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KÜRESEL VE 3 BOYUTLU PROLAT KÜRESEL GÖVDE 
ÇEVRESİNDE ISI TRANSFERİ VE POTANSİYEL AKIŞ 

PROBLEMLERİNİN NUMERİK ANALİZİ 

 

ÖZET 

Bu tez, küre ve 3-boyutlu prolat küresel koordinat sisteminde oluştulmuş gövde 
çevresinde ısı transferi ve potansiyel akış problemlerinin sayısal olarak analizini 
incelemektedir. Prolat koordinat sistemi; denizaltı, torpido ve sualtında faaliyet 
gösteren diğer araçların bir çoğunun gövde şekillerine benzerliği nedeniyle özellikle 
seçilmiştir. Prolat Küresel Koordinat sistemi, Küresel Koordinat sisteminde bir sabit 
ile ifade edilen r-yönündeki parametrenin -bir odak noktası uzaklığı (sabit bir 
uzaklık) ile sinus hiperbolik fonksyonunun çarpımını içeren- bir değişken ile yer 
değiştirmesi sonucunda oluşturulmuş bir koordinat sistemidir. Programlama 
esnasında, 

1. Çalışmaya daha fazla aşina olunması, 
2. Yazılan kodun daha kısa olması, 
3. Doğrulama işleminin daha az meşakkatlı olması, 

gibi nedenlerden dolayı algoritma ilk olarak Küresel Koordinatlarda oluşturulmuş ve 
bu nedenle tezin oluşumunda çeşitli küre örneklerine yer verilmiştir. 
Birtakım sadeleştirme/kabul yapılması sonrasında ısı transferi ve potansiyel akış 
diferansiyel denklemlerinin birbirlerine benzerliğinden yararlanılmak istenmiş ve ilk 
olarak sınır şartları daha basit olan ısı transferi probleminin çözümü yapılmış 
ardından potansiyel akış problemine geçilmiştir.  
Küre ve Prolat cisim çevresinde gerçekleşen ısı tranferi ve potansiyel akış olaylarının 
gözlenmesi için geliştirilmiş olan kodların sayısal çözümleri deneysel sonuçlar ve 
paket programlar ile karşılaştıralarak, tez çalışması için kullanılan sayısal çözüm 
algoritmalarının doğruluğu ve sağlamlığı gösterilmiştir.  
Kompleks diferansiyel denklemlerin sayısal çözümlerini gerektiren günümüz 
problemlerinin çözümünde, ana mantığın oluşturulmasını ve bilgisayar 
teknolojisinden en verimli şekilde yararlanılmasını amaç edinmiş mevcut çalışmanın 
çözüm felsefesinin bundan sonra yapılacak benzer çalışmalara yol gösterici nitelikte 
bir deniz feneri olacağı tahmin edilmektedir. 
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NUMERICAL ANALYSIS OF HEAT CONDUCTION AND 
POTENTIAL FLOW PROBLEMS OVER A SPHERE AND A 3- 

DIMENSIONAL PROLATE SPHERICAL BODY 

 

SUMMARY 

This thesis presents numerical analysis of heat conduction and potential flow 
problems over a sphere and a 3-D prolate spheroidal body. Prolate Spheroidal 
Coordinate system is particularly selected because the shape of the submarines, 
torpedos and other underwater vehicles are very similar to the form of the body that 
constituted with mentioned coordinate system. Prolate Spheroidal Coordinate System 
is constituted with the substitution of a constant through r-direction in Spherical 
Coordinate System with a variable –the product of focus distance and sinus 
hyperbolic function-. Fundamental program algorithm first formed in Spherical 
Coordinates for, 

1. More familiarity to Spheric Coordinate System, 
2. Less complexity of code, 
3. Less effort is needed for verification, 

reasons. Therefore various type of sphere examples are given place in thesis content. 
After certain number of simplification/acceptance, utilization of resemblance 
between heat transfer and potential flow phenomenons is considered. First heat 
transfer problem analysis is executed because of less complexity in boundaries and 
then passed on to potential flow problem. 
Robustness and accuracy of the algorithm is proved with the execution of 
comparison between the numerical results of in-house code which is generated to 
give output for the heat transfer and potential flow phonemenon around sphere and 
prolate body with teorical results and commercial codes. 
It has been considered that present thesis solution methodology which is aspired to 
establish the basic logic and to utilize the computer technology in most efficient 
manner will be the lighthouse for the further similar investigations and nowadays 
problems that will require numerical solutions of sophisticated differential equations. 
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1. INTRODUCTION  

 

Computational Fluid Dynamics, commonly known by the acronym CFD, started at 

the beginning of the 1970’s. It became an acroynm for a combination of physics, 

numerical mathematics, and to some extent of computer sciences which employed to 

stimulate fluid flows. Existence of more massive computer, commenced the CFD and 

progress in CFD is still coupled to the development in computer technology. Non-

linear potential equation solutions, which interested in transonic flows, were the 

preliminary visualization of the CFD (Blazek, 2001).  

First two dimentional (2-D) and then three dimentional (3-D) Euler equation solution 

become possible at the beginning of the 1980’s. It was feasible to calculate inviscid 

flows over entire aeroplane or internal side of the turbomachines after the 

improvement of variety numerical acceleration techniques like multigrid and high 

speed supercomputers. Popularity area of the computations changed to the viscous 

flows conducted by the Navier-Stokes equations in the middle of 1980’s. At the end 

of 1980’s the solution of flow problems which is interested in real gas simulations 

also became possible by the improvement of numerical system, especially in the 

implicit scheme. The numerical simulation of the combustion and specially flame 

modelling is the still main investigation subjects of the most research activities. 

Necessity of more complicated grid output is the conclusion of the continually 

increasing desire in exactness and complexity of flow simulations (Blazek, 2001). 

Fluid flow problems shortly CFD was the interest area of academic, post doctoral, 

post graduate researcher or similarity expert who has enourmously experince in the 

1980’s. Existence of many engineering computer softwares with robust solution 

algorithms and advanced pre- and post- processing features make easier the use of 

CFD programmes for design, research and development purposes by graduate 

engineers (Versteeg and Malalasekera, 1995). 

The grow up process was initiated with fairly formed meshes either formed by 

algebric methods or by using partial differential equations. The grids had to be 
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splitted up into more plainer portions because of the more complicated assemblies. 

Giving permission to assign lightened constraints to the grid constitution for a lone 

block which has inappropriate faces between the others in the grid assembly was the 

subsequent sensible step. Solution techniques that can interest in overlapped grid 

blocks were met at the end (Blazek, 2001). 

Nowadays aircraft, turbomachinery, car and ship design are the common areas of 

CFD techniques. Nevertheless, meteorology, oceanography, astrophysics, 

architecture and oil recovery are the other interests (Blazek, 2001). Moreover, 

Anderson (1995) state that “Computational fluid dynamics is a major tool in solving 

hydrodynamic problems associated with ships, submarines, torpedos etc.” 

Thus far, the history and development of the CFD is investigated and compiled. As 

known, partial differential equations, which cannot be solved analytically except 

special cases, are the fundemental way to express the flows and related phenomena. 

However, for the entire complex and complicated problems (geometries) there is not 

any possibilty to obtain exact analitic solution. Discretization method, which 

proximates the differential equations by systems of algebric equations, have to be 

used to obtain approximate solution. Numerical solution provides results at discrete 

regions in time and space due to the approximations that are applied to small 

domains in time or space. Accuracy of the numerical solutions are strictly based 

upon the quality of the discretizations that used for domain.  

Another crucial point of the CFD analysis lay on the mesh algorithms. Thomson et. 

al (1985) were focused on forming different types of mesh algorithms. In their 

studies many detailed mesh algorithms were investigated and experimented over 2-D 

and 3-D surfaces or volumetric bodies. Knupp (1993) executed different 

applications on these methodologies. These exercises guided and illuminated many 

researchers/investigators who is interested in CFD simulations and analysis.  

Many distinct sources mention the concept of finite difference approximations to 

partial derivatives eg. in Lomax et. al. (1999) or Hoffman (1989). Either spatial 

derivatives or time derivatives can be performed to these approximations. Various 

types of meshes expressed in general curvilinear coordinates in physical space might 

be transformed to a uniform Cartesian mesh with equally spaced intervals and it is 

called computational space.  



 3 

An object of this thesis is to examine and investigate numerically the heat conduction 

and potential flow over both a sphere and a 3-D prolate body. Additionally, the 

comparison of results between in-house code and theoretical results and the 

commercial codes which were both applied for sphere and a 3-D prolate body have 

been executed to prove the results. Prolate spheroidal coordinate system is 

particularly selected because the shape of the submarines, torpedos and other 

underwater vehicles are very similar to the form of the body that constituted with 

mentioned coordinate system. 

Flow past prolate spheroids has been studied by many others both experimentally 

and numerically. On experimental side, Meier et al. (1984,1986), Chesnakas and 

Simpson (1997), Wetzel et. al. (1998) and Goody et. al. (2000) provided invaluable 

data-sets to validate CFD codes for flow around a prolate spheroids. On numerical 

side, Vatsa et. al. (1989), Deng et. al. (1990), Kim and Patel (1991), Gee et. al. 

(1992), Zheng et. al. (1997), Rhee and Hino (2000) and Rhee et. al. (2003) studies 

are interested in flow around a prolate sheroids that they used full Navier-Stokes or 

Reynolds-avaraged Navier Stokes (RANS) equations. Many of these articles can be 

found at United States Department of Defence Internet archieves. 

First part of this dissertation is the introduction part. In the second section, 

mathematical modelling in the spherical coordinate system is investigated. Solution 

methodology with the principles of solution of the governing equations, including the 

discretization and arrangement with different iterative methods, are briefly 

introduced. Examples and applications of the iterative methods are elaborated. They 

initiated from cartesian coordinates to sperical coordinates in order to establish the 

fundamentals on reliable basis. Mathematical modelling and the description of the 

iteration coefficients in the Prolate Spheroidal Coordinate System is formed in the 

third section. Section two and section three can be used together to get acquainted 

with the solution algorithm rudiments. 

As mentioned before, grid is one of the most important parameter for the analysis. 

Hence the fourth section is allocated to the grid generation. In this section grid 

generation is shortly described. Then formed meshes around sphere and prolate 

spheroidal body are depicted. 
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Fifth section content is comprise of explanation of heat conduction, potential flow 

domains, application of boundary conditions to these domains and presentation of 

numerical results (velocity potentials, velocity vectors, pressure coefficient 

distribution) around concerned bodies. Moreover vectorial transformation from 

spherical coordinates to cartesian coordinates and prolate coordinates to cartesian 

coordinates are given place in this section.  

Potential flow over a sphere is the well-known and popular example for the external 

flow problems and it’s effortless to find solution of potential velocity, velocity 

vectors and pressure distributions results even in the fundamental fluid mechanics 

books (White 1995, Panton 1984, Owczarek 1968, etc.) but it is hard to express the 

same for a prolate shape. Considerably similar problem was solved analitically by 

Sabuncu (1962), however different bodies are taken into account. Therefore only 

pictural comparison for a sphere domain is made with literature sources. 

Notwithstanding comparison of results between in house-code and two commercial 

codes -Fluent and SymLab-are given in section six. Last section is assigned to 

conclusion part. 
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2. MATHEMATICAL MODELING AND NUMERICAL METHODS IN 
    SPHERICAL COORDINATES 

 
A special class of inviscid flows occurs when the vorticity is zero. A fluid flow that 

is both inviscid and irrotational is called an ideal flow or equivalently a potential 

flow. The velocity field of an ideal flow is completely determined by two kinematic 

considerations: the rate of particle expansion and the rate of particle rotation are both 

zero (Panton, 1984). Mathematically these conditions can be shown as; 

v 0∇ =i                     (2.1) 

xv 0∇ = ω =
�

                    (2.2) 

The solution of equations (2.1), (2.2) is most easily found by using the velocity 

potential defined by; 

v = ∇ψ                     (2.3) 

The equation for ψ  is found by subsituting (2.3) into (2.1). The result is the Laplace 

equation. 

2 0∇ ψ =                     (2.4) 

where 

(r, , )ψ = ψ θ φ                     (2.5) 

r, ,θ φ designate the ordinates and the dimensions are, 

0 r≤ ≤ ∞                   (2.6a) 

0 ≤ θ ≤ π                   (2.6b) 

0 2≤ φ ≤ π                   (2.6c) 

Spherical Coordinate system and its derivatives (Prolate Spheroidal and Oblate 

Spheroidal) ordinates follow the same trajectories. θ sweeps from 0 to π and φ 

sweeps from 0 to 2π radians. Special attention should be paid to border of the angles 

during forming grid and iteration phases. 
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Conversion from spherical polar coordinates to the Cartesian coordinates can be 

made substituting the following equations into the fundamental equations; 

x rSin( )Cos( )= θ φ                    (2.7) 

y rSin( )Sin( )= θ φ                    (2.8) 

z rCos( )= θ                     (2.9) 

The explicit formulation of finite difference equation in cartesian coordinate system 

for Laplace Equation is; 

2 2
2

2 2
0

x y

∂ ψ ∂ ψ
∇ ψ = + =

∂ ∂
                (2.10) 

If first order central difference approximation is used, equation (2.10) can be 

expressed as, 

( ) ( )
i 1, j i, j i 1, j i, j 1 i, j i, j 1

2 2

2 2
0

x y

+ − + −ψ − ψ + ψ ψ − ψ + ψ
+ =

∆ ∆
             (2.11) 

The Laplace equation can be expressed in the spherical polar coordinates that takes 

the form; 

2 2 2
2

2 2 2 2 2 2 2

2 1 Cot( ) 1
0

r r r r r r Sin

∂ ψ ∂ψ ∂ ψ θ ∂ψ ∂ ψ
∇ ψ = + + + + =

∂ ∂ ∂θ ∂θ θ ∂φ
           (2.12) 

Trigonometric term in equation (2.12) denominator causes a problem in the 

numerical calculations and therefore it should be eliminated from the equation. 

