
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY 

 ELECTROMAGNETIC IMAGING OF CONDUCTING 
OBJECTS BURIED UNDER A HALF SPACE BY AN 

INTEGRAL EQUATION APPROACH 

  M.Sc. Thesis  by 
 

  Umut Aziz ALBAYRAK, B.Sc. 

Department : Electronics and Communication Engineering 
                
               Programme  : Telecommunication Engineering 

        OCTOBER 2008 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY 
 

    M.Sc. Thesis  by 
 

  Umut Aziz ALBAYRAK, B.Sc. 
 

     (504041327) 

 

Date of submission : 15 September 2008 

                       Date of examin : 08 October 2008 

Supervisor (Chairman): Assoc. Prof. Dr. Ali YAPAR 

Members of the Examining Committee Prof. Dr. Đbrahim AKDUMAN (Đ.T.Ü.) 

 Assist. Prof. Dr. Lale T. ERGENE (Đ.T.Ü.) 

OCTOBER 2008 

 

ELECTROMAGNETIC IMAGING OF CONDUCTING        
OBJECTS BURIED UNDER A HALF SPACE BY AN   

INTEGRAL EQUATION APPROACH 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY 
 

YÜKSEK LĐSANS TEZĐ 
 

Müh. Umut Aziz ALBAYRAK 
 

(504041327) 

 

Tezin Enstitüye Verildiği Tarih : 15 Eylül 2008 

              Tezin Savunulduğu Tarih :   08 Ekim 2008 

Tez Danışmanı: Doç. Dr. Ali YAPAR 

Diğer Jüri Üyeleri Prof. Dr. Đbrahim AKDUMAN (Đ.T.Ü.) 

 Yrd. Doç. Dr. Lale T. ERGENE (Đ.T.Ü.) 

                          EKĐM 2008 

 

YERALTINA GÖMÜLÜ CĐSMĐN ŞEKLĐNĐN ĐNTEGRAL 
METOT YARDIMIYLA BELĐRLENMESĐ 

 



 ii 

ACKNOWLEDGEMENT 

I would like to express my immense gratitude to Assoc. Prof. Dr. Ali YAPAR, who 
gave me the opportunity to do research under his supervision, for his precious 
guidance and support during this study.  

I also owe my thanks to Electromagnetic Research Group, Đ.T.Ü. for their support in 
every step of this research, and of course to my mother and my father for their 
endless love and their faith in me. 

 

 

October, 2008 Umut Aziz ALBAYRAK 

 

 



 iii

TABLE OF CONTENT 

LIST OF FIGURES ıv 
LIST OF SYMBOLS  v 
SUMMARY vı 
ÖZET vıı 

1. INTRODUCTION 1 

2. GENERAL FORMULATION OF THE PROBLEM 3 

3. DIRECT SCATTERING PROBLEM AND GREEN'S FUNCTION 5 
3.1. Direct Scattering Problem 5 
3.2. Green's Function Of The Two Part Space  7 

4. INVERSE SCATTERING PROBLEM AND ITERATIVE METHOD 10 
4.1. Formulation Of The Inverse Scattering Problem 10 
4.2. Description Of Iterative Method 11 

5. NUMERICAL RESULTS 13 
5.1. Finding The Scattered Field 13 

    5.2. Finding The Shape Of The Buried Objects                                                      16 

6. CONCLUSION 25 

REFERENCES  26 

CIRCULUM VITAE 27 
 
 

 
  



 iv 

LIST OF FIGURES 

 PageNum. 
Figure 2.1 
Figure 3.1 
Figure 3.2 
Figure 5.1 
 
Figure 5.2 
 
Figure 5.3 
 
Figure 5.4 
 
Figure 5.5 
 
Figure 5.6 
 
Figure 5.7 
 
Figure 5.8 
 
Figure 5.9 
 
Figure 5.10 
 
Figure 5.11 
 
Figure 5.12 
 
Figure 5.13 
 
Figure 5.14 
 
Figure 5.15 
 
Figure 5.16 
 
 

: Geometry of the problem..................................................................... 
: Geometry for the field u0................................................................. 
: Complex v Plane.............................................................................. 
: Exact total field and calculated field on the surface by analytic 
continuation method for measurement length L = 40λ0................... 

: Exact total field and calculated field on the surface by analytic 
continuation method for measurement length L = 20λ0................... 

: Exact total field and calculated field on the surface by analytic 
continuation method for k1=k0.......................................................... 

: Exact total field and calculated field on the surface by analytic 
continuation method for k1=1.5k0..................................................... 

