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ALKYLATED POLY(ETHYLENEIMINE) LIGANDS IN HOMOGENEOUS 

ATOM TRANSFER RADICAL POLYMERIZATION 

SUMMARY 

Recently, metal-mediated radical polymerization, more generally known as atom 
transfer radical polymerization (ATRP), has become one of the most efficient 
controlled/living radical polymerization methods to obtain linear polymers and 
copolymers with different topologies. The catalyst–ligand complex in ATRP plays a 
key role in controlling the chain growth, polymerization rate, and polydispersity. The 
main effect of the ligand is to solubilize the transition-metal salt in the organic media 
and to regulate the proper reactivity and dynamic halogen exchange between the 
metal center and the dormant species or persistent radical. 

Tridentate and tetradentate ligands generally provide faster polymerizations than 
bidentate ligands, while monodentate nitrogen ligands yield redox-initiated free 
radical polymerization. In addition, ligands with an ethylene linkage between the 
nitrogens are more efficient than those with a propylene or butylene linkage. 

Solubility of the ligand and its Cu(I) and Cu(II) complexes in organic media has 
particular importance to attain homogeneous polymerization conditions. The ligand 
with a long aliphatic chain on the nitrogen atoms provides solubility of its metal 
complexes in organic solvents. However, the increasing length of the alkyl 
substituents induces steric effects and affects the electron transfer, the activation– 
deactivation equilibrium. 

In this study, ethylated and butylated polydentate nitrogen ligands (alkylated 
poly(ethyleneimine)) are synthesized and used in ATRP of styrene and methyl 
methacrylate which was carried out in the presence of CuBr as co-catalyst and ethyl 
2-bromopropionate and ethyl 2-isobutyrate as initiator. The concentration effect of 
those two ligands is examined on living and controlled radical polymerization. 
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HOMOJEN ATOM TRANSFER RADİKAL POLİMERİZASYONU İÇİN 

ALKİLLENMİŞ POLİ(ETİLENİMİN) LİGANDLARI 

ÖZET 

Son yıllarda, metal katalizörlü radikal polimerizasyonu, daha bilinen adı ile atom 
transfer radikal polimerizasyonu (ATRP), değişik topolojilerde doğrusal polimerler 
ve kopolimerler elde etmek için kullanılan en etkin kontrollü / “yaşayan” 
polimerizasyon metodu haline gelmiştir. Katalizör-ligand kompleksi ATRP de zincir 
büyümesi kontrolünde, polimerizasyon hızında ve molekül ağırlığı dağılımında 
anahtar rol oynamaktadır. Ligandın asıl etkisi, geçiş metali tuzunu organik ortamda 
çözünür hale getirerek, uygun reaktivite ve metal merkez ile aktif uç, deaktif uç 
arasındaki halojen yer değişimini düzenlemektir. 

Üçdişli ve dörtdişli ligandlar genellikle çiftdişli ligandlara göre daha hızlı 
polimerizasyon sağlarken, tekdişli ligandlar redoks-başlatılmış serbest radikal 
polimerizasyonu reaksiyonu verirler. Bununla birlikte, nitrojen atomları arasında 
etilen köprülerine sahip ligandlar, propilen veya butilen köprüsüne sahip 
ligandlardan daha etkindir. 

Ligand/Cu(I) ve ligand/Cu(II) komplekslerinin organik ortamda çözünürlüğü, 
homojen polimerizasyon koşullarını sağlamak için en önemli parametredir. Nitrojen 
atomlarına bağlı uzun alifatik zincirler, ligandların metal komplekslerinin organik 
ortamda çözünürlüğünü sağlarlar. Ancak, alifatik grubun uzunluğunun artması sterik 
etkiye neden olur ve elektron transferini, aktivasyon-deaktivasyon dengesini 
değiştirir. 

Bu çalışmada, iki ve dört karbon içeren alkil gruplarına sahip çokdişli yeni amin 
ligandları (alkillenmiş poli(etilenimin)) sentezlenmiş ve ligand olarak, CuBr (ko-
katalizör), etil 2-bromopropionat ve etil 2-bromo izobutirat (başlatıcı) varlığında, 
stiren ve metil metakrilatın ATRP reaksiyonlarında kullanılmıştır.. Bu ligandların 
değişik konsantrasyonlarının kontrollü / “yaşayan” polimerizasyon üzerindeki 
etkileri incelenmiştir. 
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1. INTRODUCTION 

The synthesis of polymers with well-defined compositions, architectures and 

functionalities has long been of great interest in polymer chemistry. Transition metal 

mediated atom transfer radical polymerization (ATRP); a controlled/ “living” radical 

polymerization technique is utilized to obtain linear polymers and copolymers with 

different topologies.  

ATRP is based on reversible activation/deactivation equilibrium between the active 

and dormant species mediated by transition metal complexes. Ligands serve several 

purposes. In addition to primary roles of tuning atom transfer equilibrium constant 

and dynamics as well as selectivity, they control solubility in the reaction mixture 

and ensure stability of the complexes in different monomers, solvents and 

temperatures. Nitrogen ligands have been used in copper- and iron-mediated ATRP. 

For copper-mediated ATRP nitrogen base ligands work particularly well. In contrast, 

sulfur, oxygen or phosphorus ligands are less effective due to inappropriate 

electronic effects of unfavorable binding constants [1].  

The aim of this research is to develop highly active catalyst, having fast activation 

rate, had high activity for ATRP. Besides it is proposed that linear multidendate 

amines combining alky amines might have high activation rate, and thus form highly 

active catalysts with copper halides [2]. 

In this study, ethylated and butylated polydentate nitrogen ligands (alkylated 

poly(ethyleneimine)) are synthesized and used in ATRP of styrene and methyl 

methacrylate which was carried out in the presence of CuBr as co-catalyst and ethyl 

2-bromopropionate and ethyl 2-isobutyrate as initiator. The concentration effect of 

those two ligands is examined on controlled / “living” radical polymerization. 

Long chain ligand (multidendate) could be used for catalyst removable process by 

precipitation bulky catalyst-ligand complex properties of PEI, which can cause the 

retention of metal ions.  
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2. THEORETICAL SECTION  

2.1 Atom Transfer Radical Polymerization (ATRP) 

ATRP is one of the most versatile controlled radical polymerization methods [3-12]. 

This method utilizes a reversible halogen atom abstraction step in which a lower 

oxidation state metal complex (Mt
n complexed by ligand) reacts with an alkyl halide 

(R-X) to generate a radical (R•), with an activation rate constant (ka), and a higher 

oxidation state metal complex (X-Mt
n+1/Ligand). This radical then adds to the 

monomer to generate the polymer chain (kp). The higher oxidation state metal can 

then deactivate the growing radical to generate a dormant chain and the lower 

oxidation state metal complex (kd) as seen in (2.1). The molecular weight is 

controlled because both initiation and deactivation are fast, allowing for all the 

chains to begin growing at approximately the same time while maintaining a low 

concentration of active species. Termination cannot be totally avoided; however, the 

proportion of chains terminated compared to the number of propagating chains is 

small [13]. Several metal/ligand systems have been used to catalyze this process and 

a variety of monomers including styrene, (meth)acrylates, and acrylonitrile have 

been successfully polymerized [8-10]. 

