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FOREWORD 

In the thesis, longitudinal and lateral dynamic modes of an Unmanned Aerial Vehicle 

(UAV) have been analyzed and different kind of automatic control systems consisted 

of Model Reference Adaptive System Design: PI adjustment based on Normalized 

MIT rule, PI adjustment based on Lyapunov stability theory and Augmented Optimal 

LQR Control System design procedures have been discussed. During the research, 

necessary calculations and analyses have been conducted with the help of MATLAB 

v7.1. 
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SUMMARY 

In this study, stability analysis of an Unmanned Aerial Vehicle (UAV) has been 

conducted and several control system designs have been suggested for autonomous 

flight. In the study, firstly, stability analyses have been carried out for the 

longitudinal and lateral flight dynamics. Additionally, for automatic control system 

designs, Model Reference Adaptive and Augmented Optimal LQR have been used, 

control algorithms have been developed and simulations have been conducted. UAV 

flight dynamics have been linearized and linearized equations of motion have been 

used in analyses. Adaptive control system design implemented on longitudinal flight 

dynamics has been investigated in two parts, where firstly PI adjustment algorithm 

based on MIT rule has been executed. Afterwards, PI adjustment algorithm based on 

Lyapunov stability theory has been applied and results have been analyzed. 

Moreover, Augmented Optimal LQR control system design approach has been 

introduced in longitudinal dynamics and in this way the first part of the study has 

been concluded. In the second part of the study, equations of motion in lateral flight 

have been obtained and stability analyses have been conducted. In this section, 

Model Reference Adaptive control system design based on Lyapunov stability theory 

has been applied to lateral system dynamics. And finally, with the implementation of 

Optimal LQR control system design on the lateral flight dynamics, the study has 

been concluded. When obtained results have been compared with the existing results 

in the literature, it is witnessed that designed control systems are able to present 

remarkable time domain and closed-loop performance characteristics. 
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ÖZET 

BİR UÇAĞIN KARARLILIK ANALİZİ VE OTOMATİK KONTROL 

SİSTEMİ TASARIMLARI: UYARLAMALI (ADAPTİF) KONTROL 

YAKLAŞIMI 

Bu çalışmada, temel olarak bir İnsansız Hava Aracı (İHA)’nın kararlılığı incelenmiş 

ve otonom uçuş için çeşitli kontrol yöntemleri önerilmiştir. Çalışmada ilk olarak, 

İHA’nın uzunlamasına ve yanlamasına hareketi için kararlılık analizleri 

gerçekleştirilmiştir. Buna ek olarak, yanlamasına uçuş ve uzunlamasına uçuşun 

otomatik idaresi için, Uyarlamalı (Adaptif) Model Referans ve Yeniden 

Şekillendirilmiş Optimal Lineer Kuadratik Regülâtör yöntemleri kullanılmış, çeşitli 

otomatik uçuş kontrol algoritmaları geliştirilmiş ve bilgisayar ortamında 

uygulamaları yapılmıştır. Tezde incelenen insansız hava aracı doğrusal (lineer) bir 

model olarak ele alınmıştır ve denklemleri buna göre elde edilmişlerdir. 

Uzunlamasına hareket için gerçekleştirilen Uyarlamalı Model Referans kontrol 

yöntemi uygulamaları iki başlık altında incelenmiş olup ilk aşamada MIT kuralına 

dayalı orantı-integral uyarlama algoritması uygulanmış ve sonuçları analiz edilmiştir. 

Daha sonrasında ise Lyapunov kararlılık teorisine dayalı orantı-integral algoritması 

uzunlamasına hareket dinamiklerine uygulanmış ve sonuçları analiz edilmiştir. 

Ayrıca, Yeniden Şekillendirilmiş Optimal Lineer Kuadratik Regülatör yöntemi ile 

uzunlamasına kontrol sistemi tasarlanarak tezin birinci kısmı sonlandırılmıştır. Tezin 

ikinci bölümünde, yanlamasına hareket dinamikleri elde edilmiş ve kararlılık 

analizleri gerçekleştirilmiştir. Bu bölümde Uyarlamalı kontrol yöntemleri içerisinden 

sadece Lyapunov kararlılık teorisine dayalı model referans adaptif kontrol tasarımı 

gerçekleştirilmiştir. Ve son olarak yanlamasına hareket için tasarlanan optimal lineer 

kuadratik regülatör tasarımı ile tez sonlandırılmıştır. Elde edilen sonuçlar 

literatürdeki çalışmalarla karşılaştırıldığında, önerilen yöntemlerle geliştirilen 

otomatik kontrol sistem tasarımlarının, kayda değer sonuçlar sergilediği ve 

performans kriterlerini fazlasıyla sağladığı gözlenmiştir. 
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INTRODUCTION 

In recent years, Unmanned Aerial Vehicles (UAVs) are increasingly useful in 

different kind of operations starting from observations up to remote sensing 

operations. They are cheaper than the manned vehicles and are very suitable for 

unsafe missions that would be inevitable for a human pilot, where some specific 

applications of UAVs could be summarized as border patrol, search and rescue, 

surveillance, communications relaying, and mapping of hostile territory.  

The capabilities of UAVs continue to grow with advances in wireless 

communications and computing power. Accordingly, research topics in control of 

UAVs include efficient vision for real-time computer based computing and 

communication strategies for different kind of control techniques, as well as 

traditional aircraft-related topics such as collision avoidance and formation flight. 

Emerging results in control of UAVs are presented via discussion of different topics, 

including particular requirements, challenges, and some promising strategies relating 

to each topic. Case studies presented in the thesis, highlight specific solutions and 

recent results, ranging from pure simulation to control strategies for UAVs. This 

study serves as an overview of current problems of interest [1].  

Control system design of small and inexpensive Unmanned Aerial Vehicles (UAVs) 

is of great interest in military and civilian applications, including mapping, 

patrolling, search and rescue. These tasks sometimes could be dangerous and 

recurring, which makes them ideal for autonomous vehicles. In these types of 

applications, control system design, as well as dynamic modeling, has a crucial role 

in the behavior of the UAV and in mission accomplishment. Therefore it is vital to 

gain knowledge about dynamic properties of the UAV in order to be used in control 

system design procedure. In literature, there are several conducted researches on 

automatic control system designs of UAVs such as receding horizon control [18], 

variable horizon model predictive control [19], control system design using 

evolutionary algorithms [20], feedback linearization and linear observer design [21], 

cooperative receding horizon control [22], adaptive control system design [23], 
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control system design using MIMO QFT [24], decentralized non-linear control [25], 

robust control system design using coupled stabilities [26], H infinity control and 

inverse dynamic system approach [27] and non-linear autopilot design using 

dynamic inversion [28], are some of the studies [29]. After an intensive search in 

several publications, there were found very limited amount of adaptive control 

applications on UAVs and therefore the main goal of the thesis was to demonstrate 

the implementation of model reference adaptive control algorithms on UAV 

dynamics. 

In the first part of the thesis, as an introduction to dynamic modeling, some important 

components existing on an aircraft/UAV have been introduced. Following to that, in 

the second section of the thesis, a general overview over longitudinal dynamic 

modeling of an aircraft (specifically an UAV) will be presented. In modeling part, 

firstly, equations of motion of UAV will be obtained, afterwards stability derivatives 

will be derived and subsequently longitudinal flight dynamics of UAV will be 

originated. During this examination, transfer functions (TFs) of velocity (u), angle of 

attack (α ) and pitching angle (θ ) for a given elevator displacement (δe) have been 

investigated and obtained results have been analyzed in both time and frequency 

domains. In order to construct a fundamental for the automatic control design part, 

short period and long (phugoid) period characteristics have been inspected and the 

approximated phases have been examined. For each phase, natural frequencies and 

corresponding periods have been calculated, TFs of velocity (u), angle of attack (α ) 

and pitching angle (θ ) versus elevator displacement (δe) have been obtained, later 

bode diagrams have been plotted and necessary comments have been presented in the 

conclusion part of the chapter.  

As a natural consequence of conducted analyses, the necessity of feedback control 

system has aroused. Following to that, in order to improve the stability 

characteristics and time domain results of the open loop-nominal plant, two different 

control system design procedures have been suggested on the open loop dynamics of 

UAV: Model Reference Adaptive Control System Design (MRAS) and Augmented 

Optimal LQR control system design. In MRAS control system design, two different 

approaches have been presented: PI adjustment based on MIT rule and PI adjustment 

based on Lyapunov stability theory. In augmented optimal LQR control system 
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design, inner loop and outer loop concepts have been used, where the inner loop 

(together with an observer mechanism) has been constructed for stability and the 

outer loop has been introduced with augmentation in order to improve the 

performance characteristics. In each section, performances of MRAS and augmented 

optimal LQR controllers have been discussed and the results have been pointed out 

in the consequent parts of the thesis. At last, with the presentation of necessary 

comments and possible further study steps, the first chapter of the thesis has been 

concluded.  

In the second chapter, with the similar approach, lateral dynamic model of the UAV 

(using state space approach) has been given. Afterwards, lateral automatic control 

system of the UAV has been taken into account and MRAS control system design 

with the augmented optimal LQR control system design have been put into practice. 

Obtained results are given with several analyses and suggestions are presented for 

further analyses in the last part of the thesis. 
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CHAPTER 1 

1.1 Components of an Aircraft 

1.1.1 Control surfaces 

It is a commonly known fact that if the body of an aircraft is required to be changed 

from its equilibrium state, external forces and moments should be applied to the 

aircraft. Every aircraft needs surfaces placed on the different locations on the aircraft 

body, so that when a force is applied to the system through the specified surfaces, a 

force or a moment is generated on the aircraft and the body is accelerating in the 

desired direction. Such surfaces are called control surfaces and could be mainly 

divided into three groups: pitch control surfaces (elevators), yaw control surface 

(rudder) and roll control surfaces (ailerons). It is possible to see the defined control 

surfaces (elevators, ailerons and rudder) on a conventional aircraft in Figure 1.1. 

Figure 1.1 Control surfaces on the aircraft. 

Many modern aircrafts, especially combat aircrafts, are including more control 

surfaces that the conventional aircrafts in order to produce additional control forces 

or moments. Some of these additional surfaces include horizontal and vertical 
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canards, spoilers, variable cambered wings, reaction jets, differentially operating 

horizontal tails and moveable fins [2]. One of the critical and most important 

properties of flight control is that it needs simultaneous usage of different control 

surfaces at the same time. When two or more control surfaces are used 

simultaneously, the coupling effects are occurring and the system becomes 

complicated for control action. The control surfaces are controlled by actuators 

which are being fed by electrical signals (fly-by-wire) or by optical devices (fly-by-

light) [2]. But in a conventional aircraft, pilot has links to the control surfaces and is 

able to control the surfaces manually in case of emergency.  

1.1.2 Servo mechanisms 

A servomechanism, usually shortened just as servo, is a device used to provide 

mechanical control on the aircraft surface. For example, a servo can be used at a 

remote location to proportionally follow the angular position of a control knob. The 

connection between the two is not mechanical, but electrical or wireless [3]. The 

most common type of servo is that which gives positional control. Servos are 

commonly electrical or partially electronic and they are using an electric motor as the 

primary means of creating mechanical force, though other types that operate on 

hydraulic or magnetic principles are available. Usually, servos operate on the 

principle of negative feedback, where the control input is compared to the actual 

position of the mechanical system as measured by some sort of transducer at the 

output. Any difference between the actual and wanted values (an "error signal") is 

amplified and used to drive the system in the direction necessary to reduce or 

eliminate the error. A whole science of this type of system has been developed, 

known as control theory [2]. 

1.1.3 Rate gyroscopes 

Rate gyroscopes are simple mechanical and rotating systems used in aircrafts. They 

use Coriolis Effect of sensor element (vibrating resonator chip) to sense the speed of 

rotation (rate of turn) and as a result of the measurement, the signal is being fed into 

the control system, where rate gyros are generally used in negative feedback loops. 

Rate gyros are single degree of freedom gyros different than the free rotating (two 

degree of freedom) gyros and a sample diagram of a rate gyro is shown in Figure 1.2 

[4]. The elastic restraint in rate gyros is provided by a torsion bar, fixed to the inner 
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gimbal and the case. The viscous damper is also added to provide damping of the 

transient state [5]. 

 
Figure 1.2 Rate gyroscopes have single degree of freedom. 

1.1.4 Integrating gyroscopes 

If the elastic restraint (k) is removed from the rate gyro, leaving only the viscous 

damper, the result is referred to as a “rate integrating gyro” or just an “integrating 

gyro”. The name integrating gyro arises from the fact that the gimbal angle is 

proportional to the time integral of the input angular velocity. Because the integral of 

the input angular velocity is the total angle through which the gyro has rotated about 

its input axis with respect to inertial space, steady state value of the gyro is 

proportional to this angle [5]. 

 
Figure 1.3 Integrating gyroscope. 
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CHAPTER 2 

2. Longitudinal Dynamic Modeling 

In this section of the thesis, longitudinal equations of motion will be summarized. 

2.1 Equations of Motion (EOMs) 

In longitudinal dynamic modeling segment, first of all EOM will be derived. If the 

Newton’s 2nd Law is taken into account: 

→→

= amF  (2.1) 

and by taking all the forces and moments acting on the aircraft into consideration, 

general form of EOMs could be expressed as in (2.2) and (2.3). 

I

TVm
dt
dF 

=
→→

∑ )(  (2.2) 

I
dt
HdM






=

→
→

∑  (2.3) 

If the forces and moments including the steady state values and disturbance values 

are redefined, it is found as shown in (2.4a) and (2.4b), 

∑∑∑
→→→

∆+= FFF 0  

∑∑∑
→→→

∆+= MMM 0  

(2.4a) 

 

(2.4b)

where ∑
→

0F  and ∑
→

0M  are summations of the equilibrium forces/moments and  

∑
→

∆ 0F  and ∑
→

∆ 0M  are disturbances (from steady state condition) values [5, 6]. 

Here, it is assumed that the aircraft is flying in an unaccelerated (stick-fixed) flight 
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regime and all the disturbances are occurring as a result of control surface deflections 

or atmospheric effects (wind, gust, turbulence … etc.). With respect to the mentioned 

postulations, equations in (2.2) and (2.3) could be defined as in (2.5) and (2.6). 