: Exact and reconstructed geometries of an ellipse after 3 iterations 
using the exact scattered field............................................................

: Exact and reconstructed geometries of an ellipse after 7 iterations 
using the exact scattered field............................................................

: Exact and reconstructed geometries of an ellipse after 15 iterations 
using the exact scattered field............................................................

: Exact and reconstructed geometries of an ellipse after 3 iterations 
using the noise added scattered field..................................................

: Exact and reconstructed geometries of an ellipse after 7 iterations 
using the noise added scattered field................................................. 

: Exact and reconstructed geometries of an ellipse after 15 iterations 
using the noise added scattered field................................................. 

: Exact and reconstructed geometries of a cylinder after 3 iterations 
using the exact scattered field............................................................

: Exact and reconstructed geometries of a cylinder after 7 iterations 
using the exact scattered field............................................................

: Exact and reconstructed geometries of a cylinder after 15 iterations 
using the exact scattered field............................................................

: Exact and reconstructed geometries of a cylinder after 3 iterations 
using the noise added scattered field..................................................

: Exact and reconstructed geometries of a cylinder after 7 iterations 
using the noise added scattered field................................................. 

: Exact and reconstructed geometries of a cylinder after 15 iterations 
using the noise added scattered field................................................. 
 

3 
6 
9 
 

14 
 

14 
 

15 
 

15 
 

17 
 

17 
 

18 
 

19 
 

19 
 

20 
 

21 
 

21 
 

22 
 

23 
 

23 
 

24 



 v 

LIST OF SYMBOLS 

ε0 : Dielectric permittivity of the free space   
µ0 : Magnetic permeability of the free space   
ε1, ε2 : Relative dielectric permittivities of the first, second media 
εD : Relative dielectric permittivity of the buried object 
σ1, σ2 : Conductivities of first, second media 
σD : Conductivity of the buried object 
k1, k2 : Wavenumber of the first, second media 
ω : Angular frequency 
u0

 : Total field in whole space in the absence of the buried objects 
u : Total field  
us : Scattered field  
χ : Object function 
G : Green’s function of the two part space 

Ĝ  : Fourier transform of G  
r : generic observation point  
r’ : generic source point  
δ : Dirac delta distribution 
σn : singular values  

2
ˆ ( , )s
u v x  : Fourier transform of us(x1,x2) 

A : radiation condition 
 
 
 

 

 

 

 

 

 

 



 vi 

ELECTROMAGNETIC IMAGING OF CONDUCTING OBJECTS BURIED 

UNDER A HALF SPACE BY AN INTEGRAL EQUATION APPROACH 

SUMMARY 

In this thesis an iterative method is applied to determine the location and shape of a 
perfectly conducting object buried under a half space. First of all, we express the 
scattered field in the upper half space. Then we express the scattered field at the half 
space interface by using continuous method. After expressing the scattered field at 
the half space interface, we investigate an iterative method for electromagnetic 
imaging of conducting objects buried under a half space. The method starts with an 
initial guess of the shape of the boundary curve of the obstacle. Then, the normal 
derivative of the space dependent part of the total acoustic field is found on this 
curve from a linear integral equation of the first kind with a singular kernel 
representing the incident field. Once this derivative is known, the shape of the 
boundary curve is updated from a nonlinear integral equation which represents the 
far-field pattern. The normal derivative of the space-dependent part of the total 
acoustic field is found on this updated curve by again solving the linear integral 
equation which represents the incident field. The iterative procedure is continued 
until a predetermined convergency condition is fulfilled. And continuing in this 
manner, a sequence of approximations of the boundary curve of the obstacle is 
found. Also in this thesis, we will see the effects of some parameters while we are 
expressing the scattered data at the half space interface or finding the shape of the 
object.  

 The comparison of the results with the examples given in the literature was in a 
good agreement.  
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YERALTINA GÖMÜLÜ ĐLETKEN CĐSĐMLERĐN ŞEKLĐNĐN ĐNTEGRAL 

