ]

dCl da=0.1249 % Change oif lift coefficient with angle of attack

dCd da=0.0389 % The change in drag coefficient with angle of attack (alpha
dCm_dit=-1.5 % This is an approximated values, not certain, ***** COULD BE ADJUSTED
* Kk Kk kK

b=1.7%*3.2808399 % [ft] %%%% Wing span, from tip of the right wing to the tip of the
left wing is~1.7m

AR=(b"2) /A % Aspect Ratio, is the ratio between the square of the sapn of the wing
over the surface area of the wing

de da=(2/ (pi*AR))* (dCl da)

K=1.1] % A constant which is generally taken 1.1 ****** COULD BE ADJUSTED *****x*x
x=(0.25*c) % [ft] %%% distance between fixed control neutral poiunt and CG

SM=-(x/c) % static margin = xc/c

o0
—
~

«Q

Il

0.0685217659 slugs (MASS) (Approximate mass of

% Stability derivatives of UAV

Cxu=(-2*Cd) %-0.7507

Cx_alpha=(-dCd_da)+Cl %(this is not a certain value, might be played with that one)
Cw=-(m*g) / (A*q) % The weight coefficient of the UAV

Lt_c=Lt/c % Length of Lt over chord

Czu=-(2*Cl)

76



Cz_alpha dot=(dCm _dit) * (de da) *2
Cz_alpha=-(dCl da)-Cd

Czg=2*K* (dCm_dit)

Cm_alpha dot=2*(dCm_dit)*(de_da) * (Lt_c)
Cm_alpha=(SM) * (dC1l da)

Cmg=2*K* (dCm_dit) * (Lt_c)

% The elevator angle displacement, input coefficients
Cx de=0 % neglected

Cm _de=(-0.710)

Cz_de=(c/Lt)* (Cm_de)

Ce_in=[Cx_de; Cz de; Cm del;

o°

o

o

LONGITUDINAL LINEARIZED EOMS

o°

o°

A _homg=[ ((m*u*s)/ (A*q))-Cxu (-Cx alpha)
(=Cw) ;

(-Czu) (((m*u) / (A*q) -
(c*Cz_alpha dot)/(2*%u))*s-(Cz_alpha)) ((=
m*u) / (A*q) - (c*Czq) / (2*u) ) *s;

0 ((-
c*Cm_alpha dot*s)/(2*u))-(Cm_alpha)
((Iy*s”2)/(A*qg*c)) - ((c*Cmg*s) / (2*u)) ]
disp (' ")
disp ('Denominator of the system')
disp (' ')

CE=det (A_homg) ; % Characteristic Equation (CE) of the Hoogenous solution, At the
same time this is the denominator of the whole system.

o

den=sym2poly (CE) % The coefficient of the denominator

disp (' )
disp ('Denominator of the system')
disp (' ")
CE=det (A_homg) ; % Characteristic Equation (CE) of the Hoogenous solution, At the

same time this is the denominator of the whole system.

den=sym2poly (CE) % The coefficient of the denominator

%pause, clc;

disp (' )

disp('The roots (POLES) of the system are')

disp (' )

poles=roots (den) % Roots of the homogenous system, POLES of the system

ul=[1 -poles(1l)]; u2=[1 -poles(2)]; % Short period and Phugoid mode equations
vli=[1 -poles(3)]; v2=[1 -poles(4)]1; % all together and their multiplication

conv_ul2=conv(ul,u2);
conv_vl2=conv(vl,v2);

if sgrt(conv_ul2(3))>sqrt(conv_v12(3))
disp (' ")
disp('Characteristic equations of SHORT PERIOD in the form of ')
disp('s®2 + 2*zeta sp*wn_sp*s + wn_sp”2 =0 is as ='")
disp (' ")
conv_ul2
wn_sp=sqrt (conv_ul2(3))
zeta sp=conv_ul2(2)/(2*wn_sp)
Tau_sp=1/(wn_sp*zeta_sp)

disp (' ')

disp('Characteristic equations of PHUGOID MODE in the form of ')
disp('s®2 + 2*zeta pm*wn_pm*s + wn_pm"2 =0 is as ='")

disp (' ")

conv_v12

wn_pm=sqrt (conv_v12(3))

zeta pm=conv_v12(2)/(2*wn_pm)

