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ELECTROMAGNETIC IMAGING OF CONDUCTING OBJECTS BURIED
UNDER A HALF SPACE BY AN INTEGRAL EQUATION APPROACH

SUMMARY

In this thesis an iterative method is applied to determine the location and shape of a
perfectly conducting object buried under a half space. First of all, we express the
scattered field in the upper half space. Then we express the scattered field at the half
space interface by using continuous method. After expressing the scattered field at
the half space interface, we investigate an iterative method for electromagnetic
imaging of conducting objects buried under a half space. The method starts with an
initial guess of the shape of the boundary curve of the obstacle. Then, the normal
derivative of the space dependent part of the total acoustic field is found on this
curve from a linear integral equation of the first kind with a singular kernel
representing the incident field. Once this derivative is known, the shape of the
boundary curve is updated from a nonlinear integral equation which represents the
far-field pattern. The normal derivative of the space-dependent part of the total
acoustic field is found on this updated curve by again solving the linear integral
equation which represents the incident field. The iterative procedure is continued
until a predetermined convergency condition is fulfilled. And continuing in this
manner, a sequence of approximations of the boundary curve of the obstacle is
found. Also in this thesis, we will see the effects of some parameters while we are
expressing the scattered data at the half space interface or finding the shape of the
object.

The comparison of the results with the examples given in the literature was in a
good agreement.
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YERALTINA GOMULU ILETKEN CiSIMLERIN SEKLININ INTEGRAL
METOT YARDIMIYLA BELIRLENMESI

OZET

Bu tezde, yarim diizlem altina gomiilii ¢ok iyi iletken bir cismin seklini ve yerini
belirlemek igin tekrarlayici(yineleyici) bir method kullanacagiz. ilk basta yansiyan
alanin st yar1 diizlemdeki ifadesini bulacagiz. Daha sonra yansiyan alanin yari
diizlem araylizeyindeki ifadesini analitik siireklilik metodunu kullanarak bulacagiz.
Yansiyan alani yar1 diizlem arayiizeyinde ifade ettikten sonra yeraltina gomiili
cisimlerin seklinin belirlenmesi i¢in tekrarlayici(yineleyici) bir method kullanacagiz.
Methodumuz, ilk basta yeraltina gdmiilii cisim i¢in kendimize gore bir kapali egri
belirleyerek basliyor. Daha sonra belirledigimiz kapali egri iizerindeki alan lineer
integral denklemler(kernel) vasitastyla bulunur.Bu alani belirledikten sonrada lineer
olmayan integral denklemler yardimi ile de ilk basta kendimize gore atadigimiz
kapali egriyi giincelleyecegiz. Daha sonra tekrar gilincelledigimiz egrinin lizerindeki
alan1 lineer denklemler yardimi ile buluruz. Ve bu sekilde ilerleyerek(tekrarlayarak)
ilk basta kendimize gore atadigimiz sekli giincelleriz. Iteratif(tekrarlayici) prosediir
elde ettigimiz sekiller birbirine yakinsayana kadar devam eder. Belli bir adimdan
sonra elde ettigimiz sonuglar birbirlerine yaklasik olarak esit olduklarinda yinelemeyi
bitiririz. Ve gomiilii cismin seklini belirlemis oluruz. Ayrica bu tezde yansiyan alanin
yart diizlem araylizeyindeki ifadesini bulurken veya cismin seklini belirlemeye
calisirken bazi parametrelerin elde ettigimiz sonuglara etkilerinide gorecegiz.

Sonuglart literatiirdeki calismalarla karsilagtirdigimizda, Onerilen yontemlerle elde
edilen sonuclar miithendislik agisindan yeter yakinsakligi sagladigi gézlenmistir.

Vil



1. INTRODUCTION

Electromagnetic scattering from objects has been an area of in depth research for
many years. A variety of powerful solution methodologies have been developed and

utilized for the clever solution of increasingly complex problems.

The electromagnetic direct scattering problem is the problem of determining the
scattered field when the geometrical and physical properties of the scatterer are
known. Thus, there many books and papers have been published about scattering of
electromagnetic waves. On the other hand, inverse scattering is the problem of
inferring information on the source of the known scattering field data. Practically,
this data is obtained via measurements in a particular domain. However, in order to
test the reconstruction algorithms the data can be obtained synthetically by solving

the direct problem, which is case in this proposed thesis.