I
TVm

dt
dF 

=∆
→→

∑ )(  (2.5) 

I
dt
HdM






=∆

→
→

∑  (2.6) 

Before continuing in derivation of EOMs for the longitudinal flight, assumptions 

such as the mass of the aircraft is not changing with time, the aircraft is a rigid body 

and the earth is an inertial reference system has been taken into account. If the given 

formulations are considered with respect to the earth, it should be obtained 

E
TV

dt
dmF 

=∆
→→

∑  (2.7) 

From here, if the time rate of change of the velocity vector ( TV
r

) with respect to the 

earth is calculated, the result is being as given in (2.8), 

TTV

E
T VV

dt
dV

dt
d

T

→→→→

⊗+=
 ω1  (2.8) 

where )/(1 dtdV TVT

→→

 is the change in linear velocity, ω is the total angular velocity of 

the aircraft with respect to the earth, and ⊗  defines the cross product [5, 6]. If 

TV and ω is written in expanded form (with respect to the aircraft body axes system 

given in Figure 2.1), TV
r

 could be defined as (2.9) 

kWjViUV T ++=
→

 (2.9) 

and in the same way ωr  could be found as (2.10), 

RkQjPi
rrr

++=
→

ω  (2.10)
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Figure 2.1 Body fixed axes system. 

where i, j and k are unit vectors; U,V and W are directional velocities and P,Q and R 

are rates of change along the aircraft’s X, Y and Z axes, respectively. Then from 

(2.8), the acceleration term could be written as (2.11) 

WkVjUiV
dt
d

TVT
&

r
&

r
&

r
++=

→→

1  (2.11)

and the cross product term is found as (2.12). 

















=⊗
→→

WVU
RQP
kji

V T

rrr

ω  (2.12)

If the determinant in (2.12) is calculated, the result leads to (2.13) 

)()()( QUPVkRUPWjRVQWiV T −+−−−=⊗
→→ rrr

ω  (2.13)

Disturbance forces (∑
→

∆ F ) acting on the airplane could be written as 

∑∑∑∑ ∆+∆+∆=∆
→

zyx FkFjFiF
rrr

 (2.14)
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If equations (2.11) and (2.13) are placed in (2.14), then force equations governing the 

directional motion turn into their final states as given in (2.15). 

)(

)(

)(

QUPVWmF

PWRUVmF

RVQWUmF

z

y

x

−+=∆

−+=∆

−+=∆

∑
∑
∑

&

&

&

 (2.15)

Similarly, in order to obtain the equations governing the angular motion, it is needed 

to define the tangential velocity at first as in (2.16). 

→→→

⊗= RV ωtan  (2.16)

Following to this, the incremental momentum resulting from this tangential velocity 

of the element mass can be expressed as shown in (2.17) [5, 6]. 

dmRMd )(
→→→

⊗= ω  (2.17)

Then the differential angular momentum becomes 

∫
→→→→→→→→

⊗⊗=⇒⊗⊗= dmRrHdmRrHd )()( ωω  (2.18)

If the extended form of moment arm is introduced 

zkyjxir
rrr

++=
→

 (2.19)

then the product term becomes  

















=⊗
→→

zyx
RQP
kji

r

rrr

ω  (2.20)

If the determinant in (2.20) is calculated 

)()()( QxPykRxPzjRyQzir −+−−−=⊗
→→ rrr

ω  (2.21)
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And if the outer cross product term is introduced into (2.21), the results are being as 

shown in (2.22). 

















−−−
=⊗⊗

→→→

)()()(
)(

QxPyRxPzRyQz
zyx
kji

rr

rrr

ω  (2.22)

If the determinant in (2.22) is calculated, the outer cross product is found as in (2.23). 

])([

])([])([)(
22

2222

yzQxzPzxRk

xyPyzRxzQjxzRxyQzyPirr

−−++

−−++−−+=⊗⊗
→→→

r

rr
ω  (2.23)

By replacing (2.23) in angular momentum term in (2.18), angular momentum (H) is 

found as in (2.24), 

∫
∫
∫

−−++

−−++

−−+=

])([

])([

])([

22

22

22

yzQxzPzxRk

xyPyzRxzQj

xzRxyQzyPiH

 (2.24)

where ∫ + dmzy )( 22  is defined as the moment of inertia Ix, and  ∫ xydm  is defined 

as the product of inertia Jxy. By remembering the assumptions taken into account at 

the beginning, the product inertias in xy and yz coordinates are leading to Jxy= Jyz= 0, 

so that the resulting angular momentum equations are found as in (2.25). 

xzzz

yy

xzxx

PJRIH

QIH
RJPIH

−=

=
−=

 (2.25)

It is possible to rewrite (2.3) as 

→→→→

⊗+=∆∑ H
dt

dHM H ω1  (2.26)

where the components of dtdHH /1  are 
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xzz
z

y
y

xzx
x

JPIR
dt

dH

IQ
dt

dH

JRIP
dt

dH

&&

&

&&

−=

=

−=

 (2.27)

If the rigid body assumption for our aircraft is remembered, the time rates of change 

of the moments and products of inertias are going to be zero [5, 6]. So that 

















=⊗
→→

zyx HHH
RQP
kji

H

rrr

ω  (2.28)

If the determinant in (2.28) is calculated 

)()()( xyxzyz QHPHkRHPHjRHQHiH −+−−−=⊗
→→ rrr

ω  (2.29)

Also ∑
→

∆M  can be written as  

∑∑ ∆=∆
→

iM
r

L ∑∆+ j
r

M ∑∆+ k
r

N (2.30)

By replacing the necessary values in the right hand side, the final equations of 

angular motion are found as in (2.31). 

∑∆ L xzyzxzx PQJIIQRJRIP −−+−= )(&&  

∑∆M xzzxy JRPIIPRIQ )()( 22 +−−+= &  

∑∆N xzxyxzz QRJIIPQJPIR +−+−= )(&&  

(2.31)

and equations of linear motion has been previously obtained in (2.15) as 

)(

)(

)(

QUPVWmF

PWRUVmF

RVQWUmF

z

y

x

−+=∆

−+=∆

−+=∆

∑
∑
∑

&

&

&
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Equations in (2.15) and (2.31) are the complete equations of motion for the 

longitudinal motion of the aircraft. Next, it will be necessary to linearize and to 

expand the left hand-sides of equations in order to obtain the final states of EOMs.  

Even if, it is possible to derive the linearized equations of motion and stability 

derivatives from beginning, this will not be performed here. At this point, only the 

final states of Longitudinal EOMs will be given in the following sections. The reader 

could find further and detailed information related with the development of EOMs 

and longitudinal stability derivatives in [5, 7-9]. 

2.2 Derivation the Longitudinal Dynamic Model of the Aircraft 

Although it is possible to derive longitudinal equations of motion (EOM) of an 

aircraft from (2.15) and (2.31); here, only the final state of the longitudinal EOM will 

be presented. The entire derivation could be investigated step by step from [5, 7-9].  

While presenting the final values of the longitudinal EOM, firstly the transient 

response will be considered and homogenous solution will be evaluated. By 

neglecting 
qxx CC ,

α&
 and 

umC  in homogeneous solution, one should obtain Linearized 

and Laplace Transformed longitudinal EOMs as shown in (2.32) 

0)()
2
.

()(')
2
.(:

0)(sin)
2
.

(

)(')
2
.()(':

0)()(cos)(')(')(:

2 ==−+−−

==







Θ−−−+









−−+−

==Θ−−−

a

aZ

aX

m
Mqy

M
m

FW
Zq

z
Z

ZU

FWXXU

Css
u

Cc
s

Sqc
I

sCs
u

CcM

CsCs
u

Cc
Sq
mu

sCs
u

Cc
Sq
musuCz

CsCsCsuCs
Sq
mux

θα

θ

α

θα

α
α

α
α

α

&

&

  (2.32)

where (u, w) are perturbation velocities in (X, Z) axis’s respectively and    

 

0/' Uuu = = Change of velocity in longitudinal flight 

0/' Uw=α = Change of angle of attack in longitudinal flight 

θ = Change of pitch angle from equilibrium condition 

Characteristic properties of UAV in Sea Level (~100m) conditions are presented in 

Table 1.1. 
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Table 1.1 Constants of longitudinal EOMs. 

Mass: m = 5 [kg] α∂∂ /LC  = 0.1249 

Velocity: u =12 [m/sec] α∂∂ /DC  = 0.0389 

Gravity: g = 9.807 [m/sec2] 
tm iC ∂∂ /  = -1.5 

Wing area: S = 0.4805 [m2] Wing span: b = 1.7 [m] 

Air density: ρ = 1.225 [kg/m3] Aspect Ratio: AR = 6.0146 

Dynamic pressure: q = 88.2 [kg/m.sec2] Washout respect to α:  αε dd / = 0.0116 

Moment of Inertiay : Iy = 0.1204 [m4] Allowance factor: K = 1.1 

Chord length: c = 0.235 [m] Dist. CG to N. Point: x = 0.0587 

Length to c/4 of tail: Lt = 0.235 [m] Static Margin: SM = -0.25 

Equilibrium state: Θ = 0  [deg] Dist. from tail to c: Lt/c = 1 

Corresponding stability derivatives in longitudinal flight are considered as shown in 

the followings, where  

u
CUCC D

DXu ∂
∂

−−= 02  (2.33)

is the change in force in X direction due to the change in forward velocity, so that 

0U  is the steady state velocity, DC  is drag coefficient and uCD ∂∂ /  is the change in 

drag coefficient with respect to perturbation velocity. 

αα ∂
∂

−= D
LX

CCC  (2.34)

is the change in force in X direction due to the change in angle of attack, where LC  is 

lift coefficient and α∂∂ /DC  is the change in drag coefficient with respect to angle of 

attack. 

u
CUCC L

LZu ∂
∂

−−= 02  (2.35)

is the change in force in Z direction due to the change in forward velocity, where 

uCL ∂∂ /  is the change in lift coefficient with respect to perturbation velocity. 

ααα ∂
∂

−≅
∂
∂

−−= LL
DZ

CCCC  (2.36)
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is the change in force in Z direction due to the change in angle of attack, where 

α∂∂ /LC  is the change in lift coefficient with respect to angle of attack. 
















∂
∂

=
α
ε

α d
d

i
CC

t

m
Z 2
&

 (2.37)

is the effect of rate of change in angle of attack on Z force, where ( tm iC ∂∂ / ) is the 

rate of change of the pitching moment coefficient of the tail with respect to the angle 

of incidence and αε dd /  is the change in downwash with respect to angle of attack. 

Theoretical value of αε dd /  is  







=

απα
ε

d
dC

ARd
d L2  (2.38)

where AR  is the aspect ratio of the aircraft.  









∂
∂

=
t

m
Z i

CKC
q

2  (2.39)

is the change in the Z force due to change in pitching velocity, where K  is the 

approximate allowance factor for the contribution of the rest of the aircraft to 
qZC  

and is usually about 1.1 [5]. 

a
L

m
CSMC

δαα







∂
∂

= )(  (2.40)

is the change in pitching moment due to the change in angle of attack, where SM  is 

static margin which is equal to cx / , so that x is the distance between the fixed 

control neutral point and the center of gravity of the aircraft and c is the mean 

aerodynamic chord length of the wing. 

c
l

d
d

i
CC t

t

m
m α

ε
α 








∂
∂

= 2
&

 (2.41)
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is the effect of rate of change in angle of attack on pitching moment coefficient, 

where tl  is the distance between the center of gravity of the aircraft and the 

aerodynamic center of tail. 

c
l

i
CKC t

t

m
mq 








∂
∂

= 2  (2.42)

is the effect on the pitching moment due to a pitching rate. 

Lw C
Sq
mgC −≅−=  (2.43)

is the weight coefficient, where it is generally assumed as equal to LC− .  

After obtaining necessary formulations of stability derivatives, by using 

characteristic properties of UAV given in Table 1.1, it is possible to calculate the 

numerical values of stability derivatives as given in Table 1.2. 

Table 1.2 Stability derivatives of longitudinal EOM. 

CXu = -0.0264 CZα’ = -0.0397 

CXα = 1.1181 CZα = -0.1381 

CD = 0.0132 CZq = -3.3000 

CL = 1.1570 CMα’ = -0.0397 

CW = -1.1570 CMα = -0.0312 

CZu = -2.3141 CMq = -3.3000 

And finally, elevator displacements (inputs) of the system are given as 

Table 1.3 Elevator displacements (inputs) of the UAV system. 

CXδe = 0 

CZδe = - 0.71 

Cmδe = - 0.71 

At this point, if the calculated values given in Table-1 and Table-2 are placed in 

(2.32), it is expected to obtain the homogeneous solution of Laplace transformed 

EOMs as in (2.44). 



 

17 

0)()0323.00121.0()(')0312.00003.0(0:
0)(3834.1)(')1381.04161.1()('3141.2:

0)(1570.1)('1181.1)(')0264.04158.1(:

2 =++++

=−++
=+−+

sssssM
sssssuz

sssusx

θα

θα
θα

 (2.44)

If (2.44) is rewritten in matrix form,  

0
)(
)('
)('

)0323.00121.0()0312.00003.0(0
3834.1)1381.04161.1(3141.2

1570.11181.1)0264.04158.1(

2

=
































++
−+

−+

s
s
su

sss
s

s

θ
α  (2.45)

and using (2.45), it is possible to obtain the characteristic equation (CE) of the UAV 

system simply by taking the determinant as shown in (2.46). 

0
)0323.00121.0()0312.00003.0(0

3834.1)1381.04161.1(3141.2
1570.11181.1)0264.04158.1(

2

=
++

−+
−+

sss
s

s

 (2.46)

By expanding the determinant in (47), the CE is found as 

00.0836 s  0.0859s  0.1s  0.0684s  0.0242 234 =++++  

0  3.4545  s 3.5496  s 4.1322  s 2.8264  s 234 =++++  
(2.47)

In order to have better idea related with the open loop characteristic of the aircraft, 

using (2.47), it is possible to obtain the roots (poles) of the system such as 

1.1119i  0.0181-  s
 0.9226i  1.3921-  s

3,4

1,2

±=

±=
 (2.48)

From the corresponding poles of CE, it is likely to see that the system is stable but 

has very close complex conjugate poles to the origin, which will lead to highly 

oscillatory manner and relatively low damping with frequent oscillations. If complex 

conjugate poles ( 2,1s , 4,3s ) are grouped, a compact form is obtained as in (2.49). 

0i)] 1.1119  0.0181i)(s 1.1119 - 0.0181)][(s i 0.9226  1.3921s )( i 0.9226- 1.3921s [( =++++++  

0)2367.1 0.0362s  (s ) 7892.2 s 2.7842  s ( 22 =++++  
(2.49) 
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Next, it is possible to introduce the natural frequency and damping ratio concepts 

using the general representation as 

02 22 =++ nn ss ωξω  

0)2)(2( 2222 =++++ npnppnsnss ssss ωωξωωξ  
(2.50)

and adapting (2.50) to the obtained system, it is found 

 )2( 22 =++ nsnss ss ωωξ  ) 7892.2 s 2.7842  s ( 2 ++  (2.51)

=++ )2( 22
npnpp ss ωωξ 2367.1 0.0362s  (s2 ++  (2.52)

Using (2.51) and (2.52), one could find the natural frequencies and damping ratios 

for both short period and phugoid mode. If the necessary calculations are conducted, 

it is possible to obtain ωn (natural frequency) and ξ (damping ratio) values such as  









=

=

=

sec2007.55

sec/1121.1

0163.0

_

pm

pmn

pm

T

radω

ξ

    long period oscillation (2.53)









=

=

=

sec7183.0

sec/6701.1

8336.0

_

sp

spn

sp

T

radω

ξ

    short period oscillation (2.54)

From (2.53) and (2.54), it is apparent that the characteristic behaviours of both 

modes are as 

 Short period mode of the UAV is adequately damped.  

