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ELECTROMAGNETIC IMAGING OF DIELECTRIC ROUGH 
INTERFACES 

SUMMARY 

In this thesis, electromagnetic imaging of dielectric rough interfaces is presented 
with simulation results. The subject is presented in two cases: First, dielectric rough 
surface located over a perfectly conducting plane is reconstructed and second, 
dielectric surface beyond a layered media is reconstructed using the same method. 
Considering surfaces having variation only in one space dimension, plane 
electromagnetic wave with a fixed frequency is used for excitation. Scattered field 
measurements on a paralel line above the surface to be reconstructed are used and a 
special representation of the scattered field in terms of Fourier Transform and Taylor 
expansion is used in boundary conditions which leads to the solution of a system of 
nonlinear equations where Newton Method is applied iteratively with some kind of 
regularization. In this study, Tikhonov regularization is applied. In addition, in some 
cases, least square regularization is applied in order to get more accurate results. The 
simulation results are discussed with the effects of parameters used in the problems. 
These parameters are iteration number, truncation parameter used in Taylor 
expansion, regularization parameter, incident angle of the plane elecromagnetic wave 
and noise level. Finally it can be shown that, satisfactory results are obtained in 
reconstructing the defects on the surfaces with the amplitude of / 200λ  in both 
problems and the method can be effectively used in non-destructive testing of 
materials which is an important subject in the inverse scattering theory with its wide 
range of practical applications. 
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DİELEKTRİK ARAYÜZEYLERİN ELEKTROMANYETİK 
GÖRÜNTÜLENMESİ 

ÖZET 

Bu tezde, engebeli dielektrik arayüzlerin elektromanyetik görüntülenmesi üzerinde 
çalışılmıştır. Konu iki bölümde ele alınmıştır: İlk olarak mükemmel iletken düzlem 
üzerindeki dielektrik yüzeyin elde edilmesi problemi incelenmiştir, ikinci olarak ise 
üzerinde dielektrik katmanlar bulunan dielektrik yüzeyin elde edilmesi problemi aynı 
metot ile incelenmiştir. Tek boyutta değişimlerin olduğu yüzeylerin sabit frekanslı 
düzlemsel dalgalar tarafından aydınlatıldığı durum göz önüne alınmıştır. 
Hesaplanacak yüzeyin üzerinde kalan bölgede ve yüzeye paralel bir çizgi üzerindeki 
saçılan alan ölçümleri problemin çözümünde kullanılacaktır. Saçılan alan Fourier 
Dönüşümü ve Taylor Açılımı ile ifade edilir; problemin çözümü sınır koşulları 
kullanılarak elde edilen lineer olmayan denklem sisteminin çözümüne indirgenir. 
Denklem sisteminin çözümünde ise Newton Metodu yinelemeli bir şekilde 
uygulanırken regularizasyon uygulanmasını gerektirir. Bu çalışmada Tikhonov 
Regularizasyonu uygulanmıştır. Ayrıca, daha doğru sonuçlar elde edilmesi için kimi 
durumlarda En Küçük Kareler Yöntemi kullanılmıştır. Benzetim sonuçları, 
problemde kullanılan parametrelerin etkisine bağlı olarak incelenmiştir. Bu 
parametreler iterasyon sayısı, Taylor Açılımında kullanılan terim sayısı, 
regularizasyon parametresi, düzlemsel dalganın geliş açısı ve gürültü seviyesidir. 
Sonuç olarak iki problem için de / 200λ  genlikli hasarların bile tespit edilebildiği 
gösterilmiştir ve kullanılan metodun; ters saçılım problemlerinde önemli bir konu 
olan ve çok geniş kapsamlı pratik uygulamalara sahip tahribatsız muayene için etkili 
olduğu gösterilmiştir. 
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1.  INTRODUCTION 

Non-destructive testing (NDT) of materials is an important subject in the inverse 

scattering theory  due to its wide range of practical applications such as but not 

limited to, automotive industry, medicine, aerospace engineering, construction etc. In 

a typical NDT problem the structure under test is excited by a certain type of field or 

wave and the reaction is measured on a region (usually non-contact to the structure) 

to extract the desired properties of the material under test. According to the physical 

configuration, number of methodologies has been developed such as magnetic 

particle method, eddy current method, ultrasonics, visual-optical methods, infrared 

thermography, acoustics, electromagnetics etc [1-5]. In electromagnetic applications 

microwave signals are capable of penetrating inside the dielectric media, allowing 

the inspection of the surfaces which are not reachable or not tend to be destructed to 

test. These applications are very important especially in the areas of detection of the 

mechanical damages, irregularities or cracks on coated surfaces of vehicles or on 

dielectric surfaces beyond layered media. 

In imaging of an inaccessible surface one tries to recover the location and the shape 

as well as the surface characteristics of an unknown surface from scattered field 

measurements in a certain domain. The surface to be reconstructed can be either 

perfectly conducting or a dielectric interface. Several analytic and numerical 

techniques have been developed for perfectly conducting surfaces [6-12]. 

Most of the researches are based on the Kirchhoff approximation with the rough 

surface assumed to be locally planar [6, 9, 12]. In [6] the problem is reduced to the 

solution of two integral equations that can be solved approximately using a simple 

FFT-based approach. Another method using the Rytov approximation is used in [10]. 

