<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

DAİRESEL KALIN PLAKLARIN STATİK VE DİNAMİK ANALİZİ

> YÜKSEK LİSANS TEZİ Fatih ŞAMDAN

Anabilim Dalı: İnşaat Mühendisliği

Programı: Yapı Mühendisliği

HAZİRAN 2009

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

DAİRESEL KALIN PLAKLARIN STATİK VE DİNAMİK ANALİZİ

> YÜKSEK LİSANS TEZİ Fatih ŞAMDAN (501071039)

Tezin Enstitüye Verildiği Tarih :27 Nisan 2009Tezin Savunulduğu Tarih :03 Haziran 2009

Tez Danışmanı :Doç. Dr. Nihal ERATLI (İTÜ)Diğer Jüri Üyeleri :Prof. Dr. A. Yalçın AKÖZ (Maltepe Ü.)Yrd. Doç. Dr. Fethi KADIOĞLU (İTÜ)

HAZİRAN 2009

ÖNSÖZ

Bu çalışmanın hazırlanmasında bilgi ve tecrübelerini bana aktaran, Yüksek Lisans eğitimim boyunca her konuda destek veren değerli danışmanım Sn. Doç. Dr. Nihal Eratlı'ya teşekkürlerimi ve saygılarımı sunarım.

Eğitim hayatımda maddi ve manevi desteklerini esirgemeyen sevgili anneme, babama, ağabeyime ve Canan Aydın'a teşekkür ederim.

Haziran 2009

Fatih Şamdan (İnşaat Mühendisi)

iv

İÇİNDEKİLER

<u>Sayfa</u>

ÖNSÖZ	iii
IÇINDEKILER	V
KISALTMALAR	. vii
ÇIZELGE LISTESI	ix
ŞEKIL LISTESI	Xİ
OZET.	xiii
SUMMARY	XV
1. GIRIŞ	1
1.1 Giriş ve Tezin Amacı.	I
2. DAIRESEL KALIN PLAK DENKLEMILERININ VE FONKSIYONELIN	-
	5
2.1 Dairesel Kalin Plak Denklemlerinin Elde Edilmesi	5
2.1.1 Yapılan kabuller	
2.1.2 Denge denklemleri.	8
2.1.3 Bileşke gerilme ve şekil degiştirme buyuklukleri arasındaki bagıntılar	8
2.2 Fonksiyonelin Elde Edilmesi	10
3. ELEMAN MA I KISININ SONLU ELEMAN FOKMULASYONU	15
2 1 SEC24 Element	15
3.1 SEC24 Elemani	15
3.2 SEC 32 Elemani	1/
4. Direcel Diskler	
4.1 Dairesei Plakiar	
4.1.1 1 akiaşını testi.	22
4.1.2 Dasit mesnetli dairesel plakiar	
4.1.5 Alikastre meshetli dalleset plaktar	
4.2 IÇI DOŞIUKIU Dallesel Plaklar	
4.2.1 Içi ve dışı basıt mesnetli boşluklu dairesel plaklar	
4.2.2 Içi ve dişi alıkasıle mesnelli boşluklu dairesel plaklar	
4.2.5 IÇI SELDESI VE DIŞI DASIL MESHELII DOŞIUKIU DAHESEL PLAKIAL	
5. Divaring Alvaliz	/10
5.1 Dallesen Flakiat	+0
5.1.2 Basit mesnetli dairesel plaklar	+0
5.1.2 Dasit mesnetli dairesel plaklar	50
5.2 İci Boshuklu Dairesel Plaklar	
5.2 1 İci ve dışı haşit mesnetli başluklu dairesel plaklar	
5.2.2 İçi ve dışı ankaştre meşnetli hoşluklu dairesel plaklar	
5.2.2 Içi ve dışı ankasite mesnetli boşluklu dairesel plaklar	
6 PROGRAMI AMA	63
6.1 Data Alt Program	
6.2 Eleman Matrisi Alt Program	64

6.3 Kodlama Alt Matrisi	
6.4 Sistem Matrisi Alt Program1	
6.5 Statik Analiz	
6.6 Dinamik Analiz	
7. SONUCLAR	
KAYNAKLAR	
ÖZGECMİS	
UZGEÇMIŞ	

KISALTMALAR

: Plak dış yarıçapı
: Plak iç yarıçapı
: Plak kalınlığı
: Polar koordinatlar
: Global koordinatlar
: Elastisite modülleri
: Poisson oranları
: Kayma modülleri
: Düşey yük
: Şekil değiştirme bileşenleri
: Açı değişimleri
: Normal gerilmeler
: Kayma gerilmeleri
: Eğilme ve burulma momentleri
: Kesme kuvvetleri
: Şekil değiştirme büyüklükleri
: Düşey yer değiştirme
: Eğilme rijitlikleri
: Operatör
: İç çarpım
: Yaklaşım fonksiyonları
: Sonlu eleman boyutları
: Eleman rijitlik matrisi
: Kütle matrisi
: Yoğunluk
: Frekans

viii

ÇİZELGE LİSTESİ

<u>Sayfa</u>

Çizelge 4.1 : Basit ve ankastre mesnetli izotrop dairesel plakta θ doğrultusundaki
düğüm noktası sayısına bağlı boyutsuz \overline{w} ve \overline{M}_r değerleri22
Çizelge 4.2 : Basit ve ankastre mesnetli izotrop dairesel plakta R doğrultusundaki
düğüm noktası sayısına bağlı boyutsuz \overline{w} ve \overline{M}_r değerleri23
Çizelge 4.3 : Basit ve ankastre mesnetli ortotrop dairesel plakta θ doğrultusundaki
düğüm noktası sayısına bağlı boyutsuz \overline{w} ve \overline{M}_r değerleri25
Çizelge 4.4 : Basit ve ankastre mesnetli ortotrop dairesel plakta R doğrultusundaki
düğüm noktası sayısına bağlı boyutsuz \overline{w} ve \overline{M}_r değerleri25
Çizelge 4.5 : Basit mesnetli ortotrop dairesel plak merkezinde boyutsuz \overline{M}_r , \overline{M}_{θ} ,
\overline{w} değerleri ($E_r/E_{\theta} = 0,5$)27
Çizelge 4.6 : Basit mesnetli izotrop dairesel plak merkezinde boyutsuz \overline{M}_r , \overline{M}_{θ} , \overline{w}
değerleri ($E_r/E_{\theta} = 1,0$)
Çizelge 4.7 : Basit mesnetli ortotrop dairesel plak merkezinde boyutsuz \overline{M}_r , \overline{M}_{θ} ,
\overline{w} değerleri ($E_r/E_{\theta} = 5,0$)
Çizelge 4.8 : Ankastre mesnetli ortotrop dairesel plak merkezinde boyutsuz \overline{M}_r ,
$\overline{M}_{\theta}, \ \overline{w} \ \text{degerleri} \ (E_r/E_{\theta} = 0, 5)30$
Çizelge 4.9 : Ankastre mesnetli izotrop dairesel plak merkezinde boyutsuz \overline{M}_r , \overline{M}_{θ} ,
\overline{w} değerleri $(E_r/E_{\theta} = 1, 0)$
Çizelge 4.10 : Ankastre mesnetli ortotrop dairesel plak merkezinde boyutsuz \overline{M}_r ,
\overline{M}_{a} , \overline{w} değerleri ($E_{c}/E_{a} = 5,0$)
Cizelge 4.11 : İçi ve dışı basit mesnetli boşluklu dairesel plakta r=(a-b)/2'deki
boyutsuz \overline{M}_r değerleri
Çizelge 4.12 : İçi ve dışı basit mesnetli boşluklu dairesel plakta r=(a-b)/2'deki
boyutsuz \overline{w} değerleri
Çizelge 4.13 : İçi ve dışı ankastre mesnetli boşluklu dairesel plakta r=b'deki
boyutsuz M_r değerleri
Çizelge 4.14 : lçi ve dışı ankastre mesnetli boşluklu dairesel plakta r=(a-b)/2'deki boyutsuz \overline{w} değerleri 34
Çizelge 4.15 : İçi serbest ve dışı basit mesnetli boşluklu dairesel plakta $r=(a-b)/2$ '
deki boyutsuz \overline{M}_r değerleri
Çizelge 4.16 : İçi serbest ve dışı basit mesnetli boşluklu dairesel plakta r=b'deki
boyutsuz \overline{w} değerleri
Çizelge 5.1 : Basit mesnetli izotrop dairesel plakta R doğrultusundaki düğüm noktası
sayısına baglı boyutsuz ω degerleri

Çizelge 5.2 : Basit mesnetli izotrop dairesel plakta θ doğrultusundaki düğüm noktası	1
Circles 5.2 • Ankastra magnetli izotron dairagal nlakta D dažmultugundaki düğüm	L
$\sqrt{2}$,
Cizelge 5.4 • Ankastre mesnetli izotron dairesel plakta A doğrultusundaki düğüm	2
$\nabla \mathbf{r} \mathbf{c} \mathbf{r} \mathbf{c} \mathbf{r} \mathbf{c} \mathbf{r} \mathbf{c}$	2
Cizelge 5.5 · Basit mesnetli ortotron dairesel nlakta R doğrultusundaki düğüm nokta	,
$\sqrt{2}$ savisina bağlı boyutsuz $\overline{\omega}$ değerleri	1
Cizelge 5.6 : Basit mesnetli ortotrop dairesel plakta θ doğrultusundaki düğüm	
noktası savısına bağlı bovutsuz $\overline{\omega}$ değerleri	5
Cizelge 5.7 : Ankastre mesnetli ortotrop dairesel plakta R doğrultusundaki düğüm	
noktası sayısına bağlı boyutsuz $\overline{\omega}$ değerleri	5
Çizelge 5.8 : Ankastre mesnetli ortotrop dairesel plakta θ doğrultusundaki düğüm	
noktası sayısına bağlı boyutsuz $\overline{\omega}$ değerleri47	7
Çizelge 5.9 : Basit mesnetli ortotrop dairesel plakta boyutsuz $\overline{\omega}$ değerleri	
$(E_r/E_{\theta} = 0,5).$	3
Cizelge 5.10 : Basit mesnetli izotrop dairesel plakta boyutsuz $\overline{\omega}$ değerleri	
(E/E = 1.0))
Cizalga 5.11 : Pasit magnetli ortetron deiresel plakta hovutauz $\overline{\alpha}$ dečerlari	
(E / E = 5.0)	`
$(E_r/E_{\theta} = 3, 0). $	1
Çizelge 5.12 : Ankastre mesnetli ortotrop dairesel plakta boyutsuz ω degerleri	~
$(E_r/E_{\theta} = 0,5)$)
Çizelge 5.13 : Ankastre mesnetli izotrop dairesel plakta boyutsuz $\overline{\omega}$ değerleri	
$(E_r/E_{\theta} = 1, 0)51$	Ĺ
Çizelge 5.14 : Ankastre mesnetli ortotrop dairesel plakta boyutsuz $\overline{\omega}$ değerleri	
$(E_r/E_{\theta} = 5,0).$	l
Cizelge 5.15 : b/a=0.1 olan ici ve dısı basit mesnetli bosluklu dairesel plakta	
bovutsuz $\overline{\omega}$ değerleri	3
Cizelge 5.16 : b/a=0,3 olan içi ve dışı basit mesnetli boşluklu dairesel plakta	
boyutsuz $\overline{\omega}$ değerleri	1
Çizelge 5.17 : b/a=0,5 olan içi ve dışı basit mesnetli boşluklu dairesel plakta	
boyutsuz $\overline{\omega}$ değerleri	1
Çizelge 5.18 : b/a=0,1 olan içi ve dışı ankastre mesnetli boşluklu dairesel plakta	
boyutsuz $\overline{\omega}$ değerleri	5
Çizelge 5.19 : b/a=0,3 olan içi ve dışı ankastre mesnetli boşluklu dairesel plakta	
boyutsuz $\bar{\omega}$ değerleri	5
Çizelge 5.20 : b/a=0,5 olan içi ve dışı ankastre mesnetli boşluklu dairesel plakta	_
boyutsuz $\overline{\omega}$ değerleri	7
Çızelge 5.21 : b/a=0,1 olan ıçı serbest ve dışı basıt mesnetli boşluklu dairesel plakta	•
boyutsuz ω degerleri	J
Çizeige 5.22 : b/a=0,3 olan içi serbest ve dişi basit mesnetli boşluklu dairesel plakta	•
Circles 5.23 · $b/a=0.5$ alon isi sarbast ya digi basit magnetli bashukhu dairaaal ralata	1
$\sqrt{12}$ vizeige 5.25 : $0/a=0.5$ Olari içi serbesi ve dişi basit mesnetli boşluklu dalfesel plakta)
00 yuisuz ω ucgettett00	J

ŞEKİL LİSTESİ

<u>Sayfa</u>

Şekil 2.1 : Gerilme bileşenleri. 6 Şekil 2.2 : Kesit tesirleri. 6 Şekil 2.3 : Timoshenko varsayımı. 7 Şekil 3.1 : SEC24 elemanı. 15 Şekil 3.2 : SEC32 elemanı. 17 Şekil 4.1 : İçi dolu ve boşluklu dairesel plak. 21
Şekil 4.2 : Basit mesnetli izotrop dairesel plakta boyutsuz M_r için yaklaşım testi23
Şekil 4.3 : Basit mesnetli izotrop dairesel plakta boyutsuz \overline{w} için yaklaşım testi24
Şekil 4.4 : Ankastre mesnetli izotrop dairesel plakta boyutsuz M_r için yaklaşım testi. 24
Şekil 4.5 : Ankastre mesnetli izotrop dairesel plakta boyutsuz \overline{w} için yaklaşım testi.
Şekil 4.6 : Basit mesnetli ortotrop dairesel plakta boyutsuz \overline{M}_r için yaklaşım testi. 25
Sekil 4.7 : Basit mesnetli ortotrop dairesel plakta boyutsuz \overline{w} icin yaklasım testi26
Sekil 4.8 : Ankastre mesnetli ortotrop dairesel plakta boyutsuz \overline{M}_{i} için yaklaşım
testi
Şekil 4.10 : Basit mesnetli dairesel kalın plakta yarıçap boyunca \overline{M}_r grafiği
Şekil 4.11 : Basit mesnetli dairesel kalın plakta yarıçap boyunca \overline{M}_{θ} grafiği29
Şekil 4.12 : Basit mesnetli dairesel kalın plakta yarıçap boyunca \overline{Q}_r grafiği
Şekil 4.13 : Basit mesnetli dairesel kalın plakta yarıçap boyunca \overline{w} grafiği
Sekil 4.15 : Ankastre mesnetli dairesel kalın plakta yarıçap boyunca \overline{M}_{a} grafiği31
Sekil 4.16 : Ankastre mesnetli dairesel kalın plakta varıcan boyunca \overline{O} grafiği
Şekil 4.17 : Ankastre mesnetli dairesel kalın plakta yarıçap boyunca \overline{w} grafiği32 Şekil 4.18 : İçi ve dışı basit mesnetli boşluklu dairesel plak açıklığı boyunca
boyutsuz \overline{M}_r grafiği
Şekil 4.19 : İçi ve dışı basit mesnetli boşluklu dairesel plak açıklığı boyunca boyutsuz \overline{w} grafiği
Şekil 4.20 : İçi ve dışı ankastre mesnetli boşluklu dairesel plak açıklığı boyunca
boyutsuz \overline{M}_r grafiği
Şekil 4.21 : İçi ve dışı ankastre mesnetli boşluklu dairesel plak açıklığı boyunca
boyutsuz \overline{w} grafiği
Şekil 4.22 : İçi serbest ve dışı basit mesnetli boşluklu daireseln plak açıklığı boyunca
boyutsuz \overline{M}_r grafiği

Şekil 4.23 : İçi serbest ve dışı basit mesnetli boşluklu dairesel plak açıklığı boyunca boyutsuz \overline{w} grafiği
Şekil 5.1 : Basit mesnetli izotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği
Şekil 5.2 : Basit mesnetli izotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği
Şekil 5.3 : Ankastre mesnetli izotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz
Şekil 5.4 : Ankastre mesnetli izotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz <i>ῶ</i> grafiği44
Şekil 5.5 : Basit mesnetli ortotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği
Şekil 5.6 : Basit mesnetli ortotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği
Şekil 5.7 : Ankastre mesnetli ortotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği
Şekil 5.8 : Ankastre mesnetli ortotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği
Şekil 5.9 : Basit mesnetli dairesel plakta boyutsuz ω grafiği
Şekil 5.11 : Ankastre mesnetli dairesel kalın plak için mod şekilleri
grafiği ($E_r/E_{\theta} = 0.5$)
grafiği
Sekil 5.14 : Içi ve dişi ankastre mesnetli boşluklu ortotrop dairesel plakta boyutsuz $\overline{\omega}_1$ grafiği ($E_r/E_{\theta} = 0.5$)
Şekil 5.15 : $a/h=5$ olan içi ve dışı ankastre mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}_1$ grafiği
Şekil 5.16 : İçi serbest ve dışı basit mesnetli boşluklu ortotrop dairesel plakta boyutsuz $\overline{\omega}$ grafiği ($E/E_c = 0.5$)60
Şekil 5.17 : $a/h=5$ olan içi serbest ve dışı basit mesnetli boşluklu dairesel plakta boyutsuz \overline{a} grafiği
Sekil 6.1 : Programa ait akış şeması. 63

DAİRESEL KALIN PLAKLARIN STATİK VE DİNAMİK ANALİZİ

ÖZET

Bu çalışmada, Reissner plak teorisi kullanılarak farklı kalınlıklardaki ortotrop ve izotrop, içi dolu ve boşluklu dairesel plakların statik ve dinamik analizi yapılmıştır.