Mt
n/Ligand

ka

kd
R

+M
+

kp

+ Mt
n+1/LigandXR X

kt

terminationpolymer
 

(2.1) 

The rate of ATRP is internally first order in monomer, externally first order with 

respect to initiator and activator, Mt
n, and negative first order with respect to 

deactivator, X-Mt
n+1.  
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The actual kinetics depends on many factors including the solubility of activator and 

deactivator, their possible interactions, and variation of their structures and 

reactivities with concentrations and composition of the reaction medium.  

One of the most important parameters in ATRP is the dynamics of exchange, 

especially the relative rate of deactivation. If the deactivation process is slow in 

comparison with propagation, then a classic redox initiation process operates leading 

to conventional, and not controlled, radical polymerization.  

Polydispersities in ATRP decrease with conversion, with the rate constant of 

deactivation, kd, and also with the concentration of deactivator, [X-Mt
n+1]. They, 

however, increase with the propagation rate constant, kp, and the concentration of 

initiator, [R-X]o. This means that more uniform polymers are obtained at higher 

conversion, when the concentration of deactivator in solution is high and the 

concentration of initiator is low. Also, more uniform polymers are formed when 

deactivator is very reactive and monomer propagates slowly (styrene rather than 

acrylate) [14]. 

2.1.1 Kinetics of ATRP 

The rate of polymerization is first order with respect to monomer, alkyl halide 

(initiator), and transition metal complexed by ligand. The reaction is usually negative 

first order with respect to the deactivator (X-Mt
n+1/Ligand). The rate equation of 

copper-based ATRP is formulated in discussed conditions and given in (2.2). The 

apparent propagation rate constant, where kp and Keq refer to the absolute rate 

constant of propagation and the atom transfer equilibrium constant for the 

propagating species, respectively. 

 

Rp= kp
app [M]= kp [R•] [M]= kp Keq [I] ([CuX]/[CuX2]) [M] 

 

(2.2) 

Figure 2.1 shows a typical linear variation of conversion with time in semi 

logarithmic coordinates (kinetic plot). Such a behavior indicates that there is a 

constant concentration of active species in the polymerization and first-order kinetics 

with respect to monomer.  
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However, since termination occurs continuously, the concentration of the Cu(II) 

species increases and deviation from linearity may be observed [1]. For the ideal case 

with chain length independent from termination, persistent radical effect [15,16] 

kinetics implies the semi logarithmic plot of monomer conversion vs. time to the 2/3 

exponent should be linear. Nevertheless, a linear semi logarithmic plot is often 

observed.  

This may be due to an excess of the Cu(II) species present initially, a chain length 

dependent termination rate coefficient, and heterogeneity of the reaction system due 

to limited solubility of the copper complexes.  

It is also possible that self-initiation may continuously produce radicals and 

compensate for termination. Similarly, external orders with respect to initiator and 

the Cu(I) species may also be affected by the persistent radical effect [17]. 

 

Figure 2.1. Kinetic plot and conversion vs. time plot for ATRP 

Results from kinetic studies of ATRP for styrene (S) [18], methyl acrylate (MA) [19] 

and methyl methacrylate (MMA) [20,21] under homogeneous conditions indicate 

that the rate of polymerization is first order with respect to monomer, initiator, and 

Cu(I) complex concentrations. These observations are all consistent with the derived 

rate law. 

It should be noted that the optimum ratio can vary with regard to changes in the 

monomer, counter ion, ligand, temperature, and other factors [20,22,23]. The precise 

kinetic law for the deactivator CuX2 was more complex due to the spontaneous 

generation of Cu(II) via the persistent radical effect [15,17,18]. 
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In the atom transfer step, a reactive organic radical is generated along with a stable 

Cu(II) species that can be regarded as a persistent metallo-radical. If the initial 

concentration of deactivator Cu(II) in the polymerization is not sufficiently large to 

ensure a fast rate of deactivation (kd[Cu(II)]), then coupling of the organic radicals 

will occur, leading to an increase in the Cu(II) concentration. 

Radical termination occurs rapidly until a sufficient amount of deactivator Cu(II) is 

formed and the radical concentration is low. Under such conditions, the rate at which 

radicals combine (kt) will become much slower than the rate at which radicals react 

with the Cu(II) complex in a deactivation process and a controlled polymerization 

will proceed. 

Typically, a small fraction (~5 %) of the total growing polymer chains will be 

terminated during the early stage of the polymerization, but the majority of the 

chains (>95 %) will continue to grow successfully. 

The effect of Cu(II) on the polymerization may additionally be complicated by its 

poor solubility, by a slow reduction by reaction with monomers leading to 1,2-

dihaloadducts, or from the self-initiated systems such as styrene and other 

monomers. 

If the deactivation does not occur, or if it is too slow (kp >> kd), there will be no 

control and polymerization will become classical redox reaction therefore the 

termination and transfer reactions may be observed. To control the polymerization 

better, addition of one or a few monomers to the growing chain in each activation 

step is desirable. Molecular weight distribution for ATRP is given in (2.3). 

Mw/Mn = 1 + ((kd[RX]0)/(kp[X-Mt
n+1])) x ((2/p)-1) 

p = polymerization yield 

[RX]o = concentration of the functional polymer chain 

[X-Mt
n+1] = concentration of the deactivators 

kd = rate constant of deactivation 

kp = rate constant of activation 

(2.3)

When a hundred percent of conversion is reached, in other words p=1, it can be 

concluded that;  

a) For the smaller polymer chains, higher polydispersities are expected to be obtained 

because the smaller chains include little activation-deactivation steps and also the 

 5



chain length difference is higher for small polymer chains resulting in little control of 

the polymerization.  

b) For the higher ratios of kp/kd, higher polydispersities (molecular weight 

distributions) are usually obtained resulting in the little control of polymerization. 

c) Resulting molecular weight distribution decreases as the concentration of the 

deactivators increases [1]. 

2.1.2.   The function of components for ATRP and reaction conditions 

2.1.2.1. Monomers  

A variety of monomers have been successfully polymerized using ATRP. Typical 

monomers include styrene, (meth)acrylates, (meth)acrylamides, and acrylonitrile, 

which contain substituents that can stabilize the propagating radicals.  

Even under the same conditions using the same catalyst, each monomer has its own 

unique atom transfer equilibrium constant for its active and dormant species. In the 

absence of any side reactions other than radical termination by coupling or 

disproportionation, the magnitude of the equilibrium constant (Keq=ka/kd) determines 

the polymerization rate [1]. 

2.1.2.2. Initiators 

The main role of the initiator is to determine the number of growing polymer chains. 

Two parameters are important for a successful ATRP initiating system. First, 

initiation should be fast in comparison with propagation. Second, the probability of 

the side reactions should be minimized. 

In ATRP, alkyl halides (R-X) are typically used as initiator (Table 2.1.) and the rate 

of polymerization is first order with respect to the concentration of R-X.  