In [11] the problem is reduced to the solution of a pair of coupled integral equations 

with two unknown functions in the case of grazing incidence. 

Besides perfectly conducting interfaces, the reconstruction of a rough dielectric 

interface is a very important subject, because most of the boundaries in nature are in 

dielectric media. For the imaging of buried underground objects, the roughness of the 
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air–ground has to be known to simplify the problem. Some progress has been 

achieved in the solution of this problem [13, 14, 15]. The method presented in [15] 

uses both reflected and transmitted acoustic waves to reconstruct the surface using 

the Kirchhoff approximation and the method in [14] solves the profile estimation 

problem as a nonlinear optimization problem. In [13] a method based on merging a 

fast forward solver and an efficient optimization technique is presented using multi-

incidence and multi-frequency reflected field measurements. 

In this study; first, a method to determine the location and the shape of damages, 

irregularities, cracks, etc. on a dielectric rough surface located over a perfectly 

conducting plane is presented. For the sake of simplicity, surfaces having variation 

only in one space dimension are considered. A single illumination of plane 

electromagnetic wave with a fixed frequency is used for excitation and the scattered 

field measurements are performed on a line parallel to the boundary of the upper half 

space. The method is based on a special representation of the scattered field in each 

region where the Fourier transform and Taylor expansion are used together. By using 

the continuity conditions of the total field and its derivative on the interfaces, the 

problem is reduced to the solution of a coupled system of two integral equations with 

the unknowns; a spectral coefficient for the scattered field and interface function. 

The coupled system is solved iteratively by the use of classical Newton Method with 

the initial guess of the surface function. Fixing this surface function; one of the 

equations is solved to obtain the unknown spectral coefficient. Because of the ill-

posedness, some regularization techniques are used. Then, fixing the spectral 

coefficient in the other equation, new surface function is obtained by linearization. 

Here, Newton Method and a regularization in least square sense is applied. The 

presented iterative method is tested by some numerical simulations and satisfactory 

results are obtained.  

Second, the same method is applied for non-destructive testing of dielectric surfaces 

beyond a layered media. Results are obtained assuming the presence of two lossy 

dielectric media beyond the dielectric half space. 

Throughout the paper, a time factor { }exp i tω−  with frequency ω  is assumed and 

omitted. 
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The organization of the paper is as follows: In Section 2, NDT of the dielectric rough 

surface located over a perfectly conducting plane is presented with numerical results. 

In Section 3, NDT of dielectric surfaces beyond a layered media is presented with 

numerical results. Conclusion is presented in Section 4. 
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2.  NON-DESTRUCTIVE TESTING OF DIELECTRIC ROUGH SURFACE 

LOCATED OVER A PERFECTLY CONDUCTING PLANE 

2.1 Representation of the scattered field 

Consider the problem illustrated in Figure 2.1. 

 

Figure 2.1 : Geometry of the problem 

In this configuration 0Γ  is the destructed surface which is lying between two layers 

with electromagnetic parameters 0 0 0, ,ε µ σ  and 1 1 1, ,ε µ σ , respectively. The upper 

half space is assumed to be free space. The surface under test can be a flat or a rough 

one which is represented by a single-valued and continuous function ( )2 1x f x= . 0Γ  

is assumed to be locally rough, i.e.: ( )1f x differs from zero over a finite interval 

which has a length of 0L . The main aim of the non-destructive testing problem 

considered here is to reconstruct the possible defects 1 2, ,...D D  on the surface 

through a set of scattered electromagnetic field measurements performed on the 

straight line 2x l=  in the accessible region 1B . For the sake of simplicity, it will be 

assumed that the incident field is a TM polarized time-harmonic plane wave whose 

electric field vector is given by ( )( )1 20,0, ,i iE u x x=  with 
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( ) ( )0 1 0 2 0cos sin
1 2, ik x xiu x x e φ φ− +=    (2.1)

where 0φ  is the incident angle while 0 0 0 0k ω ε µ= . Due to the homogenity in the 3x  

direction, the total and the scattered field vectors will have only 3x  components and 

the problem is reduced to a scalar one in terms of the total field function ( )u x  which 

satisfies the Helmholtz equation  

2 0u k u∆ + =     (2.2)

where, 

2
0 2 1

2
1 2 1

2 , ( )

, ( )
( ) k x f x

k
k h x f x

x =
 >


< <

     

            
(2.3)

In order to formulate the problem in an appropriate way, the total field is 

decomposed as:  

1 1

2 3 1

2

2

( )

( )

( )  ( ),
( )

( ) ( ),

s i

s s

f x

f x

u x u x x
u x

u x u x h x



<

+      >  
=  

 +      <

  
 

     
(2.4)

where the functions 1
su , 2

su  and 3
su  are the contributions of the defects and/or the 

roughness of the surface to the total field in the regions ( )2 1x f x>  and  ( )2 1x f x< . 