Birinci bölümde, plak tanımı yapılmış, ince ve kalın plak özelliklerinden bahsedilmiştir. Ardından Reissner ve Mindlin plak teorileri arasında karşılaştırma yapılmış ve literatürdeki çalışmalara yer verilmiştir.

İkinci bölümde, dairesel kalın plak denklemleri ve Gâteaux türevine dayalı yeni bir fonksiyonel geometrik ve dinamik sınır koşulları ile birlikte elde edilmiştir. Fonksiyonelde yer alan değişkenler momentler, kesme kuvvetleri, dönmeler ve çökmedir.

Üçüncü bölümde, karışık sonlu eleman yöntemi kullanılarak SEC24 ve SEC32 eleman matrisleri oluşturulmuştur.

Dördüncü bölümde, statik analize yer verilmiştir. İlk olarak ankastre ve basit mesnetli izotrop ve ortotrop dairesel plak için yaklaşım testi yapılmış ve uygun sonlu eleman ağı seçilmiştir. İçi dolu ve boşluklu dairesel plakların, farklı kalınlık ve E_r/E_{θ} oranları için statik analiz yapılmıştır. Elde edilen sonuçlar literatürdeki sonuçlarla karşılaştırılmıştır.

Beşinci bölümde ise dinamik analize yer verilmiştir. İlk olarak dördüncü bölümde olduğu gibi yaklaşım testi yapılmış, ardından farklı mesnetleme, kalınlık ve malzeme özelliklerine sahip problemler için dinamik analiz yapılmıştır.

Altıncı bölümde, statik ve dinamik analiz için Fortran dilinde hazırlanan program hakkında bilgiler bulunmaktadır. Program, eleman matrisindeki bilgileri kodlama yardımıyla sistem matrisine dönüştürmekte ve analizi tamamlamaktadır.

Yedinci bölümde ise dördüncü ve beşinci bölümde elde edilen sonuçlar yorumlanmıştır.

xiv

STATIC AND DYNAMIC ANALYSIS OF CIRCULAR THICK PLATES

SUMMARY

In this study, static and dynamic analysis of isotrop and orthotrop, circular and annular plates with different thickness are studied by using Reissner theory.

In first chapter, plate definitions are made, thin and thick plate properties are mentioned. Then, Reissner and Mindlin plate theories are compared and studies in the literature are mentioned.

In second chapter, thick circular plate equations and a new functional based on Gâteaux derivative are obtained by using geometric and dynamic conditions. The unknowns in the functional are moments, shear forces, rotations and deflection.

In third chapter, SEC24 and SEC32 element matricies are obtained by using mixed finite element method.

In fourth chapter, static analysis is mentioned. Firstly, the conversation test is made for clamped and simply supported isotrop and orthotrop plates. The static analysis for circular and annular plates are studied for different thickness and E_r/E_{θ} ratio. Obtained results are compared with studies in the literatures.

In fifth chapter, dynamic analysis is mentioned. The conversation test is made as fourth chapter. Then, dynamic analysis are studied for different supporting, thickness and material properties.

In sixth chapter, there is some information about programme which is written to make static and dynamic analysis in Fortran language. Programme transform element matrix data into system matrix data by code and then complete analysis.

In seventh chapter, results obtained in fourth and fifth chapter are commented.

xvi

1. GİRİŞ

1.1 Giriş ve Tezin Amacı

Plaklar, kalınlıkları diğer iki boyutunun yanında bir mertebe küçük olan, kendi ortalama düzlemlerine dik yüklenen, yüzeysel taşıyıcı yapı elemanlarıdır. Plaklar, ince ve kalın olmak üzere ikiye ayrılırlar. Dairesel plaklar için a yarıçap ve h kalınlık olmak üzere a/h oranı 10'dan büyükse ince plak, küçükse kalın plak olarak tanımlanmıştır [1]. İnce plaklarda Kirchhoff plak teorisi (klasik plak teorisi) geçerlidir. Bu teoride kalınlık doğrultusundaki $au_{rz}, au_{ heta z}$ kayma gerilmeleri ve σ_z normal gerilmesi ihmal edilmektedir. Kalın plaklarda ise kayma deformasyonu dikkate alınmaktadır. En yaygın kullanılan kalın plak teorileri Reissner [2-3] ve Mindlin [4] teorileridir. Literatürdeki bazı çalışmalarda bu iki teori, benzerliklerinden ötürü Reissner-Mindlin plak teorisi olarak kullanılsa da aralarında bazı farklılıklar vardır. Bu farklılıklar [5] nolu çalışmada ele alınmıştır. Reissner plak teorisi, plak kalınlığı boyunca gerilmenin lineer ve kayma gerilmesinin parabolik değiştiğini kabul eden tamamlayıcı enerji ifadesinden elde edilmiştir. Mindlin plak teorisinde ise plak kalınlığı boyunca yer değiştirmenin lineer olduğu kabul edilmiştir. Böyle bir kabule Reissner plak teorisinde gerek duyulmaz, bu nedenle de Reissner plak teorisinin birinci mertebe kayma deformasyon teorisi olarak tanımlanması doğru değildir. Ayrıca, Mindlin teorisinde, Reissner plak teorisinden farklı olarak σ_{z} normal gerilmesi ihmal edilmektedir. Kalın plak teorileri, ince plak problemlerinin çözümünde de kullanılabileceğinden klasik plak teorisinin yetersiz kaldığı durumlar ortadan kaldırılmıştır. İnce ve kalın plak teorilerine ilişkin çok sayıda çalışma bulunmaktadır. Bunlar farklı malzeme özellikleri ve sınır koşullarına sahip plakların statik ve dinamik analizlerini içermektedir. [6-9] nolu çalışmalar statik, [10-27] nolu çalışmalar ise dinamik analiz sonuçlarını içermektedir.

[6] nolu çalışmada, ankastre ve basit mesnetli izotrop dairesel plakların statik analizine yer verilmiştir.

[7] nolu çalışmada, farklı kalınlıklardaki izotrop dairesel plakların statik analizi, en küçük kareler formülasyonu ve sonlu elemanlar yöntemi kullanılarak yapılmıştır.

[8] nolu çalışmada, Reissner-Mindlin plak teorisi kullanılarak, "differential quadrature" yöntemi yardımıyla izotrop dairesel kalın plakların statik analizi yapılmıştır.

[9] nolu çalışmada, Winkler zeminine oturan izotrop dairesel ve sektörel kalın plakların Reissner plak teorisini temel alan statik analizi yapılmıştır. Gâteaux türevine dayalı bir fonksiyonel geliştirilmiş ve sonlu elemanlar yöntemi ile çözülmüştür.

[10] nolu çalışmada, içi dolu ve boşluklu dairesel ve sektörel izotrop kalın plakların sonlu elemanlar yöntemi ile dinamik analizi yapılmıştır. Çözüm için [9] nolu çalışmada elde edilen fonksiyonel kullanılmıştır.

[11] nolu çalışmada, farklı malzeme özelliklerine ve boyutlara sahip plakların titreşimi incelenmiştir.

[12] nolu çalışmada, sonlu elemanlar yöntemi yardımıyla izotrop ve ortotrop, içi dolu ve boşluklu dairesel plakların dinamik analizi yapılmıştır.

[13] nolu çalışmada, serbest, basit ve ankastre mesnetli dairesel plakların Mindlin plak teorisi esas alınarak dinamik analizi yapılmıştır.

[14] nolu çalışmada, basit mesnetli izotrop dairesel plakların doğal titreşim problemi incelenmiştir.

[15] nolu çalışmada, merkezinde izotrop çekirdek bulunan ortotrop dairesel plakların dinamik analizi yapılmıştır.

[16] nolu çalışmada, Rayleigh-Ritz yöntemi yardımıyla izotrop ve ortotrop, içi dolu ve boşluklu dairesel plakların dinamik analizi yapılmıştır.

[17] nolu çalışmada, "differential cubature" yöntemi yardımıyla değişken kesitli kalın plakların serbest titreşim problemi incelenmiştir.

[18] nolu çalışmada, dairesel plakların serbest titreşimleri üç boyutlu elastisite yardımıyla çözülmüştür.

[19] nolu çalışmada, Mindlin plak teorisini esas alan "differential quadrature" yöntemi yardımıyla dairesel plakların dinamik analizleri yapılmıştır.

[20] nolu çalışmada, Chebyshev-Ritz yöntemi ile içi dolu ve boşluklu dairesel plakların üç boyutlu titreşimleri incelenmiştir.

[21] nolu çalışmada, içi dolu ve boşluklu ortotrop dairesel plakların, Lagrange çarpanını kullanan Ritz yöntemiyle dinamik analizi yapılmıştır.

[22-27] nolu çalışmalarda basit ve ankastre mesnetli, izotrop ve ortotrop dairesel plakların dinamik analizlerine yer verilmiştir.

[28] ve [29] nolu kaynaklarda ise dairesel kalın plak formüllerinin elde edilişi ve çeşitli varyasyonel yöntemler hakkında bilgiler bulunmaktadır.

Bu çalışmada, dairesel ortotrop plaklar için Reissner plak teorisi kullanılarak Gâteaux türevine dayalı bir fonksiyonel geliştirilmiştir. Geometrik ve dinamik sınır koşullarını da içeren bu fonksiyonel sayısal yöntemlere uygundur. Fonksiyonelde işleme gerek bulunan büyüklükler başka bir duyulmaksızın doğrudan bulunabilmektedir. Yer değiştirme ve iç kuvvetlerin serbest değişken olarak seçildiği bu çalışmada, karışık sonlu eleman modeli kullanılmıştır. Sonlu eleman yöntemi plak problemlerinde yaygın olarak kullanılmaktadır. Düzgün yayılı yüklü içi dolu ve bosluklu dairesel plakların, farklı malzeme özellikleri ve sınır kosulları için statik ve dinamik analizleri yapılmıştır. Literatürde yer alan çalışmalara bakıldığında, genelde ortotrop dairesel plakların dinamik analizleri üzerinde yoğunlaşıldığı gözlenmiştir. Bu çalışmalarla karşılaştırma yapılmış ve sonuçların uyumlu olduğu gözlenmiştir.

2. DAİRESEL KALIN PLAK DENKLEMLERİNİN VE FONKSİYONELİN ELDE EDİLMESİ

2.1 Dairesel Kalın Plak Denklemlerinin Elde Edilmesi

2.1.1 Yapılan kabuller

Bu çalışmada malzemenin doğrusal elastik davranış gösterdiği kabul edilmiştir. Gerilme-şekil değiştirme tansörleri altı bileşenlidir. Polar koordinatlarda gerilmeşekil değiştirme ilişkisi içerisinde uzamaların normal gerilmelerden oluştuğu düşünülerek Denklem 2.1,

$$\varepsilon_{r} = \frac{\partial u}{\partial r} = \frac{1}{E_{r}} \left(\sigma_{r} - \mu_{r\theta} \sigma_{\theta} - \mu_{rz} \sigma_{z} \right)$$

$$\varepsilon_{\theta} = \frac{1}{r} \frac{\partial v}{\partial \theta} + \frac{u}{r} = \frac{1}{E_{\theta}} \left(-\mu_{\theta r} \sigma_{r} + \sigma_{\theta} - \mu_{\theta z} \sigma_{z} \right)$$

$$\varepsilon_{z} = \frac{\partial w}{\partial z} = \frac{1}{E_{z}} \left(-\mu_{zr} \sigma_{r} - \mu_{z\theta} \sigma_{\theta} + \sigma_{z} \right)$$
(2.1)

kayma gerilmelerinin sadece açı değişikliği oluşturacağı düşünülerek Denklem 2.2 elde edilir. [28]

$$\gamma_{r\theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r} - \frac{v}{r} = \frac{2(1 + \mu_{r\theta})}{E_{r\theta}} \tau_{r\theta}$$

$$\gamma_{rz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} = \frac{2(1 + \mu_{rz})}{E_{rz}} \tau_{rz}$$

$$\gamma_{\theta z} = \frac{\partial v}{\partial z} + \frac{1}{r} \frac{\partial w}{\partial \theta} = \frac{2(1 + \mu_{\theta z})}{E_{\theta z}} \tau_{\theta z}$$
(2.2)

dr, dθ, dz boyutlarındaki diferansiyel elemana etki eden gerilme bileşenleri Şekil2.1'de, kesit tesirleri ise Şekil 2.2'de gösterilmiştir.

Şekil 2.1 : Gerilme bileşenleri.

Şekil 2.2 : Kesit tesirleri.

Yapılan kabullerden bir diğeri ise Şekil 2.3'de gösterilen Timoshenko varsayımıdır. Dik kesit, şekil değiştirme sonrası rijit bir levha gibi düzlemsel olarak dönerken, kaymanın etkisiyle artık çubuk eksenine dik kalmaz. Ayrıca denge denklemleri oluşturulurken hacim kuvvetleri ihmal edilmektedir.

Şekil 2.3 : Timoshenko varsayımı.

Klasik plak teorisine göre gerilme-şekil değiştirme bağıntılarından Denklem 2.3 elde edilir. [28]

$$\sigma_r = \frac{12M_r}{h^3} z \qquad , \qquad \sigma_\theta = \frac{12M_\theta}{h^3} z \qquad , \qquad \tau_{r\theta} = \frac{12M_{r\theta}}{h^3} z \qquad (2.3)$$

Birim elemandaki gerilme bileşenlerinin dengesinden ve kayma gerilmelerinin $z=\pm h/2$ sıfır olma koşulundan Denklem 2.4'deki gerilme bileşenleri elde edilir.

$$\tau_{rz} = \frac{3}{2h} Q_r \left[1 - \left(\frac{2z}{h}\right)^2 \right] \qquad , \qquad \tau_{\theta z} = \frac{3}{2h} Q_{\theta} \left[1 - \left(\frac{2z}{h}\right)^2 \right] \qquad (2.4)$$

Aynı yaklaşımla gerilme bileşenlerinin z doğrultusundaki dengesinde sınır koşulları $\sigma_z(h/2) = 0$ ve $\sigma_z(-h/2) = -q$ kullanılmasıyla Denklem 2.5 elde edilir.

$$\sigma_z = -\frac{q}{4} \left[2 - 3 \left(\frac{2z}{h} \right) + \left(\frac{2z}{h} \right)^3 \right]$$
(2.5)

2.1.2 Denge denklemleri

Kesit tesirlerini gerilme bileşenleri cinsinden yazacak olursak Denklem 2.6 elde edilmiş olur.

$$M_{r} = \int_{-h/2}^{h/2} \sigma_{r} z dz \qquad , \qquad M_{\theta} = \int_{-h/2}^{h/2} \sigma_{\theta} z dz$$

$$M_{r\theta} = M_{\theta r} = \int_{-h/2}^{h/2} \tau_{r\theta} z dz \qquad , \qquad (2.6)$$

$$Q_{r} = \int_{-h/2}^{h/2} \tau_{rz} dz \qquad , \qquad Q_{\theta} = \int_{-h/2}^{h/2} \tau_{\theta z} dz$$

Şekil 2.2'deki q lateral kuvvetle yüklü birim elemanda iç kuvvetler cinsinde denge denklemi yazılacak olursa Denklem 2.7 elde edilir.

$$\frac{\partial M_{r}}{\partial r} + \frac{1}{r} \frac{\partial M_{\theta r}}{\partial \theta} + \frac{M_{r} - M_{\theta}}{r} - Q_{r} = 0$$

$$\frac{\partial M_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial M_{\theta}}{\partial \theta} + \frac{2M_{r\theta}}{r} - Q_{\theta} = 0$$

$$\frac{\partial Q_{r}}{\partial r} + \frac{1}{r} \frac{\partial Q_{\theta}}{\partial \theta} + \frac{Q_{r}}{r} + q = 0$$
(2.7)