 Phugoid mode of the UAV is lightly damped which indicates an 

under-damped case in our situation.  

Additionally, another indicator of damping ratio is the time required for one period 

of the oscillations, which is commonly defined as 

n

T
ξω

1
=  (2.55)

Using (2.55), it is credible to obtain the time required for one period such as  
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s
x

Tsp 7183.0
6701.18336.0

1
==  (2.56)

s
x

Tpm 2007.55
1121.10163.0

1
==  (2.57)

From (2.56), it is expected that the short period mode, oscillations with period of 2T, 

are occurring within every second and a half; while in phugoid mode, time required 

for one period is relatively high, nearly 1 minute. In phugoid mode, structures of the 

aircraft would be affected seriously due to high oscillations, forces (due to vibration) 

and moments, therefore investigation of modes is taking an important role. 

In order to obtain related transfer functions (TFs) for given elevator displacements, 

elevator deflections/inputs has been introduced in (2.32), where 71.0−=
ezC

δ
, 

71.0−=
emC

δ
 and 0=

exC
δ

 (which has been neglected) [5, 6], which yields to 

e

e

sssssM

sssssuz
sssusx

δθα

δθα
θα

71.0)()0323.00121.0()(')0312.00003.0(0:

71.0)(3834.1)(')1381.04161.1()('3141.2:
0)(1570.1)('1181.1)(')0264.04158.1(:

2 −=++++

−=−++
=+−+

 (2.58)

where eδ  is elevator deflection (rad). The matrix representation is as 

)(
71.0
71.0

0

)(
)('
)('

)0323.00121.0()0312.00003.0(0
3834.1)1381.04161.1(3141.2

1570.11181.1)0264.04158.1(

2

s
s
s
su

sss
s

s

eδ
θ
α

















−
−=

































++
−+

−+
 (2.59)

After obtaining the matrix representation, it is a relatively easy task to obtain TFs for 

Longitudinal dynamics.  Starting with (2.59) and by using the Cramer’s Rule,  

)0323.00121.0()0312.00003.0(0
3834.1)1381.04161.1(3141.2

1570.11181.1)0264.04158.1(
)0323.00121.0()0312.00003.0(71.0

3834.1)1381.04161.1(71.0
1570.11181.10

)(
)('

2

2

sss
s

s
sss

s

s
su

e

++
−+

−+
++−

−+−
−

=
δ

 (2.60)

it is possible to obtain the TFs )(/)(' ssu eδ such as 
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0.0836 + s 0.0859 + s 0.1 + s 0.06836 + s 0.02424
0.0878 - s 0.0391 - s 0.009597             

)(
)('

234

2

=
s
su

eδ
 (2.61)

Corresponding bode plot of )(/)(' ssu eδ  could be obtained as shown in Figure 2.2. 

 
Figure 2.2 Bode and time domain response plot of )(/)(' ssu eδ . 

As it is likely to see from Figure 2.2, for a given eδ  deflection (input), steady state 

velocity of the system is considerably affected in phugoid mode, but in short period 

mode is not affected critically. If time domain step and impulse responses of 

)(/)(' ssu eδ  are investigated from Figure 2.2, it can be said that the behaviour of 

)(' su  is highly oscillatory as a result of very close poles (2.48) to the imaginary axis.  

)0323.00121.0()0312.00003.0(0
3834.1)1381.04161.1(3141.2

1570.11181.1)0264.04158.1(
)0323.00121.0(71.00

3834.171.03141.2
1570.10)0264.04158.1(

)(
)('

2

2

sss
s

s
ss

s

s
s

e

++
−+

−+
+−

−−
+

=
δ
α  (2.62)

it is possible to obtain the TFs )(/)(' ss eδα such as 



 

21 

0.0836 + s 0.0859 + s 0.1 + s 0.06836 + s 0.02424
1.901 - s 0.02654 - s 1.423 - s 0.01215-              

)(
)('

234

23

=
s
s

eδ
α  (2.63)

Corresponding bode plot and time domain response of )(/)(' ss eδα   

 
Figure 2.3 Bode and time domain response plot of )(/)(' ss eδα . 

could be obtained as given in Figure 2.3. As it is probable to see from Figure 2.3, for 

a given eδ  deflection (input), angle of attack (α ) is noticeably affected in phugoid 

mode, but in short period mode angle of attack is changing quite smoothly. 

Moreover, if time domain step and impulse responses of )(/)(' ss eδα  are examined, 

from Figure 2.3, it can be observed that )(' sα  has regular oscillations as a result of 

very close poles ( 4,3s ) to the origin.  

)0323.00121.0()0312.00003.0(0
3834.1)1381.04161.1(3141.2
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s

s
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−+

−+
−+
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=
δ
θ  (2.64)
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it is possible to obtain the TFs )(/)( ss eδθ such as 

0.0836 + s 0.0859 + s 0.1 + s 0.06836 + s 0.02424
1.839 + s 0.134 + s 1.423              

)(
)(

234

2

=
s
s

eδ
θ  (2.65)

Corresponding bode plot of )(/)( ss eδθ  could be obtained as 

 
Figure 2.4 Bode plot of )(/)( ss eδθ . 

As it is likely to see from Figure 2.4 that for a given eδ  deflection (input), pitching 

angle (θ ) is noticeably affected in phugoid mode, but in short period mode angle of 

attack is changing smoothly. If time domain step and impulse responses of 

)(/)( ss eδθ  are plotted, it is likely to find the graphs as shown in Figure 2.4. It could 

also be said that the behaviour of )(sθ  has frequent and long-lasting oscillations as a 

result of very close poles (2.48) to the imaginary axis. After such assessments, in 

order to get a better idea that how UAV is going to behave in short period and 

phugoid modes, short period and phugoid mode approximations and their 

characteristics might be examined, but it will not be conducted here. For detailed 

analysis conducted on short and long period approximations, reader is referred to [2, 

5-9] for further reading.  
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2.3 Model-Reference Adaptive Control System Design for the Longitudinal 

Dynamics of the UAV: 

Subsequent to the conclusion of longitudinal dynamic modeling part, in the 

following sections of the thesis, automatic control system designs based on Adaptive 

control approach will be introduced. 

An adaptive control algorithm is simply an adaptive control system design with 

adjustable parameters and a mechanism for adjusting the parameters. The controller 

itself is becoming nonlinear in the control loop, because of the adaptive parameter 

adjustment mechanism. But however, it is a very special formation in terms of 

control. Adaptive control systems can be considered as having two different loops in 

the control algorithm. One of the loops is the normal feedback with plant outputs and 

the controller. But the other loop is for the parameter adjustment purposes. A sample 

block diagram for an adaptive control system design (taken from [10]) is given in 

Figure 2.5. 

 
Figure 2.5 A sample adaptive control system block diagram. 

In the following parts of the thesis, as a branch of adaptive control theory, model–

reference adaptive control system (MRAS) design will be introduced and 

subsequently will be implemented on longitudinal dynamics of the UAV in order to 

improve the stability and performance characteristics of the open loop system.  

Model-reference adaptive system (MRAS) control algorithm is an important part of 

the adaptive control theory. It might be considered as an adaptive servo system 

where the expected performance features are expressed in terms of a reference 
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model, which gives the desired response to a given input. A sample block diagram of 

a MRAS system is presented in Figure 2.6. 

 
Figure 2.6 Sample block diagram of a model-reference adaptive system (MRAS). 

The MRAS system itself owns an ordinary feedback loop which is consisted of the 

plant-controller and another feedback loop that is used to adjust the controller 

parameters in order to reach to the perfect following conditions with the reference 

model. Parameters in the adjustment loop are tuned on the basis of feedback from the 

error ( e ), which has been defined as the difference between the output of the plant 

( y ) and the output of the reference model ( my ). In this concept, the ordinary 

feedback loop is named as the inner loop, while the parameter adjustment loop is 

called as the outer loop. The mechanism for tuning the parameters in a model-

reference system can be obtained in two different ways: by using a gradient method 

or by applying stability theory [10, 11]. 

In the following parts of the thesis, two different control algorithms will be 

introduced: PI adjustment based on MIT rule and PI adjustment based on Lyapunov 

Stability Theory. But before getting through the adaptive control system design 

process, a closer (and a detailed) look into the frequency domain responses of the 

nominal plant is necessary and crucial in terms of improving the open-loop time 

domain performance specifications. As it is possible to remember from previous 

sections, longitudinal flight regime is characterized by eδθ /  transfer function and by 

inspecting frequency domain response of eδθ /  given in Figure 2.4, it is possible to 

see that the Phase Margin (PM) and Gain Margin (GM) characteristics are relatively 

weak. By examining the Bode Diagram (Figure 2.7) of eδθ / , 
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Figure 2.7 Detailed Bode plot of open loop eδθ /  transfer function. 

it is easy to see that the PM value of nominal plant is 20.7 degree (at 7.58 rad/sec) 

and the GM is obtained as Infinity dB. With observed characteristic values of 

frequency domain, it is possible to mention that the PM and GM characteristics are 

inadequate for a control system design and therefore time domain responses of 

nominal plant are being quite slow and long lasting. In order to have better 

performance index in terms of frequency domain values, compensation of PM and 

GM will be suggested in the following lines with the help of Lead compensation 

technique. 

The main characteristic of lead compensation is that it is used to reshape the 

frequency-response curve in order to maintain adequate phase-lead angle to offset the 

excessive phase lag associated with the components of the fixed system [13]. The 

procedure of designing a lead compensator by the frequency response approach for 

lead compensation has been given in [13] in detail and it is only going to be 

summarized for the longitudinal flight as the followings: 

1) Transfer function of the lead compensator has been considered as  
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=  where 10 <<α  (2.66) 

2) From Figure 2.7 it is possible to see that the PM of the nominal plant 

is 20.7 degrees and relatively insufficient. The main aim will be to 

pull PM over 500 and to have GM greater than 7dB. In this case 

necessary PM value is ooo
m 355307.2050 =+≈−=φ  (5o has been 

added for the compensation for the shift in gain cross over frequency.)  

3) Since 
α
αφ

+
−

=
1
1sin m , after some iterative procedures, it is found that 

)35sin( o corresponds to 2792.0=α .  

4) Once the attenuating factor -α  is obtained, the next step will be to 

obtain the corner frequencies ( T/1=ω  and )/(1 Tαω = ) of the lead 

compensator. 8927.1
2792.0
11

==
α

dB and 8927.1)( −=ωjG dB 

corresponds to 78.6=ω  rad/sec cω= . This is going to be the new 

cross over frequency )/(1 Tc αω =  and following to that it is found 

5823.3/1 == αωcT  and 8323.12//1 == αωα c . 

Using (2.66) the lead compensator, with preferred 6428.1=cK , is found as 
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 (2.67)

After deriving the lead compensation transfer function, time domain plots could be 

obtained of compensated and uncompensated plants as shown in Figure 2.8. 
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Figure 2.8 Lead compensated nominal plant and bode diagram plots. 

From Figure 2.8, it is quite easy to see the phase shift effect of the lead compensator 

in frequency domain. This property also influences the time domain response as well 

and the transient behaviour is more considerable than the uncompensated plant. After 

obtaining such an improvement in frequency domain characteristics and in open-loop 

system dynamics, it is possible to go through the automatic control system design 

procedures based on model-reference adaptive control algorithms. 

2.3.1 PI Adjustment Based on MIT Rule             

The MIT rule is the original approach to model-reference adaptive control system 

design, where it is mainly based on gradient evaluation. The name of the rule is given 

in this way because the theory of the method has been derived in the Instrumentation 

(now Drapper) Laboratory of Massachusetts Institute of Technology (MIT) for the 

first time; therefore it has been named like the MIT Rule.  

In the presentation of MIT rule, an adjustable parameter θ  will be taken into 

account. In system dynamics, desired closed performance is defined as the output of 

the reference model- my . In MIT rule, it is considered that the error, e, is defined as 

the difference between the plant output, y, and reference model, my . Considering an 
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optimal control approach to the problem, it is possible to tune the parameters of the 

systems in a way so that the loss function 

2

2
1)( eJ =θ  (2.68)

is minimized. In order to be able to make J small enough, system parameters should 

be changed in the descending direction (negative gradient) of J, leading to 

θ
γ

θ
γθ

∂
∂

−=
∂
∂

−=
eeJ

dt
d ˆˆ  (2.69)

and (2.69) is called as the MIT rule, where γ̂  is gain constant, J  is the cost function 

(described in (2.68)) and e  is the error between output of the reference model ( my ) 

and nominal plant ( y ). Here θ∂∂ /e  partial derivative is called the sensitivity 

derivative of the system and is telling how the error is affected by the adjustable 

parameter, θ . 

Considering the given mathematical foundation related with the MIT rule, in the 

following sections, it is possible to obtain the adaptive control law necessary to shape 

the open loop dynamics. For this purpose, a MATLAB© Simulink block diagram has 

been suggested as shown in Figure 2.9. 

 
Figure 2.9 Partial simulink block diagram for MIT rule. 

With the help of Figure 2.9, it is possible to figure out that the control law has been 

suggested as yuu c 21 θθ −= . Also the plant output could be easily obtained as 

usGy )(=  and reference model output is gained as cmm usGy )(= , where cu  is the 

command input, u  is the control signal, )(sG  is the transfer function of the nominal 
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plant (including elevator servo TF- [ ])15/(15 +s ), )(sGm  is the transfer function of 

the reference model, 1θ  is the command signal adjustment parameter and 2θ  is the 

closed loop feedback adjustment parameter. In order to be able to obtain the MIT 

rule for the closed-loop system, sensitivity derivates ( 1/ θ∂∂e  and 2/ θ∂∂e ) should be 

obtained, and for this purpose a step-by-step procedure in obtaining sensitivity 

derivatives has been summarized as the followings: 

usGy )(= , cmm usGy )(= , cc usGysGyyusGy 1221 )()()()( θθθθ =+⇒−=  
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(2.70) 

From (2.70), sensitivity derivatives could be obtained as 
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(2.71) 

It is known that using pole placement technique from classical control theory, it is 

possible to find such a feedback gain like γ~ , which will shape the open loop 

eigenvalues (poles) and lead to ))(1/()(~)( 2θγ sGsGsGm +≡ .  If (2.71) is 

recomposed in the light of the given information, it is possible to obtain such 

representation as shown in (2.72). 
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After obtaining the theoretical demonstration of sensitivity derivatives, by using the 

MIT Rule (2.69), it is possible to obtain the adaptive control algorithm based on the 

MIT rule as shown in (2.73). 
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∂
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(2.73) 

where γγγ ~/ˆ= . As it could be easily seen from (2.73), the adaptation rule is 

dependent only on the reference model parameters, which clearly indicates that even 

if the nominal plant-G(s) parameters become unknown at certain time t, the 

controller will still be able to control the system and adjust the system parameters to 

reach the desired reference model parameters. But in (2.73) the selection of 

adaptation gain (γ ) is crucial and the preferred gain value usually depends on the 

command signal levels. In order to make the MIT rule less dependent on the 

command signal levels, it has been modified as shown in (2.74) and has been named 

as ‘Normalized MIT Rule’. 