The boundary conditions imposed on the total field yield, 

( )1 2 3 2 1
s i s s onu u u u x f x+ = + =           (2.5)

( ) ( ) ( )1 2 3
2 1

2 2

s i s su u u u
x f x

x x
+ +

= =
∂ ∂

∂ ∂
on   

   
(2.6)

2 3 2
s su u x h+ =on           (2.7)

( )2 3
2

2
0

s su u
x h

x
+ 

= =
∂

∂
on   

   
(2.8)



 6

under the appropriate radiation condition for 2x → ∞ . 

In the following a special representation of the scattered field by the use of Fourier 

Transform and Taylor expansion is given. To this aim let us first define the Fourier 

Transform of 1
su  with respect to 1x  as: 

1
1 2 1 1 2 1 2ˆ ( , ) ( , ) i xs su x u x x e dx xνν β

∞
−

−∞

= ,     >∫
   

(2.9)

where ( )( )1max f xβ ≥ .   

The Fourier transform of the reduced wave equation for 1
su  yields 

2
1

0 1 22
2

ˆ ˆ 0,
s

sd u u x
dx

γ β− =      > 
   

(2.10)

where 2 2
0 0( ) kγ ν ν= − is the square root function defined in the complex cut ν -

plane as 0 0(0) ikγ = − . The solution of (2.9) can be given as 

0 2
1 2 2ˆ ( , ) ( ) ,xsu x A e xγν ν β−=      >    (2.11)

by taking the radiation condition into account. Here ( )A ν  is the unknown spectral 

coefficient. Then by applying the inverse Fourier Transform one can express 1
su  as 

( ) ( ) ( )1 0 2
1 2

1 ,
2

i x v xsu x A e d xν γν ν β
π

∞
−

−∞

=      >∫
   

(2.12)

Now assume that the scattered field is measured on a line, which is parallel to the 

layers, in the upper half space i.e.; ( )1 1, ,su x l l h  >  is known for all 1x R∈ . Inserting 

2x l=  into (2.11); it is observed that, the spectral coefficient ( )A ν  can be 

determined from the Fourier transform via 

( ) ( ) ( )0
1̂ ,sA u eγ νν ν=     (2.13)
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The same procedure can be easily applied for the scattered fields in the region 

2h x α< < , in which ( )( )1min f xα ≤ , (see Figure 2.1) where there is no 

discontinuity in the 1x -direction. Thus, 

( ) ( ) ( ) ( ) ( )( )1 2 1 2 1
2 2

1 ,
2

x x i xsu x B e C e e d h xγ ν γ ν νν ν ν α
π

∞
−

−∞

= +      < <∫
   

(2.14)

where 2 2
1 1( ) kγ ν ν= −  with 1 1(0) ikγ = −  while ( ) ( ),B Cν ν  are the spectral 

coefficients to be determined. 

Using the boundary conditions given in (2.7) and (2.8), ( )C ν  can be determined as 

( ) ( ) ( )12 hC B e γ νν ν= −    (2.15)

Substituting this equation in (2.14), the scattered field can be obtained as 

( ) ( ) ( ) ( ) ( )( )1 2 1 2 1 12
2 2

1 ,
2

x x h i xsu x B e e e e d h xγ ν γ ν γ ν νν ν α
π

∞
−

−∞

= −      < <∫
   

(2.16)

To be able to find approximate expressions for the scattered field in the regions 

( )( )2 1 ,x f x β∈  and ( )( )2 1,x f xα∈ , Taylor expansions of the scattered field are 

used: 

( ) ( ) ( ) ( ) ( )1 1
1 2 1 2

0 2

,1 ,
!

m sM
ms

mm
m

u x
u x x R x f x x

m x
β

β β
=

∂
=  − +      < ≤

∂∑
   

(2.17)

( ) ( ) ( ) ( ) ( )2 1
2 2 2 1

0 2

,1 ,
!

m sN
ms

Nm
m

u x
u x x Q x x f x

m x
α

α α
=

∂
=  − +      ≤ <

∂∑
   

(2.18)

where the remainder terms are: 

( ) ( ) ( )2 1
1 1

2 1
2

,1
!

x M s
M

M M

u x
R x x d

M xβ

ξ
ξ ξ

+

+

∂
= −

∂∫
   

(2.19)

( ) ( ) ( )2 1
2 1

2 1
2

,1
!

x N s
N

N N

u x
Q x x d

N xα

ξ
ξ ξ

+

+

∂
= −

∂∫
   

(2.20)
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The m th order derivatives appearing in (2.17) and (2.18) can be obtained in the form 

of 

( ) ( ) ( ) ( )0 11 1
0

2

, 1 [ ]
2

m s
i xm

m

u x
A e e d

x
γ ν β νβ

ν γ ν ν
π

∞
−

−∞

∂
= −  

∂ ∫
   

(2.21)

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 122 1
1 1

2

, 1
2

m s
m m h i x

m

u x
B e e e e d

x
γ ν α γ ν α γ ν να

ν γ ν γ ν ν
π

∞
−

−∞

∂
= − −      ∂ ∫

  
(2.22)

By substituting the pairs (2.17) and (2.18) into the boundary conditions (2.5) and 

(2.6) and by neglecting the remainder terms:  