METOT YARDIMIYLA BELĐRLENMESĐ 

ÖZET 

Bu tezde, yarım düzlem altına gömülü çok iyi iletken bir cismin şeklini ve yerini 
belirlemek için tekrarlayıcı(yineleyici) bir method kullanacağız. Đlk başta yansıyan 
alanın üst yarı düzlemdeki ifadesini bulacağız. Daha sonra yansıyan alanın yarı 
düzlem arayüzeyindeki ifadesini analitik süreklilik metodunu kullanarak bulacağız. 
Yansıyan alanı yarı düzlem arayüzeyinde ifade ettikten sonra yeraltına gömülü 
cisimlerin şeklinin belirlenmesi için tekrarlayıcı(yineleyici) bir method kullanacağız. 
Methodumuz, ilk başta yeraltına gömülü cisim için kendimize göre bir kapalı eğri 
belirleyerek başlıyor. Daha sonra belirlediğimiz kapalı eğri üzerindeki alan lineer 
integral denklemler(kernel) vasıtasıyla bulunur.Bu alanı belirledikten sonrada lineer 
olmayan integral denklemler yardımı ile de ilk başta kendimize göre atadığımız 
kapalı eğriyi güncelleyeceğiz. Daha sonra tekrar güncellediğimiz eğrinin üzerindeki 
alanı lineer denklemler yardımı ile buluruz. Ve bu şekilde ilerleyerek(tekrarlayarak) 
ilk başta kendimize göre atadığımız şekli güncelleriz. Đteratif(tekrarlayıcı) prosedür 
elde ettiğimiz şekiller birbirine yakınsayana kadar devam eder. Belli bir adımdan 
sonra elde ettiğimiz sonuçlar birbirlerine yaklaşık olarak eşit olduklarında yinelemeyi 
bitiririz. Ve gömülü cismin şeklini belirlemiş oluruz. Ayrıca bu tezde yansıyan alanın 
yarı düzlem arayüzeyindeki ifadesini bulurken veya cismin şeklini belirlemeye 
çalışırken bazı parametrelerin elde ettiğimiz sonuçlara etkilerinide göreceğiz. 

Sonuçları literatürdeki çalışmalarla karşılaştırdığımızda, önerilen yöntemlerle elde 
edilen sonuçlar mühendislik açısından yeter yakınsaklığı sağladığı gözlenmiştir. 
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1. INTRODUCTION 

Electromagnetic scattering from objects has been an area of in depth research for 

many years. A variety of powerful solution methodologies have been developed and 

utilized for the clever solution of increasingly complex problems.  

The electromagnetic direct scattering problem is the problem of determining the 

scattered field when the geometrical and physical properties of the scatterer are 

known. Thus, there many books and papers have been published about scattering of 

electromagnetic waves. On the other hand, inverse scattering is the problem of 

inferring information on the source of the known scattering field data. Practically, 

this data is obtained via measurements in a particular domain. However, in order to 

test the reconstruction algorithms the data can be obtained synthetically by solving 

the direct problem, which is case in this proposed thesis. 

Reconstruction of the shape of a conducting object by using electromagnetic or 

acoustic  waves is one of the  fundamental  problems of inverse scattering theory not 

only for its  mathematical  and  physical importance but also for the wide range of 

applications in the  areas of microwave remote sensing, optical system 

measurements, underwater   acoustics  and  non-destructive  testing of materials etc. 

Additionally, various medical imaging applications are concerned with 

reconstructing the inhomogeneities by solving the arisen inverse scattering problems. 

Within this framework another interesting problem would be the imaging of 

conducting objects buried under a half space by an integral equation approach. In this 

work an iterative method is applied to determine the location and shape of a perfectly 

conducting object buried under a half space which is not widely investigated in the 

open literature as far as we know. 

The organization of the thesis is as follows: In section 2, a general formulation of the 

inverse scattering problem is formulated. In section 3, we express the scattered field 

at the half-space interface. In section 4, we investigate an iterative method for 

electromagnetic imaging of conducting objects buried under a half space. The 
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method starts with an initial guess of the shape of the boundary curve of the obstacle. 

Then, the normal derivative of the space-dependent part of the total acoustic field is 

found on this curve from a linear integral equation of the first kind with a singular 

kernel representing the incident field. Once this derivative is known, the shape of the 

boundary curve is updated from a nonlinear integral equation which represents the 

far-field pattern. The normal derivative of the space-dependent part of the total 

acoustic field is found on this updated curve by again solving the linear integral 

equation which represents the incident field. Numerical results are given in section 5, 

and a conclusion is presented in section 6. 
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2. GENERAL FORMULATION OF THE PROBLEM 

Consider the geometry given in Figure 1. Here D is a perfectly conducting object 

buried in the lower half space. The object is illuminated from the upper half space 

and the scattered field is measured on a limited line parallel to the interface. The 

inverse problem considered here is to obtain the geometry of the buried conducting 

object D, i.e; D∂ , by the use of measurements performed in a planar domain inside 

the upper half space.  