Because it leads to singularity when θ = 0 in the discretized form. Hence multiplying 

both sides of equation (2.12) by 2 2r sin ( )θ ; 

2 2 2
2 2 2 2

2 2 2
r Sin 2rSin Sin Sin Cos 0

r r

∂ ψ ∂ψ ∂ ψ ∂ψ ∂ ψ
θ + θ + θ + θ θ + =

∂ ∂ ∂θ ∂θ ∂φ
            (2.13) 
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If first order central difference approximation is used, the following equation will be 

obtained;  

i 1, j,k i, j,k i 1, j,k i 1, j,k i 1, j,k2 2 2
i, j,k i, j,k i, j,k i, j,k2

i, j,k i, j,k

2
r Sin 2r Sin

r 2 r
+ − + −

   ψ − ψ + ψ ψ − ψ
θ + θ   

∆ ∆      
 

 i, j 1,k i, j,k i, j 1,k i, j 1,k i, j 1,k2
i, j,k i, j,k i, j,k2

i, j,k i, j,k

2
Sin Sin Cos

2
+ − + −

   ψ − ψ + ψ ψ − ψ
+ θ + θ θ   

∆θ ∆θ      
 

  i, j,k 1 i, j,k i, j,k 1

2

2
0+ −ψ − ψ + ψ 

+ = 
∆φ 

             (2.14) 

The solution to equation (2.14) can be obtained by both direct methods or iterative 

methods. Crammer’s rule and Gaussian Elimination are some of the aquaintance 

direct methods. Almost all of direct methods have problems such as the rectangular 

domain, a large storage requirement, the size of the coefficient matrix, boundary 

conditions, difficulty of programming or cartesian coordinate system. On the other 

hand iterative methods are more plain and easy to program. Iterative methods can be 

splited into two types. Potential iterative methods when equation results in one 

unknown and Line iterative methods when equation results in more than one 

unknowns. Generally, iteration starts with guessed solution and new values based on 

former calculated step for the solution domain. Iteration loop produces new values 

until a designated convergence criteria has been attained (Hoffmann 1989).  

 

2.1 The Jakobi Iteration Method 

 

The main idea behind this method is; to use a beginning guess solution and sought to 

correct solution by solving the equations in an order. Correction process initiates at 

point i=j=1 and advances either line by line or column by column throughout the 

formed mesh in the domain (Hirsch 1989).  

If prosedure is applied to the laplace equation in cartesian coordinates which can be 

seen equation (2.11). Take x y 1∆ = ∆ = and by rearranging 

i 1, j i 1, j i, j 1 i, j 1 i, j4 0+ − + −ψ + ψ + ψ + ψ − ψ =               (2.15) 
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oldnew
i, j i 1, j i 1, j i, j 1 i, j 1

1

4 − + − +
 ψ = ψ + ψ + ψ + ψ                (2.16) 

After an initial guess of the solution is applied, the procedure initiate to obtain the 

solution for the domain. 0
i, jψ denotes initial guess, 1

i, jψ denotes first iteration (which 

was determined from 0
i, jψ . 2

i, jψ  denotes the second iteration which was determined 

from 1
i, jψ  and process goes on. So, general designation of the Laplace equation for 

(m+1)st iteration can be shown as (Haberman 1983); 

m 1 m m m m
i, j i 1, j i 1, j i, j 1 i, j 1

1

4
+

− + − +
 ψ = ψ + ψ + ψ + ψ                (2.17) 

Application can be formed for the spherical coordinate system. Revert back to 

equation. (2.14) and express the coefficient with using notation which is shown in 

Figure (2.1.1). ( Upper and Lower denotes the former and subsequent steps in third 

dimension) 

N O R H T

W E S T P O IN T E A S T

S O U T H

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

 

Figure 2.1: 2-D view of the coefficient notation. 

2 2 2

i, j,k 2 2 2

2r Sin ( ) 2Sin ( ) 2
JP

r

− θ − θ −
ψ → + + →

∆ ∆θ ∆φ
(coefficient at Point)        (2.18a) 

2 2 2

i 1, j,k 2

r Sin ( ) rSin ( )
JW

r r−

θ θ
ψ → − →

∆ ∆
(coefficient at West)          (2.18b) 

2 2 2

i 1, j,k 2

r Sin ( ) rSin ( )
JE

r r+

θ θ
ψ → + →

∆ ∆
(coefficient at East)          (2.18c) 

2

i, j 1,k 2

Sin ( ) Sin( )Cos( )
JS

2−

θ θ θ
ψ → − →

∆θ ∆θ
(coefficient at South)         (2.18d) 

2

i, j 1,k 2

Sin ( ) Sin( )Cos( )
JN

2+

θ θ θ
ψ → + →

∆θ ∆θ
(coefficient at North)         (2.18e) 
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i, j,k 1 2

1
JL−ψ → →

∆φ
(coefficient at Lower layer)            (2.18f) 

i, j,k 1 2

1
JU+ψ → →

∆φ
(coefficient at Upper layer)           (2.18g) 

Substituting the coefficient into the governing Laplace equation which was denoted 

in discrete form in equation (2.14) takes the form; 

i, j,k i 1, j,k i 1, j,k i, j 1,kJP JW JE JS− + −• ψ + • ψ + • ψ + • ψ  

   i, j 1,k i, j,k 1 i, j,k 1JN JL JU 0+ − ++ •ψ + • ψ + • ψ =              (2.19) 

If terms are rearranged in equation (2.19) takes form like; 

m 1 m m m
i, j,k i 1, j,k i 1, j,k i, j 1,k

1
JW JE JS

JP
+

− + −

−
ψ = • ψ + •ψ + •ψ  

   m m m
i, j 1,k i, j,k 1 i, j,k 1JN JL JU 0+ − +

+ •ψ + • ψ + • ψ =            (2.20) 

 

2.2 Gauss Seidel Iteration Method 

 

There is a methodolgy which needs less calculation to reach the approximate solution 

for the discretized Laplace’s equation. Every Jakobi iteration needs new values, 

which calculated in the previous iteration, for each mesh point respectively in the 

domain. However, Gauss-Seidel iteration method uses the new values while 

advancing on the same iteration plane. 

4 , 7 4 ,8 4 ,9

3 , 7 3 ,8 3 ,9

2 , 7 2 ,8 2 ,9

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

 

Figure 2.2: Gauss-Seidel Iteration Schema 

 

For example, in Jakobi iteration m
2,8ψ , m

3,7ψ , m
3,9ψ , m

4,8ψ  has to be used in order to 

complete iteration even new values have already been obtained for points m
2,8ψ  and 

3 Row 
Operation 

2 Row 
Operation 

O
pe

ra
ti

on
 

P
ro

gr
es

s 
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m
3,7ψ . If old values are demolished after a new one is calculated, computation shall be 

more easy (Haberman 1983). Difference between Gauss-Seidel and the Jakobi 

iteration methods is; usage of the new values in the calculation while progressing in 

the same iteration step. It can be shown for the cartesian coordinates like, 

m 1 m 1 m m 1 m
i, j i 1, j i 1, j i, j 1 i, j 1

1

4
+ + +

− + − +
 ψ = ψ + ψ + ψ + ψ                (2.21) 

Same notation and coefficient, which was used in section 2.1 (equation (2.18a) to 

equation (2.18g)), can be applied for the Laplace Equation which is opened in 

spherical coordinate system.  

m 1 m 1 m m 1
i, j,k i 1, j,k i 1, j,k i, j 1,k

1
GSW GSE GSS

GSP
+ + +

− + −

−
ψ = •ψ + • ψ + •ψ  

  m m 1 m
i, j 1,k i, j,k 1 i, j,k 1GSN GSL GSU 0+

+ − +
+ • ψ + •ψ + • ψ =           (2.22) 

 

2.3 Successive Over Relaxation 

 

Solution by iteration can be thought of as a process beginning at an initial state and 

approaching a steady state. During the solution process if tendency in the calculated 

values of the dependent variable is noted then, the direction of change can be used to 

extrapolate for the next iteration and thus, reduce the solution time. This procedure is 

known as Successive Over-Relaxation (Hoffmann 1989). 

First, apply it to the cartesian coordinate and add + m
i, jψ , - m

i, jψ  to the right hand side of 

the equation (2.21) 

m 1 m m 1 m m 1 m m
i, j i, j i 1, j i 1, j i, j 1 i, j 1 i, j

1
4

4
+ + +

− + − +
 ψ = ψ + ψ + ψ + ψ + ψ − ψ               (2.23) 

m
i, jψ  must approach m 1

i, j
+ψ , as the solution proceed. To accelerate the solution the term 

in bracket is multiplied by ω , 

m 1 m m 1 m m 1 m m
i, j i, j i 1, j i 1, j i, j 1 i, j 1 i, j4+ + +

− + − +
 ψ = ψ + ω ψ + ψ + ψ + ψ − ψ               (2.24) 
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      If it is applied to the discretized Laplace’s equation which is in spherical 

coordinates (above mentioned notation is taken into consideration), it will take form; 

m 1 m m 1 m m 1
i, j,k i, j,k i 1, j,k i 1, j,k i, j 1,kGSW GSE GSS+ + +

− + −
ψ = ψ + ω •ψ + • ψ + •ψ  

m m 1 m m
i, j 1,k i, j,k 1 i, j,k 1 i, j,kGSN GSL GSU GSP 0+

+ − +
+ • ψ + • ψ + • ψ + •ψ =           (2.25) 

Generally, it is hard to determine optimum ω . There is not any usual technique to 

obtain the relaxation parameter, it’s value depends on the fundamental equation and 

the domain of the problem. Hence, in most cases numerical experimentation is the 

only way to determine the relaxation parameter (Hoffmann 1989). 

 

2.4 The Alternating Direction Implicit (ADI) Method 

 

Alternating Direction Implicit (ADI) Method is slightly different from above 

mentioned methods. Single cycle in Alternating Direction Method consist of three 

distinct sweeps in the three ordinates (r, θ, φ) of the coordinate system. A sweep is 

arranged in each time interval, all points that are not located in the direction of the 

sweep are assumed to be known values from the previous iteration cycle. These 

values are hence gathered on the right side of the equation at each cycle. An iteration 

cycle is considered complete once the resulting tridiagonal system is solved for entire 

domain. (Anderson 1995).  

First, apply the method for cartesian coordinate system which considered as 2-D, 

afterward obtain the equations in spherical coordinates. 

First Step: x-Sweep 

( ) ( )

1 1 1n n n n n n2 2 2
i 1, j i, j i 1, j i, j 1 i, j i, j 1

2 2

2 2
0

x y

+ + +

+ − + −ψ − ψ + ψ ψ − ψ + ψ
+ =

∆ ∆
             (2.26) 

2 2 2
1 1 1n n n n n n2 2 2

i 1, j i, j i 1, j i, j 1 i, j i, j 1

y y y
2 2

x x x

+ + +

+ − + −

∆ ∆ ∆     
 ψ − ψ + ψ = − ψ − ψ + ψ       ∆ ∆ ∆     

          (2.27) 

Anderson stated that; although, Laplace’s equation can be solved by equation (2.26), 

however much computational time is needed than tridiagonalized system. Equation 

(2.26) can be reduced to tridiagonal form like; 



 12 

1 1 1n n n2 2 2
i 1, j i, j i 1, j iA B A K

+ + +

+ −ψ − ψ + ψ =i i i                (2.28) 

where 

2
y

A
x

∆ 
=  

∆ 
                (2.29a) 

2
y

B 2
x

∆ 
=  

∆ 
                (2.29b) 

n n n
i i, j 1 i, j i, j 1K 2+ −

 = − ψ − ψ + ψ                (2.29c) 

Equation (2.28) yields a solution for 
1n 2

i, j

+
ψ  for all i, with keeping j fixed. X-direction 

sweep continues until the last grid point in the domain line. This calculation 

philosophy is shown schematically in Figure (2.4.1). 

 

Figure 2.3: Schematical view of ADI x direction sweep 

The second step of ADI method is solving equation (2.26) for the y-direction which 

is being represented with step n+1. Second step uses the step 
1n 2

i, j

+
ψ  values. 

 

 

iteration steps 

1n 2+  

j 

j+1 

(i,j)=(1,1) (i,j)=(N,1) 

Sweep Direction 

(i,j)=(1,M) (i,j)=(N,M) 

n∆  

n 

x 

This plane represents next layer  
of the solution process 

y 
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Second Step: y-Sweep 

( ) ( )

1 1 1n n n n 1 n 1 n 12 2 2
i 1, j i, j i 1, j i, j 1 i, j i, j 1

2 2

2 2
0

x y

+ + + + + +
+ − + −ψ − ψ + ψ ψ − ψ + ψ

+ =
∆ ∆

             (2.30) 

2 2 2
1 1 1n n nn 1 n 1 n 1 2 2 2

i, j 1 i, j i, j 1 i 1, j i, j i 1, j

x x x
2 2

y y y

+ + ++ + +
+ − + −

     ∆ ∆ ∆  ψ − ψ + ψ = − ψ − ψ + ψ        ∆ ∆ ∆     
          (2.31) 

Equation (2.26) reduces to tridiagonal form; 

n 1 n 1 n 1
i, j 1 i, j i, j 1 iC D C L+ + +

− +ψ − ψ + ψ =i i i                (2.32) 

where 

2
x

C
y

 ∆
=  

∆ 
                (2.33a) 

2
x

D 2
y

 ∆
=  

∆ 
                (2.33b) 

1 1 1n n n2 2 2
i i 1, j i, j i 1, jL 2

+ + +

+ −
 = − ψ − ψ + ψ
  

             (2.33c) 

Equation (2.32) yields a solution for n 1
i, j

+ψ  for all j, with keeping i fixed. Y-direction 

sweep continues until the last grid point in the domain line. This calculation is shown 

schematically in Figure (2.4.2). 