2.1.3 Bileşke gerilme ve şekil değiştirme büyüklükleri arasındaki bağıntılar

Bileşke şekil değiştirme büyüklükleri Ω_r , Ω_{θ} ve w, gerilme ve yer değiştirme bileşenleri olarak iç kuvvetlerle aynı işi yaparlar. Denklem 2.8'de bu eşitlik gösterilmektedir. $w_0 = w_0(x, y, z)$ düşey yer değiştirmeyi belirtmektedir.[28]

$$\int_{-h/2}^{h/2} \sigma_r u dz = M_r \Omega_r \qquad , \qquad \int_{-h/2}^{h/2} \sigma_\theta v dz = M_\theta \Omega_\theta$$

$$\int_{-h/2}^{h/2} \tau_{r\theta} u dz = M_{r\theta} \Omega_r \qquad , \qquad \int_{-h/2}^{h/2} \tau_{r\theta} v dz = M_{r\theta} \Omega_\theta \qquad (2.8)$$

$$\int_{-h/2}^{h/2} \tau_{rz} w_0 dz = Q_r w \qquad , \qquad \int_{-h/2}^{h/2} \tau_{\theta z} w_0 dz = Q_\theta w$$

Denklem 2.3, 2.4 ve 2.8 kullanılarak Denklem 2.9'daki bileşke şekil değiştirme büyüklükleri bulunmuştur.

$$\Omega_{r} = \frac{12}{h^{3}} \int_{-h/2}^{h/2} uz dz \qquad , \qquad \Omega_{\theta} = \frac{12}{h^{3}} \int_{-h/2}^{h/2} vz dz \qquad (2.9)$$
$$w = \frac{3}{2h} \int_{-h/2}^{h/2} w_{0} \left[1 - \left(\frac{2z}{h}\right)^{2} \right] dz$$

Denklem 2.9'daki ilk ifadenin r'ye ikinci ifadenin θ 'ya göre türevi alındıktan sonra Denklem 2.1, 2.3 ve 2.5 kullanılarak Denklem 2.10 ve 2.11 elde edilir.

$$\frac{\partial \Omega_r}{\partial r} - \frac{12}{E_r h^3} \left(M_r - \mu_{r\theta} M_{\theta} - \mu_{rz} \frac{qh^2}{10} \right) = 0$$
(2.10)

$$\frac{1}{r}\frac{\partial\Omega_{\theta}}{\partial\theta} + \frac{\Omega_{r}}{r} - \frac{12}{E_{\theta}h^{3}} \left(-\mu_{\theta r}M_{r} + M_{\theta} - \mu_{\theta z}\frac{qh^{2}}{10} \right) = 0$$
(2.11)

Denklem 2.9'daki ilk ifadenin θ 'ya ikinci ifadenin r'ye göre türevi alındıktan sonra Denklem 2.2, 2.3 ve 2.6 kullanılarak Denklem 2.12 elde edilir.

$$\frac{1}{r}\frac{\partial\Omega_r}{\partial\theta} + \frac{\partial\Omega_\theta}{\partial r} - \frac{\Omega_\theta}{r} - \frac{12}{G_{r\theta}h^3}M_{r\theta} = 0$$
(2.12)

Kaymanın yaptığı iş Denklem 2.13'de verilmiştir. Denklem 2.13'deki ilk eşitlikte τ_{rz} değeri yazılıp çözüldüğünde Denklem 2.14 elde edilir. Aynı şekilde 2.13'deki ikinci eşitlikte τ_{θ_z} değeri yazılıp çözüldüğünde Denklem 2.15 elde edilir.

$$\int_{-h/2}^{h/2} \gamma_{rz} \tau_{rz} dz = \frac{1}{G_{rz}} \int_{-h/2}^{h/2} \tau_{rz} \frac{3}{2h} \left[1 - \left(\frac{2z}{h}\right)^2 \right] dz = \Omega_r + \frac{\partial w}{\partial r}$$

$$\int_{-h/2}^{h/2} \gamma_{\theta z} \tau_{\theta z} dz = \frac{1}{G_{\theta z}} \int_{-h/2}^{h/2} \tau_{\theta z} \frac{3}{2h} \left[1 - \left(\frac{2z}{h}\right)^2 \right] dz = \Omega_{\theta} + \frac{1}{r} \frac{\partial w}{\partial \theta}$$

$$\Omega_r + \frac{\partial w}{\partial r} - \frac{6}{5G_{rz}h} Q_r = 0$$
(2.14)

$$\Omega_{\theta} + \frac{1}{r} \frac{\partial w}{\partial \theta} - \frac{6}{5G_{\theta z}h} Q_{\theta} = 0$$
(2.15)

2.2 Fonksiyonelin Elde Edilmesi

Elde edilen polar koordinatlardaki ortotrop dairesel kalın plak denklemleri sırasıyla; Denklem 2.7, 2.10, 2.11, 2.12, 2.14, 2.15'de verilmiştir.

$$\frac{\partial M_r}{\partial r} + \frac{1}{r} \frac{\partial M_{\theta r}}{\partial \theta} + \frac{M_r - M_{\theta}}{r} - Q_r = 0$$

$$\frac{\partial M_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial M_{\theta}}{\partial \theta} + \frac{2M_{r\theta}}{r} - Q_{\theta} = 0$$
(2.7)

$$\frac{\partial Q_r}{\partial r} + \frac{1}{r} \frac{\partial Q_\theta}{\partial \theta} + \frac{Q_r}{r} + q = 0$$

$$\frac{\partial \Omega_r}{\partial r} - \frac{12}{E_r h^3} \left(M_r - \mu_{r\theta} M_\theta - \mu_{rz} \frac{qh^2}{10} \right) = 0$$
(2.10)

$$\frac{1}{r}\frac{\partial\Omega_{\theta}}{\partial\theta} + \frac{\Omega_{r}}{r} - \frac{12}{E_{\theta}h^{3}} \left(-\mu_{\theta r}M_{r} + M_{\theta} - \mu_{\theta z}\frac{qh^{2}}{10}\right) = 0$$
(2.11)

$$\frac{1}{r}\frac{\partial\Omega_r}{\partial\theta} + \frac{\partial\Omega_\theta}{\partial r} - \frac{\Omega_\theta}{r} - \frac{12}{G_{r\theta}h^3}M_{r\theta} = 0$$
(2.12)

$$\Omega_r + \frac{\partial w}{\partial r} - \frac{6}{5G_{rz}h}Q_r = 0$$
(2.14)

$$\Omega_{\theta} + \frac{1}{r} \frac{\partial w}{\partial \theta} - \frac{6}{5G_{\theta z} h} Q_{\theta} = 0$$
(2.15)

Dinamik (doğal) sınır koşulları ve geometrik (kinematik) sınır koşulları Denklem 2.16 ile sembolik olarak ifade edilmiştir.

$$M - \hat{M} = 0$$
 , $Q - \hat{Q} = 0$
 $-\Omega - \hat{\Omega} = 0$, $-w - \hat{w} = 0$ (2.16)

Elde edilen denklemler kullanılarak **Ly=f** diferansiyel denklemi **Q=Ly-f** operatörü şeklinde ifade edilebilir. Bu ifadeden fonksiyonele geçebilmek için **Q** operatörünün potansiyel olduğu gösterilmelidir. Denklem 2.17'de **Q** operatörü lineer denklem takımı halinde gösterilmiştir.

Denklem 2.18'de \mathbf{Q} operatörünün potansiyel olabilme koşulu verilmiştir.

$$\left[dQ(y,\overline{y}), y^*\right] = \left[dQ(y, y^*), \overline{y}\right]$$
(2.18)

Denklem 2.18'deki köşeli parantez, parantez içindeki ifadelerin iç çarpımını göstermekte olup \overline{y} ve y^* vektörleri y'nin içinde bulunduğu uzayın elemanlarıdır. $dQ(y,\overline{y})$ ve $dQ(y,y^*)$ ise Q operatörünün \overline{y} ve y^* doğrultusundaki Gâteaux türevlerini göstermektedir. Operatörün Gâteaux türevi Denklem 2.19'da tanımlanmaktadır. [29]

$$dQ(u,\overline{u}) = \frac{\partial Q(u+\tau\overline{u})}{\partial \tau}\bigg|_{\tau=0}$$
(2.19)

Bu tanım kullanılarak Denklem 2.18'deki iç çarpımların açık şekli yazılacak olursa Denklem 2.20 ve 2.21 elde edilir.

$$\begin{bmatrix} d\mathcal{Q}\left(\mathbf{y},\overline{\mathbf{y}}\right),\mathbf{y}^{*}\end{bmatrix} = -\left[\overline{M}_{r,r},\Omega_{r}^{*}\right] - \frac{1}{r}\left[\overline{M}_{r\theta,\theta},\Omega_{r}^{*}\right] - \frac{1}{r}\left[\overline{M}_{r},\Omega_{r}^{*}\right] + \frac{1}{r}\left[\overline{M}_{\theta},\Omega_{r}^{*}\right] \\ + \left[\overline{\mathcal{Q}}_{r},\Omega_{r}^{*}\right] - \left[\overline{M}_{r\theta,r},\Omega_{\theta}^{*}\right] - \frac{1}{r}\left[\overline{\mathcal{Q}}_{\theta,\theta},\Omega_{\theta}^{*}\right] - \frac{2}{r}\left[\overline{M}_{r\theta},\Omega_{\theta}^{*}\right] \\ + \left[\overline{\mathcal{Q}}_{\theta},\Omega_{\theta}^{*}\right] - \left[\overline{\mathcal{Q}}_{r,r},w^{*}\right] - \frac{1}{r}\left[\overline{\mathcal{Q}}_{\theta,\theta},w^{*}\right] - \frac{1}{r}\left[\overline{\mathcal{Q}}_{r},w^{*}\right] \\ + \left[\overline{\Omega}_{r,r},M_{r}^{*}\right] - \frac{12}{E_{r}h^{3}}\left[\overline{M}_{r},M_{r}^{*}\right] + \frac{12}{E_{r}h^{3}}\mu_{r\theta}\left[\overline{M}_{\theta},M_{r}^{*}\right] \\ + \frac{1}{r}\left[\overline{\Omega}_{\theta,\theta},M_{\theta}^{*}\right] + \frac{1}{r}\left[\overline{\Omega}_{r},M_{\theta}^{*}\right] - \frac{12}{E_{\theta}h^{3}}\left[\overline{M}_{\theta},M_{\theta}^{*}\right] \\ + \frac{12}{E_{\theta}h^{3}}\mu_{\theta r}\left[\overline{M}_{r},M_{\theta}^{*}\right] + \frac{1}{r}\left[\overline{\Omega}_{r,\theta},M_{r,\theta}^{*}\right] + \left[\overline{\Omega}_{\theta,r},M_{r,\theta}^{*}\right] \\ - \frac{1}{r}\left[\overline{\Omega}_{\theta},M_{r\theta}^{*}\right] - \frac{12}{G_{r\theta}h^{3}}\left[\overline{M}_{r\theta},M_{r\theta}^{*}\right] + \left[\overline{\Omega}_{\theta},Q_{\theta}^{*}\right] \\ + \left[\overline{w}_{r},Q_{r}^{*}\right] - \frac{6}{5G_{rc}h}\left[\overline{Q}_{r},Q_{r}^{*}\right] + \left[\overline{\Omega}_{\theta},Q_{\theta}^{*}\right] + \frac{1}{r}\left[\overline{w}_{\theta},Q_{\theta}^{*}\right] \\ - \frac{6}{5G_{\theta c}h}\left[\overline{Q}_{\theta},Q_{\theta}^{*}\right] - \left[\overline{w},Q^{*}\right]_{\varepsilon} - \left[\overline{\Omega},M^{*}\right]_{\varepsilon} + \left[\overline{M},\Omega^{*}\right]_{\sigma} \\ + \left[\overline{Q},w^{*}\right]_{\sigma} \end{cases}$$

$$\begin{bmatrix} dQ(\mathbf{y}, \mathbf{y}^{*}), \overline{\mathbf{y}} \end{bmatrix} = -\begin{bmatrix} M_{r,r}^{*}, \overline{\Omega}_{r} \end{bmatrix} - \frac{1}{r} \begin{bmatrix} M_{r\theta,\theta}^{*}, \overline{\Omega}_{r} \end{bmatrix} - \frac{1}{r} \begin{bmatrix} M_{r\theta}^{*}, \overline{\Omega}_{r} \end{bmatrix} + \frac{1}{r} \begin{bmatrix} M_{\theta}^{*}, \overline{\Omega}_{r} \end{bmatrix} + \begin{bmatrix} Q_{r}^{*}, \overline{\Omega}_{r} \end{bmatrix} - \begin{bmatrix} M_{r\theta,r}^{*}, \overline{\Omega}_{\theta} \end{bmatrix} \\ - \frac{1}{r} \begin{bmatrix} M_{\theta,\theta}^{*}, \overline{\Omega}_{\theta} \end{bmatrix} - \frac{2}{r} \begin{bmatrix} M_{r\theta}^{*}, \overline{\Omega}_{\theta} \end{bmatrix} + \begin{bmatrix} Q_{\theta}^{*}, \overline{\Omega}_{\theta} \end{bmatrix} - \begin{bmatrix} Q_{r,r}^{*}, \overline{w} \end{bmatrix} \\ - \frac{1}{r} \begin{bmatrix} Q_{\theta,\theta}^{*}, \overline{w} \end{bmatrix} - \frac{1}{r} \begin{bmatrix} Q_{r}^{*}, \overline{w} \end{bmatrix} + \begin{bmatrix} \Omega_{r,r}^{*}, \overline{M}_{r} \end{bmatrix} \\ - \frac{12}{F_{r}h^{3}} \begin{bmatrix} M_{r}^{*}, \overline{M}_{r} \end{bmatrix} + \frac{12}{F_{r}h^{3}} \mu_{r\theta} \begin{bmatrix} M_{\theta}^{*}, \overline{M}_{r} \end{bmatrix} \\ + \frac{1}{r} \begin{bmatrix} \Omega_{\theta,\theta}^{*}, \overline{M}_{\theta} \end{bmatrix} + \frac{1}{r} \begin{bmatrix} \Omega_{r}^{*}, \overline{M}_{\theta} \end{bmatrix} - \frac{12}{E_{\theta}h^{3}} \begin{bmatrix} M_{\theta}^{*}, \overline{M}_{\theta} \end{bmatrix} \\ + \frac{12}{E_{\theta}h^{3}} \mu_{\theta r} \begin{bmatrix} M_{r}^{*}, \overline{M}_{\theta} \end{bmatrix} + \frac{1}{r} \begin{bmatrix} \Omega_{r,\theta}^{*}, \overline{M}_{r\theta} \end{bmatrix} + \begin{bmatrix} \Omega_{\theta,r}^{*}, \overline{M}_{r\theta} \end{bmatrix} \\ - \frac{1}{r} \begin{bmatrix} \Omega_{\theta}^{*}, \overline{M}_{r\theta} \end{bmatrix} - \frac{12}{G_{r\theta}h^{3}} \begin{bmatrix} M_{r\theta}^{*}, \overline{M}_{r\theta} \end{bmatrix} + \begin{bmatrix} \Omega_{\theta,r}^{*}, \overline{M}_{\theta} \end{bmatrix} \\ + \frac{12}{E_{\theta}h^{3}} \mu_{\theta r} \begin{bmatrix} M_{r}^{*}, \overline{M}_{\theta} \end{bmatrix} + \frac{1}{r} \begin{bmatrix} \Omega_{r,\theta}^{*}, \overline{M}_{r\theta} \end{bmatrix} + \begin{bmatrix} \Omega_{\theta,r}^{*}, \overline{M}_{\theta} \end{bmatrix} \\ - \frac{1}{r} \begin{bmatrix} \Omega_{\theta}^{*}, \overline{M}_{r\theta} \end{bmatrix} - \frac{12}{G_{r\theta}h^{3}} \begin{bmatrix} M_{r\theta}^{*}, \overline{M}_{r\theta} \end{bmatrix} + \begin{bmatrix} \Omega_{r}^{*}, \overline{Q}_{r} \end{bmatrix} \\ - \frac{1}{r} \begin{bmatrix} \Omega_{\theta}^{*}, \overline{M}_{r\theta} \end{bmatrix} - \frac{12}{G_{r\theta}h^{3}} \begin{bmatrix} M_{r\theta}^{*}, \overline{M}_{r\theta} \end{bmatrix} + \begin{bmatrix} \Omega_{r}^{*}, \overline{Q}_{r} \end{bmatrix} \\ - \frac{1}{r} \begin{bmatrix} \Omega_{\theta}^{*}, \overline{M}_{r\theta} \end{bmatrix} - \frac{12}{G_{\theta}r} \begin{bmatrix} Q_{r}^{*}, \overline{Q}_{r} \end{bmatrix} + \begin{bmatrix} \Omega_{\theta}^{*}, \overline{Q}_{\theta} \end{bmatrix} + \frac{1}{r} \begin{bmatrix} w_{r\theta}^{*}, \overline{Q}_{\theta} \end{bmatrix} \\ - \frac{6}{5G_{\theta,c}h} \begin{bmatrix} Q_{\theta}^{*}, \overline{Q}_{\theta} \end{bmatrix} - \begin{bmatrix} w^{*}, \overline{Q}_{r} \end{bmatrix} + \begin{bmatrix} \Omega^{*}, \overline{M} \end{bmatrix}_{\theta} + \frac{1}{r} \begin{bmatrix} w_{r\theta}^{*}, \overline{Q}_{\theta} \end{bmatrix} \\ - \frac{6}{5G_{\theta,c}h} \begin{bmatrix} Q_{\theta}^{*}, \overline{Q}_{\theta} \end{bmatrix} - \begin{bmatrix} w^{*}, \overline{Q}_{r\theta} \end{bmatrix} - \begin{bmatrix} \Omega^{*}, \overline{M} \end{bmatrix}_{\theta} + \frac{1}{r} \begin{bmatrix} w^{*}, \overline{\Omega} \end{bmatrix}_{\theta} \\ - \frac{1}{2} \begin{bmatrix} W_{r\theta}^{*}, \overline{W} \end{bmatrix}_{\theta} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} W_{r\theta}^{*}, \overline{W} \end{bmatrix}_{\theta} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} W_{r\theta}^{*}, \overline{W} \end{bmatrix}_{\theta} \end{bmatrix}$$