To formulate the problem in an appropriate way,  first decompose the total field as, 

2

1 2( ) ( ) ( ), ( ( , ) )o su x u x u x x x x R= + = ∈  where ou corresponds to the total field in  

 

                         

 

                                Figure 2.1 -  Geometry of the Problem 

 

the absence of the buried object, while su  denotes the scattered field due to the 

conducting buried object. Then by the use of Fourier Transform one can represent 

the scattered field in the upper half-space as [1] 

2 1( )

1 2

1
( , ) ( )

2

x i xsu x x A e e dγ υ υυ υ
π

−

Γ
= ∫                                                                        (2.1) 

In which ( )A υ  is the unknown spectral coefficient while 2 2

1( ) kγ υ υ= − is the 

properly defined square root function in the complex-υ  plane, where 1k  is the wave 

x1 

k

k2,ε2,µ2 

l  

D 

D∂  

O 

iE
r

 

              x2 

measurement line 

     

 

  1,ε1,µ1 

    ε ,µ  
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number of the upper half-space. Now assume  that the scattered field is measured on 

a line 2 0x = >l , parallel to the half space interface. Then putting 2x = l  in (2.1) one 

can calculate the unknown spectral coefficient by inverting the integral equation 

(2.1). Once having obtained this coefficient it is easy to express the scattered field at 

the half-space interface by just putting   2 0x =  in (2.1). 

The second step of our algorithm is to represent the scattered field in the lower half-

space as a single layer potential which leads to the following integral equation in 

terms of the field values 1( ,0)su x   

1( , 0 ) ( , ) ( ) ( )s

D

u x G x y y d s y
∂

= Φ∫                                                              (2.2)                                       

where (1)

0 2( , ) ( | |)
4

i
G x y H k x y= −  is the Green’s function with 2k  being the wave 

number of the lower half-space and ( )yΦ  is the unknown single layer density 

function. In (2) both the shape of the scatterer and the density function are 

unknowns. The boundary condition on the surface of the body can be written as  

( ) ( ) ,s ou x u x x D= − ∈ ∂                                                                      (2.3) 

Equations (2.2) and (2.3) constitute a system of non-linear equations in terms of two 

unknowns ( )yΦ and D∂ . Now following a similar approach presented in [1], this 

system can be solved iteratively. To this aim we first solve (2.3) by Nyström method 

for a given initial estimate of the shape (0)D∂  to obtain an approximate density 

function (0) ( )yΦ . Then the parametric form of the equation (2.2) is linearized in the 

sense of Newton method which requires the Frechét derivative of the operator with 

respect to the shape of the object. The solution of the linearized equation gives us the 

updated shape, say, (1)D∂ . The iterative procedure explained above is continued until 

a predetermined convergency condition is fulfilled. It is worth to note that in the 

application of the method some regularization techniques have been applied since in 

both steps the problem encountered are ill-posed. 
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3. DIRECT SCATTERĐNG PROBLEM  

3.1 Direct Scattering Problem 

Consider the two-dimensional scattering problem illustrated in Figure 2.1. In this 

configuration, the whole space is separated into two half-spaces by the interface Γo, 

which is defined by the relation x 2 = f(x1) where f(x1) is a single-valued function. Γo 

is assumed to be locally smoth, i.e., f(x1) differs from the planar surface over a finite 

interval whose length is L.The half-spaces above and below Γo  are assumed to be 

filled with simple nonmagnetic materials having dielectric permittivities and 

conductivities ε1, σ1 and ε2, σ2 respectively. The scattering problem considered here is 

to determine the effect of  Γo on the propagation of electromagnetic waves excited in 

the upper half-space x 2 > f(x1)  , more precisely, to obtain the scattered field from the 

surface Γo. To this aim, the half-space x 2 < f(x1)  is illuminated by a time-harmonic 

plane wave whose electric-field vector is always parallel to the 0x3  axis, namely, 

 

Ei = ( 0, 0, ui(x1, x2) )                                                                                               (3.1) 

ui(x1, x2) = 1 1 0 2 0- ( cos sin )ik x xe φ φ/ +
                                                                           (3.2) 

where φ0 ∈ (0, π)   is the angle of incidence while k1 stands for the wave number of 

the upper half-space, which is defined by the square root of k12 = ω2ε1µ0 + iωσ1µ0 . 

Since the problem is homogeneous in the 0x3 direction, the total electric-field vector 

will also be parallel to the Ox3-axis, namely, E = (0, 0, u(x)), where x = (x1,x2) 

denotes the position vector in ℜ2. Thus, the problem is reduced to a scalar one in 

terms of the total field function u(x). 