Tau _pm=1/(wn_pm*zeta pm)

else
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disp (' ")

disp('Characteristic equations of SHORT PERIOD in the form of ')
disp('s"2 + 2*zeta sp*wn_sp*s + wn_sp”2 =0 is as ='")

disp (' ")

conv_v12

wn_sp=sqrt (conv_v12(3))

zeta sp=conv_v12(2)/(2*wn_sp)

Tau_sp=1/(wn_sp*zeta_sp)

disp (' ')

disp('Characteristic equations of PHUGOID MODE in the form of ')
disp('s”2 + 2*zeta pm*wn_pm*s + wn_pm"2 =0 is as ='")

disp (' ")

conv_ul2

wn_pm=sqrt (conv_ul2(3))

zeta pm=conv_ul2(2)/(2*wn_pm)

Tau pm=1/(wn_pm*zeta pm)

end
poles
% TF of theta(s) / delta e(s)
A te=[ ((m*u*s)/(A*q))-Cxu (-Cx_alpha)
(=Cw) ;
(-Czu) ((m*u) / (A*q) -

(c*Cz_alpha_dot)/(2*u))*s—(Cz_alpha) ((=
m*u) / (A*q) - (c*Czq) / (2*u) ) *s;

0 ((=
c*Cm_alpha dot*s)/(2*u))-(Cm_alpha)
((Iy*s”2)/(A*g*c)) - ((c*Cmg*s)/ (2*u)) 1;
A te(:,3)=Ce in; % Using the Cramer's rule we placed the elevator inputs in the
second column of matrix A homg
A _te;
CE_te=-det (A te); % Characteristic equation of theta (s)

numAte=sym2poly (CE_te) % Coefficients of NUMERATOR of theta(s) / de(s)
disp (' ')

disp('TF of theta (s) / de (s)")

disp (' ")

tf (numAte, den)

numAte=numAte/den (1) ;

den=den/den (1) ;

tf (numAte, den)

roots (den)

o

o

ADAPTIVE CONTROLLER DESIGN PART FOR LONGITUDINAL FLIGHT

o°

o°

Desired location of poles
[short period mode]
close all

o

o

% Servo mechanism
num_srv=15;
den_srv=[1 num _srv];
% Lead compensator

num lead=[0.6428 2.3027];
den lead=[1.0000 12.8323];
% System matrix of the servos
num_long=conv (num_lead, (numAte*num srv));
den_long=conv (den_lead,conv(den,den_srv)) ;
[Along,Blong,Clong,Dlong]=tf2ss (num long,den long)
B=Blong;

eigs_long=eig(Along)

% Model reference system

zeta sp m=0.907;

wn_sp_m=8.5;

zeta pm m=0.907;

wn_pm m=2.25;

rts=roots (numAte) ;

num_mm=(wn_sp_m"*2) * (wn_pm m"2)
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num_m=(wn_sp m"2)* (wn_pm m"2)

den_m=conv ([1 2*zeta sp m*wn_sp m wn_sp _m*2],[1 2*zeta pm m*wn_pm m
wn_pm m*2]) ;

tf (num _m,den_m)

num m new=5.57271898206461*conv (num_lead, (num m*num_srv));
den _m new=conv (den_lead, conv(den _m,den srv));

[Am, Bm, Cm, Dm] =t f2ss (num_m new,den_m new)

eigs m=eig (Am)

$Lyapunov function

N=diag ([ 700 0 0 0 0 0 1);

g=3.4;

Nbar=rscale (Along,Blong,Clong,Dlong,1.37701190620988) ;
Nbar=Nbar (1) ;

P=lyap (Am',N)