Denklem 2.20 ve 2.21'deki köşeli parantezler bölgedeki iç çarpımı göstermektedir. f=f(y) ve g=g(y) bölgede tanımlı iki fonksiyon olarak kabul edilirse bunların iç çarpımları Denklem 2.22'deki gibi tanımlanabilir.

$$[f,g] = \int_{o}^{L} f g dz$$

$$[f,g]_{0} : \text{Dinamik ve geometrik sınır koşulları}$$

$$[f,g]_{\sigma} : \text{Dinamik sınır koşulları}$$

$$[f,g]_{\varepsilon} : \text{Geometrik sınır koşulları}$$

(2.22)

Denklem 2.20 ve 2.21 ifadeleri, Denklem 2.18'de yerine koyulduğunda Denklem 2.23 elde edilir.

$$\mu_{r\theta}E_{\theta} = \mu_{\theta r}E_{r} \tag{2.23}$$

Denklem 2.23 bağıntısı göz önünde bulundurularak \mathbf{Q} operatörünün potansiyel olduğu görülür. Sınır koşuları Denklem 2.24'de gösterilmiştir.

$$[Q,w]_{0} = [(Q_{r}n_{r} + Q_{\theta}n_{\theta}),w]$$

$$[M,\Omega]_{0} = [(M_{r}n_{r} + M_{r\theta}n_{\theta}),\Omega_{r}] + [(M_{r\theta}n_{r} + M_{\theta}n_{\theta}),\Omega_{r}]$$
(2.24)

Buradan da fonksiyonel;

$$I(\mathbf{y}) = \int_{0}^{1} \left[\mathbf{Q}(s\mathbf{y}), \mathbf{y} \right] ds$$
(2.25)

şeklinde elde edilir. s skaler bir büyüklüktür [29]. Denklem 2.25 kullanılarak, Denklem 2.26'daki fonksiyonel elde edilir.

$$I(\mathbf{y}) = \left[Q_r, \left(\Omega_r + w_{,r}\right)\right] + \left[Q_{\theta}, \left(\Omega_{\theta} + \frac{1}{r}w_{,\theta}\right)\right] + \left[M_r, \Omega_{r,r}\right] \\ + \left[\frac{1}{r}M_{\theta}, \left(\Omega_{\theta,\theta} + \Omega_r\right)\right] + \left[M_{r\theta}, \left(\frac{1}{r}\Omega_{r,\theta} + \Omega_{\theta,r} - \frac{1}{r}\Omega_{\theta}\right)\right] \\ - \frac{6}{E_rh^3} \left\{ [M_r, M_r] + \frac{\mu_{r\theta}}{\mu_{\theta r}} [M_{\theta}, M_{\theta}] - 2\mu_{r\theta} [M_r, M_{\theta}] \right\} \\ - \frac{6}{G_{r\theta}h^3} [M_{r\theta}, M_{r\theta}] - \frac{3}{5G_{rz}h} [Q_r, Q_r] - \frac{3}{5G_{\theta z}h} [Q_{\theta}, Q_{\theta}] \\ + \frac{6}{5E_rh} \left[q, \left(\mu_{rz}M_r + \frac{\mu_{r\theta}\mu_{\theta z}}{\mu_{\theta r}}M_{\theta}\right)\right] - [q, w] \\ - \left[\left(\Omega - \hat{\Omega}\right), M\right]_{\varepsilon} - \left[\left(w - \hat{w}\right), Q\right]_{\varepsilon} - \left[\hat{M}, \Omega\right]_{\sigma} - \left[\hat{Q}, w\right]_{\sigma}$$

$$(2.26)$$

3. ELEMAN MATRİSİNİN SONLU ELEMAN FORMÜLASYONU KULLANILARAK ELDE EDİLMESİ

Bu bölümde, içi dolu ve boşluklu dairesel plakların statik ve dinamik analizinde kullanılacak SEC24 ve SEC32 elemanlarının sonlu eleman formülasyonu yer almaktadır. Dairesel plakların çözümünde SEC24 ve SEC32, içi boşluklu dairesel plakların çözümünde ise SEC32 elemanı kullanılmıştır. Elemanların her bir düğüm noktasında sekiz serbestlik bulunmaktadır. Bunlar; M_r , M_{θ} , $M_{r\theta}$, Q_r , Q_{θ} , Ω_r , Ω_{θ} ve w'dır.

3.1 SEC24 Elemanı

SEC24 elemanı 3 düğüm noktalı, toplam 24 serbestlik derecesi olan bir kenarı eğri şekilli üçgen tip elemandır. SEC24 elemanı Şekil 3.1'de gösterilmektedir.

Şekil 3.1 : SEC24 elemanı.

SEC24 elemanının şekil fonksiyonu Denklem 3.1'de verilmiştir.

$$\Psi_{1} = 1 - \frac{r}{r_{2}}$$

$$\Psi_{2} = \frac{r}{r_{2}} \left(1 - \frac{\theta - \theta_{1}}{\Delta \theta} \right)$$

$$\Psi_{3} = \frac{r}{r_{2}} \frac{\theta - \theta_{1}}{\Delta \theta}$$
(3.1)

Şekil foksiyonunun elemanlar üzerinde alan integrasyonu Denklem 3.2'de gösterilmektedir. *i* indisi satıra, *j* indisi sütuna karşı gelmektedir. i = 1, 2, 3 ve j = 1, 2, 3 olmak üzere,

$$\begin{bmatrix} k_1 \end{bmatrix}_{24} = \int_{0}^{r_2 \theta_2} \int_{\theta_1}^{\theta_2} \Psi_i \Psi_j r dr d\theta = \begin{bmatrix} A_1 B_1 / 12 & A_1 B_1 / 24 & A_1 B_1 / 24 \\ A_1 B_1 / 24 & A_1 B_1 / 12 & A_1 B_1 / 24 \\ A_1 B_1 / 24 & A_1 B_1 / 24 & A_1 B_1 / 12 \end{bmatrix}$$

$$\begin{bmatrix} k_2 \end{bmatrix}_{24} = \int_{0}^{r_2} \int_{\theta_1}^{\theta_2} \Psi_i \Psi_{j,r} r dr d\theta = \begin{bmatrix} -B_2/6 & B_2/12 & B_2/12 \\ -B_2/6 & B_2/9 & B_2/18 \\ -B_2/6 & B_2/18 & B_2/9 \end{bmatrix}$$

$$\begin{bmatrix} k_3 \end{bmatrix}_{24} = \int_{0}^{r_2 \theta_2} \bigoplus_{\theta_1} \Psi_i \Psi_j dr d\theta = \begin{bmatrix} B_2/3 & B_2/12 & B_2/12 \\ B_2/12 & B_2/9 & B_2/18 \\ B_2/12 & B_2/18 & B_2/9 \end{bmatrix}$$
(3.2)

$$\left[k_{4}\right]_{24} = \int_{0}^{r_{2}\theta_{2}} \Psi_{i}\Psi_{j,\theta}drd\theta = \begin{bmatrix} 0 & -r_{2}/6 & r_{2}/6 \\ 0 & -r_{2}/6 & r_{2}/6 \\ 0 & -r_{2}/6 & r_{2}/6 \end{bmatrix}$$

$$A_1 = r_2^2$$
 , $B_1 = \theta_2 - \theta_1$, $B_2 = r_2 B_1$

Denklem 3.2 kullanılarak elde edilen eleman matrisi Denklem 3.3'de, yük matrisinin transpozu ise Denklem 3.4'de gösterilmektedir.

$$\left\{\gamma_{7}\left[k_{1}\right]_{24}q \qquad \gamma_{8}\left[k_{1}\right]_{24}q \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad \left[k_{1}\right]_{24}q\right\}^{T}$$
(3.4)

Burada;

$$\gamma_{1} = -\frac{12}{E_{r}h^{3}} , \qquad \gamma_{2} = -\frac{12}{E_{r}h^{3}}\frac{\mu_{r\theta}}{\mu_{\theta r}} , \qquad \gamma_{3} = \frac{12}{E_{r}h^{3}}\mu_{r\theta}$$
$$\gamma_{4} = -\frac{12}{G_{r\theta}h^{3}} , \qquad \gamma_{5} = -\frac{6}{5G_{rz}h} , \qquad \gamma_{6} = -\frac{6}{5G_{\theta z}h}$$
$$\gamma_{7} = -\frac{6}{5E_{r}h}\mu_{rz} , \qquad \gamma_{8} = -\frac{6}{5E_{r}h}\frac{\mu_{r\theta}\mu_{\theta z}}{\mu_{\theta r}} , \qquad \text{'dir.}$$

3.2 SEC32 Elemanı

SEC32 elemanı 4 düğüm noktalı toplam 32 serbestlik derecesi olan iki kenarı eğri şekilli quadratik tip elemandır. SEC32 elemanı Şekil 3.2'de gösterilmektedir.

Şekil 3.2 : SEC32 elemanı.

SEC32 elemanının şekil fonksiyonu Denklem 3.5'de verilmiştir.

$$\Psi_{1} = \left(1 - \frac{r - r_{1}}{\Delta r}\right) \left(1 - \frac{\theta - \theta_{1}}{\Delta \theta}\right) , \qquad \Psi_{2} = \frac{r - r_{1}}{\Delta r} \left(1 - \frac{\theta - \theta_{1}}{\Delta \theta}\right)$$

$$\Psi_{3} = \frac{r - r_{1}}{\Delta r} \frac{\theta - \theta_{1}}{\Delta \theta} , \qquad \Psi_{4} = \left(1 - \frac{r - r_{1}}{\Delta r}\right) \frac{\theta - \theta_{1}}{\Delta \theta}$$
(3.5)

Şekil foksiyonunun elemanlar üzerinde alan integrasyonu Denklem 3.6'da gösterilmektedir. *i* indisi satıra, *j* indisi sütuna karşı gelmektedir. i = 1, 2, 3, 4 ve j = 1, 2, 3, 4 olmak üzere,

$$\begin{bmatrix} k_1 \end{bmatrix}_{32} = \int_{r_1}^{r_2} \int_{\theta_1}^{\theta_2} \Psi_i \Psi_j r dr d\theta = \begin{bmatrix} A_3 A_4 B_9 / 36 & A_3 A_6 B_9 / 36 & A_3 A_6 B_9 / 72 & A_3 A_4 B_9 / 72 \\ A_3 A_6 B_9 / 36 & A_3 A_5 B_9 / 36 & A_3 A_5 B_9 / 72 & A_3 A_6 B_9 / 72 \\ A_3 A_6 B_9 / 72 & A_3 A_5 B_9 / 72 & A_3 A_5 B_9 / 36 & A_3 A_6 B_9 / 36 \\ A_3 A_4 B_9 / 72 & A_3 A_6 B_9 / 72 & A_3 A_6 B_9 / 36 & A_3 A_4 B_9 / 36 \end{bmatrix}$$

$$\begin{bmatrix} k_2 \end{bmatrix}_{32} = \int_{r_1}^{r_2} \int_{\theta_1}^{\theta_2} \Psi_i \Psi_{j,r} r dr d\theta = \begin{bmatrix} A_1 B_9 / 18 & -A_1 B_9 / 18 & -A_1 B_9 / 36 & A_1 B_9 / 36 \\ A_2 B_9 / 18 & -A_2 B_9 / 18 & -A_2 B_9 / 36 & A_2 B_9 / 36 \\ A_2 B_9 / 36 & -A_2 B_9 / 36 & -A_2 B_9 / 18 & A_2 B_9 / 18 \\ A_1 B_9 / 36 & -A_1 B_9 / 36 & -A_1 B_9 / 18 & A_1 B_9 / 18 \end{bmatrix}$$

$$[k_{3}]_{32} = \int_{r_{1}}^{r_{2}} \int_{\theta_{1}}^{\theta_{2}} \Psi_{i} \Psi_{j} dr d\theta = \begin{bmatrix} A_{8}/9 & A_{8}/18 & A_{8}/36 & A_{8}/18 \\ A_{8}/18 & A_{8}/9 & A_{8}/18 & A_{8}/36 \\ A_{8}/36 & A_{8}/18 & A_{8}/9 & A_{8}/18 \\ A_{8}/18 & A_{8}/36 & A_{8}/18 & A_{8}/9 \end{bmatrix}$$
(3.6)

$$\begin{bmatrix} k_4 \end{bmatrix}_{32} = \int_{r_1 \theta_1}^{r_2 \theta_2} \Psi_i \Psi_{j,\theta} dr d\theta = \begin{bmatrix} A_3/6 & A_3/12 & -A_3/12 & -A_3/6 \\ A_3/12 & A_3/6 & -A_3/6 & -A_3/12 \\ A_3/12 & A_3/6 & -A_3/6 & -A_3/12 \\ A_3/6 & A_3/12 & -A_3/12 & -A_3/6 \end{bmatrix}$$

$$A_{1} = 2r_{1} + r_{2} , \qquad A_{2} = r_{1} + 2r_{2} , \qquad A_{3} = r_{1} - r_{2}$$

$$A_{4} = 3r_{1} + r_{2} , \qquad A_{5} = r_{1} + 3r_{2} , \qquad A_{6} = r_{1} + r_{2}$$

$$A_{8} = A_{3}B_{9} , \qquad B_{9} = \theta_{1} - \theta_{2}$$
Denklem 3.6 kullanılarak elde edilen eleman matrisi Denklem 3.7'de, yük matrisinin transpozu ise Denklem 3.8'de gösterilmektedir.

$$\left\{\gamma_{7}\left[k_{1}\right]_{32}q \qquad \gamma_{8}\left[k_{1}\right]_{32}q \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad \left[k_{1}\right]_{32}q\right\}^{T} \qquad (3.8)$$

Burada;

$$\gamma_{1} = -\frac{12}{E_{r}h^{3}} , \qquad \gamma_{2} = -\frac{12}{E_{r}h^{3}}\frac{\mu_{r\theta}}{\mu_{\theta r}} , \qquad \gamma_{3} = \frac{12}{E_{r}h^{3}}\mu_{r\theta}$$
$$\gamma_{4} = -\frac{12}{G_{r\theta}h^{3}} , \qquad \gamma_{5} = -\frac{6}{5G_{rz}h} , \qquad \gamma_{6} = -\frac{6}{5G_{\theta z}h}$$
$$\gamma_{7} = -\frac{6}{5E_{r}h}\mu_{rz} , \qquad \gamma_{8} = -\frac{6}{5E_{r}h}\frac{\mu_{r\theta}\mu_{\theta z}}{\mu_{\theta r}} , \qquad \text{'dr.}$$

4. STATİK ANALİZ

Farklı sınır koşullarına sahip içi dolu ve boşluklu dairesel plakların statik analizi yapılmıştır. Literatürde yer alan çalışmalar, genellikle izotrop dairesel plakların statik analizi üzerinedir. Bu nedenle, öncelikle izotrop dairesel plaklar çalışılmış, literatürdeki çalışmalarla uyumluluğu gösterildikten sonra ortotrop dairesel plakların statik analizi yapılmıştır. Statik ve dinamik analizin yapılabilmesi için Fortran dilinde bir program geliştirilmiştir. Sonlu eleman yöntemi ile elde edilen ve bir önceki bölümde yer alan eleman matrisi, kodlama yardımı ile sistem matrisine aktarılmış ve çözüm elde edilmiştir.

Şekil 4.1'de yarıçapı a, iç yarıçapı b ve kalınlığı h olan içi dolu ve boşluklu dairesel plak gösterilmektedir.

Şekil 4.1 : İçi dolu ve boşluklu dairesel plak.