To solve the scattering problem stated above, we first assume that the whole space is 

separated into two parts by the plane X2 = 0. In such a case, the half-spaces X2 > 0 and 

X2< 0 contain 2 finite domains bounded by the Γo  and X2 = 0 plane. Let us denote 

the ones in the region X2 > 0 by D1 and the rest in the region X2 < 0 by D1 . Note that 
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the dielectric permittivities and conductivities of the regions D1 and D2 are ε1, σ1 and 

ε2, σ2 respectively.  

To formulate the problem more easily, consider now the total field u0(x) that would 

be created by the incident field (3.1) in the case of two-half spaces medium separated 

by the plane xi = 0 (See Fig. 3.1.) In this case u0(x) can be obtained in a very 

straightforward way. 

 

Figure 3.1 – Geometry for the field u0 

Us(x), consists in the difference  

us(x) = u(x) – u0(x)                                                                                                  (3.3) 

can be expresssed as a single layer potential integral as follows 

us(x)=
0

( ; ) ( ) ( )G x y y ds yψ
∞

∫                                                                                     (3.4) 

where G(x;y) denotes the Green's function of the two-part space with a planar 

interface at x2 = 0, and ( )yψ  is the unknown density function. The solution of the 

direct scattering can be reduced to the solution of the unknown density function. The 

valid boundary condition on the surface of the buried PEC object is us(x)= -u0(x). 

From (3.3) and (3.4) we can express 

0( ; ) ( ) ( )  ( )
D

G x y y ds y u xψ
∂

= −∫  
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 3.2 Green’s Function of the two-part space 

By definition, the Green's function G(x;y) satisfies the equation 

∆G(x;y) + k
2
 (x2) G(x;y) = -δ(x-y)                                                                          (3.5) 

in the sense of distributions under the radiation condition. In this equation, y € R
2
 is 

an arbitrary point and δ is the Dirac's delta distribution. 

To find a suitable expression of G, consider first its Fourier transform with respect to 

x1, namely, 

1^

2 1

-

( , ; ) = ( ; )
ivxG v x y G X Y e dx

∞
−

∞
∫                                                                              (3.6) 

Then the transformations of (3.5) and the boundary conditions at x2 = 0 yield the 

following problem for G^: 

1

2 ^
ivy2 2 ^

2 22

2

 - ( )  = -e ( ),     = 1,2,    j R

d G
v k G x y j v C

dx
δ− − ∈                                         (3.7) 

^G  and 
^

2

G

x

∂

∂
 are continuous on x2 = 0                                                                   (3.8) 

|G| � 0   as |x| � ∞                                                                                                 (3.9) 

Here, CR stands for a horizontal straight line in the regularity strip of G^ in the 

complex v-plane(see figure3.2). After some straightforward calculations and through 

the well-known inverse transform integral 

1^

2

1
( ; ) = ( , ; ) 

2
R

ivx

C

G x y G v x y e dv
π

−∫                                                                       (3.10) 
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We can get an explicit expression of G(x; y) as follows: 

G(x;y) =   

(1) (1)

0 1 2 2

(1)

2 2

(2)

2 2

(1) (

0 2

( | |) + ( ; );          x 0,   y 0
4

( ; );                                           x 0,   y 0

( ; );                                           x 0,   y 0

( | |) + 
4

R

T

T

R

i
H k x y G x y

G x y

G x y

i
H k x y G

− > >

< >

> <

− 2)

2 2( ; );          x 0,   y 0x y < <

                     (3.11) 

Where 

1 2 2 1 1

R

( ) ( )(1) 1 2

1 1 2C

1 1
( ; ) =    

2 2

x y iv x y
RG x y e e dvγγ γ

π γ γ γ
− + −−

+∫                                             (3.12) 

1 2 2 2 1 1

R

( )(1) 1

1 1 2C

21 1
( ; ) =    

2 2

y x iv x y
TG x y e e dvγ γγ

π γ γ γ
− + −

+∫                                             (3.13) 

2 2 1 2 1 1

R

( )(2) 2

2 1 2C

21 1
( ; ) =    

2 2

y x iv x y
TG x y e e dvγ γγ

π γ γ γ
+ −

+∫                                              (3.14) 

2 2 2 1 1

R

( ) ( )(2) 2 1

2 1 2C

1 1
( ; ) =    

2 2

x y iv x y
RG x y e e dvγγ γ

π γ γ γ
− + −−

+∫                                            (3.15) 

While H0
(1)

 zero-order Hankel function of the first kind. In (3.12)-(3.15) the 

functions γ1 and γ2 stand for the square roots 

2 2 2 2

1 1 2 2( ) = ,    ( ) = v v k v v kγ γ− −                                                                    (3.16) 
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Figure 3.2 – Complex v plane 