Application can be formed for the spherical coordinate system. Revert to Equation 

(2.14) and rewrite the same procedure with using a slightly different notation for the 

coefficients which belongs to Alternating Direction Implicit procedure. 

2 2 2

i, j,k 2 2 2

2r Sin ( ) 2Sin ( ) 2
ADIP

r

− θ − θ −
ψ → + + →

∆ ∆θ ∆φ
(coefficient at Point)        (2.34a) 

2 2 2

i 1, j,k 2

r Sin ( ) rSin ( )
ADIW

r r−

θ θ
ψ → − + →

∆ ∆
(coefficient at West)         (2.34b) 

2 2 2

i 1, j,k 2

r Sin ( ) rSin ( )
ADIE

r r+

θ θ
ψ → + + →

∆ ∆
(coefficient t East)         (2.34c) 

2

i, j 1,k 2

Sin ( ) Sin( )Cos( )
ADIS

2−

θ θ θ
ψ → − + →

∆θ ∆θ
(coefficient at South)         (2.34d) 
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2

i, j 1,k 2

Sin ( ) Sin( )Cos( )
ADIN

2+

θ θ θ
ψ → + + →

∆θ ∆θ
(coefficient at North)        (2.34e) 

i, j,k 1 2

1
ADIL−ψ → →

∆φ
(coefficient at Lower layer)           (2.34f) 

i, j,k 1 2

1
ADIU+ψ → →

∆φ
(coefficient at Upper layer)          (2.34g) 

 

Figure 2.4: Schematical view of ADI y direction sweep 

If it is applied to the discretized Laplace’s equation which is in spherical coordinates, 

it will take form as; 

First step: r-Sweep 

1 1 1n n n3 3 3
i 1, j,k i, j,k i 1, j,kADIW ADIP ADIE

+ + +

− +•ψ + • ψ + • ψ =

( )n n n n
i, j 1,k i, j 1,k i, j,k 1 i, j,k 1ADIN ADIS ADIU ADIL+ − + −− • ψ + •ψ + • ψ + • ψ           (2.35) 

Note: The superscript 
1

n
3

+  designates the first ordinate’s sweep.  

Anderson (1995) stated that; although, Laplace’s equation can be solved by equation 

(2.35), however much computational time is needed than tridiagonalized system. 

Equation (2.35) can be reduced to tridiagonal form like; 

S
w

ee
p 

D
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iteration steps 

n 1+  

i i+1 
(i,j)=(1,1) (i,j)=(N,1) 

(i,j)=(1,M) (i,j)=(N,M) 

n∆  

x 

This plane represents next layer  
of the solution process 

1n 2+  

y 



 15 

1 1 1n n n3 3 3
i i 1, j,k i i, j,k i i 1, j,k iA B C K

+ + +

− +ψ − ψ + ψ =i i i               (2.36) 

where 

iA ADIW=                 (2.37a) 

iB ADIP=                 (2.37b) 

iC ADIE=                 (2.37c) 

( )n n n n
i i, j 1,k i, j 1,k i, j,k 1 i, j,k 1K ADIN ADIS ADIU ADIL+ − + −= − • ψ + • ψ + • ψ + • ψ         (2.37d) 

Second Step: θ-Sweep 

2 2 2n n n3 3 3
i, j 1,k i,j,k i,j-1,kADIN ADIP ADIS

+ + +

+• ψ + •ψ + •ψ =  

( )1 1n n n n3 3
i 1, j,k i+1,j,k i,j,k+1 i,j,k-1ADIW ADIE ADIU ADIL

+ +

−− • ψ + • ψ + • ψ + • ψ           (2.38) 

Note: The superscript 
2

n
3

+  designates the second ordinate’s sweep.  

Equation (2.38) can be reduced to tridiagonal form like; 

2 2 2n n n3 3 3
j i, j 1,k j i, j,k j i, j 1,k jD E F L

+ + +

+ −ψ − ψ + ψ =i i i               (2.39) 

where 

jD ADIN=                 (2.40a) 

jE ADIP=                 (2.40b) 

jF ADIS=                 (2.40c) 

( )1 1n n n n3 3
j i 1, j,k i+1,j,k i,j,k+1 i,j,k-1L ADIW ADIE ADIU ADIL

+ +

−= − •ψ + • ψ + • ψ + • ψ           (2.40d) 

Third Step: φ -Sweep 

n 1 n 1 n 1
i, j,k 1 i, j,k i, j,k 1ADIU ADIP ADIL+ + +

+ −• ψ + •ψ + • ψ =  

( )1 1 2 2n n n n3 3 3 3
i 1, j,k i 1, j,k i, j 1,k i, j 1,kADIW ADIE ADIN ADIS

+ + + +

− + + −− • ψ + •ψ + • ψ + • ψ           (2.41) 

Note: The superscript n+1 designates the third ordinate’s sweep.  

Equation (2.41) can be reduced to tridiagonal form like; 
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n 1 n 1 n 1
k i, j,k 1 k i, j,k k i, j,k 1 kG H I P+ + +

+ −ψ − ψ + ψ =i i i               (2.42) 

where 

kG ADIU=                 (2.43a) 

kH ADIP=                 (2.43b) 

kI ADIL=                 (2.43c) 

( )1 1 2 2n n n n3 3 3 3
k i 1, j,k i 1, j,k i, j 1,k i, j 1,kP ADIW ADIE ADIS ADIN

+ + + +

− + − += − •ψ + • ψ + • ψ + • ψ          (2.43d) 

In this methodology, equation. (2.36) is solved implicitly for the unknown in the r 

direction, equation (2.39) is solved implicitly for the unknown in the θ direction and 

equation (2.42) is solved implicitly for the unknown in the φ direction. 

As mentioned in the previous paragraphs, obtained equation has to form a tridiagonal 

matrix whose first element on the first row and the last element in the last row are 

known values from the boundary conditions to achieve the solution easily. Thusfar, 

the fundemental equations for the solution have introduced, in this order next step is 

constitute tridiagonal matris for the algorithm. 

Examine the construction process for the diagolization of the Laplace equation in 2-

Dimentional cartesian coordinate system with simple example. Revert to equation 

(2.28) and apply the formulation only for x-sweep in scope of Figure 2.43. 

i=2, j=2 →     
1 1 1n n n2 2 2

1,2 2,2 3,2 2A B A K
+ + +

ψ − ψ + ψ =i i i          (2.44a) 

i=3, j=2 →     
1 1 1n n n2 2 2

2,2 3,2 4,2 3A B A K
+ + +

ψ − ψ + ψ =i i i          (2.44b) 

i=4, j=2 →     
1 1 1n n n2 2 2

3,2 4,2 5,2 4A B A K
+ + +

ψ − ψ + ψ =i i i          (2.44c) 

i=5, j=2 →     
1 1 1n n n2 2 2

4,2 5,2 6,2 5A B A K
+ + +

ψ − ψ + ψ =i i i          (2.44d) 

i=6, j=2 →     
1 1 1n n n2 2 2

5,2 6,2 7,2 6A B A K
+ + +

ψ − ψ + ψ =i i i          (2.44e) 

      Revert to equations (2.44a) and (2.44e). If the value for boundaries are known 

(consider boundaries have dirichlet boundary constraint) formulation for beginning 

and end points will take the form; 

 i=2, j=2 →      
1 1 1n n n2 2 2

2,2 3,2 2 1,2B A K A
+ + +

− ψ + ψ = − ψi i i         (2.45a) 
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1 1n n '2 2

2,2 3,2 2B A K
+ +

− ψ + ψ =i i           (2.45b) 

where 

1n' 2
2 2 1,2K K A

+
= − ψi                (2.45c) 

i=6, j=2 →      
1 1 1n n n2 2 2

5,2 6,2 6 7,2A B K A
+ + +

ψ − ψ = − ψi i i         (2.46a) 

        
1 1n n '2 2

5,2 6,2 6A B K
+ +

ψ − ψ =i i           (2.46b) 

where 

1n' 2
6 6 7,2K K A

+
= − ψi                (2.46c) 

 

Figure 2.5: 2-D View of 7x3 grid 

Hereafter, the superscripts of the equations between (2.44a) to (2.45f) have been 

dropped out for convenience. Because it is obvious that same procedure can be 

applied any step of the ADI method which coordinate system is considered for the 

problem. 
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  •    •    •    •  

j=3 

i=3 i=4 

y∆  

y 

j=1 

j=2 B
ou

nd
ar

y 

x 

x∆  
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'
2,2 2

3,2 3

4,2 4

5,2 5

'
6,2 6

B A 0 0 0 K

A B A 0 0 K

0 A B A 0 K

0 0 A B A K

0 0 0 A B K

ψ−    
    ψ−    
  ψ  =−
   

ψ−    
    ψ−     

              (2.47) 

Known values are carried to the right side of the equation, coefficient matrix and 

vector of the unknown values are stayed on the left side of the matris.  

ADI methodology is going to be used for the speherical coordinate system sweep by 

sweep in r, ,θ φ ordinates respectively with previously defined coefficients in 

equations (2.36), (2.39) and (2.42). 

The resulting system can be illustrated in the following way;in which dimensions of 

the coefficients matrix is (NR-2) x (NR-2) in its original form. Boundary values has 

to be taken into consideration because they are going to effect the first and the last 

row of the matrix which is going to constitute the right hand side of the equation. NR 

is the number of nodes in the r-direction. This will be replaced by NTETA and NPHI 

in the subsequent θ and φ sweeps. 

First Step: r-Sweep 

Boundary conditions are known in this problem (consider boundaries have dirichlet 

boundary constraint) and investigate formulation for beginning and end points. 

Revert to equation (2.36); 

 i=2, j=2, k=2     →   
1 1 1n n n3 3 3

2 2,2,2 2 3,2,2 2 2 1,2,2B C K A
+ + +

− ψ + ψ = − ψi i i          (2.47a) 

     
1 1n n '3 3

2 2,2 2 3,2 2B C K
+ +

− ψ + ψ =i i            (2.47b) 

where 

1n' 3
2 2 1,2,2K K A

+
= − ψi                (2.47c) 

i=NR-1, j=2, k=2→
1 1 1n n n3 3 3

NR 1 NR 2,2,2 NR 1 NR 1,2,2 NR 1 NR 1 NR ,2A B K C
+ + +

− − − − − −ψ − ψ = − ψi i i      (2.47d) 

           
1 1n n '3 3

NR 1 NR 2,2 NR 1 NR 1,2 NR 1A B K
+ +

− − − − −ψ − ψ =i i           (2.47e) 

where 
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1n' 3
NR 1 NR 1 NR,2,2K K A

+

− −= − ψi                (2.47f) 

and the equations can be obtained like; 

i=2, j=2, k=2       →       
1 1n n '3 3

2 2,2,2 2 3,2,2 2B C K
+ +

− ψ + ψ =i i          (2.48a) 

i=3, j=2, k=2       →     
1 1 1n n n3 3 3

3 2,2,2 3 3,2,2 3 4,2,2 3A B C K
+ + +

ψ − ψ + ψ =i i i          (2.48b) 

i=4, j=2, k=2      →     
1 1 1n n n3 3 3

4 3,2,2 4 4,2,2 4 5,2,2 4A B C K
+ + +

ψ − ψ + ψ =i i i          (2.48c) 

.        .       .   .     .            .        .    

.        .       .    .     .            .        .    

i=NR-2,j=2,k=2 
1 1 1n n n3 3 3

NR 2 NR 3,2,2 NR 2 NR 2,2,2 NR 2 NR 1,2 NR 2A B C K
+ + +

− − − − − − −ψ − ψ + ψ =i i i (2.48NR-2) 

i=NR-1, j=2, k=2→     
1 1n n '3 3

NR 1 NR 2,2,2 NR 1 NR 1,2 NR 1A B K
+ +

− − − − −ψ − ψ =i i   (2.48NR-1) 

Re-arranging terms of the coefficients matrix, we obtain the following system of 

equations. Hereafter, the superscripts of the equations between (2.48a) to (2.48NR-1) 

have been dropped out for convenience. 

'
2 2 2 2

3 3 3 3 3

4 4 4 4 4

NR 2 NR 2 NR 2 NR 2 NR 2

'
NR 1 NR 1 NR 1 NR 1

B C 0 0 0 0 K

A B C 0 0 0 K

0 A B C 0 0 K

0 0

0 0

0

0 0 0 A B C K

0 0 0 0 A B K

− − − − −

− − − −

ψ     
    ψ     
    ψ
    
    
    
 =   
    
    
    
   
   ψ    
   ψ     

� � � � �

� � � � � 




          (2.49) 

The system of equations can now be expressed simply as; 

[ ]( )( ) [ ]( ) [ ]( )NR 2 NR 2 NR 2 NR 2
A K

− − − −
× ψ =                (2.50) 

It should be noted that the resulting tridiagonal systems is going to be solved by a 

tridiagonal matrix solver each time a sweep is completed. The same procedure can be 

applied for the θ and the φ sweeps. These steps can be easily performed according to 

procedure which is outlined above. 
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3. MATHEMATICAL MODELING IN PROLATE SPHEROIDAL 
    COORDINATE SYSTEM 

 
In this section, potential flow equation in prolate spheroidal system and numerical 

approach to the equations are going to be investigated. Start again with the Laplace 

equation which is a elliptic second order partial differential equation. 