( ) ( )( ) ( ) ( )( )( ) ( )( )1
1 1 1 1 1 1

1 , ,
2

i xB f x A f x e d r f xνν ν ν ν ν
π

∞

−∞

Ψ − Φ =∫
 

(2.23)

( ) ( )( ) ( ) ( )( )( ) ( )( )1
2 1 2 1 2 1

1 , ,
2

i xB f x A f x e d r f xνν ν ν ν ν
π

∞

−∞

Ψ − Φ =∫
  

(2.24)

can be obtained where 

( )( ) ( ) ( ) ( )( )0 0
1 1 1

0

[ ]
, ,

!

mM m

m
f x e f x

m
γ ν β γ ν

ν β−

=

−
Φ = −∑

   
(2.25)

( )( ) ( ) ( )
( ) ( )( )0

10
2 1 1

1

[ ]
, ,

1 !

mM m

m
f x e f x

m
γ ν β γ ν

ν β
−−

=

−
Φ = −

−∑
   

(2.26)

( )( )
( ) ( ) ( ) ( ) ( )( )

1 1
1 1

1 1 1
0

[ ] [ ]
, ,

!

m mM m

m

e e
f x f x

m

γ ν α γ ν αγ ν γ ν
ν α

−

=

− −
Ψ = −∑

  
(2.27)

( )( )
( ) ( ) ( ) ( )

( ) ( )( )
1 1

11 1
2 1 1

1

[ ] [ ]
, ,

1 !

m mM m

m

e e
f x f x

m

γ ν α γ ν αγ ν γ ν
ν β

−
−

=

− −
Ψ = −

−∑
  

(2.28)

and 

( )( ) ( )
( )

( )( )1 1 0 1 0

2 1

cos sin
1 1 1 e ik x f xi

x f x
r f x u x φ φ− +

=
= =

   (2.29)
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( )( ) ( )
( )

( )( )1 1 0 1 0

2 1

cos sin1
2 1 1 0

2

sin e
i

ik x f x

x f x

u x
r f x ik

x
φ φφ − +

=

∂
= = −

∂
   

(2.30)

A more compact expression for the system above is given by the following operator 

equations: 

( ) ( ) ( )1 1 1, ,K f B L f A r f− =    (2.31)

( ) ( ) ( )2 2 2, ,K f B L f A r f− =    (2.32)

In (2.31) and (2.32) 1K and 2K  are non-linear operators with respect to 1( )f x  while 

they are linear with respect to ( )B ν . ( )A ν  values are calculated using (2.13). 

2.2 Iterative Solution 

The problem is reduced to the solution of this non-linear system given in (2.31) and 

(2.32) which can be treated by iterative techniques. First, an initial guess for the 

unknown surface variation f  is chosen. Using this initial guess it is now easy to 

solve one of the equations, lets say (2.31), to obtain the spectral coefficient ( )B ν . 

Equation (2.31) becomes a linear function of ( )B ν , that is 

( )1 1 1K B L r= +    (2.33)

Here ( ) ( )1 1 ,K B K f B=  and ( ) ( )1 1 11
,L r L f A r f+ = + . Note that since both integral 

equations given by (2.31) and (2.32) are of the first kind one has to apply some 

regularization techniques. Here Tikhonov regularization is applied to obtain ( )B ν .  

Tikhonov regularization, is one of the regularization methods used in ill-posed 

problems that solves the equation 

Ax b=    (2.34)

using the Tikhonov matrix Γ , which is usually chosen as identity matrix I . 

Improving the conditioning of the problem the solution can be obtained as: 
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( ) 1T T Tx A A A b
−

= + Γ Γ
   (2.35)

In this work Tikhonov regularization is used with where IαΓ = , where I  is the 

identity matrix and α  is the regularization parameter. Changing α , controls the 

effect of regularization and for an interval of α , it is possible to get satisfactory 

results of the unknown x . 

Briefly, ( )B v  can be obtained approximately which can be given as: 

1

1 1 1tB I K K K rα
−∗ = +     (2.36)

Once the unknown spectral coefficient is obtained approximately from (2.33), 

surface variation f  can be obtained by using the other non-linear equation, (2.32) 

which can also be written in an operator form,   

( ) ( ) ( )2 2, 0.MF f K B f r f= − =    (2.37)

(2.37) can be solved iteratively via Newton method. To this aim, for an initial guess 

0f , the nonlinear equation is replaced by the linearized one 

( ) ( )0 0 0M MF f F f f′+ ∆ =    (2.38)

that needs to be solved for 0f f f∆ = −  in order to improve an approximate boundary 

0Γ  given by the function 0f  into a new approximation with surface function 0f f+ ∆ . 

