<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

ESKİ DEPREM YÖNETMELİKLERİNE GÖRE BOYUTLANDIRILAN BETONARME BİNALARIN GÜNCEL YÖNETMELİĞE GÖRE DEPREM PERFORMANSININ BELİRLENMESİ

YÜKSEK LİSANS TEZİ Mustafa Tuna ÖZTÜRK

Anabilim Dalı : İnşaat Mühendisliği

Programı: Yapı Mühendisliği

HAZİRAN 2009

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

ESKİ DEPREM YÖNETMELİKLERİNE GÖRE BOYUTLANDIRILAN BETONARME BİNALARIN GÜNCEL YÖNETMELİĞE GÖRE DEPREM PERFORMANSININ BELİRLENMESİ

YÜKSEK LİSANS TEZİ Mustafa Tuna ÖZTÜRK (501071083)

Tezin Enstitüye Verildiği Tarih :04 Mayıs 2009Tezin Savunulduğu Tarih :05 Haziran 2009

Tez Danışmanı :Doç. Dr. Konuralp GİRGİN (İTÜ)Diğer Jüri Üyeleri :Doç. Dr. Engin ORAKDÖĞEN (İTÜ)Doç. Dr. Oğuz Cem ÇELİK (İTÜ)

HAZİRAN 2009

ÖNSÖZ

Lisans ve yüksek lisans programı boyunca bilgi ve deneyimlerini hiçbir zaman benden esirgemeyen ve yol gösteren, tez çalışmam süresince bana her konuda yardım eden tez danışmanım, değerli hocam Doç. Dr. Konuralp GİRGİN'e teşekkür eder, saygılarımı sunarım.

Ayrıca, yüksek lisans eğitimi süresince bana her türlü desteği veren aileme ve beni bursu ile destekleyen TÜBİTAK BİDEB'e teşekkür ederim.

Mayıs 2009

Mustafa Tuna ÖZTÜRK İnşaat Mühendisi

İÇİNDEKİLER

<u>Sayfa</u>

ÖNSÖZ	iii
KISALTMALAR	ix
CİZELGE LİSTESİ	xi
ŞEKİL LİSTESİ	xiii
SEMBOL LİSTESİ	. xv
ÖZET	xix
SUMMARY	xxi
1. GİRİŞ	1
1.1 Konu	1
1.2 Konu İle İlgili Çalışmalar	2
1.3 Çalışmanın Amacı ve Kapsamı	4
2. YAPI SİSTEMLERİNİN DOĞRUSAL OLMAYAN TEORİYE GÖRE	
STATİK VE DİNAMİK HESABI	5
2.1 Yapı Sistemlerinin Doğrusal Olmayan Davranışı	5
2.1.1 Çözümün sağlaması gereken koşullar	6
2.1.2 Yapı sistemlerinin doğrusal olmama nedenleri	6
2.1.3 Yapı sistemlerinin dış yükler altındaki doğrusal olmayan davranışı	8
2.2 Malzeme Bakımından Doğrusal Olmayan Betonarme Sistemlerin Hesabı	. 10
2.2.1 Doğrusal olmayan şekildeğiştirmelerin sistem üzerinde yayılı olması ha	li
	. 10
2.2.2 Doğrusal olmayan şekildeğiştirmelerin belirli kesitlerde toplanması hali	10
2.2.2.1 Plastik mafsal hipotezi	. 10
3. BÍNALARIN DEPREM PERFORMANSININ BELÍRLENMESÍ	. 17
3.1 Binalardan Bilgi Toplanması	. 17
3.2 Yapı Elemanlarında Hasar Sınırları ve Hasar Bölgeleri	. 18
3.2.1 Kesit hasar sınırları	. 18
3.2.2 Kesit hasar bölgeleri	. 18
3.3 Bina Deprem Performans Düzeyleri	. 19
3.3.1 Hemen kullanım performans düzeyi	. 19
3.3.2 Can güvenliği performans düzeyi	. 20
3.3.3 Göçme öncesi performans düzeyi	. 20
3.3.4 Göçme durumu	. 21
3.4 Performans Belirlemede Esas Alınacak Deprem Hareketleri	. 21
3.5 Performans Hedefi ve Çok Seviyeli Performans Hedefleri	. 22
3.6 Performans Belirlenmesi ve Kullanılan Analiz Yöntemleri	. 22
3.6.1 Doğrusal elastik ve doğrusal elastik olmayan hesap yöntemleri için gene	el
ilke ve kurallar	. 23
3.6.2 Dogrusal elastik hesap yontemleri	.25
3.6.2.1 Yontemin esaslari	25
3.6.2.2 Eşdeger deprem yuku yontemi	. 23
3.6.2.3 Mod birleştirme yontemi	23
5.0.2.4 Y api elemaniarinin hasar duzeylerinin belirlenmesi	. 26

3.6.3 Doğrusal elastik olmayan hesap yöntemleri	.28
3.6.3.1 Tanım	.28
3.6.3.2 Artimsal itme analizi ile performans degerlendirmesinde izlenecek	29
3 6 3 3 Doğrusal elaştik olmayan dayranışın idealleştirilmeşi	30
3.6.3.4 Artımsal esdeğer denrem vikij vöntemi ile itme analizi	31
3.6.3.5 Kesitteki birim sekildeğistirme istemlerinin belirlenmesi	36
3 6 3 6 Betonarme elemanların keşit hirim şekildeğiştirme kanaşiteleri	37
4. 1961. 1968. 1975 DEPREM VE 1953. 1967. 1975 BETONARME	51
YÖNETMELİKLERİNİN İRDELENMESİ	39
4 1 1961 1968 ve 1975 Deprem Yönetmelikleri	39
4 1 1 Afet hölgelerinde vanilacak vanilar hakkında vönetmelik – 1961	39
4 1 1 1 Proje ve hesan esaslari	39
4 1 2 Afet hölgelerinde vanilacak vanilar hakkında vönetmelik – 1968	<i>4</i> 2
4.1.2 1 Kolonlar	42
4 1 2 2 Kirisler	42
4 1 2 3 Denreme davanıklı binalar için hesan esasları	42
4 1 3 Afet hölgelerinde vanilacak vanilar hakkında vönetmelik - 1975	<u>44</u>
4.1.3 1 Kolonlar	45
4 1 3 2 Kirisler	46
4 1 3 3 Denreme davanıklı yanılar için hesan ilkeleri	47
4 1 4 1961 1968 ve 1975 deprem vönetmeliklerinin karsılastırılması	50
4 2 1953 1967 ve 1975 Betonarme Yönetmelikleri	52
4 2 1 TKIC betonarme sartnamesi 1953 – 1967	52
4 2 1 1 Malzeme bilgisi	52
4.2.1.2 Kirisler	54
4 2 1 3 Kolonlar	55
4.2.1.4 Emnivet gerilmeleri	55
4.2.2 Betonarme vapilarin hesap ve vapim kurallari TS-500 – 1975	.56
4.2.2.1 Malzeme bilgisi	56
4.2.2.2 Kirisler	58
4.2.2.3 Kolonlar	.58
4.2.2.4 Emnivet gerilmeleri	60
4.2.3 Betonarme sartnamesi 1953-1967 ile TS-500 1975'in karsılastırılması	.60
5. SAYISAL İNCELEME	.63
5.1 Genel Taşıyıcı Sistem Modeli	.63
5.2 Tasıyıcı Sistemlerinin Boyutlandırılması	. 64
5.2.1 TS-1'in boyutlandırılması	. 64
5.2.2 TS-2'nin boyutlandırılamsı	. 67
5.2.3 TS-3'ün boyutlandırılması	. 68
5.2.4 TS-1, TS-2 ve TS-3'ün karşılaştırılması	.71
5.3 Boyutlandırılan Binaların Deprem Performansının Doğrusal Elastik Eşdeğer	
Deprem Yükü Yöntemi İle Belirlenmesi	.72
5.3.1 TS-2'nin deprem performansının belirlenmesi	.72
5.3.2 TS-3'ün deprem performansının belirlenmesi	.90
5.3.3 TS-2 ile TS-3'ün doğrusal elastik yöntemle belirlenen deprem	
performanslarının karşılaştırılması	.97
5.4 Boyutlandırılan Binaların Deprem Performansının Doğrusal Elastik Olmayar	n
Yöntem (Artımsal Eşdeğer Deprem Yükü) İle Belirlenmesi	.98
5.4.1 TS-3'ün deprem performansının belirlenmesi	.98

5.5 Doğrusal ve Doğrusal Olmayan Yöntemler İle Yapılan A	naliz Sonuçlarının
Karşılaştırılması	
6. SONUÇLÁR	
KAYNAKLAR	
EK.A	
ÖZGEÇMİŞ	

KISALTMALAR

ABYYHY	: Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik
ASCE	: American Society of Civil Engineers
ATC	: Applied Technology Council
BHB	: Belirgin Hasar Bölgesi
BSSC	: Building Seismic Safety Council
BŞ	: Betonarme Şartnamesi
CG	: Can Güvenliği
DBYBHY	: Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik
EERC-UCB	: Earthquake Engineering Research Center of University of California
	at Berkeley
FEMA	: Federal Emergency Management Agency
GB	: Göçme Bölgesi
GÇ	: Göçme Sınırı
GÖ	: Göçme Öncesi
GV	: Güvenlik Sınırı
HK	: Hemen Kullanım
İНВ	: İleri Hasar Bölgesi
MHB	: Minimum Hasar Bölgesi
MN	: Minimum Hasar Sınırı
NEHRP	: National Earthquake Hazards Reduction Program
SAP2000	: Structural Analysis Program
TDY	: Türk Deprem Yönetmeliği
TKİC	: Türkiye Köprü ve İnşaat Cemiyeti
TS	: Taşıyıcı Sistem
TS-500	: Betonarme Yapıların Hesap ve Yapım Kuralları

ÇİZELGE LİSTESİ

<u>Sayfa</u>

Cizelge 2.1 : Yapı sistemlerinin doğrusal olmama nedenleri	7
Cizelge 3.1 : Binalar için bilgi düzeyi katsayıları	17
Cizelge 3.2 : Binalar için öngörülen minimum performans hedefleri	22
Cizelge 3.3 : Kirişler için hasar sınırlarını tanımlayan etki/kapasite oranları	27
Cizelge 3.4 : Kolonlar için hasar sınırlarını tanımlayan etki/kapasite oranları	27
Cizelge 3.5 : Perdeler için hasar sınırlarını tanımlayan etki/kapasite oranları	27
Cizelge 3.6 : Göreli kat ötelemesi sınırları.	28
Cizelge 4.1 : Deprem zemin katsayısı (ABYYHY 1961)	41
Cizelge 4.2 : Deprem bölge katsayısı (ABYYHY 1961).	41
Cizelge 4.3 : Hareketli yük azaltma katsayısı (ABYYHY 1961)	41
Cizelge 4.4 : Deprem bölge katsayısı (ABYYHY 1968).	43
Cizelge 4.5 : Deprem zemin katsayısı (ABYYHY 1968)	43
Cizelge 4.6 : Bina önem katsayısı (ABYYHY 1968)	43
Çizelge 4.7 : Hareketli yük azaltma katsayısı (ABYYHY 1968)	44
Çizelge 4.8 : Kolonlarda boyuna donatı oranı sınırları (ABYYHY 1975)	45
Çizelge 4.9 : Kirişlerde minimum boyuna çekme donatısı (ABYYHY 1975)	46
Cizelge 4.10 : Deprem bölge katsayısı (ABYYHY 1975).	48
Çizelge 4.11 : Yapı tipi katsayısı (ABYYHY 1975).	48
Çizelge 4.12 : Yapı önem katsayısı (ABYYHY 1975)	49
Çizelge 4.13 : Zemin hakim periyodu (ABYYHY 1975)	49
Çizelge 4.14 : Hareketli yük azaltma katsayısı (ABYYHY 1975)	49
Çizelge 4.15 : Beton sınıfları ve asgari küp mukavemetleri (BŞ 1953 - 1967)	53
Çizelge 4.16 : Beton çeliği sınıfları ve özellikleri (BŞ 1953 - 1967).	53
Çizelge 4.17 : Beton prizma ve çelik akma mukavemetleri (BŞ 1953 - 1967)	55
Çizelge 4.18 : Emniyet gerilmeleri (BŞ 1953 - 1967)	56
Çizelge 4.19 : Beton sınıfları ve dayanımları (TS-500 1975).	57
Çizelge 4.20 : Kolonlarda burkulma kastsayısı (TS-500 1975).	59
Çizelge 4.21 : Beton prizma dayanımları ve şekil değiştirmeleri (TS-500 1975)	59
Çizelge 4.22 : Kolonlarda boyuna donatı için çelik gerilmeleri (TS-500 1975)	59
Çizelge 4.23 : Kolonlarda minimum donatı oranı (TS-500 1975)	60
Çizelge 4.24 : Kolonlarda maksimum donatı oranı (TS-500 1975).	60
Çizelge 5.1 : TS-1 deprem yükleri	65
Çizelge 5.2 : TS-1 yarım rüzgar yükleri.	65
Çizelge 5.3 : TS-1 yatay yükler toplamı.	65
Çizelge 5.4 : TS-1 kolon boyutları ve donatıları.	66
Çizelge 5.5 : TS-1 kiriş boyutları ve donatıları.	67
Çizelge 5.6 : TS-2 deprem kuvvetlerinin katlara göre dağılımı.	68
Çizelge 5.7 : TS-3 deprem kuvvetlerinin katlara göre dağılımı	69
Çizelge 5.8 : TS-3 kolon boyutları ve donatıları.	69
Çizelge 5.9 : TS-3 kiriş boyutları ve donatıları.	70
Çizelge 5.10 : TS-1, TS-2 ve TS-3'ün karşılaştırılması.	71

Çizelge 5.11 : TS-2 kolonlar için etkin eğilme rijitlikleri	73
Çizelge 5.12 : TS-2 deprem kuvvetlerinin katlara dağıtılması	74
Çizelge 5.13 : TS-2 kiriş hasar bölgeleri.	80
Çizelge 5.14 : TS-2 kolon hasar bölgeleri.	87
Çizelge 5.15 : TS-2 birleşim bölgesi kontrolü	89
Çizelge 5.16 : TS-2 göreli kat ötelemeleri	90
Çizelge 5.17 : TS-3 kolonlar için etkin eğilme rijitlikleri	91
Çizelge 5.18 : TS-3 deprem kuvvetlerinin katlara dağıtılması	92
Çizelge 5.19 : TS-3 kiriş hasar bölgeleri.	93
Çizelge 5.20 : TS-3 kolon hasar bölgeleri.	95
Çizelge 5.21 : TS-3 birleşim bölgesi kontrolü	96
Çizelge 5.22 : TS-3 göreli kat ötelemeleri	96
Çizelge 5.23 : TS-3 artımsal eşdeğer deprem yükü dağılımı	102
Çizelge 5.24 : TS-3 taban kesme kuvveti – tepe noktası yerdeğiştirme değerleri	102
Çizelge 5.25 : TS-3 etkin kütle ve modal katkı çarpanı hesap çizelgesi	103
Çizelge 5.26 : TS-3 kirişler ve kolonlar için toplam eğrilik istem değerleri	106
Çizelge 5.27 : TS-3 plastikleşen kesitlerin hasar bölgeleri	111
Çizelge 5.28 : TS-3 kiriş hasar bölgeleri.	113
Çizelge 5.29 : TS-3 kolon hasar bölgeleri	114
Çizelge A.1 : TS-2 kiriş hasar bölgeleri hesapları - 1	122
Çizelge A.2 : TS-2 kiriş hasar bölgeleri hesapları - 2	123
Çizelge A.3 : TS-2 kiriş hasar bölgeleri hesapları - 3	124
Çizelge A.4 : TS-2 kiriş hasar bölgeleri hesapları - 4	125
Çizelge A.5 : TS-2 kiriş hasar bölgeleri hesapları - 5	126
Çizelge A.6 : TS-2 kiriş hasar bölgeleri hesapları - 6	127
Çizelge A.7 : TS-2 kolon hasar bölgeleri hesapları - 1	128
Çizelge A.8 : TS-2 kolon hasar bölgeleri hesapları - 2	129
Çizelge A.9 : TS-2 kolon hasar bölgeleri hesapları - 3	130
Çizelge A.10 : TS-2 kolon hasar bölgeleri hesapları - 4	131
Çizelge A.11 : TS-2 kolon hasar bölgeleri hesapları - 5	132
Çizelge A.12 : TS-3 kiriş hasar bölgeleri hesapları - 1	133
Çizelge A.13 : TS-3 kiriş hasar bölgeleri hesapları - 2	134
Çizelge A.14 : TS-3 kiriş hasar bölgeleri hesapları - 3	135
Çizelge A.15 : TS-3 kiriş hasar bölgeleri hesapları - 4	136
Çizelge A.16 : TS-3 kiriş hasar bölgeleri hesapları - 5	137
Çizelge A.17 : TS-3 kiriş hasar bölgeleri hesapları - 6	138
Çizelge A.18 : TS-3 kolon hasar bölgeleri hesapları - 1	139
Çizelge A.19 : TS-3 kolon hasar bölgeleri hesapları - 2	140
Çizelge A.20 : TS-3 kolon hasar bölgeleri hesapları - 3	141
Çizelge A.21 : TS-3 kolon hasar bölgeleri hesapları - 4	142
Çizelge A.22 : TS-3 kolon hasar bölgeleri hesapları - 5	143

ŞEKİL LİSTESİ

<u>Sayfa</u>

Şekil 2.1 : Çeşitli teorilere göre elde edilen P- Δ bağıntıları	8
Şekil 2.2 : Eğilme momenti - eğrilik diyagramı.	. 11
Sekil 2.3 : Doğrusal olmayan şekildeğiştirmeler.	. 12
Sekil 2.4 : İdealleştirilmiş bünye bağıntısı.	. 13
Sekil 2.5 : Plastik mafsal boyu.	. 14
Sekil 3.1 : Kesit hasar bölgeleri.	. 19
Sekil 3.2 : Eğilme momenti – plastik dönme bağıntıları	. 31
Sekil 3.3 : Performans noktasının belirlenmesi $(T_1^{(1)} \ge T_B)$	
Sekil 3.4 : Performans noktasının belirlenmesi $(T_1^{(1)} < T_B)$. 35
Sekil 3.5 : Performans noktasının belirlenmesi $(T_1^{(1)} < T_B)$	36
Sekil 4.1 : C _o deprem katsayısı.(ABYYHY 1961)	40
Sekil 5.1 : Taşıyıcı sistem geometrisi ve eleman adları	64
Şekil 5.2 : Basit eğilme durumunda kiriş iç kuvvetleri	. 75
Şekil 5.3 : Eğilme kapasitesi ile uyumlu kesme kuvveti.	76
Şekil 5.4 : Kolon karşılıklı etki diyagramı.	. 82
Şekil 5.5 : Kolon kapasite momentinin bulunması	. 85
Şekil 5.6 : Kolon kiriş birleşim bölgesi.	. 88
Şekil 5.7 : TS-3 K301 kirişi sol uç kesiti	. 99
Şekil 5.8 : TS-3 S303 kolon kesiti.	100
Şekil 5.9 : TS-3 S303 kolonu etkileşim diyagramı	100
Şekil 5.10 : TS-3 modele tanıtılan olası plastik mafsal yerleri	101
Şekil 5.11 : TS-3 statik itme eğrisi.	103
Şekil 5.12 : TS-3 spektral ivme – spektral yerdeğiştirme diyagramı.	104
Şekil 5.13 : TS-3 sistemde oluşan plastik mafsallar.	105
Şekil 5.14 : Mander beton modeli.	107
Şekil 5.15 : Pekleşmeli donatı çeliği modeli.	107
Şekil 5.16 : TS-3 S303 kolonu kesit hasar bölgesinin belirlenmesi.	110

SEMBOL LİSTESİ

Ao	: Etkin yer ivmesi katsayısı
A _c	: Kolonun brut kesit alani
A _s	: Boyuna donati alani
A_{sw}	: Kesme donatisi toplam kesit alani
a (i)	: Modal yerdeğiştirme
$a_{n}^{(n)}$: (i)'inci itme adımı sonunda n'inci moda ait modal ivme
$a_{ m yn}$: n'inci moda ait eşdeğer akma ivmesi
b	: Kesit genişliği, tabla genişliği
bo	: Kiriş gövde genişliği
b _s	: Guse genişliği
$\mathbf{b}_{\mathbf{w}}$: Kiriş gövde genişliği
С	: Deprem katsayısı, rüzgar katsayısı
C _{R1}	: Birinci moda ait spektral yerdeğiştirme oranı
Co	: Deprem bölge katsayısı
d	: Kirişin ve kolonun faydalı yüksekliği
\mathbf{d}_{1}	: Birinci moda ait modal yerdeğiştirme
$d_{1_{(i)}}^{(p)}$: Birinci moda ait modal yerdeğiştirme istemi
$\mathbf{d_n}^{(1)}$: (i)'inci itme adımı sonunda elde edilen n'inci moda ait modal
	yerdeğiştirme
d'	: Paspayı
D	: Bina genișliği
Ε	: Elastisite modülü, deprem yükleri
E _b	: Betonun elastisite modülü
EI	: Eğilme rijitliği
EIo	: Çatlamamış kesit eğilme rijitliği
EI _e	: Çatlamış kesit eğilme rijitliği
f _{ck}	: Karakteristik beton basınç dayanımı
f _{cm}	: Mevcut beton basınç dayanımı
f _{ctk}	: Karakteristik beton çekme dayanımı
f _{ctm}	: Mevcut beton çekme dayanımı
$\mathbf{f}_{\mathbf{yk}}$: Karakteristik donatı çeliği akma dayanımı
f _{ywm}	: Enine donatı mevcut akma dayanımı
F	: Beton kesit alanı, toplam yatay yük
F _c	: Beton basınç kuvveti
F _e	: Boyuna donatı alanı
$\mathbf{F_{i}}$: Kütlelerin toplandığı varsayılan noktalara etkiyen eşdeper deprem
	yükleri
$\mathbf{F}_{\mathbf{s}}$: Çekme donatısı çekme kuvveti
$\mathbf{F}_{\mathbf{t}}$: Tepe kuvveti
g	: Sabit yük
$\mathbf{g}_{\mathbf{i}}$: Binanın i'inci katına katındaki toplam sabit yük
G	: Sabit yük
h	: Çalışan doğrultudaki kesit boyutu, tabla kalınlığı

h f	: Tabla kalınlığı							
h _{ji}	: i'inci katta j'inci kolon veya perdenin kat yüksekliği							
Ĥ	: Toplam yatay kuvvet,							
H_i	: Yapının i'inci katının temel seviyesinden yüksekliği							
H_w	: Temel üstünden ölçülen toplam perde yüksekliği							
Ι	: Kesit atalet momenti, yapı önem katsayısı							
i	: Minimum atalet yarıçapı							
Κ	: Yapı tipi katsayısı							
K _b	: Beton prizma dayanımı							
l _k	: Burkulma boyu							
l _n	: Kolonun serbest yüksekliği, kirişin serbest açıklığı							
l _n	: Plastik mafsal boyu							
$\mathbf{l}_{\mathbf{w}}^{\mathbf{P}}$: Perdenin plandaki uzunluğu							
М	: Eğilme momenti							
Ma	: Kolonun serbest vüksekliğinin alt ucunda kolon kesme kuvvetinin							
u	hesabında esas alınan moment							
M	: Artık moment kapasitesi							
MD	: Düsev vükler altında kesit eğilme momenti							
M _F	: Deprem vükleri altında keşit eğilme momenti							
Mĸ	: Eğilme momenti kapasitesi							
M _n	: Kesitin eğilme momenti tasıma gücü (plastik moment)							
M _n ,	: İndirgenmis plastik moment							
M _{ni}	: $f_{\rm ck}$ ve $f_{\rm vk}$ alınarak kirisin i ucunda hesaplanan moment kapasitesi							
Mni	: f_{ck} ve f_{vk} alınarak kirisin i ucunda hesaplanan moment kapasitesi							
M _ü	: Kolonun serbest vüksekliğinin üst ucunda kolon kesme kuvvetinin							
u	hesabında esas alınan moment							
M _{v1}	x deprem doğrultusunda doğrusal elastik davranıs icin tanımlanan							
	birinci (hakim) moda ait etkin kütle							
n	: Hareketli viik katılım katsavısı							
n ₁	: Deprem zemin katsavısı							
n ₂	: Deprem bölge katsavısı							
Ň	: Normal kuvvet, binanın kat adedi							
ND	: Düsev vükler altında kolonda olusan eksenel basınc kuvveti							
Nĸ	: Moment kapasitesine karsı gelen eksenel kuvvet							
P	: Yük parametresi, hareketli yük							
P _R	: Burkulma yükü							
P _{cr}	: Kritik yük							
Pem	: Kolonun emniyetle tasıyacağı kuvyet							
P _K	: Kırılma yükü							
PL	: Limit yük							
\mathbf{P}_{L1}	: Birinci mertebe limit yük							
$\mathbf{P}_{L2}^{}$: İkinci mertebe limit yük							
Ρ-Δ	: Yük parametresi – verdeğistirme							
q	: Hareketli yük, rüzgar yükü							
q _i	: Binanın i'inci katındaki toplam hareketli yük							
Q	: Hareketli yük							
r	: Etki kapasite oranı							
r _s	: Etki kapasite oranının sınır değeri							
R	: Yapı davranış katsayısı							
R _a	: Deprem yükü azaltma katsayısı							

$\mathbf{R}_{\mathbf{a}}(\mathbf{T}_{1})$: T ₁ periyot değerindeki deprem yükü azaltma katsayısı					
R _{y1}	: Birinci moda ait dayanım azaltma katsayısı					
S	: Kiriş moment sıfır noktaları arası mesafe, enine donatı aralığı					
S	: Yapı dinamik katsayısı					
Sa	: Spektral ivme					
S ₂₀₁	: Birinci moda ait elastik spektral ivme					
S.	• Spektral verdeğiştirme					
Sa S	Birinci moda ait doğrusal elastik snektral verdeğistirme					
S _{del}	· Birinci moda ait doğrusal olmayan spektral yerdeğiştirme					
S_{di1}	• T. porivot dočorindaki alestik teserim jyma spektrum dočori					
S(11)	• T ₁ penyot degemideki elastik tasarini ivine spektrum degem					
	: Bina temer penyodu					
	: Zemin nakim periyodu					
T_1	: Binanin birinci doğal titreşim periyodu					
	: Spektrum karakteristik periyodu					
T _B	: Spektrum karakteristik periyodu					
$u_{\rm xN1}^{(l)}$: Binanın tepesinde (N'inci katında) x deprem doğrultusunda (i)'inci itme adımı sonunda elde edilen birinci moda ait yerdeğiştirme					
$u_{\rm xN1}^{(\rm p)}$: Binanın tepesinde (N'inci katında) x deprem doğrultusunda tepe verdeğistirme istemi					
V	: Kesme kuvveti					
V _c	: Kesme davanımına beton katkısı					
Van	: Kesitin kesmede catlama dayanımı					
V	• Düsev viiklerden meydana gelen hasit kiris kesme kuvveti					
V dy V	• Esas alınan tasarım kesme kuvveti					
V e V	Kesme davanımı					
vr V	• Toplam tahan kasma kuwusti					
vt V	• Vogme deveniming kogme denetisi ketkisi					
$\mathbf{v}_{\mathbf{W}}$ $\mathbf{v}_{\mathbf{V}}$ (i)	• Kesine uayaninina kesine uonausi katkisi					
V _{x1}	: x deprem dogrutusunda (1) inci tune admit sonunda eide editen					
**7	birinci moda (nakim) ait taban kesme kuvveti					
W	Binanin hareketli yuk katilim katsayisi kullanilarak bulunan agirligi					
W _{bg}	: Betonun g gunluk kup dayanımı					
Wi	: Binanin i'inci katinin toplam ağırlığı					
X	: Tarafsız eksen boyu					
α	: Deprem zemin katsayısı					
β	: Bina önem katsayısı					
$\beta_{\rm v}$: Kesme kuvveti dinamik büyütme katsayısı					
γ	: Dinamik katsayı					
δ	: Yatay yerdeğiştirme					
ΔF_N	: Ek eşdeğer deprem yükü, tepe kuvveti					
3	: Birim boy değiştirme					
8 _c	: Betonun birim boy değiştirmesi					
8 _{cg}	: Sargılı bölgenin en dış lifindeki beton basınç birim şekildeğiştirmesi					
Ecu	: Beton ezilme birim kısalması					
Ec	: Donatı celiğinin birim sekildeğistirmesi					
Een	: Donati celiğinin kopma uzaması					
su Ecu	: Donati celiğinin akma birim sekildeğistirmesi					
~sy Nh:	i'inci katta tanımlanan burulma düzensizliği katsayısı					
-Tor	• Plastik dönme istemi					
νp λ	• Esdeğer denrem vijkij azaltma katsavisi					
~	• Lyueger uepreni yuku azaruna kaisayisi • Siinaklik orani					
μ	• DUITKIIK UTAIII					

μ_1	: Kolonlar için emniyet katsayısı
ρ	: Çekme donatısı oran
ρ'	: Basınç donatısı oranı
ρ _b	: Dengeli donati orani
$ ho_{sm}$: Kesitte bulunması gereken enine donatının hacimsel oranı
ρ_s	: Kesitte mevcut bulunan enine donatının hacimsel yüzdesi
σ	: Gerilme
$\sigma_{\rm p}$: Beton prizma dayanımı
σ	: Donatı çeliği akma dayanımı
φ	: Kesit eğriliği
φ _p	: Plastik eğrilik istemi
φ _t	: Toplam eğrilik istemi
φ _y	: Eşdeğer akma eğriliği
χ	: Birim dönme (eğrilik)
χp	: Kesitin eğilme momentine karşı gelen birim dönme
ω	: Burkulma katsayısı
$\omega_1^{(1)}$: Birinci itme adımında birinci titreim moduna ait doğal açısal frekans
ω _B	: Karakteristik periyoda karşı gelen doğal açısal frekans
Γ_{x1}	: x deprem doğrultusunda birinci moda ait katkı çarpanı
Φ_{xN1}	: Binanın tepesinde (N'inci atında) x deprem doğrultusunda birinci moda ait mod şekli genliği.