Which are defined in the complex v-plane cut as shown in Figure3 with the 

conditions 

γj(0) = -ikj,     j = 1,2                                                                                              (3.17) 

From the (3.12), (3.15) and (3.11) we can easily see that G is symmetrical, and has 

the property 

G(x,y) = G^(|x1-y1|, x2,y2),         x,y ∈ ℜ2
                                                             (3.18) 
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4. INVERSE SCATTERĐNG  AND ITERATIVE METHOD 

4.1 Formulation Of the Inverse Scattering Problem 

In figure (2.1), assume that scattered field is measured in the line x2 = l . The 

inversede problem defined here is to obtain the shape of the scatterer D∂  from the 

knowledge of this scattered data.Scattered field  on x2 = l is,  

1

D

( , )  ( , ) ( ) ( )su x l G x y y ds yψ
∂

= ∫                                                                               (4.1) 

But as we can see form the section 3, it is very complex and hard to solve it. Because 

of this we can carry the data from x2 = l to x2 = 0 and we can write (4.1) as 

(1)

1 0 2

D

( ,0) = ( ( )s
yu x H k x y ds yψ

∂

−∫                                                                         (4.2) 

And let 2
ˆ ( , )su v x  denote the Fourier transform of 2

ˆ( , )u v x  with the respect to x2, 

namely, 

1 1s

2 1 2 2

-

ˆ ( , )  u ( , ) ,      L, x
ivx dxsu v x x x e ν

∞
−

∞

= ∈∫ >0                                                        (4.3) 

which yields, 

1

1 2 2

L

1
ˆ( , ) =  ( , )

2

s
ivxsu x x u v x e dv

π ∫                                                                             (4.4) 

Here L stands for a horizontal straight line in the regulatory strip of ˆ su  in the 

complex v plane. The asymptotic behavior of  1( ,su x x2) as x1  → ±∞  has a 

symmetry and, consequently, the regularity strip includes also the real v axis. Now 

let us take the Fourier transform to get 

2
2

2

2

ˆ
ˆ - ( )  = 0,   

s
sd u

v u L
dx

γ ν ∈                                                                                     (4.5) 

2 2( ) =  - k  vγ ν                                                                                                      (4.6) 
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A solution to (4.5) can be obtained very easily and one writes  

2- x

2 2
ˆ ( , )  A( ) e  ,   x 0 su v x γν= ≥                                                                              (4.7) 

With the radiation condition taken into account.Here A is a coefficient to be 

determined. Since the function  1 2( , )su x x  is known on the line x2=l, one can 

calculate its Fourier transform ˆ ( , )su v l through the relation (4.3). Putting  ˆ ( , )su v l  in 

(4.7) for x2 =l allows us to obtain the coefficient A very easily.One gets 

l ˆA = e  ( , )su v lγ                                                                                                         (4.8) 

Since the coefficient A is known, we can know write the field distribution  

1

1

L

1
( ,0)  =  

2

ivxsu x Ae dv
π ∫                                                                                        (4.9) 

And its derivative  

11

2 L

( ,0) 1
 =  

2

s
ivxu x

Ae dv
x

γ
π

∂
−

∂ ∫                                                                                (4.10) 

On the plane x2=0. 

4.2 Description Of Iterative Method 

We now seek a sequence of approximations to the unknown boundary of the 

obstacle. To describe the procedure which generates these approximations, let us 

rewrite (4.2); 

0

( )

1 0 2( ,0) = ( | |) ( )
4

D

s m
m m y

i
u x H k x y ds yψ

∂

− −∫                                                        (4.11) 

0( ) + u ( ) = 0  , x Dsu x x ∈∂                                                                                    (4.12) 

Firstly, we make an initial guess of the unknown boundary curve D∂  of the obstacle. 

This guess is denoted by 0D∂  .Let us choose a point x0 on 0D∂  . Then (4.11), with 

index m = 0, only one parameter’s value we do not know, yψ . From (4.11) and 

(4.12) we can find ψ  ; 
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sA uψ =   

1 1

sA A A uψ− −=  ;       1A A I− =  

1

sA uψ −=                                                                                                                (4.13) 

After this we will find far field pattern with using ψ . 

( )( , )mF D uψ ∞∂ =                                                                                                    (4.14) 

Equation (4.14) is a non-lineer equation and we can solve this equation with Newton 

method. 