The Newton method consists in iterating this procedure, i.e.: in solving  

( ) ( )0 0 , 0,1,2,3,....M MF f f F f i′ ∆ = −    =  (2.39)

for 1 1.i i if f f+ +∆ = + ∆  It is obvious that this solution will be sensitive to errors in the 

derivative of MF  in the vicinity of zeros. To obtain a more stable solution, the 

unknown f∆  is expressed in terms of some basis functions ( )1 , 1,...,n x n Nφ  = , as a 

linear combination 
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( ) ( )1 1
1

.
N

n n
n

f x a xφ
=

∆ = ∑
   

(2.40)

A possible choice of basis functions consists of trigonometric polynomials. Then 

(2.39) is satisfied in the least squares sense, that is, the coefficients 1,..., Na a  in (2.40) 

are determined such that for a set of grid points 1
1 1,..., Jx x the sum of squares 

( )( ) ( ) ( )( )
2

'
1 1 1

1 1

J N
j j j

M n n M
j n

F f x a x F f xφ
= =

+∑ ∑
   

(2.41)

is minimized. The number of basis functions N  in (2.40) can also be considered as a 

kind of regularization parameter. Choosing N  too big leads to instabilities due to the 

ill-posedness of the inverse problem and too small values of N  results in poor 

approximation quality. 

2.3 Numerical Results 

In this section some numerical results which demonstrate the validity and 

effectiveness of the method will be presented. In all the examples the upper space 

where the sources and observation points are located is assumed to be free-space. and 

the operating frequency is chosen as 12 GHz and the height of the measurement line 

is 5λ  where λ  is the free-space wavelength. The scattered data which should be 

collected by real measurements are computed synthetically by solving the associated 

direct problem for locally rough surfaces with a length of locality 0 10L λ= . The data 

are sampled on the measurement line in an interval [ ]20 , 20λ λ−  and 1% random 

noise is added to the simulated data for the scattered field. In the application of least 

squares solution the basis functions are chosen as combinations of ( )1 0cos 2 /nx Lπ  

and ( )1 0sin 2 /nx Lπ , 0, 1,... ,n N= ± ±  and the number N  is determined by trial and 

error. As it can be observed from Figure 2.2 and Figure 2.3, the method is very 

effective for defects having sizes in order of / 200λ  for planar and curved surfaces. 
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Figure 2.2 : Reconstruction of defects on planar surface 

 

Figure 2.3 : Reconstruction of defects on curved surface 
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2.4 Parameters Affecting Reconstruction 

2.4.1 Number of Iterations 

Consider the case in which the relative dielectric permittivity of the second layer is 

selected as 1 05ε ε=  and the conductivity of the second layer is selected as 0.0001 

S/m. The reconstruction of the circular defects on a planar surface shown in Figure 

2.4 is obtained for the truncation number 3M =  in the Taylor expansion for 1 and 3 

iterations. Tikhonov regularization parameter is selected as 0.001 and least square 

regularization parameter is selected as 8N = . After 3 iterations, it is possible to have 

satisfactory results for the surface. 

 

Figure 2.4 : Destructed and reconstructed surfaces 

2.4.2 Truncation Number 

The dielectric surface is located above a non-magnetic painting material having 

electromagnetic parameters 2 04ε ε= , 4
2 10σ −=  and below a non-magnetic painting 

material having electromagnetic parameters 1 0ε ε= , 1 0σ = . On the surface shown in 

Figure 2.5, reconstruction of the defects is obtained for the truncation number 
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2M = , 3M =  and 6M =  in the Taylor expansion for 2 iterations. This simulation 

determines the accuracy of the reconstructed surface depending on the truncation 

number. And it can be seen that for 2M = , 3M =  and 6M =  results are nearly the 

same. As the surface gets wider, it is supposed to converge to the more accurate 

results as truncation number gets larger. But for this surface it is enough to select 

2M =  or 3M =  in order to get good results. 

 

Figure 2.5 : Destructed and reconstructed surfaces for different truncation 
numbers 

2.4.3 Regularization Parameter 

In this simulation painting material below the surface to be reconstructed has the 

electromagnetic parameters 2 04ε ε= , 4
2 10σ −=  and above the surface 1 0ε ε= , 

1 0σ = . In order to find the spectral coefficient Tikhonov regularization is applied 

with regularization parameter α , which is selected 0.000001, 0.001 and 0.05 with 

the truncation number of 4M = , for 3 iterations. The incident angle is assumed to be 

/ 2π . Figure 2.6 shows that reconstruction method results better with 0.000001α =  

for this example. Regularization parameter has to be selected from the interval 

0 1α< < . 
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Figure 2.6 : Destructed and reconstructed surfaces for different regularization 

parameters 

2.4.4 Incident Angle 

In this example the dielectric surface is located above a non-magnetic painting 

material having electromagnetic parameters 2 04ε ε= , 4
2 10σ −= and below a non-

magnetic painting material having electromagnetic parameters 1 0ε ε= , 1 0σ = . The 

reconstruction of the circular defects on a rough surface shown in Figure 2.7 is 

obtained for the truncation number 3M =  in the Taylor expansion for 3 iterations. 

This simulation determines the accuracy of the reconstructed surface depending on 

the incident angle of / 2, / 3, / 4π π π    . The results show that reconstruction gets 

more accurate with the incident angles closer to / 2π . 
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Figure 2.7 : Destructed and reconstructed surfaces for different incidence 

directions 

2.4.5 Noise Level 

The simulation results given in Figure are obtained to test the accuracy of the method 

against different noise levels; 1% and 5% with the truncation number 3M = , after 3 

iterations. It can be seen that the method is robust against noise with different levels. 
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Figure 2.8 : Destructed and reconstructed surfaces for different noise levels 
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3.  NON-DESTRUCTIVE TESTING OF DIELECTRIC SURFACES BEYOND 

A LAYERED MEDIA 

3.1 Representation of the scattered field 

Consider the problem illustrated in Figure 3.1. 