ESKİ DEPREM YÖNETMELİKLERİNE GÖRE BOYUTLANDIRILAN BETONARME BİNALARIN GÜNCEL YÖNETMELİĞE GÖRE DEPREM PERFORMANSININ BELİRLENMESİ

ÖZET

Çok büyük bir kısmı aktif deprem kuşağında yer alan ülkemizde yakın geçmişte nüfus yoğunluğu fazla olan yerleşim merkezlerinde meydana gelen depremler sonucunda ortaya çıkan büyük can kayıpları ve yapı hasarları, depreme karşı yeterli güvenlikte bina tasarımını ve mevcut binaların deprem güvenliklerinin belirlenmesini güncel bir konu haline getirmiştir. Mevcut yapı stoğunun deprem güvenliğinin belirlenmesi ve ortaya çıkan sonuçlara göre gerekli önlemlerin alınması, ileride meydana gelecek olan depremler sonucunda ortaya çıkacak olan hasarın en aza indirilmesi bakımından çok önemlidir.

Bu çalışmada, ülkemizdeki mevcut betonarme binaları temsil edecek şekilde şeçilen bir taşıyıcı sistem modeli, 1961, 1968 ve 1975 Türk Deprem Yönetmelikleri ve aynı zaman dilimlerinde yürürlükte olan betonarme yönetmeliklerine göre boyutlandırılmıştır. Boyutlandırılan bu modellerin deprem performansları 2007 Türk Deprem Yönetmeliğinde tanımlanan doğrusal ve doğrusal olmayan yöntemler ile belirlenmiş ve sonuçları karşılaştırılarak değerlendirilmiştir.

Altı bölümden oluşan yüksek lisans tezinin birinci bölümünde, konunun açıklanmasına, konu ile ilgili çalışmalara, tez çalışmasının amaç ve kapsamına yer verilmiştir.

İkinci bölümde, yapı sistemlerinin doğrusal olmayan davranışı hakkında bilgi verilmiş olup, malzeme bakımından doğrusal olmayan sistemlerin hesap yöntemleri açıklanmıştır.

Üçüncü bölümde, Türk Deprem Yönetmeliği 2007'de yer alan mevcut binaların deprem performanslarının belirlenmesi ile ilgili bölüm hakkında bilgi verilmiştir.

Dördüncü bölümde, 1961,1968 ve 1975 deprem yönetmelikleri ile aynı dönemlerde yürürlükte olan 1953, 1967 ve 1975 betonarme yönetmeliklerinde yer alan esaslar hakkında bilgi verilmiş olup, karşılaştırmaları yapılmıştır.

Beşinci bölümde, eski yönetmeliklere göre taşıyıcı sistemlerin boyutlandırılmasına ve bu taşıyıcı sistemlerin deprem performanslarının 2007 Türk Deprem Yönetmeliğine göre belirlenmesine yer verilmiştir.

Son olarak, altıncı bölümde çalışmada elde edilen sonuçlar açıklanmıştır.

Elde edilen temel sonuçlar aşağıda özetlenmiştir.

1. 1961, 1968 ve 1975 deprem yönetmeliklerine göre binalara gelen deprem etkileri oldukça azdır ve binaların boyutlandırılmasında deprem etkileri, düşey etkilere göre çok daha az etkilidir.

2. Türk Deprem Yönetmeliği 2007'nin öngördüğü esaslar çerçevesinde yapılan değerlendirme sonuçlarına göre bu binaların deprem performansının gerekli düzeyde olmadığı görülmektedir.

DETERMINATION OF SEISMIC PERFORMANCE OF REINFORCED CONCRETE BUILDINGS THAT ARE DESIGNED BY OLDER CODES WITH CURRENT SEISMIC CODE

SUMMARY

A major part of Turkey is located on active seismic zones. Earthquakes that occured in recent years in populated towns have left many people dead and caused substantial damage to buildings. This has made the issues of designing an earthquake-resisting building and determining the safety level of buildings against earthquakes topical. Taking precautions towards determining the safety level of the existing building has a vital importance on reducing the possible damages of future earthquakes.

In this study, a sample structural model, which has been choosen to represent the existing reinforced concrete buildings in Turkey, is designed in accordance with the 1961, 1968 and 1975 Turkish Seismic Codes and reinforced concrete design codes which were functional at these years. The determination of seismic performances of these models have been done with the lineer and non-linear methods which are explained in Turkish Seismic Code 2007. Finally, analysis results are compared and discussed

This master of science theises consists of six chapters. The first chapter includes the subject, scope and objectives of the study and literature survey.

In the second chapter, non-linear behaviour of structural systems and the methods of evaluating the materially non-linear systems, are explained.

The section of the Turkish Seismic Code 2007, which includes the rules of determining the seismic performances of existing buildings, is explained in the third chapter.

Fourth chapter is devoted to reviewing of the 1961, 1968 and 1975 Turkish Seismic and 1953, 1967 and 1975 Turkish Reinforced Concrete Design Codes.

Designing the structural models due to the older codes and evaluating the seismic performances of these models by the rules of Turkish Seismic Code 2007 takes place at fifth chapter.

Finally, in the sixth chapter, the results of this study are explained.

Basical results are summarized below.

1-) Lateral earthquake loads that are determined by 1961, 1968 and 1975 seismic codes are very small. Thus, during the design of a building, earthquake loads show less effects than the vertical loads.

2-) The evaluation that is carried out with the rules of Turkish Seismic Code 2007 shows that these buildings do not have an enough seismic performance as expected.

1. GİRİŞ

1.1 Konu

Depremler tüm dünyada büyük mal ve can kayıplarına neden olan doğal afetlerdir. Her yıl dünyada bir çok büyük deprem yaşanmaktadır ve sonucunda büyük hasarlar meydana gelmektedir. Ülkemiz coğrafi konum olarak üç büyük kıta arasında sıkışmış bir durumdadır ve yersarsıntıları açısından oldukça aktif bir bölgede bulunduğundan sıklıkla orta ve büyük ölçekli depremlerle karşılaşmaktadır. Deprem bölgeleri haritasına göre ülkemizin %92'si deprem bölgeleri içinde, nüfusumuzun %95'i deprem tehlikesi altında yer almaktadır. Son yıllarda ülkemizde meydana gelen 1992 Erzincan, 1995 Dinar, 1998 Adana-Ceyhan, 1999 Kocaeli, 1999 Düzce ve 2002 Afyon gibi büyük depremlerde onbinlerce can kaybı meydana gelmiş, binlerce yapıda ağır hasarlar oluşmuştur, [1]. Ülkemizde meydana gelen depremler ve yarattığı hasarlar incelendiğinde, depremlerde çok büyük can ve mal kaybı meydana geldiği görülmektedir. Dünyada oluşan depremler ile kıyaslarsak, ülkemizdeki depremler olması gerekenden çok daha fazla hasara neden olmaktadır. Bu durum, deprem bölgelerinde bulunan yapıların depreme karşı bir güvenliğe sahip olmadığı söylenerek açıklanabilir.

Deprem etkileri altında yapıların hasar görmesi veya yıkılması, depreme dayanıklı yapı tasarımı ve yapıların deprem performansları gibi konuları oldukça popüler hale getirmiştir. Yapıların güvenli olmalarının yanı sıra depremlerden sonra kullanılabilirliklerinin de devam etmesi gerekmektedir. Depremde oluşan hasarlardan dolayı yapı kullanımının kesintiye uğramasından ve bu yapı hasarlarının onarımından dolayı oluşan maliyetlerin oldukça yüksek olduğu bilinmektedir. Bu durum, yapıların farklı performans düzeylerine, başka bir deyişle farklı sınır durumlarına göre tasarımının gerekliliğini ortaya çıkarmıştır.

Deprem etkileri altında yapıların performanslarının değerlendirilmesi genel olarak iki yöntemle yapılabilmektedir. Bunlar, doğrusal elastik ve doğrusal elastik olmayan yöntemlerdir, [2].

Doğrusal elastik yöntemin temeli kuvvet bazlı değerlendirmeye dayanmaktadır. Bu yöntemde, elemanların taşıma kapasitelerinin, dış yükler altında meydana gelen iç kuvvetler ile karşılaştırılması esas alınmaktadır.

Doğrusal elastik olmayan yöntemin temeli ise yerdeğiştirme ve şekildeğiştirme bazlı değerlendirmeye dayanmaktadır. Yapı sistemlerinin, doğrusal olmayan davranışının incelenmesi ile depreme karşı yeterli güvenlikte ve ekonomik olarak tasarımı ve deprem performanslarının daha gerçekçi olarak belirlenmesi mümkündür.

Doğrusal ve doğrusal olmayan yöntemler ile yapılan analizler sonucu elde edilen veriler ile yapıların hedeflenen deprem performans düzeylerine göre durumları belirlenir ve gerekli değerlendirmeler yapılır.

1.2 Konu İle İlgili Çalışmalar

Ülkemizde son yıllarda meydana gelen depremler nüfus yoğunluğu fazla olan bölgelerde olmuş ve binlerce yapıda hasara neden olmuştur. Bu nedenle son yıllarda ülkemizdeki mevcut yapıların deprem güvenliklerinin belirlenmesi önemli bir konu haline gelmiştir. 1998 Türk Deprem Yönetmeliği'ne (ABYYHY 1998) [3] mevcut binaların değerlendirilmesi ve güçlendirilmesi adı altında yeni bir bölüm eklenerek ve bu yönetmeliğin bazı bölümleri güncellenerek Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik [4] (Türk Deprem Yönetmeliği 2007) resmi gazetede yayınlanarak 2007 yılında yürürlüğe girmiştir. Bu yönetmelikte, binaların deprem performanslarının belirlenmesi ile ilgili doğrusal ve doğrusal olmayan yöntemler ile ilgili esaslar verilmiştir.

Türk Deprem Yönetmeliği 2007'nin hazırlanmasının ardından, Türkiye'de bulunan mevcut yapıların ve mevcut yapı stoğunu temsil eden taşıyısı sistemlerin deprem performansları, TDY 2007'de öngörülen doğrusal ve doğrusal olmayan değerlendirme yöntemleri kullanılarak incelenmeye başlanmıştır.

Bu konuda yapılan çalışmaların birinde, betonarme düzlem bir çerçeve modelinin ve TDY 2007'ye göre tasarımı yapılan betonarme bir yapının deprem performansı doğrusal ve doğrusal olmayan yöntemler ile belirlenmiş olup elde edilen sonuçlar karşılaştırılmıştır, [5]. Diğer bir çalışma ise, 1975 yılı öncesinde inşa edilen mevcut betonarme binaların deprem performanslarının belirlenmesi üzerine yapılmış olan sayısal bir incelemedir, [6]. Bunun gibi birçok temsili veya mevcut yapının deprem performansının belirlenmesi ile ilgili çalışmalar yapılmaktadır.

Yapı sistemlerinin malzeme bakımından doğrusal olmayan kurama göre hesabını amaçlayan yöntemler üzerindeki çalışmalar uzun bir geçmişe dayanmaktadır. Bu amaçla geliştirilen analiz yöntemleri, temel varsayımları bakımından iki grupta incelenebilirler:

- 1. Doğrusal olmayan şekildeğiştirmelerin sistem üzerine sürekli olarak yayıldığının gözönüne alındığı çalışmalar ve yöntemler, [7-9]
- 2. Doğrusal olmayan şekildeğiştirmelerin sistemin bazı kesitlerinde toplandığını esas alan plastik mafsal hipotezine dayanan yöntemler, [10, 11].

Bu yöntemlerin geliştirilmesine paralel olarak, doğrusal olmayan kurama dayanan pratik ve etkin bilgisayar programları da giderek gelişmekte ve yaygın olarak kullanılmaktadır, [12].

Şekildeğiştirme ve yerdeğiştirmeye bağlı performans kriterlerini esas alan yapısal değerlendirme ve tasarım kavramı, özellikle son yıllarda Amerika Birleşik Devletleri'nin deprem bölgelerindeki mevcut yapıların deprem güvenliklerinin daha gerçekçi olarak belirlenmesi ve yeterli güvenlikte olmayan yapıların güçlendirilmeleri çalışmaları sırasında ortaya konulmuş ve geliştirilmiştir.

Amerika Birleşik Devletleri'nin California eyaletinde, 1989 Loma Prieta ve 1994 Northridge depremlerinin neden olduğu büyük hasar, deprem etkileri altında yeterli bir dayanımı öngören performans kriterlerine alternatif olarak, şekildeğiştirme ve yerdeğiştirmeye bağlı daha gerçekçi performans kriterlerini esas alan yöntemlerin geliştirilmesi gereksinimini ortaya çıkarmıştır.

Bu gereksinimi karşılamaya yönelik olarak, Applied Technology Council (ATC) tarafından Guidelines and Commentary for Seismic Rehabilitation of Buildings - ATC 40 projesi [13] ve Federal Emergency Management Agency (FEMA) tarafından NEHRP Guidelines for the Seismic Rehabilitation of Buildings - FEMA 273, 356 raporları [14, 15] yayınlanmıştır. Daha sonra, bu çalışmaların sonuçlarının irdelenerek geliştirilmesi amacıyla ATC 55 projesi yürütülmüş ve projenin bulgularını içeren FEMA 440 taslak raporu [16] hazırlanmıştır. Bu organizasyonların yanında, Building Seismic Safety Council (BSSC), American Society of Civil Engineers (ASCE) ve Earthquake Engineering Research Center of University of

California at Berkeley (EERC-UCB) tarafından yürütülen diğer projeler de bu alandaki araştırmalara katkı sağlamıştır.

Diğer taraftan, Avrupa Birliği standartları arasında bulunan Eurocode 8.3 standardında [17] da, mevcut yapıların deprem performanslarının belirlenmesine yönelik araştırmaların sonuçlarını içeren yaklaşımlar yer almaktadır.

1.3 Çalışmanın Amacı ve Kapsamı

Bu çalışmanın amacı, ülkemizde daha önce yürürlükte olan 1961, 1968 ve 1975 deprem yönetmeliklerine [18-20] göre boyutlandırılan ve mevcut betonarme binaları temsil ettiği düşünülen bir yapı sisteminin deprem performansının TDY 2007'ye göre doğrusal ve doğrusal olmayan yöntemler ile irdelenmesi ve sonuçlarının karşılaştırılmasıdır. Ayrıca, ülkemizdeki deprem yönetmeliklerinin tarihsel olarak gelişimi incelenecek ve bugünkü durum değerlendirilecektir. Bu çalışmada, ülkemizde oluşabilecek depremlerde ağır hasar görme olasılıkları yüksek olan 30 ile 50 yaşındaki binaların yapım yıllarındaki mevcut yönetmeliklere uygun olarak projelendirilmiş olması durumunda, güncel deprem yönetmeliğine göre deprem performansları belirlenecektir.

Yapılar eski deprem yönetmeliklere göre boyutlandırılırken, o zaman diliminde kullanılan betonarme yapıların yapılması ile ilgili yönetmeliklerde belirlenen kurallar da dikkate alınmıştır. 1961, 1968 ve 1975 yıllarında yayınlanan Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelikler, [18-20]; 1953 Betonarme Şartnamesi, 1967 Betonarme Şartnamesi ve 1975 Betonarme Yapıların Hesap ve Yapım Kuralları TS-500 ile birlikte ele alınmıştır, [21-23].

Bu çalışmada ülkemizde daha önceden kullanılmakta olan deprem ve betonarme yönetmeliklerinin, TDY 2007 [4] deprem yönetmeliğinin öngördüğü mevcut yapıların değerlendirilmesine ilişkin koşulların ne kadarını sağlayabildiği araştırılacaktır. Böylece, ülkemizde depremlerden dolayı binalarda oluşan hasarların nedenleri güncel deprem yönetmeliğinin öngördüğü şekilde incelenerek geçmiş deprem yönetmelikleri bu yaklaşım çerçevesinde irdelenecektir.

2. YAPI SİSTEMLERİNİN DOĞRUSAL OLMAYAN TEORİYE GÖRE STATİK VE DİNAMİK HESABI

2.1 Yapı Sistemlerinin Doğrusal Olmayan Davranışı

Bazı özel durumların dışında, yapı sistemleri işletme yükleri altında genellikle doğrusal veya doğrusala yakın davranış gösterirler. İşletme yükleri altında doğrusal olmayan yapı sistemleri arasında narin yapılar ve elastik zemine oturan sistemler ile bölgesel stabilite yetersizlikleri içeren yapılar sayılabilir.

Doğrusal sistem davranışını esas alan analiz yöntemlerinde, malzemenin gerilmeşekildeğiştirme bağıntıları (bünye denklemleri) doğrusal-elastik olarak alınmakta ve yerdeğiştirmelerin çok küçük olduğu varsayılmaktadır.

Buna karşılık, dış etkiler işletme yüklerini aşarak yapı sisteminin taşıma gücüne yaklaştıkça, gerilmeler doğrusal-elastik sınırı aşmakta ve narin yapıların yerdeğiştirmeleri çok küçük varsayılamayacak değerler almaktadır.

Günümüzde yapı mühendisliğinde genellikle uygulanmakta olan ve sistem analizi bakımından doğrusal teoriye dayanan tasarım yaklaşımlarında (çelik yapıların güvenlik gerilmeleri esasına göre tasarımı ve betonarme yapıların taşıma gücü yöntemine göre tasarımı), yapı sisteminin doğrusal olmayan davranışı çeşitli şekillerde gözönüne alınmaya çalışılmaktadır. Örneğin, ikinci mertebe etkilerinin hesaba katılması ve burkulmaya karşı yeterli bir güvenlik sağlanması amacıyla moment büyütme yönteminden ve burkulma katsayılarından yararlanılmakta, yapı sisteminin doğrusal olmayan şekildeğiştirmeleri nedeniyle iç kuvvet dağılımının değişmesi yeniden dağılım ilkesi yardımı ile göz önüne alınmaya çalışılmaktadır. Diğer taraftan, deprem etkilerine göre hesapta, malzemenin doğrusal-elastik sınır ötesindeki davranışını ve deprem enerjisinin söndürülmesini hesaba katmak üzere, taşıyıcı sistem davranış katsayısı tanımlanmakta ve elastik deprem yükleri bu katsayıya bağlı bir deprem yükü azaltma katsayısı ile bölünerek küçültülmektedir. Yapı malzemelerinin doğrusal-elastik sınır ötesindeki taşıma kapasitelerini göz önüne almak, çok küçük olmayan yerdeğiştirmelerin denge denklemlerine ve gerekli

olduğu hallerde geometrik uygunluk koşullarına etkilerini hesaba katmak suretiyle, yapı sistemlerinin dış etkiler altındaki davranışlarının daha yakından izlenebilmesi ve bunun sonucunda daha gerçekçi ve ekonomik çözümler elde edilmesi mümkün olabilmektedir.

Doğrusal olmayan sistem davranışını esas alan hesap yöntemlerinin geliştirilmesinde ve uygulanmasında genel olarak iki durumla karşılaşılmaktadır. Bunlardan birincisi, yapı sisteminin doğrusal olmamasına neden olan etkenlerin belirlenerek, sistem davranışını gerçeğe yakın bir biçimde temsil eden bir hesap modelinin oluşturulması, diğeri ise bu hesap modelinin doğrusal olmayan teoriye göre analizidir, [2].

2.1.1 Çözümün sağlaması gereken koşullar

Bir yapı sisteminin dış etkiler altında analizi ile elde edilen iç kuvvetler, şekildeğiştirmeler ve yerdeğiştirmelerin çözüm olabilmeleri için aşağıdaki üç koşulu aynı anda sağlamaları gerekmektedir, [2].

- Bünye denklemleri : Malzemenin cinsine ve özelliklerine bağlı olan gerilmeşekildeğiştirme ve iç kuvvet-şekildeğiştirme bağlantılarına bünye denklemleri denilmektedir.
- Denge koşulları (denklemleri) : Sistemi oluşturan elemanların ve bu elemanların birleştiği düğüm noktalarının denge denklemlerinden oluşmaktadır.
- Geometrik uygunluk koşulları : Elemanların ve düğüm noktalarının geometrik süreklilik denklemleri ile mesnetlerdeki geometrik sınır koşullardır.

2.1.2 Yapı sistemlerinin doğrusal olmama nedenleri

Bir yapı sisteminin dış yükler altındaki davranışının doğrusal olmaması genel olarak iki temel nedenden kaynaklanmaktadır, [2].

- 1. Malzemenin doğrusal-elastik olmaması nedeniyle iç kuvvet-şekildeğiştirme bağıntılarının (bünye denklemlerinin) doğrusal olmaması,
- Geometri değişimlerinin yeter derecede küçük olmaması nedeniyle denge denklemlerinin (ve bazı hallerde geometrik süreklilik denklemlerinin) doğrusal olmaması.

Yapı sistemlerinin doğrusal olmamasına neden olan etkenler ve bu etkenleri göz önüne alan teoriler Çizelge 2.1'de topluca özetlenmiştir.

	Doğrusal Sistemler	Doğrusal Olmayan Sistemler				
Çözümün Sağlaması Gereken Koşullar		Malzeme Bakımından	Geometri Değişimleri Bakımından		Her İki Bakımdan	
			İkinci Mertebe Teorisi	Sonlu Deplasman Teorisi	İkinci Mertebe Teorisi	Sonlu Deplasman Teorisi
Bünye Denklemleri (Gerilme- Şekildeğiştirme Bağıntıları)	Doğrusal- elastik	Doğrusal- elastik DEĞİL	Doğrusal- elastik	Doğrusal- elastik	Doğrusal- elastik DEĞİL	Doğrusal- elastik DEĞİL
Denge Denklemlerinde Yerdeğiştirmeler	Küçük	Küçük	Küçük DEĞİL	Küçük DEĞİL	Küçük DEĞİL	Küçük DEĞİL
Geometrik Uygunluk Koşullarında Yerdeğiştirmeler	Küçük	Küçük	Küçük	Küçük DEĞİL	Küçük	Küçük DEĞİL
P-∆ Bağıntıları						

Çizelge 2.1 : Yapı sistemlerinin doğrusal olmama nedenleri.

Denge denklemlerinde yerdeğiştirmelerin küçük olmadığı sistemlerde, denge denklemleri şekildeğiştirmiş eksen üzerinde yazılmaktadır.

Geometrik uygunluk koşullarında yerdeğiştirmelerin küçük olmadığı sistemlerde ise, geometrik süreklilik denklemlerinin de şekildeğiştirmiş eksen üzerinde yazılması gerekmektedir.

Bazı yapı sistemlerinde, sistemin özelliklerinden kaynaklanan nedenlerle, geometrik uygunluk koşulları sağlanmayabilir. Bu durumda, sistemde geometrik süreksizlikler meydana gelir. Özellikle sistemi oluşturan elemanların sınır koşullarındaki bu süreksizlikler nedeniyle, sistemin davranışı doğrusal olmaz. Bu tür sistemlere, geometrik süreksizlikler bakımından doğrusal olmayan sistemler denir ve bu sistemler malzeme bakımından doğrusal olmayan sistemler gibi incelenebilir. Kayıcı bulonlu düğüm noktaları içeren çelik yapı sistemleri, geometrik süreksizlikler

2.1.3 Yapı sistemlerinin dış yükler altındaki doğrusal olmayan davranışı

Düşey ve yatay yükler etkisindeki bir yapı sisteminin doğrusal ve doğrusal olmayan teorilere göre hesabı ile elde edilen yük parametresi – yerdeğiştirme (P- Δ) bağıntıları Şekil 2.1'de şematik olarak gösterilmiştir.

Şekil 2.1 : Çeşitli teorilere göre elde edilen $P-\Delta$ bağıntıları.

Malzemenin sınırsız olarak doğrusal-elastik varsayıldığı bir yapı sisteminin, artan dış yükler altında, birinci mertebe teorisine göre elde edilen davranışı (I) doğrusu ile ifade edilmektedir. Geometri değişimlerinin denge denklemlerine etkisinin, diğer bir deyişle, eksenel kuvvetlerin şekildeğiştirmiş sistem üzerinde oluşturduğu ikinci mertebe etkilerinin (P- Δ etkilerinin) hesaba katıldığı ikinci mertebe teorisinde ise, eksenel kuvvetin basınç veya çekme olmasına göre iki farklı sistem davranışı ile karşılaşılabilmektedir.

Eksenel kuvvetin basınç olması halinde, (II) eğrisinden görüldüğü gibi, artan dış yüklere daha hızla artan yerdeğiştirmeler karşı gelmektedir. Aralarındaki oran sabit kalacak şekilde değişen dış kuvvetlerin büyüklüğünü ifade eden yük parametresi artarak doğrusal-elastik burkulma yükü adı verilen bir P_B değerine eşit olduğu zaman, yerdeğiştirmeler artarak sonsuza erişir ve sistem burkularak göçer. Bazı özel durumlarda, burkulmadan sonra artan yerdeğiştirmelere azalan yük parametresi karşı gelebilir. Örneğin asma sistemler gibi eksenel kuvvetin çekme olduğu durumlarda ise, şekilde (IIa) ile gösterilen P- Δ diyagramı pekleşen özellik gösterir. Yanal yük etkisinde olmayan ve bu nedenle burkulmadan önce şekildeğiştirmeyen sistemlerde, yük parametresinin bir P_{cr} değerinde dallanma burkulması oluşur ve şekildeki (IIb) diyagramından görüldüğü gibi, yerdeğiştirmeler birden artarak sonsuza gider. Dallanma burkulmasına neden olan bu yüke kritik yük denilmektedir. Kritik yük genellikle burkulma yükünden biraz daha büyük veya ona eşittir. Dallanma burkulması, bazı hallerde burkulmadan önce şekildeğiştiren sistemlerde de oluşabilir, (II eğrisi).

Doğrusal olmayan malzemeden yapılmış sistemlerde, artan dış yüklerle birlikte iç kuvvetler de artarak bazı kesitlerde doğrusal-elastik sınırı asmakta ve bu kesitler dolayında doğrusal olmayan (plastik) şekildeğiştirmeler meydana gelmektedir. Doğrusal olmayan şekildeğiştirmeler genel olarak sistem üzerinde sürekli olarak yayılmaktadır. Buna karşılık, taşıma kapasitesine karşı gelen toplam şekildeğiştirmelerin doğrusal şekildeğiştirmelere oranının büyük olduğu, sünek malzemeden yapılmış sistemlerde, doğrusal olmayan şekildeğiştirmelerin plastik mafsal (veya genel anlamda plastik kesit) adı verilen belirli kesitlerde toplandığı, bu kesitlerin dışındaki bölgelerde ise sistemin doğrusal-elastik davrandığı varsayılabilir. Bu varsayım plastik mafsal (plastik kesit) hipotezi olarak isimlendirilmektedir. Plastik mafsal hipotezinin esas alındığı bir yapı sisteminin birinci mertebe teorisine göre hesabında (III eğrisi), oluşan plastik mafsallar nedeniyle sistemin tümünün veya bir bölümünün mekanizma durumuna gelmesi taşıma kapasitesine erişildiğini gösterir. Bu yük birinci mertebe limit yük adını alır.

Doğrusallığı bozan her iki etkinin birlikte gözönüne alınması halinde, diğer bir deyişle, yapı sisteminin ikinci mertebe elastoplastik teoriye göre hesabı ile elde edilen P- Δ diyagramı şekilde (IV) eğrisi ile gösterilmiştir. Bu diyagram ilk kritik kesitte doğrusal-elastik sınırın aşılmasına kadar (II) eğrisini izlemekte, daha sonra oluşan doğrusal olmayan şekildeğiştirmeler nedeniyle yerdeğiştirmeler daha hızlı olarak artmaktadır. Plastik mafsal hipotezinin esas alındığı yapı sistemlerinde, dış yükler artarak bir P_{L2} sınır değerine eşit olunca, meydana gelen plastik mafsallar nedeniyle rijitliği azalan sistemin burkulma yükü dış yük parametresinin altına düşer, yani P- Δ diyagramında artan yerdeğiştirmelere azalan yükler karşı gelir. Sistemin stabilite yetersizliği nedeniyle taşıma gücünü yitirmesine sebep olan bu yük parametresine ikinci mertebe limit yük denilmektedir.

Bazı hallerde, dış yükler limit yüke erişmeden önce, meydana gelen büyük yerdeğiştirmeler, büyük plastik şekildeğiştirmeler ile betonarme sistemlerde oluşan büyük çatlaklar ve kırılma yapının göçmesine neden olabilmektedir.

2.2 Malzeme Bakımından Doğrusal Olmayan Betonarme Sistemlerin Hesabı

Malzeme bakımından doğrusal olmayan betonarme sistemlerin hesabı, doğrusal olmayan şekildeğiştirmelerin sistem üzerinde yayılı olması ve plastik kesit adı verilen belirli kesitlerde toplandığının varsayılması halleri için ayrı ayrı incelenecektir. Doğrusal olmayan şekildeğiştirmelerin sistem üzerinde yayılı olması hali hakkında kısa ön bilgi verildikten sonra, bu çalışmanın kapsamı içinde olan plastik mafsal hipotezi ve bu hipoteze dayanan hesap yöntemi ayrıntılı olarak incelenecektir.

2.2.1 Doğrusal olmayan şekildeğiştirmelerin sistem üzerinde yayılı olması hali

Malzeme bakımından doğrusal olmayan yapı sistemlerinde, doğrusal olmayan şekildeğiştirmelerin sistem üzerinde sürekli olarak yayıldığının göz önüne alınması halinde, yük parametresi-yerdeğiştirme bağıntılarının (kapasite eğrilerinin) belirlenmesi gerekir ve göçme yüklerinin hesabı için, ardışık yaklaşım yöntemlerinden veya yük artımı yöntemlerinden yararlanılabilir, [2].

2.2.2 Doğrusal olmayan şekildeğiştirmelerin belirli kesitlerde toplanması hali

Malzeme bakımından doğrusal olmayan ve yeterli düzeyde sünek davranış gösteren yapı sistemlerinde, doğrusal olmayan şekildeğiştirmelerin plastik mafsal (plastik kesit) adı verilen belirli kesitlerde toplandığı, sistemin diğer bölümlerinin ise doğrusal-elastik davrandığı varsayımı yapılabilir, [2].

2.2.2.1 Plastik mafsal hipotezi

Toplam şekildeğiştirmelerin doğrusal şekildeğiştirmelere oranı olarak tanımlanan süneklik oranının büyük olduğu ve doğrusal olmayan şekildeğiştirmelerin küçük bir bölgeye yayıldığı sistemlerde, doğrusal olmayan eğilme şekildeğiştirmelerinin plastik mafsal adı verilen belirli kesitlerde toplandığı, bunun dışındaki bölgelerde ise sistemin doğrusal-elastik davrandığı kabul edilebilir. Bu hipoteze, plastik mafsal (plastik kesit) hipotezi adı verilir.