ϕϕα
ϕγθ

T
e

dt
d

+
=

ˆ
 where θϕ ∂−∂= /e  and 0>α  (2.74) 

In (2.74), parameter 0>α  has been introduced to avoid difficulties when ϕ  is small. 

It should also be noticed that (2.74) has been written in a way so that when θ  is a 

vector, ϕ  also becomes a vector in the same size and dimension [10]. By applying 

the given rules in (2.74), it is possible to obtain adjustment parameters of the nominal 

plant as shown in (2.75). 
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(2.75b)

where γγγ ~/ˆ3 =  and γγ ~/14 = . Having a closer look at the adjustment parameters 

( dtd /1θ  and dtd /2θ ) will give valuable information, so that the adjustment 

algorithm is consisted just of an ‘integral’ action, which could only be used to 

improve the steady state error of the closed-loop system. Therefore, in order to be 

able to enhance the performance specifications and to increase the bandwidth of the 

closed loop system, ‘proportional’ part should be introduced beside obtained 

‘integral’ control action, which will lead to a ‘PI adjustment’ control algorithm in 

adaptive control theory and is shown in (2.76) [10]. 

44 344 21
43421
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432 )()()(~ θγγθ  

(2.76) 

After obtaining necessary information related with the parameter adjustment 

algorithms, Simulink block diagram of PI adjustment algorithm based on MIT rule 

has been constructed and is given in Appendix-A. 
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If obtained PI adjustment algorithms based on normalized MIT rules are going to be 

applied to the nominal plant dynamics, obtained control system performance and 

time domain results are being as shown in Figure 2.10. 

Figure 2.10 Closed-loop time domain responses of model-reference adaptive control 
system design: PI adjustment based on normalized MIT rule. 

From Figure 2.10, it is easy to see that the PI adjustment based on normalized MIT 

rule adaptation algorithm is working properly and remarkably. It is also possible to 

see that adaptive control rule is able to adapt and control the system parameters and 

match them with the desired closed loop states, so that the settling time is 

approximately 10 seconds and the maximum actuator effort is nearly 0.2 Newton, 

which are acceptable values for a control system design. Additionally, from the 

second plot in Figure 2.10, the change of error signal, where it is adapting itself to 

stay at zero (0) and fixed to the reference model, could be observed as well.  

2.3.2 PI Adjustment Based on Lyapunov Stability Theory 

There is no guarantee that an adaptive controller based on the MIT rule will give a 

stable closed-loop system. For this purpose Lyapunov Stability Theory has been 

introduced in order to guarantee stability in model-reference adaptive control 
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systems. In this section only the main characteristics of Lyapunov Stability Theory 

will be presented, but for further and detailed information one could refer to [13, 14]. 

Let’s consider nonlinear and Linear Time-Invariant (LTI) differential equation 

)(/ xfdtdx = . Let’s assume that the system has a solution like 0)0( =f  for 0=tx , 

where this kind of conditions are called “equilibrium state conditions”. In order to 

guarantee the stability for states starting out of range of equilibrium conditions, some 

conditions are needed. For the existence and uniqueness of the solution, there are 

some restrictions on )(xf  for 00 ≠x , which guarantee the existence and the 

uniqueness of the solution. A necessary condition could be defined like )(xf  is 

satisfying Lipschitz conditions as yxLyfxf −<− )()( , where L is a number 

small enough for the analysis and ∞<< L0 . Here a stability analysis could be 

conducted for non-linear functions satisfying Lipschitz conditions. Also stability 

analysis could be conducted for perturbed systems whether they are going to turn 

back to their equilibrium states or not. But there is a boundary for going through the 

equilibrium states and if this boundary is overtaken, system dynamics may not be 

able to come back to old equilibrium points and could find some other equilibrium 

points. In other words, if a ball is going to be released from an arbitrary point and 

following to that if it comes to stability at a certain point and if this point is within 

the boundary of equilibrium conditions, then this is called “asymptotic stability 

condition” for systems. Another interesting situation is that if the ball doesn’t come 

to stability but also if it doesn’t get far away from the equilibrium states as well (in 

other words, if it exhibits periodic motion), in this situation the motion is stable as 

well. But this is only stable condition (not asymptotically stable). If a ball is released 

from an arbitrary point, it will stop when its kinetic energy decreases to “0”. In that 

case, the equilibrium stability point is the point where the kinetic energy becomes 

“0”. If the ball is shifted somewhere in the neighborhood of the equilibrium point, it 

will gain energy and motion will occur. However, if it looses its energy again and 

stops as a result of this motion, then it is called asymptotically stable. But for 

example, let’s consider that the ball stopped in another equilibrium point, where its 

kinetic energy becomes “0” and turn into potential energy. Then this equilibrium 

point is stable but it is not asymptotically stable. 
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In all of the stated discussions, energy functions are positive definite functions. But 

the rest condition of a system is representing that its kinetic energy is “0”. From here 

it can be summarized that if kinetic energy of a system is changing in a descending 

direction (-) with time, then it corresponds to an “asymptotically stable” equilibrium 

point. Also Lyapunov stability theory depends on the property that the kinetic 

function of a system is descending and changing in a descending direction with time 

(Figure 2.11).  

 
Figure 2.11 Lyapunov stability theory representation in phase domain. 

Thus, if KE of a system is decreasing, it means that the system is approaching to an 

asymptotic stability point. And Lyapunov stability simply is based on characteristic 

of a decreasing (descending) KE function. Since it is very hard to derive KE function 

of a complex system, if one can define such functions ( )(xV ) representing the 

characteristics of KE functions, and if those functions are in a decreasing 

characteristic along the trajectory of KE functions, then one can guarantee that the 

solution of the differential equation will always give us stable solutions and then 

)(xV  will be called Lyapunov function. 

In other words, with the language of mathematics, if )(xV  is suggested as 

PxxxV T=)(  and BuAxx +=& , where Kxu −=  and BKAA −= , then for each 

symmetric positive-definite matrix Q , there exists a unique symmetric positive-

definite matrix P  such that  
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QAPPAT −=+  leading to QxxxV T−=)(&  and 0)( <xV&  for t>0 (2.77)

then the system is called asymptotically stable and )(xV  is called a Lyapunov 

function satisfying  0)( <xV&  condition. 

Next step, after a brief introduction of the Lyapunov stability theory, is the derivation 

of parameter adjustment rules for longitudinal flight control system design based on 

Lyapunov stability theory. In order to do this and in order to satisfy perfect matching 

conditions (between A  and mA ), the candidate Lyapunov function (taken from [15]) 

has been suggested as given in (2.78). 

[ ])()()( m
T

m
T ABLANABLATrPeexV −−−−+=  (2.78)

where N  is the weighting matrix and Tr  is the “Trace” of a matrix, which has been 

defined as the sum of the diagonal elements of a matrix such as 

)()( 332211

333231

232221

131211

aaaATr
aaa
aaa
aaa

A ++=⇒















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(2.79)

Under perfect matching conditions, it has been assumed (and calculated) that there 

exists such *L  which will lead nominal system dynamics to mABLA →− * , so that 

*L  is the constant feedback gain obtained by LQR or a similar control algorithm. 

And adaptive parameter adjustment algorithm-L in (2.78) has been defined as 

LLL ∆+= * , where L∆  is representing the parameter adjustment uncertainties [29-

31]. In this way, by simply introducing adjustment parameter uncertainties, 

robustness characteristics have also been also introduced in adjustment system 

dynamics of adaptive control system design. 

It is easy to see from (2.78) that the main aim is to find such feedback parameter 

LLL ∆+= * , which will shape and help the nominal plant to reach the system 

parameters to the desired level, which is the reference-model. In this way, perfect 
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matching conditions will be satisfied and as it has been mentioned in previous lines, 

the main goal will be satisfied. Therefore, the derivative of Lyapunov function will 

always be negative ( 0)( <xV& ) and will lead to guaranteed stability. For this purpose, 

derivative of the candidate Lyapunov function has been taken and the procedure has 

been summarized step-by-step in (2.81). But before that step, change of error 

function ( e ) with respect to time ( e& ) should be obtained as shown in (2.80). 
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And derivative of the candidate Lyapunov function has been constructed as in 

(2.81a-b). 
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One of the most important point that should be stressed on in (2.81b) is the definition 

of nxn
T NBBT )(= . It is a very important term, because if it hadn’t been defined in 

this way (i.e. as a square matrix), in the following sections of derivation of parameter 

adjustment rule, mxn
TB )(  term would be left alone, where the Pseudo Inverse 

operation would be necessary due to the reason that the term TB is not a square matrix 

(it is actually a matrix in dimensions of mxn). As it is known from linear algebra, if a 

matrix is not a square matrix, the inverse of the matrix cannot be found very easily. 

For that reason, in order to be able to find the inverse of a non-square matrix, Pseudo 

Inverse has been defined in literature and the reader can refer to [10, 14] for further 

and detailed information related with Pseudo Inverse. By simply defining 

nxn
T NBBT )(= , the complexity of the equation has been reduced and a non-square 

matrix possibility has been wiped out.  

In (2.81b) e  is the error function between output of the nominal plant ( y ) and 

reference model ( my ), P  and Q  are the symmetric positive definite matrices 

obtained and defined in Lyapunov function, respectively. From (2.81b) it is possible 

to see that if the term 

[ ] 0)(0 =∆+−∆⇒=∆∆+∆− LTPeyBLLTLPeyBLTr TTTTTTT &&  (2.82)

then the candidate Lyapunov function becomes eQexV T−=)(& , so that )(xV&  will 

always be 0)( <xV&  and stable. For that reason, equality 0)( =∆+−∆ LTPeyBL TTT &  

should be satisfied. If it is remembered that the main goal was to derive 

such LLL ∆+= * , which will lead to perfect matching conditions; only 

0)( =∆+−∆ LTPeyBL TTT &  will be taken into account, because when such sL'  are 

obtained from 0)( =∆+−∆ LTPeyBL TTT & , and then eQexV T−=)(&  will automatically 

satisfy Lyapunov stability condition ( 0)( <xV& ).  
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After such analyses, it is time to apply the given theoretical background into the 

longitudinal flight dynamics, but before getting into the process, it will be suitable to 

present the state-space matrices of the longitudinal flight system for simplicity in 

calculations. State-space matrixes of longitudinal flight system dynamics (including 

elevator servo TF, )15/(15 +s ) has been obtained from )(/)( ss eδθ  TF and are as 

shown in (2.83). 

[ ] [ ]2620,9922,532081,4566,1400000001

1.11i - 0.01-  
1.11i + 0.01-  
0.92i - 1.39-  
0.92i + 1.39-  

          12.83- 
15.0- 

)(

0              1.0000             0                 0                 0               0         
0                 0              1.0000             0                 0               0         
0                 0                  0              1.0000            0               0         
0                 0                  0                 0             1.0000           0         
0                 0                  0                 0                 0            1.0000    
663.9486-    778.2264-    896.4313-     661.2977-   275.1114-   30.6528-  
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(2.83)

From (2.83), it is likely to see that A-(compensated) state matrix is 6x6 and B-input 

(control) matrix is (6x1), which leads the parameter adjustment matrix-L to be (1x6)  

[ ] )61(161514131211 LLLLLL xL =  

for compatibility of dimensions. Next, if the necessary calculations are conducted in 

(2.82), the adaptive parameter adjustment rule based on Lyapunov stability is 

obtained as 

[ ]

TTTTT

TTTTT

TTTT

TTTTTTT

PeyBNBBPeyBTLL
LLLLL

PeyBNBBPeyBTL
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LTPeyBLLTLPeyBLTr

11
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11
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)(
0

0)(0
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−−
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∆=⇒∆+=

==∆

=∆⇒=∆+−

=∆+−∆⇒=∆∆+∆−
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&&

&

&&

&&

 
 (2.84)

Here L&  has been found as LL && ∆= , because *L  is a constant parameter and is not 

changing with time. From (2.84), it is also possible to see that the parameter 

adjustment rule is only dependent on the output of the plant ( y ) and the error 

function ( e ), which makes the parameter adjustment system dynamics independent 

of information related to A-state matrix. 
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From here it is possible to see that the PI adjustment rule based on Lyapunov 

stability theory is obtained as the followings, where the control law is defined as 

yuu c θ~−= . 

)()()()(~

)()()()()(~

21

2

Pr

1

tLytetut

deutetut

c

partIntegral

t

c

partoportional

c

γγθ

τττγγθ

+=

⇒+= ∫
44 344 21

43421
 (2.85)

Before getting into the time domain analysis of closed-loop system response, 

MATLAB© Simulink block diagram has been constructed (Figure 2.12) for PI 

adjustment control algorithm.  

Figure 2.12 Simulink block diagram of PI adjustment based on Lyapunov Stability.  

In some cases, output of the nominal plant may have some difference from the 

reference signal, which is called as steady state error ( sse ) and which is also the case 

in our system dynamics for longitudinal flight. In order to eliminate the occurring 



 

40 

steady state error it is possible to scale the input to make it equal to the steady state 

response. This scaling factor is often called as Nbar and it has been introduced into 

the system dynamics as shown in Figure 2.12. Nbar has been calculated using a 

Matlab program which has been taken from [32].  Following to that, if time domain 

responses of adaptive control system design based on Lyapunov stability are plotted, 

they should be obtained as given in Figure 2.13. 

 

Figure 2.13 Closed-loop time domain responses of model-reference adaptive control 
system design: PI adjustment based on Lyapunov stability.  
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From Figure 2.13, it is possible to see that time domain responses of PI adjustment 

rule based on Lyapunov stability are remarkable, so that the settling time is nearly 

2.5 seconds and the maximum actuator signal is obtained as 1.5 Newton. Also the 

evolution of error signal is considerable and given in the second plot of Figure 2.13. 

Moreover, tracking and disturbance rejection characteristics are noteworthy, where a 

disturbance to the output has been introduced with a 25% magnitude of input signal 

at 20=t sec. 

2.4 Augmented Optimal LQR Control System Design: Longitudinal Dynamics 

In this part of the thesis, an augmented optimal LQR control system design, taken 

from [16], will be investigated with further details, and afterwards using derived 

mathematical model, the theory will be implemented on the longitudinal flight 

dynamics of the UAV.  

In physical environment, it is not always possible to measure all the states of an 

aircraft during the flight and because of that reason, sometimes complexities and 

several anomalies could arise in automatic control process due to lack of state and 

feedback information. Therefore, in order to suppress the effects of lack of 

measurement, an observer mechanism is used in order to compensate measurement 

insufficiencies and to obtain a theoretical estimation of necessary states those 

couldn’t be measured. This option will also be used in augmented optimal LQR 

control system design in order to suppress measurement effects and in order to obtain 

an estimated model for better performance characteristics.  