To obtain well-defined polymers with narrow molecular weight distributions, the 

halide groups, X, must rapidly and selectively migrate between the growing chain 

and the transition metal complex. When X is either bromine or chlorine, the 

molecular weight control is the best. Fluorine is not used because the C-F bond is too 

strong to undergo homolytic cleavage. However, it has been demonstrated the first  

example using alkyl fluoride as macroinitiator to obtain graft copolymers for 

membrane applications [24,25].  
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Table 2.1. The most frequently used initiator types in ATRP systems  

Initiator Monomer 

 

1-Bromo-1-phenyl ethane 

 

Styrene 

 

1-Chloro-1-phenyl ethane 
Styrene 

 

Ethyl-2-bromo isobutyrate 
Methyl methacrylate 

 

Ethyl-2-bromo  propionate 

 

Methyl acrylate and Styrene 

S
O

O
Cl

p-toluene sulphonyl chloride
Methyl methacrylate 

Br

Cl

C O
OCH3

CH3 Br

H
C O

Br

CH3 O

2.1.2.3. Ligands 

Transition metal catalysts are the key to ATRP since they determine the position of 

the atom transfer equilibrium and the dynamics of exchange between the dormant 

and active species.  

The main effect of the ligand is to solubilize the transition-metal salt in organic 

media and to regulate the proper reactivity and dynamic halogen exchange between 

the metal center and the dormant species or persistent radical.  

Ligands, typically amines or phosphines, are used to increase the solubility of the 

complex transition metal salts in the solution and to tune the reactivity of the metal 
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towards halogen abstraction. So far, a range of multidentate neutral nitrogen ligands 

was developed as active and efficient complexing agents for copper-mediated ATRP, 

including, bipyridines [26,27,30] (2.4), terpyridines [28,29], phenantrolines [30], 

picolyl amines [29,31], pyridinemethinamines [32-36] and tri [26,29,37-39] or 

tetradentate aliphatic amines [40,41,42,43] including linear and branched amines 

(2.5). Tridentate and tetradentate ligands generally provide faster polymerizations 

than bidentate ligands, while monodentate nitrogen ligands yield redox-initiated free 

radical polymerization. In addition, ligands with an ethylene linkage between the 

nitrogens are more efficient than those with a propylene or butylene linkage [44]. 

 
N N

                 
N N

 

                          Bpy                                dTbpy 

            N N              N N  

                           dHbpy                                dNbpy 

(2.4)

Linear amines with ethylene linkage like 1,1,4,7,7-pentamethyldiethylenetriamine 

(PMDETA), and 1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA) (2.5) 

were synthesized and examined for ATRP as ligands [26]. Reasons for examining of 

these type of ligands are, they have low price, due to the absence of the extensive π-

bonding in the simple amines, the subsequent copper complexes are less colored and 

since the coordination complexes between copper and simple amines tend to have 

lower redox potentials than the copper-bpy complex, the employment of simple 

amines as the ligand in ATRP may lead to faster polymerization rates.  
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N N

N

N

N

N N

N N

TMEDA PMDETA HMTETA  

(2.5)

Solubility of the ligand and its metal complexes in organic media is of particular 

importance to attain homogeneous polymerization conditions. The rate of 

polymerization is also affected by the relative solubility of the activating and the 

deactivating species of the catalyst. In heterogeneous systems, a low stationary 

concentration of the catalyst species allows for a controlled polymerization, but the 

polymerization is much slower than in homogeneous systems [44]. The ligand with a 

long aliphatic chain on the nitrogen atoms provides solubility of its metal complexes 

in organic solvents. However, the increasing length of the alkyl substituents induces 

steric effects and can alter the redox potential of the metal center. Any shift in the 

redox potential affects the electron transfer and the activation–deactivation 

equilibrium [29]. Alkylated linear amine ligands (ALAL) [45-47] show a 

homogeneous and relatively fast polymerization reaction compared to most other 

atom transfer radical polymerization (ATRP) ligands. 

2.1.2.4. Transition Metal Complexes 

Catalyst is the most important component of ATRP. It is the key to ATRP since it 

determines the position of the atom transfer equilibrium and the dynamics of 

exchange between the dormant and active species. There are several prerequisites for 

an efficient transition metal catalyst. First, the metal center must have at least two 

readily accessible oxidation states separated by one electron.  

Second the metal center should have reasonable affinity toward a halogen. Third the 

coordination sphere around the metal should be expandable upon oxidation to 

selectively accommodate a (pseudo)-halogen. Fourth the ligand should complex the 

metal relatively strong. The most important catalysts used in ATRP are; Cu(I)Cl, 

Cu(I)Br, NiBr2(PPh3)2, FeCl2(PPh3)2, RuCl2(PPh3)3/ Al(OR)3 [1]. 
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2.1.2.5. Solvents 

ATRP can be carried out either in bulk, in solution or in a heterogeneous system 

(e.g., emulsion, suspension). Various solvents such as benzene, toluene, anisole, 

diphenyl ether, ethyl acetate, acetone, dimethyl formamide (DMF), ethylene 

carbonate, alcohol, water, carbon dioxide and many others have been used for 

different monomers. A solvent is sometimes necessary especially when the obtained 

polymer is insoluble in its monomer [1]. 

2.1.2.6. Temperature and reaction time 

The rate of the polymerization in ATRP increases with increasing temperature due to 

increase of both the radical propagation rate constant and the atom transfer 

equilibrium constant. As a result of the higher activation energy for the radical 

propagation than for the radical termination, higher kp/kt ratios and better control may 

be observed at higher temperature. However, chain transfer and other side reactions 

become more pronounced at higher temperature. In general, the solubility of the 

catalyst increases higher temperatures; however, catalyst decomposition may also 

occur with the temperature increase. The optimal temperature depends mostly on the 

monomer, the catalyst, and the target molecular weight. 

At high monomer conversions, the rate of the propagation slows down considerably; 

however, the rate of the side reaction does not change significantly, as most of them 

are monomer concentration independent. Prolong reaction times leading to nearly 

complete monomer conversion may not increase the polydispersity of the final 

polymer but will induce loss of end groups [1]. 

2.2. Poly(ethyleneimine) 

Poly(ethyleneimine) is obtained by cationic polymerization. Its structure contains 

primary, secondary and tertiary amino groups due to transfer reactions. The ratio is 

approximately 1:2:1. Poly(ethyleneimine) PEI is the polycation with the highest 

charge density in the fully protonated form in aqueous solution. This high cationic 

activity opens a wide variety of applications to poly(ethyleneimine). One of the 

biggest markets world-wide is the paper industry, where PEI is used as retention aid. 