Yeterli düzeyde sünek davranış gösteren sistemlerde (çelik yapılar ve bazı koşullar altında betonarme yapılar), plastik mafsal hipotezi yapılarak sistem hesapları önemli ölçüde kısaltılabilmektedir.

Doğrusal olmayan malzemeden yapılmış bir kesitteki gerçek eğilme momenti-eğrilik bağıntısı Şekil 2.2'de, verilen bir düzlem çubuk elemanın bir bölgesine ait eğilme momenti diyagramı, toplam eğilme şekildeğiştirmeleri ve doğrusal olmayan şekildeğiştirmeler ise Şekil 2.3'te gösterilmişlerdir.

Şekil 2.2 : Eğilme momenti - eğrilik diyagramı.

Çelik kesitlerin ve yeterli sünekliğe sahip olan betonarme kesitlerin eğilme momentieğrilik bağıntıları incelendiğinde, bu bağıntıların esas olarak iki farklı bölgeden oluştuğu gözlenir. Birinci bölgede, eğilme momentinin küçük değerleri için eğilme momenti-eğrilik ilişkisi yaklaşık olarak doğrusal-elastik varsayılabilir. Betonarme kesitlerde, bu bölgede beton ve beton çeliği doğrusal davranış bölgesinde kaldığı için, eğilme momenti-eğrilik bağıntısında da benzer özellik ortaya çıkar. Ancak beton ve çelik gerilmelerinin artmasına paralel olarak, doğrusal olmayan gerilmeşekildeğiştirme ilişkisinin kesitin davranışında etkili olmaya başlaması, eğilme momenti-eğrilik bağıntısının da doğrusal davranıştan ayrılmasına neden olur. Eğilme momenti-eğrilik bağıntısının ikinci bölgesinde eğrinin eğimi giderek azalır. Bu bölgede elastik ötesi, elastoplastik davranış etkilidir. Kesite etkiyen eğilme momentinde çok küçük artım meydana gelirken, eğrilik belirgin bir şekilde artar ve eğriliğin sınır değerine erişmesi ile kesitte güç tükenmesi meydana gelir. Plastik mafsal hipotezinde, eğilme momenti-eğrilik bağıntısını oluşturan bu iki bölge ideal olarak, biri yatay olan iki doğru parçası ile ifade edilir. Şekil 2.4.

Şekil 2.3 : Doğrusal olmayan şekildeğiştirmeler.

Plastik mafsal hipotezi uygulanırken, yukarıda bahsi geçen esaslar göz önünde bulundurularak, gerçek moment-eğrilik diyagramı

$$M \le M_{\rm P} \, \operatorname{icin} \chi = \frac{M}{\mathrm{EI}} \tag{2.1}$$

$$M = M_{\rm P} \, i \varsigma in \, \chi = \chi_{\rm p,maks} \tag{2.2}$$

şeklinde biri yatay olan iki doğru olacak şekilde idealleştirilir. Bu idealleştirilmiş moment-eğrilik diyagramı (bünye bağıntısı) Şekil 2.4'de gösterilmiştir.

Şekil 2.4 : İdealleştirilmiş bünye bağıntısı.

İdealleştirilmiş bünye bağıntısının her iki bölümü birbirinden kesin bir nokta ile ayrılmaz. Ancak, çekme donatısının akmaya başlaması veya betondaki birim kısalmanın ε_{co} sınır değerine erişmesi bu iki bölgeyi ayıran nokta olarak varsayılabilir ve bu duruma karşı gelen eğrilik χ_y olarak gösterilir.

Güç tükenmesine karşı gelen toplam eğrilik de χ_u ile gösterilirse, kesitin eğilme sünekliği,

$$\mu = \frac{\chi_u}{\chi_y}$$
(2.3)

şeklinde tanımlanır.

Plastik mafsalın meydana gelebilmesi için, bu bölgedeki kesitlerin plastik eğrilik kapasitesine sahip olması gerekir. Ayrıca, bu kapasitenin kullanılabilmesi, ortaya çıkan plastik şekil değiştirmelerin kabul edilebilir seviyede kalması gerekir.

Artan dış yükler altında, plastik mafsalın dönmesi artarak dönme kapasitesi adı verilen bir sınır değere ulaşınca, meydana gelen büyük plastik şekildeğiştirmeler nedeniyle kesit kullanılamaz hale gelebilir. Yapı sisteminin bir veya daha çok kesitindeki plastik mafsal dönmelerinin kendilerine ait dönme kapasitelerine ulaşması halinde ise, yapı sisteminin kullanım dışı kaldığı varsayılır.

Şekil 2.3'den görüldüğü gibi, doğrusal olmayan şekildeğiştirmeler çubuk üzerindeki l_p uzunluğundaki bir bölgede yoğunlaşmakta ve en büyük plastik eğrilik $\chi_{p,maks}$
değerine eşit olmaktadır. Bu hipotezde doğrusal olmayan (plastik) şekildeğiştirmelerin çubuk elemanı üzerinde l_p uzunluğunda bir bölgede sürekli olarak düzgün yayıldığı varsayılmaktadır. Buna göre plastikleşen bölgedeki toplam plastik dönme,

$$\varphi_{\rm p} = \int_{l_{\rm p}'} \chi_{\rm p} \, \mathrm{ds} \tag{2.4}$$

şeklinde hesaplanabilir ve plastik mafsal dönmesi olarak isimlendirilir.

Plastik mafsalın dönme kapasitesi ise,

maks
$$\varphi_{\rm p} = \int_{l_p'} \chi_p ds \qquad (\chi \to \chi_{\rm p,maks})$$
 (2.5)

şeklinde, eğilme momenti diyagramının şekline ve $(M-\chi)$ bağıntısına bağlı olarak belirlenir.

Plastik dönme kapasitesi yaklaşık olarak,

$$maks\phi_p = l_p \chi_{p,maks}$$
(2.6)

$$l_{\rm p} \cong 0.5 d \tag{2.7}$$

bağıntıları ile hesaplanabilir. Burada,

- d : enkesit yüksekliği
- l_p : plastik mafsal boyu

olarak tanımlanmaktadır. Şekil 2.5.

Şekil 2.5 : Plastik mafsal boyu.

Betonarme yapı sistemlerinde dönme kapasitesi çeşitli etkenlere bağlıdır. Bunların başlıcaları:

- betonarme betonu ve beton çeliğinin σ - ε diyagramlarını belirleyen ε_{cu} ve ε_{su} sınır birim boy değişmeleri,
- betonarme betonunun ε_{cu} birim boy değişmesini etkileyen sargı donatısının miktarı, şekli ve yerleşim düzeni,
- plastik bölge uzunluğunu etkileyen enkesit boyutları,
- eğilme momenti diyagramının şekli,
- kesitteki normal kuvvettir.

Yukarıda ayrıntılı olarak açıklanan plastik mafsal hipotezinin esasları aşağıda özetlenmiştir.

- Bir kesitteki eğilme momenti artarak M_p plastik moment değerine eşit olunca, o kesitte bir plastik mafsal oluşur. Daha sonra, kesitteki eğilme momenti (M=M_p) sabit olarak kalır ve kesit serbestçe döner. Böylece kesitteki eğilme momentinin M=M_p değerinde sabit kalması sağlanır. Plastik mafsaldaki φp plastik dönmesi artarak dönme kapasitesine (maksφ_p) erişince kesitte güç tükenmesi meydana gelir.
- Plastik mafsallar arasında sistem doğrusal-elastik olarak davranır.
- Düzlem sistemlerde kesite eğilme momenti ile birlikte normal kuvvetin de etkimesi halinde, M_p plastik momenti yerine, kesitteki N normal kuvvetine bağlı olarak akma koşulundan bulunan indirgenmiş plastik moment (M_p') değeri kullanılır.

3. BİNALARIN DEPREM PERFORMANSININ BELİRLENMESİ

Bu bölümde, 2007 Türk Deprem Yönetmeliği'nin, mevcut betonarme binaların deprem performanslarının belirlenmesi ve değerlendirilmesi ile ilgili esasların açıklandığı 7. bölümü ile ilgili bilgiler verilecektir, [2, 4].

3.1 Binalardan Bilgi Toplanması

Mevcut binaların deprem performanslarının değerlendirilmesinde kullanılmak üzere, taşıyıcı sistem geometrisine, elemanların enkesit özelliklerine, malzeme karakteristiklerine ve zemin özelliklerine ilişkin bilgiler, binaların projelerinden, ilgili raporlardan, binada yapılacak gözlem ve ölçümler ile binadan alınacak malzeme örneklerine uygulanacak deneylerden elde edilebilir. Binalardan toplanan bilginin kapsam ve güvenilirliğine bağlı olarak,

- 1. Sınırlı bilgi düzeyi
- 2. Orta bilgi düzeyi
- 3. Kapsamlı bilgi düzeyi

olmak üzere, yönetmelikte üç bilgi düzeyi tanımlanmış ve bu bilgi düzeyleri için eleman kapasitelerine uygulanacak bilgi düzeyi katsayıları verilmiştir. Çizelge 3.1.

Bilgi Düzeyi	Bilgi Düzeyi Katsayısı
Sınırlı	0.75
Orta	0.90
Kapsamlı	1.00

Cizelge 3.1 : Binalar için bilgi düzeyi katsayıları.

Bilgi düzeyi kriterleri, çelik, betonarme, prefabrike betonarme ve yığma yapılar için farklılık gösterse de, genel olarak prensipleri aynıdır ve yapı türü farketmeksizin aynı bilgi düzeyindeki binalar için aynı bilgi düzeyi katsayısı uygulanır.

3.2 Yapı Elemanlarında Hasar Sınırları ve Hasar Bölgeleri

Yapıların deprem etkileri altındaki performanslarının değerlendirmesi genel olarak iki farklı kritere göre yapılabilmektedir. Doğrusal elastik değerlendirme yöntemlerinin esasını oluşturan ve dayanım (kuvvet) bazlı değerlendirme adı verilen birinci tür değerlendirmede, yapı elemanlarının dayanım kapasiteleri elastik deprem yüklerinden oluşan ve doğruşal teoriye göre hesaplanan etkilerle karşılaştırılmakta ve yapı elemanının sünekliğini gözönüne alan, eleman bazındaki bir tür deprem yükü azaltma katsayıları çerçevesinde, binadan beklenen performans hedefinin sağlanıp sağlanmadığı kontrol edilmektedir. Doğrusal elastik olmayan değerlendirme yöntemlerinin oluşturan, yerdeğiştirme şekildeğiştirme esasını ve bazlı değerlendirmenin esas alındığı ve genel olarak malzeme ve geometri değişimleri bakımından doğrusal olmayan sistem hesabına dayanan yöntemlerde ise, belirli bir deprem etkisi için binadaki yerdeğiştirme istemine ulaşıldığında, yapıdan beklenen performans hedefinin sağlanıp sağlanmadığı kontrol edilmektedir.

Her iki yaklaşımda da, yapı elemanları için hasar sınırları ve hasar bölgeleri tanımlanmıştır. Hasar sınırlarının belirlenmesinde, yapı elemanları sünek ve gevrek olarak iki sınıfa ayrılırlar. Sünek ve gevrek eleman tanımları, elemanların kapasitelerine hangi kırılma türü ile ulaştıkları ile ilgilidir.

3.2.1 Kesit hasar sınırları

Sünek elemanlar için kesit düzeyinde üç sınır durum tanımlanmıştır. Bunlar Minimum Hasar Sınırı (MN), Güvenlik Sınırı (GV) ve Göçme Sınırı (GÇ)'dır. Minimum hasar sınırı ilgili kesitte elastik ötesi davranışın başlangıcını, güvenlik sınırı kesitin dayanımını güvenli olarak sağlayabileceği elastik ötesi davranışın sınırını, göçme sınırı ise kesitin göçme öncesi davranışının sınırını tanımlamaktadır. Eksenel basınç ve kesme gibi etkiler altında kapasitesine ulaşan gevrek elemanlar için elastik ötesi davranışa izin verilmemektedir.

3.2.2 Kesit hasar bölgeleri

Kritik kesitlerinin hasarı MN'ye ulaşmayan elemanlar Minimum Hasar Bölgesi'nde, MN ile GV arasında kalan elemanlar Belirgin Hasar Bölgesi'nde, GV ve GÇ arasında kalan elemanlar İleri Hasar Bölgesi'nde, GÇ'yi aşan elemanlar ise Göçme Bölgesi'nde kabül edilirler, Şekil 3.1.

İç Kuvvet

Şekil 3.1 : Kesit hasar bölgeleri.

3.3 Bina Deprem Performans Düzeyleri

Performans düzeyleri verilen bir yapı için, verilen bir deprem etkisi altında öngörülen hasar miktarının sınır durumlarıdır. Bu sınır durumlar, binadaki taşıyıcı ve taşıyıcı olmayan elemanlardaki hasarın miktarına, bu hasarın can güvenliği bakımından bir tehlike oluşturup oluşturmamasına, deprem sonrasında binanın kullanılıp kullanılmamasına ve hasarın neden olduğu ekonomik kayıplara bağlı olarak belirlenir.

2007 Türk Deprem Yönetmeliği binaların deprem performansını, uygulanan deprem etkisi altında binada oluşması beklenen yapısal hasara bağlı olarak tanımlamaktadır. Yönetmelikte tanımlanan doğrusal elastik ve doğrusal elastik olmayan hesap yöntemlerinin uygulanması ve eleman hasar bölgelerine karar verilmesi ile bina deprem performans seviyesi belirlenir.

3.3.1 Hemen kullanım performans düzeyi

Uygulanan deprem etkisi altında yapısal elemanlarda oluşan hasar minimum düzeydedir ve elemanlar rijitlik ve dayanım özelliklerini korumaktadırlar. Yapıda kalıcı ötelenmeler oluşmamıştır. Az sayıda elemanda akma sınırı aşılmış olabilir. Yapısal olmayan elemanlarda çatlamalar görülebilir, ancak bunlar onarılabilir düzeydedir. Herhangi bir katta, uygulanan her bir deprem doğrultusu için yapılan hesap sonucunda kirişlerin en fazla %10'u belirgin hasar bölgesi'ne geçebilir, ancak diğer taşıyıcı elemanlarının tümü minimum hasar bölgesi'ndedir. Eğer varsa, gevrek olarak hasar gören elemanların güçlendirilmeleri kaydı ile, bu durumdaki binaların Hemen Kullanım Performans Düzeyi'nde olduğu kabul edilir.

3.3.2 Can güvenliği performans düzeyi

Uygulanan deprem etkisi altında yapısal elemanların bir kısmında hasar görülür, ancak bu elemanlar yatay rijitliklerinin ve dayanımlarının önemli bölümünü korumaktadırlar. Düşey elemanlar düşey yüklerin taşınması için yeterlidir. Yapısal olmayan elemanlarda hasar bulunmakla birlikte dolgu duvarları yıkılmamıştır. Yapıda az miktarda kalıcı ötelenmeler oluşabilir; ancak gözle farkedilebilir değerlerde değildir.

Herhangi bir katta, uygulanan her bir deprem doğrultusu için yapılan hesap sonucunda kirişlerin en fazla %30'u ve kolonların bir kısmı ileri hasar bölgesine geçebilir. Ancak ileri hasar bölgesindeki kolonların, tüm kolonlar tarafından taşınan kesme kuvvetine katkısı %20'nin altında olmalıdır. Diğer taşıyıcı elemanların tümü minimum hasar bölgesi veya belirgin hasar bölgesindedir. Bu durumda, eğer varsa, gevrek olarak hasar gören elemanların güçlendirilmeleri koşulu ile, bina Can Güvenliği Performans Düzeyi'nde kabul edilir. Can güvenliği performans düzeyinin kabul edilebilmesi için herhangi bir katta alt ve üst kesitlerinin ikisinde birden minimum hasar sınırı aşılmış olan kolonlar tarafından taşınan kesme kuvvetleri toplamının, o kattaki tüm kolonlar tarafından taşınan kesme kuvvetleri toplamının, o kattaki tüm kolonların kesme kuvvetlerinin toplamına oranı en fazla %40 olabilir. Binanın güçlendirilmesine, güvenlik sınırını aşan elemanların sayısına ve yapı içindeki dağılımına göre karar verilir.

3.3.3 Göçme öncesi performans düzeyi

Uygulanan deprem etkisi altında yapısal elemanların önemli bir kısmında hasar görülür. Bu elemanların bazıları yatay rijitliklerinin ve dayanımlarının önemli bölümünü yitirmişlerdir. Düşey elemanlar düşey yüklerin taşınmasında yeterlidir; ancak bazıları eksenel kapasitelerine ulaşmıştır. Yapısal olmayan elemanlar hasarlıdır, dolgu duvarların bir bölümü yıkılmıştır. Yapıda kalıcı ötelenmeler oluşmuştur. Herhangi bir katta, uygulanan her bir deprem doğrultusu için yapılan hesap sonucunda kirişlerin en fazla %20'si göçme bölgesine geçebilir. Diğer taşıyıcı elemanların tümü minimum hasar bölgesi, belirgin hasar bölgesi veya ileri hasar bölgesindedir. Bu durumda bina, eğer varsa, gevrek olarak hasar gören elemanların güçlendirilmeleri koşulu ile, Göçmenin Öncesi Performans Düzeyi'nde kabul edilir. Göçmenin önlenmesi durumunun kabul edilebilmesi için herhangi bir katta alt ve üst kesitlerinin ikisinde birden minimum hasar sınırı aşılmış olan kolonlar tarafından taşınan kesme kuvvetinin, o kattaki tüm kolonlar tarafından taşınan kat kesme kuvvetine oranının %30'u aşmaması gerekir. Binanın mevcut durumunda kullanımı can güvenliği bakımından sakıncalıdır ve bina güçlendirilmelidir. Ancak güçlendirmenin ekonomik verimliliği değerlendirilmelidir.

3.3.4 Göçme durumu

Yapı, uygulanan deprem etkisi altında göçme durumuna ulaşır. Düşey elemanların bir bölümü göçmüştür. Göçmeyenler düşey yükleri taşıyabilmektedir; ancak rijitlikleri ve dayanımları çok azalmıştır. Yapısal olmayan elemanların büyük çoğunluğu göçmüştür. Yapıda belirgin kalıcı ötelenmeler oluşmuştur. Yapı tamamen göçmüştür veya yıkılmanın eşiğindedir ve daha sonra meydana gelebilecek hafif şiddette bir yer hareketi altında bile yıkılma olasılığı yüksektir.

Bina göçme öncesi performans düzeyini sağlamıyorsa Göçme Durumu'ndadır. Binanın güçlendirme uygulanmadan, mevcut durumu ile kullanılması can güvenliği bakımından sakıncalıdır. Bununla beraber, güçlendirme de çok kere ekonomik olmayabilir.

3.4 Performans Belirlemede Esas Alınacak Deprem Hareketleri

Performansa dayalı değerlendirme ve tasarımda gözönüne alınmak üzere, farklı düzeyde üç deprem hareketi tanımlanmıştır. Bu deprem hareketleri genel olarak, 50 yıllık bir süreç içindeki aşılma olasılıkları ile ve benzer depremlerin oluşumu arasındaki zaman aralığı (dönüş periyodu) ile ifade edilirler.

 Servis (kullanım) depremi : 50 yılda aşılma olasılığı % 50 olan yer hareketidir. Yaklaşık dönüş periyodu 72 yıldır. Bu depremin etkisi, aşağıda tanımlanan tasarım depreminin yarısı kadardır.

- Tasarım depremi : 50 yılda aşılma olasılığı % 10 olan yer hareketidir. Yaklaşık dönüş periyodu 475 yıldır. Bu deprem 1998 ve 2007 Türk Deprem Yönetmelikleri'nde esas alınmaktadır.
- En büyük deprem : 50 yılda aşılma olasılığı % 2, dönüş periyodu yaklaşık 2475 yıl olan bir depremdir. Bu depremin etkisi tasarım depreminin yaklaşık olarak 1.50 katıdır.

3.5 Performans Hedefi ve Çok Seviyeli Performans Hedefleri

Belirli bir deprem hareketi altında, bina için öngörülen yapısal performans düzeyi, performans hedefi olarak tanımlanır. Bir bina için, birden fazla yer hareketi altında farklı performans hedefleri öngörülebilir. Buna çok seviyeli performans hedefi denir. Mevcut ve güçlendirilecek binaların deprem performanslarının belirlenmesinde esas alınacak deprem düzeyleri ve bu deprem düzeylerinde binalar için öngörülen minimum performans hedefleri Çizelge 3.2'de verilmiştir.

Binanın Kullanım Amacı		Depremin Aşılma Olasılığı		
		50 yılda	50 yılda	
ve 1 uru	%50	%10	%2	
Deprem Sonrası Kullanımı Gereken Binalar: Hastaneler, sağlık tesisleri, itfaiye binaları, haberleşme ve enerji tesisleri, ulaşım istasyonları, vilayet, kaymakamlık ve belediye yönetim binaları, afet yönetim merkezleri, vb.	_	нк	CG	
İnsanların Uzun Süreli ve Yoğun Olarak Bulunduğu Binalar: Okullar, yatakhaneler, yurtlar, pansiyonlar, askeri kışlalar, cezaevleri, müzeler, vb.	_	НК	CG	
İnsanların Kısa Süreli ve Yoğun Olarak Bulunduğu Binalar: Sinema, tiyatro, konser salonları, kültür merkezleri, spor tesisleri	НК	CG	_	
Tehlikeli Madde İçeren Binalar: Toksik, parlayıcı ve patlayıcı özellikleri olan maddelerin bulunduğu ve depolandığı binalar	_	НК	GÖ	
Diğer Binalar: Yukarıdaki tanımlara girmeyen diğer binalar (konutlar, işyerleri, oteller, turistik tesisler, endüstri yapıları, vb.)	_	CG	_	

Çizelge 3.2 : Binalar için öngörülen minimum performans hedefleri.

HK: Hemen Kullanım; CG: Can Güvenliği; GÖ: Göçme Öncesi

3.6 Performans Belirlenmesi ve Kullanılan Analiz Yöntemleri

Bu bölümde ilk olarak, 2007 Türk Deprem Yönetmeliği'ne göre mevcut ve güçlendirilecek binaların deprem performanslarının belirlenmesi amacıyla uygulanan doğrusal elastik ve doğrusal elastik olmayan hesap yöntemleri için öngörülen genel ilke ve kurallar açıklanacaktır. Daha sonra, tez çalışması kapsamında yer alan ve 2007 Türk Deprem Yönetmeliğinin 7. bölümünde belirtilen doğrusal elastik ve

doğrusal elastik olmayan hesap yöntemleri ile deprem performansının belirlenmesi hakkında detaylı bilgi verilip, hesap adımları incelenecektir.

3.6.1 Doğrusal elastik ve doğrusal elastik olmayan hesap yöntemleri için genel ilke ve kurallar

2007 Türk Deprem Yönetmeliği, mevcut ve güçlendirilecek binaların deprem performanslarının belirlenmesi amacıyla uygulanmak üzere doğrusal elastik ve doğrusal elastik olmayan hesap yöntemlerini önermektedir. Teorik olarak farklı yaklaşımları esas alan bu yöntemlerle yapılacak performans değerlendirmelerinin tamamen aynı sonucu vermesi beklenmemektedir. Her iki yöntem için geçerli olan genel ilke ve kurallar aşağıda belirtilmiştir.

- Deprem etkisinin tanımında, yönetmelikte aynı zamanda tasarım için verilmiş olan 50 yılda aşılma olasılığı %10 olan depremin elastik (azaltılmamış) ivme spektrumu kullanılır. Çok seviyeli performans değerlendirmesi gerekli olan binalarda, 50 yılda aşılma olasıkları %50 ve %2 olan depremler için spektrum ordinatları sırası ile 0.5 ve 1.5 katsayıları ile çarpılır, buna karşılık bina önem katsayısı uygulanmaz (I =1.0).
- Binaların deprem performansı, yapıya etkiyen düşey yüklerin ve deprem kuvvetlerinin birleşik etkileri altında değerlendirilir. Kat kütleleri kat ağırlıkları ile, hareketli düşey yükler de gözönüne alınan kütleler ile uyumlu olacak şekilde tanımlanır.
- Deprem kuvvetleri binaya her iki doğrultuda ve her iki yönde ayrı ayrı etki ettirilir.
- Deprem hesabında kullanılacak zemin parametreleri yönetmeliğin ilgili bölümüne göre belirlenir.
- Binanın taşıyıcı sistem modeli, deprem kuvvetleri ile düşey yüklerin ortak etkileri altında yapı elemanlarında oluşacak iç kuvvet, yerdeğiştirme ve şekildeğiştirmeleri hesaplamak için yeterli doğrulukta hazırlanır.
- Döşemelerin yatay düzlemde rijit diyafram olarak çalıştığı binalarda, her katta iki yatay yerdeğiştirme ile düşey eksen etrafında dönme serbestlik dereceleri gözönüne alınır. Kat serbestlik dereceleri her katın kütle merkezinde tanımlanır ve ek dışmerkezlik uygulanmaz.

- Mevcut binaların taşıyıcı sistemlerindeki belirsizlikler, bilgi düzeyi katsayıları aracılığı ile hesap yöntemlerine yansıtılır.
- Kısa kolonlar, taşıyıcı sistem modelinde gerçek serbest boyları ile tanımlanır.
- Bir veya iki eksenli eğilme ve eksenel kuvvet etkisindeki betonarme kesitlerin etkileşim diyagramlarının tanımlanması aşağıda verilen ilkelere göre yapılır.
 - 1. Analizde beton ve donatı çeliğinin bilgi düzeyine göre belirlenen mevcut dayanımları esas alınır.
 - Betonun maksimum basınç birim şekildeğiştirmesi 0.003, donatı çeliğinin maksimum birim şekil değiştirmesi ise 0.01 olarak alınabilir.
 - 3. Etkileşim diyagramları uygun biçimde doğrusallaştırılarak çok doğrulu veya çok düzlemli diyagramlar olarak modellenebilir.
- Betonarme sistemlerin eleman boyutlarının tanımında birleşim bölgeleri sonsuz rijit uç bölgeleri olarak gözönüne alınabilir.
- Eğilme etkisindeki betonarme elemanlarda çatlamış kesite ait etkin eğilme rijitlikleri (EI)_e kullanılır. Daha kesin bir hesap yapılmadıkça, etkin eğilme rijitlikleri için,
 - (a) kirişlerde: $(EI)_e = 0.40 (EI)_o$
 - (b) kolon ve perdelerde; $N_D / (A_c f_{cm}) \le 0.10$ durumunda: $(EI)_e = 0.40 (EI)_o$ $N_D / (A_c f_{cm}) \ge 0.40$ durumunda: $(EI)_e = 0.80 (EI)_o$ değerleri kullanılır. Eksenel basınç kuvveti N_D 'nin ara değerleri için doğrusal enterpolasyon yapılabilir. N_D , deprem hesabında esas alınan toplam kütlelerle uyumlu yüklerin gözönüne alındığı ve çatlamamış kesitlere ait $(EI)_o$ eğilme rijitliklerinin kullanıldığı bir ön düşey yük hesabı ile belirlenir. Deprem hesabı için başlangıç durumunu oluşturan düşey yük hesabı, çatlamış kesit için tanımlanan etkin eğilme rijitliği $(EI)_e$ kullanılarak deprem hesabında esas alınan kütlelerle uyumlu yüklere göre yeniden yapılır. Deprem hesabında da aynı rijitlikler kullanılır.
- Betonarme tablalı kirişlerin pozitif ve negatif plastik momentlerinin hesabında tabla betonu ve içindeki donatı hesaba katılabilir.

- Betonarme elemanlarda kenetlenme veya bindirme boyunun yetersiz olması durumunda, kesit kapasite momentinin hesabında ilgili donatının akma gerilmesi kenetlenme veya bindirme boyundaki eksikliği oranında azaltılabilir.
- Zemindeki şekildeğiştirmelerin yapı davranışını etkileyebileceği durumlarda zemin özellikleri analiz modeline yansıtılır.

3.6.2 Doğrusal elastik hesap yöntemleri

3.6.2.1 Yöntemin esasları

2007 Türk Deprem Yönetmeliği'nde öngörülen ve binaların deprem performanslarının belirlenmesi için kullanılan doğrusal elastik hesap yöntemleri, Eşdeğer Deprem Yükü Yöntemi ve Mod Birleştirme Yöntemi'dir. Dayanım bazlı olan bu yöntemlerin amacı, verilen bir deprem etkisi altında, deprem yükü azaltma katsayısının $R_a=1$ değeri için hesaplanan etkiler ile yapı elemanlarının artık kapasiteleri arasındaki etki/kapasite oranlarının hesaplanması ve bu değerlerin ilgili sınır değerler ile karşılaştırılması suretiyle yapı elemanlarının kesit hasar bölgelerinin belirlenmesi ve bunlardan yararlanarak bina düzeyinde performans değerlendirmesi yapılmasıdır.

3.6.2.2 Eşdeğer deprem yükü yöntemi

Eşdeğer deprem yükü yöntemi, bodrum üzerinde toplam yüksekliği 25 metreyi ve toplam kat sayısı 8'i aşmayan, ayrıca ek dışmerkezlik gözönüne alınmaksızın hesaplanan burulma düzensizliği katsayısı $\eta_{bi} < 1.4$ olan binalara uygulanır. Toplam eşdeğer deprem yükünün (taban kesme kuvveti) hesabında $R_a=1$ alınır ve denklemin sağ tarafı λ katsayısı ile çarpılır. λ katsayısı bodrum hariç bir ve iki katlı binalarda 1.0, diğerlerinde 0.85 değerini almaktadır.

3.6.2.3 Mod birleştirme yöntemi

Mod Birleştirme Yöntemi ile hesapta $R_a=1$ alınır, diğer bir deyişle, elastik deprem spektrumları azaltılmadan, aynen kullanılır. Uygulanan deprem doğrultusu ve yönü ile uyumlu eleman iç kuvvetlerinin ve kapasitelerinin hesabında, bu doğrultuda hakim olan modda elde edilen iç kuvvet doğrultuları esas alınır.