Simulatyon of UAV using

Adaptive Control system Lyapunov stability rule
_e=2;
> First simulation

SimTime=15; % [sec]

sim('UAVSimLyapLat Deltal_ Last.mdl')

figure,plot(y.time,y.signals.values, 'k:'), xlabel ('Time [sec]'), ylabel('\theta
[degl'), title('Adaptive Control system design using Lyapunov stability - Long.
dynamics'), hold on
plot(y m.time,y m.signals.values, 'k'), xlabel('Time [sec]'), ylabel('\theta [deg]'),
title ('Adaptive Control system design using Lyapunov stability - Long. dynamics'),
hold on,

legend('y','y m")

$axis ([ 0 SimTime 0 3.0 1)

o Q. oo o

Sbreak

SimTime=100; % [sec]

sim('UAVSimLyapLat Deltal Last.mdl')

figure,

subplot(3,1,1),plot(y.time,y.signals.values, 'k:"'), xlabel ('Time [sec]'),

ylabel ('"\theta [deg]'), title('Adaptive Control system design using Lyapunov
stability - Long. dynamics'), hold on

plot(y m.time,y m.signals.values, 'k'), xlabel('Time [sec]'), ylabel('\theta [deg]'),
title ('Adaptive Control system design using Lyapunov stability - Long. dynamics'),
hold on,

legend('y','y_m')

$axis([ 0 SimTime 0.9 1.1 1)
subplot(3,1,2),plot(e.time,e.signals.values, 'k'), xlabel('Time [sec]'), ylabel ('Error
[e =y - ym]'), title('Adaptive Control system design using Lyapunov stability -
Error signal'), hold on

subplot (3,1,3),plot(u.time,u.signals.values, 'k'), xlabel('Time [sec]'),

ylabel ('Actuator signal [N]'), title('Adaptive Control system design using Lyapunov
stability - Control/Servo/Actuator signal'), hold on

Sample Matlab-M code for lateral flight dynamics: MRAS design based on Lyapunov stability:

9900000000000000000000000000000000000000000000000000

R R R R R R R R R R R bR R b bR R b R bR R R R R R R ek R
99090000000 00000000000000000000000000000000000000000

S ST SSTSTT5555555555%%%

$%% Kamran Turkoglu, Istanbul Technical University,
20000

3%%%%

$%% Istanbul, TURKEY, turkogluk@itu.edu.tr, kturkoglu@yahoo.com %% %%%
$%% March 21th, 2007, Wed.

22999

3%%%%

$%% Last Modified 21 March '07, 11:01hr

clear all, close all, clc
syms s
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% The constants

m=5; %$*0.0685217659 %[slugs]%%%% lkg = 0.0685217659 slugs (MASS) (Approximate mass of
UAV is~ 3-6kg)

u=17; %$*3.2808399 $[ft/s]%%%% 1 m/s = 3.2808399 ft/s (velocity) (Approximate
velovicity of UAV is~18-19 m/sn)

g=9.807; %32.1751969 % [ft / s"2] %%% Gravity constant in Imperial units ~ 9.807
m/s"2

A=0.4805; %$*10.7639104 % [ft"2] (wing surface area) 1m"2 = 10.7639104 ft"2 (The wing
area of the UAV is ~0.1293 m"2)

Avt=0.1323; % [m"2] - The Area of vertical tail

rho=1.225; %$*0.0624279606 % [1lb/ft”3] %%%% Density at sea level 1 kg/m"3 =
0.0624279606 1b/ ft"3

g=(rho*u”2)/2; % Dynamic pressure

Iyy=0.120396634; % 0.0888 [slug.ft"2]1%%%% (Moment of Inertia around vy)

c=0.235; $*3.2808399 % [ft] %%%% The chord length of the UAV = 0.235m
Lt=c;%$*3.2808399 % [ft] The length from CG to the tail mean avg chord is ~0.235m
theta=0; % it is assumed no theta angle change (neglected), so

cos (theta)=cos (0)=1 and sin(theta)=sin(0)=0 will be taken constant

Cd=0.0132; % Drag coefficient

Cl=(m*g)/(A*qg); % Lift coefficient [There is such an equation in Blakelock 1991,
pp.37, such as Cw=-Cl ]

dCl da=0.1249; % Change oif 1lift coefficient with angle of attack

dCd_da=0.0389; % The change in drag coefficient with angle of attack (alpha

dCm dit=-1.5; % This is an approximated values, not certain, ***** COULD BE ADJUSTED
KKKk kK

b=1.7; %$*3.2808399 % [ft] %%%% Wing span, from tip of the right wing to the tip of
the left wing is~1.7m