Reconstruction of the shape of a conducting object by using electromagnetic or
acoustic waves is one of the fundamental problems of inverse scattering theory not
only for its mathematical and physical importance but also for the wide range of
applications in the  areas of microwave remote sensing, optical system
measurements, underwater acoustics and non-destructive testing of materials etc.
Additionally, various medical imaging applications are concerned with

reconstructing the inhomogeneities by solving the arisen inverse scattering problems.

Within this framework another interesting problem would be the imaging of
conducting objects buried under a half space by an integral equation approach. In this
work an iterative method is applied to determine the location and shape of a perfectly
conducting object buried under a half space which is not widely investigated in the

open literature as far as we know.

The organization of the thesis is as follows: In section 2, a general formulation of the
inverse scattering problem is formulated. In section 3, we express the scattered field
at the half-space interface. In section 4, we investigate an iterative method for

electromagnetic imaging of conducting objects buried under a half space. The



method starts with an initial guess of the shape of the boundary curve of the obstacle.
Then, the normal derivative of the space-dependent part of the total acoustic field is
found on this curve from a linear integral equation of the first kind with a singular
kernel representing the incident field. Once this derivative is known, the shape of the
boundary curve is updated from a nonlinear integral equation which represents the
far-field pattern. The normal derivative of the space-dependent part of the total
acoustic field is found on this updated curve by again solving the linear integral
equation which represents the incident field. Numerical results are given in section 5,

and a conclusion is presented in section 6.



2. GENERAL FORMULATION OF THE PROBLEM

Consider the geometry given in Figure 1. Here D is a perfectly conducting object
buried in the lower half space. The object is illuminated from the upper half space
and the scattered field is measured on a limited line parallel to the interface. The
inverse problem considered here is to obtain the geometry of the buried conducting
object D, i.e; 0D, by the use of measurements performed in a planar domain inside

the upper half space.

To formulate the problem in an appropriate way, first decompose the total field as,

u(x)=u’(x)+u’(x), (x=(x,,x,)€R”) where u’corresponds to the total field in

Xo A
measurement line /

ke

k2,82, H2

Figure 2.1 - Geometry of the Problem

the absence of the buried object, while u’ denotes the scattered field due to the
conducting buried object. Then by the use of Fourier Transform one can represent
the scattered field in the upper half-space as [1]

K _ 1 -y7(L)x, _ivx
u (xl,xz)—ELA(u)e e dv 2.1)
In which A4(v) is the unknown spectral coefficient while y(v)=+/v" -k’ is the

properly defined square root function in the complex-v plane, where £, is the wave



number of the upper half-space. Now assume that the scattered field is measured on
a line x, =/ >0, parallel to the half space interface. Then putting x, =/ in (2.1) one
can calculate the unknown spectral coefficient by inverting the integral equation
(2.1). Once having obtained this coefficient it is easy to express the scattered field at

the half-space interface by just putting x, =0 in (2.1).

The second step of our algorithm is to represent the scattered field in the lower half-

space as a single layer potential which leads to the following integral equation in

terms of the field values u"(x;,0)

' (x,0) = [ G(x,»)®(y)ds(y) (2.2)

where G(x,y) :iHé”(k2 |x—y]) is the Green’s function with k, being the wave

number of the lower half-space and ®(y) is the unknown single layer density

function. In (2) both the shape of the scatterer and the density function are

unknowns. The boundary condition on the surface of the body can be written as

u'(x)=-u’(x), xe oD (2.3)

Equations (2.2) and (2.3) constitute a system of non-linear equations in terms of two

unknowns ®(y)and 0D . Now following a similar approach presented in [1], this
system can be solved iteratively. To this aim we first solve (2.3) by Nystrom method
for a given initial estimate of the shape 0D'” to obtain an approximate density
function ®”(y). Then the parametric form of the equation (2.2) is linearized in the

sense of Newton method which requires the Frechét derivative of the operator with
respect to the shape of the object. The solution of the linearized equation gives us the
updated shape, say, 0D . The iterative procedure explained above is continued until
a predetermined convergency condition is fulfilled. It is worth to note that in the
application of the method some regularization techniques have been applied since in

both steps the problem encountered are ill-posed.