Statik analizde $\mu_{r\theta} = \mu_{rz} = \mu_{\theta z} = 0,3$ ve ortotrop malzemeler için $E_r/G_{rz} = 2,6$ 'dır. Basit mesnette sınır koşulları w = 0 ve M = 0, ankastre mesnette w = 0 ve $\Omega = 0$, serbest uçta ise M = 0 ve Q = 0'dır. Çizelgelerdeki katsayılar Denklem 4.1'de verilen boyutsuz haldedir.

$$\overline{M}_{r} = M_{r}/q a^{2} \qquad \qquad \overline{M}_{\theta} = M_{\theta}/q a^{2}$$

$$\overline{Q}_{r} = Q_{r}/q a \qquad \qquad \overline{w} = w E_{r} h^{3}/q a^{4} \qquad \qquad (4.1)$$

4.1 Dairesel Plaklar

Dairesel plakların statik analizi, basit ve ankastre mesnet için yapılmıştır. Daha iyi sonuç almak için simetri koşulları kullanılarak dörttebir daire için analizler yapılmıştır. İlk olarak izotrop ve ortotrop malzeme için yaklaşım testi yapılmış, kullanılacak eleman sayısı belirlenmiştir. Ardından farklı kalınlık ve E_r/E_{θ} oranları için sonuçlar elde edilmiş, literatür ile karşılaştırılmıştır.

4.1.1 Yaklaşım testi

Basit ve ankastre mesnetli dairesel izotrop ve ortotrop kalın plakların statik analizi için yaklaşım testi yapılmıştır. İzotrop malzeme için $E_r = E_{\theta} = E$, $G_{r\theta} = G_{rz} = G_{\theta z} = G$ ve ortotrop malzeme için $E_r/E_{\theta} = 0.5$ eşitlikleri geçerlidir. a/h=5 oranı için basit ve ankastre mesnetli izotrop ve ortotrop dairesel plak merkezindeki boyutsuz \overline{w} , \overline{M}_r büyüklüklerinin değişimleri sırasıyla Çizelge 4.1-4.4'de ve grafikler Şekil 4.2-4.9'da verilmiştir.

Çizelge 4.1 : Basit ve ankastre mesnetli izotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz \overline{w} ve \overline{M}_r değerleri.

n	0	eleman	basit n	nesnetli	ankastre	mesnetli
K	θ	sayısı	w	\overline{M}_r	\overline{w}	\overline{M}_r
20	4	57	0,7201	0,2072	0,2020	0,0886
20	5	76	0,7201	0,2072	0,2020	0,0886
20	6	95	0,7201	0,2072	0,2020	0,0886
20	7	114	0,7201	0,2072	0,2020	0,0886
20	8	133	0,7201	0,2072	0,2020	0,0886
20	9	152	0,7201	0,2072	0,2020	0,0886
20	10	171	0,7201	0,2072	0,2020	0,0886
[9] nolu ça	lışma		0,7197	0,2065	0,2018	0,0819

D	0	eleman	basit n	nesnetli	ankastre mesnetli		
К	Ð	sayısı	w	\overline{M}_r	w	\overline{M}_r	
3	7	12	0,7522	0,2242	0,1431	0,0756	
4	7	18	0,7347	0,2219	0,1946	0,1306	
11	7	60	0,7212	0,2047	0,2024	0,0693	
12	7	66	0,7208	0,2087	0,2021	0,0959	
19	7	108	0,7201	0,2056	0,2020	0,0772	
20	7	114	0,7201	0,2072	0,2020	0,0886	
27	7	156	0,7197	0,2059	0,2019	0,0797	
28	7	162	0,7197	0,2068	0,2019	0,0862	
35	7	204	0,7197	0,2060	0,2019	0,0808	
36	7	210	0,7197	0,2066	0,2019	0,0851	
43	7	252	0,7197	0,2061	0,2018	0,0814	
44	7	258	0,7197	0,2064	0,2018	0,0845	
[9] nolu ça	lışma		0,7197	0,2065	0,2018	0,0819	

Çizelge 4.2 : Basit ve ankastre mesnetli izotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz \overline{w} ve \overline{M}_r değerleri.

Şekil 4.2 : Basit mesnetli izotrop dairesel plakta boyutsuz \overline{M}_r için yaklaşım testi .

Şekil 4.3 : Basit mesnetli izotrop dairesel plakta boyutsuz \overline{w} için yaklaşım testi.

Şekil 4.4 : Ankastre mesnetli izotrop dairesel plakta boyutsuz \overline{M}_r için yaklaşım testi.

D	0	eleman	basit n	nesnetli	ankastre	mesnetli
K Ű	Ð	sayısı	\overline{w}	\overline{M}_r	w	\overline{M}_r
20	4	57	0,3712	0,0384	0,1463	0,0260
20	5	76	0,3712	0,0384	0,1463	0,0260
20	6	95	0,3712	0,0384	0,1463	0,0260
20	7	114	0,3712	0,0384	0,1463	0,0260
20	8	133	0,3712	0,0384	0,1463	0,0260
20	9	152	0,3712	0,0384	0,1463	0,0260
20	10	171	0,3712	0,0384	0,1463	0,0260

Çizelge 4.3 : Basit ve ankastre mesnetli ortotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz \overline{w} ve \overline{M}_r değerleri.

Çizelge 4.4 : Basit ve ankastre mesnetli ortotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz \overline{w} ve \overline{M}_r değerleri.

р	0	eleman	basit m	nesnetli	ankastre	mesnetli
К	θ	sayısı	Ŵ	\overline{M}_r	w	\overline{M}_r
3	7	12	0,3913	0,1212	0,1083	0,0813
4	7	18	0,3789	0,1029	0,1394	0,0787
11	7	60	0,3715	0,0470	0,1465	0,0184
12	7	66	0,3715	0,0493	0,1463	0,0367
19	7	108	0,3715	0,0375	0,1464	0,0178
20	7	114	0,3712	0,0384	0,1463	0,0260
27	7	156	0,3712	0,0325	0,1463	0,0167
28	7	162	0,3712	0,0330	0,1463	0,0214
35	7	204	0,3712	0,0293	0,1463	0,0156
36	7	210	0,3712	0,0296	0,1462	0,0187
43	7	252	0,3712	0,0270	0,1463	0,0147
44	7	258	0,3712	0,0272	0,1462	0,0170
	0.1500					
	0,1500					
	0,1200					
2	0,0900					
M_r	0,0600	<u>\</u>				sayılı

Şekil 4.6 : Basit mesnetli ortotrop dairesel plakta boyutsuz \overline{M}_r için yaklaşım testi.

Şekil 4.7 : Basit mesnetli ortotrop dairesel plakta boyutsuz \overline{w} için yaklaşım testi.

Şekil 4.8 : Ankastre mesnetli ortotrop dairesel plakta boyutsuz \overline{M}_r için yaklaşım testi.

Şekil 4.9 : Ankastre mesnetli ortotrop dairesel plakta boyutsuz \overline{w} için yaklaşım testi.

Çizelge 4.1 ve 4.3'de verilen θ doğrultusundaki düğüm noktası sayısı artışının sonuçları etkilemediği görülmüş bu nedenle yaklaşım testi Çizelge 4.2 ve 4.4'de verilen R doğrultusundaki artışa bağlı kalınarak yapılmıştır. Boyutsuz \overline{M}_r değerleri, R doğrultusundaki düğüm noktası sayısının tek veya çift sayıda olmasına bağlı olarak Şekil 4.2, 4.4, 4.6, 4.8'de verilmiştir. Grafiklerde görüldüğü gibi boyutsuz \overline{M}_r ve \overline{w} değerleri belirli eleman sayısı geçildikten sonra değişmemektedir.

Çizelge 4.2 ve 4.4 göz önünde bulundurularak R doğrultusunda 43, θ doğrultusunda 7 düğüm noktalı, 252 elemana karşı gelen sonlu eleman ağı kullanılmasına karar verilmiştir.

4.1.2 Basit mesnetli dairesel plaklar

Basit mesnetli dairesel plakların farklı a/h ve E_r/E_{θ} oranları için statik analizi yapılmıştır. Merkezdeki boyutsuz \overline{M}_r , \overline{M}_{θ} ve \overline{w} değerleri incelenmiştir. Elde edilen sonuçlar Çizelge 4.5-4.7'de gösterilmiştir. Literatürde sadece izotrop malzeme için sonuçlar bulunmaktadır. Yapılan karşılaştırmada elde edilen sonuçların literatür ile uyumlu olduğu görülmüştür. Ayrıca a=3m ve a/h=5 olan basit mesnetli dairesel plakta yarıçap boyunca boyutsuz \overline{M}_r , \overline{M}_{θ} , \overline{Q}_r ve \overline{w} değerlerinin değişimi Şekil 4.10-4.13'deki grafiklerde verilmektedir.

Çizelge 4.5 : Basit mesnetli ortotrop dairesel plak merkezinde boyutsuz \overline{M}_r , \overline{M}_{θ} , \overline{W} değerleri ($E_r/E_{\theta} = 0,5$).

a/h	4	5	10	20	≥50	
\overline{M}_r	0,0276	0,0270	0,0261	0,0259	0,0258	SEC24-SEC32
$\overline{M}_{ heta}$	0,0304	0,0298	0,0290	0,0288	0,0287	SEC24-SEC32
w	0,3862	0,3712	0,3513	0,3463	0,3449	SEC24-SEC32

a/h	4	5	10	20	≥50	
	0,2061	0,2061	0,2060	0,2060	0,2060	SEC24-SEC32
\overline{M}			0,2063		0,2062	[7]
1 VI _r		0,2064			0,2064	[6]
		0,2065			0,2065	[9]
\overline{M}_{θ}	0,2062	0,2062	0,2062	0,2062	0,2062	SEC24-SEC32
	0,7335	0,7197	0,7019	0,6970	0,6960	SEC24-SEC32
		0,7197			0,6959	[9]
w		0,7268			0,6959	[6]
			0,7034		0,6956	[8]
			0,7034		0,6950	[7]

Çizelge 4.6 : Basit mesnetli izotrop dairesel plak merkezinde boyutsuz \overline{M}_r , \overline{M}_{θ} , \overline{w} değerleri ($E_r/E_{\theta} = 1,0$).

Çizelge 4.7 : Basit mesnetli ortotrop dairesel plak merkezinde boyutsuz \overline{M}_r , \overline{M}_{θ} , \overline{w} değerleri ($E_r/E_{\theta} = 5,0$).

a/h	4	5	10	20	≥50	
\overline{M}_r	2,2311	2,2389	2,2500	2,2522	2,2533	SEC24-SEC32
$\bar{M}_{ heta}$	2,0767	2,0844	2,0944	2,0967	2,0967	SEC24-SEC32
w	2,6672	2,6622	2,6551	2,6532	2,6527	SEC24-SEC32

Şekil 4.11 : Basit mesnetli dairesel kalın plakta yarıçap boyunca \overline{M}_{θ} grafiği.

Şekil 4.12 : Basit mesnetli dairesel kalın plakta yarıçap boyunca \overline{Q}_r grafiği.

Şekil 4.13 : Basit mesnetli dairesel kalın plakta yarıçap boyunca \overline{w} grafiği.

4.1.3 Ankastre mesnetli dairesel plaklar

Ankastre mesnetli dairesel plakların farklı a/h ve E_r/E_{θ} oranları için statik analizi yapılmıştır. Merkezdeki boyutsuz \overline{M}_r , \overline{M}_{θ} ve \overline{w} değerleri incelenmiştir. Elde edilen sonuçlar Çizelge 4.8-4.10'da gösterilmiştir. Literatürde sadece izotrop malzeme için sonuçlar bulunmaktadır. Yapılan karşılaştırmada elde edilen sonuçların literatür ile uyumlu olduğu gözlenmiştir. Ayrıca a=3m ve a/h=5 olan ankastre mesnetli dairesel plakta yarıçap boyunca boyutsuz \overline{M}_r , \overline{M}_{θ} , \overline{Q}_r ve \overline{w} değerlerinin değişimi Şekil 4.14-4.17'deki grafiklerde verilmektedir.

Çizelge 4.8 : Ankastre mesnetli ortotrop dairesel plak merkezinde boyutsuz \overline{M}_r , \overline{M}_{θ} , \overline{w} değerleri ($E_r/E_{\theta} = 0,5$).

a/h	4	5	10	20	≥50	
\overline{M}_r	0,0159	0,0147	0,0123	0,0112	0,0108	SEC24-SEC32
$\overline{M}_{ heta}$	0,0181	0,0174	0,0164	0,0162	0,0161	SEC24-SEC32
w	0,1636	0,1463	0,1231	0,1174	0,1157	SEC24-SEC32

Çizelge 4.9 : Ankastre mesnetli izotrop dairesel plak merkezinde boyutsuz \overline{M}_r , \overline{M}_{θ} , \overline{w} değerleri ($E_r/E_{\theta} = 1,0$).

a/h	4	5	10	20	≥50	
	0,0829	0,0814	0,0785	0,0773	0,0769	SEC24-SEC32
\overline{M}		0,0819			0,0784	[9]
IVI r		0,0812			0,0812	[6]
			0,0813		0,0813	[7]
$\bar{M}_{ heta}$	0,0840	0,0830	0,0817	0,0814	0,0813	SEC24-SEC32
	0,2194	0,2018	0,1785	0,1726	0,1710	SEC24-SEC32
		0,2018			0,1709	[9]
w		0,2018			0,1709	[6]
			0,1784		0,1709	[7]
			0,1784		0,1706	[8]

Çizelge 4.10 : Ankastre mesnetli ortotrop dairesel plak merkezinde boyutsuz \overline{M}_r , \overline{M}_{θ} , \overline{w} değerleri ($E_r/E_{\theta} = 5,0$).

a/h	4	5	10	20	≥50	
\overline{M}_r	0,3759	0,3732	0,3686	0,3669	0,3663	SEC24-SEC32
$\overline{M}_{ heta}$	0,3512	0,3492	0,3467	0,3460	0,3459	SEC24-SEC32
\overline{w}	0,3476	0,3296	0,3056	0,2996	0,2979	SEC24-SEC32

Şekil 4.14 : Ankastre mesnetli dairesel kalın plakta yarıçap boyunca \overline{M}_r grafiği.

Şekil 4.15 : Ankastre mesnetli dairesel kalın plakta yarıçap boyunca \overline{M}_{θ} grafiği.

Şekil 4.16 : Ankastre mesnetli dairesel kalın plakta yarıçap boyunca \overline{Q}_r grafiği.

Şekil 4.17 : Ankastre mesnetli dairesel kalın plakta yarıçap boyunca \overline{w} grafiği.

4.2 İçi Boşluklu Dairesel Plaklar

İçi boşluklu dairesel plakların statik analizi yapılmıştır. Yapılan çalışmalarda içi ve dışı basit mesnetli, içi ve dışı ankastre mesnetli, içi serbest ve dışı basit mesnetli olmak üzere üç tip mesnetleme kullanılmıştır.

4.2.1 İçi ve dışı basit mesnetli boşluklu dairesel plaklar

İçi ve dışı basit mesnetli boşluklu dairesel plakların farklı b/a, a/h ve E_r/E_{θ} oranları için statik analiz yapılmıştır. r=(a-b)/2'deki boyutsuz \overline{M}_r ve \overline{w} değerleri Çizelge 4.11-4.12'de gösterilmektedir. a=3m, b/a=0,3 ve a/h=5 oranları için plak açıklığındaki boyutsuz \overline{M}_r ve \overline{w} değişimleri Şekil 4.18-4.19'da grafik olarak gösterilmektedir.

Çizelge 4.11 : İçi ve dışı basit mesnetli boşluklu dairesel plakta r=(a-b)/2'deki boyutsuz \overline{M}_r değerleri.

b/a	E_r/E_{θ}	4	5	10	20	≥50
	0,5	0,0631	0,0610	0,0576	0,0566	0,0563
0,1	1,0	0,0742	0,0729	0,0711	0,0707	0,0705
	5,0	0,0914	0,0911	0,0908	0,0907	0,0906
	0,5	0,0504	0,0500	0,0494	0,0493	0,0492
0,3	1,0	0,0544	0,0542	0,0539	0,0538	0,0538
	5,0	0,0588	0,0587	0,0586	0,0586	0,0586
	0,5	0,0291	0,0290	0,0289	0,0288	0,0288
0,5	1,0	0,0299	0,0298	0,0297	0,0297	0,0297
	5,0	0,0306	0,0306	0,0306	0,0306	0,0306

b/a	E_r/E_{θ}	4	5	10	20	≥50
	0,5	0,0731	0,0635	0,0499	0,0462	0,0452
0,1	1,0	0,0936	0,0838	0,0703	0,0668	0,0658
	5,0	0,1232	0,1137	0,1008	0,0976	0,0967
	0,5	0,0366	0,0326	0,0271	0,0257	0,0254
0,3	1,0	0,0424	0,0383	0,0327	0,0314	0,0310
	5,0	0,0482	0,0440	0,0384	0,0370	0,0366
	0,5	0,0128	0,0109	0,0083	0,0077	0,0075
0,5	1,0	0,0139	0,0120	0,0094	0,0088	0,0086
	5,0	0,0149	0,0130	0,0104	0,0098	0,0096

Çizelge 4.12 : İçi ve dışı basit mesnetli boşluklu dairesel plakta r=(a-b)/2'deki boyutsuz \overline{w} değerleri.