3.6.2.4 Yapı elemanlarının hasar düzeylerinin belirlenmesi

Doğrusal elastik hesap yöntemleri ile betonarme sünek elemanların hasar düzeylerinin belirlenmesinde, gözönüne alınan elemanın etki/kapasite oranı (r) olarak ifade edilen sayısal değerler kullanılır.

Kırılma türü eğilme olan elemanlar sünek, kesme olan elemanlar ise gevrek eleman olarak sınıflanır. Kolon, kiriş ve perdelerin sünek eleman olarak sayılabilmeleri için bu elemanların kritik kesitlerinde eğilme kapasitesi ile uyumlu olarak hesaplanan kesme kuvveti V_e'nin, bilgi düzeyi ile uyumlu mevcut malzeme dayanımı değerleri kullanılarak TS-500'e göre hesaplanan kesme kapasitesi V_r'yi aşmaması gereklidir. V_e'nin hesabı kolonlar, kirişler ve perdeler için yönetmelikte belirtilen ilgili bölümlere göre yapılır, ancak perdelerde kesme kuvveti dinamik büyütme katsayısı β v=1 alınır. Kolon, kiriş ve perdelerde V_e'nin hesabında pekleşmeli taşıma gücü momentleri yerine taşıma gücü momentleri kullanılır. Düşey yükler ile birlikte, elastik deprem yükü azaltma katsayısı R_a = 1 alınarak depremden hesaplanan toplam kesme kuvvetinin V_e'den küçük olması durumunda ise, V_e yerine bu kesme kuvveti kullanılır. Ek koşul olarak perdelerin sünek eleman olarak sayılabilmesi için ayrıca H_w / $\ell_w > 2.0$ koşulunu sağlaması gerekir. Bu koşulları sağlamayan betonarme elemanlar gevrek olarak hasar gören elemanlar olarak nitelendirilir.

Kırılma türü eğilme olan sünek kiriş, kolon ve perde kesitlerinin etki/kapasite oranı, deprem etkisi altında elastik deprem yükü azaltma katsayısı $R_a = 1$ alınarak hesaplanan kesit momentinin kesit artık moment kapasitesine bölünmesi ile elde edilir. Kesit artık moment kapasitesi, kesitin eğilme momenti kapasitesi ile düşey yükler altında kesitte hesaplanan moment etkisinin farkıdır. Etki/kapasite oranının hesabında, uygulanan deprem kuvvetinin yönü dikkate alınır. Kiriş mesnetlerinde düşey yükler altında hesaplanan moment etkisi, yeniden dağılım ilkesine göre en fazla %15 oranında azaltılabilir. Sarılma bölgesindeki enine donatının düzeni ve miktarı bakımından yönetmeliğin ilgili bölümlerindeki koşulları sağlayan betonarme kolonlar, betonarme kirişler ve betonarme perdeler sargılanmış, sağlamayanlar ise sargılanmamış eleman sayılır. Sargılanmış sayılan elemanlarda sargı donatılarının özel deprem etriyeleri ve çirozları olarak düzenlenmiş olması ve donatı aralıklarının yönetmelikte belirtilen koşulları sağlaması gereklidir. Hesaplanan kiriş, kolon ve perde kesitlerinin etki/kapasite (r) oranları, yönetmelikte verilen ilgili sınır değerler (r_s) ile karşılaştırılarak elemanların hangi hasar bölgesinde olduğuna karar verilir. Çizelge 3.3 - 3.5.

Sünek Kirişler Hasar Sınırı					
$\frac{\rho - \rho'}{\rho_b}$	Sargılama	$\frac{V_{\rm e}}{b_{\rm w}d\ f_{\rm ctm}} \ ^{(1)}$	MN	GV	GÇ
≤ 0.0	Var	≤ 0.65	3	7	10
≤ 0.0	Var	≥ 1.30	2.5	5	8
\geq 0.5	Var	≤ 0.65	3	5	7
≥ 0.5	Var	≥ 1.30	2.5	4	5
≤ 0.0	Yok	≤ 0.65	2.5	4	6
≤ 0.0	Yok	≥ 1.30	2	3	5
≥ 0.5	Yok	≤ 0.65	2	3	5
≥ 0.5	Yok	≥ 1.30	1.5	2.5	4

Çizelge 3.3 : Kirişler için hasar sınırlarını tanımlayan etki/kapasite oranları.

Çizelge 3.4 : Kolonlar için hasar sınırlarını tanımlayan etki/kapasite oranları.

Sünek Kolonlar		Hasar Siniri			
$\frac{N_{\rm K}}{A_{\rm c}f_{\rm cm}}^{(1)}$	Sargılama	$\frac{V_{\rm e}}{b_{\rm w} d f_{\rm ctm}} {}^{(2)}$	MN	GV	GÇ
≤ 0.1	Var	≤ 0.65	3	6	8
≤ 0.1	Var	≥ 1.30	2.5	5	6
≥ 0.4 ve ≤ 0.7	Var	≤ 0.65	2	4	6
≥ 0.4 ve ≤ 0.7	Var	≥ 1.30	1.5	2.5	3.5
≤ 0.1	Yok	≤ 0.65	2	3.5	5
≤ 0.1	Yok	≥ 1.30	1.5	2.5	3.5
$\geq 0.4 \text{ ve } \leq 0.7$	Yok	≤ 0.65	1.5	2	3
$\geq 0.4 \text{ ve } \leq 0.7$	Yok	≥ 1.30	1	1.5	2
≥ 0.7	_		1	1	1

Çizelge 3.5 : Perdeler için hasar sınırlarını tanımlayan etki/kapasite oranları.

Sünek Perdeler	Hasar Sınırı		
Perde Uç Bölgesinde Sargılama	MN	GV	GÇ
Var	3	6	8
Yok	2	4	6

Betonarme kolon-kiriş birleşimlerinde tüm sınır durumları için birleşime etki eden ve yönetmeliğin ilgili kısımlarında açıklanan kesme kuvvetlerinin, kesme dayanımlarını aşmaması gerekmektedir. Birleşim kesme kuvvetinin kesme dayanımını aşması durumunda, kolon-kiriş birleşim bölgesi gevrek olarak hasar gören eleman olarak tanımlanacaktır.

Doğrusal elastik yöntemlerle yapılan hesapta her bir deprem doğrultusunda, elemanların etki kapasite oranları ile yapılan karşılaştırmalara ek olarak, binanın herhangi bir katındaki kolon veya perdelerin göreli kat ötelemeleri Çizelge 3.6'da verilen sınır değerler ile karşılaştırılarak elemanın hangi hasar bölgesinde olduğuna karar verilecektir. Bu karşılaştırmanın daha elverişsiz sonuçlar vermesi durumunda, ilgili kolon veya perdenin etki kapasite oranlarına göre yapılan hasar değerlendirmeleri gözönüne alınmayacaktır.

Çizelge 3.6 : Göreli kat ötelemesi sınırları.

Göreli Kat			
Otelemesi Orani	MN	GV	GÇ
δ_{ji}/h_{ji}	0.01	0.03	0.04

3.6.3 Doğrusal elastik olmayan hesap yöntemleri

3.6.3.1 Tanım

Deprem etkileri altındaki mevcut binaların yapısal performanslarının belirlenmesi ve güçlendirme analizleri için kullanılacak doğrusal elastik olmayan hesap yöntemlerinin amacı, verilen bir deprem için sünek davranışa ilişkin plastik şekildeğiştirme istemleri ile gevrek davranışa ilişkin iç kuvvet istemlerinin hesaplanmasıdır. Daha sonra bu istem büyüklükleri, bu bölümde tanımlanan şekildeğiştirme ve iç kuvvet kapasiteleri ile karşılaştırılarak, kesit ve bina düzeyinde yapısal performans değerlendirmesi yapılır.

2007 Türk Deprem Yönetmeliği kapsamında yer alan doğrusal elastik olmayan analiz yöntemleri, Artımsal Eşdeğer Deprem Yükü Yöntemi, Artımsal Mod Birleştirme Yöntemi ve Zaman Tanım Alanında Hesap Yöntemi'dir. İlk iki yöntem, mevcut binaların deprem performanslarının belirlenmesinde ve güçlendirilmesinde artımsal itme analizinin esas alındığı yöntemlerdir. Tez kapsamında yer alan doğrusal elastik olmayan analiz yöntemlerinden, Artımsal Eşdeğer Deprem Yükü Yöntemine yer verilecektir.

3.6.3.2 Artımsal itme analizi ile performans değerlendirmesinde izlenecek hesap adımları

Artımsal İtme Analizi esas alınarak yapılacak doğrusal elastik olmayan performans değerlendirmesinde izlenen yolun adımları aşağıda özetlenmiştir.

Genel ilke ve kurallara ek olarak, taşıyıcı sistem elemanlarında doğrusal olmayan davranışın idealleştirilmesine ve analiz modelinin oluşturulmasına yönelik kurallar esas alınır.

Artımsal itme analizinden önce, kütlelerle uyumlu düşey yüklerin gözönüne alındığı bir doğrusal olmayan statik analiz yapılır. Bu analizin sonuçları, artımsal itme analizinin başlangıç koşulları olarak dikkate alınır.

Artımsal itme analizinin Artımsal Eşdeğer Deprem Yükü Yöntemi kapsamında yapılması durumunda, koordinatları "modal yerdeğiştirme-modal ivme" olarak tanımlanan birinci (hakim) moda ait "modal kapasite diyagramı" elde edilir. Bu diyagram ile birlikte, elastik davranış spektrumu ve farklı aşılma olasılıkları için bu spektrum üzerinde yapılan değişiklikler gözönüne alınarak, birinci (hakim) moda ait modal yerdeğiştirme istemi belirlenir. Son aşamada, modal yerdeğiştirme istemine karşı gelen yerdeğiştirme, plastik şekildeğiştirme (plastik dönmeler) ve iç kuvvet istemleri hesaplanır.

Artımsal itme analizinin Artımsal Mod Birleştirme Yöntemi ile yapılması durumunda, gözönüne alınan bütün modlara ait "modal kapasite diyagramları" ile birlikte modal yerdeğiştirme istemleri de elde edilir. Bunlara bağlı olarak taşıyıcı sistemde meydana gelen yerdeğiştirme, plastik şekildeğiştirme (plastik dönmeler) ve iç kuvvet istemleri hesaplanır.

Plastikleşen (sünek) kesitlerde hesaplanmış bulunan plastik dönme istemlerinden plastik eğrilik istemleri ve son olarak toplam eğrilik istemleri elde edilir. Daha sonra bunlara bağlı olarak betonarme kesitlerde betonda ve donatı çeliğinde meydana gelen birim şekildeğiştirme istemleri hesaplanır. Bu istem değerleri, kesit düzeyinde çeşitli hasar sınırları için yönetmeliğin ilgili bölümünde tanımlanan birim şekildeğiştirme kapasiteleri ile karşılaştırılarak kesit düzeyinde sünek davranışa ilişkin performans değerlendirmesi yapılır. Analiz sonucunda elde edilen kesme kuvveti istemleri ise, yönetmelikte tanımlanan kapasitelerle karşılaştırılarak kesit düzeyinde gevrek davranışa ilişkin performans değerlendirmesi yapılır.

3.6.3.3 Doğrusal elastik olmayan davranışın idealleştirilmesi

Malzeme bakımından doğrusal elastik olmayan davranışın idealleştirilmesi için, mühendislik uygulamalarındaki yaygınlığı ve pratikliği nedeni ile, doğrusal elastik olmayan analiz için yığılı plastik davranış modeli esas alınmıştır. Basit eğilme durumunda plastik mafsal hipotezi'ne karşı gelen bu modelde, çubuk eleman olarak idealleştirilen kiriş, kolon ve perde türü taşıyıcı sistem elemanlarındaki iç kuvvetlerin plastik kapasitelerine eriştiği sonlu uzunluktaki bölgeler boyunca, plastik şekildeğiştirmelerin düzgün yayılı biçimde oluştuğu varsayılmaktadır. Plastik mafsal boyu olarak adlandırılan plastik şekildeğiştirme bölgesi'nin uzunluğu L_p , çalışan doğrultudaki kesit boyutu h'nin yarısına eşit alınır.

$$L_{p} = 0.5 h$$
 (3.1)

Sadece eksenel kuvvet altında plastik şekildeğiştirme yapan elemanların plastik şekildeğiştirme bölgelerinin uzunluğu, ilgili elemanın serbest boyuna eşit alınır.

Yığılı plastik şekildeğiştirmeyi temsil eden plastik kesitin, teorik olarak plastik şekildeğiştirme bölgesinin tam ortasına yerleştirilmesi gerekir. Ancak pratik uygulamalarda aşağıda belirtilen yaklaşık idealleştirmeler yapılabilir:

(a) Kolon ve kirişlerde plastik kesitler, kolon-kiriş birleşim bölgesinin hemen dışına, diğer deyişle kolon veya kirişlerin net açıklıklarının uçlarına konulabilir. Ancak, düşey yüklerin etkisinden ötürü kiriş açıklıklarında da plastik mafsalların oluşabileceği gözönüne alınmalıdır.

(b) Betonarme perdelerde, plastik kesitlerin her katta perde kesiminin alt ucuna konulmasına izin verilebilir. U, T, L veya kutu kesitli perdeler, bütün kolları birlikte çalışan tek perde olarak idealleştirilmelidir. Binaların bodrum katlarında rijit çevre perdelerinin bulunması durumunda, bu perdelerden üst katlara doğru devam eden perdelerin plastik kesitleri bodrum üstünden başlamak üzere konulmalıdır.

Bir veya iki eksenli eğilme ve eksenel kuvvet etkisindeki betonarme kesitlerin etkileşim diyagramlarının tanımlanması aşağıda verilen ilkelere göre yapılır:

- Analizde beton ve donatı çeliğinin bilgi düzeyine göre belirlenen mevcut dayanımları esas alınır.
- Betonun maksimum basınç birim şekildeğiştirmesi 0.003, donatı çeliğinin maksimum birim şekildeğiştirmesi ise 0.01 alınabilir.

Etkileşim diyagramları uygun biçimde doğrusallaştırılarak çok doğrulu veya çok düzlemli diyagramlar olarak modellenebilir.

İtme analizi modelinde kullanılacak plastik kesitlerin iç kuvvet - plastik şekildeğiştirme bağıntıları ile ilgili olarak, aşağıdaki idealleştirmeler yapılabilir:

(a) İç kuvvet-plastik şekildeğiştirme bağıntılarında pekleşme etkisi (plastik dönme artışına bağlı olarak plastik momentin artışı) yaklaşık olarak terk edilebilir, Şekil 3.2.a. Bu durumda, bir veya iki eksenli eğilme ve eksenel kuvvet etkisindeki kesitlerde plastikleşmeyi izleyen itme adımlarında, iç kuvvetlerin akma yüzeyinin üzerinde kalması koşulu ile plastik şekildeğiştirme vektörünün akma yüzeyine yaklaşık olarak dik olması koşulu gözönüne alınır.

(b) Pekleşme etkisinin gözönüne alınması durumunda (Şekil 3.2.b), bir veya iki eksenli eğilme ve eksenel kuvvet etkisindeki kesitlerde plastikleşmeyi izleyen itme adımlarında iç kuvvetlerin ve plastik şekildeğiştirme vektörünün sağlaması gereken koşullar, ilgili literatürden alınan uygun bir pekleşme modeline göre tanımlanır.

Şekil 3.2 : Eğilme momenti – plastik dönme bağıntıları

3.6.3.4 Artımsal eşdeğer deprem yükü yöntemi ile itme analizi

Artımsal Eşdeğer Deprem Yükü Yöntemi'nin amacı, birinci (deprem doğrultusunda hakim) titreşim mod şekli ile orantılı olacak şekilde, deprem istem sınırına kadar monotonik olarak adım adım arttırılan eşdeğer deprem yüklerinin etkisi altında doğrusal olmayan itme analizi'nin yapılmasıdır. Düşey yük analizini izleyen itme analizinin her bir adımında taşıyıcı sistemde meydana gelen yerdeğiştirme, plastik şekildeğiştirme ve iç kuvvet artımları ile bunlara ait birikimli (kümülatif) değerler ve son adımda deprem istemine karşı gelen maksimum değerler hesaplanır.

Artımsal Eşdeğer Deprem Yükü Yöntemi'nin kullanılabilmesi için, binanın kat sayısının bodrum hariç 8'den fazla olmaması ve herhangi bir katta ek dışmerkezlik

gözönüne alınmaksızın doğrusal elastik davranışa göre hesaplanan burulma düzensizliği katsayısının η_{bi} < 1.4 koşulunu sağlaması gereklidir. Ayrıca gözönüne alınan deprem doğrultusunda, doğrusal elastik davranış esas alınarak hesaplanan birinci (hakim) titreşim moduna ait etkin kütlenin toplam bina kütlesine (rijit perdelerle çevrelenen bodrum katlarının kütleleri hariç) oranının en az 0.70 olması zorunludur.

Artımsal itme analizi sırasında, eşdeğer deprem yükü dağılımının, taşıyıcı sistemdeki plastik kesit oluşumlarından bağımsız biçimde sabit kaldığı varsayımı yapılabilir. Bu durumda yük dağılımı, analizin başlangıç adımında doğrusal elastik davranış için hesaplanan birinci (deprem doğrultusundaki hakim) doğal titreşim mod şekli genliği ile ilgili kütlenin çarpımından elde edilen değerle orantılı olacak şekilde tanımlanır. Kat döşemeleri rijit diyafram olarak idealleştirilen binalarda, birinci (hakim) doğal titreşim mod şeklinin genlikleri olarak her katın kütle merkezindeki birbirine dik iki yatay öteleme ile kütle merkezinden geçen düşey eksen etrafındaki dönme gözönüne alınır.

Sabit yük dağılımına göre yapılan itme analizi ile, koordinatları tepe yerdeğiştirmesi– taban kesme kuvveti olan itme eğrisi elde edilir. Tepe yerdeğiştirmesi, binanın en üst katındaki kütle merkezinde, gözönüne alınan x deprem doğrultusunda, her itme adımında hesaplanan yerdeğiştirmedir. Taban kesme kuvveti ise, her adımda eşdeğer deprem yüklerinin x deprem doğrultusundaki toplamıdır. İtme eğrisine uygulanan koordinat dönüşümü ile, koordinatları "modal yerdeğiştirme – modal ivme" olan modal kapasite diyagramı aşağıdaki şekilde elde edilebilir:

(a) (i)'inci itme adımında birinci (deprem doğrultusunda hakim) moda ait modal ivme $a_1^{(i)}$ aşağıdaki şekilde elde edilir:

$$a_1^{(i)} = \frac{V_{x1}^{(i)}}{M_{x1}}$$
(3.2)

denklemde $V_{x1}^{(i)}$ x deprem doğrultusunda (i)'inci itme adımı sonunda elde edilen birinci (hakim) moda ait taban kesme kuvvetini, M_{x1} x deprem doğrultusunda doğrusal elastik davranış için tanımlanan birinci (hakim) moda ait etkin kütleyi göstermektedir. (b) (i)'inci itme adımında birinci (deprem doğrultusunda hakim) moda ait modal yer değiştirme $d_1^{(i)}$ 'nin hesabı için ise, aşağıdaki bağıntıdan yararlanılabilir:

$$d_1^{(i)} = \frac{u_{xN1}^{(i)}}{\Phi_{xN1} \Gamma_{x1}}$$
(3.3)

Birinci (deprem doğrultusunda hakim) moda ait modal katkı çarpanı Γ_{x1} , x deprem doğrultusunda taşıyıcı sistemin başlangıç adımındaki doğrusal elastik davranışı için tanımı ilgili bölümde yapılan L_{x1} ve 1. doğal titreşim moduna ait modal kütle M_1 'den yararlanılarak:

$$\Gamma_{x1} = \frac{L_{x1}}{M_1} \tag{3.4}$$

şeklinde elde edilir.

İtme analizi sonucunda elde edilen modal kapasite diyagramı ile elastik davranış spektrumu ve farklı aşılma olasılıklı deprem istemi için bu spektrum üzerinde yapılan değişiklikler gözönüne alınarak, birinci (hakim) moda ait maksimum modal yerdeğiştirme, diğer deyişle, modal yerdeğiştirme istemi hesaplanır. Tanım olarak modal yerdeğiştirme istemi, $d_1^{(p)}$, doğrusal olmayan (nonlineer) spektral yerdeğiştirme S_{di1} 'e eşittir:

$$d_1^{(p)} = S_{di1}$$
 (3.5)

Doğrusal elastik olmayan (nonlineer) spektral yerdeğiştirme, S_{di1} , itme analizinin ilk adımında, doğrusal elastik davranış esas alınarak hesaplanan birinci (hakim) moda ait $T_1^{(1)}$ başlangıç periyoduna karşı gelen doğrusal elastik (lineer) spektral yerdeğiştirme S_{de1} 'e bağlı olarak Denklem 3.6 ile elde edilir:

$$S_{\rm di1} = C_{\rm R1} S_{\rm de1} \tag{3.6}$$

Doğrusal elastik (lineer) spektral yerdeğiştirme S_{de1} , itme analizinin ilk adımında birinci moda ait elastik spektral ivme S_{ae1} 'den hesaplanır:

$$S_{\rm de1} = \frac{S_{\rm ae1}}{(\omega_1^{(1)})^2}$$
(3.7)

Spektral yerdeğiştirme oranı C_{R1}, başlangıç periyodu $T_1^{(1)}$ 'in değerine $(T_1^{(1)} = 2\pi / \omega_1^{(1)})$ bağlı olarak belirlenir. $T_1^{(1)}$ başlangıç periyodunun, ivme spektrumundaki karakteristik periyod T_B'ye eşit veya daha uzun olması durumunda $(T_1^{(1)} \ge T_B \text{ veya } (\omega_1^{(1)})^2 \le \omega_B^2)$, doğrusal elastik olmayan (nonlineer) spektral yerdeğiştirme S_{di1} , eşit yerdeğiştirme kuralı uyarınca doğal periyodu yine $T_1^{(1)}$ olan eşlenik doğrusal elastik sisteme ait doğrusal elastik spektral yerdeğiştirme S_{de1} 'e eşit alınır. Buna göre spektral yerdeğiştirme oranı:

$$C_{\rm R1} = 1$$
 (3.8)

olarak tanımlanır. Şekil 3.3.

Şekil 3.3 : Performans noktasının belirlenmesi ($T_1^{(1)} \ge T_B$).

Şekilde birinci (hakim) titreşim moduna ait ve koordinatları (d1, a1) olan modal kapasite diyagramı ile koordinatları "spektral yerdeğiştirme (S_d) – spektral ivme (S_a)" olan davranış spektrumu birarada çizilmiştir.

 $T_1^{(1)}$ başlangıç periyodunun, ivme spektrumundaki karakteristik periyod T_B 'den daha kısa olması durumunda $(T_1^{(1)} < T_B \text{ veya } (\omega_1^{(1)})^2 > \omega_B^2)$ ise, spektral yerdeğiştirme oranı C_{R1} , ardışık yaklaşımla hesaplanır. Hesap adımları şu şekildedir:

(a) İtme analizi sonucunda elde edilen modal kapasite diyagramı, Şekil 3.4'de görüldüğü gibi, yaklaşık olarak iki doğrulu (bi-lineer) bir diyagrama dönüştürülür.

Bu diyagramın başlangıç doğrusunun eğimi, itme analizinin ilk adımındaki (i=1) doğrunun eğimi olan birinci moda ait özdeğere, $(\omega_1^{(1)})^2$, eşit alınır $(T_1^{(1)} = 2\pi / \omega_1^{(1)})$.

Şekil 3.4 : Performans noktasının belirlenmesi ($T_1^{(1)} < T_B$).

(b) Ardışık yaklaşımın ilk adımında $C_{R1} = 1$ varsayımı yapılarak, eşdeğer akma noktası'nın koordinatları eşit alanlar kuralı ile belirlenir. Şekil 3.4'de görülen a_{y1}° esas alınarak C_{R1} aşağıda şekilde tanımlanır:

$$C_{\rm R1} = \frac{1 + (R_{\rm y1} - 1) T_{\rm B} / T_{\rm 1}^{(1)}}{R_{\rm y1}} \ge 1$$
(3.9)

Bu bağıntıda R_{y1} birinci moda ait dayanım azaltma katsayısını göstermektedir.

$$R_{y1} = \frac{S_{ae1}}{a_{y1}}$$
(3.10)

Denklem 3.9'dan bulunan C_{R1} kullanılarak, Denklem 3.6'ya göre hesaplanan S_{di1} esas alınarak eşdeğer akma noktası'nın koordinatları, Şekil 3.5'de gösterildiği üzere, eşit alanlar kuralı ile yeniden belirlenir ve bunlara göre a_{y1} , R_{y1} ve C_{R1} tekrar hesaplanır. Ardışık iki adımda elde edilen sonuçların kabul edilebilir ölçüde birbirlerine yaklaştıkları adımda ardışık yaklaşıma son verilir.

Şekil 3.5 : Performans noktasının belirlenmesi $(T_1^{(1)} < T_B)$.

Son itme adımı i = p için Denklem 3.5'e göre belirlenen modal yerdeğiştirme istemi $d_1^{(p)}$ 'nin Denklem 3.3'de yerine konulması ile, x deprem doğrultusundaki tepe yerdeğiştirmesi istemi $u_{xN1}^{(p)}$ elde edilir.

$$u_{xN1}^{(p)} = \Phi_{xN1} \Gamma_{x1} d_1^{(p)}$$
(3.11)

Buna karşı gelen diğer tüm istem büyüklükleri (yerdeğiştirme, şekildeğiştirme ve iç kuvvet istemleri) mevcut itme analizi dosyasından elde edilir veya tepe yerdeğiştirmesi istemine ulaşıncaya kadar yapılan yeni bir itme analizi ile hesaplanır.

3.6.3.5 Kesitteki birim şekildeğiştirme istemlerinin belirlenmesi

Yönetmelikte belirtilen doğrusal elastik olmayan artımsal eşdeğer deprem yükü yöntemine göre yapılan hesap sonucunda çıkış bilgisi olarak herhangi bir kesitte elde edilen θ_p plastik dönme istemine bağlı olarak plastik eğrilik istemi, aşağıdaki bağıntı ile hesaplanır:

$$\phi_{\rm p} = \frac{\theta_{\rm p}}{L_{\rm p}} \tag{3.12}$$

Amaca uygun olarak seçilen bir beton modeli ile pekleşmeyi de gözönüne alan donatı çeliği modeli kullanılarak, kesitteki eksenel kuvvet istemi altında yapılan analizden elde edilen iki doğrulu moment-eğrilik ilişkişi ile tanımlanan ϕ_y eşdeğer akma eğriliği, Denklem 3.12 ile tanımlanan ϕ_p plastik eğrilik istemine eklenerek, kesitteki ϕ_t toplam eğrilik istemi elde edilir:

$$\phi_{t} = \phi_{y} + \phi_{p} \tag{3.13}$$

Betonarme sistemlerde betonun basınç birim şekildeğiştirmesi istemi ile donatı çeliğindeki birim şekildeğiştirme istemi, Denklem 3.13 ile tanımlanan toplam eğrilik istemine göre moment-eğrilik analizi ile hesaplanır.

Beton ve donatı çeliğinin birim şekildeğiştirmeleri cinsinden elde edilen deprem istemleri, aşağıda tanımlanan şekildeğiştirme kapasiteleri ile karşılaştırılarak kesit bazında hasar bölgesi belirlenir.

3.6.3.6 Betonarme elemanların kesit birim şekildeğiştirme kapasiteleri

Plastik şekildeğiştirmelerin meydana geldiği sünek betonarme taşıyıcı sistem elemanlarında, performans düzeylerine göre izin verilen şekildeğiştirme sınırları (kapasiteleri) aşağıda tanımlanmıştır.

a) Minimum Hasar Sınırı (MN) için beton basınç birim şekildeğiştirmesi ile donatı çeliği birim şekildeğiştirmesi üst sınırları için:

$$(\varepsilon_{cu})_{MN} = 0.0035$$
 ; $(\varepsilon_{s})_{MN} = 0.01$ (3.14)

b) Kesit Güvenlik Sınırı (GV) için beton basınç birim şekildeğiştirmesi ile donatı çeliği birim şekildeğiştirmesi üst sınırları için:

$$\left(\epsilon_{\rm cg}\right)_{\rm GV} = 0.0035 + 0.01(\rho_{\rm s} / \rho_{\rm sm}) \le 0.0135$$
; $\left(\epsilon_{\rm s}\right)_{\rm GV} = 0.040$ (3.15)

c) Kesit Göçme Sınırı (GÇ) için beton basınç birim şekildeğiştirmesi ile donatı çeliği birim şekildeğiştirmesi üst sınırları için:

$$\left(\epsilon_{cg}\right)_{GC} = 0.004 + 0.014 \left(\rho_{s} / \rho_{sm}\right) \le 0.018$$
; $\left(\epsilon_{s}\right)_{GC} = 0.060$ (3.16)

değerleri verilmektedir.

4. 1961, 1968, 1975 DEPREM VE 1953, 1967, 1975 BETONARME YÖNETMELİKLERİNİN İRDELENMESİ

Bu bölümde, deprem performansları belirlenecek olan yapı sistemlerinin boyutlandırılmasında kullanılan deprem ve betonarme yönetmeliklerinin esasları incelenmiş ve karşılaştırmaları yapılmıştır.

4.1 1961, 1968 ve 1975 Deprem Yönetmelikleri

Bu üç deprem yönetmeliği [18-20] de "Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik" adı altında T.C. İmar ve İskan Bakanlığı tarafından hazırlanmıştır. İçeriklerinde deprem afeti dışında, su baskını ve yangın afetinden korunmayla ilgili bölümlerde yer almaktadır. Her bir yönetmeliğin betonarme yapıların deprem hesapları ile ilgili kısımları aşağıdaki bölümlerde özetlenmiştir.

4.1.1 Afet bölgelerinde yapılacak yapılar hakkında yönetmelik – 1961

Bu yönetmelikte betonarme yapıların taşıyıcı sistemleri ve taşıyıcı sistem elemanları ile ilgili ayrıntılı kurallar yer almamaktadır. Yönetmeliğin proje ve hesap esasları adı altındaki son bölümünde yapıya gelen deprem kuvvetlerinin nasıl belirleneceği açıklanmaktadır.

4.1.1.1 Proje ve hesap esasları

Yapılarda deprem etkileri neticesinde oluşabilecek burulmaları mümkün olduğu kadar azaltmak amacı ile, mimari ve inşaat projelerinin düzenlenmesinde, esas taşıyıcı kısımların yapının eksenlerine göre simetrik olmasına önem verilmelidir. Burada kasdedilen simetri, sadece şekil bakımından olmayıp kütle ve rijitlikler bakımından da olmalıdır.