3. DIRECT SCATTERING PROBLEM

3.1 Direct Scattering Problem

Consider the two-dimensional scattering problem illustrated in Figure 2.1. In this
configuration, the whole space is separated into two half-spaces by the interface /0,
which is defined by the relation x , = f(x;), where f(x) is a single-valued function. 70
is assumed to be locally smoth, i.e., f(x;) differs from the planar surface over a finite
interval whose length is L.The half-spaces above and below /0 are assumed to be
filled with simple nonmagnetic materials having dielectric permittivities and
conductivities €;, 51 and &;, o, respectively. The scattering problem considered here is
to determine the effect of 70 on the propagation of electromagnetic waves excited in
the upper half-space x , > f(x;) , more precisely, to obtain the scattered field from the
surface 70. To this aim, the half-space x » < f(x;) is illuminated by a time-harmonic

plane wave whose electric-field vector is always parallel to the Ox; axis, namely,

Ei=(0,0, uj(x1,x2) ) (3.1)

-iky (x, cos @y +x, sin ¢ )

u(x;,xp) = € (3.2)

where ¢0 € (0, m) is the angle of incidence while k; stands for the wave number of
the upper half-space, which is defined by the square root of kj» = mg1po + 1oLy .
Since the problem is homogeneous in the 0x3 direction, the total electric-field vector
will also be parallel to the Ox3-axis, namely, E = (0, 0, u(x)), where x = (x1,x2)
denotes the position vector in R2. Thus, the problem is reduced to a scalar one in

terms of the total field function u(x).

To solve the scattering problem stated above, we first assume that the whole space is
separated into two parts by the plane X, =0. In such a case, the half-spaces X, > 0 and
X< 0 contain 2 finite domains bounded by the ['o and X, = 0 plane. Let us denote

the ones in the region X, > 0 by D, and the rest in the region X, < 0 by D, . Note that



the dielectric permittivities and conductivities of the regions D; and D, are ¢;, 5, and

€, G respectively.

To formulate the problem more easily, consider now the total field uy(x) that would
be created by the incident field (3.1) in the case of two-half spaces medium separated
by the plane x; = 0 (See Fig. 3.1.) In this case uy(x) can be obtained in a very

straightforward way.

u;
E|~.-"-'!ihdl

Ly flys T /AL

Figure 3.1 — Geometry for the field ug
Ui(x), consists in the difference
uy(X) = u(x) — uo(x) 3.3)

can be expresssed as a single layer potential integral as follows

w(0= [ G(x )y (n)ds(y) (3.4)

where G(x;y) denotes the Green's function of the two-part space with a planar
interface at x, = 0, and y(y) is the unknown density function. The solution of the

direct scattering can be reduced to the solution of the unknown density function. The

valid boundary condition on the surface of the buried PEC object is uy(x)= -ug(x).

From (3.3) and (3.4) we can express

[ G yw ()ds(y)= —uy(x)



3.2 Green’s Function of the two-part space
By definition, the Green's function G(x;y) satisfies the equation
AG(xzy) + K (x2) G(xzy) = -8(x-y) (3.5)

in the sense of distributions under the radiation condition. In this equation, y € R* is

an arbitrary point and J is the Dirac's delta distribution.

To find a suitable expression of G, consider first its Fourier transform with respect to

X1, namely,
G (v,x%,;3) = [ G(X;V)e ™ dx, (3.6)

Then the transformations of (3.5) and the boundary conditions at x, = 0 yield the

following problem for G*:

A

d’G

(P -EDG =S, -y, j=12, veC, (3.7)
2
A G )
G and —— are continuous on X, =0 (3.8)
ox,
IG| 20 as|x| > o (3.9

Here, Cr stands for a horizontal straight line in the regularity strip of G* in the
complex v-plane(see figure3.2). After some straightforward calculations and through

the well-known inverse transform integral

G(x53) = 5= [ G (v ) € ™dy (3.10)
CR



We can get an explicit expression of G(x; y) as follows:

i
ZHO“)(kl | x=y )+ G (xp); X, >0, y,>0

G (x;); X, <0, y,>0
Gxzy) = (3.11)
G (x;); X,>0, y,<0

i
ZHO(I)(kZ|x_y‘)+G1(€2)(x;y); X, <0, y,<0

Where
1 1 1 Y177 —7(x,+y iv(x—
GR()(x;y) = | 1 2 e n(x+y;) e (% '])dV (312)
27 2y 1+,
GO (x;y) = L J' L i e NIt Hveamn) oy, (3.13)
' ’ 2 2y n+7,
GT(Z) (x’ y) = L j- L _ 27/2 672)’2‘*'71"2 ei"(xl_)ﬁ)dv (314)
2 2y, n+7,
G (2) (- — 1 1 Vo= V1 —r(nmtry) iv(g—yw)
D) = o= [ B e gy (3.15)
2 2y, i+,