The polymer favors the flocculation of the negatively charged paper fibers and 

fillers. The flocculation properties of poly(ethyleneimine) are also utilized in the 

 10



 11

cleaning of waste water. The fixing properties are advantageous for the printing of 

papers. Ink-jet paper is made by addition of PEI. The amino groups of PEI are 

chemically reactive. This property was utilized in cigarette-filters to remove 

aldehydes. Acidic gases can also be absorbed and neutralized on crosslinked 

poly(ethyleneimine)s. The complex-forming properties of PEI can cause the 

retention of metal ions and the catalysis of chemical reactions. [48] 

The precipitation and microfiltration provide a practical means of purifying polymers 

produced by ATRP. The precipitation process uses reagents and procedures that can 

be easily procured and applied in common laboratories or industrially. Furthermore, 

the ligands used to form the ATRP catalyst (PMDETA and HMTETA) and to which 

the method applies are inexpensive, widely used, provide good control of polymer 

architecture, and form highly active catalysts. [49] 

Hydrophobically modified poly(ethyleneimine)s can dispose the properties of the 

pure polymers having additionally amphiphilic properties. Epoxides of fatty alcohols 

can be reacted with poly(ethyleneimine) to yield products that are used as emulsifiers 

and dispersants. The amidation of fatty acids with PEI results in materials which can 

stabilize pigments [48].  

 

 

 

 



3. EXPERIMENTAL PART 

3.1. Chemicals  

Copper (I) bromide (CuBr, 99.99 %) , was purchased from the Aldrich Chemical Co. 

Methyl methacrylate (MMA, 99 %), styrene (St, 99 %), ethyl-2-bromoisobutyrate 

(EBrIB, used for MMA, 98 %), ethyl-2-bromopropionate (EBrP, used for S, 99%) 

were purchased from Acros Organics Co., poly(ethyleneimine) (Mw=423 g mol-1), 

potassium carbonate (99+ %), bromobutane (99 %) were purchased from the Aldrich 

Chemical Co, iodoethane (98 %) was purchased from Acros Organics Co., 

anhydrous sodium sulphate (99 %) tetrahydrofuran (THF), anisole, toluene, 

methanol, dichloromethane, ethyl acetate were purchased from J.T. Baker Co.  All 

reagents were used without further purification. Ethylated poly(ethyleneimine) 

(EPEI) and butylated poly(ethyleneimine) (BPEI) were synthesized according to 

modified literature procedure [44-46].   

3.2. Synthesis of Alkylated Poly(ethyleneimine) (APEI)  

3.2.1 Synthesis of ethylated poly(ethyleneimine) (EPEI)  

Iodoethane 93 mL (1.06 mol) was placed into 1 Ll round-bottom flask with 300 mL 

ethanol. While the solution was stirring at room temperature, 35 mL 

poly(ethyleneimine) (0.089 mol) (Mw=423 g mol-1) and 245 g (1.77 mol) potassium 

carbonate were added to the solution and the mixture was refluxed for 3 days. After 

refreshing potassium carbonate in same amount, it was refluxed for 3 more days. 

Then mixture was filtrated and ethanol was evaporated in rotavaporator. Product was 

extracted by distilled water and ethyl acetate. Organic phase was dried with 

anhydrous Na2SO4. After the filtration of sodium sulphate, ethyl acetate was 

evaporated in rotavaporator. Then the obtained product was dried in an oven under 

vacuum (conversion: 20%).  
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3.2.2 Synthesis of butylated poly(ethyleneimine) (BPEI) 

Bromobutane 63 mL (0.56 mol) was placed into 1 L round-bottom flask with 300 mL 

ethanol. While the solution was stirring at room temperature, 18 mL (0.045 mol) 

poly(ethyleneimine) (Mn=423g/mol) and 122.3 g (0.89 mol) potassium carbonate 

were added to the solution and the mixture was refluxed for 4 days. After refreshing 

potassium carbonate in same amount, it was refluxed for 5 more days. Then mixture 

was filtrated and ethanol was evaporated in rotavaporator. Distilled water, sodium 

chloride and dichloromethane were added in order to separate the organic phase. 

Organic phase was dried with anhydrous Na2SO4. After the filtration of sodium 

sulphate, dichloromethane was evaporated in rotavaporator. Then the obtained 

product was dried in a vacuum drier (conversion: 75%).  

3.3. Polymerization of Styrene 

A typical ATRP procedure was performed as follows. Catalyst, CuBr  

(3.9x10-2 mol L-1) was placed in a 48 ml of flask, which contained a side arm with a 

Teflon valve sealed with a Teflon stopper. 

Then the flask was deoxygenated by vacuum-traw-nitrogen cycles three times. S 

(5.70 mol L-1) in toluene and ligands APEI at different ratios were added to the flask, 

respectively.   

Finally, initiator EBrP (2.9x10-2 mol L-1) was added then the flask was replaced in 

thermostatically controlled oil bath at 110 °C and 400 rpm stirring rate.  All liquid 

components were nitrogen bubbled prior to placement into the flask. Samples were 

taken periodically via an injector to follow the kinetics of the polymerization process. 

The adequate samples were precipitated in methanol, filtered and dried in order to 

have gravimetric measurements, or diluted in THF and methanol in order to have gas 

chromatography (GC) measurements. Obtained dried samples by gravimetrically 

were dissolved in THF containing 2,6-di-tert-butyl-4-methyl phenol (BHT) as 

internal standard, and filtered through micro filter (pore size 0.2 micron) in order to 

have gel permeation chromatography (GPC) measurements. 
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3.4. Polymerization of Methyl Methacrylate  

A typical ATRP procedure was performed as follows. Catalyst, CuBr  

(5.3x10-2 mol L-1) was placed in a 48 mL of flask, which contained a side arm with a 

Teflon valve sealed with a Teflon stopper.  Then the flask was deoxygenated by 

vacuum-thaw-nitrogen cycles three times. MMA (4.60 mol L-1) in anisole and ligand 

BPEI at different concentrations were added to the flask, respectively.  

Finally, initiator EBrIB, (2.3x10-2 mol L-1 ) was added then the flask was replaced in 

thermostatically controlled oil bath at 80°C and 400 rpm stirring rate.  All liquid 

components were nitrogen bubbled prior to placement into the flask.  Samples were 

taken periodically via an injector to follow the kinetics of the polymerization process. 

The samples were diluted in dichloromethane and methanol in order to have gas 

chromatography (GC) measurements. Obtained dried samples by gravimetrically 

were dissolved in THF containing BHT as internal standard, and filtered through 

micro filter (pore size 0.2 micron) in order to have GPC measurements. 

3.5. Characterization 

The 1H Nuclear Magnetic Resonance (NMR) spectrum was recorded on a Bruker 

spectrometer (250 MHz) in CDCl3 solution using tetramethylsilane (TMS) as an 

internal standard for the characterization of APEI.  

Monomer conversion was determined by gravimetrically and/or ATI Unicam gas 

chromatography (GC) equipped with a FID detector and a J&W scientific 15 m DB 

WAX widebore capillary column. 

Molecular weight and molecular weight distributions were determined by a gel 

permeation chromatography (GPC) instrument. An Agilent Model 1200 consisting of 

a pump, a refractive index detector and two Waters Styragel columns HR 5E, HR 3; 

and THF was used as eluent at a flow rate of 1.0 mL/min at 30 oC. Molecular weights 

were calibrated using poly(methyl methacrylate) and polystyrene standards. 

 
 



4. RESULTS AND DISCUSSIONS 

4.1. Synthesis of Ethylated Poly(ethyleneimine) (EPEI) 

Ethyl substituted poly(ethyleneimine) (EPEI) was synthesized according to Figure 

4.1. 
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Figure 4.1. Synthesis of ethylated poly(ethyleneimine) EPEI. 