In general sense, state-space mathematical model of a system is defined as  





=
+=

⇔
)()(

)()()(
)(

tCxty
tButAxtx

sG
&

 (2.85) 

and estimation mechanism transfer function could be named as )(ˆ sG , where nominal 

states of the plant are classified as x  and estimated plant states are named as x̂ . As a 

result of the observer mechanism, it is expected to have 0ˆlim =−
∞→

xx
t

 [12], which 

leads to adequate observation condition. Following to that, it is possible to construct 
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a MATLAB© Simulink block diagram of estimated (observed) system as shown in 

Figure 2.14.  

 
Figure 2.14 Nominal plant and observer mechanism.  

But before getting into control system design process, due to the reason that the 

observer mechanism has been suggested to be included in system dynamics, it has to 

be checked and guaranteed that the nominal plant is fully observable and 

controllable.  

2.4.1 Observability and controllability of system dynamics: Longitudinal flight 

During the optimal control system design process, which is going to be presented in 

the next section, an observer scheme will be used in order to estimate the outputs 

those may not be measured during the flight. And just before getting into the control 

system design part, the observability and the controllability characteristics of the 

UAV system will be investigated in the following parts.  

Observability matrix of a system is defined as, 

[ ]Tn
n CACACACOObs 12 −== K  

(2.86) 

where C is the output matrix and A is the state matrix of the nominal plant [13]. In 

the light of the observability matrix ( nO ), a system is described observable if (2.87) 

is satisfied. 

( ) nORank n =  (2.87) 

Using the )(/)( ss eδθ  TF and elevator servo TF [ )15/(15 +s ] of system dynamics, it 

is possible to obtain state space system representation of longitudinal flight dynamics 
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with the help of tf2ss MATLAB© command. If necessary calculations are 

conducted, state matrix-A and output matrix-C of longitudinal flight dynamics are 

obtained as shown in (2.83). Using (2.83) and replacing in (2.86), observability 

matrix is attained as 
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where the rank of the system becomes ( ) nORank n == 5  showing that the system is 

fully observable. As a confirmation, it is also possible to calculate the number of 

unobservable states from (2.89), 

055)()( =−=−= nnxn ORankALengthUnOb  (2.89) 

which simply states that there are no unobservable states (i.e. all of the states could 

be observed). Thus, it is feasible to verify that an observer mechanism can be used in 

estimation of the states of open-loop dynamics in longitudinal flight, where 

mathematical model of an observer mechanism can be simply defined as [12], 
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(2.90) 

Additionally, controllability of the system dynamics should be verified as well, so 

that there will be no theoretical obstacle to get into the optimal control system design 

process. It is known that controllability matrix of a system is defined in [13] as  

[ ]BABAABBC n
t

12 −= K  (2.91) 

so that the controllability matrix must satisfy (2.92) 
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( ) nCRank t =  (2.92) 

and in this way the system is called reachable or controllable. If the given 

controllability conditions are applied, controllability matrix is obtained as  

[ ]























== −

0.0001         0             0             0             0    
0.0018-   0.0001         0             0             0    
0.0271     0.0018-   0.0001         0             0    
0.4070-    0.0271    0.0018-   0.0001         0    
6.1044     0.4070-   0.0271     0.0018-   0.0001

*10412 BABAABBC n
t K  (2.93) 

where the rank of the system is calculated as ( ) nCRank t == 5  leading to a fully 

controllable system dynamics.  

With such observability and controllability analyses, it has been proved that the 

longitudinal UAV system is both controllable and observable, which grants the 

opportunity to use an observer (estimation) mechanism in control system design 

process. 

2.4.2 Augmented optimal LQR control system design: Integral control 

In this section of the thesis, an augmented optimal LQR control system design with 

an observer (estimation) mechanism will be presented using integral control 

technique and subsequently will be implemented on longitudinal flight dynamics of 

an UAV. 

Generally speaking, state space representation of a system could be given like 

Cxy
GwBuAxx

=
++=&

 (2.94) 

and the feedback error could be given such as rye −= , which is negative in sign 

(and different) than the usual feedback convention, yre −= . It can be shown that 

the feedback control rule could be obtained in a way so that the plant could be 

augmented with an extra integral state ( Ix ), which simply obeys the integral equation 
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erHxxI =−=&  
(2.95) 

and leading to 

dtex
t

I ∫=  (2.95) 

Then the augmented state equations become 
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where the feedback control law becomes 

[ ] 







−=

x
x

KKu I
01  (2.97) 

Accordingly, control structure using the integral control action design technique 

results in as showed in Figure 2.15 [12, 16]. 

 
Figure 2.15 Integral control block diagram for robust tracking and disturbance 

rejection.  

After obtaining some mathematical background related with the robust tracking and 

disturbance rejection in system dynamics, it is time to implement it inside the 

optimal LQR control system design. In optimal control system design process, the 

main goal will be to determine the optimal feedback gain  

)(ˆ txKu LQR−=  (2.98) 

which will eliminate the error between the reference and the feedback signals, so that 

the cost function will become 
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dttRututrtyQtrtytuJ TT )()())()(())()(())((
0
∫
∞

−−−=  (2.99) 

where Q  and R  are positive-definite weighting matrices. This problem cannot be 

solved without each a-priori-knowledge and/or without restriction of the reference 

signal )(tr , because )(tr  can be for example an unstable signal and therefore the 

integral (2.99) will result in no finite value [12]. However, the problem can be solved 

as a modified sequence regulation problem for unknown )(tr . The solution exists 

within the expansion of the closed-loop through a filter filtK , so that using general 

formula of a closed TF from input to output   

[ ] )(:)(
)(
)( 1 sGBKBKAsIC

sR
sY

CLfiltLQR =−−= −  (2.100)

it is possible to obtain the value of filtK  as   

[ ]{ } 11)( −−−−= BBKACK LQRfilt  (2.101)

The just described regulator design is for undisturbed rule as well as for rule without 

and/or with small model uncertainties well suited. A demand often placed in the 

practice is the capacity of the closed-loop to be able to compensate constant-not 

measurable disturbances [12]. The well known idea out of the classic theory in 

compensation of disturbances is to expand the regulator around an Integral-control 

loop, where the structure of integral control had been given previously in Figure 

2.15.  

If augmented system dynamics are going to be reorganized from (2.96), it should be 

obtained 
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 (2.102a)

where γ  is a scalar weighting factor ( 0>γ ) and  
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[ ] )(~)(~)(~
0 txKKtxKtu ILQR −==  (2.102b)

It should be noted that, in order to have a usual sign convention ( yre −= ) in the 

outer loop of the augmented plant dynamics (Figure 2.16), output matrix-C has been 

assigned with a negative (-) sign convention in (2.102a).  

After having implemented classical integral control method into optimal LQR 

control system dynamics, it is time to see the results in longitudinal flight dynamics. 

In optimal control system design procedure, nominal plant parameters, (2.83), has 

been used and corresponding filtK  gain value has been calculated from (2.101) as 

8664.0=filtK . Positive-definite weighting functions (Q  and R ), which are going to 

minimize the cost function- J , and γ  parameter have been selected as  

])202020020011([diagQ = , 3800.0=R  and 10=γ  
(2.103)

Using the chosen Q, R and γ  values, calculated LQRK  has been obtained with the 

help of lqr command in MATLAB© as 

[ ]

[ ]894.9278  254.3036  711.8341  141.0039  6.7195
1.6222

894.9278  254.3036  711.8341  141.0039  6.7195    1.6222

=
=
=

LQR

I

K
K
K M

 (2.104)

The last thing to do before getting into the time domain responses is to define the 

characteristics of observer (estimation) mechanism. As it is possible to see from 

(2.90), observer mechanism is included with a pole placement weighting matrix-H, 

which is going to place the nominal plant poles to the desired places. It is desired to 

place poles of the estimation mechanism at 
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and corresponding pole placement gain ( H ) is obtained as 
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[ ]0.0169    0.0252    0.0217-   0.0301-   0.0268=H  (2.106)

After every parameter has been found, Simulink block diagram of augmented 

optimal LQR control system design has been suggested as shown in Figure 2.16.  

Figure 2.16 Simulink block diagram of augmented optimal control system design.  

where estimation algorithm’s Simulink block diagram has been constructed as 

 
Figure 2.17 Simulink block diagram of estimation (observer) mechanism.  

Now, it is time to see the closed-loop time domain results of augmented optimal 

LQR control system design, and obtained results have been presented in Figure 2.18. 

From Figure 2.18, it can be seen that the settling time of the designed control system 

is approximately 1.5 seconds and the maximum actuator force is nearly 0.25 Newton, 

which are remarkable performance values for a control system design. Moreover, 

without any (lead/lag) compensation, control system is able to suppress lightly 
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damped modes of the nominal plant and to shape system dynamics efficiently. 

Disturbance rejection and signal tracking properties of controller are also significant. 

 
Figure 2.18 Time domain response of augmented optimal LQR control system 

design.  

2.5 Comparison of Automatic Control System Designs: Longitudinal Dynamics 

After obtaining time domain responses of each automatic control system designs, it 

will be suitable to plot responses all together for comparison purposes (Figure 2.19). 

Figure 2.19 Closed-loop time domain responses of designed automatic control 
systems: Comparison analysis.  
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Furthermore, it is possible to present performance characteristics of obtained 

controllers as given in Table 2.1. 

Table 2.1 Comparison of characteristic properties of designed controllers: Longitudinal dynamics 
 RiseTime 

[sec] 
PeakTime 

[sec] 
SettlingTime 

[sec] 
Max.Overshoot 

[%] 
Max.Actuator 

Force [N] 
Norm. PI Adj. 5.5 7.6 10 1.86 0.2 
Lyap. PI Adj. - 1 2 2 1.5 
Aug. LQR. 1.33 1.45 1.56 0.24 0.26 

As it is possible to see from Table 2.1, best performance has been obtained with the 

augmented optimal LQR control system design together with the adaptive PI 

adjustment based on Lyapunov stability. 
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CHAPTER 3 

3. Lateral Dynamic Modeling 

In this section of the thesis, lateral equations of motion will be summarized. In this 

part, state space approach has been preferred in dynamical modeling of lateral flight 

in order to have a convenient representation of EOMs for the automatic control 

system design part. In that sense, state space equations, which have been derived and 

used in this section of the thesis, have been taken from [2, 6]. By using the given 

representation, the lateral dynamic state space equations could be obtained easily and 

TFs could be derived straightforwardly. 

3.1 Equations of Motion (EOMs) 

Using the fundamental state space representation as shown in (2.85), it is possible to 

construct the state-space form of the lateral flight model. For the lateral flight case, 

the matching state vector has been defined as  

[ ] Trpx ψφβ=  
(3.1)

where β  is the side slip angle, p  is the roll rate, r  is the yaw rate, φ  is the roll 

angle and  ψ  is the yaw angle. The input vector has been defined as 

[ ] T
rau δδ=  

(3.2)

where aδ  is the aileron input and rδ  is the rudder input. For the lateral dynamic 

system, state matrix-A has been given as 
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where primed stability derivatives are defined as  
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and the accompanying stability derivatives are given below, so that  
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is side force coefficient with side  slip motion, 
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is rolling moment coefficient with a change in side slip angle,  
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is yawing moment coefficient with a change in side slip angle, 
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is rolling moment coefficient with a change in rolling velocity, 
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is yawing moment coefficient with a change in rolling velocity, 
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is rolling moment coefficient with a change in yawing velocity, 

rn
zz

r C
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4

2
0ρ

=  (3.12)

is yawing moment coefficient with a change in yawing velocity, where ρ  is the air 

density, 0U  is the speed, S  is the reference area of wing surface, b  is the wing span, 

xxI  is the moment of inertia around x, xzI  is the moment of inertia around xz and zzI  

is the moment of inertia around z of the UAV.  

Next, the control matrix-B could be shown as 























=

0
0

0
0

''
''
*0

RA

RA

R

NN
LL
Y

Blat δδ

δδ

δ

  ⇒   0/* UYY
RR δδ =  (3.12)

where 
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0=  (3.13)

is the side force control coefficient with rudder/aileron deflection, 
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2
0=  (3.14)

is the rolling moment control coefficient with rudder/aileron deflection, 
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δ

ρ
δ n

zz

C
I

SbUN
2

2
0=  (3.15)

is the yawing moment control coefficient with rudder/aileron deflection. The output 

matrix-C can be presented as, 

xCy lat=    ⇒    
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If all the given state space matrixes (A, B, C and D) are going to be replaced in 

(2.85), the whole system representation is obtained as 
































+













































 −

=
r

a

rp

rp

v

RA

RA

R

NN
LL

Y

r
p

NNN
LLL

U
gY

x
δ
δ

ψ
φ

β

δδ

δδ

δ

β

β

0
0

0
0

''
''
*0

00100
00010
00'''
00'''

010
0

&  (3.17a)













































=

ψ
φ

β

r
p

y

10000
01000
00100
00010
00001

 (3.17b)

Characteristic values with corresponding inputs were previously given in Table-1. 

Stability derivatives for lateral flight have been calculated and selected from [5] as, 

Table 3.1 Lateral stability derivatives and inputs of UAV. 

βyC  = - 0.1829 
ryC

δ
 = 0.0158 
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δ
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ψy
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but different than the longitudinal flight, it is assumed that in lateral flight the UAV 

is flying with the speed of 17m/s. Using the specified values in Table 1.1 and Table 

2.1, it is possible to construct state space matrixes starting from state matrix-A (3.3), 
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control matrix-B, using (3.12), is found as 
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output matrix-C is gained as 
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and direct transmission matrix-D is attained as 

      0=D  (3.21)

From the calculated state space matrixes (A, B, C and D), it is possible to obtain all 

necessary TFs, 
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for given aileronδ   and rudderδ  inputs, respectively. But before obtaining the 

corresponding TFs, the eigenvalues of state matrix-A should be analyzed and the 
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poles of the open loop system should be investigated. Using Matlab command eig it 

is possible to obtain the poles of the system such as,  
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It should be noticed that the open loop system is stable but has a pole lying at the 

origin (0,0), which makes the system a marginally stable one. Such system with a 

pole on the origin (0,0), could easily be detonated and become unstable with a little 

disturbance. In order to prevent any instability and to suppress the effects of “zero 

type system”, automatic controller with good disturbance rejection will be required. 

If the poles of the UAV are going to be named according to the modes of lateral 

flight, it should be found 
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In analysis of lateral dynamic model of UAV, three degree of freedom assumption 

will be acknowledged, which yields to a characteristic equation (CE) representation 

such as 

      0)1)(1)(2( 22 =++++
sr

nnDR ssss DRDR ττ
ωωζ  (3.24)

By using the representation in (3.24), the CE equation of the three-degree of freedom 

system could be constructed as the followings, 

      0)0006.0)(4057.9)(0504.299969.0( 2 =++++ ssss  (3.25)

where  
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      0)0504.299969.0( 2 =++= ssCEDutchRoll  (3.26)

symbolizes the CE of the Dutch Roll Mode (DRM) of the UAV.  The corresponding 

natural frequency (
DRnω ), damping frequency (

DRDω ) and damping ratio ( DRς ) of the 

DRM are established as 

      

sec/1346.51

0925.0

sec/3898.5

2 rad

rad

DRnD

DR

n

DRDR

DR

=−=

=

=

ζωω

ζ

ω

 (3.27)

From (3.27), it is probable to see that the DRM of the UAV has an oscillatory 

behaviour with relatively small periods as 
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As a characteristic property signifying the performance of the UAV, time constants 

for roll ( rollτ ) and spiral modes ( spiralτ ) could be offered. If the time constants of both 

roll and spiral modes are calculated, it is possible to find the final values such as 
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Additionally, in DRM  
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ratio can tell if the DRM is composed of mostly yawing motion, mostly rolling 

motion or approximately equal contribution of each [8]. Via (3.31), the ratio could be 

calculated as  
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From (3.32), it is possible to witness that the )(/)( ss βφ  ratio is higher than 1, which 

leads to a rolly Dutch Roll Mode characteristic and is generally because of a high 

degree of lateral stability [8].  