Yapı yatay kesitleri mümkün olduğu kadar basit ve tercihen kapalı bir dikdörtgen veya kare şeklinde olmalıdır.

Değişik zamanlarda veya aynı zamanda, fakat değişik yapı sistemleriyle veya değişik vasıflı zeminler üzerinde birbirlerine kısmen veya tamamen bitişik olarak yapılan

dikdörtgen şeklindeki binalar veya yatay kesitleri L, U, E, H veya T şeklinde olan yapılar birbirlerinden, en az 3cm aralıkta, dilatasyon derzleri ile uygun boyutta dikdörtgen bloklara ayrılmalıdırlar.

• Yapıların statik hesap esasları

Yapılar normal düşey etkilerden başka yatay deprem etkilerine göre de tahkik edilirler.

Yapının deprem etkilerinin, yapının birbirine dik iki ekseni doğrultusunda etki ettiği, fakat her iki doğrultuda aynı zamanda etki etmediği kabul edilecektir.

Yapının her hangi bir parçasının:

$$\mathbf{H} = \mathbf{C} \left(\mathbf{G} + \mathbf{n} \cdot \mathbf{P} \right) \tag{4.1}$$

denklemi ile hesaplanacak yatay deprem kuvvetinin tesirlerine mukavemet etmesi lazımdır. Bu denklemde C deprem katsayısı olup,

$$\mathbf{C} = \mathbf{C}_0 \cdot \mathbf{n}_1 \cdot \mathbf{n}_2 \tag{4.2}$$

şeklinde hesaplanır.

Yapı yüksekliğine bağlı C_o katsayısı Şekil 4.1'de, deprem zemin katsayısı n_1 Çizelge 4.1'de ve deprem bölge katsayısı n_2 ise Çizelge 4.2'de verilmiştir.

Şekil 4.1 : C_o deprem katsayısı (ABYYHY 1961).

C_o, 40.00 m. den sonra her 3.00 m. de 0.01 değeri kadar arttırılır.

	Yapı Tipleri		
Zemin Cinsi	ÇELİK	B.A	
I	0.6	0.8	
II	0.8	0.9	
III	1.0	1.0	

Çizelge 4.1 : Deprem zemin katsayısı (ABYYHY 1961).

Zemin cinsleri:

- I-) Sert ve yekpara kayalık zeminler,
- II-) Kum, çakıl, sert kumlu kil gibi sağlam ve sıkışık zeminler. Çatlaklı ve kolayca tabakalara ayrılan kayalar,
- III-) Yukarıdaki sağlam zeminler haricinde daha az sağlam bilumum zeminler.

Çizelge 4.2 : Deprem bölge katsayısı (ABYYHY 1961).

Yersarsıntısı Bölgeleri	n ₁
1. derece	1.0
2. derece	0.6

G parçaya kendi ağırlığı nedeniyle etkiyen ölü yüklerin, P parçaya tesir eden hareketli yüklerin toplamıdır. n hareketli yük azaltma katsayısının değerleri Çizelge 4.3'de verilmiştir.

Çizelge 4.3 : Hareketli yük azaltma katsayısı (ABYYHY 1961).

	n
Sinema, tiyatro, okul, kahvehane, fabrika gibi umumi toplantı ve işyeri olarak kullanılan yapılar	1.0
Diğer yapılar	0.5

Yapının depreme karşı hesabında ya tam rüzgarın yarı şiddetinde bir kuvvetin aynı zamanda yapıya etki ettiği kabul edilecek veya deprem kuvveti yerine tam rüzgar şiddetindeki bir kuvvetin etkisi dikkate alınacaktır. Nihai hesap bu iki yükleme durumundan hangisi daha elverişsiz etkiler doğurmuşsa ona göre yapılacaktır.

Malzeme emniyet gerilmeleri deprem hesabında %50 arttırılır.

4.1.2 Afet bölgelerinde yapılacak yapılar hakkında yönetmelik – 1968

ABYYHY 1968'de betonarme taşıyıcı elemanlar ile ilgili olarak verilen kurallar ve depreme dayanıklı binalar için hesap esasları aşağıda açıklandığı şekilde verilmiştir.

4.1.2.1 Kolonlar

Kolonlar bodrum katından başlayarak yukarıya doğru, birbirinin üstüne gelecek şekilde düzenlenecektir. Bütün kolonlar, planda mümkün olduğu kadar her iki doğrultuda bir doğru üzerine getirilmelidir.

Düğüm noktaları civarında kolon ve kirişlerin etriye aralığı, bu eleman ortasındaki etriye aralığının yarısı kadar olacak ve kolon yüzünden başlayarak açıklığa doğru kiriş yüksekliği kadar devam edecektir. Kolonlara ait etriyeler kat kirişleri içinde de devam edecektir.

Kolonların en küçük kenarı 24 cm.'den ve kat yüksekliğinin 1/20'sinden daha küçük olamaz.

4.1.2.2 Kirişler

Kirişler en az 15x30 cm. kesitinde olacak ve yükseklikleri kendilerine bağlantılı plak döşeme kalınlığının üç katından fazla olacaktır.

Kirişlerin boyuna donatı oranı en az % 0.25 olacaktır.

Kolon birleşimlerinde guse yapılması yararlıdır.

4.1.2.3 Depreme dayanıklı binalar için hesap esasları

Yapıda deprem etkisi ile meydana gelen etkiler, binaların döşemeleri seviyesinde uygulanan yatay kuvvetlere göre hesaplanır. Yatay kuvvetlerin birbirine dik iki esas eksen doğrultusunda etki ettiği, fakat her iki doğrultuda aynı zamanda etki etmediği kabul edilecektir.

Depremden dolayı bina temel taban seviyesinde meydana gelen kesme kuvveti,

$$\mathbf{F} = \mathbf{C} \cdot \mathbf{W} \tag{4.3}$$

denklemi ile hesaplanır. Burada C deprem katsayısı, W ise toplam bina ağırlığıdır. C katsayısı,

$$\mathbf{C} = \mathbf{C}_{\mathbf{o}} \cdot \boldsymbol{\alpha} \cdot \boldsymbol{\beta} \cdot \boldsymbol{\gamma} \tag{4.4}$$

şeklinde ifade edilir. Bu bağıntıda yer alan C_0 deprem bölgesi katsayısının değerleri Çizelge 4.4'te, α deprem zemin katsayısının değerleri Çizelge 4.5'te ve β bina önem katsayısının değerleri Çizelge 4.6'da verilmiştir.

Deprem Bölgesi	Co
1	0.06
2	0.04
3	0.02

Çizelge 4.4 : Deprem bölge katsayısı (ABYYHY 1968).

Çizelge 4.5 : Deprem zemin katsayısı (ABYYHY 1968).

Zemin Cinsleri	α
1- Sert ve yekpare kayalık zeminler	0.80
2- Kum, çakıl, sert kumlu kil gibi sağlam ve sıkışık zeminler, çatlak ve kolayca tabakalara ayrılan kayalar	1.00
3- Suyu havi gevşek ve yukarıdaki sağlam zeminler haricindeki daha az sağlam bilumum zeminler	1.20

Çizelge 4.6 : Bina önem katsayısı (ABYYHY 1968).

	β
Bir deprem süresince veya hemen sonra kullanılması zorunlu binalar (PTT binaları, itfaiye binaları, kuvvet santralleri, radyo evi, pompa istasyonları, hastahaneler gibi)	1.50
Önemli veya değerli malları saklıyan binalar (Müzeler gibi)	1.50
Halkın çok yığıldığı binalar (Okullar, stadyumlar, tiyatrolar, sinemalar, ibadethaneler, tren istasyonları gibi)	
Halkın az yığıldığı binalar. (Özel ikametgah, apartmanlar, oteller, iş yerleri, lokantalar, sanayi binaları gibi)	1.00

 γ dinamik katsayısı, binada meydana gelen deprem kuvvetlerinin bağlı olduğu önemli faktörlerden biri olan bina temel periyodu T ye,

$$T \leq 0.5$$
 saniye için $\gamma = 1$ (4.5.a)

$$T > 0.5 \text{ saniye için } \gamma = \frac{0.5}{T}$$
(4.5.b)

şeklinde bağlıdır. Bu şekilde hesaplanan γ değeri hiç bir zaman 0.3'den küçük olmayacaktır. Deneysel veya güvenilir teknik verilere göre hesabı yapılmadıkça bina temel periyodu,

$$T = \frac{0.09 \cdot H}{\sqrt{D}} \text{ (saniye)} \tag{4.6}$$

denklemi ile hesaplanacaktır. Bu denklemde H binanın temel tabanından olan yüksekliği ve D ise binayı etkileyen yatay kuvvetlerin doğrultusuna paralel doğrultuda bina genişliğidir. Burada H ve D metre boyutunda olmalıdır.

Toplam deprem yatay kuvvetinin hesabında gözönüne alınacak kat ağırlığı,

$$\mathbf{W}_{i} = \mathbf{G}_{i} + \mathbf{n}_{i} \cdot \mathbf{P}_{i} \tag{4.7}$$

denklemi ile bulunur. Bu denklemdeki G_i , i' inci kattaki ölü yükler toplamı; P_i , i'inci kattaki hareketli yükler toplamı, n_i ise i'inci kattaki hareketli yük azaltma katsayısıdır. Hareketli yük azaltma katsayısının değerleri Çizelge 4.7'de verilmiştir.

Çizelge 4.7 : Hareketli yük azaltma katsayısı (ABYYHY 1968).

Yapı Cinsi		
Sinema, tiyatro, okul, stadum, depo ve antrepo gibi binalar	1.00	
Sağlık yapıları, idare yapıları, otel, apartman ve ikametgah gibi yapılarda	0.50	

Toplam yatay kuvvet F, bina yüksekliğince aşağıdaki denkleme göre dağıtılacaktır.

$$F_{i} = F \frac{W_{i} \cdot H_{i}}{\sum W_{i} \cdot H_{i}}$$
(4.8)

Burada F_i i'inci kata gelen yatay kuvvet, H_i i'inci katın bina temel tabanından yükseklidir.

Deprem kuvvetleri ile rüzgar yükünün yapıya aynı zamanda tesir etmediği kabul edilecek ve herhangi bir yapı elemanı için hesaplarda, deprem veye rüzgardan elverişsiz olanı gözönüne alınacaktır. Deprem hesaplarında beton ve çelik emniyet gerilmeleri en fazla %50 arttırılacaktır.

4.1.3 Afet bölgelerinde yapılacak yapılar hakkında yönetmelik - 1975

ABYYHY 1975'de betonarme taşıyıcı elemanlar ile ilgili olarak verilen kurallar ve depreme dayanıklı yapılar için hesap ilkeleri aşağıda açıklandığı şekilde verilmiştir.

4.1.3.1 Kolonlar

Kolonlar, bodrum katından başlayarak yukarı doğru birbiri üzerine gelecek şekilde yerleştirilecektir. Bu olanaklar yok ise hesaplar yapı taşıyıcı sisteminin düzensiz olduğu gözönüne alınarak yapılacaktır. Tüm kolonlar öncelikle planda, aksları boyunca aynı düzlem içine gelecek şekilde düzenlenmelidir.

Kolonların en küçük boyutu 25 cm.'den ya da kat yüksekliğinin 1/20'sinden küçük, geniş kenarın dar kenara oranı 3'den daha büyük olamaz. Yuvarlak kolonlarda çap en az 30 cm. olacaktır.

Kolonlardaki boyuna donatı oranının en küçük ve en büyük değerleri Çizelge 4.8'de verilmiştir.

	Boyuna Donatı Oranı		
Beton Sınıfı	Minimum	Maximum	
B160	0.01	0.030	
B225	0.01	0.035	
B300	0.01	0.040	

Çizelge 4.8 : Kolonlarda boyuna donatı oranı sınırları (ABYYHY 1975).

Kolonlar enine donatı aralığı bakımından, kolon sarılma bölgesi, kolon orta bölgesi ve kolon-kiriş düğüm bölgesi olmak üzere üç kısımda incelenecektir.

Her kolonun alt ve üst uçlarında, betonun sıkıca çemberlenmesini sağlamak ve böylece normal, kayma ve eğilme gerilmeleri altında gevrek bir şekilde, aniden kırılmasını önlemek amacıyla kolon sarılma bölgeleri bulunacaktır. Bu bölgelerin uzunluğu, döşeme üst kotundan ve kolona bağlanan en derin kirişin alt yüzünden başlayarak, kolon enkesitinin büyük boyutu, kolon serbest yüksekliğinin 1/6'sı veya 45 cm.'den az olamaz.

Kolon orta bölgesindeki etriye alanı, statik yükler ve deprem kuvvetleri altında meydana gelebilecek en büyük hesap kesme kuvvetini taşıyabilecek güçte olmalıdır. Bu bölgedeki etriye aralıkları, kolon uzun kenarının yarısından, 20 cm. den ya da en küçük boyuna donatı çapının 12 katından fazla olamaz. Boyuna donatı eki, öncelikle kolon orta bölgesinde ve betonarme kurallarına uygun olarak yapılır.

Kolonların kirişlerle olan birleşim bölgeleri burada mevcut olabilecek en büyük kesme kuvvetine göre etriyelerle donatılmalıdır. Kolon-kiriş birleşim bölgelerinde

birim boya düşen etriye miktarı, kolon orta bölgesinde birim boya düşen etriye miktarından az olamaz.

4.1.3.2 Kirişler

Çerçeve kirişleri en az 20x30 cm. kesitinde olacaktır. Kirişlerdeki boyuna donatı oranı Çizelge 4.9'da verilen değerlerden az olamaz. Kesite konulan donatı adedi ile taşınabilecek moment kapasitesi, kesite gelen hesap momentinin %33'ünden fazla ise minimum donatı koşuluna bağlı kalınmayabilir.

Donatı Cinsi	Boyuna Donatı Oranı		
BÇ I	0.005		
BÇ II	0.004		
BÇ III	0.003		

Çizelge 4.9 : Kirişlerde minimum boyuna çekme donatısı (ABYYHY 1975).

Açıklıklarda kirişler mümkün oldukça tek donatılı olarak boyutlandırılmalıdır. Zorunlu olduğu durumlarda basınç donatısı kullanılabilir. Ancak, basınç donatısı yüzdesi 0.01'den ve çekme donatısının % 50'sinden fazla olamaz. Tek donatılı olarak boyutlandırılan kesitlerin basınç yüzünde minimum 2 adet φ 12 mm. demir bulundurulmalıdır.

Kiriş mesnetlerindeki alt donatı, üst donatı alanını üçte birinden yada komşu açıklık ortası donatı miktarlarının büyüğünün yarısından daha az olamaz. Kirişin her iki ucundaki mesnet üst donatısından fazla olanın en az ¼'ü bütün kiriş boyunca sürekli olarak devam ettirilecektir. Mesnetlerdeki üst donatının en az üçte biri moment sıfır noktasından ankraj boyu kadar uzatılacaktır. Bu donatı uzunluğu kiriş serbest açıklığının ¼'ünden az olamaz.

Kirişler düşey yükler ve deprem etkileri altında her iki uçta doğabilecek momentlerin yaratacağı kayma gerilmelerini emniyetle taşıyabilecek biçimde boyutlandırılıp donatılacaktır. Birinci ve ikinci derece deprem bölgelerinde minimum etriye çapı 8 mm. den az olamaz. Etriye aralığı, kirişin genişliğini ve kiriş yükşekliğinin yarısını geçemez. Kirişlerin her iki ucunda kiriş yükşekliğini iki katı uzunluğundaki bir bölgede etriye alanı sıklaştırılacaktır. Ayrıca bu bölge içinde etriye aralığı kiriş faydalı yüksekliğinin dörtte birini geçmemelidir. Kolon yüzünden birinci etriyeye olan uzaklık 5 cm.'yi aşmamalıdır.

4.1.3.3 Depreme dayanıklı yapılar için hesap ilkeleri

Depremden meydana gelen etkiler yapıya döşemeleri düzeyinde etkiyen yatay statik yükler olarak alınır. Uygulamada yatay yüklerin binanın öncelikle birbirine dik iki doğrultusunda ayrı ayrı etkidiği varsayılacaktır. Bu yükler tüm düşey taşıyıcı elemanlara dağıtılacaktır. Asal eksenleri hesap yapılan doğrultulara paralel olmayan elemanlarda, farklı bir doğrultu için daha elverişsiz iç kuvvetler doğabileceği gözönünde tutulmalıdır.

Kesit hesaplarında deprem etkileri ile rüzgar yükünün yapıya aynı zamanda etkimediği düşünülecek ve herhangi bir yapı elemanının boyutlandırılmasında depremli veya rüzgarlı durumdan daha elverişsiz olanı gözönünde tutulacaktır.

Yapıların depreme dayanıklı olarak boyutlandırılmasında kullanılacak statik eşdeğer yatay yüklerin toplamı,

$$\mathbf{F} = \mathbf{C} \cdot \mathbf{W} \tag{4.9}$$

denklemi ile hesaplanacak olup burada C deprem katsayısıdır ve

$$\mathbf{C} = \mathbf{C}_{\mathbf{0}} \cdot \mathbf{K} \cdot \mathbf{S} \cdot \mathbf{I} \tag{4.10}$$

denklemi ile hesaplanır. Bu denklemde C_o deprem bölge katsayısının değerleri Çizelge 4.10'da, K yapı tipi katsayısının değerleri Çizelge 4.11'de, I yapı önem katsayısının değerleri Çizelge 4.12'de verilmiştir. S yapı dinamik katsayısı,

$$S = \frac{1}{|0.8 + T - T_{o}|}$$
(4.11)

denklemi ile hesaplanacak olup, burada T saniye cinsinden yapının birinci normal moduna ait doğal periyodu ve T_o da Çizelge 4.13'de verilen zemin hakim periyodudur. Bu denklemden bulunan S değeri en fazla 1.0 alınır.

Deneysel veya güvenilir teknik verilere göre hesabı yapılmadıkça bina temel periyodu,

$$T = \frac{0.09 \cdot H}{\sqrt{D}} \tag{4.12.a}$$

yada

$$T = (0.07 \sim 0.1) N$$
 (4.12.b)

yaklaşık denklemlerinden bulunan T değerlerinden elverişsiz olanı olarak alınır. Bu

denklemde H binanın temel tabanından olan yüksekliği, D binayı etkileyen yatay kuvvetlerin doğrultusuna paralel doğrultuda bina genişliği ve N ise bina temel düzeyi üstündeki kat adedidir. Burada H ve D metre boyutunda olmalıdır.

Deprem Bölgesi	Co
1	0.10
2	0.08
3	0.06
4	0.03

Çizelge 4.10 : Deprem bölge katsayısı (ABYYHY 1975).

Çizelge 4.11 :	Yapı tipi katsayısı	(ABYYHY 1975).
-----------------------	---------------------	----------------

Үарı Тірі		
Aşağıda tanımı ayrıca yapılmamış tüm taşıyıcı sistemler		1.00
Tüm perde duvarlı kutu sistemler		1.33
Çerçeveleri yatay yüklerin tamamını taşıyabilen çerçece taşıyıcı sistem		
	а	0.60
Düktil çerçeveler	b	0.80
	с	1.00
	а	1.20
Düktil olmayan çerçeveler		1.50
		1.50
	а	1.33
Diyagonelli çelik kafes çerçeveler	b	1.50
	с	1.60
	а	0.80
Düktil çerçeveleri ile yatay yüklerin en az % 25 ini taşıyabilen perde duvarlı sistemler		1.00
		1.20
Yığma binalar		1.50
Bağımsız zemin üstü hazneleri		3.00
Binalardan başka yapılar, bacalar, kuleler		

Dolgu Duvar Tipleri

a) Betonarme ya da yatay ve düşey donatılı yığma bölme duvarlı

b) Donatısız yığma bölme duvarlı

c) Hafif ve az bölme duvarlı ya da prefabrike beton bölme duvarlı

Yapı Cinsi		
Bir deprem süresince ya da hemen sonra kullanılması zorunlu yapılar (PTT, itfaiye ve radyoevi yapıları, kuvvet santralleri, pompa istasyonları, hastaneler, istasyon ve terminaller, rafineriler v.b.)	1.50	
Önemli ve değerli malları saklayan yapılar (müzeler v.b.)		
Halkın çok yığıldığı yapılar (okullar, spor tesisleri, tiyatrolar, sinema ve konser salonları, ibadethaneler v.b.)		
Halkın az yığıldığı yapılar (özel konutlar, oteller, iş yerleri, lokantalar, endüstri yapıları v.b.)	1.00	

Çizelge 4.12 : Yapı önem katsayısı (ABYYHY 1975).

Çizelge 4.13 : Zemin hakim periyodu (ABYYHY 1975).

Zemin Ci	insi	Zemin Hakim Periyodu T _o (sn)	T _o Ortalama (sn)
	а	0.20	(511)
Ι	b	0.25	0.25
	С	0.30	
	а	0.35	
II	b	0.40	0.42
	с	0.50	
	а	0.55	
III	b	0.60	0.60
	с	0.65	
	a	0.70	
IV	b	0.80	0.80
	с	0.90	

Toplam deprem yatay kuvvetinin hesabında gözönüne alınacak kat ağırlığı,

$$\mathbf{W}_i = \mathbf{G}_i + \mathbf{n} \cdot \mathbf{P}_i$$

(4.13)

denklemi ile bulunur. Bu denklemdeki G_i, i' inci kattaki sabit yükler toplamı; P_i, i'inci kattaki hareketli yükler toplamıdır. Hareketli yük azaltma katsayısı n'in değerleri Çizelge 4.14'de verilmiştir.

Çizelge 4.14 : Hareketli yük azaltma katsayısı (ABYYHY 1975).

Yapı Cinsi	
Depolar, antrepolar v.b.	0.80
Okullar, öğrenci yurtları, spor tesisleri, sinema ve konser salonları, tiyatrolar, garaj, lokanta, mağaza v.b.	0.60
Özel konutlar, oteller, hastaneler, iş yerleri v.b.	0.30

Yapının kat düzeylerine uygulanacak F yatay yükleri Denklem 4.14'e göre hesaplanacaktır.
$$F_{i} = (F - F_{t}) \frac{W_{i} \cdot H_{i}}{\sum W_{i} \cdot H_{i}}$$
(4.14)

Burada F_i i'inci kata gelen yatay kuvvet, H_i i'inci katın bina temel tabanından yükseklidir. F_t yapının en üst katına uygulanacak olan kuvvettir ve

$$F_{t} = 0.004 \cdot F \cdot \left(\frac{H}{D}\right)^{2}$$
(4.15)

denklemi ile hesaplancaktır. F_t hiçbir zaman 0.15 F den büyük olamaz ve $\frac{H}{D} \le 3$ olması durumunda F_t = 0 alınabilir.

C deprem katsayısı hiçbir zaman C_o / 2'den küçük alınmayacaktır. Yatay deprem yükleri altında, betonarme kolon ve perdelerde uçlar arası meydana gelecek ardışık yer değiştirme farkı kat yüksekliğinin % 0.25'ini geçmeyecektir. Depremle ilgili kesit hesaplarından beton ve çelik emniyet gerilmeleri en fazla %33 kadar arttırılabilir. Zemin emniyet gerilmeleri I inci, II nci ve III üncü sınıf zeminlerde %33 kadar arttırılabilir. IV üncü sınıf zeminlerde zemin emniyet gerilmeleri arttırılmayacaktır.

4.1.4 1961, 1968 ve 1975 deprem yönetmeliklerinin karşılaştırılması

Deprem katsayısı açısından yönetmelikleri karşılaştırdığımız zaman, yıllar ilerledikçe deprem katsayısının bağlı olduğu parametrelerin sayısının arttığını ve aynı zamanda bu katsayılarında büyüdüğünü görmekteyiz.

1961 yönetmeliğinde deprem katsayısının bağlı olduğu parametreler; zemin katsayısı, bölge katsayısı ve bina yüksekliğine bağlı olan katsayılardır. 1968 yönetmeliğinde ise zemin katsayısı ve bölge katsayısının yanında yeni olarak bina önem katsayısı ve dinamik katsayı da yer almıştır. 1975 yönetmeliğinde ise ilk defa yapı tipi katsayısı tanımlanmış olup diğer parametreler; bölge katsayısı, bina önem katsayısı ve zemin etkisinide içeren dinamik katsayıdır.

1961 yönetmeliğine göre en büyük deprem katsayısı 0.10'dur. 1968 yönetmeliğinde en büyük deprem katsayıları, bina önem katsayısı 1.00 alındığında 0.072, bina önem katsayısı 1.50 alındığında ise 0.108'dir. 1975 yönetmeliğinde ise en büyük deprem katsayıları, bina önem katsayısının 1.00 alındığı sünek binalarda 0.10, sünek olmayan binalarda ise 0.15'tir.

Deprem katsayısının dışında, binaya etkiyen deprem kuvvetlerinin katlara dağılımı da değişiklik göstermektedir. 1961 yönetmeliğinde deprem kuvvetleri katlara uniform olarak dağıtılmaktadır. 1968 ve 1975 yönetmeliklerinde ise kat yüksekliklerine bağlı olarak deprem kuvvetleri binaya ters üçgen şeklinde dağıtılmıştır. Ayrıca 1975 yönetmeliğinde narin yapılar için en üst kata etkiyen tepe kuvvetide tanımlanmıştır.

Emniyet gerilmeleri esasına göre yapılan hesaplarda, rüzgarlı yada depremli gibi elverişsiz durumlarda emniyet gerilmeleri bir miktar arttırılarak kesit hesabı yapılmaktadır. 1961 ve 1968 yönetmelikleri deprem hesabında beton ve çeliğin emniyet gerilmelerini % 50'si kadar, 1975 yönetmeliği ise % 33'u kadar arttırılabileceğini söylemektedir.

Bu üç yönetmelikte zamana göre ilerledikçe daha elverişli durumlar meydana getirebilecek değişiklikler olduğu da görülmektedir. Bunlardan birincisi toplam bina ağırlığı hesaplanırken, binaya etki eden hareketli yükler için kullanılan hareketli yük azaltma katsayısının, 1975 yönetmeliğinde, 1961 ve 1968 yönetmeliklerine göre daha küçük değerler almasıdır. İkinci durum ise yatay yüklere göre hesap yapılırken, 1961 yönetmeliğinde yarı rüzgar + deprem veya tam rüzgar kuvvetlerinden elverişsiz olanının dikkate alınmasını söylerken, 1968 ve 1975 yönetmeliklerinde ise deprem veya tam rüzgar kuvvetlerinden elverişsiz olanın dikkate alınmasını söylemektedir. Bu durumda, 1961 yönetmeliğine göre deprem hesabı yaparken deprem ile beraber yarı rüzgar etkisi dikkate alınırken, 1968 ve 1975 yönetmeliklerinde sadece deprem etkisi dikkate alınmaktadır.

Deprem yönetmeliklerinin içinde bulunmayan fakat deprem katsayılarının değişmesine neden olan önemli bir konu ise deprem bölgeleri haritalarıdır. Çalışmanın sayısal kısmında incelenen örnekte olduğu gibi İstanbul bölgesini ele alırsak, 1961, 1968 ve 1975 yıllarında İstanbul 2. derece deprem bölgesinde yer almaktadır. İstanbul bölgesi 1996 yılına kadar 2. derece deprem bölgesi olarak deprem haritalarında yerini almıştır.

1961 yönetmeliğinde betonarme ve çelik binalar ile ilgili hemen hemen hiçbir tasarım kuralından bahsedilmemiştir. Minimum kolon ve kiriş boyutları ve donatı oranları verilmemiştir. Yapıların dinamik özellikleri, süneklilikleri dikkate alınmayıp sadece düzenli bina koşulu olarak simetriden bahsedilmiştir. 1968 yönetmeliğinde kolon ve kirişler için minimum boyutlar ve donatı oranları verilmiştir. Sargı donatısı ile ilgili kurallar getirilmiş olup, etriye sıklaştırması olarak adlandırdığımız, kolon ve kirişlerin uç noktalarının daha sık etriyelerle sarılmasından ve ayrıca, kolon etriyelerinin kat kirişleri içinde de devam etmesi gerektiğinden bahsedilmiştir.

1975 yönetmeliğinin 1968'e göre en önemli farkları, kolon, kiriş ve perdeler için konstrüktif esasları, minimum boyut ve donatı koşullarının daha ayrıntılı olarak tanımlanması, sargı donatısının minimum değerlerinin verilmesi, kolon-kiriş birleşim bölgesinde kayma tahkiki yapılması gibi hususlardır. Bu yönetmelikte süneklik kavramından da söz edilmiştir. Sünek çerçeveler ile sünek olmayan çerçevelerin K katsayıları arasında önemli farklar bulunmaktadır. (Çizelge 4.11) Kolon-kiriş birleşim bölgesinin içinde kolonlardaki etriyelerin devam etmesi ve 135 derecelik kanca uygulaması 1975 yönetmeliğinde yer alan diğer konulardır. [24].

4.2 1953, 1967 ve 1975 Betonarme Yönetmelikleri

1961,1968 ve 1975 deprem yönetmelikleri ile birlikte ele alınan 1953, 1967 ve 1975 betonarme yönetmelikleri [21-23] bu bölümde kısaca özetlenecektir. TKİC (Türkiye Köprü ve İnşaat Cemiyeti) tarafından hazırlanmış olan 1953 ve 1967 betonarme şartnameleri arasında belirgin bir fark olmamasından dolayı bu iki şartname birlikte ele alınmıştır. Bu betonarme yönetmeliklerini günümüz yönetmeliklerinden ayıran en büyük fark, taşıma gücü hesap yöntemi yerine emniyet gerilmeleri esasına dayanan hesap yönteminin kullanılmasıdır.

4.2.1 TKİC betonarme şartnamesi 1953 – 1967

Bu şartnamede yer alan ve sayısal çalışma kısmında esas alınan temel bilgiler ve tasarım esasları aşağıda özetlenmiştir.

4.2.1.1 Malzeme bilgisi

1953 ve 1967 betonarme şartnamesinde tanımlanmış olan beton ve çelik sınıfları ile bunların dayanımları Çizelge 4.15 ve Çizelge 4.16'da verilmiştir.