The H NMR spectrum was recorded on a Bruker spectrometer (250 MHz) in CDCl3 

 

Figure 4.2. 1H NMR Spectrum of EPEI in CDCl3 
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EPEI has two different types of hydrogen atoms, which are attached to the adjacent 

carbon atom of the nitrogen (represented as “a and b”) and the others are attached to 

the end carbon atom of alkyl substituents (represented as “c”). The ratio of integral 

value of those hydrogen atoms was found close to the theoretical ratio (1.68/1, a+b/c) 

as shown in Figure 4.2. 

4.2. Synthesis of Butylated Poly(ethyleneimine) (BPEI) 

Butyl substituted poly(ethyleneimine) (BPEI) was synthesized according to Figure 

4.3. 
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Figure 4.3. Synthesis of butylated poly(ethyleneimine) BPEI. 

The 1H NMR spectrum was recorded on a Bruker spectrometer (250 MHz) in CDCl3 

solution using tetramethylsilane (TMS) as an internal standard for the 

characterization of BPEI.  The structure of the ligand was assigned by the use of 1H 

NMR spectrum that is given below.   

 

Figure 4.4. 1H NMR Spectrum of BPEI in CDCl3 
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BPEI has three different types of hydrogen atoms, which are attached to the adjacent 

carbon atom of the nitrogen (represented as “a and b”) and to the end carbon atom of 

alkyl substituents (represented as “e”) and to the carbon atom between them 

(represented as “c” and “d”). The ratio of integral value of those hydrogen atoms was 

found close to the theoretical ratio (1.67/1.33/1, a+b/c+d/e) as shown in Figure 4.4. 

4.3. ATRP of Styrene for Different Ligand Ratios 

ATRP of styrene was carried out with different ligands in similar conditions as 

follows. St (5.7 mol L-1), CuBr (3.9x10-2 mol L-1), ethyl-2-bromopropionate (EBrP, 

2.9x10-2 mol L-1) in anisole for EPEI and in toluene for BPEI (50 % V/V), and 

different concentrations of two ligands were used in these ATRP reactions. Reaction 

temperature was set to 110 °C. [M]o/[I]o/[CuBr]o/[ligand]o = 200/1/1/x.  Reaction 

patway is shown in Figure 4.5. 

All the polymerization of St with both ligands were homogeneous and light green 

color were observed during the polymerization, which signified that Cu(I) salt and 

ligand complex was dominated the reaction medium. 
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Figure 4.5. ATRP of Styrene by Using APEI Ligands. 
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4.3.1 Using Ethylated Poly(ethyleneimine) (EPEI) 

The semi-logarithmic kinetic plots (ln([M]o/[M]) vs time) of ATRP of St are shown 

in Appendix A, (Figures A.1-A.6) for different ligand (EPEI) ratios. Where, 

ln([M]o/[M]) are determined from the conversion calculation of gravimetric 

measurements, which can be calculated as fallows; 

% Conversion = (W/Mo) x 100   

Where, W (=Mo-M) is the weight of the formed polymer and Mo represents the mass 

of the feed monomer. It is clearly seen that a straight line are observed, almost in all 

kinetic graphs, indicating that the first order kinetics with respect to the monomer 

concentration and demonstrates that active center concentration is constant during 

the polymerization. This result reveals that termination is negligible. 

Molecular weight of polymer versus conversion plots were shown in Appendix B, 

(Figures B.1-B.6) for different ligand (EPEI) ratios. It is seen from figures, linear 

relationship indicates that transfer reactions are absent or insignificant. Measured 

molecular weights of the polymer are found close to the theoretical ones. Theoretical 

molecular weights were calculated by;  

Mn,th = ([M]o/[I]o) x ( % Conversion/100) x (Mw)o + (Mw)I 

Where, (Mw)o and (Mw)I are the molecular weight of the monomer and initiator 

respectively, ([M]o/[I]o) is the initial monomer, and initiator concentrations ratio. 

Refractive index versus solvent elution plots in GPC traces shown in Appendix C, 

(Figures C.1-C.6) indicates that molecular weight increases by time. 

The comparison of results of St polymerization for different EPEI ligand ratios are 

presented in Table 1. It is observed from Figure 4.6 that kp
app is increasing by 

increase in [EPEI]/[CuBr] ratio, then reach plato value around  [EPEI]/[CuBr]=0.50 

ratio, which can be concluded that two copper salt molecules are ligated per ligand 

molecule. 
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Figure 4.6. [EPEI]/[CuBr] versus kp

app  for ATRP of Styrene. [St]: 5.70 mol L-1 in 
anisole at 110 oC. [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/x.  
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Table 4.1 ATRP of Styrene for Different Ligand (EPEI) Ratiosa 

Run [EPEI]/[CuBr] Timeb 
(min) 

Conv.b 
(%) 

Mn.th
b 

(g mol-1) 
Mn.GPC

b 
(g mol-1) Mw/Mn

b kp
app 

(10-4 s-1) 
St1 0.30 300 93.6 19750 19300 1.18 1.30 

St2 0.45 210 88.3 18570 15700 1.20 1.48 

St3 0.60 240 87.2 18350 23900 1.28 1.42 

St4 0.75 240 88.0 18510 29800 1.32 1.43 

St5 1.00 240 86.6 18220 24600 1.38 1.60 

St6 1.25 270 94.1 19780 67000 1.83 1.65 
a [St]: 5.70 mol L-1 in anisole at 110 oC. [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/x. 
b Last point of kinetic datas. Molecular weights were measured by GPC using polystyrene as standards for calibration.  
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4.3.2 Using Butylated Poly(ethyleneimine) (BPEI) 

The semi-logarithmic kinetic plots (ln ([M]o/ [M]) versus time) of ATRP reaction of 

S are shown in Appendix A, (Figures A.7-A.14) for different (BPEI) ligand ratios. 

Where, ln([M]o/[M]) are determined from the percentage conversion calculation of 

gravimetric and GC measurements, which can be calculated as fallows; 

% Conversion = (W/M) x 100  

Where, W (=Mo-M) is the weight of the formed polymer and Mo represents the mass 

of the feed monomer. For GC measurements, percentage conversion was calculated 

by the formula; 

% Conversion = [1-(Mt x Solo/Mo x Solt)] x100  

Where, Mo, Mt, Solo and Solt are pick area of the monomer and solvent measured 

from GC at initial time and the time that sample is taken, respectively. 

It is clearly seen that a straight line are observed, almost in all kinetic graphs, 

indicating that the first order kinetics with respect to the monomer concentration and 

demonstrates that active center concentration is constant during the polymerization. 

This result reveals that termination is negligible. 

Molecular weight of polymer versus gravimetrically calculated conversion plots 

were shown in Appendix B, (Figures B.7-B.14) for different (BPEI) ligand ratios. It 

is seen from figures, linear relationship indicates that transfer reactions are absent or 

insignificant. Measured molecular weights of the polymer are found close to the 

theoretical ones. Theoretical molecular weights were calculated by the formula;  

Mn,th = ([M]o/[I]o) x ( % Conversion/100) x (Mw)o + (Mw)I 

Where, (Mw)o and (Mw)I are the molecular weight of the monomer and initiator 

respectively, ([M]o/[I]o) is the initial monomer, and initiator concentrations ratio. 