2 0∇ ψ =                     (3.1) 

ψ  is a potential function in three spatial dimensions, 

( , , )ψ = ψ η θ φ                     (3.2) 

where 

0 ≤ η ≤ ∞                   (3.3a) 

0 ≤ θ ≤ π                   (3.3b) 

0 2≤ φ ≤ π                   (3.3c) 

Conversion from prolate spheroidal coordinates to the Cartesian coordinates can be 

made using following equations; 

x aSinh( )Sin( )Cos( )= η θ φ                   (3.4) 

y aSinh( )Sin( )Sin( )= η θ φ                   (3.5) 

z aCosh( )Cos( )= η θ                    (3.6) 

The Laplace equation (3.1) expressed in the prolate spheroidal coordinates takes the 

form; 

( )

2 2
2

2 22 2 2

1
Coth( ) Cot( )

a Sinh ( ) Sin ( )

 ∂ ψ ∂ψ ∂ ψ ∂ψ
∇ ψ = + η + + θ 

∂η ∂η ∂θ ∂θη + θ  
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2

2 2 2 2

1
0

a Sinh ( )Sin ( )

∂ ψ
+ =

η θ ∂φ
            (3.7) 

Trigonometric term in equation (3.7) denominator causes a problem in the numerical 

calculations and therefore it should be eliminated from the equation. It will lead to 

singularity when η=0 or θ=0 in the discretized form. Hence multiplying both sides of 

equation (3.7) by 2 2 2a Sinh ( )Sin ( )η θ ; then we obtain ; 

2 2 2 2 2
2

2 2 2 2 2

Sinh ( )Sin ( )
Coth( ) Cot( )

Sinh ( ) Sin ( )

 η θ ∂ ψ ∂ψ ∂ ψ ∂ψ ∂ ψ
∇ ψ = + η + + θ + 

η + θ ∂η ∂η ∂θ ∂θ ∂φ 
            (3.8) 

Simplification for the equation (3.8) will ease the discretization, hence, define a 

dummy function ( )Z ,η θ  

( )
2 2

2 2

Sinh ( )Sin ( )
Z ,

Sinh ( ) Sin ( )

η θ
η θ =

η + θ
                 (3.9) 

After substitution of the dummy function to equation (3.8), discretized Laplace 

equation with first order finite difference aproximation, we obtain; 

( )
( ) ( )

i 1, j,k i, j,k i 1, j,k i 1, j,k i 1, j,k i, j 1,k i, j,k i, j 1,k

2 2

2 2
Z , Coth( )

2
+ − + − + −

ψ − ψ + ψ ψ − ψ ψ − ψ + ψ 
η θ + η +  

∆η∆η ∆θ  

  
( )

i, j 1,k i, j 1,k i, j,k 1 i, j,k i, j,k 1

2

2
Cot( ) 0

2
+ − + −ψ − ψ ψ − ψ + ψ

+ θ + =
∆θ ∆φ

          (3.10) 

There is still trigonometric term in the denominator of equation (3.10). It will cause 

discontinuity while θ approaches 0. Therefore, multiply both side of the equation 

with Sin(θ), 

( ) ( )
( )

( )i 1, j,k i, j,k i 1, j,k i 1, j,k i 1, j,k

2

2
Z , Sin Sin Coth( )

2
+ − + −

  ψ − ψ + ψ ψ − ψ 
η θ θ + θ η     ∆η∆η   

 

         ( )
( )

i, j 1,k i, j,k i, j 1,k i, j 1,k i, j 1,k

2

2
Sin Cos( )

2
+ − + −

ψ − ψ + ψ ψ − ψ
θ + θ 

∆θ∆θ 

 

     ( )
( )

i, j,k 1 i, j,k i, j,k 1

2

2
Sin 0+ −ψ − ψ + ψ

+ θ =
∆φ

          (3.11) 
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If the notation stated in Figure (2.1.1), equation (3.11) coefficients can be obtained as 

follows ;  

( ) ( )

( )

( ) ( )

( )

( )

( )
2 2 2

2Z , Sin 2Z , Sin 2Sin
PP

 η θ θ η θ θ θ
= − − − 

∆η ∆θ ∆φ  

          (3.12a) 

( ) ( )

( )

( ) ( )
2

Z , Sin Z , Coth( )Sin
PW

2

 η θ θ η θ η θ
= − 

∆η∆η  

           (3.12b) 

( )

( )

( ) ( )
2

Z , Sin( ) Z , Coth( )Sin
PE

2

 η θ θ η θ η θ
= + 

∆η∆η  

           (3.12c) 

( )

( )

( )
2

Z , Sin( ) Z , Cos( )
PN

2

 η θ θ η θ θ
= + 

∆θ∆θ  

            (3.12d) 

( )

( )

( )
2

Z , Sin( ) Z , Cos( )
PS

2

 η θ θ η θ θ
= − 

∆θ∆θ  

            (3.12e) 

( )
2

Sin( )
PL

 θ
=  

∆φ  

               (3.12f) 

( )
2

Sin( )
PU

 θ
=  

∆φ  

               (3.12g) 

Substituting the coefficient to the governing Laplace Equation which was denoted in 

discrete form in equation (3.11) takes the form; 

i, j,k i 1, j,k i 1, j,k i, j 1,kPP PW PE PN− + +•ψ + • ψ + •ψ + • ψ  

   i, j 1,k i, j,k 1 i, j,k 1PS PU PL 0− + −+ • ψ + •ψ + • ψ =            (3.13) 

If terms are rearranged with Gauss-Seidel iteration method, equation (3.13) takes 

form; 

m 1 m 1 m m 1
i, j,k i 1, j,k i 1, j,k i, j 1,k

1
PW PE PS

PP
+ + +

− + −

−
ψ = •ψ + • ψ + •ψ  

   m m 1 m
i, j 1,k i, j,k 1 i, j,k 1PN PL PU 0+

+ − +
+ • ψ + •ψ + • ψ =           (3.13) 

For further vector algebra and mathematical operations in fluid mechanics please 

look in Owczarek (1968) Appendix A section. 
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4. GRID GENERATION 

 

The partial differential equations that governs fluid flow and heat transfer are not 

usually proper to analytical solutions, except for very plain cases. Therefore, in order 

to analyze fluid flows, flow domains are split into smaller subdomains and 

discretized governing equations are solved inside each of these portions of the 

domain. Typically, one of three methods is used to solve the approximate version of 

the system of equations: finite volume, finite elements or finite differences. In this 

thesis finite difference method is selected and in the preceding sections, the 

fundamental equations that belongs to velocity potential for the cartesian, spherical 

and prolate spheroidal coordinates are solved. Commencement process should be 

start with defining the physical space and computational space of the region. Knupp 

(1993) stated that before a grid can be generated that, a physical object must be 

specified mathematically; this can be done by specifiying its boundaries. Then, care 

must be taken to ensure proper continuity of solution across the common interfaces 

between two subdomains, so that the approximate solution inside various portions 

can be put together to give a complete picture of fluid flow in the entire domain. 

Each of these portions of the domain are known as elements or cells, and the 

collection of all elements is known as grid or mesh. 

There are too many posibilities to determine the boundaries for physical objects. For 

Example Knupp (1993) stated that there is a possibility to transform the physical 

region to a square in two dimentions or a cube in three dimensions for many 

complicated application. Boundary conditions of the physical region is going to be 

coincident with the square or the cube boundaries which is transformed (see Figure 

4.1 for square example). 

Hoffmann (1989) stated that boundaries of the physical domain can be associated 

with the grid points, therefore boundary conditions specification can be done with 

less effort. Unfortunately, most of the physical domains of interest are 
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nonrectengular. Hence, boundary conditions need some interpolation for 

implementation while physical domain transforming to rectangular domain 

 

Figure 4.1: Transformation of coordinate system 

 

4.1 General Methods 

 

The region where the flow is going to be investigated, is splited up into a geometrical 

elements. As said before, these elements is called grid cells and this process named 

as grid generation. Also, the grid generation can be examined by putting grid points 

into the physical space then connecting them by straight lines (these lines are termed 

grid lines). There are 2 crucial points while generating grids in the physical space; 

1.) There must no holes between the grid cells 

2.) Grid cells do not overlap 

 

Figure 4.2: Form Fitted Grid Example (Blazek 2001 p.31) 

inverse transformation 

η 
y 

x 

Physical space Computational Space 

transformation 

ξ 
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Moreover, the structure of grid should be smooth as possible. If abrupt changes in the 

volume and in the stretching ratio between sequential cells occur, it will increase 

significant numerical errors.The grid generation can be formed either by form-fitted 

type which follows closely the boundaries of the physical space (shown in figure 4.2) 

and cartesian type where the edges of the grid cells are oriented in parallel to the 

cartesian coordinates (shown in figure 4.3) (Blazek, 2001). 

 

Figure 4.3: Cartesian Grid Example (Blazek 2001 p.31 ) 

Main advantage of the form-fitted grid is; at the boundaries flow can be monitored 

precisely, it is very important while investigating shear layer along solid bodies. 

However, grid construction in the domain and calculation of fluid flux operations can 

be done with performing less effort with Cartesian Grid even it is harder to examine 

flow treatment near boundaries (Coirier, 1995). Body-fitted grid schema is preffered 

for the industrial problems, generally which have more sophisticated configuration, 

because behaviour of the fluid near boundaries is desired to observe with higher 

accuracy (Blazek, 2001). 

In a typical manner, rectangular shape where distribution of grid points are in 

sequence order along grid lines is preferred for the computational domain. Hence, the 

reference of grid points may be easily identified with using appropriate grid lines. 

Nevertheless, uniform grid interval can ease the process of grid generation in a 

rectangular physical domain (Hoffmann 1989). 

As mentioned before, element structure is the another crucial point for grid 

generation. The elements in a mesh can be classified in various ways. The easiest is 

based upon the dimention and type of the elements. Common elements in 2-D are 

triangles or rectangles, and common elements in 3-D are tetrahedra or bricks. The 
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most basic form of mesh clasification is based upon the connectivity of the mesh and 

algorithms shortly be summarized as,  

A) Structured Methods 

1. Algebric Grid Generation 

2. Eliptic Grid Generation 

3. Conformal Mappings 

B) Unstructured Methods 

1.Octree Method 

2.Delaunay Method 

3.Advancing Front 

C) Hybrid Methods 

Another categorization can be made to the solution based point of view and it called 

fixed or adaptive type. Grid which discretizes the continuous domain of interest may 

be static, established once and for all the domain at the beginning of the computation 

that it is called as fixed or it may be dynamic tracking the features of results while 

the calculation still in progress. Adaptive grid domain evolve itself to establish best 

approximation around the problamatic vicinity (Plewa et. al. 2005). 

As a consequence, in this study formed grids should satisfy both body-fitted and 

rectangular shaped element features as possible as could it be and it is considered to 

be fixed type. Moreover, the generated grids are formed with algebric methods which 

is introduced under structured methods. 

 

4.2 Forming Computational Domain 

 

As mentioned before two kind of fundemental equation is going to be investigated; 

1. Heat Conduction 

2. Potential Flow 

Below mentioned fundamental equations will be solved on node points and both of 

the equations will be applied to the spherical and the prolate spheroidal physical 

domains respectively. Therefore, two kinds of transformation is going to be placed in 

this thesis.  
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Transformation to spherical coordinates to rectangular coordinates for axes can be 

done with the below mentioned equations (Moon 1988); 

x rSin( )Cos( )= θ φ                    (4.1) 

y rSin( )Sin( )= θ φ                    (4.2) 

z rCos( )= θ                     (4.3) 

θ  is the angle between Z and Y ordinates, φ  is the angle between X and Y ordinates 

and r is the radius of the sphere inside the below designated borders. 

0 r≤ ≤ ∞                   (4.4a) 

0 ≤ θ ≤ π                   (4.4b) 

0 2≤ φ ≤ π                   (4.4c) 

Ordinates and related angles can be seen in Figure (4.4). 

 

Figure 4.4: Spherical Coordinate’s Projection (Calculus 1998 p.534) 

Beginning stage of grid generation in spherical coordinate system is the 

determination of the borders. In first experiment there would be two spheres. One 

sphere is encompassed by another sphere. Sphere bodies are symmetric in three 

ordinate. Therefore it will be easy to implement sweep philosophy. In second stage, 

determination of location of the node points in r-ordinate is executed. Then, sweep 

operation is applied to the line, which node points previously localized, between 0 

to π  in θ-direction. Generated fan is shown in Figure (4.5). 
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Figure 4.5: 2-D View of Generated Fan 

Last step is the revolving fan through its edges around φ  angle from 0 to 2π . 

Revolved fan in 2 dimensions and formed grid in 3 dimensions is shown in Figure 

(4.6). As clearly seen Figure (4.5) and Figure (4.6), form fitted grid type is 

successfully generated around inner sphere. Additionally desired rectangular shaped 

elements perfectly generated inside the domain. 