Şekil 4.18 : İçi ve dışı basit mesnetli boşluklu dairesel plak açıklığı boyunca boyutsuz \overline{M}_r grafiği.

Şekil 4.19 : İçi ve dışı basit mesnetli boşluklu dairesel plak açıklığı boyunca boyutsuz \overline{w} grafiği.

4.2.2 İçi ve dışı ankastre mesnetli boşluklu dairesel plaklar

İçi ve dışı ankastre mesnetli boşluklu dairesel plakların farklı b/a, a/h ve E_r/E_{θ} oranları için statik analiz yapılmıştır. r=b'deki boyutsuz \overline{M}_r değeri Çizelge 4.13'de ve r=(a-b)/2'deki boyutsuz \overline{w} değerleri Çizelge 4.14'de gösterilmektedir. a=3m, b/a=0,3 ve a/h=5 oranları için b-a aralığındaki boyutsuz \overline{M}_r ve \overline{w} değişimleri Şekil 4.20-4.21'de grafik olarak gösterilmektedir.

b/a	E_r/E_{θ}	4	5	10	20	≥50
	0,5	-0,0995	-0,1060	-0,1183	-0,1223	-0,1236
0,1	1,0	-0,1173	-0,1242	-0,1358	-0,1393	-0,1403
	5,0	-0,1362	-0,1431	-0,1540	-0,1571	-0,1580
	0,5	-0,0467	-0,0491	-0,0533	-0,0546	-0,0550
0,3	1,0	-0,0489	-0,0513	-0,0552	-0,0563	-0,0566
	5,0	-0,0508	-0,0531	-0,0567	-0,0578	-0,0581
0,5	0,5	-0,0197	-0,0211	-0,0234	-0,0241	-0,0244
	1,0	-0,0202	-0,0216	-0,0237	-0,0244	-0,0246
	5,0	-0,0206	-0,0219	-0,0240	-0,0246	-0,0248

Çizelge 4.13 : İçi ve dışı ankastre mesnetli boşluklu dairesel plakta r=b'deki boyutsuz \overline{M}_r değerleri.

Çizelge 4.14 : İçi ve dışı ankastre mesnetli boşluklu dairesel plakta r=(a-b)/2'deki boyutsuz \overline{w} değerleri.

b/a	E_r/E_{θ}	4	5	10	20	≥50
	0,5	0,0380	0,0300	0,0189	0,0161	0,0153
0,1	1,0	0,0412	0,0332	0,0223	0,0195	0,0187
	5,0	0,0443	0,0363	0,0256	0,0229	0,0221
	0,5	0,0183	0,0138	0,0079	0,0064	0,0060
0,3	1,0	0,0191	0,0147	0,0088	0,0073	0,0069
	5,0	0,0199	0,0154	0,0095	0,0080	0,0076
0,5	0,5	0,0077	0,0055	0,0026	0,0018	0,0016
	1,0	0,0079	0,0057	0,0028	0,0020	0,0018
	5,0	0,0081	0,0059	0,0029	0,0022	0,0020

Şekil 4.20 : İçi ve dışı ankastre mesnetli boşluklu dairesel plak açıklığı boyunca boyutsuz \overline{M}_r grafiği.

Şekil 4.21 : İçi ve dışı ankastre mesnetli boşluklu dairesel plak açıklığı boyunca boyutsuz \overline{w} grafiği.

4.2.3 İçi serbest ve dışı basit mesnetli boşluklu dairesel plaklar

İçi serbest ve dışı basit mesnetli boşluklu dairesel plakların farklı b/a, a/h ve E_r/E_{θ} oranları için statik analiz yapılmıştır. r=(a-b)/2'deki boyutsuz \overline{M}_r değeri Çizelge 4.15'de ve r=b'deki boyutsuz \overline{w} değerleri Çizelge 4.16'da gösterilmektedir. a=3m, b/a=0,3 ve a/h=5 oranları için b-a aralığındaki boyutsuz \overline{M}_r ve \overline{w} değişimleri Şekil 4.22-4.23'de grafik olarak gösterilmektedir.

b/a	E_r/E_{θ}	4	5	10	20	≥50
	0,5	0,1176	0,1174	0,1172	0,1172	0,1172
0,1	1,0	0,1329	0,1329	0,1329	0,1329	0,1329
	5,0	0,1552	0,1554	0,1557	0,1557	0,1557
	0,5	0,0814	0,0813	0,0812	0,0812	0,0812
0,3	1,0	0,0838	0,0838	0,0838	0,0838	0,0838
	5,0	0,0864	0,0865	0,0866	0,0866	0,0866
0,5	0,5	0,0415	0,0414	0,0414	0,0414	0,0414
	1,0	0,0407	0,0407	0,0407	0,0407	0,0407
	5,0	0,0401	0,0401	0,0402	0,0402	0,0402

Çizelge 4.15 : İçi serbest ve dışı basit mesnetli boşluklu dairesel plakta r=(a-b)/2' deki boyutsuz \overline{M}_r değerleri.

Çizelge 4.16 : İçi serbest ve dışı basit mesnetli boşluklu dairesel plakta r=b'deki boyutsuz \overline{w} değerleri.

b/a	E_r/E_{θ}	4	5	10	20	≥ 50
	0,5	0,3928	0,3789	0,3599	0,3552	0,3539
0,1	1,0	0,7910	0,7789	0,7618	0,7576	0,7562
	5,0	3,8695	3,8689	3,8675	3,8674	3,8689
	0,5	0,4054	0,3953	0,3819	0,3785	0,3778
0,3	1,0	0,8560	0,8476	0,8362	0,8334	0,8322
	5,0	4,4696	4,4753	4,4804	4,4822	4,4826
0,5	0,5	0,3360	0,3305	0,3232	0,3214	0,3209
	1,0	0,6933	0,6893	0,6839	0,6826	0,6822
	5,0	3,5477	3,5554	3,5657	3,5683	3,5689

Şekil 4.22 : İçi serbest ve dışı basit mesnetli boşluklu daireseln plak açıklığı boyunca boyutsuz \overline{M}_r grafiği.

Şekil 4.23 : İçi serbest ve dışı basit mesnetli boşluklu dairesel plak açıklığı boyunca boyutsuz \overline{w} grafiği.

5. DİNAMİK ANALİZ

İçi dolu ve boşluklu dairesel plakların doğal frekansları bu bölümde ele alınmıştır. Gâteaux türevine bağlı geliştirilen formülasyonun dinamik problemler için de uygulanabilirliği gösterilmek istenmiştir. Bu amaçla ilk olarak problem özdeğerözvektör problemine dönüştürülmüştür.

$$[K_{e}] - \omega^{2}[M_{e}] = \{0\}$$
(5.1)

Denklem 5.1'de verilen eşitlikte $[M_e]$ kütle matrisidir. Denklem 2.26'da belirtilen I(**y**) fonksiyonelindeki [q, w] terimi, dinamik analizde Denklem 5.2'de verildiği gibi kullanılmıştır.

$$[q,w] = \frac{1}{2}\overline{\rho}\omega^2[w,w]$$
(5.2)

Denklem 5.2'deki eşitlikten $[M_e]$ kütle matrisi Denklem 5.3'deki gibi hesaplanmıştır.

$$[M_e] = \rho h[k_1] \tag{5.3}$$

Denklem 5.1'deki genel denklem, global sistem matrisi oluşturulduğunda;

$$\begin{pmatrix} \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} - \omega^2 \begin{bmatrix} 0 & 0 \\ 0 & M \end{bmatrix} \end{pmatrix} \begin{pmatrix} f \\ w \end{pmatrix} = \{0\}$$

$$(5.4)$$

şeklinde yazılır. $\{f\}$ sistem matrisindeki momentleri, kesme kuvvetlerini ve dönmeleri, $\{w\}$ ise çökmeleri göstermektedir.

Bu eşitlikten yaralanılarak Denklem 5.5 elde edilir.

$$\begin{bmatrix} K^* \end{bmatrix} = \begin{bmatrix} K_{22} \end{bmatrix} - \begin{bmatrix} K_{12} \end{bmatrix}^T \begin{bmatrix} K_{11} \end{bmatrix}^{-1} \begin{bmatrix} K_{12} \end{bmatrix}$$
(5.5)

Özdeğer-özvektör probleminin çözümünde kullanılan eşitlik Denklem 5.6'da gösterilmiştir. Bu eşitlik içi dolu ve boşluklu dairesel plakların doğal frekanslarını verecektir.

$$\left(\left[K^*\right] - \omega^2[M]\right)\{w\} = \{0\}$$
(5.6)

Dinamik analizde $\mu_{r\theta} = \mu_{rz} = \mu_{\theta z} = 0,3$ ve $\rho=24$ kN/m³, ortotrop malzemeler için $E_r/G_{rz} = 2,6$ 'dır. Basit mesnette sınır koşulları w = 0 ve M = 0, ankastre mesnette w = 0 ve $\Omega = 0$, serbest uçta ise M = 0 ve Q = 0 'dır. Çizelgelerdeki değerler Denklem 5.7'de verilen boyutsuz doğal frekanslar cinsindendir.

$$D_{r} = E_{r}h^{3}/12(1-\mu_{r\theta}\mu_{\theta r})$$

$$\overline{\omega} = \omega\sqrt{\left(\rho ha^{4}/D_{r}\right)}$$
(5.7)

5.1 Dairesel Plaklar

Dairesel plakların dinamik analizi basit ve ankastre mesnetli olarak çalışılmıştır. İlk olarak yaklaşım testi yapılmış, kullanılacak eleman sayısı belirlenmiştir. Ardından farklı kalınlık ve E_r/E_{θ} oranları için sonuçlar elde edilmiş ve literatür ile karşılaştırılmıştır.

5.1.1 Yaklaşım testi

Basit ve ankastre mesnetli dairesel izotrop ve ortotrop plakların dinamik analizi için yaklaşım testi yapılmıştır. İzotrop malzeme sabitleri için $E_r = E_{\theta} = E$, $G_{r\theta} = G_{rz} = G_{\theta z} = G$ ve ortotrop malzeme için $E_r/E_{\theta} = 0,5$ eşitlikleri geçerlidir. a/h=20 olan izotrop ve ortotrop dairesel plakta R ve θ doğrultularındaki düğüm noktalarının artışına bağlı boyutsuz $\overline{\omega}$ değerleri Çizelge 5.1-5.8'de ve grafikler Şekil 5.1-5.8'de verilmiştir.

R	θ	eleman sayısı	1.mod	2.mod	3.mod
3	8	16	4,917	13,774	26,850
4	8	24	4,924	12,109	22,275
5	8	32	4,924	12,848	22,799
6	8	40	4,924	13,090	23,000
7	8	48	4,924	13,232	23,063
8	8	56	4,924	13,314	23,109
9	8	64	4,924	13,356	23,127
10	8	72	4,924	13,390	23,144
11	8	80	4,924	13,405	23,152
12	8	88	4,924	13,422	23,159
13	8	96	4,924	13,428	23,163
[13] nolu	çalışma		4,925	13,784	25,215

Çizelge 5.1 : Basit mesnetli izotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ değerleri.

Çizelge 5.2 : Basit mesnetli izotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ değerleri.

R	θ	eleman sayısı	1.mod	2.mod	3.mod
8	4	28	4,928	13,469	
8	5	35	4,928	13,722	15,595
8	6	42	4,928	13,804	20,963
8	7	49	4,928	13,837	23,177
8	12	84	4,928	13,869	25,111
8	16	112	4,928	13,871	25,249
8	20	140	4,928	13,872	25,284
8	24	168	4,928	13,872	25,296
8	28	196	4,928	13,873	25,302
8	32	224	4,928	13,873	25,304
8	36	252	4,928	13,873	25,305
8	40	280	4,928	13,873	25,306
[13] nolu	çalışma		4,925	13,784	25,215

Şekil 5.1 : Basit mesnetli izotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği.

Şekil 5.2 : Basit mesnetli izotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği.

Çizelge 5.3 : Ankastre mesnetli izotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ değerleri.

R	θ	eleman sayısı	1.mod	2.mod	3.mod
3	8	16	20,037	77,626	80,780
4	8	24	10,820	17,749	37,680
5	8	32	10,352	20,065	31,424
6	8	40	10,232	19,907	32,037
7	8	48	10,177	20,190	31,636
9	8	64	10,142	20,327	31,681
10	8	72	10,136	20,462	31,755
11	8	80	10,132	20,409	31,700
12	8	88	10,129	20,508	31,737
13	8	96	10,128	20,457	31,710
[13] nolu	çalışma		10,145	21,002	34,258

R	θ	eleman sayısı	1.mod	2.mod	3.mod
8	4	28	10,185	20,547	11,751
8	5	35	10,185	20,863	23,140
8	6	42	10,185	20,965	29,382
8	7	49	10,185	21,006	31,911
8	8	56	10,185	21,025	33,014
8	12	84	10,185	21,046	34,105
8	16	112	10,185	21,049	34,261
8	20	140	10,185	21,050	34,301
8	24	168	10,185	21,051	34,315
8	28	196	10,185	21,051	34,321
8	32	224	10,185	21,051	34,324
8	36	252	10,185	21,051	34,325
8	40	280	10,185	21,051	34,326
[13] nolu	çalışma		10,145	21,002	34,258

Çizelge 5.4 : Ankastre mesnetli izotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ değerleri.

Şekil 5.3 : Ankastre mesnetli izotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği.

Şekil 5.4 : Ankastre mesnetli izotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği.

Çizelge 5.5 : Basit mesnetli ortotrop dairesel plakta R doğrultusundaki düğüm nokta sayısına bağlı boyutsuz $\overline{\omega}$ değerleri.

R	θ	eleman sayısı	1.mod	2.mod	3.mod
3	8	16	6,440	16,758	34,215
4	8	24	6,488	14,871	27,400
5	8	32	6,485	15,426	28,016
6	8	40	6,488	15,575	28,209
7	8	48	6,488	15,648	28,273
8	8	56	6,488	15,694	28,310
9	8	64	6,488	15,710	28,326
10	8	72	6,488	15,728	28,337
11	8	80	6,489	15,732	28,343
12	8	88	6,489	15,740	28,348
13	8	96	6,489	15,740	28,350
[12] nolu	çalışma		6,131		

R	θ	eleman sayısı	1.mod	2.mod	3.mod
8	4	28	6,488	15,220	7,045
8	5	35	6,488	15,533	17,849
8	6	42	6,488	15,634	24,417
8	7	49	6,488	15,675	27,122
8	12	84	6,488	15,715	29,490
8	16	112	6,488	15,718	29,659
8	20	140	6,488	15,719	29,702
8	24	168	6,488	15,719	29,717
8	28	196	6,488	15,719	29,724
8	32	224	6,488	15,720	29,727
8	36	252	6,488	15,720	29,720
8	40	280	6,488	15,720	29,729
[12] nolu	çalışma		6,131		

Çizelge 5.6 : Basit mesnetli ortotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ değerleri.

Şekil 5.5 : Basit mesnetli ortotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği.

- Şekil 5.6 : Basit mesnetli ortotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği.
- **Çizelge 5.7 :** Ankastre mesnetli ortotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ değerleri.

R	θ	eleman sayısı	1.mod	2.mod	3.mod
3	8	16	26,043	89,283	93,845
4	8	24	12,429	21,739	49,974
5	8	32	11,639	22,725	37,880
6	8	40	11,528	22,550	37,586
7	8	48	11,445	22,611	37,230
8	8	56	11,424	22,683	37,245
9	8	64	11,406	22,626	37,139
10	8	72	11,400	22,706	37,149
11	8	80	11,394	22,647	37,109
12	8	88	11,392	22,709	37,116
13	8	96	11,389	22,662	37,098
[12] nolu	çalışma		11,498		

R	θ	eleman sayısı	1.mod	2.mod	3.mod
8	4	28	11,424	22,103	12,562
8	5	35	11,424	22,487	25,261
8	6	42	11,424	22,610	32,840
8	7	49	11,424	22,660	35,905
8	8	56	11,424	22,683	37,245
8	12	84	11,424	22,709	38,572
8	16	112	11,424	22,713	38,762
8	20	140	11,424	22,714	38,811
8	24	168	11,424	22,714	38,828
8	28	196	11,424	22,714	38,835
8	32	224	11,424	22,715	38,839
8	36	252	11,424	22,715	38,841
8	40	280	11,424	22,715	38,842
[13] nolu	çalışma		11,498		

Çizelge 5.8 : Ankastre mesnetli ortotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ değerleri.