Refractive index versus solvent elution plots in GPC traces shown in Appendix C, 

(Figures C.7-C.14) indicates that molecular weight increase by time. 

The comparison of results of St polymerization for different BPEI ligand ratios are 

presented in Table 4.2. It is observed from Figure 4.7 that kp
app is increasing by 

increase in [BPEI]/[CuBr] ratio, then reach plato value around [BPEI]/[CuBr]= 0.50 
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ratio, which can be conclude two copper salt molecules are ligated per ligand 

molecule. 

 

Figure 4.7. [BPEI]/[CuBr] versus kp
app  for ATRP of Styrene for different BPEI 

ligand ratios. [St]: 5.7 mol l-1 in toluene at 110 oC. [St]o/[EBrP]o/[CuBr]o/[BPEI]o = 
200/1/1/x. 

The rate of polymerization depended on the nature of the nitrogen-binding site of 

the ligand. In order to compare the effect of APEIs with well known ATRP ligands, 

ATRPs of St carried out under the similar experimental conditions by using 

ALAL’s, DiNBpy PMDETA, ME6Tren and BPy are listed in Table 4.3. All of the 

kinetic curves of these ligands show linearity. In these ATRP reactions of St, 

homogeneity was achieved by using PEDETA, PBDETA, PHDETA, HETETA, 

HBTETA, HHTETA, EPEI, BPEI, ME6-Tren and dNbpy ligands [47]. 

So that APEI have similar structure with PEDETA, PBDETA, PHDETA, HETETA, 

HBTETA and HHTETA. It is seen from the table that, kp
app value is increasing by an 

increase in the number of coordinating sites, and decreasing by an increase in the 

number of linking carbon atoms. Even the concentrations values of monomers are 

less in polymerizations using APEI ligands then the others ALALs, kp
app value of 

APEI would have the same place in the coordinating sites and linking carbon atoms 

order, by considering dilution parameter in the rate equation of controlled 

polymerization. 
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Table 4.2 ATRP of Styrene for Different Ligand (BPEI) Ratiosa 

kp
app 

(10-5 s-1) Run [BPEI]/[CuBr] Timeb 
(min) 

Conv.b 
(%) 

Mn.th
b 

(g mol-1) 
Mn.GPC

b 
(g mol-1) Mw/Mn

b 
c d 

St7 0.15 330 42.4 9010 15600 1.22 2.7 4.5 

St8 0.30 270 55.6 11760 11300 1.22 4.7 8.0 

St9 0.45 270 67.3 14180 13900 1.27 6.7 8.8 

St10 0.60 270 68.2 14390 17200 1.36 6.3 8.5 

St11 0.75 270 62.2 13180 14600 1.24 5.3 8.5 

St12 1.00 270 59.1 12480 16700 1.27 5.5 8.2 

St13 1.25 270 68.2 14400 15600 1.29 7.0 10.2 

St14 2.00 270 65.7 13880 20200 1.4 6.3 8.8 
a [St]o: 5.7 mol L-1 in toluene at 110 oC. [St]o/[EBrP]o/[CuBr]o/[BPEI]o = 200/1/1/x. 
b Last point of kinetic data from GC measurements. Molecular weights were measured by GPC using polystyrene standards.  
c GC Measurements 
d Gravimetric Measurements 
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Table 4.3 ATRP of Styrene for Different Amine Ligand [47] 

Entry Ligand Time 
(min)

Conv.d 
(%) Mn,th

d Mn
d Mw/Mn kp

app 
(10-4.s-1)

Ini eff.
(f)

1 PEDETA a 210 71 14800 17500 1.10 0.87 0.81 
2 PBDETA a 210 53 11050 11500 1.20 0.58 0.96 
3 PHDETA a 210 50 10400 14300 1.07 0.52 0.73 
4 HETETA a 210 83 17300 19300 1.17 1.15 0.90 
5 HBTETA a 210 73 15200 16500 1.19 0.87 0.92 
6 HHTETAa 210 71 14800 14300 1.23 0.80 1.00 
7 EPEI b 240 87 18220 24600 1.38 1.60 0.74 
8 BPEI c 270 59 12480 16700 1.27 0.55 0.75 
9 DiNBpy a 420 20 4150 2800 1.10 0.12 >1.00 
10 ME6Tren a 210 54 13400 27000 1.03 0.78 0.49 
11 PMDETA a 210 63 13100 12600 1.05 0.78 1.00 
12 BPy a 300 24 5000 3200 1.21 0.15 >1.00 

a [St]o: 7.91 mol L-1 in anisole at 110 oC. [St]o/[EBrP]o/[CuBr]o/[Ligand]o = 200/1/1/1. 
b [St]o: 5.70 mol L-1 in anisole at 110 oC. [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/1.  
c [St]o: 5.70 mol L-1 in toluene at 110 oC. [St]o/[EBrP]o/[CuBr]o/[BPEI]o = 200/1/1/1 
d Last point of the kinetic data. 



4.4 ATRP of Methyl Methacrylate for Different Ligand Ratio 

ATRP of MMA was carried out with different ligand ratios under similar conditions 

which MMA (4.60 mol Ll-1) CuBr (5.3x10-2 mol L-1), EBrIB (2.3x10-2 mol L-1) in 

anisole (100 % v/v), and BPEI were used in these ATRP reactions (Figure 4.8). 

Polymerizations were carried out at 80°C and 400 rpm.   

All the polymerization of MMA were homogeneous and light green color were 

observed during the polymerization, which signified that Cu(I) salt and ligand 

complex was dominated the reaction medium. 
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Figure 4.8. ATRP of Methyl Methacrylate by Using BPEI Ligand. 

The semi-logarithmic kinetic plots (ln([M]o/[M]) versus time) of ATRP reaction of 

MMA are shown in Appendix A, (Figures A.15-A.21) for different (BPEI) ligand 

ratios. Where, ln([M]o/[M]) are determined from the conversion calculation of GC 

measurements, which can be calculated as fallows; 

% Conversion = [1-(Mt x Solo/Mo x Solt)] x100  
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Where, Mo, Mt, Solo and Solt are pick area of the monomer and solvent measured 

from GC at initial time and the time that sample is taken, respectively. 

 It is clearly seen that a straight line is observed indicating that the first order kinetics 

with respect to the monomer concentration and demonstrates that active center 

concentration is constant during the polymerization. This result reveals that 

termination is absent or negligible. 

Molecular weight of polymer versus conversion plots were shown in Appendix B, 

(Figures B.15-B.16) representatively for 0.30 and 1.00 [BPEI]/[CuBr] ratios. It is 

seen from figures, linear relationship indicates that transfer reactions are absent or 

insignificant. Measured molecular weights of the polymer are found close to the 

theoretical ones. Theoretical molecular weights were calculated as fallows;  

Mn,th = ([M]o/[I]o) x ( % Conversion/100) x (Mw)o + (Mw)I 

Where, (Mw)o and (Mw)I are the molecular weight of the monomer and initiator 

respectively, ([M]o/[I]o) is the initial monomer, and initiator concentrations ratio. 