( , ) ( , )m mF D F D D uψ ψ ∞′∂ + ∂ ⋅∆ =                                                                         (4.15) 

In this equation F ′  is far field pattern’s frechet derivative. And also 0D D D∆ = −  . 

The iterative procedure is the following: 

1. Choose a closed curve  0D∂ . 

2. From equation (4.11) and (4.13) we find ψ .  

3. From equation (4.15) we find D∆ .  

 4. We find 1D∂  from the ψ  equation. 

5. We can calculate 2D∂  from  1D∂  and ψ . After this we find the new shape. ( 2D∂ ) 

6. The procedure then continues by iterating the steps. 
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5. NUMERICAL RESULTS 

In this section we will give some examples aimed at electromagnetic imaging of 

conducting objects buried under a half space. 

First we will to find the scattered field at the half-space interface by comparing exact 

scatered field with scatered field which calculated on the surface by analytic 

continuation method. Also, in this section we will see the effects of some parameters 

such as height (h), λ. 

In the second section we present the result for imaging of conducting a object buried 

under a half space. 

5.1 Finding the scattered field  

This section is concerned to illustrate the performance of the analytic continuation 

method with the numerical examples. Also, we will compare this examples with the 

exact scattered field.  

To see the effect of length of measurement line we change the value of this 

parameters and find the fields. In figure 5.1, we can see the exact scattered field and 

calculated scattered field by continuous method on the surface of an perfectly 

conducting cylinder. In this example  we consider a situation in which fr=300 MHz; 

x2=0.2m; ε0 = 10
-9

 /(36*π); k1=ω* 0 0ε µ
, and measurament length L= 40λ0  to see 

the effect of L.  

In figure 5.2 , we can see the exact scattered field and calculated scattered field by 

continuous method on the on the same object using the same frequency, same ε0,  

sane µ0, same ω but this time we change the measurement length to the value 20λ0 to 

see the effect of L. 

Last of  all from figure 5.1 and figure 5.2 we can see that when we use L=40λ0, we 

get better results. 
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Figure 5.1: Exact total field and calculated field on the surface by analytic 

continuation method for measurement length L = 40 λ0 

 

Figure 5.2: Exact total field and calculated field on the surface by analytic                    

continuation method for measurament length L = 20 λ0        
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Figure 5.3 Exact total field and calculated field on the surface by analytic 

continuation method for k1 = k0. 

 

Figure 5.4 Exact total field and calculated field on the surface by analytic 

continuation method for k1 =1.5k0 
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To see the effect of k1 we change the value of this parameters and find the fields. In 

figure 5.3 , we can see the exact scattered field and calculated scattered field by 

continuous method on the on the same object using the same frequency, same L, 

same ω but this time we change k1 to the value k0 to see the effect of k1. 

In figure 5.4 , we can see the exact scattered field and calculated scattered field by 

continuous method on the on the same object using the same frequency, same L, 

same ω but this time we change k1 to the value 1.5k0. 

From figure 5.3 and figure 5.4 we can see that when we use k1 = k0, we get better 

results. 

Finally,  for this problem the best condition  is fr  = 300 MHz; x2=0.2m; k1 = k0 ; and 

measurament length L=20λ0. 

5.2 Finding the shape of the buried objects  

This section is concerned to illustrate the performance of the iterative method with 

the numerical examples. Also, we will compare this examples with the exact shape of 

the buried object. We find two different objects shape with this method (Ellipse, 

Cylinder). For each of them,  first the exact scattered field data used to find the shape 

of the objects  for iteration numbers 3-7-15, then the data which was found by 

continuous result method is used (Noised data). Because of this we can see the effect 

of iteration number to fşnd the shape of the objects.  

In the first example, the buried objects shape is ellipse (x1=0.4 ,x2=0.3). Firstly exact 

scattered field is used to find the shape of the object. 

In figure 5.5, we consider to find the shape of an ellipse (x1=0.4 ,x2=0.3 ) after 3 

iterations. Also, to find the shape of the data we use the exact scattered field. As you 

see in the figure the shape is not good enough. Because of this we will increase the 

iteration number to find the shape of object better. 
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Figure 5.5: The shape of the buried object after 3 iterations using the exact scattered 

field
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Figure 5.6: The shape of the buried object after 7 iterations using exact scattered 

field 
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In figure 5.6, we can see the same objects shape after 7 iterations. It can be seen that 

when we increase the iteration numbers the exact and reconstructed shapes become 

more closer. 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x
1

x
2

reconstructed

exact

 

Figure 5.7: The shape of  buried object after 15 iterations using the exact scattered 

field 

In figure 5.7, we can see the same objects shape after 15 iterations. Again  it can be 

seen that when we increase the iteration numbers the exact and reconstructed shapes 

become more closer. We can again increase the iteration number but after 15 

iterations the objects shape that we found does not change.   