While Ho" zero-order Hankel function of the first kind. In (3.12)-(3.15) the

functions y; and vy, stand for the square roots

71(V):sz_k12v 72(V):\/V2_k22 (3.16)
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Figure 3.2 — Complex v plane

Which are defined in the complex v-plane cut as shown in Figure3 with the

conditions
7i(0) =-ikj, j=1,2 (3.17)

From the (3.12), (3.15) and (3.11) we can easily see that G is symmetrical, and has
the property

G(x,y) = GM(x1-y1l, X2,y2), x,y € R (3.18)



4. INVERSE SCATTERING AND ITERATIVE METHOD

4.1 Formulation Of the Inverse Scattering Problem

In figure (2.1), assume that scattered field is measured in the line x, = 1 . The
inversede problem defined here is to obtain the shape of the scatterer 0D from the

knowledge of this scattered data.Scattered field on x,=11s,

w0 = [ Gy (y)ds(y) (4.1)

But as we can see form the section 3, it is very complex and hard to solve it. Because

of this we can carry the data from x, =1to x, =0 and we can write (4.1) as

w (5,00 = [ HY (ky|x = yly,ds(y) (4.2)
D

And let #°(v,x,) denote the Fourier transform of #(v,x,) with the respect to x»,

namely,
' (v,x,)= J- uw(x,x,)e ™, vel,x,>0 4.3)
which yields,
s 1 ~S ivx;
u'(x,x,) = — Iu (v, x,)e™dv (4.4)
2r 1

Here L stands for a horizontal straight line in the regulatory strip of #® in the
complex v plane. The asymptotic behavior of u’(x,x2) as x; = Zo has a
symmetry and, consequently, the regularity strip includes also the real v axis. Now

let us take the Fourier transform to get

di’
2
dx;

y(v) = vt -k? (4.6)

-7t =0, vel (4.5)

10



A solution to (4.5) can be obtained very easily and one writes

' (v,x,)= A(v)e”™ , x,20 4.7)
With the radiation condition taken into account.Here A is a coefficient to be
determined. Since the function u’(x,,x,) is known on the line x,=l, one can

calculate its Fourier transform °(v,/) through the relation (4.3). Putting #°(v,/) in

(4.7) for x, =1 allows us to obtain the coefficient A very easily.One gets
A=e" 4°(v,0) (4.8)

Since the coefficient A is known, we can know write the field distribution

u'(x,,0) = 1 Ae™dv 4.9
2 1

And its derivative

ou” (xl,O) _

1 ivx,
2_1" —yAe™dv (4.10)

On the plane x,=0.

4.2 Description Of Iterative Method

We now seek a sequence of approximations to the unknown boundary of the
obstacle. To describe the procedure which generates these approximations, let us

rewrite (4.2);

u'(x,0)= —= j HY" (ky | %, = 3, W,ds(y) (4.11)
aDO
u(x)+u’(x)=0 ,xedD (4.12)

Firstly, we make an initial guess of the unknown boundary curve 0D of the obstacle.

This guess is denoted by 0D, .Let us choose a point xo on 0D, . Then (4.11), with
index m = 0, only one parameter’s value we do not know, . From (4.11) and

(4.12) we can find v ;

11



Ay =u,
AlAdy=A"u, ;  A'A=1

w=A"u (4.13)
After this we will find far field pattern with using y .

F(D"™,w)=u, (4.14)

Equation (4.14) is a non-lineer equation and we can solve this equation with Newton

method.

F(D

m

W)+ F'(@D,,w)-AD=u, (4.15)
In this equation F' is far field pattern’s frechet derivative. And also AD=D-D, .

The iterative procedure is the following:

1. Choose a closed curve 0D, .
2. From equation (4.11) and (4.13) we find .

3. From equation (4.15) we find AD .

4. We find oD, from the y equation.
5. We can calculate 0D, from 0D, and y . After this we find the new shape. (0D, )

6. The procedure then continues by iterating the steps.

12



5. NUMERICAL RESULTS

In this section we will give some examples aimed at electromagnetic imaging of

conducting objects buried under a half space.