Refractive index versus solvent elution plots in GPC traces shown in appendix C, 

(Figures C.15-C.16) as representatively for 0.30 and 1.00 ratios [BPEI]/[CuBr] 

indicates that molecular weight increases by time. 

The comparison of results of MMA polymerization for different BPEI ligand ratios 

are presented in Table 3. It is observed from Figure 4.9 that kp
app is increasing by 

increase in [BPEI]/[CuBr] ratio, then reach plato value around [BPEI]/[CuBr]=0.50 

ratio, which can be concluded two copper salt molecules are ligated per ligand 

molecule. 

 

 26



 27

 
Figure 4.9. [BPEI]/[CuBr] versus kp

app  for ATRP of Methyl Methacrylate at 80oC. 
[MMA]o: 4.60 mol L-1 in anisole [MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1 /x.  

The rate of polymerization depended on the nature of the nitrogen-binding site of the 

ligand. In order to compare the effect of APEIs with well known ATRP ligands, 

ATRPs of MMA, carried out under the similar experimental conditions, by using 

ALAL’s, DiNBpy PMDETA, ME6Tren and BPy are listed in Table 4.3. All of the 

kinetic curves of these ligands show linearity. In these ATRP reactions of MMA, 

homogeneity was achieved by using PEDETA, PBDETA, PHDETA, HETETA, 

HBTETA, HHTETA, BPEI, ME6-Tren and dNbpy ligands [47]. 

So that BPEI have similar structure with PEDETA, PBDETA, PHDETA, HETETA, 

HBTETA and HHTETA. It is seen from the table that, kp
app value of PBDETA, 

HBTETA and BPEI is decreasing respectively, which indicates that the number of 

coordinating sites in activity order is reverse for MMA compared to St. 
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Table 4.4 ATRP of Methyl Methacrylate for Different Ligand (BPEI) Ratiosa 

Run [EPEI]/[CuBr] Timeb 
(min) 

Conv.b 
(%) 

Mn.th
b 

(g mol-1) 
Mn.GPC

b 
(g mol-1) Mw/Mn

b kp
app 

(10-4 s-1) 
MMA1 0.15 100 49.8 9960 12200 1.28 1.18 

MMA2 0.30 100 56.9 11390 18700 1.17 1.50 

MMA3 0.45 100 66.0 13210 18980 1.18 1.80 

MMA4 0.60 100 66.5 13320 18100 1.13 1.90 

MMA5 0.75 100 70.5 14120 15400 1.18 1.80 

MMA6 1.00 100 72.0 14340 15970 1.21 1.98 

MMA7 1.25 100 75.3 15090 16390 1.19 2.27 
a [MMA]o: 4.60 mol L-1 in anisole at 80oC. [MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1 /x.  
b Last point of kinetic datas. Molecular weights were measured by GPC using poly(methyl methacrylate) standards. 
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Table 4.5 ATRP of Methyl Methacrylate for Different Amine Ligands [47] 

Entry Ligand Time
(min)

Conv. c 
(%) Mn,th 

c Mn 
c Mw/Mn kp

app  
(10-4.s-1) 

Ini eff. 
(f) 

1 PEDETA a 100 84 16800 23700 1.21 3.30 0.71 
2 PBDETA a 100 82 16400 21400 1.15 2.85 0.72 
3 PHDETA a 100 85 17000 23600 1.11 2.75 0.74 
4 HETETA a 100 82 16400 22100 1.19 2.63 0.74 
5 HBTETA a 100 79 16800 22500 1.24 2.42 0.75 
6 HHTETAa 100 76 16200 23800 1.10 2.17 0.68 
7 BPEI b 100 72 14340 16000 1.21 1.98 0.90 
8 DiNBpy a 360 51 10200 9900 1.20 0.42 1.00 
9 ME6-Tren a 150 67 13400 27000 1.59 1.27 0.49 
10 PMDETA a 100 71 14200 24000 1.11 2.30 0.60 
11 BPy a 150 73 14600 16800 1.33 1.88 0.87 

a [MMA]o: 6.09 mol L-1 in anisole at 80 oC; [MMA]o/[EBrIB]o/[CuBr]o/[Ligand]o = 200/1/1/1. 
b [MMA]o: 4.60 mol L-1 in anisole at 80 oC. [MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o= 200/1/1 /1. 
c Last point of the kinetic data. 
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5. CONCLUSION and RECOMMENDATIONS 

In this study ethylated and butylated polydentate nitrogen ligands (alkylated 

polyethyleneimine) were synthesized by a simple reaction of alkylation of amines.. 

Both of APEIs were characterized by 1H-NMR. ATRP reaction of St and MMA were 

performed by using both of ethylated and butylated poly(ethyleneimine) ligands in 

the presence of CuBr as co-catalyst and EBrP and EBrIB as initiators. 

Homogeneous reaction conditions and light green color were obtained by using APEI 

ligands for ATRP of St and MMA. It is concluded from concentration effects of 

ligands that kp
app is increasing until the [APEI]/[CuBr] is around 0.5, than reach the 

plato value, which explain that each APEI molecule ligates two copper salt. 

The simple synthesis of a new class of ligands, alkylated poly(ethyleneimine), 

(APEI), was demonstrated. The investigation of their concentration effect on ATRP 

might contribute an attraction in polymer research groups by providing homogenous 

polymerization reaction medium and relatively fast polymerization rates resulted 

well-defined polymers. 
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APPENDIX A. 

SEMI-LOGARITHMIC KINETIC PLOTS 
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Figure A.1. Kinetic plot of St by ATRP using EPEI at 110 oC. [St]: 5.7 mol L-1 in 
anisole [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.30 
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Figure A.2. Kinetic plot of St by ATRP using EPEI at 110 oC. [St]: 5.7 mol L-1 in 
anisole [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.45  
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Figure A.3. Kinetic plot of St by ATRP using EPEI at 110 oC. [St]: 5.7 mol L-1 in 
anisole [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.60 
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Figure A.4. Kinetic plot of St by ATRP using EPEI at 110 oC. [St]: 5.7 mol L-1 in 
anisole [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.75 

 

 37



St 5 y = 0.0096x
k p

app=1.6x10-4s-1

0.0

0.5
1.0

1.5
2.0

2.5
3.0

3.5

0 50 100 150 200 250 300
time (min)

ln
 ([

M
] o

/[M
])

Gravimetric

 
Figure A.5. Kinetic plot of St by ATRP using EPEI at 110 oC.  [St]: 5.7 mol L -1 in 
anisole [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/1.00 
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Figure A.6. Kinetic plot of St by ATRP using EPEI at 110 oC. [St]: 5.7 mol L-1 in 
anisole [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/1.25  
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Figure A.7. Kinetic plot of St by ATRP using BPEI at 110 oC. [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/0.15 

St 8

y = 0.0028x
k p

app=4.7x10-5s-1

y = 0.0048x
k p

app=8x10-5s-1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 50 100 150 200 250 300
time (min)

ln
 ([

M
] o

/[M
])