 

Figure 3.1 : Geometry of the problem 

0Γ  is the destructed surface which is lying between two layers with electromagnetic 

parameters 0 0 0, ,ε µ σ  and 1 1 1, ,ε µ σ , respectively. The upper half space is assumed to 

be free space. The surface under test can be represented by ( )2 1x f x=  which is 

assumed to be locally rough, It is aimed to reconstruct the possible defects 

1 2, ,...D D on the surface 0Γ  through a set of scattered electromagnetic field 

measurements performed in the accessible domain 2x h> . Here h  represents the 

boundary between the layers above the surface under test. The incident field is again 

assumed to be a TM polarized time-harmonic plane wave whose electric field vector 

is given by ( )( )1 20,0, ,i iE u x x=  with ( ) ( )0 1 0 2 0cos sin
1 2, ik x xiu x x e φ φ− +=  where 0φ  is the 

incident angle while 0 0 0 0k ω ε µ= .  

Total field function ( )u x  satisfies the Helmholtz equation  
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2 0u k u∆ + =     (3.1)

where, 

2
0 2

2
1 2 1

2
2 2

2

1

,

, ( )

, ( )

( )
k x h

k h x f x

k x f x

k x =

 >


> >
 >

    

         

    
   

(3.2)

The total field can be shown as  

1

2 1

3 1

2

2

2

( )

( )

( )  ( ),
( ) ( ),

( ),

s i

s

s

f x

f x

u x u x x h
u x u x h x

u x x




>
 <

+      >

=      >  
     

 
   

  
   

(3.3)

where the functions 1
su , 2

su  and 3
su  are the contributions of the defects and/or the 

roughness of the surface to the total field in the regions 2x h> ,  ( )( )2 1 ,x f x h∈  and  

( )2 1x f x<  respectively. 

The boundary conditions can be written as, 

1 2 2
s i su u u x h=on + =          (3.4)

( )1 2
2

2 2

s i su u
x hu

x x
+

= =
∂ ∂

∂ ∂
on   

   
(3.5)

2 3 2 1( )s su u x f x=on =          (3.6)

32
2 1

2 2
( )

ss

x f xuu
x x

= =
∂∂

∂ ∂
on    

   
(3.7)

under the appropriate radiation condition for 2 .x → ∞  

Fourier Transform of 1
su  can be given as: 

1
1 2 1 2 1 2ˆ ( , ) ( , ) i xs su x u x x e dx x hνν

∞
−

−∞

= ,     >∫
   

(3.8)
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The Fourier transform of the reduced wave equation for 1
su  yields 

2
1

0 1 22
2

ˆ ˆ 0,
s

sd u u x h
dx

γ− =      >  
   

(3.9)

where 2 2
0 0( ) kγ ν ν= − is the square root function defined in the complex cut ν -

plane as 0 0(0) .ikγ = −  The solution of (3.8) can be given as 

0 2
1 2 2ˆ ( , ) ( ) ,xsu x A e x hγν ν −=      >    (3.10)

by taking the radiation condition into account where ( )A ν  is the unknown spectral 

coefficient. 1
su  can be written as 

( ) ( ) ( )1 0 2
1 2

1 ,
2

i x v xsu x A e d x hν γν ν
π

∞
−

−∞

=      >∫
   

(3.11)

by applying the inverse Fourier Transform. 

The same procedure can be applied for the scattered fields in the regions ( )2 ,x hβ∈  

and 2x α< , where ( )( )1max f xβ ≥  and ( )( )1min f xα ≤  (see Figure 3.1). In these 

regions there is no discontinuity in the 1x -direction.  

Scattered fields can be represented as: 

( ) ( ) ( ) ( ) ( )( )1 2 1 2 1
2 2

1 ,
2

x x i xsu x B e C e e d x hγ ν γ ν νν ν ν β
π

∞
−

−∞

= +      < <∫
   

(3.12)

( ) ( ) ( )1 2 2
3 2

1 ,
2

i x xsu x D e d xν γ νν ν α
π

∞
+

−∞

=      <∫
   

(3.13)

where 2 2
1 1( ) kγ ν ν= − and 2 2

2 2( ) kγ ν ν= −  with 1 1(0) ikγ = −  and 2 2(0) ikγ = −  

while ( ) ( ),B Cν ν and ( )D ν  are the spectral coefficients to be determined. 

Now assume that the scattered field is measured on a line, which is parallel to the 

layers, in the upper half space i.e.; ( )1 1, ,su x l l h  >  is known for all 1x R∈ . Inserting 
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2x l=  into (3.10), the spectral coefficient ( )A ν  can be determined from the Fourier 

transform as; 

( ) ( ) ( )0
1̂ , .sA u eγ νν ν=     (3.14)

Using boundary conditions (3.4) and (3.5) on 2x h= , the unknown spectral 

coefficients ( )B ν  and ( )C ν  can be obtained. 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1
1 1 1

1, ,
2

h h i xs
iu x h u x h B e C e e dγ ν γ ν νν ν ν

π

∞
−

−∞

+ = +∫
   

(3.15)

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )1 1 1

22

1 1 2 1 2
1 1

2 2

, , 1 .
2

s
h hi i x

x hx h

u x x u x x
B e C e e d

x x
γ ν γ ν νν γ ν ν γ ν ν

π

∞
−

−∞==

∂ ∂
+ = − +

∂ ∂ ∫
  

(3.16)

By discretizing the equations (3.15) and (3.16) and using Tikhonov regularization, 

( )B ν  and ( )C ν  can be obtained. 