After this, we will see the results when we use noise of the same form is added to the 

far-field patern. In figure 5.8, the result after 3 iterations is illustrated. In figure 5.9, 

the result after 3 iterations is illustrated. And in figure 5.10, the result after 15 

iterations is illustrated. We will use the same parameters only the scattered field will 

change. The scattered far field which is found with analytic continuous result will be 

used in this examples. 
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Figure 5.8: The shape of the buried object after 3 iterations using the noise added 

scattered field 
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Figure 5.9: The shape of the buried object after 7 iterations using the noise added 

scattered field 
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In figure 5.8, we consider to find the shape of an ellipse (x1=0.4 ,x2=0.3 ) after 3 

iterations. But this time to find the shape of the data we use the scattered field that 

we find from continuous method. Again the shape that we find is not good enough. 

We will increase the iteration number.  

In figure 5.9, we can see the same objects shape after 7 iterations using the noise 

added scattered field. It can be seen that when we increase the iteration numbers the 

exact and reconstructed shapes become more closer. 
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Figure 5.10: The shape of the buried object after 15 iterations using the noise added 

scattered field 

In figure 5.10, we can see the same objects shape after 15 iterations using the noise 

added scattered field.Again it can be seen that when we increase the iteration 

numbers the exact and reconstructed shapes become more closer. But, when we use 

the exact data the shape is better. Because of the noise our shape is not good as the 

other. It can be seen that when we use the exact scattered field, our results are better. 

In the second example, the buried objects shape is cylinder (r=0.4). Firstly exact 

scattered field is used to find the shape of the object. 
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Figure 5.11: The shape of the buried object after 3 iterations using the exact 

scattered field 

In figure 5.11, we consider to find the shape of an cylinder (r=0.4) after 3 iterations. 

Also, to find the shape of the data we use the exact scatered field. The shape is not 

good enough we will increase the iteration number. 
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Figure 5.12: The shape of the buried object after 7 iterations using the exact 

scattered field 
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In figure 5.12, we can see the same objects shape after 7 iterations. It can be seen that 

when we increase the iteration numbers the exact and reconstructed shapes become 

more closer. 
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Figure 5.13: The shape of the buried object after 15 iterations using the exact 

scattered 

In figure 5.13, we can see the same objects shape after 15 iterations.Again  it can be 

seen that when we increase the iteration numbers the exact and reconstructed shapes 

become more closer. 

After this, noise of the same form is added to the far-field patern , the result after 3-7-

15 iterations is illustrated in Fig. 5.14, Fig 5.15, Fig 5.16.  

In figure 5.14, we consider to find the shape of an cylinder (r=0.4) after 3 iterations. 

But this time to find the shape of the data we use the scattered field that we find from 

continuous method. The shape is not good enough we will increase the iteration 

number. 

In figure 5.15, we can see the same objects shape after 7 iterations using the noise 

added scattered field. It can be seen that when we increase the iteration numbers the 

exact and reconstructed shapes become more closer. 
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Figure 5.14: The shape of the buried object after 3 iterations using the noise added 

scattered field 
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Figure 5.15: The shape of the buried object after 7 iterations using the noise added 

scattered field 
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Figure 5.16: The shape of the buried object after 15 iterations using the noise added 

scatered field 

In figure 5.16, we can see the same objects shape after 15 iterations using the noise 

added scattered field.Again it can be seen that when we increase the iteration 

numbers the exact and reconstructed shapes become more closer. But, when we use 

the exact data the shape is better. Because of the noise our shape is not good as the 

other. 
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6. CONCLUSION 

Electromagnetic imaging of conducting objects buried under a half space by an 

integral equation approach has been presented. Firstly, we have find the scattered 

data on the upper half space. Then we find the scattered field at the half space 

interface. After this, we represent the the scatered field in the lower half space. At 

last, we have used Nyström method, Newton method and iterative method to find the 

shape of the buried object. 

Also, it is worth to note that in the application of the method some regularization 

techniques have been applied since all steps the problem encountered are ill-posed. 

As shown by several numerical examples, the considered approach allows to set up 

an efficient and reliable solution algorithm. In particular, the iterative method proves 

to be very stable since results obtained the same shape of the top of buried object. On 

the other hand the results don’t give the same shape of the bottom of buried objects. 

All in all the numerical examples show that the approach can provide good results.  
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