Gravimetric 
GC

 
Figure A.8. Kinetic plot of St by ATRP using BPEI at 110 oC. [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/0.30 
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Figure A.9. Kinetic plot of St by ATRP using BPEI at 110 oC. [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/0.45 
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Figure A.10. Kinetic plot of St by ATRP using BPEI at 110 oC. [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/0.60 
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Figure A.11. Kinetic plot of St by ATRP using BPEI at 110 oC. [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/0.75 
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Figure A.12. Kinetic plot of St by ATRP using BPEI at 110 oC. [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/1.00 
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Figure A.13. Kinetic plot of St by ATRP using BPEI at 110 oC. [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/1.25 
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Figure A.14. Kinetic plot of St by ATRP using BPEI at 110 oC. [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/2.00 
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Figure A.15. Kinetic plot of MMA by ATRP using BPEI at 80 oC. 
[MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1 /0.15 [MMA]:4.60 mol L-1 in anisole 
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Figure A.16. Kinetic plot of MMA by ATRP using BPEI at 80 oC. 
[MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1 /0.30 [MMA]:4.60 mol L-1 in anisole 
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Figure A.17. Kinetic plot of MMA by ATRP using BPEI at 80 oC. 
[MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1 /0.45 [MMA]:4.60 mol L-1 in anisole 
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Figure A.18. Kinetic plot of MMA by ATRP using BPEI at 80 oC. 
[MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1 /0.60 [MMA]:4.60 mol L-1 in anisole 
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Figure A.19. Kinetic plot of MMA by ATRP using BPEI at 80 oC. 
[MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1 /0.75 [MMA]:4.60 mol L-1 in anisole 
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Figure A.20. Kinetic plot of MMA by ATRP using BPEI at 80 oC. 
[MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1 /1.00 [MMA]:4.60 mol L-1 in anisole 
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Figure A.21. Kinetic plot of MMA by ATRP using BPEI at 80 oC. 
[MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1 /1.25 [MMA]:4.60 mol L-1 in anisole 
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APPENDIX B. 

MOLECULAR WEIGHT, MOLECULAR WEIGHT DISTRIBUTION 
VERSUS CONVERSION PLOTS 
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Figure B.1. Mn versus conversion plot of St by ATRP using EPEI at 110 oC. 
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.30 [St]: 5.7 mol L-1 in anisole. 

St 2

0
3
6
9

12
15
18
21

0 20 40 60 80 100

Conversion (%)

M
n x

 1
0-3

1

1.2

1.4

1.6

1.8

2

PD
I

Mn
PDI

 
Figure B.2. Mn versus conversion plot of St by ATRP using EPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.45 [St]: 5.7 mol L-1 in anisole 
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Figure B.3. Mn versus conversion plot of St by ATRP using EPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.60 [St]: 5.7 mol L-1 in anisole 
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Figure B.4. Mn versus conversion plot of St by ATRP using EPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.75 [St]: 5.7 mol L-1 in anisole 
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Figure B.5. Mn versus conversion plot of St by ATRP using EPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/1.00 [St]: 5.7 mol L-1 in anisole 
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Figure B.6. Mn versus conversion plot of St by ATRP using EPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/1.25 [St]: 5.7 mol L-1 in anisole 
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Figure B.7. Mn versus conversion plot of St by ATRP using BPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.15 [St]: 5.7 mol L-1 in toluene 
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Figure B.8. Mn versus conversion plot of St by ATRP using BPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.30 [St]: 5.7 mol L-1 in toluene 
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Figure B.9. Mn versus conversion plot of St by ATRP using BPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.45 [St]: 5.7 mol L-1 in toluene 
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Figure B.10. Mn versus conversion plot of St by ATRP using BPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.60 [St]: 5.7 mol L-1 in toluene 
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Figure B.11. Mn versus conversion plot of St by ATRP using BPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.75 [St]: 5.7 mol L-1 in toluene 
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Figure B.12. Mn versus conversion plot of St by ATRP using BPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/1.00 [St]: 5.7 mol L-1 in toluene 
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Figure B.13. Mn versus conversion plot of St by ATRP using BPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/1.25 [St]: 5.7 mol L-1 in toluene 
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Figure B.14. Mn versus conversion plot of St by ATRP using BPEI at 110 oC.  
[St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/2.00 [St]: 5.7 mol L-1 in toluene 
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Figure B.15. Mn versus conversion plot of MMA by ATRP using BPEI at 110 oC. 
[MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1/0.30 [MMA]: 4.6 mol L-1 in anisole. 
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Figure B.16. Mn versus conversion plot of MMA by ATRP using BPEI at 110 oC. 
[MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1/1.00 [MMA]: 4.6 mol L-1 in anisole. 
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APPENDIX C. 

GPC TRACES 

 

Figure C.1. GPC traces of St by ATRP using EPEI at 110 oC.  [St]: 5.7 mol L-1 in 
anisole [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.30  

 
Figure C.2. GPC traces of St by ATRP using EPEI at 110 oC.  [St]: 5.7 mol L-1 in 
anisole [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.45  
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Figure C.3. GPC traces of St by ATRP using EPEI at 110 oC.  [St]: 5.7 mol L-1 in 
anisole [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.60 

 
Figure C.4. GPC traces of St by ATRP using EPEI at 110 oC.  [St]: 5.7 mol L-1 in 
anisole [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/0.75 
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Figure C.5. GPC traces of St by ATRP using EPEI at 110 oC.  [St]: 5.7 mol L-1 in 
anisole [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/1.00 

 

 
Figure C.6. GPC traces of St by ATRP using EPEI at 110 oC.  [St]: 5.7 mol L-1 in 
anisole [St]o/[EBrP]o/[CuBr]o/[EPEI]o=200/1/1/1.25 
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Figure C.7. GPC traces of St by ATRP using BPEI at 110 oC.  [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/0.15 

 
Figure C.8. GPC traces of St by ATRP using BPEI at 110 oC.  [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/0.30 
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Figure C.9. GPC traces of St by ATRP using BPEI at 110 oC.  [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/0.45 

 
Figure C.10. GPC traces of St by ATRP using BPEI at 110 oC.  [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/0.60 
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Figure C.11. GPC traces of St by ATRP using BPEI at 110 oC.  [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/0.75 

 

 
Figure C.12. GPC traces of St by ATRP using BPEI at 110 oC.  [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/1.00 
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Figure C.13. GPC traces of St by ATRP using BPEI at 110 oC.  [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/1.25 

 
Figure C.14. GPC traces of St by ATRP using BPEI at 110 oC.  [St]: 5.7 mol L-1 in 
toluene [St]o/[EBrP]o/[CuBr]o/[BPEI]o=200/1/1/2.00 
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Figure C.15. GPC traces of MMA by ATRP using BPEI at 80 oC. [MMA]: 4.60 mol 
L-1 in anisole [MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1 /0.30  

 
Figure C.16. GPC traces of MMA by ATRP using BPEI at 80 oC. [MMA]:4.60 mol 
L-1 in anisole [MMA]o/[EBrIB]o/[CuBr]o/[BPEI]o=200/1/1 /1.00  
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