To be able to find approximate expressions for the scattered field in the regions 

( )( )2 1 ,x f x β∈  and ( )( )2 1,x f xα∈  where there are discontinuities in the 1x -

direction, Taylor expansions of the scattered field are used: 

( ) ( ) ( ) ( ) ( )2 1
2 2 1 2

0 2

,1 ,
!

m sM
ms

mm
m

u x
u x x R x f x x

m x
β

β β
=

∂
=  − +      < ≤

∂∑
   

(3.17)

( ) ( ) ( ) ( ) ( )3 1
3 2 2 1

0 2

,1 ,
!

m sN
ms

Nm
m

u x
u x x Q x x f x

m x
α

α α
=

∂
=  − +      ≤ <

∂∑
   

(3.18)

where the remainder terms are: 

( ) ( ) ( )2 1
2 1

2 1
2

,1
!

x M s
M

M M

u x
R x x d

M xβ

ξ
ξ ξ

+

+

∂
= −

∂∫
   

(3.19)

( ) ( ) ( )2 1
3 1

2 1
2

,1
!

x N s
N

N N

u x
Q x x d

N xα

ξ
ξ ξ

+

+

∂
= −

∂∫
   

(3.20)

The m th order derivatives used in (3.17) and (3.18) can be written in the form of 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 12 1
1 1

2

, 1 [ ] [ ]
2

m s
i xm m

m

u x
B e C e e d

x
γ ν β γ ν β νβ

γ ν ν γ ν ν ν
π

∞
−

−∞

∂
= − +  
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(3.21)

( ) ( ) ( ) ( )( )2 13 1
2

2

, 1 [ ] .
2

m s
i xm

m

u x
D e e d

x
γ ν α να

γ ν ν ν
π

∞

−∞

∂
=  

∂ ∫
   

(3.22)

Substituting the pairs (3.17) and (3.18) into the boundary conditions (3.6) and (3.7) 

and neglecting the remainder terms, 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )1 1
3 1 1 1 2 1

1 1, , ,
2 2

i x i xD f x e d B f x C f x e dν νν ν ν ν ν ν ν ν
π π

∞ ∞

−∞ −∞

Φ = Φ + Φ∫ ∫
  

(3.23)

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )1 1
3 1 1 1 2 1

1 1, , ,
2 2

i x i xD f x e d B f x C f x e dν νν ν ν ν ν ν ν ν
π π

∞ ∞

−∞ −∞

Ψ = Ψ + Ψ∫ ∫
  

(3.24)

can be obtained where 

( )( ) ( ) ( ) ( )( )1 1
1 1 1

0

[ ]
, ,

!

mM m

m
f x e f x

m
γ ν β γ ν

ν β−

=

−
Φ = −∑

   
(3.25)

( )( ) ( ) ( )
( ) ( )( )1

11
1 1 1

1

[ ]
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1 !

mM m

m
f x e f x

m
γ ν β γ ν

ν β
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−
Ψ = −
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(3.26)

( )( ) ( ) ( ) ( )( )1 1
2 1 1

0
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!

mM m

m
f x e f x
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γ ν β γ ν

ν β
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2 1 1

1
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m
f x e f x
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γ ν β γ ν

ν β
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( )( ) ( ) ( ) ( )( )2 2
3 1 1

0

[ ]
, ,

!

mN m

m
f x e f x

m
γ ν α γ ν

ν α
=

Φ = −∑
   

(3.29)

( )( ) ( ) ( )
( ) ( )( )2

12
3 1 1

1

[ ]
, .

1 !

mM m

m
f x e f x

m
γ ν β γ ν

ν α
−

=

Ψ = −
−∑

   
(3.30)
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The problem is reduced to a system of nonlinear equations including the spectral 

coefficient ( )D ν  related to the scattered field 3
su  and the variation of the rough 

surface 1( )f x .  

A more compact expression for the system is given by the following operator 

equations: 

( ) ( )1 1( ),K D f g fν =    (3.31)

( ) ( )2 2( ),K D f g fν =    (3.32)

In (3.31) and (3.32) 1K and 2K  are non-linear operators with respect to 1( )f x  while 

they are linear with respect to ( )D ν .  

3.2 Iterative Solution 

The solution of this non-linear system which can be solved by iterative techniques. 

First an initial guess for the unknown surface variation f  ıs chosen. Using this initial 

guess one of the equations mentioned above ıs solved to obtain the spectral 

coefficient ( )D ν  by applyıng some regularization techniques. Here again Tikhonov 

regularization is applied. Once the unknown spectral coefficient ıs obtaıned from one 

of the equations, say the first one; surface variation f can be obtained by solving the 

other non-linear equation, which can also be written in an operator form,   

( ) ( ) ( )2 2, 0MF f K D f g f= − =    (3.33)

which can be solved iteratively via Newton method explained in the previous section. 