 

Figure 4.6: 3-D View of Generated Grid  

Transformation to prolate spheroidal coordinates to rectangular coordinates for axes 

can be done with the below mentioned equations (Moon 1988) within previously 
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mentioned borders (Equation 3.3a to 3.3c). Ordinates and related angles can be seen 

in Figure (4.7). 

x aSinh( )Sin( )Cos( )= η θ φ                   (4.4) 

y aSinh( )Sin( )Sin( )= η θ φ                   (4.5) 

z aCosh( )Cos( )= η θ                    (4.6) 

 

Figure 4.7: Prolate Spheroidal Coordinate’s Projection (Moon 1988 p. 31 ) 

Beginning stage of grid generation in prolate spheroidal coordinate system is the 

determination of the borders. This time there would be a Prolate Spheroidal body 

which is encompassed by a sphere. Prolate Spheroidal body is symmetric to Z 

ordinate. Therefore, after determination of location of the node points in η-ordinate, 

sweep operation will be executed in θ-direction between 0 to π . Generated fan is 

shown in Figure (4.8). 

 

Figure 4.8: 2-D View of Generated Fan 
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Last step is the revolving fan through it’s edges around φ  angle from 0 to 2π . 

Revolved fan in 2 dimensions and formed grid in 3 dimensions is shown in Figure 

(4.9). 

 

Figure 4.9: 3-D View of Generated Grid. 

Form fitted grid type around prolate spheroidal body is accomplished. Moreover, 

desired rectangular shaped elements perfectly generated inside the domain. More 

detailed pictures around body and the pole point which can not clearly seen in Figure 

(4.8) and (4.9) are given in Figures (4.10) and (4.11). 

 

Figure 4.10: Form Fitted Grid Around a Prolate Spheroidal Body 
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Adjacent view of the pole region is shown in Figure (4.11). 

 

Figure 4.11: Enlarged View of the Pole Region 

In Figure (4.11) it is seen that outer border of the prolate spheroid body is formed 

with the conjunction of the lines. Exact shape can be achieved, if the amount of the 

node number is increased. However, there is a major problem which is related with 

the node number for external flows. Hoffmann (1989) summarize problem as; any 

given problem may be considered either as an internal flow problem or an external 

flow problem. The selection of the computational domain for internal flows is 

relatively simple, because the domain of the solution can be uniquely identified 

based on the well defined physical domain. On the other hand, the selection of 

computational domain for external flow is not simple. The boundaries of such 

domains will include artificial boundaries set in the free stream (far field). The 

difficulty is primarily associated with the specifications of farfield boundary 

associated with external flow. Ideally, the location of the farfield boundary should be 

set as far as possible. However, from the pratical point of view, this is not a viable 

option. Since one is limited in the number of grid points and since one ideally would 

like to maximize the grid points density to increase accuracy, a finite computational 

domain must be selected. 

Therefore, from efficiency point of view, number of grid points and computational 

domain must be selected in parallelism of the needs. If accuracy requirement are 

excessive, node number will be enhanced but, it extends computational time. To 

abate the time problem for external flow problems, grid reduction should be applied 
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and grids close to the free stream (far field) are formed coarse as it could be 

(Ferziger 2002). 

Proportional node spans’ increment in θ direction while advancing to the free stream 

(far field) is clearly shown in Figure (4.12). 

 

Figure 4.12:  Cross Sectional View of the Prolate Spheroidal Body Grid 
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5. NUMERICAL RESULTS 

 

In this section, the Fortran codes which are written to solve 3-D heat and potential 

flow problems are going to introduced. Codes, have modules to produce grid for 

desired geometries which are briefly mentioned in previous section and solve 

discretized fundamental equations inside the interior domains and give results which 

are arranged in matrix form. After obtaining data from fortran code, tech plot 

program which enables to monitor the datas is used for postprocessing phase of the 

heat conduction and potential flow equations results around concerned bodies both in 

constructed in spherical and prolate spheroidal coordinates.  

In first two subsections, heat transfer equation in spheric and oblate spheroidal layout 

are investigated. In last two subsections, potential flow around both in spherical and 

prolate spheroidal bodies are investigated. Additionally, boundary conditions –both 

for interior and exterior borders- which have important role while the iteration 

proceeding are mentioned in this section. 

 

5.1 Solution of the Heat Equation in Spherical Polar Coordinates 

 

First of all, physical domain is going to be constructed. Assume a domain between 

two 3-D sphere shells. One of them is smaller then the other one and the smaller 

sphere located in the middle of the larger sphere. Smaller one is assumed to be a rigit 

3-D body. Nevertheless, assume interior/exterior spheres have a steady temperature 

values and they do not change in time domain. Heat conduction is going to be solved 

in the volume which is between two spheres. Schematic view of the problem is given 

in Figure (5.1). 

Heat Conduction equation in spherical coordinates is, 

2 2 2

2 2 2 2 2 2 2

T T 2 T 1 T Cot( ) T 1 T

t r r r r r r Sin

 ∂ ∂ ∂ ∂ θ ∂ ∂
= α + + + + 

∂ ∂ ∂ ∂θ ∂θ θ ∂φ 
              (5.1) 
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If heat conduction problem assumed as steady, equation (5.1) becomes; 

2 2 2
2

2 2 2 2 2 2 2

T 2 T 1 T Cot( ) T 1 T
0 T 0

r r r r r r Sin

 ∂ ∂ ∂ θ ∂ ∂
+ + + + = ⇔ ∇ = 

∂ ∂ ∂θ ∂θ θ ∂φ 
            (5.2) 

If first order central difference approximation is applied with using same 

considerations for equation (2.14), the following equation will be obtained for steady 

heat conduction which is in spherical coordinate system; 

i 1, j,k i, j,k i 1, j,k i 1, j,k i 1, j,k2 2 2
i, j,k i, j,k i, j,k i, j,k2

i, j,k i, j,k

T 2T T T T
r Sin 2r Sin

r 2 r
− + + −

   − + −
θ + θ   

∆ ∆      
 

 i, j 1,k i, j,k i, j 1,k i, j 1,k i, j 1,k2
i, j,k i, j,k i, j,k2

i, j,k i, j,k

T 2T T T T
Sin Sin Cos

2
− + + −

   − + −
+ θ + θ θ   

∆θ ∆θ      
 

      i, j,k 1 i, j,k i, j,k 1

2

T 2T T
0− +− + 

+ = 
∆φ 

          (5.3) 

Revert back to Equation (2.22) and rewrite the same for solution of the three 

dimensional heat conduction. 

m 1 m 1 m m 1
i, j,k i 1, j,k i 1, j,k i, j 1,k

1
T GSW T GSE T GSS T

GSP
+ + +

− + −

−
= • + • + •  

   m m 1 m
i, j 1,k i, j,k 1 i, j,k 1GSN T GSL T GSU T 0+

+ − +
+ • + • + • =             (5.4) 

Open forms of the coefficients GSW, GSE, GSN, GSS, GSU, GSL and GSP have 

already been given in Chapter (2). 

Regarding the boundary conditions Hoffmann (1989) stated that, a unique and 

accurate solution for a given system of PDEs within a domain can be obtained only 

when proper boundary conditions are specified. Depending on the particular 

application, some of the boundary conditions are provided form the physics of the 

problem, however, in general not all the boundary conditions are known apriori. 

Therefore, not only the flow properties may be unknown within the domain of the 

solution, some of the unknowns on the boundaries can not be arbitrarily specified. 

These values depend on the solution of the interior domain as well as information 

provided from the exterior. The boundaries of any domain may be composed of; 
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 1. Solid Surface 

 2. Free Stream Boundary of Far Field Boundary Composed of inflow and/or 

outflow 

 3. Symmetric Boundary 

 4. Branch Cut 

 5. Periodic Boundary. 

 

Figure 5.1: Schematic 2-D view of Subsection (5.1). 

Solid Surface boundary condition is convenient for investigated heat conduction 

problem. Because, the value of the boundaries do not change in time domain in other 

words they are steady. Therefore, this type of boundary condition is named Dirichlet 

condition (Blazek, 2001). 

In this case (as mentioned before) smaller sphere is assumed to be a solid body, the 

inner volume of the smaller sphere is out of interest. Outer sphere and smaller sphere 

conduct heat continuously so, both sphere boundaries are considered as Dirichlet 

boundary condition. Eventually, present case can be assumed to be heat-conduction 

problem between the two shells.  

Fortran code run the iterative cycle of Equation (5.4). Algorithm of the Fortan 

program for the heat conduction case is given in Figure (5.4). The code generates the 

3-D mesh in desired type and obtain results for all nodes between the mentioned 

3 unit 

15˚C 

100˚C 

10 unit 
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volume. While obtaining results from the computer following boundary conditions 

are used; 

1) Temperature on the surface of the inner sphere: 15°C  

2) Temperature on the surface of the outer sphere: 100°C 

where geometries for the spheres are taken as; 

1) Inner sphere has a radius of 3 cm  

2) Outer sphere has a radius of 10 cm 

Additionally, an initial guess has been made for the nodes in the region because of 

faster convergence. 5°C is appointed as initial condition for all nodes in the region. 

 

Figure 5.2: Algorithm for the Heat Conduction Problems 

Different grid density can be determined by changing node numbers in ordinates, but 

homogeneous grid distribution is requested for the reasons, 

1) Sphere domain is axisymetric (Geometry of domain has same cross-sections 

in every ordinates). 

2) Same accuracy is requested in every dimentions (Comparison can be made 

between the ordinates) 

If 41x41x41 nodes used for the domain; half grid view of the domain is given in 

Figure (5.3); 

Definition of Parameters Phase 

Mesh Construction Phase 

Appointment of Boundary 
Condition Phase 

Temperature Evaluation Phase  

Post-Processing Phase 
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Figure 5.3: Grid View of Half Domain in Spherical Coordinates 

Another illustratiof the domain is presented in Figure (5.4). 

 

Figure5.4: Different Aspect of Grid Domain in Spherical Coordinates. 

The inner sphere surface which has a uniform temperature at 15°C is represented 

with blue color and the outer sphere surface which has a uniform temperature at 

100°C is represented with red color. Temperature distribution between two sphere 
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shells is shown in Figure (5.5). Symmetrical temperature distribution can be 

monitored via legend. 

 

Figure 5.5: Half View of the Results with Grid in Spherical Coordinate 

 

Figure 5.6: Another View of the Results without Grid in Spherical Coordinates 
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Another cross section of the 3-D physical space is shown in Figure (5.6), 

homogeneous temperature distribution in 3 dimention precisely can be seen easily in 

the region. 

 

5.2 Solution of the Heat Equation in Prolate Spheroidal Coordinates 

 

Now same prosedure which is applied for spherical coordinates in subsection 5.1 is 

going to be implemented for the body which is defined in Prolate Spheroidal 

Coordinates.  

If first order central difference approximation is used for heat conduction in prolate 

speroidal coordinate, the following equation will be obtained; 

( ) ( )
( )

( )i 1, j,k i, j,k i 1, j,k i 1, j,k i 1, j,k

2

T 2T T T T
Z , Sin Sin Coth( )

2
− + + −

  − + − 
η θ θ + θ η     ∆η∆η   

 

              ( )
( )

i, j 1,k i, j,k i, j 1,k i, j 1,k i, j 1,k

2

T 2T T T T
Sin Cos( )

2
− + + −

− + −
θ + θ 

∆θ∆θ 
 

     ( )
( )

i, j,k 1 i, j,k i, j,k 1

2

T 2T T
Sin 0− +− +

+ θ =
∆φ

               (5.5) 

* Remember that (see Chapter 3); 

( )
2 2

2 2

Sinh ( )Sin ( )
Z ,

Sinh ( ) Sin ( )

η θ
η θ =

η + θ
                 (5.6) 

Same iteration approximation which is mentioned in equation (5.4) is used for the 

Prolate Spheroidal Coordinates except GSW, GSE, GSS, GSN, GSL, GSU 

coefficients. Open forms of the coefficients for Prolate Spheroidal Body are given in 

Chapter 3. 

Same assumption is going to be done for the Prolate Spheroidal Domain. Again inner 

body is cold, has a continuos value and outer boundary is warm, has a continuous 

value. Prolate Spheroidal body is located in the middle of the larger sphere. 

Additionally, the smaller one is a  assumed to be a rigit 3-D body. While obtaining 

results from the computer following boundary conditions are used; 
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1) Temperature on the surface of the inner sphere: 15°C  

2) Temperature on the surface of the outer sphere: 100°C 

 

Figure 5.7: Schematic 2-D View of Subsection (5.2) 

An initial guess has been made for the nodes in the region because of faster 

convergence. 20°C is appointed as initial condition for all nodes in the region. Same 

Algorithm was used which is shown in Figure (5.2) to obtain results. 

If 41x41x41 nodes used for the domain; half grid view of the domain is given in 

Figure (5.8); 

 

15˚C 

100˚C 

10 unit 
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Figure 5.8: Grid View of Half Domain in Prolate Spheroidal Coordinates  

Another illustration of the domain is presented in Figure (5.4). 

 

Figure 5.9: Different Aspect of Grid Domain in Prolate Spheroidal Coordinates 
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The inner sphere surface which has a uniform temperature at 15°C is represented 

with blue color and the outer sphere surface which has a uniform temperature at 

100°C is represented with red color. Temperature distribution between two sphere 

shells is shown in Figure (5.5). Symmetrical temperature distribution can be 

monitored via legend. 