AR=(b"2)/A; % Aspect Ratio, is the ratio between the square of the sapn of the wing
over the surface area of the wing

e=0.88; % Efficiency factor is between 0.8 ~ 0.9

de da=(2/(pi*e*AR))* (dCl _da);

K=1.1; % A constant which is generally taken 1.1 ****#** COULD BE ADJUSTED ***#**x*#*x*
x=(0.25*c); % [ft] %%% distance between fixed control neutral poiunt and CG
SM=-(x/c); % static margin = xc/c

% For trial Cesna T-37 has been selected

o

5 All the values presented right here are approximated values taken from Table 3.1

pp.117, Blakelock, Aircraft and Missiles, 1991, = [1])

Cy beta=-0.6*0.3048; % [m/sn”2] - Fuselage and vertical tail coeff.
Cl beta=-0.045; % [1/sn"2] - Dihedral and vertical tail coeff.

Cl p=-0.12; % [1/sn] - Wing damping coeff.

Cl r=Cl/4; % [1/sn] - differential wing normal force coeff.

Cy _phi=Cl;

Cy_ksi=0;

Cn beta=0.001; % [1/sn"2] - Directinal stability coeff.

Cn p=-(C1/8)*(l-de da); % [1/sn] - Differential wing chord force
Cn_r=-Cd/4;

Cy delta r=0.0158; % [m"2/sn”2] - Rudder displacement / input in Y
Cl delta r=0.0131; % [1/sn”2] - Rudder displacement / input in L
Cn _delta r=-0.08; % [1/sn”2] - Rudder displacement / input in Y

Cy delta a=0;

Cl delta a=0.6; % [1/sn”2] - Aileron displacement / input in L

Cn delta a=-0.01; % [1/sn”2] - Aileron displacement / input in N

Ixx=Iyy/1l.4;
Izz=1.5*1Iyy;
Ixz=0;

% The denominator of the Lateral motion and A matrix (taken from pp.122, Blakelock,
Aircraft and Missiles, 1991 ) is as

% Here the representation is as

o°

5 | | phi(s) |

S | A | | psi(s) | = Cdelta rudder or
Cdelta aileron

S | (. beta(s) |

disp (' )

disp (' Matrix representation of the LATERAL Flight')

disp(' ")

Alat=][ ((Ixx*s”2)/ (A*g*b) - (b*Cl p*s)/(2*u)) ((=

Ixz*s"2)/ (A*g*b) - (b*Cl_r*s)/ (2*u)) (-C1_beta)

7
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((-Ixz*s"2)/ (A*g*b)-(b*Cn_p*s)/(2*u))

((IZZ*SAZ)/(A*q*b)—(b*Cnir*s)/(Z*u)) (-Cn_beta)
(-Cy_phi)

((m*u*s)/ (A*q) - (Cy_ksi)) ((m*u*s)/ (A*qg) - (Cy_beta))

disp (' ")

disp (' Denominator of LATERAL FLight ')

disp (' ")

den=sym2poly (det (Alat))

disp (' ")
disp (' Poles of the Lateral Flight ')
disp (' )
poles=roots (den)

o

% Natural frequencies and damping Ratio of Dutch Roll Mode (DRM)
ul=[1 -poles(3)1];

uz2=[1 -poles(4)];

disp (' )
disp('Characteristic equation of LATERAL FLIGHT for Dutch Roll Mode')
disp(' in the form of s"2 + 2*zeta sp*wn_drm*s + wn _drm"2 =0 is as ='")
disp (' )