Beton sınıfları küp mukavemetine göre sınıflandırılmış olup, günümüzden farklıdır. En yüksek dayanımlı beton sınıfı olarak B300 tanımlanmıştır ve günümüzde C25 betonuna karşılık gelmektedir.

Beton	28 Günlük Asgari Küp Mukavemeti			
Sınıfı	Kg/cm ²	N/mm ²		
B120	120	12		
B160	160	16		
B225	225	22.5		
B300	300	30		

Çizelge 4.15 : Beton sınıfları ve asgari küp mukavemetleri (BŞ 1953 - 1967).

Beton sınıflarının kullanılacağı yerlerle ilgili aşağıdaki kurallar koyulmuştur.

- B120 küçük, basit ve statikçe belirli yapı elemanlarında kullanılabilir.
- B160 ve B225 yer üstü ve yer altı betonarme yapıların önemli bir kısmında kullanılır.
- B300 özel hallerde kulanılır.

Beton Çeliği Sınıfı	Çap mm	Minimum Akma Limiti Kg/cm ² (N/mm ²)	Çekme Mukavemeti Kg/cm ² (N/mm ²)	Minimum Kırılma Uzaması %
Ι	-	2200 (220)	3400-5000 (340-500)	16
Цо	≤18	3600 (360)	5000-6200 (500-620)	20
IIa	> 18	3400 (340)	5000-6400 (500-640)	18
TTP	≤18	3600 (360)	≥5000 ≥(500)	14
> 18		3400 (340)	≥5000 ≥(500)	14
ш	≤18	4200 (420)	≥5000 ≥(500)	18
IIIa	> 18	4000 (400)	≥5000 ≥(500)	18
III	≤18	4200 (420)	≥5000 ≥(500)	8
1110	> 18	4000 (400)	≥5000 ≥(500)	8
IVa	-	5000 (500)		16
IVb	-	5000 (500)		8

Çizelge 4.16 : Beton çeliği sınıfları ve özellikleri (BŞ 1953 - 1967).

Çelik sınıflandırılması günümüzde kullanılan sınıflandırmaya ve çelik özelliklerine uyumluluk göstermektedir.

4.2.1.2 Kirişler

Düşey yüklerin etkisi altında eğilmeye çalışan betonarme kirişlerde üç türlü gerilme durumu söz konusudur.

Gerilme Durumu I : Kesitin çekmeye çalışan kenarındaki gerilmeler betonun çekme dayanımından daha küçüktür. Bu halde beton çekme bölgesinde de çalışır ve çekme gerilmeleri hem beton hem çekme donatısı tarafından karşılanır.

Gerilme Durumu II : Kesit zorlarının artması sonucunda çekme gerilmeleri de artar ve betonun çekme dayanımını aşar. Bu halde tüm çekme gerilmeleri çekme donatısı tarafından karşılanır.

Gerilme Durumu III : Kesit zorlarının daha da artması ile, çekme donatısındaki gerilmeler kopma sınırına doğru yaklaşır ve bu durum kirişin taşıma kapasitesinin sona ermesine neden olur.

Eğilmeye çalışan betonarme kirişlerin kesit hesapları gerilme durumu II 'ye göre yapılır. Bu hesaplarda ayrıca çekme bölgesindeki bütün gerilmelerin donatı tarafından karşılandığı ve şekildeğiştirmelerin Hooke Kanununa uyduğu varsayılır.

Kalınlıkları en az 7 cm. olan plaklar tablalı bir kirişin basınç başlığı olarak hesaba dahil edilirler. Tabla genişliğinin tam olarak tesbit edilememesi durumunda, iki tarafı tablalı kesitlerde, kesit tayini hesabında,

$$b = 12 h + 2 b_s + 2 b_o$$
(4.16)

hiperstatik yapı elemanlarının hesabında ve bütün taşıyıcı elemanların elastik şekil değiştirmelerinin hesabında ise,

$$b = 6 h + 2 b_s + b_o$$
(4.17)

denklemleri ile tabla genişliği (b) hesap edilir. Bu denklemlerde h tabla kalınlığını, b_s guse genişliğini ve b_o da kiriş genişliğini göstermektedir.

Kiriş içindeki demirlerin aralarındaki serbest boşluk her yönde 2 cm. den küçük olmamak üzere, en az demir çapına eşit olmalıdır.

Dikdörtgen ve tablalı kirişlerde daima ve bütün kiriş enkesit yüksekliği boyunca çekme ve basınç bölgeleri arasında bağlantı sağlayacak şekilde etriye konmalıdır.

Çift donatı halinde etriyenin basınç demirlerini iyice sarmasına dikkat edilmelidir. Etriyelerin aralığı basınç donatısı çapının 12 katından fazla olmamalıdır.

4.2.1.3 Kolonlar

Burkulma tehlikesi olmaksızın, merkezi basınç halinde basit etriyeli kolonlar için kırılma yükü P_k , süperpozisyon kanununa göre F_b kesitindeki beton kolonla, F_e kesitindeki çeliğin σ_s akma haddinde taşıyabileceği yükler toplamına eşittir.

$$P_k = K_b F_b + \sigma_s F_e$$
(4.18)

Burada K_b betonun prizma mukavemetidir. Eksenel basınç halinde kolonda, beton ve çelik cinslerine göre beton prizma mukavemetleri ve çelik akma mukavemetleri Çizelge 4.17'de verilmiştir.

_	Beton Prizma		rizma Boylama Donatının Basınç Altında Akma Mukavemet					
Beton Sınıfı	Mukav	vemeti	ti BÇ I		BÇ	ÇΠ	BÇ II	I - IV
	Kg/cm ²	N/mm ²	Kg/cm ²	N/mm ²	Kg/cm ²	N/mm ²	Kg/cm ²	N/mm ²
B120	108	10.8	2400	240	-	-	-	-
B160	144	14.4	2400	240	3600	360	-	-
B225	195	19.5	2400	240	3600	360	4200	420
B300	240	24.0	2400	240	3600	360	4200	420

Çizelge 4.17 : Beton prizma ve çelik akma mukavemetleri (BŞ 1953 - 1967).

Normal kuvvet etkisindeki etriyeli kolonların emniyetle taşıyabileceği P_{em} kuvvetinin hesabında güvenlik katsayısı 3 olarak alınır ve Denklem 4.19 ile hesaplanır.

$$P_{\rm em} = \frac{P_{\rm k}}{3} \tag{4.19}$$

Kolonların en kısa kenarının uzunluğu 20 cm. den daha az olamaz. Kolonlarda boylama demirler en az 14 mm. kalınlığında olmalıdır. Kolonların boylama demirleri, etriye aralıkları en küçük kolon kalınlığından ve boylama demir kalınlığının 12 katından büyük olmamak üzere etriyelerle sarılmalıdırlar.

4.2.1.4 Emniyet gerilmeleri

Betonarme kesit hesaplarında kullanılacak emniyet gerilmeleri B160 sınıfı beton ve I sınıfı beton çeliği için Çizelge 4.18'de verilmiştir.

		Em	Emniyet Gerilmeleri			
Yapı Elemanı ve Yükleme Sekli	Kullanım Şahası	B16	B160		BÇ I	
y • • • • •		Kg/cm ²	N/mm ²	Kg/cm ²	N/mm ²	
Moment Tesiri Altında	h < 8	50	5	1400	140	
Kesitli Kirişler	h > 8	60	6	1400	140	
Moment Tesiri Altında Tablalı Kirişlar və Dicli	Tabladaki gerilmeler dikkate alınınca	50	5	1400	140	
Döşemeler	Negatif moment bölgesinde	70	7	1400	140	
	Bir yönde eğilmeye maruz dikdörtgen kesitler	70	7	1400	140	
Eğilme ve Normal Kuvvete Maruz Plaklar, Dikdörtgen Kirisler, Tablalı Kirisler,	İki yönde eğilmeye maruz dikdörtgen kesitler	80	8	1400	140	
Çerçeveler	Tablalı kirişlerde tabladaki basınç gerelimesi dikkate alınırsa	60	6	1400	140	
	Kayma emniyeti hesapla gösterilmediği takdirde plaklarda	8	0.8	-	-	
Eğilme Neticesinde Kayma Gerilmeleri	Kayma emniyeti hesapla gösterilmediği takdirde diğer yapı elemanlarında	6	0.6	-	-	
	Kayma donatısı hesaba katılmaksızın maksimum kayma gerilmesi	16	1.6	-	-	

Çizelge 4.18 : Emniyet gerilmeleri (BŞ 1953 - 1967).

4.2.2 Betonarme yapıların hesap ve yapım kuralları TS-500 – 1975

TKİC Betonarme şartnemelerinin ardından, betonarme yapıların hesap ve yapım kuralları TS-500 adı altında yayınlanan ve zamanla güncellenerek günümüzdede aynı isim ile kullanılmakta olan TS-500 yönetmeliğinin 1975 yılında yayınlanan baskısı genel malzeme bilgisi, taşıyıcı elemanların hesap kuralları ve eminiyet gerilmeleri verilmek üzere aşağıdaki bölümlerde özetlenmiştir.

4.2.2.1 Malzeme bilgisi

• Beton

Beton sınıflandırılmasında esas ölçü basınç dayanımı olup, çapı 15 cm. ve yüksekliği 30 cm. olan 28 günlük standart deney silindirinin minimum dayanımıdır. Silindir dayanımının yanında 20x20x20 cm. boyutlarında küp dayanımı da ölçü olarak

kullanılabilmektedir. Silindir ve küp dayanımlarına göre beton sınıflandırılması Çizelge 4.19'da verilmiştir.

Beton	Silindir	Dayanımı	Küp Dayanımı		
Sınıfı	Kg/cm ²	N/mm ²	Kg/cm ²	N/mm ²	
III	100	10	120	12	
II.b	140	14	160	16	
II.a	195	19.5	225	22.5	
Ι	240	24	300	30	

Çizelge 4.19 : Beton sınıfları ve dayanımları (TS-500 1975).

III. sınıf beton betonarme yapılarda kullanılmamalıdır. Betonarme yapılarda IIb ve IIa sınıfı betonlar kullanılır. I. sınıf beton daha önemli durumlarda ve yapılarda kullanılabilir.

Betonun elastisite modülü E_b , gerilmelerin bulunması ve boyutlandırma gibi kesit hesaplarında, basınç ve eğilme etkileri için ortalama bir değer olarak 140.000 kg/cm² (14.000 N/mm²), yalnız çekme etkileri için 100.000 kg/cm² (10.000 N/mm²) olarak verilmiştir. W_{bg} betonun g günlük küp dayanımı olmak üzere; betonun elastisite modülü, bütün taşıyıcı sistemlerin 12 saati geçmeyen kısa süreli yüklemeler altındaki deformasyonlarının hesabında,

$$E_{b} = 19500 \sqrt{W_{bg}}$$
 (4.20)

kendi ağırlığı ve uzun süreli yükler altındaki deformasyonların, mesnet çökmelerinden gelen etkilerin hesabında ve hiperstatik bilinmeyenlerin bulunmasında

$$E_{bg} = 6500 \sqrt{W_{bg}}$$
 (4.21)

denklemleri ile verilmiştir.

• Çelik

Betonarme çelikleri I, II, III ve IV olmak üzere sınıflandırılmıştır ve betonarme donatısı olarak kullanılabilmeleri için TS 708'e uygun olma şartı getirilmiştir.

Her grup donatı çeliğinde elastisite modülü için genel olarak 2.100.000 Kg/cm² (210.000 N/mm²) değeri alınmalıdır.

4.2.2.2 Kirişler

Tablalı kirişlerde tablanın basınç başlığı olarak dikkate alınabilmesi için kalınlığı 8 cm. veya daha fazla olmalıdır. Tablalı kirişlerin boyutlandırılmasında, gerilme ve deformasyonların hesabı için atalet momentinin bulunmasında gözönüne alınacak olan tabla genişliği, simetrik kesitler için,

$$b = b_{o} + \frac{a}{\sqrt{1 + 25\left(\frac{a}{s}\right)^{2}}}$$
(4.22)

denklemi ile hesaplanacaktır. Burada b etkili tabla genişliği, b_0 kiriş genişliği, a kiriş doğrultusuna paralel doğrultudaki komşu kiriş ile sözkonusu kiriş arasındaki iç kenardan iç kenara olan mesafe, s ise kirişin moment sıfır noktaları arasındaki mesafe olup sürekli kirişlerde, kenar açıklık için açıklığı 0.75 katı, içi açıklık için ise açıklığın 0.60 katı alınmalıdır.

Kirişlerde çekme bölgesinde donatı demirleri iki sıradan fazla üst üste düzenlenmemelidir. Mesnetlerde donatının iki sıradan fazla olmaması için bu donatının bir kısmı bitişik döşeme içine yerleştirilebilir. Normal kuvvet etkisi olmaksızın sadece eğilmeye çalışan yapı elemanlarında basınç demirleri genel olarak bir sıraya konulabilir.

Kiriş ve tablalı kirişlerde her zaman ve bütün kiriş yüksekliğince, çekme ve basınç bölgeleri arasında bağlantı sağlayacak şekilde etriye konulmalıdır. Özellikle çift donatı halinde etriyelerin basınç demirlerini iyice sarması gerekmektedir. Kirişlerde basınç donatısı kullanıldığı durumlarda, bu bölgedeki etriye aralıkları basınç donatısı çapının 12 katından daha fazla olmamalıdır.

Kirişlerin herhangi bir kesitinde boyuna çekme donatı oranı en az 0.003 olmalıdır.

4.2.2.3 Kolonlar

Merkezi basınç etkisi altındaki kolon kesitleri, burkulma yüküne ve $\mu_1 = 2.5$ emniyet katsayısına göre tayin edilmelidir. Boyuna donatısı olan ve enine etriye konulan betonarme kolonlarda burkulma yükü,

$$N \cdot \mu_{1} = \frac{1}{\omega} \left(F_{b} \cdot \sigma_{p} + F_{e} \cdot \sigma_{ep} \right)$$
(4.23)

denklemi ile verilmektedir. Burada N servis yükü altındaki normal kuvveti, F_b beton

kesit alanını, F_e boyuna donatı kesit alanını, ω Çizelge 4.20'de gösterilen burkulma katsayısını, σ_p Çizelge 4.21'de gösterilen betonun prizma dayanımını, σ_{ep} Çizelge 4.22'de gösterilen betonda müsade edilen maksimum kısalma şekil değiştirmesine eşit donatıdaki şekil değiştirmeye karşı gelen çelik gerilmesini göstermektedir.

l _k / i	burkulma boyu / minimum atalet yarıçapı	ω	
	50	1.00	
	70		
85		1.32	
	105		
	120		
	140	3.00	

Çizelge 4.20 : Kolonlarda burkulma kastsayısı (TS-500 1975).

Çizelge 4.21 : Beton prizma dayanımları ve şekil değiştirmeleri (TS-500 1975).

Beton	σ _]	^ε р	
Sınıfı	Kg/cm ²	N/mm ²	%
IIb	120	12	0.15
IIa	180	18	0.20
Ι	240	24	0.20

Çizelge 4.22 : Kolonlarda boyuna donatı için çelik gerilmeleri (TS-500 1975).

	Çelik							
Beton	Ι		II		III		IV	
	Kg/cm ²	N/mm ²	Kg/cm ²	N/mm ²	Kg/cm ²	N/mm ²	Kg/cm ²	N/mm ²
IIb	2200	220	-	-	-	-	-	-
IIa, I	2400	240	3400	340	3700	370	4000	400

Etriyeli kolonlar için minimum kenar boyutu 25 cm. dir. Kolon boyuna donatısı etriyelerle çevrilmelidir. Bu etriyelerin çapı boyuna donatı çubuğunun çapının 1/3'ünden az olmamalıdır. Etriye aralığı dar kenardan fazla olamayacağı gibi boyuna donatının çapının 12 katından ve 20 cm. den fazla olmamalıdır.

Kolonlarda boyuna donatı çapı 14 mm. den az olmamalıdır. Kolonlar için minimum ve maksimum boyuna donatı oranları Çizelge 4.23 ve Çizelge 4.24'de verilmiştir.

l _k / i	Minimum Donatı Oranı %
15	0.5
30	0.8

Çizelge 4.23 : Kolonlarda minimum donatı oranı (TS-500 1975).

Çizelge 4.24 : Kolonlarda maksimum donatı oranı (TS-500 1975).

Beton Sınıfı	Maksimum Donatı Oranı %
Ι	6
IIa	5
IIb	3

4.2.2.4 Emniyet gerilmeleri

Betonarme kesit hesaplarında kullanılacak emniyet gerilmeleri IIb (B160) sınıfı beton ve I sınıfı beton çeliği için 1967-1953 betonarme şartnamesinde verilen değerler ile aynıdır. Çizelge 4.18.

4.2.3 Betonarme şartnamesi 1953-1967 ile TS-500 1975'in karşılaştırılması

TKİC tarafından hazırlanan Betonarme Şartnameleri ile TS-500 arasında kesit hesaplarında kullanılacak olan emniyet gerilmeleri değerleri bakımından herhangi bir farklılık bulunmamaktadır.

TS-500, Betonarme Şartnamesi'ne göre daha ayrıntılı bir yönetmelik olup, betonarme şartnamesinde bahsedilmeyen bir çok yeni konudan bahsedilmiştir. Taşıyıcı sistem elemanları ile ilgili minimum koşullar ve konstrüktif esaslar TS-500'de daha ayrıntılı olarak ele alınmıştır.

Çelik sınıflandırılmasında herhangi bir farklılık olmamasına rağmen, TS-500'de beton sınıflandırılması betonun silindir dayanımları baz alınarak yapılmıştır.

Eğilme veya eğilme ile normal kuvvet etkisindeki elemanların kesit hesabında, uzama ve kısalmaların tarafsız eksene olan uzaklıkla orantılı olduğu ve gerilmelerin elastik sınırlar içinde kaldığı kabul edilerek yapılan hesap yöntemi her iki yönetmelik için de geçerlidir.

Eksenel basınç altındaki elemanların hesabında kullanılan emniyet katsayısı TS-500'de 3.00'dan 2.50'ye düşürülmüştür. Betonun prizma dayanımı da beton sınıflarına göre değişiklik göstermiştir. Çizelge 4.17 ve Çizelge 4.21.

Betonarme kesit hesabıyla ilgili yöntemler ve kurallar ile ilgili iki yönetmelik arasında büyük farklılıklar bulunmamaktadır. Ancak, betonarme şartnamelerinde yer almayan zımba etkisi, çatlak genişliklerinin tahkiki ve sehim tahkiki gibi konulara TS-500'de yer verilmiştir.

5. SAYISAL İNCELEME

Bu bölümde, ele alınan iki boyutlu bir çerçeve taşıyıcı sistemi, 1953 Betonarme Şartnamesi ile 1961 Deprem Yönetmeliğinin, 1967 Betonarme Şartnamesi ile 1968 Deprem Yönetmeliğinin ve 1975 TS-500 ile 1975 Deprem Yönetmeliğinin birlikte ele alınması ile üç farklı şekilde boyutlandırılmıştır. Boyutlandırılan bu üç sistemin TDY 2007'ye göre deprem performansları doğrusal ve doğrusal olmayan yöntemler ile belirlenmiş ve elde edilen sonuçlar karşılaştırılmıştır. Sırası ile sistemler TS-1, TS-2 ve TS-3 olarak adlandırılmıştır.

5.1 Genel Taşıyıcı Sistem Modeli

Boyutlandırılacak ve daha sonra deprem performansları belirlenecek olan taşıyıcı sistemin mevcut bina stoğunu temsil etmesi bakımından İstanbul Kadıköy'de ve Z2 zemin sınıfına sahip bir arazi üzerinde yapıldığı varsayılmıştır. Yapının kullanım amacı konuttur. 6'şar metrelik 4 açıklıklı ve yükseklikleri 3'er metre olan 5 katlı, kolon ve kirişlerden oluşan düzlem çerçeve sisteminin şematik çizimi Şekil 5.1'de gösterilmiştir. Çerçeve doğrultusuna dik doğrultudaki akslar arası mesefa 4.00 m.'dir. Kirişler tablalı kiriş olarak modellenmiştir ve komşu döşemenin yarısından yük aldığı kabul edilmiştir. Kolonlar kare kesitli ve simetrik donatılıdır. Kullanılan malzemeler yönetmeliklerde izin verilen minimum dayanımlı malzemeler olarak seçilmiştir. Bu malzemeler, 28 günlük standart küp dayanımı 16 N/mm² olan ve ilgili yönetmeliklerde B160 ve BII.b olarak adlandırlan beton ve BÇI beton çeliğidir.

Sistemlerin boyutlandırılmasında aşağıdaki düşey yükler esas alınmıştır.

Döşeme Yükleri (12 cm. döşeme kalınlığı için)

Normal katlarda $g = 4.70 \text{ kN/m}^2$ $q = 2.00 \text{ kN/m}^2$

Çatı katında $g = 4.15 \text{ kN/m}^2$ $q = 0.75 \text{ kN/m}^2$

Duvar Yükleri = 2.50 kN/m^2 (Sıva ile beraber yarım delikli tuğla duvar)

Tüm açıklıkların duvar ile kaplı olduğu varsayılmıştır.

S501 S502 S503 S504 S505 K401 K402 K403 K404 S401 S402 S403 S404 S405 K301 K302 K303 K304 S405	3,00m
S401 S402 S403 S404 S405 K301 K302 K303 K304	_
	3,00
S301 S302 S303 S304 S305 K201 K202 K203 K204	3,00m
S201 S202 S203 S204 S205 K101 K102 K103 K104	3,00m
S101 S102 S103 S104 S105	то0 С
antan antan antan antan antan	
6,00m 6,00m 6,00m 6,00m	

Şekil 5.1 : Taşıyıcı sistem geometrisi ve eleman adları.

5.2 Taşıyıcı Sistemlerinin Boyutlandırılması

5.2.1 TS-1'in boyutlandırılması

TS-1, BŞ-1953 ve ABYYHY-1961'e göre boyutlandırılmıştır, [18, 21, 25].

1961 deprem yönetmeliğine göre yapının deprem katsayısı C,

 $C_0 = 0.06$

 $n_1 = 0.90$

$$n_2 = 0.60$$

olmak üzere C = $0.06 \times 0.90 \times 0.60 = 0.0324$ 'tür. Deprem hesabı, yapıya aynı zamanda deprem yükleri ve yarı şiddetteki rüzgar yükleri etki ettirilerek yapılmıştır.

Rüzgar yüklerinin hesaplanmasında $P = C \times q$ denklemi kullanılmıştır. C basınç durumunda 0.90, emme durumunda ise 0.50 değerini almaktadır. q rüzgar yükü 9 metreye kadar 0.8 kN/m², 9 metreden sonra ise 0.9 kN/m² değerini almaktadır.

Hesaplanan ve kat hizalarına tekil kuvvet olarak etkitilen deprem yükleri Çizelge 5.1'de, 1/2 rüzgar yükleri Çizelge 5.2'de ve bu iki durumun kombinasyonu ise Çizelge 5.3'te verilmiştir.

Deprem Yükleri						
Kat	Azaltılmış Kat Ağırlıkları Wi (kN)	Deprem Katsayısı C	Deprem Kuvvetleri H = Wi · C (kN)			
5	492.00	0.0324	15.94			
4	779.44	0.0324	25.25			
3	788.91	0.0324	25.56			
2	794.06	0.0324	25.73			
1	816.94	0.0324	26.47			
		Σ	118.95			

Çizelge 5.1 : TS-1 deprem yükleri.

Çizelge 5.2 :	TS-1 yar	ım rüzgar	yükleri.
----------------------	----------	-----------	----------

1/2 Rüzgar Yükleri										
Kat	Basınç (kN)	Emme (kN)	Toplam (kN)							
5	2.43	1.35	3.78							
4	4.86	2.70	7.56							
3	4.59	2.55	7.14							
2	4.32	2.40	6.72							
1	4.32	2.40	6.72							
		Σ	31.92							

Çizelge 5.3 : TS-1 yatay yükler toplamı.

Yatay Yükler										
Kat	Deprem Yükleri (kN)	1/2 Rüzgar Yükleri (kN)	Deprem + 1/2 Rüzgar Yükleri (kN)							
5	15.94	3.78	19.72							
4	25.25	7.56	32.81							
3	25.56	7.14	32.70							
2	25.73	6.72	32.45							
1	26.47	6.72	33.19							
Σ	118.95	31.92	150.87							

Çizelge 5.3'te görüldüğü üzere, 1961 deprem yönetmeliğine göre yapılan deprem hesabında, toplam ağırlığı 4155.30 kN olan sisteme, toplamda 150.87 kN'luk yatay yük gelmektedir. Kesitlerde düşey yükler ile beraber yatay yüklerin sisteme etkittirilmesi sonucunda oluşan iç kuvvet durumu, depremli durumda malzeme emniyet gerilmelerinin % 50 arttırılmasından dolayı sadece düşey yüklere göre

yapılan hesaba göre daha elverişsiz bir durum oluşturmamaktadır. Depremli durumda elverişsiz durum sadece kenar kolonlarında ve en alt kat kirişlerinde meydana gelmektedir. Buradan, depremli durumun, depremsiz duruma göre daha elverişli bir durum ortaya çıkardığı gibi ilginç bir sonuç çıkmaktadır. Sonuç olarak, sistem düşey yüklere göre boyutlandırılmıştır. Yatay kuvvetlerin etkisi sadece daha elverişsiz durum oluşturduğu kesitlerde gözönüne alınmıştır. Hesaplanan kolon ve kiriş boyutları ile donatıları Çizelge 5.4 ve 5.5'te verilmiştir.

	, 0		9		
Kat	Kolon	b = h (cm)	Boyuna Donatı	Enine Donatı (mm/mm)	d' (cm)
	S501	25	4Φ16	Φ6/200	3
	S502	25	4 Φ1 4	Φ6/150	3
5	S503	25	4 Φ1 4	Φ6/150	3
	S504	25	4Φ14	Φ6/150	3
	S505	25	4 Φ16	Φ6/200	3
	S401	30	4 Φ 2 0	Φ6/200	3
	S402	30	4 Φ16	Φ6/200	3
4	S403	30	4 Φ16	Φ6/200	3
	S404	30	4Φ16	Φ6/200	3
	S405	30	4 Φ 2 0	Φ6/200	3
	S301	30	4 Φ 2 0	Φ6/200	3
	S302	35	4 Φ18	Φ6/200	4
3	S303	35	4 Φ18	Φ6/200	4
	S304	35	4 Φ18	Φ6/200	4
	S305	30	4Φ20	Φ6/200	3
	S201	35	4 Φ 2 0	Φ6/200	4
	S202	45	4Φ22	Φ6/250	4
2	S203	45	4Φ22	Φ6/250	4
	S204	45	4Φ22	Φ6/250	4
	S205	35	4Φ20	Φ6/200	4
	S101	35	4 Φ 2 0	Φ6/200	4
	S102	45	4Φ24	Φ6/250	4
1	S103	45	4Φ24	Φ6/250	4
	S104	45	4Φ24	Φ6/250	4
	S105	35	4Φ20	Φ6/200	4

Çizelge 5.4 : TS-1 kolon boyutları ve donatıları.

		Boyutlar					Donati			
Kiriş	b _w	h	h _f	b	d'	Ver]	Boyuna Donatı	Enine	
	(cm)	(cm)	(cm)	(cm)	(cm)	101	Alt	Üst	(mm/mm)	
						Sol	2Φ18	2010+2018		
K501	20	60	12	92	4	Orta	4Φ18	2Φ10	Φ8/300	
						Sağ	2 Φ 12+2 Φ 18	2010+2012+1016+2018		
						Sol	2 Φ 12+2 Φ 18	2010+2012+1016+2018		
K502	20	60	12	92	4	Orta	4Φ12	2Φ10	Φ8/300	
						Sağ	4Φ12	2010+4012+2016		
						Sol	4Φ12	2010+4012+2016		
K503	20	60	12	92	4	Orta	4Φ12	2Φ10	Φ8/300	
						Sağ	2 Φ 12+2 Φ 18	2010+2012+1016+2018		
							Sol	2 Φ 12+2 Φ 18	2010+2012+1016+2018	
K504	20	60	12	92	4	Orta	4Φ18	2Φ10	Φ8/300	
						Sağ	2Φ18	2010+2018		
						Sol	2Φ18	2010+3018		
K401	25	60	12	97	4	Orta	5Φ18	2Φ10	$\Phi 8/170$	
						Sağ	$2\Phi 14 + 2\Phi 18$	2010+3014+5018		
						Sol	2 Φ 14+2 Φ 18	2010+3014+5018		
K402	25	60	12	97	4	Orta	5Φ14	2Φ10	$\Phi 8/170$	
						Sağ	4Φ14	2010+6014+3016		
						Sol	4Φ14	2010+6014+3016		
K403	25	60	12	97	4	Orta	5Φ14	2Φ10	$\Phi 8/170$	
						Sağ	2 Φ 14+2 Φ 18	2010+3014+5018		
						Sol	2Ф14+2Ф18	2010+3014+5018		
K404	25	60	12	97	4	Orta	5Φ18	2Φ10	$\Phi 8/170$	
						Sağ	2Φ18	2Ф10+3Ф18		

Çizelge 5.5 : TS-1 kiriş boyutları ve donatıları.

Sistemin geometri ve yükler bakımından simetriye sahip olmasından dolayı, simetrik elemanlar aynı şekilde boyutlandırılmıştır. 1, 2 ve 3. kat kirişleri, 4. kat kirişleri ile aynı seçildiğinden dolayı Çizelge 5.5'de gösterilmemiştir. Kirişlerin kesme kuvvetlerinin karşılanmasında, pliyelerden mümkün olduğunca faydalanılması için, tüm kesitlerde açıklık donatıları moment diyagramına uygun olacak şekilde mesnetlere doğru üste kıvrılarak pliye yapılmıştır. Kolon ve kirişlerde herhangi bir etriye sıklaştırması yapılmamıştır.

5.2.2 TS-2'nin boyutlandırılamsı

TS-2, BŞ-1967 ve ABYYHY-1968'e göre boyutlandırılmıştır, [19, 22, 26, 27].

1968 deprem yönetmeliğine göre yapının deprem katsayısı C,

 $C_o = 0.04, \alpha = 1.00, \beta = 1.00, \gamma = 1.00,$

olmak üzere C = $0.04 \times 1.00 \times 1.00 \times 1.00 = 0.04$ 'tür.

Toplam deprem kuvveti $F = W \times C = 3671.35 \times 0.04 = 146.85$ kN'dur.