After such analyses, it is time to get into time responses of the open loop system. But 

just before that, it is also possible to construct the TFs for each control surface 

(aileron/rudder) deflection.  

Using MATLAB© and ss2tf command, one is able to obtain all the TFs for aileron 

deflection as, 
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and the TFs for rudder deflection are gained as  
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From both TF sets, it is likely to see that in the numerator part, there are zeros at the 

origin (0,0), which might be cancelled with the poles at the origin (0,0) in the 

denominator part. Due to the fact that, the cancellation of poles and zeros will reduce 

the order of the system and will lead to a significant change in the characteristic of 

the system; the elimination hasn’t been done here and the obtained TFs have been 

used. 

If the corresponding time domain step response graphs of the found TFs are plotted, 

they should be obtained as shown in Figure 3.1. 

Figure 3.1 Open-loop time domain step responses for a given deflection.  

From time domain step responses, it is likely to observe that the poles at the origin 

are causing oscillatory, lightly damped (under-damped) and unstable behaviours in 

several cases. As it is also probable to witness from the open loop time domain 

responses, the flight control system needs an efficiently weighted control system, 

which can also verify the robustness of the system. As a result of this need, an 

adaptive control system based on Lyapunov stability and an augmented optimal LQR 

control system will be designed and applied to the lateral flight dynamics, 
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respectively. The results will also be investigated and compared in the following 

sections. 

3.2 Model-Reference Adaptive Control System Design for the Lateral Dynamics 

of the UAV 

In the previous chapter, where longitudinal flight dynamics have been discussed, 

both MIT rule and Lyapunov stability approaches have been implemented on 

longitudinal flight dynamics. Considering the fact that the lateral flight system is a 

Multi-Input-Multi-Output (MIMO) system, which has two inputs and five outputs, 

and the longitudinal flight is a Single-Input-Single-Output (SISO) system, which has 

only one input and one output; in this section MIT rule will not be taken into account 

because of weak controllability effect in high order and complex systems (which is 

also the case in lateral flight dynamics). Therefore, only (more robust) adaptive 

control system approach based on Lyapunov stability theory, will be implemented on 

lateral flight dynamics.  

3.2.1 MRAS Design based on Lyapunov stability 

In this part of the thesis, adaptation rules based on Lyapunov stability theory will be 

derived. 

The mathematical background of Lyapunov stability theory was simply and briefly 

discussed previously in section 2.3.2; therefore, here only the derivation of 

adaptation rules and adjustment parameters will be given.  

For the lateral flight dynamics, the same candidate Lyapunov function that has been 

formerly used in longitudinal dynamics has been suggested as shown in (2.78). 

[ ])()()( m
T

m
T ABLANABLATrPeexV −−−−+=  (3.43)

From earlier calculations in (2.80), it is known that the time derivative of error 

function has been derived as 

LyBeAe m ∆−=&  (3.44)

It is possible to construct the derivative of given Lyapunov function as in (2.81). 
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where QPAPA m
T

m −=+ . From here, in order to guarantee that )(xV  will always be 

0)( <xV& , condition 0)( =∆+−∆ LTPeyBL TTT &  should be satisfied. Next step will be 

to conduct some dimension analysis in order to obtain the size of L . If nominal plant 

(no servo mechanism included) state matrix-A is taken into account from (3.18), it is 

easy to see that the system has 5 states (5x5). If servo mechanism’s TFs of aileron 

and rudder actuators are considered, then the system will be consisted of 7 states 

(7x7), where also the newly shaped output matrix-B will have 7 states (7x2) as well. 

In order to have compatibility in terms of matrix dimensions in (3.43), parameter 

adjustment feedback gain-L should be constructed in dimensions of (2x7), leading to  
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Afterwards, if necessary calculations are conducted in 0)( =∆+−∆ LTPeyBL TTT & , the 

elements of parameter adjustment matrix-L are going to be obtained as given in 

(3.47). 
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Before getting into the time domain analysis of closed-loop system response, 

MATLAB© Simulink block diagram has been constructed (Figure 3.2) for MRAS 

design based on Lyapunov stability adjustment control algorithm.  
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Figure 3.2 Simulink block diagram of MRAS based on Lyapunov stability.  

It should be noted that in lateral control system design process, instead of PI 

adjustment, only Lyapunov stability based control rules have been implemented into 

system dynamics.  Following to that, if time domain responses of MRAS control 

design based on Lyapunov stability are plotted, they should be obtained as given in 

Figure 3.3. 

As it is possible to see from Fıgurer 3.3, perfect matching conditions have been 

satisfied and the nominal plant has been adapted with respect to the reference-model 

in a remarkable way. From error signal plot, it also possible to see that the error 

signal is being diminished within 2 second and the nominal plant is behaving such as 

reference-model when ∞→t . From Figure 3.3 it is possible to see that the time 

domain behaviours of MRAS design based on Lyapunov stability are remarkable so 

that the settling time is nearly 1.5 seconds and the maximum actuator signal is 

obtained as 1 Newton. Also the change of error signal could be easily observed from 

the second plot in Figure 3.3. Evolution of adjustment parameter-L has been plotted 

and could be investigated in Appendix-A. Also the code of Embedded Matlab 

Function has been given in Appendix-B. 
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Figure 3.3 Closed-loop time domain responses (A-B) of model-reference adaptive 
control system design: Based on Lyapunov stability.  
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3.3 Optimal LQR Control System Design: Lateral Dynamics 

In this part of the thesis, optimal LQR control system design will be implemented on 

lateral dynamics of the UAV. 

3.3.1 Observability and controllability of system dynamics: Lateral flight 

Observability matrix of a system has been previously defined in (2.83) as 

[ ]Tn
n CACACACOObs 12 −== K and the system had been called observable if 

( ) nORank n =  is satisfied. Using state matrix-A from (3.18) and identity output 

matrix-C from (3.20), it is possible to construct the observability matrix. It is 

calculated and given in Appendix-A, where the rank of the observability matrix is 

five and equal to the states of the nominal plant showing that the system is fully 

observable. As a confirmation, it is also possible to calculate unobservable states 

from (2.89) as 055)()( =−=−= nnxn ORankALengthUnOb  which simply states that 

there are no unobservable states (i.e. all of the states could be observed). Thus, it is 

feasible to verify that an observer mechanism can be used in estimation of the states 

of open-loop dynamics in lateral flight, as well.  Additionally, controllability of the 

system dynamics should be verified as well, so that there will be no theoretical 

obstacle to get into the optimal control system design process. It is known from 

(2.91) that controllability matrix of a system is defined as 

[ ]BABAABBC n
t

12 −= K  and it must satisfy ( ) nCRank t =  condition. Using 

state matrix-A from (3.18) and input (control) matrix-B from (3.19), controllability 

matrix is obtained as shown in Appendix-A, where the rank of the system is 

calculated as ( ) nCRank t == 5  leading to a fully controllable system dynamics. 

With such observability and controllability analyses, it has been proved that the 

lateral UAV system is both controllable and observable, which grants the opportunity 

to use an observer (estimation) mechanism in control system design process. 

3.3.2 Optimal LQR control system design: Classical approach 

In this section of the thesis, an optimal LQR control system design with an observer 

(estimation) mechanism will be presented and subsequently will be implemented on 

lateral flight dynamics of the UAV. 
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Here, unfortunately augmented optimal LQR control technique based on integral 

control cannot be applied to lateral dynamics, because it is not possible to apply 

integral control action to a plant that has a zero at the origin [17], which is 

unfortunately the case in our lateral system dynamics. Therefore only a single 

optimal LQR control loop will be implemented on the lateral flight dynamics 

together with an observer (estimation) algorithm.  

As a first step before getting into the time domain responses of closed loop system, 

the characteristics of observer (estimation) mechanism have been defined. As it is 

possible to see from (2.90), observer mechanism has been constructed with a pole 

placement weighting matrix-H which is going to place the nominal plant poles to the 

desired places and estimate plant parameters. It is desired to place poles of the 

estimation mechanism at 
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and corresponding pole placement gain - H  is obtained as 
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Positive-definite weighting functions (Q  and R ), which are going to minimize the 

cost function- J  have been selected as  

])301030135802020([diagQ = , 1.50])diag([1.15=R  
(3.50) 
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Using the chosen Q and R values, calculated LQRK  has been obtained with the help 

of lqr command in MATLAB© as 









=

27.4056   2.1179    4.3881-   0.4777-   7.3695-   0.1160    0.9985    
2.7624    86.1137   0.9857    11.1900   0.2693-   4.0024    0.0108    

_ LQRlatK  (3.51) 

After every parameter of control system has been found, Simulink block diagram of 

optimal LQR control system design has been suggested as shown in Figure 3.4.  

 
Figure 3.4 Simulink block diagram of optimal LQR control system design.  

where estimation algorithm’s Simulink block diagram has been constructed as 

formerly shown in Figure 2.17. And now, it is time to see the closed-loop time 

domain results of optimal LQR control system design, and obtained results have been 

presented in Figure 3.5. 

As it could be seen from Figure 3.5, closed-loop time domain results of optimal LQR 

control system design are considerable, where the settling time is approximately 7 

seconds and the maximum actuator force is 1 Newton with acting time of ~0.5 

seconds. It should be noted that during the construction of system dynamics, it has 

been considered for the lateral system dynamics that the maximum actuator force 

should be 1 [N] and will be limited with 1 [N], thus saturation has been used in the 

block diagram in the feed-forward path. Also is it likely to see that, without any 

(lead/lag) compensation in the nominal plant, the control system is able to suppress 

the frequent and sustained oscillations in nominal plant and is able to shape system 

dynamics efficiently. 
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Figure 3.5 Time domain response of optimal LQR control system design.  

3.4 Comparison of Automatic Control System Designs: Lateral Dynamics 

After obtaining the time domain responses of each automatic control system designs, 

it will be convenient to plot the closed-loop responses all together for comparison 

purposes (Figure 3.6). 

 
Figure 3.6 Closed-loop time domain responses of designed automatic control 

systems: Comparison analysis.  
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Furthermore, it is possible to present performance characteristics of obtained 

controller as given in Table 3.1. 

Table 3.1 Comparison of characteristic properties of designed controllers: Lateral dynamics 
 SettlingTime [sec] Max.Actuator Force [N] 
MRAS Lyapunov  2 1 
Optimal LQR 5 1 

As it is possible to see from Table 3.1, best performance has been obtained with the 

MRAS design based on Lyapunov stability theory. 
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CHAPTER 4 

4.1 CONCLUSIONS AND DISCUSSIONS 

In the thesis, mainly, dynamical modeling of an UAV and subsequently automatic 

control system designs has been discussed widely.  

After a short introduction in the first chapter, in the second chapter longitudinal 

dynamic model of the UAV has been constructed. It has been obtained from the open 

loop longitudinal dynamic model that the system has very close poles to the origin 

leading to highly oscillating behaviours. In order to suppress those oscillatory effects 

in open-loop dynamics two automatic control system design approaches have been 

implemented on longitudinal flight dynamics of the UAV: Model Reference 

Adaptive Control System PI Adjustment design based on MIT Rule and based on 

Lyapunov Stability together with Augmented Optimal LQR Control approach. 

Obtained time domain results of designed controllers are stating that PI adjustment 

based on MIT rule is not able to guarantee stability in closed-loop dynamics, but PI 

adjustment based on Lyapunov stability is capable of guaranteeing the stability. 

Moreover, the results of augmented optimal LQR control system design are stating 

that augmentation of open loop system dynamics is introducing robustness into the 

system dynamics, and therefore suppression of disturbances and tracking of reference 

signal is relatively better than the other approaches. 

In the third chapter, lateral dynamic model of the UAV using state space approach 

has been obtained. Dutch roll, roll and spiral modes have been investigated and as a 

result of weak open loop performance, firstly, automatic control system based on 

adaptive PI adjustment rule based on Lyapunov stability has been introduced. It has 

been witnessed that the Lyapunov stability approach is able to compensate all the 

outputs and obtain relatively remarkable performance in time domain. In order to 

suppress high coupling effect and reduce the uncertainties in the system, an 

augmented optimal LQR control system design was supposed to be implemented on 
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system dynamics but because of the lateral flight dynamics were including a zero at 

the origin, Integral control approach couldn’t be applied as a result of theoretical 

limitations. Thus, classical optimal LQR control approach has been introduced into 

the lateral dynamics, but it has been seen that it was not able to shape the open-loop 

system dynamics as much as adaptive control system design based on Lyapunov 

stability could do. 

Some of the obtained results from the thesis have been published in 9th International 

WSEAS Conference on Automatic Control, Modeling and Simulation, May 27-29, 

2007, Istanbul, Turkey.  
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APPENDIX-A 

Figure-A1 Simulink block diagram of PI adjustment algorithm based on normalized 
MIT rule.  