To get more stable solution, least square regularization can be applied again where 

the number of basis functions N  can be considered as a kind of regularization 

parameter. 

3.3 Numerical Results 

In the first example, the dielectric surface is located above a non-magnetic painting 

material having electromagnetic parameters 2 07ε ε= , 4
2 10σ −=  and below a non-
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magnetic painting material having electromagnetic parameters 2 04ε ε= , 4
2 10σ −= . 

The reconstruction of the circular defects on a planar surface shown in Figure 3.2 is 

obtained for the truncation number 5M =  in the Taylor expansion for 2 iterations. 

Regularization parameter is selected as 0.005. The method determines the locations 

and the shapes of the defects having depths in the order of / 200λ  very accurately. 

The results given in the Figure 3.3 shows that the method can be effectively used for 

reconstruction of the defects on curved surfaces. It shows the reconstruction obtained 

for the truncation numbers 5M =  with 3 iterations and the regularization parameter 

is selected 0.005.  

 
Figure 3.2 : Reconstruction of defects on planar surface 
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Figure 3.3 : Reconstruction of defects on curved surface 

3.4 Parameters Affecting Reconstruction 

3.4.1 Number of Iterations 

In this simulation, destructed surface is located above a material having 

electromagnetic parameters 2 07ε ε= , 4
2 10σ −=  and below a material having 

electromagnetic parameters 2 04ε ε= , 4
2 10σ −= . The reconstruction given in Figure 

3.4 is obtained for the truncation number 3M =  in the Taylor expansion for 1 and 3 

iterations. Tikhonov regularization parameter is selected 0.001 and least square 

regularization parameter is selected as 8N = . 
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Figure 3.4 : Destructed and reconstructed surfaces 

3.4.2 Truncation Number 

For the same conditions, reconstruction of the defects is obtained for the truncation 

number 2M = , 3M =  and 8M =  in the Taylor expansion for 3 iterations. For 

2M = , surface can not be reconstructed accurately while for 3M =  and 8M = , 

results are nearly the same which shows that it converges to the more accurate results 

as truncation number gets larger.  
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Figure 3.5 : Destructed and reconstructed surfaces for different truncation numbers 

3.4.3 Regularization Parameter 

In this simulation, the dielectric surface is located above a non-magnetic painting 

material having electromagnetic parameters 2 07.5ε ε= , 4
2 10σ −=  and below a 

material having electromagnetic parameters 2 05ε ε= , 4
2 10σ −= . The reconstruction 

of the circular defects on a rough surface shown in Figure 3.6 is obtained for the 

truncation number 8M =   in the Taylor expansion for 3 iterations and the incident 

angle is assumed to be / 2π . Regularization parameters are selected as 0.000001, 

0.001 and 0.05 in order to make comparison. Reconstruction method results better 

with 0.001α =  and 0.05α =  for this example. Regularization parameter has to be 

selected from the interval 0 1α< < . 
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Figure 3.6 : Destructed and reconstructed surfaces for different regularization 

parameters 

3.4.4 Incidence Angle 

In this simulation destructed surface is located above a material having 

electromagnetic parameters 2 07ε ε= , 4
2 10σ −=  and below a material having 

electromagnetic parameters 2 04ε ε= , 4
2 10σ −= . The reconstruction of the circular 

defects on a rough surface shown in Figure 3.7 is obtained for the truncation number  

5M =  in the Taylor expansion for 2 iterations. This simulation determines the 

accuracy of the reconstructed surface depending on the incident angle of 

/ 2, / 3, / 4π π π     which results better with the incident angles closer to / 2π  like in 

the first case. 
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Figure 3.7 : Destructed and reconstructed surfaces for different incidence directions 

3.4.5 Noise Level 

Destructed interface is located above a material having electromagnetic parameters 

2 07ε ε= , 4
2 10σ −=  and below a material having electromagnetic parameters 

2 04ε ε= , 4
2 10σ −= . Regularization parameters are selected as 0.000001. In Figure 

3.8 method is tested against different noise levels; 1% and 5% with the truncation 

number 5M = , after 2 iterations and it can be seen that method is robust against 

noise with different levels again. 
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Figure 3.8 : Destructed and reconstructed surfaces for different noise level
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4.  CONCLUSION 

In this study, the method presented in [17] is extended to the non-destructive 

evaluation of the dielectric surface above a perfectly conducting plane in the first 

case and beyond a layered media in the second case. The method is very effective for 

defects having sizes in order of / 200λ  for an operating frequency of 12 GHz. From 

the simulation results, it is observed that the accurancy of reconstructions are closely 

related with the truncation number in Taylor expansion where using more terms in 

Taylor expansion results in higher resolution. Also, incident angle of the plane 

electromagnetic wave affects the simulations giving better results in normal 

incidence. The method is robust against different noise levels and 3 or more 

iterations are enough to obtain satisfactory results for the surfaces given in 

simulations. 
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