Şekil 5.7 : Ankastre mesnetli ortotrop dairesel plakta R doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği.

Şekil 5.8 : Ankastre mesnetli ortotrop dairesel plakta θ doğrultusundaki düğüm noktası sayısına bağlı boyutsuz $\overline{\omega}$ grafiği.

Elde edilen sonuçlar karşılatırıldığında herbir R doğrultusunda 8, θ doğrultusunda 36 düğüm noktası olmak üzere 252 elemanlı sonlu eleman ağı kullanılmasına karar verilmiştir.

5.1.2 Basit mesnetli dairesel plaklar

Basit mesnetli dairesel plakların farklı a/h ve E_r/E_{θ} oranları için dinamik analiz yapılmıştır. Elde edilen sonuçlar Çizelge 5.9-5.11'de ve Şekil 5.9'da grafik olarak gösterilmiştir. Sonuçlar literatür ile karşılaştırılmıştır. Literatürdeki çalışmalarda ortotrop plaklar için yalnız E_r/E_{θ} oranları verilmiş, kayma modülleri verilmemiştir. Bu da sonuçlar arasında ufak farklılıklara neden olsa da genel olarak sonuçların uyumlu olduğu görülmüştür.

Çizelge 5.9 : Basit mesnetli ortotrop dairesel plakta boyutsuz $\overline{\omega}$ değerleri $(E_r/E_{\theta} = 0, 5)$.

a/h	4	5	10	20	≥50	
	6,081	6,225	6,433	6,488	6,504	SEC24-SEC32
1 mod		5,928	6,088	6,131	6,143	[12]
1.11100					6,143	[15]
					6,146	[22]
2.mod	13,628	14,307	15,402	15,720	15,816	SEC24-SEC32
3.mod	23,258	25,152	28,609	29,729	30,084	SEC24-SEC32

a/h	4	5	10	20	≥50	
	4,760	4,821	4,906	4,928	4,934	SEC24-SEC32
	4,733	4,802	4,901	4,926	4,934	[12]
	4,696	4,777	4,894	4,925	4,935	[13]-[19]
1.mod		4,788	4,898		4,936	[18]
		4,787			4,975	[17]
					4,935	[14]-[15] [16]-[22]
					4,930	[10]
					4,940	[24]
					4,977	[11]-[23]-[25]
	12,463	12,936	13,667	13,873	13,937	SEC24-SEC32
	12,080	12,620	13,510	13,784	13,898	[13]
		12,764	13,580		13,894	[18]
		12,788			13,923	[17]
2.mod					13,980	[10]
					13,942	[25]
					13,940	[11]-[23]
					13,470	[24]
					13,898	[14]-[16]
	21,240	22,522	24,664	25,305	25,513	SEC24-SEC32
	20,270	21,687	24,313	25,215	25,613	[13]
		22,130	24,555		25,603	[18]
		22,157			25,656	[17]
3.mod					25,654	[25]
					25,650	[11]-[23]
					25,613	[14]-[16]
					25,600	[24]
					25,560	[10]

Çizelge 5.10 : Basit mesnetli izotrop dairesel plakta boyutsuz $\overline{\omega}$ değerleri $(E_r/E_{\theta} = 1, 0).$

Çizelge 5.11 : Basit mesnetli ortotrop dairesel plakta boyutsuz $\overline{\omega}$ değerleri $(E_r/E_{\theta} = 5, 0)$.

a/h	4	5	10	20	≥50	
	2,697	2,708	2,721	2,725	2,726	SEC24-SEC32
1.mod		3,269	3,301	3,303	3,928	[12]
					3,343	[15]
2.mod	11,255	11,590	12,099	12,242	12,289	SEC24-SEC32
3.mod	17,919	18,600	19,648	19,944	20,051	SEC24-SEC32

Şekil 5.9 : Basit mesnetli dairesel plakta boyutsuz $\bar{\omega}$ grafiği.

5.1.3 Ankastre mesnetli dairesel plaklar

Ankastre mesnetli dairesel plakların farklı a/h ve E_r/E_{θ} oranları için dinamik analiz yapılmıştır. Elde edilen sonuçlar Çizelge 5.12-5.14'de ve Şekil 5.10'da grafik olarak gösterilmiştir. Sonuçlar literatür ile karşılaştırılmıştır. Literatürdeki çalışmalarda ortotrop plaklar için yalnız E_r/E_{θ} oranları verilmiş, kayma modülleri verilmemiştir. Bu da sonuçlar arasında ufak farklılıklara neden olsa da genel olarak sonuçların uyumlu olduğu görülmüştür.

Çizelge 5.12 : Ankastre mesnetli ortotrop dairesel plakta boyutsuz $\overline{\omega}$ değerleri $(E_r/E_{\theta} = 0,5)$.

a/h	4	5	10	20	≥50	
	9,565	10,150	11,129	11,424	11,512	SEC24-SEC32
1		10,690	11,354	11,498	11,510	[12]
1.mod					11,488	[22]
					11,480	[15]
2.mod	17,229	18,775	21,719	22,715	23,021	SEC24-SEC32
3.mod	26,455	29,548	36,253	38,841	39,677	SEC24-SEC32

a/h	4	5	10	20	≥50	
1.mod	8,921	9,336	9,995	10,185	10,240	SEC24-SEC32
	9,204	9,563	10,091	10,212	10,229	[12]
	8,807	9,240	9,941	10,145	10,216	[13]-[19]
		9,323	9,991		10,250	[18]
		9,372			10,311	[17]
1.11100	1.1100				10,219	[22]
					10,216	[11]-[16]
					10,215	[15]
					10,214	[25]
					10,210	[10]
	16,723	18,002	20,308	21,051	21,276	SEC24-SEC32
	16,521	17,834	20,232	21,002	21,260	[13]
		17,963	20,297		21,326	[18]
2.mod		17,974			21,337	[17]
					21,270	[25]
					21,260	[11]-[16]
					21,190	[10]
	25,147	27,624	32,573	34,325	34,874	SEC24-SEC32
	24,670	27,214	32,406	34,258	34,877	[13]
		27,366	32,430		34,974	[18]
3 mod		27,543			34,963	[17]
5.mou					34,880	[11]
					34,877	[16]
					34,869	[25]
					34,630	[10]

Çizelge 5.13 : Ankastre mesnetli izotrop dairesel plakta boyutsuz $\overline{\omega}$ değerleri $(E_r/E_{\theta} = 1, 0).$

Çizelge 5.14 : Ankastre mesnetli ortotrop dairesel plakta boyutsuz $\overline{\omega}$ değerleri $(E_r/E_{\theta} = 5, 0).$

a/h	4	5	10	20	≥50	
	7,741	7,983	8,346	8,446	8,475	SEC24-SEC32
1.mod		8,012	8,468	8,554	8,551	[12]
					8,598	[15]
2.mod	16,062	17,113	18,929	19,492	19,661	SEC24-SEC32
3.mod	22,337	24,080	27,295	28,349	28,670	SEC24-SEC32

Şekil 5.10 : Ankastre mesnetli dairesel plakta boyutsuz $\bar{\omega}$ grafiği.

Ankastre mesnetli ortotrop dairesel kalın plak için elde edilen özvektörler Surfer programı yardımıyla grafik üzerine aktarıldığında Şekil 5.11 elde edilmiştir.

Şekil 5.11 : Ankastre mesnetli dairesel kalın plak için mod şekilleri.

5.2 İçi Boşluklu Dairesel Plaklar

İçi boşluklu dairesel plakların dinamik analizi bu bölümde yapılmıştır. Yapılan çalışmalarda, içi ve dışı basit mesnetli, içi ve dışı ankastre mesnetli, içi serbest ve dışı basit mesnetli olmak üzere üç tip mesnetleme kullanılmıştır.

5.2.1 İçi ve dışı basit mesnetli boşluklu dairesel plaklar

İçi ve dışı basit mesnetli boşluklu dairesel plakların farklı b/a, a/h ve E_r/E_{θ} oranları için dinamik analiz yapılmıştır. Elde edilen sonuçlar literatür ile karşılaştırılmıştır. Literatürdeki çalışmalarda ortotrop plaklar için yalnız E_r/E_{θ} oranları verilmiş, kayma modülleri verilmemiştir. Bu da sonuçlar arasında ufak farklılıklara neden olsa da genel olarak sonuçların uyumlu olduğu görülmüştür. Çizelge 5.15-5.17'de boyutsuz $\overline{\omega}$ değerleri, Şekil 5.12 ve 5.13'de $E_r/E_{\theta} = 0,5$ için a/h ve b/a oranlarına bağlı 1.mod değişimi gösterilmiştir.

E_r/E_{θ}	a/h	4	5	10	20	≥50	
	1.mod	12,704	13,724	15,627	16,279	16,483	SEC 32
0,5	2.mod	15,114	16,081	17,861	18,569	19,215	SEC 32
	3.mod	23,321	25,257	28,732	29,922	30,497	SEC 32
		11,881	12,638	13,920	14,321	14,443	SEC 32
	1.mod		12,614	13,932	14,340	14,461	[12]
						14,540	[27]
1,0						14,487	[26]
						15,697	[16]
	2.mod	14,205	14,970	16,299	16,818	17,466	SEC 32
	3.mod	21,400	22,745	24,999	25,770	26,347	SEC 32
	1.mod	10,774	11,284	12,074	12,305	12,372	SEC 32
5,0	2.mod	13,343	13,964	14,988	15,412	16,139	SEC 32
	3.mod	18,745	19,665	21,268	21,933	22,748	SEC 32

Çizelge 5.15 : b/a=0,1 olan içi ve dışı basit mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}$ değerleri.

E_r/E_{θ}	a/h	4	5	10	20	≥50	
0,5	1.mod	17,893	19,111	21,213	21,858	22,046	SEC 32
	2.mod	19,782	21,194	23,676	24,458	24,719	SEC 32
	3.mod	25,488	27,702	31,835	33,211	33,685	SEC 32
1.0		17,564	18,614	20,366	20,889	21,039	SEC 32
	1.mod			20,325	20,882	21,047	[12]
						21,149	[16]-[27]
1,0						21,080	[26]
	2.mod	19,270	20,468	22,493	23,110	23,321	SEC 32
	3.mod	24,237	25,966	29,000	29,959	30,316	SEC 32
		17,135	18,054	19,547	19,982	20,107	SEC 32
	1.mod			18,903	19,605	19,814	[12]
5,0						19,854	[26]
	2.mod	18,784	19,834	21,563	22,079	22,264	SEC 32
	3.mod	22,971	24,381	26,787	27,534	27,846	SEC 32

Çizelge 5.16 : b/a=0,3 olan içi ve dışı basit mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}$ değerleri.

Çizelge 5.17 : b/a=0,5 olan içi ve dışı basit mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}$ değerleri.

E_r/E_{θ}	a/h	4	5	10	20	≥50	
0,5	1.mod	29,849	32,729	38,146	39,980	40,543	SEC 32
	2.mod	31,057	34,152	40,057	42,084	42,712	SEC 32
	3.mod	34,591	38,371	45,895	48,592	49,445	SEC 32
		30,212	32,905	37,781	39,438	39,929	SEC 32
				37,685	39,403	39,938	[12]
	1.mod					39,985	[27]
1,0						40,044	[26]
						40,150	[16]
	2.mod	31,286	34,141	39,357	41,146	41,680	SEC 32
	3.mod	34,420	37,774	44,066	46,281	46,954	SEC 32
		30,354	32,901	37,447	38,912	39,353	SEC 32
	1 mod			35,941	38,352	39,114	[12]
5 0	1.11100					39,263	[26]
5,0						39,260	[21]
	2.mod	31,374	34,053	38,870	40,432	40,907	SEC 32
	3.mod	34,227	37,284	42,890	44,744	45,318	SEC 32

Şekil 5.12 : İçi ve dışı basit mesnetli boşluklu ortotrop dairesel plakta boyutsuz $\overline{\omega}_1$ grafiği ($E_r/E_{\theta} = 0,5$).

Şekil 5.13 : a/h=5 olan içi ve dışı basit mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}_1$ grafiği.

5.2.2 İçi ve dışı ankastre mesnetli boşluklu dairesel plaklar

İçi ve dışı ankastre mesnetlenmiş boşluklu dairesel plakların farklı b/a, a/h ve E_r/E_{θ} oranları için dinamik analiz yapılmıştır. Elde edilen sonuçlar literatür ile karşılaştırılmıştır. Literatürdeki çalışmalarda ortotrop plaklar için yalnız E_r/E_{θ} oranları verilmiş, kayma modülleri verilmemiştir. Bu da sonuçlar arasında ufak farklılıklara neden olsa da genel olarak sonuçların uyumlu olduğu görülmüştür. Çizelge 5.18-5.20'de boyutsuz $\overline{\omega}$ değerleri, Şekil 5.14 ve 5.15'de E_r/E_{θ} =0,5 için a/h ve b/a oranlarına bağlı 1.mod değişimi gösterilmiştir.

E_r/E_{θ}	a/h	4	5	10	20	≥50	
	1.mod	17,770	20,141	25,886	28,381	29,278	SEC 32
0,5	2.mod	19,587	21,834	27,272	29,941	31,059	SEC 32
	3.mod	26,694	29,852	36,858	39,821	41,081	SEC 32
		18,027	20,228	25,215	27,250	27,926	SEC 32
			21,341	25,631	26,998	27,315	[12]
	1.mod					27,262	[27]
						27,296	[26]
						27,281	[16]
1,0	2.mod	19,582	21,694	26,603	28,832	29,685	SEC 32
						28,918	[16]
						28,400	[27]
	3.mod	25,549	28,171	33,771	36,204	37,246	SEC 32
						36,622	[16]
						36,700	[27]
	1.mod	18,108	20,141	24,507	26,193	26,740	SEC 32
5,0	2.mod	19,530	21,547	26,049	27,937	28,651	SEC 32
	3.mod	23,548	25,754	30,708	33,025	34,069	SEC 32

Çizelge 5.18 : b/a=0,1 olan içi ve dışı ankastre mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}$ değerleri.

Çizelge 5.19 : b/a=0,3 olan içi ve dışı ankastre mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}$ değerleri.

E_r/E_{θ}	a/h	4	5	10	20	≥50	
	1.mod	25,828	29,800	40,065	44,978	46,741	SEC 32
0,5	2.mod	26,742	30,750	41,237	46,422	48,327	SEC 32
	3.mod	30,440	34,784	46,130	52,008	54,287	SEC 32
		26,619	30,501	40,118	44,483	46,010	SEC 32
			30,688				[20]
	1.mod			41,405	44,579	45,392	[12]
1,0 2 3						45,272	[27]
						45,248	[26]
	2.mod	27,407	31,325	41,146	45,714	47,336	SEC 32
			31,422				[20]
	3.mod	30,356	34,467	44,897	49,993	51,878	SEC 32
			34,325				[20]
	1.mod	27,163	30,956	40,061	44,039	45,406	SEC 32
5,0				38,751	43,402	44,730	[12]
						44,717	[26]
	2.mod	27,894	31,729	41,038	45,184	46,625	SEC 32
	3.mod	30,090	34,060	43,948	48,572	50,229	SEC 32

E_r/E_{θ}	a/h	4	5	10	20	≥50	
	1.mod	39,778	47,222	70,216	84,319	90,187	SEC 32
0,5	2.mod	40,313	47,802	71,011	85,382	91,413	SEC 32
	3.mod	42,212	49,881	73,763	88,902	95,411	SEC 32
		41,417	48,940	71,415	84,521	89,800	SEC 32
				75,275	85,810	89,133	[12]
	1.mod					89,223	[27]
						89,256	[26]
						89,251	[16]
1,0	2.mod	41,887	49,444	72,093	85,397	90,789	SEC 32
						90,230	[16]
						90,200	[27]
		43,462	51,140	74,301	88,179	93,901	SEC 32
	3.mod					93,321	[16]
						93,400	[27]
		42,624	50,185	72,212	84,593	89,469	SEC 32
5,0	1.mod			68,416	83,085	88,458	[12]
						88,835	[26]
	2.mod	43,073	50,661	72,837	85,380	90,342	SEC 32
	3.mod	44,425	52,097	74,708	87,728	92,950	SEC 32

Çizelge 5.20 : b/a=0,5 olan içi ve dışı ankastre mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}$ değerleri.

Şekil 5.14 : İçi ve dışı ankastre mesnetli boşluklu ortotrop dairesel plakta boyutsuz $\overline{\omega}_1$ grafiği ($E_r/E_{\theta} = 0,5$).

Şekil 5.15 : a/h=5 olan içi ve dışı ankastre mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}_1$ grafiği.