CE_drm=conv (ul,u2)

disp (' ")

disp( 'Natural frequency of Dutch Roll Mode')
disp (' ")
wn_drm=sqrt (CE_drm(3))

disp (' )

disp( 'Damping ratio of Dutch Roll Mode')
disp (' ")

zeta drm=CE_drm(2)/ (2*wn_drm)

oe

o

LATERAL TFS FOR AILERON DISPLACEMENTS

o

o°

Here the representation is as

o
|
|
|
|
|
|

S | \ \ phi(s) |
s | A | | ksi(s) | = 0
5 | \ \ beta(s) |
% DAMPING OF THE DUTCH ROLL MODE

$STATE SPACE REPRESENTATION OF LATERAL MOTION

$ x=[beta; p; r; phi; psi]

% A=[ Yv 0 -1 g/u 0;

% Lbeta prime Lp_prime Lr prime 0 0;

% Nbeta prime Np_prime Nr_prime 0 0;

% 0 1 0 0 0;

% 0 0 0 0]

% B=[ 0 Ydelta_ rudder_star ;

% Ldelta aileron prime Ldelta rudder prime ;

% Ndelta_aileron_prime Ndelta_rudder_prime ;

% 0 0 1

% y=eye (5)

o°

LATERAL MOTION DERIVATIVES
TAKEN FROM McLean, Automatic Flight Control Systems, 1990, Prentice Hall
pp.85-86, 53-54 and 37, respetively.

o

o

o
]

Motion Related Derivatives
Yv=(rho*u*A*Cy beta)/ (2*m)
Lbeta=(rho*u”2*A*b*Cl beta)/ (2*Ixx)
Nbeta= (rho*u”2*A*b*Cn_beta) / (2*Izz)
Lp=(rho*u*A*bA2*Clip)/(4*Ixx)

Np= (rho*u*A*b”2*Cn _p)/ (4*Izz)
Lr=(rho*u*A*b"2*Cl 1)/ (4*Ixx)
Nr:(rho*u*A*bAZ*Cn_r)/(4*Izz)

o

% Control Related Derivatives
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% Rudder deflections

]

Ydelta rudder=(rho*u”2*A*Cy delta r)/(2*m)
Ldelta_rudder:(rho*uA2*A*b*Cl_delta_r)/(2*Ixx)
Ndelta rudder=(rho*u”2*A*b*Cn_delta r)/(2*Izz)

% Rudder deflections

Ydelta_aileron:(rho*uA2*A*Cy_delta_a)/(2*m)
Ldelta aileron=(rho*u”2*A*b*Cl delta a)/ (2*Ixx)
Ndelta aileron=(rho*u”2*A*b*Cn delta a)/(2*Izz)

IA=Ixz/Ixx
IB=Ixz/Izz
% Primed stability derivatives
Lbeta prime=Lbeta+IB*Nbeta
Lp_prime=Lp+IB*Np

Lr prime=Lr+IB*Nr

Ldelta_aileron prime=Ldelta aileron+IB*Ndelta_aileron
Ldelta rudder prime=Ldelta rudder+IB*Ndelta rudder

Nbeta prime=Nbeta+IA*Lbeta
Np prime=Np+IA*Lp
Nr_prime=Nr+IA*Lr

Ndelta aileron prime=Ndelta aileron+IA*Ldelta aileron
Ndelta_rudder_ prime=Ndelta rudder+IA*Ldelta_rudder

Ydelta rudder star=Ydelta rudder/u

o

o°

LATERAL MOTION STATE SPACE REPRESENTATION

o°

Alat ss=[ Yv 0 -1 g/u 0;
Lbeta prime Lp_prime Lr prime 0 0;
Nbeta prime Np prime Nr prime 0 0;
0 1 0 0 0;
0 0 1 0 0] % STATE

o

% u=[ delta aileron; delta rudder]
Blat ss=|[ 0
Ldelta aileron prime
Ndelta aileron prime
0
0
%Blat ss(:,3:5)=0

o

% x=[beta; p; r; phi; psi]