 

Figure 5.10: Half View of the Results with Grid in Prolate Spheroidal Coordinates 

 

Figure 5.11: Another view of the results without Grid in Prolate Spheroidal 

Coordinates 
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Another portion of the region which is shown in Figure (5.11). Homogeneous 

temperature distribution with values can be seen in this Figure. 

 

5.3 Solution of 3-D Potential Flow in Spherical Polar Coordinates 

 

In this section, same physical domain which was used in subsection 5.1 -heat 

conduction problem- is going to be used but, this time external flow problem is going 

to be investigated. The surface of the sherical body is considered to be immersed in a 

uniform flow which is infinite extent. The flow passes over the outside surface of the 

body and is unconfined. 

First, velocity potential function around the body will be solved, then velocities and 

pressure coefficient values on the node points will be obtained respectively. However 

the value of the potential function around vicinity of the boundaries are not known 

either on the surface of the inner sphere and the outer sphere encompasses the entire 

domain. Therefore, boundary conditions gain more important role then before. 

The 2-D model of the problem is illustrated in Figure (5.12). Outer body shown in 

Figure 5.12 is taken as sphere and it has been contemplated as control volume. 

Control volume explained in various sources. For example White (1995) define 

control volume as, control volume is an attentively selected finite region by the 

analyst regarding the features of the boundaries. Moreover, Mironer (1976) stated 

that control volume boundaries has to be open and they have to allow quantities even 

it could be scalar or vectorel like mass, momentum and energy to cross through. 

Same as the heat conduction problem inner sphere is presumed as solid so there will 

not be any penetration into inner body.  

The velocity component normal to the surface of the solid boundary should be taken 

as 0 (Gören, 2007). Therefore, normal derivative of the velocity potential according 

to Fig 5.12 – in other words inner boundary condition on the small sphere r direction 

- can be shown as; 

rV 0
r

∂ψ
= =

∂
                    (5.7) 
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Figure 5.12: Schematic 2-D View of Subsection (5.3). 

On contrary to subsections (5.1) and (5.2) boundary condition is now containing 

derivative of the potential function. Blazek (2001) stated that if specification of the 

boundary includes a derivatives of the dependent variables it is named as Neumann 

condition.  

As mentioned in previous pages outer sphere taken as control volume and it is 

assumed that border and its close vicinity are enough far away in such manner the 

resultant velocity vectors on the outer sphere do not corruptted. Therefore, according 

to Fig (5.13) there will not be any velocity components in radial and angular 

directions. According to Moon (1988) the gradient of the velocity potential function 

in spherical coordinates is given below, 

1 1
grad

r r r sin

∂ψ ∂ψ ∂ψ
ψ = + +

∂ ∂θ θ ∂φ
                 (5.8) 

Radial velocity component on the outer sphere is; 

r rV a
r

∂ψ
=

∂
                    (5.9) 

3 unit 

Boundary of the Control Volume 

Boundary of the inner body 

10 unit 

V∞

r 

θ 
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On the other hand radial component of the velocity can be expressed in terms of the 

uniform flow which was designated as V∞ in Figure 5.12. 

 

Figure 5.13: Quarter Portion of a Half Sphere (Moon, 1988, p.24) 

Figure (5.13) is given to illustrate the vector transformations from Spherical 

Coordinates (r,θ,φ) to Cartesian Coordinates (x,y,z). If uniform flow is given in z-

direction, trigonometric relation between V∞ and Vr can be expressed according to 

Figure (5.13) as follows; 

rV V Cos( )∞= − θ                  (5.10) 

If Equations (5.9) and (5.10) equalize then; 

V Cos( )
r ∞

∂ψ
= − θ

∂
                 (5.11) 

Equation (5.11) will be discretized with backward euler because absence of fictive 

nodes around domain. Therefore, outer nodes in domain form border of the problem.  

N N 1 V Cos( )
r

−
∞

ψ − ψ
= − θ

∆
                (5.12) 

Eventually, outer boundary condition can be expressed as, 

N N 1 V Cos( ) r− ∞ψ = ψ − θ ∆                 (5.13) 

Main iteration for the velocity potential around sphere is deduced in Section 2. 

Revert back and recall velocity potential in the spherical polar coordinates. 
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2 2 2
2

2 2 2 2 2 2 2

2 1 Cot( ) 1
0

r r r r r r Sin

∂ ψ ∂ψ ∂ ψ θ ∂ψ ∂ ψ
∇ ψ = + + + + =

∂ ∂ ∂θ ∂θ θ ∂φ
           (5.14) 

Trigonometric term in equation (5.14) denominator causes a problem in the 

numerical calculations and therefore it should be eliminated from the equation. 

Because it will lead to singularity when θ = 0 in the discretized form. Hence 

multiplying both sides of equation (5.14) by 2 2r sin ( )θ ; 

2 2 2
2 2 2 2

2 2 2
r Sin 2rSin Sin Sin Cos 0

r r

∂ ψ ∂ψ ∂ ψ ∂ψ ∂ ψ
θ + θ + θ + θ θ + =

∂ ∂ ∂θ ∂θ ∂φ
           (5.15) 

If first order central difference approximation applied to Equation (5.15), 

i 1, j,k i, j,k i 1, j,k i 1, j,k i 1, j,k2 2 2 2
i, j,k i, j,k i, j,k i, j,k2

i, j,k i, j,k

2
r Sin 2r Sin

r 2 r
+ − + −

   ψ − ψ + ψ ψ − ψ
∇ ψ = θ + θ   

∆ ∆      
 

    i, j 1,k i, j,k i, j 1,k i, j 1,k i, j 1,k2
i, j,k i, j,k i, j,k2

i, j,k i, j,k

2
Sin Sin Cos

2
+ − + −

   ψ − ψ + ψ ψ − ψ
+ θ + θ θ   

∆θ ∆θ      
 

       i, j,k 1 i, j,k i, j,k 1

2

2
0+ −ψ − ψ + ψ 

+ = 
∆φ 

             (5.16) 

If Gauss-Seidel iteration schema with same notation and coefficients, which was 

used in section 2.1 is applied for the velocity potential which is opened in spherical 

coordinate system, Equation (5.16) takes the form, 

m 1 m 1 m m 1
i, j,k i 1, j,k i 1, j,k i, j 1,k

1
GSW GSE GSS

GSP
+ + +

− + −

−
ψ = •ψ + • ψ + •ψ  

   m m 1 m
i, j 1,k i, j,k 1 i, j,k 1GSN GSL GSU 0+

+ − +
+ • ψ + •ψ + • ψ =           (5.17) 

Open forms of the coefficients GSW, GSE, GSN, GSS, GSU, GSL and GSP have 

already been given in Chapter (2). 

Fortran code has been developed to execute the iteration cycle of Equation (5.17). 

Algorithm of the problem for the potential flow case is depicted in Figure (5.14). The 

code generates the 3-D grid in desired type and calculates velocity potential values 

for all nodes within the desired volume. Then, gives graph of the velocity vectors and 

pressure coefficient distribution around sphere. 
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Figure 5.14: Algorithm for Potential Flow Problems 

Grid algorithm which is used in potential flow around sphere problem is the same as 

the heat conduction problem around sphere body so there is no need to mention and 

present any view of the domain. If 41x41x41 nodes used for the domain; velocity 

potential lines and contour representation are shown in Figure (5.15) and Figure 

(5.16). Figure (5.15) illustrates 2 dimentional cross-sectional view of the domain. 

Regions shown in red color represents high potential values while regions having 

lower potential values are represented in blue colour. Moreover, velocity potential 

function gradually decreases while advancing to the outlet of the flow. The expected 

colour distribution is seen obviously via legend. Another view of the domain is given 

in Figure (5.16). That figure illustrates 3 dimentional view of the 1/8th portion. Same 

slope of the velocity potential lines and symmetrical distribution in 3 dimensions is 

clearly seen in Figure (5.16). 

Definition of Parameters Phase 

Grid Construction Phase 

Velocity Potential Evaluation 
Phase  

Post-Processing Phase 

Boundary Evaluation Phase 

Velocity and Pressure Coefficient 
Evaluation Phase 
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Figure 5.15: 2-D Presentation of Velocity Potential. 

 

Figure 5.16: 3-D Presentation of Velocity Potential. 

In order to determine the velocity components in spherical coordinate system, revert 

back to the gradient of the velocity potential function (ψ) which is given in Equation 

(5.8). 

1 1

r r r sin

∂ψ ∂ψ ∂ψ
∇ψ = + +

∂ ∂θ θ ∂φ
               (5.18) 

If Equation (5.18) is seperated into velocity components, we obtain ; 
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rV
r

∂ψ
=

∂
                  (5.19) 

1
V

rθ

∂ψ
=

∂θ
                  (5.20) 

1
V

r sinϕ

∂ψ
=

θ ∂φ
                 (5.21) 

If discretization with first order central differencing is applied to equations (5.19) 

(5.20) and (5.21) velocity components can be shown as;  

i 1, j,k i 1, j,k
rV ( )

2 r
+ −ψ − ψ

=
∆

                (5.18) 

i, j 1,k i, j 1,k1
V ( )

r 2
+ −

θ

ψ − ψ
=

∆θ
                (5.19) 

i, j,k 1 i, j,k 11
V ( )

rSin 2
+ −

ϕ

ψ − ψ
=

θ ∆φ
                (5.20) 

As mentioned before, for the postprocessing Tecplot program will be used. For the 

meaningfull assessment of the for velocity vectors results, velocity vectors have to be 

expressed in cartesian coordinates. Therefore, Fortran velocity output datas have to 

be given in cartesian coordinates. 

 

Figure 5.17: Transformation from Spherical Coordinates to Cartesian Coordinates. 

Vectors in spherical coordinates is illustrated in Figure (5.17). Conversion in r-

direction in spherical coordinates to x-direction in cartesian coordinates is given 

specificly in Figure (5.18). 
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Figure 5.18: Transformation for r-direction (Thomas, 1998, p.844) 

If same conversion is applied for other variables y and z, below mentioned equations 

are obtained, 

y r sin sin= θ φ                  (5.21) 

z r cos= θ                   (5.22) 

Transformation for r-component briefly summarized above, but vector 

transformations can be done only after by resolving each of unit vectors ir, iθ, iΦ in 

terms of unit vectors in cartesian coordinates. Exact formulas regarding to 

transformation can be given as; 

x ri sin cos i cos cos i sin iθ φ= θ φ + θ φ + φ             (5.23a) 

y ri sin sin i cos sin i cos iθ φ= θ φ + θ φ + φ             (5.23b) 

z ri cos i sin iθ= θ − θ                (5.23c) 

Within the path of obtained vectorial transformation formulas ( Equations 5.23a to 

5.23c ) let’s apply them to discretized velocity components in spherical coordinates 

which were given in equations (5.18) to (5.20). 

i 1, j,k i 1, j,k i, j 1,k i, j 1,k
x

1
V sin cos ( ) cos cos ( )

2 r r 2
+ − + −ψ − ψ ψ − ψ

= θ φ + θ φ
∆ ∆θ

   

     i, j,k 1 i, j,k 11
sin ( )

rSin 2
+ −ψ − ψ

+ φ
θ ∆φ

          (5.24) 

i 1, j,k i 1, j,k i, j 1,k i, j 1,k
y

1
V sin sin ( ) cos sin ( )

2 r r 2
+ − + −ψ − ψ ψ − ψ

= θ φ + θ φ
∆ ∆θ

   

     i, j,k 1 i, j,k 11
cos ( )

rSin 2
+ −ψ − ψ

+ φ
θ ∆φ

          (5.25) 

i 1, j,k i 1, j,k i, j 1,k i, j 1,k
z

1
V cos ( ) sin ( )

2 r r 2
+ − + −ψ − ψ ψ − ψ

= θ − θ
∆ ∆θ

            (5.26) 
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Obtained equations will be used the for vectoral representation of the velocity 

components. Figure (5.19) illustrates the 2-D cross-sectional slice of the domain. 

 

Figure 5.19: Velocity Distribution in the Domain 

Figure (5.19) prove that selection of control volume and application of outer 

boundary condition is perfectly provided. Because the directions and magnitudes of 

the vectors on the outer sphere are same. 

 

Figure 5.20: Another View of Velocity distribution 
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Closer view of the inner body is shown in Figure (5.20). In this Figure, velocity 

vectors is represented with arrow heads to obtain better view. Shown velocity vectors 

in Figure (5.20) prove that there is no penetration into the innerbody and parallel 

flow to the surface condition is provided. Therefore, compliance of the algorithm for 

inner boundary condition is guaranteed. 

For the contoural representation resultant velocities have to be calculated. Resultant 

velocity can be obtained by Equation (5.27), 

2 2 2
x y zV V V V= + +                  (5.27) 

 

Figure 5.21: Velocity Distribution Contours Around a Sphere. 

Velocity distribution between two sphere shells is shown in Figure (5.21). Red 

colour represents the speedy flows and the blue colour represents stagnation points. 

Symmetrical velocity distribution can be monitored via legend. Legend represents 

proportional velocities inside the domain ( nodev

V∞

). 
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After obtain resultant velocities around sphere now it is easy to find Pressure 

Coefficient distribution around sphere. The nondimensional Pressure coefficient 

(also known as the Euler number) is defined as, 

p
2

p p
C

1
V

2

∞

∞

−
=

ρ

                  (5.28) 

The Bernoulli equation for steady flow is; 

2 2
1 1

1 1
p v p V

2 2∞ ∞+ ρ = + ρ                 (5.29) 

Inserting the Bernoulli equation into Equation (5.28), this definition results in, 

2
1

p 2

v
C 1

V∞

= −                   (5.30) 

 

Figure 5.22: Pressure Coefficient Around a Sphere 
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Figure (5.22) graph shows pressure coefficient distribution around sphere body. As it 

seen from the graph, entrance and end point of the sphere is egual to 1 and it means 

there are two stagnation points while proceding on the surface of the iner body. 