5.2.3 İçi serbest, dışı basit mesnetli boşluklu dairesel plaklar

İçi serbest, dışı basit mesnetlenmiş boşluklu dairesel plakların farklı b/a, a/h ve E_r/E_{θ} oranları için dinamik analiz yapılmıştır. Elde edilen sonuçlar literatür ile karşılaştırılmıştır. Literatürdeki çalışmalarda ortotrop plaklar için yalnız E_r/E_{θ} oranları verilmiş, kayma modülleri verilmemiştir. Bu da sonuçlar arasında ufak farklılıklara neden olsa da genel olarak sonuçların uyumlu olduğu görülmüştür. Çizelge 5.21-5.23'de boyutsuz $\overline{\omega}$ değerleri, Şekil 5.16 ve 5.17'de $E_r/E_{\theta} = 0.5$ için a/h ve b/a oranlarına bağlı 1.mod değişimi gösterilmiştir.

E_r/E_{θ}	a/h	4	5	10	20	≥50	
0,5	1.mod	6,099	6,239	6,441	6,494	6,509	SEC 32
	2.mod	13,492	14,171	15,262	15,577	15,671	SEC 32
	3.mod	14,284	14,830	15,665	15,896	15,963	SEC 32
		4,649	4,704	4,780	4,799	4,805	SEC 32
			4,700	4,770		4,800	[10]
	1.mod		4,730	4,822	4,845	4,852	[12]
1.0						4,858	[27]
1,0						4,854	[26]
	2 mad	12,264	12,737	13,465	13,668	13,729	SEC 32
	<i>2.</i> moa		12,540	13,310		13,620	[10]
	3.mod	12,965	13,326	13,858	14,001	14,042	SEC 32
5,0	1.mod	2,270	2,276	2,284	2,286	2,286	SEC 32
	2.mod	7,949	8,024	8,128	8,162	8,162	SEC 32
	3.mod	10,902	11,237	19,281	11,937	11,937	SEC 32

Çizelge 5.21 : b/a=0,1 olan içi serbest ve dışı basit mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}$ değerleri.

Çizelge 5.22 : b/a=0,3 olan içi serbest ve dışı basit mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}$ değerleri.

E_r/E_{θ}	a/h	4	5	10	20	≥50	
	1.mod	6,196	6,308	6,467	6,509	6,520	SEC 32
0,5	2.mod	12,404	13,076	14,187	14,520	14,618	SEC 32
	3.mod	14,398	14,698	15,128	15,241	15,273	SEC 32
		4,543	4,582	4,636	4,650	4,653	SEC 32
			4,570	4,630		4,640	[10]
	1			4,635	4,657	4,663	[12]
1,0	1.11100					4,659	[27]
						4,663	[26]
						4,664	[21]
	2.mod	10,808	11,264	11,937	11,987	12,001	SEC 32
			11,730	11,960		12,330	[10]
						12,816	[21]
	3.mod	11,605	11,744	12,007	12,228	12,294	SEC 32
		2,087	2,091	2,095	2,097	2,097	SEC 32
5,0	1.mod			1,699	1,704	1,706	[12]
						1,706	[26]
	2.mod	5,812	5,828	5,849	5,855	5,856	SEC 32
	3.mod	9,146	9,465	9,998	10,162	10,212	SEC 32

E_r/E_{θ}	a/h	4	5	10	20	≥50	
	1.mod	6,795	6,883	7,006	7,037	7,046	SEC 32
0,5	2.mod	11,370	11,928	12,909	13,233	13,335	SEC 32
	3.mod	16,875	17,103	17,421	17,504	17,527	SEC 32
		4,987	5,018	5,060	5,071	5,074	SEC 32
	1.mod		5,000	5,050		5,060	[10]
1.0				5,037	5,067	5,075	[12]
						5,072	[27]
1,0						5,076	SEC 32 SEC 32 SEC 32 [10] [12] [27] [26] SEC 32 [10] SEC 32 SEC 32 [26] SEC 32 SEC 32 [10] SEC 32 [10] SEC 32 [12] [26]
	2.mod	9,783	10,185	10,893	11,131	11,206	SEC 32
			9,980	10,710		11,040	[10]
	3.mod	13,063	13,157	13,286	13,319	21,707	SEC 32
	1.mod	2,291	2,294	2,298	2,299	2,299	SEC 32
5,0				1,773	1,781	1,784	[12]
						1,783	[26]
	2.mod	6,275	6,284	6,297	6,301	6,301	SEC 32
	3.mod	8,265	8,578	9,148	9,347	9,411	SEC 32

Çizelge 5.23 : b/a=0,5 olan içi serbest ve dışı basit mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}$ değerleri.

Şekil 5.16 : İçi serbest ve dışı basit mesnetli boşluklu ortotrop dairesel plakta boyutsuz $\overline{\omega}_1$ grafiği ($E_r/E_{\theta} = 0,5$).

Şekil 5.17 : a/h=5 olan içi serbest ve dışı basit mesnetli boşluklu dairesel plakta boyutsuz $\overline{\omega}_1$ grafiği.

6. PROGRAMLAMA

İçi dolu ve boşluklu dairesel plakların statik ve dinamik çözümü Fortran Power Station 4.0 programı yardımıyla gerçekleştirilmiştir. Sonlu eleman formülasyonu ve Gâteaux türevine dayalı fonksiyonel yardımıyla farklı sınır koşullarına sahip elemanlar, yazılan bu programla çözülmüştür. Şekil 6.1'de bu programa ait akış şeması gösterilmektedir.

Şekil 6.1 : Programa ait akış şeması.

6.1 Data Alt Program

Analize başlamadan önce istenilen bilgilerin girişi bu bölümde gerçekleşmektedir. Malzeme sabitleri (elastisite modülü, poisson oranı), plak yarıçapı, plak kalınlığı, içi boşluklu plaklarda plak iç yarıçapı, mesnetleme ve analiz çeşidi, θ ve R doğrultusundaki düğüm nokta sayıları ile oluşturulacak sonlu eleman ağı data alt programı yardımıyla seçilmektedir.

6.2 Eleman Matrisi Alt Programı

Sonlu eleman formülasyonu yardımıyla elemanların tanımlandığı ve eleman matrisinin oluşturulduğu alt programdır.

6.3 Kodlama Alt Matrisi

Eleman matrisindeki bilgiler bu alt program yardımıyla sistem matrisine aktarılmaktadır.

6.4 Sistem Matrisi Alt Programı

Sistem matrisi ve yük matrisinin oluşturulduğu bu alt program yardımıyla statik veya dinamik analiz yapılmaktadır.

6.5 Statik Analiz

Sistem matrisi yardımıyla bu alt programda statik analiz yapılır ve sonuçlar yazdırılır.

6.6 Dinamik Analiz

Sistem matrisi yardımıyla özdeğer-özvektör problemi bu alt programda oluşturulan kütle matrisi ile birlikte çözülür. Elde edilen dinamik analiz sonuçları yazdırılır.

7. SONUÇLAR

1. Bu çalışmada, Reissner plak teorisi kullanılarak farklı kalınlıklardaki ortotrop ve izotrop, içi dolu ve boşluklu dairesel plakların statik ve dinamik analizi yapılmıştır.

2. Dairesel ortotrop plakların statik ve dinamik analizi için, Gâteaux türevine dayalı yeni bir fonksiyonel elde edilmiştir. Fonksiyonelde yer alan büyüklükler M_r , M_{θ} , $M_{r\theta}$, Q_r , Q_{θ} , Ω_r , Ω_{θ} ve wolmak üzere sekiz tanedir.

3. Elde edilen fonksiyonelde, bir değişkene göre iki veya daha yüksek mertebeden türev bulunmadığı için tamlık ve süreklilik açısından lineer biçim fonksiyonları kullanılarak üç ve dört düğüm noktalı SEC24 ve SEC32 eleman matrisleri elde edilmiştir.

4. Herbir düğüm noktasındaki bilinmeyen sayısı sekiz olduğundan SEC24 elemanında 3x8=24 ve SEC32 elemanında 4x8=32 adet bilinmeyen bulunmaktadır. Fonksiyonelin özelliğinden dolayı, bu düğüm noktalarında tanımlı büyüklükler herhangi bir işleme gerek duyulmaksızın doğrudan bulunabilmektedir.

5. Fortran dilinde sonlu eleman çözümüne uygun program geliştirilmiştir. Bu programda elde edilen eleman matrisi kodlama yardımıyla bilgileri sistem matrisine aktarmaktadır. Elde edilen sistem matrisi kullanılarak da plak problemlerinin statik ve dinamik analizi yapılmıştır.

6. Geliştirilen programın geçerliliğini kontrol etmek amacıyla ilk olarak düzgün yayılı yüklü izotrop dairesel plakların statik ve dinamik analizi yapılmış, sonuçların literatürdeki çalışmalarla uyumlu olduğu gözlenmiştir.

7. Sonlu eleman ağındaki eleman sayılarının değişiminin etkileri yaklaşım testleri ile araştırılmış ve eleman sayılarının artışında belli değerlerden sonra sonuçların değişmediği görülmüştür.

8. Farklı sınır koşullarına sahip içi dolu ve boşluklu dairesel plakların farklı malzeme özellikleri ve kalınlıkları için dinamik ve statik analizleri yapılmıştır. Elde edilen sonuçların literatür ile uyumlu olduğu görülmüştür.

9.Basit ve ankastre mesnetli dairesel plaklarda maksimum boyutsuz çökme değerleri karşılaştırıldığında E_r/E_{θ} oranı arttığında kalınlığın etkisinin azaldığı gözlenmiştir. a/h=4 ve a/h=50'deki boyutsuz çökme değerlerine göre basit mesnetli dairesel plakta E_r/E_{θ} =0,5 için bu etki %11,97 iken E_r/E_{θ} =1,0 için %5,39 ve E_r/E_{θ} =5,0 için %0,55 olarak hesaplanmıştır. Ankastre mesnetli dairesel plakta ise bu oranlar sırasıyla %41,40, %28,30 ve %16,68'dir.

10. Dairesel plaklarda E_r/E_{θ} oranının artışıyla boyutsuz \overline{M}_r , \overline{M}_{θ} ve \overline{w} değerlerinde artış meydana geldiği görülmüştür.

11. İçi boşluklu dairesel plaklarda da E_r/E_{θ} oranının artışıyla boyutsuz \overline{M}_r ve \overline{w} değerlerinde artış meydana geldiği görülmüştür. İç yarıçapın büyümesiyle de boyutsuz \overline{M}_r ve \overline{w} değerlerinde azalma gözlenmiştir.

12. Farklı sınır koşullarında farklı malzeme özelliklerine sahip içi dolu ve boşluklu dairesel plakların dinamik analizleri yapılmış ve kalınlık arttıkça boyutsuz $\overline{\omega}$ doğal frekanslarda azalma olduğu gözlenmiştir.

13. Ankastre ve basit mesnetli dairesel plaklarda E_r/E_{θ} oranının artışıyla boyutsuz $\overline{\omega}$ doğal frekanslarda azalma görülmüştür.

KAYNAKLAR

- Reddy, J. N., 1984. Energy and Variational Methods in Applied Mechanics. John Wiley & Sons.
- [2] **Reissner, E.,** 1946. The Effects of Transverse Shear Deformation Bending of Elastic Plates. J. Appl. Mech., ASME, Vol. **12**, pp.69-77.
- [3] **Reissner, E.,** 1975. On Transverse Bending of Plates, Including the Effect of Transverse Shear Deformation. Int. J. Structures, Vol. **11**, pp.569-573.
- [4] Mindlin, R. D., 1951. The Influence of Rotatory Inertia and Shear on the Flexural Motions of Elastic Plates. J. Appl. Mech., ASME, Vol. 18, pp.31-38.
- [5] Wang, C. M., Lim, G. T., Reddy, J. N. and Lee, K. H., 2001. Relationships Between Bending Solutions of Reissner and Mindlin Plate Theories. Engineering Structures. Vol. 9, pp.189-239.
- [6] Katili, I., 1993. A New Discrete Kirchhoff-Mindlin Element Based on Mindlin-Reissner Plate Theory and Assumed Shear Strain Fields – Part I-II. Int. J. Numer. Methods Eng. Vol. 36, pp.1859-1908.
- [7] Pontaza, J. P., Reddy, J. N., 2004. Mixed Plate Bending Elements Based on Least-Squares Formulation. Int. J. Numer. Meth. Engng. Vol. 60, pp.891-922.
- [8] Han, J. B., Liew, K. M., 1997. Analysis of Moderately Thick Circular Plates Using Differential Quadrature Method. Journal of Engineering Mechanics. December 1997, pp.1247-1252.
- [9] Aköz, A. Y., Erath, N., 2000. A Sectorial Element Based on Reissner Plate Theory. Structural Engineering and Mechanics. Vol. 9, no.6, pp.519-540.
- [10] Erath, N., 2002. Free Vibration Analysis of Circular, Annular and Annular Sectoral Plates. ARI The Bulletin of the Istanbul Technical University. Vol. 53, no.1, pp.29-43.
- [11] Leissa, A. W., 1969. Vibration of Plates. NASA SP-160, Washington, D.C.:U.S. Government Printing Office.
- [12] Liu, C. F., Chen, G. T., 1995. A Simple Finite Element Analysis of Axisymmetric Vibration of Annular and Circular Plates. Int. J. Mech. Sci. Vol. 37, no.8, pp.861-871.

- [13] Irie, T., Yamada, G., and Aomuro, S., 1980. Natural Frequencies of Mindlin Circular Plates. Journal of Applied Mechanics. Vol. 47, pp.652-655.
- [14] Leissa, A. W., Narita, Y., 1980. Natural Frequencies of Simply Supported Circular Plates. Journal of Sound and Vibration. Vol. 70, no.2, pp.221-229.
- [15] Woo, H. K., Kirmser, P. G., and Huang, C. L., 1973. Vibration of Orthotropic Circular Plates with a Concentric Isotropic Core. AIAA J. Vol. 11, pp.1421-1422.
- [16] Kim, C. S., Dickinson, S. M., 1989. On the Lateral Vibration of Thin Annular and Circular Composite Plates Subject to Certain Complicating Effects. Journal of Sound and Vibration. Vol. 130, no.3, pp.363-377.
- [17] Wu, L., Liu, J., 2005. Free Vibration Analysis of Arbitrary Shaped Thick Plates by Differential Cubature Method. Int. J. Mech. Sci. Vol. 47, pp.63-81.
- [18] Liew, K. M., Yang, B., 1999. Three-Dimensional Elasticity Solutions for Free Vibrations of Circular Plates: a Polynomials-Ritz Analysis. Comput. Methods Appl. Mech. Engrg. Vol. 175, pp.189-201.
- [19] Liew, K. M., Han, J. B., Xiao, Z. M., 1997. Vibration Analysis of Circular Mindlin Plates Using the Differential Quadrature Method. Journal of Sound and Vibration. Vol. 205, no.5, pp.617-630.
- [20] Zhou, D., Au, F. T. K., Cheung, Y. K., Lo, S. H., 2003. Three-Dimensional Vibration Analysis of Circular and Annular Plates via the Chebyshev-Ritz Method. International Journal of Solids and Structures. Vol. 40, pp.3089-3105.
- [21] Narita, Y. 1984. Free Vibration of Continuosu Polar Orthotropic Annular and Circular Plates. Journal of Sound and Vibration. Vol. 93, no.4, pp.503-511.
- [22] Bell, R., Kirkhope, J., 1980. Vibration Analysis of Polar Orthotropic Discs Using the Transfer Matrix Method. Journal of Sound and Vibration. Vol. 71, pp.421.
- [23] Gontkevich, V. S., 1964. Natural Vibrations of Plates and Shells. (in Russian. A. P. Filippov, editor) Kiev: Naukova Dumka.
- [24] Wah, T., 1962. Vibration of Circular Plates. Journal of the Acoustical Society of America. Vol. 34, pp.275-281.
- [25] Cao, Z. Y., 1989. Vibration Theory of Plates and Shells. China Railway Press. pp.100-200.
- [26] **Gorman, D. G.,** 1982. Natural Frequencies of Polar Orthotropic Uniform Annular Plates. Journal of Sound and Vibration. Vol. 80, pp.145-154.

- [27] Vogel, S. M., Skinner, D. W., 1965. Natural Frequencies of Transversely Vibrating Uniform Annular Plates. J. Appl. Mech. Vol. 32, pp.926.
- [28] Panc, V., 1975. Theories of Elastic Plates. Noordhoff International Publishing.
- [29] **Oden, J. D., Reddy, J.N.**, 1976. Variational Method in Theoretical Mechanics. Springer-Verlag.

ÖZGEÇMİŞ

Ad Soyad:	Fatih Şamdan
Doğum Yeri ve Tarihi:	Eskişehir, 1983
Lisans Üniversite:	Eskişehir Osmangazi Üniversitesi