 

Figure-A2 Simulink block diagram of adjustment parameter- 1θ  based on normalized 
MIT rule.  
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Figure-A3 Simulink block diagram of adjustment parameter- 2θ  based on 
normalized MIT rule.  
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APPENDIX-B 

Sample Matlab-M code for longitudinal flight dynamics: MRAS design based on Lyapunov 

stability: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%        FLIGH STABILITY AND CONTROL - PROJECT #1 
%%%         
%%%        Kamran Turkoglu, Istanbul Technical University,         
%%%        Istanbul, TURKEY, turkogluk@itu.edu.tr, kturkoglu@yahoo.com              
%%%        February 7th, 2007, Wed.                                                                 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear all, close all, clc; 
syms s 
  
% ================================ % 
% ================================ % 
% ======  LONGITUDINAL EOMS  ======= % 
% ================================ % 
% ================================ % 
  
% The constants 
m=5%*0.0685217659 %[slugs]%%%% 1kg = 0.0685217659 slugs (MASS)(Approximate mass of 
UAV is~ 3-6kg) 
u=12%*3.2808399 %[ft/s]%%%% 1 m/s = 3.2808399 ft/s (velocity) (Approximate velovicity 
of UAV is~18-19 m/sn) 
g=9.807%32.1751969 % [ft / s^2] %%% Gravity constant in Emperial units ~ 9.807 m/s^2 
A=0.4805%*10.7639104 % [ft^2] (wing surface area) 1m^2 = 10.7639104 ft^2 (The wing 
area of the UAV is ~0.1293 m^2) 
rho=1.225%*0.0624279606 % [lb/ft^3] %%%% Density at sea level  1 kg/m^3 = 
0.0624279606 lb/ ft^3  
q=(rho*u^2) / 2 % Dynamic pressure 
Iy=0.120396634  % 0.0888 [slug.ft^2]%%%%  (Moment of Inertia around y) 
c=0.235%*3.2808399   % [ft] %%%% The chord length of the UAV = 0.235m 
Lt=c%*3.2808399  % [ft] The length from CG to the tail mean avg chord is ~0.235m  
theta=0      % it is assumed no theta angle change (neglected), so 
cos(theta)=cos(0)=1 and sin(theta)=sin(0)=0 will be taken constant 
Cd=0.0132 % Drag coefficient 
Cl=(m*g)/(A*q) % Lift coefficient [There is such an equation in Blakelock 1991, 
pp.37, such as Cw=-Cl ] 
dCl_da=0.1249 % Change oif lift coefficient with angle of attack  
dCd_da=0.0389 % The change in drag coefficient with angle of attack (alpha 
dCm_dit=-1.5 % This is an approximated values, not certain, ***** COULD BE ADJUSTED 
***** 
b=1.7%*3.2808399 % [ft] %%%% Wing span, from tip of the right wing to the tip of the 
left wing is~1.7m 
AR=(b^2)/A % Aspect Ratio, is the ratio between the square of the sapn of the wing 
over the surface area of the wing 
de_da=(2/(pi*AR))*(dCl_da) 
K=1.1 % A constant which is generally taken 1.1 ****** COULD BE ADJUSTED ******** 
x=(0.25*c) % [ft] %%% distance between fixed control neutral poiunt and CG  
SM=-(x/c) % static margin = xc/c 
  
% Stability derivatives of UAV 
Cxu=(-2*Cd)%-0.7507 
Cx_alpha=(-dCd_da)+Cl %(this is not a certain value, might be played with that one) 
Cw=-(m*g)/(A*q) % The weight coefficient of the UAV 
Lt_c=Lt/c % Length of Lt over chord 
Czu=-(2*Cl) 
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Cz_alpha_dot=(dCm_dit)*(de_da)*2 
Cz_alpha=-(dCl_da)-Cd 
Czq=2*K*(dCm_dit) 
Cm_alpha_dot=2*(dCm_dit)*(de_da)*(Lt_c) 
Cm_alpha=(SM)*(dCl_da) 
Cmq=2*K*(dCm_dit)*(Lt_c) 
  
% The elevator angle displacement, input coefficients 
Cx_de=0 % neglected 
Cm_de=(-0.710) 
Cz_de=(c/Lt)*(Cm_de) 
Ce_in=[Cx_de;  Cz_de;  Cm_de]; 
  
% ============================= 
% ============================= 
%  LONGITUDINAL LINEARIZED EOMS  
% ============================= 
% ============================= 
  
A_homg=[ ((m*u*s)/(A*q))-Cxu                                       (-Cx_alpha)                       
(-Cw); 
                    (-Czu)                              (((m*u)/(A*q)-
(c*Cz_alpha_dot)/(2*u))*s-(Cz_alpha))                                           ((-
m*u)/(A*q)-(c*Czq)/(2*u))*s; 
                    0                                                ((-
c*Cm_alpha_dot*s)/(2*u))-(Cm_alpha)                                                      
((Iy*s^2)/(A*q*c))-((c*Cmq*s)/(2*u)) ] 
  
disp('========================') 
disp('Denominator of the system') 
disp('========================') 
CE=det(A_homg);   % Characteristic Equation (CE) of the Hoogenous solution, At the 
same time this is the denominator of the whole system. 
  
den=sym2poly(CE) % The coefficient of the denominator 
  
  
disp('========================') 
disp('Denominator of the system') 
disp('========================') 
CE=det(A_homg);   % Characteristic Equation (CE) of the Hoogenous solution, At the 
same time this is the denominator of the whole system. 
  
den=sym2poly(CE) % The coefficient of the denominator 
  
%pause, clc; 
  
disp('==============================') 
disp('The roots (POLES) of the system are') 
disp('==============================') 
poles=roots(den)   % Roots of the homogenous system, POLES of the system 
u1=[1   -poles(1)]; u2=[1   -poles(2)]; % Short period and Phugoid mode equations 
v1=[1   -poles(3)]; v2=[1   -poles(4)];  % all together and their multiplication 
  
conv_u12=conv(u1,u2); 
conv_v12=conv(v1,v2); 
  
if sqrt(conv_u12(3))>sqrt(conv_v12(3)) 
    disp('========================') 
    disp('Characteristic equations of SHORT PERIOD in the form of ') 
    disp('s^2 + 2*zeta_sp*wn_sp*s + wn_sp^2 =0 is as =') 
    disp('========================') 
    conv_u12 
    wn_sp=sqrt(conv_u12(3)) 
    zeta_sp=conv_u12(2)/(2*wn_sp) 
    Tau_sp=1/(wn_sp*zeta_sp) 
  
    disp('========================') 
    disp('Characteristic equations of PHUGOID MODE in the form of ') 
    disp('s^2 + 2*zeta_pm*wn_pm*s + wn_pm^2 =0 is as =') 
    disp('========================') 
    conv_v12 
    wn_pm=sqrt(conv_v12(3)) 
    zeta_pm=conv_v12(2)/(2*wn_pm) 
    Tau_pm=1/(wn_pm*zeta_pm) 
     
else  
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    disp('========================') 
    disp('Characteristic equations of SHORT PERIOD in the form of ') 
    disp('s^2 + 2*zeta_sp*wn_sp*s + wn_sp^2 =0 is as =') 
    disp('========================') 
    conv_v12 
    wn_sp=sqrt(conv_v12(3)) 
    zeta_sp=conv_v12(2)/(2*wn_sp) 
    Tau_sp=1/(wn_sp*zeta_sp) 
     
    disp('========================') 
    disp('Characteristic equations of PHUGOID MODE in the form of ') 
    disp('s^2 + 2*zeta_pm*wn_pm*s + wn_pm^2 =0 is as =') 
    disp('========================') 
    conv_u12 
    wn_pm=sqrt(conv_u12(3))    
    zeta_pm=conv_u12(2)/(2*wn_pm) 
    Tau_pm=1/(wn_pm*zeta_pm) 
end     
  
poles 
  
%=========================== 
% TF of theta(s) / delta_e(s) 
% ========================== 
A_te=[ ((m*u*s)/(A*q))-Cxu                                       (-Cx_alpha)                         
(-Cw); 
                    (-Czu)                              ((m*u)/(A*q)-
(c*Cz_alpha_dot)/(2*u))*s-(Cz_alpha)                                           ((-
m*u)/(A*q)-(c*Czq)/(2*u))*s; 
                    0                                                ((-
c*Cm_alpha_dot*s)/(2*u))-(Cm_alpha)                                                      
((Iy*s^2)/(A*q*c))-((c*Cmq*s)/(2*u)) ]; 
  
A_te(:,3)=Ce_in;   % Using the Cramer`s rule we placed the elevator inputs in the 
second column of matrix A_homg  
A_te;  
CE_te=-det(A_te);  % Characteristic equation of theta (s) 
  
numAte=sym2poly(CE_te)  % Coefficients of NUMERATOR of theta(s) / de(s) 
disp('==================') 
disp('TF of theta (s) / de (s)') 
disp('==================') 
tf(numAte,den) 
numAte=numAte/den(1); 
den=den/den(1); 
tf(numAte,den) 
roots(den) 
  
% ======================================================= 
% ADAPTIVE CONTROLLER DESIGN PART FOR LONGITUDINAL FLIGHT 
% ======================================================= 
% Desired location of poles 
% [short period mode]  
close all 
  
% Servo mechanism 
num_srv=15; 
den_srv=[1 num_srv]; 
  
% Lead compensator 
num_lead=[0.6428  2.3027]; 
den_lead=[1.0000  12.8323]; 
  
% System matrix of the servos  
num_long=conv(num_lead,(numAte*num_srv)); 
den_long=conv(den_lead,conv(den,den_srv)); 
[Along,Blong,Clong,Dlong]=tf2ss(num_long,den_long) 
B=Blong; 
eigs_long=eig(Along) 
  
% Model reference system 
zeta_sp_m=0.907; 
wn_sp_m=8.5; 
zeta_pm_m=0.907; 
wn_pm_m=2.25; 
rts=roots(numAte); 
num_mm=(wn_sp_m^2)*(wn_pm_m^2) 
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num_m=(wn_sp_m^2)*(wn_pm_m^2) 
den_m=conv([1  2*zeta_sp_m*wn_sp_m   wn_sp_m^2],[1  2*zeta_pm_m*wn_pm_m   
wn_pm_m^2]); 
tf(num_m,den_m) 
  
num_m_new=5.57271898206461*conv(num_lead,(num_m*num_srv)); 
den_m_new=conv(den_lead,conv(den_m,den_srv)); 
[Am,Bm,Cm,Dm]=tf2ss(num_m_new,den_m_new) 
eigs_m=eig(Am) 
  
%Lyapunov function 
N=diag([ 700   0   0   0   0  0 ]); 
g=3.4; 
Nbar=rscale(Along,Blong,Clong,Dlong,1.37701190620988); 
Nbar=Nbar(1); 
P=lyap(Am',N) 
  
% Simulatýon of UAV using 
% Adaptive Control system Lyapunov stability rule 
d_e=2;  
% First simulation 
SimTime=15; % [sec] 
sim('UAVSimLyapLat_DeltaL_Last.mdl') 
figure,plot(y.time,y.signals.values,'k:'), xlabel('Time [sec]'), ylabel('\theta 
[deg]'), title('Adaptive Control system design using Lyapunov stability - Long. 
dynamics'), hold on 
plot(y_m.time,y_m.signals.values,'k'), xlabel('Time [sec]'), ylabel('\theta [deg]'), 
title('Adaptive Control system design using Lyapunov stability - Long. dynamics'), 
hold on, 
legend('y','y_m') 
%axis([ 0  SimTime    0   3.0      ]) 
  
%break 
  
SimTime=100; % [sec] 
sim('UAVSimLyapLat_DeltaL_Last.mdl') 
figure, 
subplot(3,1,1),plot(y.time,y.signals.values,'k:'), xlabel('Time [sec]'), 
ylabel('\theta [deg]'), title('Adaptive Control system design using Lyapunov 
stability - Long. dynamics'), hold on 
plot(y_m.time,y_m.signals.values,'k'), xlabel('Time [sec]'), ylabel('\theta [deg]'), 
title('Adaptive Control system design using Lyapunov stability - Long. dynamics'), 
hold on, 
legend('y','y_m') 
%axis([ 0  SimTime    0.9   1.1      ]) 
subplot(3,1,2),plot(e.time,e.signals.values,'k'), xlabel('Time [sec]'), ylabel('Error 
[e = y - y_m]'), title('Adaptive Control system design using Lyapunov stability - 
Error signal'), hold on 
subplot(3,1,3),plot(u.time,u.signals.values,'k'), xlabel('Time [sec]'), 
ylabel('Actuator signal [N]'), title('Adaptive Control system design using Lyapunov 
stability - Control/Servo/Actuator signal'), hold on  
 

Sample Matlab-M code for lateral flight dynamics: MRAS design based on Lyapunov stability: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%        Kamran Turkoglu, Istanbul Technical University,                                 
%%%%% 
%%%        Istanbul, TURKEY, turkogluk@itu.edu.tr, kturkoglu@yahoo.com     %% %%%         
%%%        March 21th, 2007, Wed.                                                                    
%%%%%  
%%%        Last Modified 21 March '07, 11:01hr                                                       
%%%%%                        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear all, close all, clc 
syms s 
  
% ================================ % 
% ================================ % 
% ========   LATERAL EOMS  ======= % 
% ================================ % 
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% ================================ % 
% The constants 
m=5; %*0.0685217659 %[slugs]%%%% 1kg = 0.0685217659 slugs (MASS)(Approximate mass of 
UAV is~ 3-6kg) 
u=17; %*3.2808399 %[ft/s]%%%% 1 m/s = 3.2808399 ft/s (velocity) (Approximate 
velovicity of UAV is~18-19 m/sn) 
g=9.807; %32.1751969 % [ft / s^2] %%% Gravity constant in Imperial units ~ 9.807 
m/s^2 
A=0.4805; %*10.7639104 % [ft^2] (wing surface area) 1m^2 = 10.7639104 ft^2 (The wing 
area of the UAV is ~0.1293 m^2) 
Avt=0.1323; % [m^2] - The Area of vertical tail 
rho=1.225; %*0.0624279606 % [lb/ft^3] %%%% Density at sea level  1 kg/m^3 = 
0.0624279606 lb/ ft^3  
q=(rho*u^2)/2; % Dynamic pressure 
Iyy=0.120396634;  % 0.0888 [slug.ft^2]%%%%  (Moment of Inertia around y) 
c=0.235; %*3.2808399   % [ft] %%%% The chord length of the UAV = 0.235m 
Lt=c;%*3.2808399  % [ft] The length from CG to the tail mean avg chord is ~0.235m  
theta=0;      % it is assumed no theta angle change (neglected), so 
cos(theta)=cos(0)=1 and sin(theta)=sin(0)=0 will be taken constant 
Cd=0.0132; % Drag coefficient 
Cl=(m*g)/(A*q); % Lift coefficient [There is such an equation in Blakelock 1991, 
pp.37, such as Cw=-Cl ] 
dCl_da=0.1249; % Change oif lift coefficient with angle of attack  
dCd_da=0.0389; % The change in drag coefficient with angle of attack (alpha 
dCm_dit=-1.5; % This is an approximated values, not certain, ***** COULD BE ADJUSTED 
***** 
b=1.7; %*3.2808399 % [ft] %%%% Wing span, from tip of the right wing to the tip of 
the left wing is~1.7m 
AR=(b^2)/A; % Aspect Ratio, is the ratio between the square of the sapn of the wing 
over the surface area of the wing 
e=0.88; % Efficiency factor is between 0.8 ~ 0.9 
de_da=(2/(pi*e*AR))*(dCl_da); 
K=1.1; % A constant which is generally taken 1.1 ****** COULD BE ADJUSTED ******** 
x=(0.25*c); % [ft] %%% distance between fixed control neutral poiunt and CG  
SM=-(x/c); % static margin = xc/c 
  
% For trial Cesna T-37 has been selected 
% All the values presented right here are approximated values taken from Table 3.1 
pp.117, Blakelock, Aircraft and Missiles, 1991, = [1]) 
Cy_beta=-0.6*0.3048;  % [m/sn^2] -  Fuselage and vertical tail coeff.  
Cl_beta=-0.045; % [1/sn^2] - Dihedral and vertical tail coeff. 
Cl_p=-0.12; % [1/sn] - Wing damping coeff. 
Cl_r=Cl/4; % [1/sn]  - differential wing normal force coeff.   
Cy_phi=Cl; 
Cy_ksi=0; 
Cn_beta=0.001; % [1/sn^2] - Directinal stability coeff. 
Cn_p=-(Cl/8)*(1-de_da); % [1/sn] - Differential wing chord force 
Cn_r=-Cd/4; 
Cy_delta_r=0.0158; % [m^2/sn^2] - Rudder displacement / input in Y 
Cl_delta_r=0.0131; % [1/sn^2] - Rudder displacement / input in L 
Cn_delta_r=-0.08; % [1/sn^2] - Rudder displacement / input in Y 
Cy_delta_a=0; 
Cl_delta_a=0.6; % [1/sn^2] - Aileron displacement / input in L 
Cn_delta_a=-0.01; % [1/sn^2] - Aileron displacement / input in N 
Ixx=Iyy/1.4; 
Izz=1.5*Iyy; 
Ixz=0; 
  