According to the graph maximum velocity is observed on 90˚. Moreover, 

symmetrical pressure coefficient distribution according to 90˚ axis is clearly seen on 

Figure (5.22). It is the proof of the right working algorithm. Verification of the graph 

is going to be done in section 6. 

 

5.4 Solution of 3-D Potential Flow in Prolate Spheroidal Coordinates 

 

Now the last case of the problem will be intruduced. In this subsection, same 

physical space which was used in heat conduction problem around prolate body –

Subsection (5.2)- is going to be used but, this time external flow evaluation will be 

investigated. Prolate spheroidal body is again considered to be immersed in a 

uniform flow which is infinite extent. The flow passes over the outside surface of the 

body and is unconfined. 

In this example again boundaries of the problem are not steady, therefore Neumann 

Boundary Condition will be used. Same as the sphere flow problem -Subsection 

(5.3)- inner sphere is presumed as solid. Therefore there will not be any penetration 

into inner body. The outer body is taken as sphere and it has been contemplated as 

control volume. Equation (5.7) and (5.10) will be implemented as boundary 

conditions. 

Main iteration for the velocity potential around sphere is deduced in Section 3. 

Revert back and recall discretized velocity potential in prolate spheroidal 

coordinates, 

( ) ( )
( )

( )i 1, j,k i, j,k i 1, j,k i 1, j,k i 1, j,k

2

2
Z , Sin Sin Coth( )

2
+ − + −

  ψ − ψ + ψ ψ − ψ 
η θ θ + θ η     ∆η∆η   

 

         ( )
( )

i, j 1,k i, j,k i, j 1,k i, j 1,k i, j 1,k

2

2
Sin Cos( )

2
+ − + −

ψ − ψ + ψ ψ − ψ
θ + θ 

∆θ∆θ 
 

     ( )
( )

i, j,k 1 i, j,k i, j,k 1

2

2
Sin 0+ −ψ − ψ + ψ

+ θ =
∆φ

          (5.31) 
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Figure 5.23: Schematic 2-D view of Subsection (5.4). 

If Gauss-Seidel iteration schema with same notation and coefficients, which was 

used in section 3 is applied for the velocity potential which is opened in prolate 

spheroidal coordinate system, Equation (5.31) takes the form, 

m 1 m 1 m m 1
i, j,k i 1, j,k i 1, j,k i, j 1,k

1
PW PE PS

PP
+ + +

− + −

−
ψ = •ψ + • ψ + •ψ  

   m m 1 m
i, j 1,k i, j,k 1 i, j,k 1PN PL PU 0+

+ − +
+ • ψ + •ψ + • ψ =           (5.32) 

Open forms of the coefficients PW, PE, PN, PS, PU, PL and PP have already been 

given in Chapter 3. 

Fortran code has been developed to execute the iteration cycle of Equation (5.32). 

Algorithm of the problem for the potential flow around prolate spheroidal body case 

is depicted in Figure (5.14). The code generates the 3-D gird in desired type and 

calculates velocity potential values for all nodes within the desired volume. Then, 

gives graph of the velocity vectors and pressure coefficient distribution around 

prolate spheroidal body. 

Grid algorithm which is used in potential flow around prolate spheroidal body is the 

same as the heat conduction problem for prolate body so there is no need to mention 

Boundary of the Control Volume 

Boundary of the inner body 

V∞

4 unit 
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and present any view of the domain. If 41x41x41 nodes used for the domain; velocity 

potential lines and contour representation are shown in Figure (5.24) and Figure 

(5.25). Figure (5.24) illustrates 2 dimentional cross-sectional view of the domain. 

 

Figure 5.24: 2-D Presentation of Velocity Potential. 

Regions shown in red color represents high potential values while regions having 

lower potential values are represented with blue colour. Moreover, velocity potential 

function gradually decreases while advancing to the outlet of the flow. The expected 

colour distribution is seen obviously via legend. Another view of the domain is given 

in Figure (5.25). That figure illustrates 3 dimentional view of the 1/8th portion. 

Symmetrical distribution in 3-D is clearly shown in Figure (5.16). 
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Figure 5.25: 3-D Presentation of Velocity Potential. 

In order to determine the velocity components in prolate spheroidal coordinate 

system, gradient of the velocity potential function (ψ) has to be investigated, which 

is given in Moon (1988) as; 

12 2 2

a1
grad a a

a sinh sina(sinh sin )

φ

η θ

 ∂ψ ∂ψ ∂ψ
ψ = + + ∂η ∂θ η θ ∂φ η + θ

           (5.33) 

If Equation (5.33) separated into velocity components, we obtain;  

12 2 2

1
V

a(sinh sin )
η

∂ψ
=

∂ηη + θ
               (5.34) 

12 2 2

1
V

a(sinh sin )
θ

∂ψ
=

∂θη + θ
               (5.35) 

1
V

a sinh sinφ

∂ψ
=

η θ ∂φ
                (5.36) 

If Equations (5.34) (5.35) and (5.36) are discretized with first order central 

differencing approximation, velocity components will be obtained as, 



 58 

i 1, j,k i 1, j,k

12 2 2

1
V ( )

2a(sinh sin )

+ −

η

ψ − ψ
=

∆ηη + θ
              (5.37) 

i, j 1,k i, j 1,k

12 2 2

1
V ( )

2a(sinh sin )

+ −

θ

ψ − ψ
=

∆θη + θ
              (5.38) 

i, j,k 1 i, j,k 11
V ( )

a sinh sin 2
+ −

φ

ψ − ψ
=

η θ ∆φ
               (5.39) 

As mentioned before, for the postprocessing Tecplot program will be used. For the 

meaningfull assessment of the for velocity vectors results, velocity vectors have to be 

expressed in cartesian coordinates. Therefore, Fortran velocity output datas have to 

be given in cartesian coordinates. 

 

Figure 5.26: Transformation from Prolate Spheroidal Coordinates to Cartesian 

Coordinates. 

Vectors in Prolate Spheroidal Coordinates is depicted in Figure (5.26). Conversion in 

η-direction in prolate spheroidal coordinates to x-direction in cartesian coordinates is 

given specificly in Figure (5.27). Attention should be paid to the fact that focus 

distance a is the multiplier of the variable in η-direction so it will be in every 

conversion step. 



 59 

                     

Figure 5.27: Transformation for η-Direction. 

If same conversion is applied for other variables y and z, below mentioned equations 

are obtained, 

y a sinh sin sin= η θ φ                  (5.40) 

z a sinh cos= η θ                  (5.41) 

Transformation for r-component briefly summarized above, but vector 

transformations can be done only after by resolving each of unit vectors iη, iθ, iΦ in 

terms of unit vectors in cartesian coordinates. Exact formulas regarding to 

transformation can be given as; 

x ri a sinh sin cos i a sinh cos cos i a sinh sin iθ φ= η θ φ + η θ φ + η φ          (5.42a) 

y ri a sinh sin sin i a sinh cos sin i a sinh cos iθ φ= η θ φ + η θ φ + η φ          (5.42b) 

z ri a sinh cos i a sinh sin iθ= η θ − η θ              (5.42c) 

within the path of obtained vectorial transformation formulas ( Equation 5.42a to 

5.42c ) let’s settle them to velocity components in cartesian coordinates. Focus 

distance a is simplified.  

i 1, j,k i 1, j,k
x 12 2 2

1
V sinh sin cos ( )

2 r(sinh sin )

+ −ψ − ψ
= η θ φ

∆η + θ
    

  i, j 1,k i, j 1,k

12 2 2

1
sinh cos cos ( )

2(sinh sin )

+ −ψ − ψ
+ η θ φ

∆θη+ θ
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   i, j,k 1 i, j,k 11
sin ( )

sin 2
+ −ψ − ψ

+ φ
θ ∆φ

             (5.43) 

i 1, j,k i 1, j,k
y 12 2 2

1
V sinh sin sin ( )

2 r(sinh sin )

+ −ψ − ψ
= η θ φ

∆η + θ
    

  i, j 1,k i, j 1,k

12 2 2

1
sinh cos sin ( )

2(sinh sin )

+ −ψ − ψ
+ η θ φ

∆θη + θ
   

   i, j,k 1 i, j,k 11
cos ( )

sin 2
+ −ψ − ψ

+ φ
θ ∆φ

            (5.44) 

i 1, j,k i 1, j,k
z 12 2 2

1
V sinh cos ( )

2 r(sinh sin )

+ −ψ − ψ
= η θ

∆η + θ
  

  i, j 1,k i, j 1,k

12 2 2

1
sinh sin ( )

2(sinh sin )

+ −ψ − ψ
− η θ

∆θη + θ
           (5.45) 

Obtained equations will be used the for vectoral representation of the velocity 

components. Figure (5.19) illustrates the 2-D cross-sectional slice of the domain. 

 

Figure 5.28: Velocity Distribution in the Domain 
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Figure (5.28) prove that selection of control volume and application of outer 

boundary condition is perfectly provided. Because the directions and magnitudes of 

the vectors on the outer sphere are same. 

 

Figure 5.29: Another View of Velocity Distribution 

Closer view of the inner body is shown in Figure (5.29). In this Figure, velocity 

vectors is represented with arrow heads to obtain better view. Shown velocity vectors 

in Figure (5.20) prove that there is no penetration into the innerbody and parallel 

flow to the surface condition is provided. Therefore, compliance of the algorithm for 

inner boundary condition is guaranteed. 

For the contoural representation resultant velocities have to be calculated. Resultant 

velocity can be obtained by Equation (5.46), 

2 2 2
x y zV V V V= + +                  (5.46) 

Velocity distribution between two sphere shells is shown in Figure (5.30). Red 

colour represents the speedy flows and the blue colour represents stagnation points. 

Symmetrical velocity distribution can be monitored via contours. 
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Figure 5.30: Velocity Distribution Contours Around a Prolate Spheroidal Body. 

 

Figure 5.31: Pressure Coefficient Around a Prolate Spheroidal Body 

Figure (5.31) graph shows pressure coefficient distribution around prolate spheroidal 

body. As it seen from the graph, entrance and end point of the sphere is egual to 1 

and it means there are two stagnation points while proceding on the surface of the 

iner body. According to the graph maximum velocity is observed on 90˚. Moreover, 
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symmetrical pressure coefficient distribution according to 90˚ axis is clearly seen on 

Figure (5.22). It is the proof of the right working algorithm. Verification of the graph 

is going to be done in section 6. 
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6. COMPARISON OF RESULTS  

 

Potential flow over a sphere is the well-known and popular example for the external 

flow problems and it’s effortless to find analitic solution of velocity potential graph, 

velocity vectors and pressure distributions results even in the fundamental fluid 

mechanics books (White 1995, Panton 1984, Owczarek 1968, etc.) but it is hard to 

express the same for a prolate spheroidal shape. Therefore only pictural comparison 

for sphere domain is made with literature sources. Notwithstanding comparison of 

results between in house codes and two commercial codes Fluent, SymLab are 

presented in this section. 

 

6.1 In House Code Versus Fluent and Symlab for a Sphere 

 

In this subsection, analitic velocity potential result for the sphere body is compared 

with obtained results (in-house, Fluent and Symlab). Figure 6.1 illustrates 

combination of a uniform stream and a point doublet at the origin. It is taken from 

White (1995). 

 

Figure 6.1: Streamlines and Potential Lines for Inviscid Flow Past a Sphere (White 

1995. p.538) 
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In this figure, potential lines, streamlines, stagnation points and maximum velocity 

value and location point around the sphere is shown. There are two stagnation points 

one at the front (when θ equals to π ) and the other at the rear (when θ equals 0) of 

the sphere. The maximum velocity occurs at the top (when θ equals to 2
π  ) and at 

the bottom (when θ equals to 2
π−  ) of the sphere. White (1995) state that velocity 

distribution on the surface of the sphere can be found with Equation (6.1).  

s

3
V V sin

2 ∞= θ                    (6.1) 

Additionally, seperation point is shown in Figure (6.1), but laminar-boundary layer 

theory is not involved in this thesis content. Therefore, the proof of the seperation 

point is not investigated. Further details about seperation point on the sphere can be 

found in White (1991). 

Same geometry which is shown in Figure 5.12 is constructed in Fluent and Symlab 

programmes. Then the grid is generated and domain is solved with same boundary 

conditions. Various results which were obtained by using both Fluent and Symlab are 

given in Figure 6.2 to Figure 6.9. 

In Figure (6.1) a closer view of velocity vectors around a sphere is presented. This 

figure is the output of the Fluent programme. Location of the stagnation points and 

proportional view of the vectors can be monitered within the figure. 

 

Figure 6.2: Vectorial Presentation of Velocity Results Around a Sphere 
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When comparison between in-house code vectorial result (Figure 5.21) and Fluent 

vectorial result (Figure 6.2) is executed, similar vectorial distribution around the 

sphere is seen. We see both in Figure 5.21 and Figure 6.2 that,velocity vanishes at 

the front and the rear ends, same stagnation locations are shown in the analitical 

result which is shown in Figure 6.1. 

 

Figure 6.3: Contoural Presentation of Velocity Results Around a Sphere 

Contoural velocity distribution inside the domain which is obtained with Fluent, is 

shown in Figure (6.3). Red colour represents the faster flow and the blue colour 

represents stagnation points. Variation of the velocity values on the sphere surface 

can be monitored via the legend. 