Deprem kuvvetinin, kat yükseklikleri ve kat ağırlıklarının çarpımı ile orantılı olarak katlara dağılımı Çizelge 5.6'da verilmiştir.

Kat	W _i (kN)	$H_i(m)$	$W_i \cdot H_i$ (kNm)	$F_{i} = F \frac{W_{i} \cdot H_{i}}{\sum W_{i} \cdot H_{i}}$
5	492.00	15	7380.00	34.91
4	779.44	12	9353.28	44.24
3	788.91	9	7100.19	33.58
2	794.06	6	4764.36	22.53
1	816.94	3	2450.82	11.59
Σ	3671.35	-	31048.65	146.85

Cizelge 5.6 : TS-2 deprem kuvvetlerinin katlara göre dağılımı.

1968 deprem yönetmeliğine göre yatay yük olarak sadece deprem yükleri alınmıştır. 1968 yönetmeliğinde, deprem katsayısının 1961 yönetmeliğine göre artmasına rağmen, aynı bina için yatay yük hesaplarında, rüzgar yükü hesaba katılmadığından, binaya etki eden toplam yatay kuvvet azalmıştır (146.85 kN < 150.87 kN) fakat, katlara dağılımı değişmiştir.

Bu neticeler sonunda yapılan hesaplara göre TS-2 ve TS-1'in boyutlandırılmasında çok büyük farklılıklar oluşmamıştır. S501 ve S505 kolonlarında kullanılan 4Φ16 boyuna donatılarının, 4Φ18 olarak arttırılması gerektiği bulunmuştur. Bunun dışında, 1968 deprem yönetmeliğinde yer alan konstrüktif kurallar gereğince düğüm noktaları civarında kolon ve kirişlerde etriye sıklaştırması yapılmıştır. Kirişlerde kolon yüzünden, kolonlarda ise döşeme üst ve kiriş alt kotundan başlanarak, kiriş yüksekliği h=60cm. kadarlık bir bölgedeki etriye aralıkları, elemanların orta bölgesinde bulunan etriye aralıklarının yarısı kadar olacak şekilde sıklaştırılmıştır.

5.2.3 TS-3'ün boyutlandırılması

TS-3, TS-500 1975 ve ABYYHY-1975'e göre boyutlandırılmıştır, [20, 23, 28, 29].

1968 deprem yönetmeliğine göre yapının deprem katsayısı C,

Co = 0.80, K = 0.80, S = 1.00, I = 1.00

olmak üzere C = $0.80 \times 0.80 \times 1.00 \times 1.00 = 0.064$ 'tür.

Toplam deprem kuvveti $F = W \times C = 3605.36 \times 0.064 = 230.74$ kN'dur.

Deprem kuvvetinin, kat yükseklikleri ve kat ağırlıklarının çarpımı ile orantılı olarak katlara dağılımı Çizelge 5.7'de verilmiştir.

Kat	W _i (kN)	$H_i(m)$	$\begin{array}{l} W_i \cdot H_i \\ (kNm) \end{array}$	$F_{i} = F \frac{W_{i} \cdot H_{i}}{\sum W_{i} \cdot H_{i}}$
5	477.60	15	7164.00	54.33
4	760.43	12	9125.16	69.21
3	775.89	9	6983.01	52.96
2	792.38	6	4754.28	36.06
1	799.06	3	2397.18	18.18
Σ	3605.36	-	30423.63	230.74

Çizelge 5.7 : TS-3 deprem kuvvetlerinin katlara göre dağılımı.

Yapılan hesaplar sonucunda bulunan kolon ve kiriş boyutları ile donatıları Çizelge 5.8 ve 5.9'da verilmiştir.

			Dorumo	Enine Dona	Enine Donatı (mm/mm)		
Kat	Kolon	b = h (cm)	Donatı	Orta Bölge	Sarılma Bölgesi	u (cm)	
	S501	25	4Φ18	Φ8/125	$\Phi 8/60$	3	
	S502	30	$4\Phi 18$	$\Phi 8/150$	$\Phi 8/75$	3	
5	S503	30	4Φ18	Φ8/150	$\Phi 8/75$	3	
	S504	30	$4\Phi 18$	$\Phi 8/150$	$\Phi 8/75$	3	
	S505	25	4Φ18	Φ8/125	$\Phi 8/60$	3	
	S401	35	4Φ26	Φ10/175	Φ10/85	4	
	S402	35	4Φ20	Φ8/175	$\Phi 8/85$	4	
4	S403	35	4Φ20	$\Phi 8/175$	$\Phi 8/85$	4	
	S404	35	4Φ20	$\Phi 8/175$	$\Phi 8/85$	4	
	S405	35	4Φ26	Φ10/175	Φ10/85	4	
	S301	35	4Φ26	Φ10/175	Φ10/85	4	
	S302	40	4Φ24	Φ8/200	$\Phi 8/100$	4	
3	S303	40	4Φ24	$\Phi 8/200$	$\Phi 8/100$	4	
	S304	40	4Φ24	Φ8/200	$\Phi 8/100$	4	
	S305	35	4Φ26	Φ10/175	Φ10/85	4	
	S201	35	4Φ26	Φ10/175	Φ10/85	4	
	S202	45	4Φ26	Φ10/200	Φ10/100	4	
2	S203	45	4Φ26	Φ10/200	Φ10/100	4	
	S204	45	4Φ26	Φ10/200	Φ10/100	4	
	S205	35	4Φ26	Φ10/175	Φ10/85	4	
	S101	35	4Φ26	Φ10/175	Φ10/85	4	
	S102	45	4Φ30	Φ10/200	Φ10/100	4	
1	S103	45	4Φ30	Φ10/200	Φ10/100	4	
	S104	45	4Φ 3 0	Φ10/200	Φ10/100	4	
	S105	35	4Φ26	Φ10/175	Φ10/85	4	

Çizelge 5.8 : TS-3 kolon boyutları ve donatıları.

		E	oyutla	ar		Donati				
Kiriş	h	h	h.	h	ď			Boyuna Donatı	Enine (mm/	Donatı (mm)
,	(cm)	(cm)	(cm)	(cm)	(cm)	(cm) Yer		Üst	Orta Bölge	Uç Bölge
						SOL	3Φ14	50014		- 0-
K501	20	60	12	107	4	ORTA	5Φ14	2 Φ 14	Φ8/200	$\Phi 8/100$
						SAĞ	5 Φ 14	<u>8</u> 014	-	
						SOL	5Φ14	<u>8</u> Φ14		
K502	20	60	12	90	4	ORTA	5Φ14	2Φ14	Φ8/200	$\Phi 8/100$
						SAĞ	4Φ14	8Φ14		
						SOL	4Φ14	8 Φ14		
K503	20	60	12	90	4	ORTA	5Φ14	2Φ14	Φ8/200	$\Phi 8/100$
	l					SAĞ	5Φ14	8Φ14		
						SOL	5Φ14	8Φ14		
K504	20	60	12	107	4	ORTA	6Φ14	2Φ14	Φ8/200	$\Phi 8/100$
						SAĞ	3Ф14	5Φ14		
						SOL	3 Φ16	4Φ14+3Φ16+1Φ18		
K401	30	60	12	117	4	ORTA	6Φ16	4Φ14	Φ8/160	Φ8/80
						SAĞ	6Φ16	4014+8016	-	
						SOL	6Φ16	4Φ14+8Φ16		
K402	30	60	12	100	4	ORTA	6Φ16	4Φ14	Φ8/160	$\Phi 8/80$
						SAĞ	6Φ16	4014+7016		
						SOL	6Φ16	4014+7016		
K403	30	60	12	100	4	ORTA	6Φ16	4Φ14	$\Phi 8/160$	$\Phi 8/80$
						SAĞ	6Φ16	4 Φ 14+8 Φ 16		
						SOL	6Φ16	4Φ14+8Φ16		
K404	30	60	12	117	4	ORTA	6Φ16	$4\Phi14$	$\Phi 8/160$	$\Phi 8/80$
						SAĞ	3Ф16	4014+3016+1018		
						SOL	3Ф16	4014+3016+1018		
K201	30	65	12	117	4	ORTA	6Φ16	4Φ14	Φ8/160	$\Phi 8/80$
						SAĞ	6Φ16	4014+8016		
						SOL	6Φ16	4Φ14+8Φ16		
K202	30	65	12	100	4	ORTA	6Φ16	4Φ14	$\Phi 8/160$	$\Phi 8/80$
						SAĞ	6Φ16	$4\Phi 14 + 7\Phi 16$		
						SOL	6Φ16	4Φ14+7Φ16		
K203	30	65	12	100	4	ORTA	6Φ16	4Φ14	Φ8/160	Φ8/80
						SAĞ	6Φ16	4Φ14+8Φ16		
						SOL	6Φ16	4Φ14+8Φ16	4	
K204	30	65	12	117	4	ORTA	6Φ16	4Φ14	Φ8/160	Φ8/80
						SAĞ	3 Φ16	4014+3016+1018		

Çizelge 5.9 : TS-3 kiriş boyutları ve donatıları.

Çizelge 5.9'da yer almayan üçüncü kat kirişleri, dördüncü kat ile; birinci kat kirişleri ise ikinci kat kirişleri ile aynıdır.

Etriye sıklaştırması, kirişlerde kolon yüzünden başlanarak kiriş yüksekliğinin 2 katı, kolonlarda ise döşeme üst ve kiriş alt kotundan başlanarak 50cm. uzunluğunda bir bölgede yapılmıştır.

5.2.4 TS-1, TS-2 ve TS-3'ün karşılaştırılması

Düşey ve yatay yükler altında boyutlandırılması yapılan yapı sistemleri TS-1, TS-2 ve TS-3'ün genel yapı karakteristikleri bakımında karışılaştırılması Çizelge 5.10'da verilmiştir.

		TS-1	TS-2	TS-3
Bina Toplam Ağırlığı	(kN)	4155.30	4155.30	4257.29
Hareketli Yük Azaltm	a Katsayısı	0.50	0.50	0.30
Deprem Hesabına Esa Ağırlığı (kN)	s Bina	3671.35	3671.35	3605.36
Yönetmeliklerde Veri Formüllere Göre Bina	len Periyodu (s)	-	0.275	0.275
Deprem Katsayısı		0.0324	0.0400	0.0640
Yatay Kuvvetler	Deprem	118.95	146.85	230.74
(kN)	Rüzgar	31.92	-	-
Toplam Yatay Kuvvet	tler (kN)	150.87	146.85	230.74
Yatay Kuvvetlerin Ka Dağılımı	tlara	Uniform	Ters Üçgen	Ters Üçgen
Depremli Durumda En Gerilmeleri Artış Oran	mniyet 11	%50	%50	%33
Betonarme Hesap Yör	ntemi	Emniyet Gerilmeleri Yöntemi		
Malzeme Emniyet Ge	rilmeleri		Aynı	

Çizelge 5.10 : TS-1, TS-2 ve TS-3'ün karşılaştırılması.

Çizelge 5.10'dan ve ayrıca bölüm 5.2.1 ve 5.2.2' den anlaşıldığı üzere TS-1 ve TS-2 arasında önemli farklılıklar meydana gelmemiştir. Bundan sonraki bölümde, TDY 2007'ye göre bina deprem performanslarının belirlenmesinde, TS-1 ve TS-2 birlikte ele alınacaktır. Daha fazla konstrüktif esaslar içeren 1968 deprem yönetmeliğine göre boyutlandırılan TS-2'nin, 1961 deprem yönetmeliğine göre boyutlandırılan TS-1'i de temsil ettiği varsayılacaktır.

5.3 Boyutlandırılan Binaların Deprem Performansının Doğrusal Elastik Eşdeğer Deprem Yükü Yöntemi İle Belirlenmesi

TS-2 ve TS-3 Bölüm 3.6.2.2'de açıklanan şartları sağladığından dolayı, doğrusal elastik hesap yöntemi olarak eşdeğer deprem yükü yöntemi kullanılacaktır.

5.3.1 TS-2'nin deprem performansının belirlenmesi

Boyutlandırılması Bölüm 5.2.2'de yapılmış olan TS-2'nin bina geometrisi, eleman detayları ve malzeme özellikleri tam olarak bilindiğinden dolayı bina bilgi düzeyi kapsamlıdır ve bilgi düzeyi katsayısı 1.00 alınmıştır. Çizelge 3.1.

TS-2'nin hesap modeli SAP2000 [12] yapı analiz programı ile hazırlanmıştır.

Boyutlandırılmada esas alınan yükler bina yükleri olarak kabul edilmiştir.

Boyutlandırmada kullanılan yapı malzemeleri güncel yönetmeliklerdeki yapı malzemelerine uygun olarak değiştirilmiştir. BS160 ve BIIb beton sınıfı, C14 beton sınıfı olarak gözönüne alınmıştır.

Hesaplarda sırası ile, etkin eğilme rijitlikleri ve eşdeğer deprem yükleri bulunmuş, daha sonra kiriş ve kolonların hasar bölgeleri belirlenmiş ve kolon-kiriş bölgesinde kesme kontrolü ile göreli kat ötelemeleri kontrolü yapılmıştır.

• Etkin eğilme rijitliklerinin bulunması

Çatlamamış kesitleri ait (EI)_o eğilme rijitliklerinin kullanıldığı ve deprem hesabında esas alınan toplam kütlelerle uyumlu yüklerin (G+nQ) gözönüne alındığı bir ön düşey yük hesabı ile kolonların N_D eksenel kuvvetleri ve N_D / (A_c f_{cm}) değerleri hesaplanır.

 $N_D \,/\, (A_c \,\, f_{cm}) \,{\leq}\, 0.10$ durumunda: (EI)_e = 0.40 (EI)_o

 $N_D\,/\,(A_c\,f_{cm}) \geq 0.40$ durumunda: $(EI)_e = 0.80~(EI)_o$

olmak üzere ve kolonların etkin eğilme rijitlikleri ara değerler için doğrusal enterpolasyon yapılmak suretiyle hesaplanır. Çizelge 5.11.

Kirişler için ise etkin eğilme rijitlikleri, çatlamamış kesit rijitliklerinin 0.40 katı olarak alınır.

Bulunan etkin eğilme rijitlikleri yapının hesap modelinde kullanılır.

Kat	Kolon	N _D (kN)	$A_{c} f_{cm} (kN)$	$N_D / (A_c f_{cm})$	(EI) _e / (EI) _o
	S501	55.52	875	0.063	0.40
	S502	133.19	875	0.152	0.47
5	S503	123.22	875	0.141	0.45
	S504	133.19	875	0.152	0.47
	S505	55.52	875	0.063	0.40
	S401	140.83	1260	0.112	0.42
	S402	331.45	1260	0.263	0.62
4	S403	307.88	1260	0.244	0.59
	S404	331.45	1260	0.263	0.62
	S405	140.83	1260	0.112	0.42
	S301	226.56	1260	0.180	0.51
	S302	531.22	1715	0.310	0.68
3	S303	494.22	1715	0.288	0.65
	S304	531.22	1715	0.310	0.68
	S305	226.56	1260	0.180	0.51
	S201	314.95	1715	0.184	0.51
	S202	736.41	2835	0.260	0.61
2	S203	686.62	2835	0.242	0.59
	S204	736.41	2835	0.260	0.61
	S205	314.95	1715	0.184	0.51
	S101	403.01	1715	0.235	0.58
	S102	941.42	2835	0.332	0.71
1	S103	878.44	2835	0.310	0.68
	S104	941.42	2835	0.332	0.71
	S105	403.01	1715	0.235	0.58

Çizelge 5.11 : TS-2 kolonlar için etkin eğilme rijitlikleri.

• Eşdeğer deprem yükünün hesaplanması

Toplam taban kesme kuvveti Vt aşağıda verilen denklem ile hesaplanır.

$$V_t = \lambda \cdot W \cdot \frac{A_0 \cdot I \cdot S(T)}{R_a(T)}$$
(5.1)

Denklem ile ilgili büyüklükler;

$$\label{eq:lambda} \begin{split} \lambda &= 0.85 \\ W &= (~G + nQ) = (G + 0.3Q) = 3535.32~kN \\ A_o &= 0.4~(1.~derece~deprem~bölgesi) \end{split}$$

I = 1

Zemin Sınıfı= Z2 (
$$T_A$$
= 0.15s T_B = 0.40s)
 T_1 = 1.02259 s
 $S(T_1) = 2.5 \times (0.4 / 1.02259)^{0.8} = 1.1798$
 $R_a(T_1) = 1$

olmak üzere $V_t = 1418.19$ kN olarak hesaplanır.

Denklem 5.1'de hesaplanan toplam eşdeğer deprem yükü, bina katlarına etkiyen eşdeğer deprem yüklerinin toplamı olarak Denklem 5.2 ile ifade edilir.

$$V_t = \Delta F_N + \sum_{i=1}^N F_i$$
(5.2)

Binanın N'inci katına (tepesine) etkiyen ek eşdeğer deprem yükü ΔF_N 'in değeri Denklem 5.3 ile izleyen şekilde belirlenmiştir.

$$\Delta F_{N} = 0.0075 \times N \times V_{t}$$

$$\Delta F_{N} = 0.0075 \times 5 \times 1418.19 = 53.18 \text{ kN}$$
(5.3)

 $Vt - \Delta F_N = 1418.19 - 53.18 = 1365.01 \text{ kN}$

Toplam eşdeğer deprem yükünün ΔF_N dışında geri kalan kısmı, N'inci kat dahil olmak üzere, bina katlarına Denklem 5.4 ile dağıtılmıştır. Çizelge 5.12.

$$F_{i} = (V_{t} - \Delta F_{N}) \frac{w_{i} H_{i}}{\sum_{j=1}^{N} w_{j} H_{j}}$$
(5.4)

Kat	W _i (kN)	$H_{i}(m)$	W _i × H _i (kNm)	$F_{i} = (V_{t} - \Delta F_{N}) \frac{W_{i} H_{i}}{\sum_{j=1}^{N} W_{j} H_{j}}$ (kN)	$\begin{array}{c} F_i + \Delta F_n \\ (kN) \end{array}$
5	489.32	15	7339.80	333.74	386.92
4	746.19	12	8954.28	407.15	407.15
3	754.17	9	6787.53	308.63	308.63
2	767.10	6	4602.60	209.28	209.28
1	778.54	3	2335.62	106.20	106.20
		Σ	30019.83	1365.01	1418.19

Çizelge 5.12 : TS-2 deprem kuvvetlerinin katlara dağıtılması.

• Kirişlerin hasar bölgelerinin belirlenmesi

Kirişlerin hasar sınırlarının belirlenmesi için öncelikle kirişlerin moment ve kesme kapasiteleri hesaplanır.

Kiriş moment kapasiteleri Şekil 5.2 gösterilen şekilde ve denklem 5.5, 5.6, 5.7 ve 5.8 ile elde edilir, [30, 31]. Kiriş moment kapasitesi hesabında basınç donatılarının etkisi tarafsız eksen x'in uzunluğunun kısa olmasından dolayı dikkate alınmamıştır.

Şekil 5.2 : Basit eğilme durumunda kiriş iç kuvvetleri.

$$\mathbf{F}_{c} = 0.85 \times \mathbf{f}_{cm} \times \mathbf{b}_{w} \times \mathbf{a} \tag{5.5}$$

$$\mathbf{F}_{s} = \mathbf{A}_{s} \times \mathbf{f}_{ym} \tag{5.6}$$

$$\mathbf{F}_{c} = \mathbf{F}_{s} \tag{5.7}$$

$$M_{K} = F_{s} \times (d - 0.5a) = A_{s} \times f_{ym} \times (d - 0.5a)$$
(5.8)

Kirişlerin kesme dayanımı ise Denklem 5.9 ve 5.10'da verilen şekilde hesaplanır.

$$V_r = 0.8 \times V_{cr} + V_w = (0.8 \times 0.65 \times f_{ctm} \times b_w \times d) + (A_{sw} \times f_{ywm} \times d / s)$$
(5.9)

$$\mathbf{V}_{r max} = 0.22 \times \mathbf{f}_{cm} \times \mathbf{b}_{w} \times \mathbf{d}$$
(5.10)

Kirişlerin eğilme ve kesme kapasitesi belirlendikten sonra kırılma türünün belirlenmesi için elemanın kritik kesitlerinde eğilme kapasitesi ile uyumlu olarak hesaplanan kesme kuvveti V_e , depremin soldan sağa veya sağdan sola etkimesi durumları için ayrı ayrı ve elverişsiz sonuç verecek şekilde Denklem 5.11 ile hesaplanır. Şekil 5.3. V_e 'nin hesabında pekleşmeli taşıma gücü momentleri yerine taşıma gücü momentleri kullanılır.

$$V_{e} = V_{dy} \pm (M_{pi} + M_{pj}) / l_{n}$$
(5.11)

Şekil 5.3 : Eğilme kapasitesi ile uyumlu kesme kuvveti.

Düşey yükler ile birlikte $R_a=1$ alınarak depremli durum için hesaplanan kesme kuvvetinin V_e 'den küçük olması durumunda, V_e yerine bu kesme kuvveti kullanılır.

Kesitlerin sünek olarak nitelendirilebilmesi için hesaplanan V_e değerinin TS-500'e [31] göre hesaplanan kesme dayanımı V_r 'yi aşmaması gerekir.

Kırılma türü belirlendikten sonra etki kapasite oranları (r) hesap edilir. Etki kapasite oranı r, R_a =1 olarak alınan deprem etkisi altında hesaplanan kesit eğilme momentinin (M_E), kesitin artık eğilme momenti kapasitesine (M_A) bölünmesi ile elde edilir. Denklem 5.13. Artık eğilme momenti kapasitesi ise kesitin eğilme momenti kapasitesi (M_K) ile düşey yükler altında kesitte hesaplanan moment (M_D) etkisinin farkıdır. Denklem 5.12. Etki kapasite oranı bulunurken kullanılacak eğilme momenti kapasitesi değerleri, depremin yönü ile uyumlu olacak şekilde alınmalıdır. Uygulanan deprem yönünde kesitte depremden dolayı oluşan eğilme momenti (M_E) pozitif ise, kesitin eğilme momenti kapasitesi (M_K) pozitif, negatif ise negatif alınır.

$$\mathbf{M}_{\mathrm{A}} = \mathbf{M}_{\mathrm{K}} - \mathbf{M}_{\mathrm{D}} \tag{5.12}$$

$$r = \frac{M_E}{M_A} = \frac{M_E}{M_K - M_D}$$
(5.13)

r katsayıları hesaplandıktan sonra, kesitlerin hasar sınırlarının belirlenmesi için Çizelge 3.3'de yer alan kesitin donatı oranı (ρ - ρ' / ρ_b) ve kesme kuvveti etkisi (V_e / $b_w df_{cm}$) değerleri ve kesitin sargılama durumu belirlenir. Bu değerlerin depremin yönü ile uyumlu olmasına dikkat edilir. Her bir kesit için, depremin her iki yönü de ayrı ayrı dikkate alınarak Çizelge3.3'e göre kesit hasar sınırları belirlenir. Çizelgedeki ara değerler için doğrusal enterpolasyon yapılır. K101 kirişi ile ilgili hesaplamalar örnek olarak aşağıda verilmiştir.

Sol uç için pozitif eğilme momenti kapasitesi M_Kizleyen şekilde bulunur.

$$F_c = F_s 0.85 \times 14 \times 250 \times a = 509 \times 220 \implies a=37.64 \text{ mm}$$

 $M_{K} = 509 \times 220 \times (560 - 0.5 \times 37.64) = 60601336 \text{ Nmm} = 60.60 \text{ kNm}$

Sol uç için negatif eğilme momenti kapasitesi M_K izleyen şekilde bulunur.

$$F_c = F_s 0.85 \times 14 \times 250 \times a = 920 \times 220 \implies a=68.03 \text{ mm}$$

 $M_{K} = 920 \times 220 \times (560 - 0.5 \times 68.03) = 106459364 \text{ Nmm} = 106.45 \text{ kNm}$

Sağ uç için pozitif eğilme momenti kapasitesi M_K izleyen şekilde bulunur.

 $F_c = F_s 0.85 \times 14 \times 250 \times a = 817 \times 220 \implies a=60.42 \text{ mm}$

 $M_{K} = 817 \times 220 \times (560 - 0.5 \times 60.42) = 95224454 \text{ Nmm} = 95.22 \text{ kNm}$

Sağ uç için negatif eğilme momenti kapasitesi M_K izleyen şekilde bulunur.

 $F_c = F_s 0.85 \times 14 \times 250 \times a = 1891 \times 220 \implies a=139.84 \text{ mm}$

 $M_{K} = 1891 \times 220 \times (560 - 0.5 \times 139.84) = 203883361 \text{ Nmm} = 203.88 \text{ kNm}$

K101 kirişi için kesme kapasitesi V_r ve V_{rmax} izleyen şekilde hesaplanır.

$$V_r = 0.8 \times V_{cr} + V_w = (0.8 \times 0.65 \times 1.3 \times 250 \times 560) + (100 \times 220 \times 560 / 85) =$$

= 239581 N = 239.58 kN

 $V_{r max} = 0.22 \times 14 \times 250 \times 560 = 431200 \text{ N} = 431.2 \text{ kN}$

Depremin soldan sağa doğru, +x yönünde etkimesi durumu için V_e'nin hesabı aşağıda verilmiştir. Depremin soldan sağa etkimesi durumunda kirişin sol ucunda pozitif, sağ ucunda ise negatif eğilme momenti oluşmaktadır. Hesapta dikkate alınan M_{pi} ve M_{pj} momentlerinin işaretleri deprem yönü ile uyumlu olarak gözönüne alınmıştır. Moment ve kesme kuvveti yönleri, +x yönlü deprem için Şekil 5.3'te kesikli çizgi ile gösterilen yönlerdir.

K101 kirişinin sol ucu için,

 $V_e = 79.60 - (60.60 + 203.88) / 5.60 = 32.37 \text{ kN}$

sağ ucu için ise,

 $V_e = 99.20 + (60.60 + 203.88) / 5.60 = 146.43$ kN olarak hesaplanır.

Düşey yükler ile birlikte deprem etkisinin gözönüne alındığı durum (G+nQ+E) için kesitlerde hesaplanan kesme kuvveti değerleri sol uçta 65.26 kN ve sağ uçta 244.06kN'dur. Bu değerler hesaplanan V_e kesme kuvvetlerinden daha küçük olmadığı için hesaplarda V_e değerleri kullanılacaktır.

Bulunan V_e değerleri, kiriş kesme kapasitesi V_r 'den küçük olduğundan dolayı kesitin kırılma tipi sünek olarak belirlenmiştir.

Etki kapasite oranı (r) belirlenirken +x yönündeki deprem durumunda kirişin sol ucunda depremde pozitif moment oluşmaktadır. Bu nedenle sol uç için kiriş moment kapasitesi pozitif moment kapasitesi olarak alınmıştır. Sağ uç için ise deprem durumunda negatif moment oluşmaktadır ve kiriş moment kapasiteside bu durum ile uyumlu olarak gözönüne alınmıştır. K101 kirişinin etki kapasite oranları, moment değerleri işaretleri ile verilmek üzere izleyen şekilde hesaplanır.

Sol uçta depremde oluşan moment $M_E = 406.43$ kNm, düşey yüklerden (G+nQ) oluşan moment $M_D = -47.17$ kNm ve pozitif moment kapasitesi $M_K = 60.60$ kNm'dir. Buna göre sol uçta r = 406.43 / (60.60 – (-47.17)) = 3.77 olarak hesaplanır.

Sağ uçta depremde oluşan moment $M_E = -462.72$ kNm, düşey yüklerden (G+nQ) oluşan moment $M_D = -105.96$ kNm ve negatif moment kapasitesi $M_K=203.88$ kNm'dir. Buna göre sağ uçta r = -462.72 / (-203.88 - (-105.96)) = 4.73 olarak hesaplanır.

Donatı oranının hesaplanmasında depremin yönü dikkate alınır. K101 kirişi için, +x yönündeki deprem için pozitif moment oluşan sol uçta alt donatı çekme donatısı, üst donatı ise basınç donatısı olarak çalışır. Negatif moment oluşan sağ uçta ise üst donatı çekme donatısı, alt donatı ise basınç donatısı olarak çalışır. K101 kirişinin donatı oranı izleyen şekilde hesaplanır.

Dengeli donatı oranı ρ_b izleyen şekilde hesaplanır. Denklem 5.14, 5.15.

$$\frac{x}{d} = \frac{0.003}{0.003 + 0.0011} = 0.7317$$
(5.14)

$$\rho_{\rm b} = 0.85 \frac{f_{\rm cm}}{f_{\rm ym}} k 1 \frac{x}{d}$$
(5.15)

$$\rho_{\rm b} = 0.85 \times \frac{14}{220} 0.85 \times 0.7317 = 0.0336$$

Sol uç için donatı oranı:

$$\frac{\frac{5.09}{25 \times 56} - \frac{9.20}{25 \times 56}}{0.0336} = -0.087$$

Sağ uç için donatı oranı:

$$\frac{\frac{18.91}{25 \times 56} - \frac{8.17}{25 \times 56}}{0.0336} = 0.228 \text{ olarak hesaplanır.}$$

Sol ve sağ uçlar için hesaplanan V_e değerleri, $b_w d f_{ctm}$ değerlerine bölünerek aşağıda gösterildiği şekilde boyutsuz kesme kuvveti etkisi hesaplanır.

$$\frac{V_{e}}{b_{w}df_{ctm}} = \frac{32.37 \times 1000}{250 \times 560 \times 1.3} = 0.178 \,(\text{sol uç})$$
(5.16a)

$$\frac{V_{e}}{b_{w}df_{cm}} = \frac{146.43 \times 1000}{250 \times 560 \times 1.3} = 0.805 \text{ (sağ uç)}$$
(5.16b)

Kirişlerin kesit hasar sınırlarının belirlenmesi için etki/kapasite oranı, sargılama durumu, donatı oranı ve kesme kuvveti etkisi birlikte gözönüne alınarak Çizelge 3.3'e göre değerlendirilir. K101 kirişinin sol ucunda etki/kapasite oranı, donatı oranı ve kesme kuvveti etkisi değerleri sırasıyla 3.77, -0.087 ve 0.178 olarak bulunmuştur. Sağ uçta ise aynı değerler 4.73, 0.228 ve 0.805 olarak bulunmuştur. TS-2'de yer alan tüm kirişlerin sargılanma durumları TDY 2007'de belirtilen gerekli sargılanma şartlarını sağlamadığından dolayı yok olarak belirlenmiştir. Bütün bu verilerin Çizelge 3.3'e göre değerlendirilmesi sonucunda, K101 kirişinin sol ucunun hasar sınırı MN ve GV arasında, sağ ucunun hasar sınırının ise GV ve GÇ arasında olduğu görülmektedir. Bu durumda, +x yönündeki deprem için K101 kirişinin sol ucu belirgin hasar bölgesinde, sağ ucu ise ileri hasar bölgesinde yer almaktadır. Kirişin hasar bölgesi ise en çok hasar gören kesite göre belirlenir yani K101 kirişinin ileri hasar bölgesinde olduğu söylenebilir.