First we will to find the scattered field at the half-space interface by comparing exact
scatered field with scatered field which calculated on the surface by analytic
continuation method. Also, in this section we will see the effects of some parameters

such as height (h), A.

In the second section we present the result for imaging of conducting a object buried

under a half space.

5.1 Finding the scattered field

This section is concerned to illustrate the performance of the analytic continuation
method with the numerical examples. Also, we will compare this examples with the

exact scattered field.

To see the effect of length of measurement line we change the value of this
parameters and find the fields. In figure 5.1, we can see the exact scattered field and
calculated scattered field by continuous method on the surface of an perfectly

conducting cylinder. In this example we consider a situation in which f=300 MHz;

x,=0.2m; gy = 10~ /(36*m); kiI=w* V Eoko , and measurament length L= 404, to see
the effect of L.

In figure 5.2 , we can see the exact scattered field and calculated scattered field by
continuous method on the on the same object using the same frequency, same g,
sane L, same o but this time we change the measurement length to the value 20 to

see the effect of L.

Last of all from figure 5.1 and figure 5.2 we can see that when we use L=40L,, we

get better results.

13



continuation mtd result
X
3- ,‘ exact |
2.5 | .
[us| ‘
20 ‘ |
250
X1n
Figure 5.1: Exact total field and calculated field on the surface by analytic
continuation method for measurement length L = 40 A
4 T T T T
exact
35k continuation method result |
3r i
25F =
£ 2F i
15F -
11 i
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0sr -
0 I 1 il TR AY
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Figure 5.2: Exact total field and calculated field on the surface by analytic

continuation method for measurament length L =20 A
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Figure 5.3 Exact total field and calculated field on the surface by analytic

continuation method for k; = k.

continuation mtd result
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|

0 50 100 150 200 250

X1n

Figure 5.4 Exact total field and calculated field on the surface by analytic

continuation method for k; =1.5k,
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To see the effect of k; we change the value of this parameters and find the fields. In
figure 5.3 , we can see the exact scattered field and calculated scattered field by
continuous method on the on the same object using the same frequency, same L,

same o but this time we change k; to the value kj to see the effect of k;.

In figure 5.4 , we can see the exact scattered field and calculated scattered field by
continuous method on the on the same object using the same frequency, same L,

same o but this time we change k; to the value 1.5ky.

From figure 5.3 and figure 5.4 we can see that when we use k; = ko, we get better

results.

Finally, for this problem the best condition is fr =300 MHz; x,=0.2m; k; = k¢ ; and

measurament length L=202.

5.2 Finding the shape of the buried objects

This section is concerned to illustrate the performance of the iterative method with
the numerical examples. Also, we will compare this examples with the exact shape of
the buried object. We find two different objects shape with this method (Ellipse,
Cylinder). For each of them, first the exact scattered field data used to find the shape
of the objects for iteration numbers 3-7-15, then the data which was found by
continuous result method is used (Noised data). Because of this we can see the effect

of iteration number to fsnd the shape of the objects.

In the first example, the buried objects shape is ellipse (x;=0.4 ,x,=0.3). Firstly exact
scattered field is used to find the shape of the object.

In figure 5.5, we consider to find the shape of an ellipse (x;=0.4 ,x,=0.3 ) after 3
iterations. Also, to find the shape of the data we use the exact scattered field. As you
see in the figure the shape is not good enough. Because of this we will increase the

iteration number to find the shape of object better.
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reconstructed
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Figure 5.5: The shape of the buried object after 3 iterations using the exact scattered

field

0.4

0.4

reconstructed
exact

Figure 5.6: The shape of the buried object after 7 iterations using exact scattered

field
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In figure 5.6, we can see the same objects shape after 7 iterations. It can be seen that
when we increase the iteration numbers the exact and reconstructed shapes become

more closer.

0.4 ‘
reconstructed
exact

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 5.7: The shape of buried object after 15 iterations using the exact scattered

field

In figure 5.7, we can see the same objects shape after 15 iterations. Again it can be
seen that when we increase the iteration numbers the exact and reconstructed shapes
become more closer. We can again increase the iteration number but after 15

iterations the objects shape that we found does not change.