Clat ss=eye(5) % OUTPUT MATRIX -
Clat ss beta = [ 1 0 0 0 0];
Clat_ss p = [0 1 0 0 0];
Clat_ss r = [ 0O 0 1 0 0];
Clat ss phi = [ 0 0O 0 1 0];
Clat ss psi = [0 O O 0 1];
Dlat_ss=zeros(5,2)

disp (' ")
disp('Poles of the system')

disp (' ")
poles=eig(Alat_ss)';

disp (' ')

disp ('Dutch Roll Mode')

disp (' ")

disp (' ')

disp ('TF of RUDDER SERVO')

disp (' ")

num_r servo=[0 5];

den r servo=[1 5];

[we

Ydelta rudder_star
Ldelta rudder prime
Ndelta rudder prime
0
0

can sellect the outputs]

tf rservo=tf (num r servo,den_r servo);

disp ("' ")
disp ('Rudder deflection
disp (' ')
d r=2;

disp (' ')
disp('TFs for Rudder input')

(degrees) ')
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x=[beta; p; r; phi; psil]

disp (' ")
[num r,den r]=ss2tf(Alat ss,Blat_ss,Clat_ss,Dlat ss,2);

disp (' ")
disp(' Beta (s)/de r')
disp (' ")

tf(num r(l,:),den r)

disp (' ')
disp ('TFs of p/de r')
disp (' ")

tf(num r(2,:),den r)

disp (' )
disp('TFs of r / de r'")
disp (' ")

tf(num r(3,:),den r)

disp (' ")
disp('TFs of phi (s)/de r')
disp (' ")

tf(num r(4,:),den r)

disp (' ")
disp('TFs of psi (s)/de r')
disp (' ')

tf(num r(5,:),den r)

o°

o

TFs for the aileron and rudder input

o

o°

TFs for aileron input
[numail,denail]=ss2tf (Alat ss,Blat ss,Clat ss,Dlat ss,1);

disp (' ")
disp('TFs for Aileron input')
disp (' ")
disp (' ")
disp (' Beta (s)/de_ail')

disp (' ")

tf (numail (1, :),denail)

disp (' ")
disp('TFs of p/de ail')

disp (' ")

tf (numail (2, :),denail)

disp (' ')
disp('TFs of r / de_ail')
disp (' ")

tf (numail (3, :),denail)

disp (' ")
disp('TFs of phi (s)/de ail')
disp (' ')

tf (numail (4, :),denail)

disp (' ")
disp('TFs of psi (s)/de ail')
disp (' ")

tf (numail (5, :),denail)

$figure,
%impulse (Alat_ss,Blat_ss,Clat ss,Dlat ss),title('Impulse response of the OL time
domain sys. in Lat. Flight')

% TFs for rudder input
[numrud, denrud]=ss2tf (Alat_ss,Blat ss,Clat_ss,Dlat_ss,2);

disp (' ")
disp ('TFs for Rudder input')
disp (' ')

disp('beta/d r')

tf (numrud (1, :),denrud) ;

$figure, step (numrud(l,:),denrud)
$figure, impulse (numrud(l,:),denrud)
disp('p/d r'")
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tf (numrud (2, :),denrud) ;

$figure, step (numrud(2, :),denrud)
$figure, impulse (numrud(2,:),denrud)
disp('r/d r'")

tf (numrud (3, :),denrud) ;

$figure, step (numrud(3, :),denrud)
$figure, impulse (numrud (3, :),denrud)
disp('phi/d r'")

tf (numrud (4, :) ,denrud) ;

$figure, step (numrud(4, :),denrud)
$figure, impulse (numrud (4, :),denrud)
disp('psi/d r'")

tf (numrud (5, :) ,denrud) ;

$figure, step (numrud(5, :),denrud)
$figure, impulse (numrud (5, :),denrud)

o°

o°

ADAPTIVE CONTROLLER DESIGN PART FOR LONGITUDINAL FLIGHT

o

o

Desired location of poles
[short period mode]
close all

o°

$TF of the servo(aileron/rudder) actuators
num_srv=15.0;
den srv=[1.0 num srv];