% The denominator of the Lateral motion and A matrix (taken from pp.122, Blakelock, 
Aircraft and Missiles, 1991 ) is as 
% Here the representation is as 
  
%  ---                              ---    ---       --- 
% |                                    |  |    phi(s)  | 
% |              A                     |  |    psi(s)  |   =   Cdelta_rudder or 
Cdelta_aileron    
% |                                    |  |   beta(s)  | 
%  ---                              ---    ---       --- 
  
disp('====================================') 
disp(' Matrix representation of the LATERAL Flight') 
disp('====================================') 
Alat=[        ((Ixx*s^2)/(A*q*b)-(b*Cl_p*s)/(2*u))                            ((-
Ixz*s^2)/(A*q*b)-(b*Cl_r*s)/(2*u))                               (-Cl_beta)                   
; 
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                   ((-Ixz*s^2)/(A*q*b)-(b*Cn_p*s)/(2*u))                          
((Izz*s^2)/(A*q*b)-(b*Cn_r*s)/(2*u))                                 (-Cn_beta)               
; 
                                              (-Cy_phi)                                              
((m*u*s)/(A*q)-(Cy_ksi))                              ((m*u*s)/(A*q)-(Cy_beta))  ] 
  
disp('===========================') 
disp(' Denominator of LATERAL FLight ') 
disp('===========================') 
den=sym2poly(det(Alat)) 
  
disp('=======================') 
disp(' Poles of the Lateral Flight ') 
disp('=======================') 
poles=roots(den) 
  
% Natural frequencies and damping Ratio of Dutch Roll Mode (DRM) 
u1=[1    -poles(3)]; 
u2=[1    -poles(4)]; 
disp('=====================================================') 
disp('Characteristic equation of LATERAL FLIGHT for Dutch Roll Mode') 
disp(' in the form of s^2 + 2*zeta_sp*wn_drm*s + wn_drm^2 =0 is as =') 
disp('=====================================================') 
CE_drm=conv(u1,u2) 
  
disp('===============================') 
disp( 'Natural frequency of Dutch Roll Mode') 
disp('===============================') 
wn_drm=sqrt(CE_drm(3)) 
disp('============================') 
disp( 'Damping ratio of Dutch Roll Mode') 
disp('============================') 
zeta_drm=CE_drm(2)/(2*wn_drm) 
  
% ===================================== 
% LATERAL TFS FOR AILERON DISPLACEMENTS 
% ===================================== 
% Here the representation is as 
  
%  ---                            ---       ---          --- 
% |                                    |     |    phi(s)   | 
% |              A                   |     |    ksi(s)   |   =   0    
% |                                    |     |   beta(s) | 
%  ---                            ---       ---          --- 
  
  
% =============================== 
% DAMPING OF THE DUTCH ROLL MODE 
% =============================== 
%STATE SPACE REPRESENTATION OF LATERAL MOTION 
% x=[beta; p; r; phi; psi] 
% A=[    Yv            0         -1       g/u     0; 
%    Lbeta_prime   Lp_prime     Lr_prime    0    0; 
%    Nbeta_prime   Np_prime     Nr_prime    0    0; 
%       0             1           0         0    0; 
%       0             0           1         0    0] 
  
% B=[          0                Ydelta_rudder_star  ; 
%    Ldelta_aileron_prime       Ldelta_rudder_prime ; 
%    Ndelta_aileron_prime       Ndelta_rudder_prime ; 
%              0                         0           ] 
% y=eye(5) 
  
% LATERAL MOTION DERIVATIVES  
% TAKEN FROM McLean, Automatic Flight Control Systems, 1990, Prentice Hall 
% pp.85-86, 53-54 and 37, respetively. 
  
% Motion Related Derivatives 
Yv=(rho*u*A*Cy_beta)/(2*m) 
Lbeta=(rho*u^2*A*b*Cl_beta)/(2*Ixx) 
Nbeta=(rho*u^2*A*b*Cn_beta)/(2*Izz) 
Lp=(rho*u*A*b^2*Cl_p)/(4*Ixx) 
Np=(rho*u*A*b^2*Cn_p)/(4*Izz) 
Lr=(rho*u*A*b^2*Cl_r)/(4*Ixx) 
Nr=(rho*u*A*b^2*Cn_r)/(4*Izz) 
  
% Control Related Derivatives 
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% Rudder deflections 
Ydelta_rudder=(rho*u^2*A*Cy_delta_r)/(2*m) 
Ldelta_rudder=(rho*u^2*A*b*Cl_delta_r)/(2*Ixx) 
Ndelta_rudder=(rho*u^2*A*b*Cn_delta_r)/(2*Izz) 
  
% Rudder deflections 
Ydelta_aileron=(rho*u^2*A*Cy_delta_a)/(2*m) 
Ldelta_aileron=(rho*u^2*A*b*Cl_delta_a)/(2*Ixx) 
Ndelta_aileron=(rho*u^2*A*b*Cn_delta_a)/(2*Izz) 
  
IA=Ixz/Ixx 
IB=Ixz/Izz 
  
% Primed stability derivatives 
Lbeta_prime=Lbeta+IB*Nbeta 
Lp_prime=Lp+IB*Np 
Lr_prime=Lr+IB*Nr 
Ldelta_aileron_prime=Ldelta_aileron+IB*Ndelta_aileron 
Ldelta_rudder_prime=Ldelta_rudder+IB*Ndelta_rudder 
  
Nbeta_prime=Nbeta+IA*Lbeta 
Np_prime=Np+IA*Lp 
Nr_prime=Nr+IA*Lr 
Ndelta_aileron_prime=Ndelta_aileron+IA*Ldelta_aileron 
Ndelta_rudder_prime=Ndelta_rudder+IA*Ldelta_rudder 
  
Ydelta_rudder_star=Ydelta_rudder/u 
  
% ========================================= 
% LATERAL MOTION STATE SPACE REPRESENTATION 
% ========================================= 
Alat_ss=[    Yv            0         -1       g/u     0; 
    Lbeta_prime   Lp_prime     Lr_prime    0    0; 
    Nbeta_prime   Np_prime     Nr_prime    0    0; 
       0             1           0         0    0; 
       0             0           1         0    0] % STATE SPACE MATRIX 
  
% u=[ delta_aileron; delta_rudder] 
Blat_ss=[          0                 Ydelta_rudder_star  ; 
          Ldelta_aileron_prime       Ldelta_rudder_prime ; 
          Ndelta_aileron_prime       Ndelta_rudder_prime ; 
                   0                         0           ; 
                   0                         0            ]; % CONTROL MATRIX 
%Blat_ss(:,3:5)=0 
  
% x=[beta; p; r; phi; psi] 
Clat_ss=eye(5) % OUTPUT MATRIX - [we can sellect the outputs] 
Clat_ss_beta =  [ 1  0  0  0  0]; 
Clat_ss_p    =  [ 0  1  0  0  0]; 
Clat_ss_r    =  [ 0  0  1  0  0]; 
Clat_ss_phi  =  [ 0  0  0  1  0]; 
Clat_ss_psi  =  [ 0  0  0  0  1]; 
  
Dlat_ss=zeros(5,2) 
disp('================') 
disp('Poles of the system') 
disp('================') 
poles=eig(Alat_ss)'; 
  
disp('================') 
disp('Dutch Roll Mode') 
disp('================') 
  
disp('==================') 
disp('TF of RUDDER SERVO') 
disp('==================') 
num_r_servo=[0  5]; 
den_r_servo=[1  5]; 
tf_rservo=tf(num_r_servo,den_r_servo); 
  
disp('=======================') 
disp('Rudder deflection (degrees)') 
disp('=======================') 
d_r=2; 
  
disp('=================') 
disp('TFs for Rudder input') 
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disp('=================') 
% x=[beta; p; r; phi; psi] 
[num_r,den_r]=ss2tf(Alat_ss,Blat_ss,Clat_ss,Dlat_ss,2); 
  
disp('=================') 
disp(' Beta (s)/de_r') 
disp('=================') 
tf(num_r(1,:),den_r) 
  
disp('=================') 
disp('TFs of p/de_r') 
disp('=================') 
tf(num_r(2,:),den_r) 
  
disp('=================') 
disp('TFs of r / de_r') 
disp('=================') 
tf(num_r(3,:),den_r) 
  
disp('=================') 
disp('TFs of phi (s)/de_r') 
disp('=================') 
tf(num_r(4,:),den_r) 
  
disp('=================') 
disp('TFs of psi (s)/de_r') 
disp('=================') 
tf(num_r(5,:),den_r) 
  
  
% =================================== 
% TFs for the aileron and rudder input 
% =================================== 
% TFs for aileron input 
[numail,denail]=ss2tf(Alat_ss,Blat_ss,Clat_ss,Dlat_ss,1); 
disp('=================') 
disp('TFs for Aileron input') 
disp('=================') 
  
disp('=================') 
disp(' Beta (s)/de_ail') 
disp('=================') 
tf(numail(1,:),denail) 
disp('=================') 
disp('TFs of p/de_ail') 
disp('=================') 
tf(numail(2,:),denail) 
  
disp('=================') 
disp('TFs of r / de_ail') 
disp('=================') 
tf(numail(3,:),denail) 
  
disp('=================') 
disp('TFs of phi (s)/de_ail') 
disp('=================') 
tf(numail(4,:),denail) 
  
disp('=================') 
disp('TFs of psi (s)/de_ail') 
disp('=================') 
tf(numail(5,:),denail) 
  
%figure,  
%impulse(Alat_ss,Blat_ss,Clat_ss,Dlat_ss),title('Impulse response of the OL time 
domain sys. in Lat. Flight') 
  
% TFs for rudder input 
[numrud,denrud]=ss2tf(Alat_ss,Blat_ss,Clat_ss,Dlat_ss,2); 
disp('=================') 
disp('TFs for Rudder input') 
disp('=================') 
disp('beta/d_r') 
tf(numrud(1,:),denrud); 
%figure, step(numrud(1,:),denrud) 
%figure, impulse(numrud(1,:),denrud) 
disp('p/d_r') 
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tf(numrud(2,:),denrud); 
%figure, step(numrud(2,:),denrud) 
%figure, impulse(numrud(2,:),denrud) 
disp('r/d_r') 
tf(numrud(3,:),denrud); 
%figure, step(numrud(3,:),denrud) 
%figure, impulse(numrud(3,:),denrud) 
disp('phi/d_r') 
tf(numrud(4,:),denrud); 
%figure, step(numrud(4,:),denrud) 
%figure, impulse(numrud(4,:),denrud) 
disp('psi/d_r') 
tf(numrud(5,:),denrud); 
%figure, step(numrud(5,:),denrud) 
%figure, impulse(numrud(5,:),denrud) 
  
% ======================================================= 
% ADAPTIVE CONTROLLER DESIGN PART FOR LONGITUDINAL FLIGHT 
% ======================================================= 
% Desired location of poles 
% [short period mode]  
close all 
  
%TF of the servo(aileron/rudder) actuators 
num_srv=15.0; 
den_srv=[1.0 num_srv]; 
  
%TF of the servo(aileron/rudder) actuators 
num_srv=15.0; 
den_srv=[1.0 num_srv]; 
  
% System matrix of the servos  
Gsys1 = pck(Alat_ss,Blat_ss,Clat_ss,Dlat_ss); 
Servosys1=nd2sys(num_srv,den_srv); 
Servosys=daug(Servosys1,Servosys1); 
Gsys=mmult(Gsys1,Servosys); 
  
% State space matrixes of the nominal plant with 
% servos included in it 
[Alat_new,Blat_new,Clat_new,Dlat_new]=unpck(Gsys); 
Clat_new=eye(length(Alat_new)) 
Dlat_new=zeros(7,2) 
  
% Just a simple lqr control system design 
[Klat_lqr,Slat,Elat]=lqr(Alat_new,Blat_new,diag([2  2   8   178  30 10 30 
]),diag([1.5 1.5])); %15.85  9   1.2   8  110 18 10 
Alat_new_m=Alat_new-Blat_new*Klat_lqr; 
eigsModel=eig(Alat_new-Blat_new*Klat_lqr) 
d_ar=2; 
SimTime=5; 
sim('plqrSimModel.mdl') 
%figure,plot(plqr.time,plqr.signals.values),legend('\beta','p','r','\phi','\psi') 
  
% Lyapunov function 
N=diag([ 1470  1280  8625  6200  8770  80  40]) 
P=lyap(Alat_new_m',N); 
eigsP=eig(P); 
d_e=2; 
  
% Definition of B 
B=zeros(7,2); 
B(6,1)=Blat_new(6,1) 
B(7,2)=Blat_new(7,2) 
  
B'*N*B 
  
% First simulation 
SimTime=15 % [sec] 
sim('UAVSimLyapLat_DeltaL_Last.mdl') 
figure,plot(y.time,y.signals.values,'k:'), xlabel('Time [sec]'), ylabel('\theta 
[deg]'), title('Adaptive Control system design using Lyapunov stability theory - 
Lateral. dynamics'), hold on 
plot(y_m.time,y_m.signals.values,'k'), xlabel('Time [sec]'), ylabel('\theta [deg]'), 
title('Adaptive Control system design using Lyapunov stability theory - Lateral. 
dynamics'), 
legend('y','y_m') 
%axis([ 0  SimTime    -3.0   3.0   ]) 
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d_e=2; 
%break 
  
figure, 
subplot(3,1,1),plot(y.time,y.signals.values,'k:'), xlabel('Time [sec]'), 
ylabel('\theta [deg]'), title('Adaptive Control system design using Lyapunov 
stability theory - Lateral. dynamics'), hold on 
plot(y_m.time,y_m.signals.values,'k'), xlabel('Time [sec]'), ylabel('\theta [deg]'), 
title('Adaptive Control system design using Lyapunov stability theory - Lateral. 
dynamics'), 
legend('y','y_m'), 
subplot(3,1,2),plot(e.time,e.signals.values,'k'), xlabel('Time [sec]'), ylabel('Error 
signal'), title('Adaptive Control system design using Lyapunov stability theory - 
Error signal'), 
subplot(3,1,3),plot(u.time,u.signals.values,'k'), xlabel('Time [sec]'), ylabel('Error 
signal'), title('Adaptive Control system design using Lyapunov stability theory - 
Error signal'), 
legend('\delta_a','\delta_r'), 
  
  
%axis([ 0  SimTime    0   3.0   ]) 
d_e=2; 
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