After this, we will see the results when we use noise of the same form is added to the
far-field patern. In figure 5.8, the result after 3 iterations is illustrated. In figure 5.9,
the result after 3 iterations is illustrated. And in figure 5.10, the result after 15
iterations is illustrated. We will use the same parameters only the scattered field will
change. The scattered far field which is found with analytic continuous result will be

used in this examples.
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0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 5.8: The shape of the buried object after 3 iterations using the noise added
scattered field

e s T
reconstructed
exact

0.4 -0.3 -0.2 -0.1 0] 0.1 0.2 0.3 0.4

Figure 5.9: The shape of the buried object after 7 iterations using the noise added
scattered field
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In figure 5.8, we consider to find the shape of an ellipse (x;=0.4 ,x,=0.3 ) after 3
iterations. But this time to find the shape of the data we use the scattered field that
we find from continuous method. Again the shape that we find is not good enough.

We will increase the iteration number.

In figure 5.9, we can see the same objects shape after 7 iterations using the noise
added scattered field. It can be seen that when we increase the iteration numbers the

exact and reconstructed shapes become more closer.

0.4 ‘
reconstructed
- exact b

~

_04 1 1 1 1 1 1 1

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 5.10: The shape of the buried object after 15 iterations using the noise added
scattered field

In figure 5.10, we can see the same objects shape after 15 iterations using the noise
added scattered field.Again it can be seen that when we increase the iteration
numbers the exact and reconstructed shapes become more closer. But, when we use
the exact data the shape is better. Because of the noise our shape is not good as the

other. It can be seen that when we use the exact scattered field, our results are better.

In the second example, the buried objects shape is cylinder (r=0.4). Firstly exact

scattered field is used to find the shape of the object.
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reconstructed

exact

Figure 5.11: The shape of the buried object after 3 iterations using the exact
scattered field

In figure 5.11, we consider to find the shape of an cylinder (r=0.4) after 3 iterations.
Also, to find the shape of the data we use the exact scatered field. The shape is not

good enough we will increase the iteration number.

I — ‘
reconstructed

exact i

Figure 5.12: The shape of the buried object after 7 iterations using the exact
scattered field
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In figure 5.12, we can see the same objects shape after 7 iterations. It can be seen that
when we increase the iteration numbers the exact and reconstructed shapes become

more closer.

T T
reconstructed
exact i

Figure 5.13: The shape of the buried object after 15 iterations using the exact

scattered

In figure 5.13, we can see the same objects shape after 15 iterations.Again it can be
seen that when we increase the iteration numbers the exact and reconstructed shapes

become more closer.

After this, noise of the same form is added to the far-field patern , the result after 3-7-
15 iterations is illustrated in Fig. 5.14, Fig 5.15, Fig 5.16.

In figure 5.14, we consider to find the shape of an cylinder (r=0.4) after 3 iterations.
But this time to find the shape of the data we use the scattered field that we find from
continuous method. The shape is not good enough we will increase the iteration

number.

In figure 5.15, we can see the same objects shape after 7 iterations using the noise
added scattered field. It can be seen that when we increase the iteration numbers the

exact and reconstructed shapes become more closer.
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Figure 5.14: The shape of the buried object after 3 iterations using the noise added
scattered field

reconstructed
exact

Figure 5.15: The shape of the buried object after 7 iterations using the noise added
scattered field
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Figure 5.16: The shape of the buried object after 15 iterations using the noise added

scatered field

In figure 5.16, we can see the same objects shape after 15 iterations using the noise
added scattered field.Again it can be seen that when we increase the iteration
numbers the exact and reconstructed shapes become more closer. But, when we use
the exact data the shape is better. Because of the noise our shape is not good as the

other.

24



6. CONCLUSION

Electromagnetic imaging of conducting objects buried under a half space by an
integral equation approach has been presented. Firstly, we have find the scattered
data on the upper half space. Then we find the scattered field at the half space
interface. After this, we represent the the scatered field in the lower half space. At
last, we have used Nystrom method, Newton method and iterative method to find the

shape of the buried object.

Also, it is worth to note that in the application of the method some regularization

techniques have been applied since all steps the problem encountered are ill-posed.

As shown by several numerical examples, the considered approach allows to set up
an efficient and reliable solution algorithm. In particular, the iterative method proves
to be very stable since results obtained the same shape of the top of buried object. On
the other hand the results don’t give the same shape of the bottom of buried objects.

All in all the numerical examples show that the approach can provide good results.
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