$TF of the servo(aileron/rudder) actuators
num_srv=15.0;

den srv=[1.0 num srv];

% System matrix of the servos

Gsysl = pck(Alat_ss,Blat_ss,Clat_ss,Dlat_ss);
Servosysl=nd2sys (num_srv,den srv);
Servosys=daug (Servosysl, Servosysl) ;
Gsys=mmult (Gsysl, Servosys) ;

% State space matrixes of the nominal plant with
% servos included in it

[Alat new,Blat new,Clat new,Dlat new]=unpck(Gsys);
Clat new=eye (length (Alat new))

Dlat new=zeros(7,2)

% Just a simple lgr control system design

[Klat 1lqr,Slat,Elat]=1qgr(Alat new,Blat new,diag([2 2 8 178 30 10 30
]),diag([1.5 1.5])); %15.85 9 1.2 8 110 18 10

Alat new m=Alat new-Blat new*Klat 1qr;

eigsModel=eig (Alat_new-Blat new*Klat 1lqr)

d ar=2;

SimTime=5;

sim('plgrSimModel.mdl")

%figure,plot (plgr.time,plgr.signals.values),legend('\beta','p','r', "\phi', "\psi')

% Lyapunov function

N=diag ([ 1470 1280 8625 6200 8770 80 401)
P=lyap (Alat new m',N);

eigsP=eig (P);

d_e=2;

% Definition of B
B=zeros (7,2);
B(6,1)=Blat new(6,1)
B(7,2)=Blat new(7,2)

B'*N*B

% First simulation

SimTime=15 % [sec]

sim('UAVSimLyapLat Deltal Last.mdl')

figure,plot(y.time,y.signals.values, 'k:'), xlabel ('Time [sec]'), ylabel('\theta
[degl'), title('Adaptive Control system design using Lyapunov stability theory -
Lateral. dynamics'), hold on

plot(y m.time,y m.signals.values, 'k'), xlabel('Time [sec]'), ylabel('\theta [deg]'),
title ('Adaptive Control system design using Lyapunov stability theory - Lateral.
dynamics'),

legend('y','y_m")

%$axis([ 0 SimTime -3.0 3.0 1)
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d e=2;
Sbreak

figure,

subplot(3,1,1),plot(y.time,y.signals.values, 'k:"'), xlabel('Time [sec]'),

ylabel ('"\theta [deg]'), title('Adaptive Control system design using Lyapunov
stability theory - Lateral. dynamics'), hold on

plot(y m.time,y m.signals.values, 'k'), xlabel('Time [sec]'), ylabel('\theta [deg]'),
title ('Adaptive Control system design using Lyapunov stability theory - Lateral.
dynamics'),

legend('y', 'y m"),

subplot(3,1,2),plot(e.time,e.signals.values, 'k'), xlabel('Time [sec]'), ylabel ('Error
signal'), title('Adaptive Control system design using Lyapunov stability theory -
Error signal'),

subplot (3,1,3),plot(u.time,u.signals.values, 'k'), xlabel ('Time [sec]'), ylabel ('Error
signal'), title('Adaptive Control system design using Lyapunov stability theory -
Error signal'),

legend('\delta a', '\delta r'),

$axis ([ 0 SimTime 0 3.0 1)
d e=2;

85



CURRICULUM VITAE

Kamran Tiirkoglu was born in Shumen, Bulgaria in 1981. He completed his primary
school in Yenibosna Ilkégretim Okulu and after 7 years of study, he graduated from
Fahrettin Kerim Gokay Anadolu Lisesi in June 2000 and enrolled to the Istanbul
Technical University, Astronautical Engineering Department. He has been awarded a
Double Major Degree with Minor in Aeronautical Engineering Department in
September 2003. He graduated from Astronautical Engineering Department in June
2005 and from Aeronautical Engineering Department in June 2006, respectively. He
is still continuing his studies as a M.Sc. student in Istanbul Technical University,

Aeronautical & Astronautical Engineering Department.

86