Another comparison can be made for the contoural presentations of the results -

between Figures 5.21 and 6.3, again consistent distributions are seen. Legends of 

these pictures show us; 

1-) Maximum velocity is obtained when θ equals to 
2

π
and 

2

π
− radians. 

2-) Maximum velocity value is approximately 1.5U∞ . 

3-) Stagnation points are obtained when θ equals to 0 and π  radians. 

4-) Velocity values, when θ equals to 0 and π  radians, are equal to 0 . 
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5-) Symmetrical velocity distribution around sphere is obtained around the sphere. 

Accordance with the analytical results is obviously seen through the above 

mentioned results. For the item 2, approximately term is used because, unfortunately 

precise 1.5U∞  value could not be reached neither with Fluent nor with the in-house 

code. One of the Reasons of this problem is investigated in subsection 6.3. Other 

reasons summarized at the end of this subsection. 

 

Figure 6.4: Fluent Pressure Coefficient Distribution Results Around a Sphere 

Pressure Coefficient distribution results around the sphere which are both obtained 

with Fluent and Symlab, is shown in Figure (6.4) and Figure (6.5). Red colour 

represents the higher Cp values and the blue colour represents lower Cp values both 

in both Figures. Graphical results of these Figures and comprasion of the Cp results 

on the sphere surface with different programmes and analitic results are given in 

page 69.  

Surface velocity distribution along the sphere is given in Equation (6.1). Datas which 

are used in Analitic curve is given in Appendix A. In all the graphs X-axis states θ-

angle except in Figure (6.6). Fluent curve X-axis denotes proportional location of the 

node point relative to center of the sphere. Because of the additional option theorical 

datas are given with red circles in Figure (6.7) which ease the comparison. As you 
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see from the different graphs, the general slope of the Cp function is similar. 

Unfortunately, they have small differences.  

 

Figure 6.5: Symlab Pressure Coefficient Distribution Results Around a Sphere 

Now, we have to mention another detail regarding to programmes’ infrastructures to 

gain better understanding of the small differences which were encountered in the 

graphics. As known, partial differential equations can be solved either by discretizing 

the equation or by brining it into a finite dimentional subspace. Different 

discretization methods can be given as, 

1.) Finite Difference Method (FDM) 

2.) Finite Volume Method (FVM) 

3.) Boundary Element Method (BEM) 

4.) Finite Element Method (FEM) 

Programs that are used in this thesis use different discretization methodologies. For 

example Fluent, which is one of the best known CFD commercial code in the world, 

uses Finite Volume Method for analysis and Symlab uses Boundary Element Method 

for solving partial differential equations. It is a kind of panel code. On the other 

hand, in-house code uses Finite Difference Method. Nonetheless, convergence 

criteria, number of iteration steps, relaxation parameters, used grid type, number of 

nodes, etc. each affect the results. Therefore, it is very normal to see such minor 

discrepancies while using different algorithms even applied to the same geometry. 
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Figure 6.6: Fluent Graphical Pressure Coefficient Distribution 

Around a Sphere  

Figure 6.7: Symlab Graphical Pressure Coefficient Distribution 

Around a Sphere  

  

Figure 6.8: In-House Code Graphical Pressure Coefficient 

Distribution Around a Sphere  

Figure 6.9: Theoretical Graphical Pressure Coefficient 

Distribution Around a Sphere 
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6.2 In House Code Versus Fluent and Symlab for Prolate Spheroidal Body 

 

      In this subsection, commercial codes spheroidal body results are compared with 

the results obtained in-section 5. 

      Same geometry which is shown in Figure 5.23 is constructed in Fluent and 

Symlab programmes. Then the grid is generated and the domain is solved with same 

boundary conditions. Various results which were obtained by both Fluent and 

Symlab are given in Figure 6.10 to Figure 6.16. 

      In Figure (6.10) a closer view of velocity vectors around a prolate spheroidal 

body is presented. This figure is the output of the Fluent programme. Location of the 

stagnation points and proportional view of the vectors can be monitered within the 

Figure. 

 

Figure 6.10: Vector Presentation of Velocity Results Around Prolate Spheroidal 

Body 

When comparison between in-house code vectorial result (Figure 5.29) and Fluent 

vectorial result (Figure 6.10) is made, similar vectorial distribution around the 

Prolate spheroidal body is seen. We see both in Figure 5.29 and Figure 6.10 that 

velocity vanishes at the front and the rear ends. 
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Contoural velocity distribution around a prolate spheroidal body which is obtained 

by Fluent, is shown in Figure (6.11). Red colour represents the faster flow and the 

blue colour represents stagnation points. Variation of the velocity values on the 

surface can be monitored via legend. 

Another comparison can be made for the contoural presentations of the results -

between Figures 5.30 and 6.11, again consistent distributions are seen. Legends of 

these pictures show us; 

1-) Maximum velocity is obtained when θ equals to 
2

π
and 

2

π
− radians. 

2-) Maximum velocity value is approximately 1.1U∞ . 

3-) Stagnation points obtained when θ equals to 0 and π  radians. 

4-) Velocity values, when θ equals to 0 and π  radians, are equal to 0 . 

5-) Symmetrical velocity distribution is obtained around the body. 

Accordance with the analytical results is obviously seen through the above 

mentioned results. For the item 2, approximately term is used because, unfortunately 

precise 1,1U∞  value could not be reached neither by Fluent nor by the in-house  

 

Figure 6.11: Contoural Representation of Velocity Results Around Prolate 

Spheroidal Body. 
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Pressure Coefficient distribution results around the sphere which are both obtained 

by Fluent and Symlab, are shown in Figure (6.4) and Figure (6.5). Red colour 

represents the higher Cp values and the blue colour represents lower Cp values in 

both Figures. Graphical results of these Figures and comprasion of the Cp results on 

the prolate spheroidal surface with different programmes and analitic result are given 

in subsequent page. 

 

Figure 6.12: Fluent Pressure Coefficient Distribution Results Around Prolate 

Spheroidal Body 

 

Figure 6.13: Symlab Pressure Coefficient Distribution Results Around Prolate 

Spheroidal body 
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Figure 6.14: Fluent Graphical Pressure Coefficient Distribution 

Around Prolate Spheroidal Body  

Figure 6.15: Symlab and Theoric Graphical Pressure Coefficient 

Distribution Around Prolate Sphroidal Body  

 

Figure 6.16: In-House Code Graphical Pressure Coefficient Distribution Around Prolate Sphroidal Body 
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This time in both Fluent and Symlab curves X-axis denotes proportional location of 

node point relative to the center of the sphere. Because of the additional option in 

Symlab theorical datas are given with red circles in Figure (6.15) which ease the 

comparison between Symlab result and theorical values. As you see from the different 

graphs, the general slope of the Cp function is similar. Unfortunately, they have small 

differences. Reasons of the small difference are briefly summarized in the previous 

subsection. 

 

6.3 Comparison of In House Code Results for Different Grid Densities 

 

In present dissertation last comparison is made between different grid density results 

of in house code. Figure (6.17) presents Cp distribution graphics of sphere with 

different grid trials. According to Figure 6.17, It has been proven that finer grid 

schema results in more approximate output to teorical results. Remember that 

minimum Cp value on sphere surface is -1.25 and -1.1 on prolate spheroidal body.On 

the other hand, using finer grid schema extents computational time. If physical space 

for a sphere body is solved for potential flow with different grid densities, results are 

shown in Table (6.1); 

Table 6.1: Sphere Flow Comparison for Different Grid Densities 

 Grid Dimension Node Number 
Solution Time 

(seconds) 
Error (%) 

Experiment 1 21x21x21 9261 12 107.1 

Experiment 2 31x31x31 29791 126 66.7 

Experiment 3 41x41x41 68921 663 48 

Experiment 4 51x51x51 132651 2463 36.4 

Experiment 5 61x61x61 226981 7054 22 

Experiment 6 71x71x71 357911 18323 11.6 

Experiment 7 101x101x101 1030301 108105 7.6 

Experiment 8 141x141x141 2803221 616202 5.8 

Figure (6.18) presents Cp distribution graphics for Prolate Spheroidal Body with 

different grid trials. Graphs of node number versus solution time and error versus node 

number are given in Appendix-B.1 and Appendix-B.2. Analysis are executed on 

computer which has a pentium 4 processor and 512 megabyte DDR RAM. 
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21x21x21 Cp Graph 31x31x31 Cp Graph 41x41x41 Cp Graph 51x51x51 Cp Graph 

    

71x71x71 Cp Graph 101x101x101 Cp Graph 141x141x141 Cp Graph Theoretical Cp Graph 

    

Figure 6.17: In-House Code Sphere Cp Results with Different Grid Densities and Theoretical Graph 
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21x21x21 Cp Graph 31x31x31 Cp Graph 41x41x41 Cp Graph 

   

51x51x51 Cp Graph 71x71x71 Cp Graph Theoretical Cp Graph 

   

Figure 6.18: In-House Code Prolate Spheroidal Body Cp Results with Different Grid Densities and Theoretical Graph 
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7. CONCLUSIONS 

 

In this thesis Fortran Codes are developed that form three dimensional control volume, 

grid and solve potential flow equation for a sphere and a 3-D prolate spheroidal body. 

Post-processing step is done with Tecplot program which is an extensive 

postprocessing software that enables visualization and plotting for various shapes. 

Nowadays, there are plenty of programming languages to calculate results for 

scientific computing. Fortran is one of the software tools for obtaining the results 

However, it only gives the outcome in numerical order even it is arranged in matrix 

form. Figure out the trouble with observing the data is a gruelling process. Therefore, 

it is determined that, to assign the values to the right place in phsical space is a 

necessity to gain time during the supervision time. This is the main reason for 

employing a post-processor software like Tecplot for Fortran codes output datas. As a 

consequence, right connection between the two different programs is successfully 

achieved. Establihment of connection between Fortran and Tecplot with arrangement 

of Fortran code output data assumed as a first achivement of the thesis.  

Next achievement, to obtain form-fitted and hexagonal shaped grid type within the 

specified control volume is provided in both sperical coordinate system and prolate 

speroidal coordinate system. Form-fitted grid allowed us to simulate the inner borders 

with increased accuracy. On the other hand, hexagonal shaped grid schema removes 

the necessity of interpolation during the calculation phase. Both applications result in 

reduction in code length and additional calculation time. Moreover, it has been found 

that selection of prolate spheroidal coordinates brings further advantages like grid 

clustering and far field span increment. Presence of sinus hyperbolic function in eta 

(η) direction results in non-uniform mesh distribution in the physical space. When 

increment is executed only in eta (η) direction (θ and Φ values are same), distance 

between the node point and the origin represent a hyperbolic curve while approaching 

to infinity. Therefore it results in finer grid close to the inner body and coarser grid 
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close to the outer body. This is especially very advantageous in cases where an 

external flow is investigated and mesh spacing in far fields is much less important than 

mesh spacing in the center of the domain. 

In the present dissertation another achievement is about the density of the mesh. It has 

been proven that finer grid schema results in more approximate output to teorical 

results. On the other hand, using finer grid schema extents computational time. Despite 

extention in computational time, CFD analysis scheme has to be made with a finer grid 

as possible as it can be. 

Last and the major achivement is, the consistency of in-house code results and 

teoretical results are achieved for the heat conduction and the potential flow problems 

although considered bodies are not suitable for the analysis in the Cartesian coordinate 

system. Presented results which are the output of the in-house code are very 

approximate to the commercial code and teoretical results. Comparative presentation 

of all obtained results are given in Appendix C. It has been showed that written codes 

for a 3-D incompressible potential flow run successfully. So, it has been considered 

that present thesis solution methodology which is aspired to establish the basic logic 

and to utilize the computer technology in most efficient manner will be the lighthouse 

for the further similar investigations and nowadays problems that will require 

numerical solutions of sophisticated differential equations. 
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APPENDIX A 

Theoretical Pressure Coefficient Variation 

Table A: Angle-Theoretical Pressure Coefficient Variation Datas 

θ (degree) Sin θ s

3
V V sin

2 ∞= θ  
2
s

p 2

V
C 1

V∞

= −  

0 0.000 0.000 1.000 

7.5 0.130 0.196 0.962 

15 0.259 0.388 0.849 

22.5 0.382 0.574 0.671 

30 0.500 0.750 0.438 

37.5 0.608 0.913 0.167 

45 0.707 1.060 -0.124 

52.5 0.793 1.190 -0.415 

60 0.866 1.299 -0.686 

67.5 0.924 1.385 -0.920 

75 0.966 1.449 -1.099 

82.5 0.991 1.487 -1.211 

90 1.000 1.500 -1.250 

97.5 0.991 1.487 -1.212 

105 0.966 1.449 -1.100 

112.5 0.924 1.386 -0.922 

120 0.867 1.300 -0.690 

127.5 0.794 1.191 -0.419 

135 0.708 1.062 -0.128 

142.5 0.610 0.915 0.163 

150 0.500 0.752 0.435 

157.5 0.384 0.576 0.668 

165 0.260 0.390 0.848 

172.5 0.132 0.198 0.961 

180 0.000 0.000 1.000 
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APPENDIX B 

Node Number, Error, Computational Time Graphs 

Node Number/Error 

 

Figure B.1: Node Number/Error Graph 
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Node Number/Computational Time  

 

Figure B.2: Node Number/Computational Time Graph 
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APPENDIX C 

Comparative Cp Presentation of Sphere Results 

 

Figure C: Degree/Cp Results of Sphere 
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