Yukarıda K101 kirişi için yapılan hesaplar, +x yönündeki deprem için TS-2 'nin tüm kirişlerine yapılmıştır. Bu hesaplarla ilgili tüm değerler Çizelge A.1 – A.6'da verilmiştir.

TS-2'nin kiriş kesitlerinde oluşan hasarlar ve kiriş hasar bölgeleri Çizelge 5.13'te topluca verilmiştir.

Kiriş	Uç	+x Yönlü Depremde Kesit Hasar Bölgeleri	-x Yönlü Depremde Kesit Hasar Bölgeleri	Elverişsiz Kesit Hasar Bölgeleri	Eleman Hasar Bölgeleri
K501	Sol	MHB	MHB	MHB	MHB
	Sağ	MHB	MHB	MHB	
K502	Sol	MHB	MHB	MHB	MHB
	Sağ	MHB	MHB	MHB	
K503	Sol	MHB	MHB	MHB	MHB
	Sağ	MHB	MHB	MHB	
K504	Sol	MHB	MHB	MHB	MHB
	Sağ	MHB	MHB	MHB	
K401	Sol	BHB	BHB	BHB	BHB
	Sağ	BHB	MHB	BHB	
K402	Sol	MHB	MHB	MHB	MHB
	Sağ	MHB	MHB	MHB	
K403	Sol	MHB	MHB	MHB	MHB
	Sağ	MHB	MHB	MHB	
K404	Sol	MHB	BHB	BHB	BHB
	Sağ	BHB	BHB	BHB	
K301	Sol	BHB	İHB	İHB	İHB
	Sağ	İHB	MHB	İHB	
K302	Sol	MHB	BHB	BHB	İHB
	Sağ	İНВ	MHB	İΗΒ	
K303	Sol	MHB	İНВ	İΗΒ	İHB
	Sağ	BHB	MHB	BHB	
K304	Sol	MHB	İHB	İHB	İHB
	Sağ	İHB	BHB	İHB	
K201	Sol	BHB	GB	GB	GB
	Sağ	İHB	MHB	İHB	
K202	Sol	BHB	İHB	İHB	İHB
	Sağ	İHB	BHB	İHB	
K203	Sol	BHB	İHB	İHB	İHB
	Sağ	İHB	BHB	İHB	
K204	Sol	MHM	İHB	İHB	GB
	Sağ	GB	BHB	GB	
K101	Sol	BHB	GB	GB	GB
	Sağ	İHB	MHB	İHB	
K102	Sol	BHB	İHB	İHB	İHB
	Sağ	İHB	BHB	İHB	
K103	Sol	BHB	İHB	İHB	İHB
	Sağ	İHB	BHB	İHB	
K104	Sol	MHB	İHB	İHB	GB
	Sağ	GB	BHB	GB	

Çizelge 5.13 : TS-2 kiriş hasar bölgeleri.

TS-2 sistem geometrisi, eleman boyutları ve donatıları ve yükleri bakımından simetriye sahiptir. Sistemin simetrik olmasından dolayı, +x ve -x yönlerinden uygulanan deprem kuvvetleri sonucunda kiriş kesitlerinde oluşacak hasarlarda simetrik olacaktır. +x yönündeki deprem için K101 kirişinin sol ucunda oluşacak olan hasar, -x yönündeki deprem için K104 kirişinin sağ ucunda oluşacak olan hasarla aynı olacaktır. Aynı mantıkla, K101'nin sağ ucu ile K104'ün sol ucunda da tersinir yöndeki depremlerde aynı hasarın oluşacağı söylenebilir. Sonuç olarak farklı yönlerde uygulanan depremlerde, kenar kirişler kendi aralarında, orta kirişlerde kendi aralarında aynı hasarı göreceklerdir. Bu durumda sadece bir yönde uygulanan deprem etkisi altında kiriş kesitlerinin hasar bölgeleri bulunacaktır. Simetrik kesitlerde, uygulanan deprem yönünde oluşacak elverişsiz kesit hasarı, simetrik her iki kesitin hasarı olarak belirlenecektir.

• Kolonların hasar bölgelerinin belirlenmesi

Kolonların hasar bölgelerinin belirlenmesi, kolonların hem eğilme momenti hem de eksenel kuvvet altında çalışmasından dolayı kirişlerinkinden daha farklıdır. Etki kapasite oranının bulunması için hesaplanan moment kapasiteleri, basit eğilme kapasiteleri olmayıp normal kuvvet moment etkileşiminden bulunan moment kapasiteleridir.

Kolonların kırılma türlerinin belirlenmesi, kirişlerinki ile aynı şekildedir. Kırılma türü eğilme ise sünek, kesme ise gevrek olarak sınıflandırılır. Kolonların kesme dayanımı V_r , Denklem 5.9 ile hesaplanır. Kolonların sünek eleman olarak sayılabilmeleri için kolonların kritik kesitlerinde eğilme kapasitesi ile uyumlu olarak hesaplanan kesme kuvveti V_e 'nin, V_r 'yi aşmaması gerekmektedir.

Kolonlarda Ve kesme kuvvetinin hesabı Denklem 5.17 ile yapılır.

$$V_{e} = (M_{a} + M_{ij}) / l_{n}$$
(5.17)

Denklem 5.17'de bulunan M_a ve $M_{\ddot{u}}$ kolonun alt ve üst uçlarındaki eğilme momenti kapasiteleridir. Bu moment kapasiteleri, depremin yönü ile uyumlu olarak G+nQ+E yük kombinasyonunda elde edilen normal kuvvet altındaki kolonun pekleşmesiz eğilme momenti kapasitesidir. Düşey yükler ile birlikte $R_a=1$ alınarak depremden hesaplanan toplam kesme kuvvetinin V_e 'den küçük olması durumunda, V_e yerine bu kesme kuvveti kullanılır.

Kolonların etki kapasite oranlarının (r) bulunması için Şekil 5.4'te görülen uygun biçimde doğrusallaştırılmış kolon etkileşim diyagramları kullanılır. Şekildeki D noktasının koordinatları, düşey yüklerden meydana gelen M_D - N_D çiftine karşı gelmektedir. D noktasından başlayan ve etkileşim diyagramının dışına çıkan ikinci doğru parçasının yatay ve düşey izdüşümleri ise, R_a =1 için deprem hesabından elde edilen ve depremin yönü ile uyumlu olan M_E - N_E çiftine karşı gelmektedir. İkinci doğru parçasının etkileşim diyagramını kestiği K noktasının koordinatları, kolon kesitinin moment kapasitesi M_K ve buna karşı gelen N_K eksenel kuvvetidir. Şekilde görülen iki diyagram, M_E 'nin işaretlerinin farklı olduğu iki ayrı durumu göstermektedir.

Şekil 5.4 : Kolon karşılıklı etki diyagramı.

Etki kapasite oranı r, $R_a=1$ olarak alınan deprem etkisi altında hesaplanan kesit eğilme momentinin (M_E), kesitin artık eğilme momenti kapasitesine (M_A) bölünmesi ile elde edilir. Denklem 5.19. Artık eğilme momenti kapasitesi ise kesitin eğilme momenti kapasitesi (M_K) ile düşey yükler altında kesitte hesaplanan moment (M_D) etkisinin farkıdır. Denklem 5.18. Etki kapasite oranı bulunurken kullanılacak eğilme momenti kapasitesi değerleri, depremin yönü ile uyumlu olacak şekilde alınmalıdır. Uygulanan deprem yönünde kesitte depremden dolayı oluşan eğilme momenti (M_E) pozitif ise, kesitin eğilme momenti kapasitesi (M_K) bu durum ile uyumlu olarak pozitif alınır.

$$\mathbf{M}_{\mathrm{A}} = \mathbf{M}_{\mathrm{K}} - \mathbf{M}_{\mathrm{D}} \tag{5.18}$$

$$r = \frac{M_E}{M_A} = \frac{M_E}{M_K - M_D}$$
(5.19)

r katsayıları hesaplandıktan sonra, kesitlerin hasar sınırlarının belirlenmesi için Çizelge 3.4'te yer alan kesitin normal kuvvet etkisi ($N_K / A_c f_{cm}$) ve kesme kuvveti etkisi ($V_e / b_w df_{cm}$) değerleri ve kesitin sargılama durumu belirlenir. Normal kuvvet ve kesme kuvveti etkisi değerlerinin depremin yönü ile uyumlu olmasına dikkat edilir. Her bir kesit için, depremin her iki yönü de ayrı ayrı dikkate alınarak Çizelge 3.4'e göre kesit hasar sınırları belirlenir. Çizelgedeki ara değerler için doğrusal enterpolasyon yapılır. Kesit hasar sınırlarının belirlenmesinin ardından, kesit hasar bölgeleri Şekil 3.1'e göre belirlenir.

S502 kolonu ile ilgili hesaplamalar örnek olarak aşağıda verilmiştir.

Kolonun kesme dayanımı V_r izleyen şekilde hesaplanır.

$$V_r = 0.8 \times V_{cr} + V_w = (0.8 \times 0.65 \times 1.3 \times 250 \times 220) + (56 \times 220 \times 220 / 75) =$$

 V_e kesme kuvvetinin hesabı için, kolonun alt ve üst uçlarındaki eğilme momenti kapasitesi hesaplanmalıdır. Eğilme momenti kapasitesinin hesaplanması için, düşey yüklerden (G+nQ) ve depremden (+EX) oluşan kesit iç kuvvetleri ile düşey yükler ile beraber deprem yüklerinin dikkate alındığı G+nQ+EX yük kombinasyonuna ait iç kuvvetler bulunmalıdır. Düşey yükler ve +X yönündeki depremden dolayı S502 kolonunun alt ve üst uçlarında oluşan iç kuvvet durumları ve bunların kombinasyonları aşağıda verilmiştir.

S502 kolonu üst uç iç kuvvetleri:

N (G+nQ) = -131.47 kN	M (G+nQ) = -1.80 kNm
N (EX)= -8.52 kN	M (EX) = -129.34 kNm
N (G+nQ+EX)= -139.99kN	M (G+nQ+EX)= -131.14 kNm
S502 kolonu alt uç iç kuvvetleri:	
N (G+nQ) = -136.15 kN	M (G+nQ)= 1.75 kNm
N (EX)= -8.52 kN	M (EX)= 125.60 kNm

N (G+nQ+EX)= -144.67 kN M (G+nQ+EX)= 127.35 kNm

S502 kolonunun karşılıklı etki diyagramı, malzeme güvenlik katsayıları ile azaltılmamış mevcut malzeme dayanımları kullanılarak bilgisayar yazılımı yardımı ile çizdirilir, [32].

Kolonun alt ve üst uçları için, G+nQ+EX yükleme kombinasyonundan bulunan normal kuvvet değerlerine karşı gelen, eğilme momenti değerleri karşılıklı etki diyagramından okunur.

 $(M, N)_{\text{üst}} = (27.08, -139.99)$

 $(M, N)_{alt} = (27.44, -144.67)$

S502 kolonunun alt ve üst uçlarında depremli duruma ait eğilme momenti kapasiteleri denklem 5.17'de yerine konularak V_e kesme kuvveti hesaplanır.

 $V_{e} = \left(M_{a} + M_{\ddot{u}}\right) / l_{n} = 27.44 + 27.08 / 2.40 = 22.72 \text{ kN}$

G+nQ+EX yük kombinsyonunda ilgili kolonda hesaplanan kesme kuvveti değeri V_e 'den daha büyük olduğundan dolayı, hesaplarda V_e kesme kuvveti kullanılacaktır. V_e kesme kuvveti değeri 22.72 kN, V_r kesme dayanımı değeri 73.32 kN'dan daha küçük olduğundan dolayı eleman sünek olarak sınıflandırılmıştır.

Etki kapasite oranının hesabında kullanılacak olan kolon eğilme momenti kapasiteleri (M_K), bilgisayar yardımı ile çizilen karşılıklı etki diyagramı ile G+nQ ve G+nQ+EX yük kombinasyonlarından elde edilem M-N çiftlerinin koordinatlarını birleştiren doğrunun kesim noktasının koordinatlarının grafik yöntemi ile bulunması ile elde edilir. Şekil 5.5'te kolonun üst ucu için yapılan hesap görülmektedir. Hesabın sonucunda M_K = -26.51 kNm ve N_K = -132.91 kN olarak bulunmuştur.

Şekil 5.5 : Kolon kapasite momentinin bulunması.

Benzer şekilde alt uç için yapılan hesap sonucunda $M_K = 27.17$ kNm ve $N_K = -137.80$ kN olarak bulunmuştur.

Üst uçta depremde oluşan moment $M_E = -129.34$ kNm, düşey yüklerden (G+nQ) oluşan moment $M_D = -1.80$ kNm ve moment kapasitesi $M_K = -26.51$ kNm'dir. Buna göre üst uçta r = -129.34 / (-26.51 - (-1.80)) = 5.23 olarak hesaplanır.

Alt uçta depremde oluşan moment $M_E = 125.60$ kNm, düşey yüklerden (G+nQ) oluşan moment $M_D = 1.75$ kNm ve moment kapasitesi $M_K = 27.17$ kNm'dir. Buna göre alt uçta r = 125.60 / (27.17 - 1.75)) = 4.94 olarak hesaplanır.

Normal kuvvet ve kesme kuvveti etkisi değerleri alt ve üst uç için aşağıda verilen şekilde hesaplanmıştır.

$$\frac{N_{K}}{A_{c}f_{cm}} = \frac{132.91 \times 1000}{250 \times 250 \times 14} = 0.152 \qquad (\text{üst uç})$$
(5.20.a)

$$\frac{N_{K}}{A_{c}f_{cm}} = \frac{137.80 \times 1000}{250 \times 250 \times 14} = 0.157 \qquad \text{(alt uç)}$$
(5.20.b)

$$\frac{V_{e}}{b_{w}df_{ctm}} = \frac{22.72 \times 1000}{250 \times 220 \times 1.3} = 0.318 \quad (alt ve \ üst \ uc)$$
(5.21)
Kolonların kesit hasar sınırlarının belirlenmesi için etki/kapasite oranı, sargılama durumu, normal kuvvet ve kesme kuvveti etkisi birlikte gözönüne alınarak Çizelge 3.4'e göre değerlendirilir. S502 kolonunun üst ucunda etki/kapasite oranı, normal kuvvet ve kesme kuvveti etkisi değerleri sırasıyla 5.23, 0.152 ve 0.318 olarak bulunmuştur. Alt uçta ise aynı değerler 4.94, 0.157 ve 0.318 olarak bulunmuştur. TS-2'de yer alan tüm kolonların sargılanma durumları TDY 2007'de belirtilen gerekli sargılanma şartlarını sağlamadığından dolayı yok olarak belirlenmiştir. Bütün bu verilerin Çizelge 3.4'e göre değerlendirilmesi sonucunda, S502 kolonunun alt ve üst uçlarının GÇ'yi aştığı görülmektedir. Bu durumda, +x yönündeki deprem için S502 kolonunun alt ve üst uçları göçme bölgesinde yer almaktadır. Kolonun hasar bölgesi ise en çok hasar gören kesite göre belirlenir. S502 kolonunun göçme bölgesinde olduğu söylenebilir.

TS-2 sistem geometrisi, eleman boyutları ve donatıları ve yükleri bakımından simetriye sahiptir. Sistemin simetrik olmasından dolayı, +x ve –x yönlerinden uygulanan deprem kuvvetleri sonucunda kolon kesitlerinde oluşacak hasarlarda simetrik olacaktır. +x yönündeki deprem için S101 kolonunun alt ucunda oluşacak olan hasar, -x yönündeki deprem için S105 kolonunun alt ucunda oluşacak olan hasarla aynı olacaktır. Aynı mantıkla, S101'in üst ucu ile S105'in üst ucunda da tersinir yöndeki depremlerde aynı hasarın oluşacağı söylenebilir. Sonuç olarak farklı yönlerden uygulanan depremlerde, kolon kesitleri simetrik olarak aynı hasarı göreceklerdir. Bu durumda sadece bir yönde uygulanan deprem etkisi altında kolon kesitlerinin hasar bölgeleri bulunacaktır. Simetrik kesitlerde, uygulanan deprem yönünde oluşacak elverişsiz kesit hasarı, simetrik her iki kesitin hasarı olarak belirlenecektir.

Yukarıda S502 kolonu için yapılan hesaplar, +x yönündeki deprem için TS-2 'nin tüm kolonlarına yapılmıştır. Bu hesaplarla ilgili tüm değerler Çizelge A.7 – A.11'de verilmiştir.

TS-2'nin kolon kesitlerinin ve kolonlarının hasar bölgeleri Çizelge 5.14'te topluca verilmiştir.

Kolon	Uç	+x Yönlü Depremde Kesit Hasar Bölgeleri	-x Yönlü Depremde Kesit Hasar Bölgeleri	Elverişsiz Kesit Hasar Bölgeleri	Eleman Hasar Bölgeleri	
\$501	Üst	BHB	GB	GB	CD	
5501	Alt	BHB	GB	GB	GD	
8502	Üst	GB	İHB	GB	CD	
5502	Alt	GB	İHB	GB	GB	
8502	Üst	GB	GB	GB	CD	
2202	Alt	GB	GB	GB	GB	
\$504	Üst	İHB	GB	GB	CP	
3304	Alt	İHB	GB	GB	OB	
\$505	Üst	GB	BHB	GB	GB	
3303	Alt	GB	BHB	GB	UD	
\$401	Üst	BHB	GB	GB	GB	
5401	Alt	BHB	GB	GB	CD	
\$402	Üst	GB	GB	GB	GB	
3402	Alt	GB	GB	GB	OB	
\$403	Üst	GB	GB	GB	GB	
3403	Alt	GB	GB	GB	CD	
\$404	Üst	Üst GB GB	GB	GB	GB	
-0+6	Alt	GB	GB	GB	CD	
\$405	Üst	GB	BHB	GB	GB	
5405	Alt	GB	BHB	GB	UD	
\$301	Üst	BHB	İНВ	İHB	GB	
5501	Alt	BHB	GB	GB	60	
\$302	Üst	GB	GB	GB	GB	
5502	Alt	GB	GB	GB	0.0	
\$303	Üst	GB	GB	GB	GB	
5505	Alt	GB	GB	GB	00	
\$304	Üst	GB	GB	GB	GB	
5501	Alt	GB	GB	GB	05	
\$305	Üst	İHB	BHB	ÍHB	GB	
	Alt	GB	BHB	GB	02	
S201	Üst	BHB	İHB	İHB	İHB	
	Alt	BHB	İHB	ÍHB		
S202	Üst	İHB	İHB	İHB	İHB	
5202	Alt	İHB	İHB	ÍHB		
S203	Ust	IHB	IHB	IHB	İHB	
	Alt	IHB	IHB	IHB		
S204	Ust	IHB	IHB	IHB	İHB	
	Alt	IHB	IHB	IHB		
S205	Ust	IHB	BHB	IHB	İНВ	
	Alt	IHB	BHB	IHB		
S101	Ust	BHB	IHB	IHB	İНВ	
	Alt	BHB	IHB	IHB		
S102	Ust	BHB	BHB	BHB	İHB	
	Alt			IHB		
S103		ВНВ	ВНВ	ВНВ	İHB	
	Alt					
S104		ВНВ	ВНВ	ВНВ	İHB	
	All Üct					
S105	0.St A 14	<u>IПD</u> jup			İHB	
	Alt	ІПД	рир	ІПЬ		

Çizelge 5.14 : TS-2 kolon hasar bölgeleri.

Kolon-kiriş birleşim bölgelerinde kesme güvenliğinin irdelenmesi

Betonarme kolon-kiriş birleşim bölgesinde Denklem 5.22 ile hesaplanan kesme kuvvetinin (Şekil 5.6.), denklem 5.23.a veya 5.23.b ile hesaplanan kesme dayanımını aşmaması gerekmektedir. $V_e > V_r$ olması durumunda birleşim bölgesi gevrek olarak hasar gören eleman olarak adlandırılır.

$$V_{e} = 1.25 f_{vk} (A_{s1} + A_{s2}) - V_{kol}$$
(5.22)

Kirişin kolona sadece bir taraftan saplandığı ve öbür tarafta devam etmediği durumlarda $A_{s2} = 0$ alınacaktır.

Kuşatılmış birleşimlerde
$$V_r = 0.60 b_j h f_{cm}$$
 (5.23.a)

Kuşatılmamış birleşimlerde
$$V_r = 0.45 b_j h f_{cm}$$
 (5.23.b)

Düğüm noktaları, i bulunduğu katı ve j soldan sağa kaçıncı nokta olduğunu göstermek üzere, ij indisleri ile adlandırılmıştır.

+X yönündeki deprem için 51 ve 52 numaralı birleşim bölgelerinde kesme kontrolü aşağıda gösterildiği üzere yapılmıştır. Hesaplarda V_{kol} değeri ihmal edilmiştir.

Birleşim bölgesi 51 için $A_{s1} = 509 \text{ mm}^2$ ve $A_{s2} = 0$ olmak üzere,

 $V_e = 1.25 \times 220 \times 509 = 139975 \text{ N}$ $V_r = 0.45 \times 250 \times 250 \times 14 = 393750 \text{ N}$

Birleşim bölgesi 52 için $A_{s1} = 735 \text{ mm}^2$ ve $A_{s2} = 1093 \text{ mm}^2$ olmak üzere,

$$V_e = 1.25 \times 220 \times (735 + 1093) = 502700 \text{ N}$$

 $V_r = 0.60 \times 250 \times 250 \times 14 = 525000 \text{ N}$

V_e < V_r şartı, dolayısıyla birleşim bölgelerinde kesme güvenliği sağlanmaktadır.

Şekil 5.6 : Kolon kiriş birleşim bölgesi.

Sistemin simetriye sahip olmasından dolayı sadece bir yöndeki deprem için hesap yapmak yeterlidir. TS-2'nin kolon-kiriş birleşim bölgelerinin tamamı kesme güvenliğini sağlamaktadır. Çizelge 5.15.

Birleşim Bölgesi	$As_1 (cm^2)$	As_2 (cm ²)	V _e (kN)	V _r (kN)	$V_e < V_r$
51	5.09	0.00	139.98	393.75	ok.
52	7.35	10.93	502.70	525.00	ok.
53	4.52	10.11	402.33	525.00	ok.
54	7.35	10.93	502.70	525.00	ok.
55	6.66	0.00	183.15	393.75	ok.
41	5.09	0.00	139.98	567.00	ok.
42	8.17	18.91	744.70	756.00	ok.
43	6.16	16.84	632.50	756.00	ok.
44	8.17	18.91	744.70	756.00	ok.
45	9.20	0.00	253.00	567.00	ok.
31	5.09	0.00	139.98	567.00	ok.
32	8.17	18.91	744.70	771.75	ok.
33	6.16	16.84	632.50	771.75	ok.
34	8.17	18.91	744.70	771.75	ok.
35	9.20	0.00	253.00	567.00	ok.
21	5.09	0.00	139.98	771.75	ok.
22	8.17	18.91	744.70	1275.75	ok.
23	6.16	16.84	632.50	1275.75	ok.
24	8.17	18.91	744.70	1275.75	ok.
25	9.20	0.00	253.00	771.75	ok.
11	5.09	0.00	139.98	771.75	ok.
12	8.17	18.91	744.70	1275.75	ok.
13	6.16	16.84	632.50	1275.75	ok.
14	8.17	18.91	744.70	1275.75	ok.
15	9.20	0.00	253.00	771.75	ok.

Çizelge 5.15 : TS-2 birleşim bölgesi kontrolü.

• Göreli kat ötelemeleri kontrolü

Göreli kat ötelemelerinin kontrolü için TS-2'nin her katından birer kolon seçmek yeterlidir. S101, S201, S301, S401 ve S501 kolonları için hesaplanan göreli kat ötelemeleri, bu kolonların bulundukları katları temsil edecektir. Tek bir yönde etkiyen deprem için hesap yapmak bu kontrol için yeterlidir. Hesaplanan göreli kat ötelemeleri Çizelge 3.6'da verilen sınır durumları ile karşılaştırılarak kolonların

hasar bölgeleri belirlenir. +X doğrultusundaki deprem altında hesaplanan göreli kat ötelemeleri Çizelge 5.16'da verilmiştir.

1. kat kolonları MN hasar sınırının altında olup minimum hasar bölgesindedir. 2, 3, 4 ve 5. kat kolonları MN ve GV hasar sınırları arasında olup belirgin hasar bölgesindedir. Bu hasar bölgeleri, etki kapasite oranları kullanılarak belirlenen kolon hasar bölgelerinden daha elverişsiz bir durum oluşturmadığından dolayı, kolon hasar bölgeleri olarak etki kapasite oranları ile bulunmuş olan hasar bölgeleri kullanılacaktır.

Kolon	hi (m)	di (m)	δi (m)	δi / hi
S501	3.00	0.2062	0.0541	0.0180
S401	3.00	0.1521	0.0498	0.0166
S301	3.00	0.1023	0.0457	0.0152
S201	3.00	0.0566	0.0330	0.0110
S101	3.00	0.0236	0.0236	0.0079

Çizelge 5.16 : TS-2 göreli kat ötelemeleri.

• Bina deprem performansının belirlenmesi

İncelenen konut tipi yapının, aşılma olasılığı 50 yılda %10 olan deprem için hedeflenen performans düzeyi can güvenliği (CG) performans düzeyidir. Çizelge 3.2.

Bölüm 3.3.2'de açıklanan can güvenliği performans düzeyi ile ilgili koşullar, TS-2 tarafından sağlanmamaktadır.

Çizelge 5.13 incelendiğinde, 1, 2 ve 3. kat kirişlerinin tamamının ileri hasar ve göçme bölgesinde Çizelge 5.12 incelendiğinde ise 1 ve 2. kat kolonlarının tamamının ileri hasar 3, 4 ve 5. kat kolonlarının tamamının ise göçme bölgesinde olduğu görülmektedir.

Hedeflenen performans düzeyi (CG) sağlanamadığı gibi, yapının bir çok elemanı göçme bölgesindedir. Bu durumda TS-2'nin deprem performansının göçme durumu olduğu söylenebilir ve binanın kullanımı can güvenliği bakımından sakıncalıdır.

5.3.2 TS-3'ün deprem performansının belirlenmesi

TS-3'ün doğrusal elastik eşdeğer deprem yükü yöntemi ile deprem performansının belirlenmesinde, bölüm 5.3.1'de açıklanan TS-2'nin performans değerlendirmesinde uygulanan hesap adımları aynı şekilde uygulanmıştır.

• Etkin eğilme rijitliklerinin bulunması

Ön düşey yük hesabı sonucunda kolonlarda hesap edilen N_D eksenel kuvvetleri ile elde edilen çatlamış kesite ait etkin eğilme rijitlikleri Çizelge 5.17'de verilmiştir. Kirişler için ise etkin eğilme rijitlikleri, çatlamamış kesit rijitliklerinin 0.40 katı olarak alınmıştır.

Kat	Kolon	N _D (kN)	A _c f _{cm} (kN)	$N_D / (A_c f_{cm})$	(EI) _e / (EI) _o
	S501	54.93	875	0.063	0.40
	S502	136.48	1260	0.108	0.41
5	S503	124.39	1260	0.099	0.40
	S504	136.48	1260	0.108	0.41
	S505	54.93	875	0.063	0.40
	S401	145.32	1715	0.085	0.40
	S402	338.90	1715	0.198	0.53
4	S403	315.53	1715	0.184	0.51
	S404	338.90	1715	0.198	0.53
	S405	145.32	1715	0.085	0.40
	S301	237.54	1715	0.139	0.45
	S302	541.79	2240	0.242	0.59
3	S303	509.63	2240	0.228	0.57
	S304	541.79	2240	0.242	0.59
	S305	237.54	1715	0.139	0.45
	S201	328.75	1715	0.192	0.52
	S202	752.30	2835	0.265	0.62
2	S203	708.13	2835	0.250	0.60
	S204	752.30	2835	0.265	0.62
	S205	328.75	1715	0.192	0.52
	S101	417.66	1715	0.244	0.59
	S102	964.89	2835	0.340	0.72
1	S103	904.20	2835	0.319	0.69
	S104	964.89	2835	0.340	0.72
	S105	417.66	1715	0.244	0.59

Çizelge 5.17 : TS-3 kolonlar için etkin eğilme rijitlikleri.

• Eşdeğer deprem yükünün hesaplanması

Taban kesme kuvveti V_t , tepe kuvveti ΔF_N ve katlara gelen deprem yükleri F_i Denklem 5.1 - 5.4'e göre hesaplanır. Denklemlerde kullanılan değerler ve sonuçları aşağıda verilmiştir.
$$\begin{split} \lambda &= 0.85 \\ W &= (G + nQ) = (G + 0.3Q) = 3637.33 \text{ kN} \\ A_o &= 0.4 \quad (1. \text{ derece deprem bölgesi}) \\ I &= 1 \\ Zemin \text{ Sinifi} = Z2 \quad (T_A &= 0.15 \text{ s} \text{ T}_B = 0.40 \text{ s}) \\ T_1 &= 0.89839 \text{ s} \\ S(T_1) &= 2.5 \times (0.4 / 0.89839)^{0.8} = 1.3086 \\ R_a(T_1) &= 1 \end{split}$$

olmak üzere $V_t = 1618.37$ kN olarak hesaplanır.

 $\Delta F_N = 60.69$ kN ve Vt - $\Delta F_N = 1557.68$ kN'dur. Deprem kuvvetlerinin katlara dağıtılması Çizelge 5.18'de verilmiştir.

Kat	Wi	H _i	$W_i\!\times\!H_i$	$F_{i} = (V_{t} - \Delta F_{N}) \frac{w_{i} H_{i}}{\sum_{j=1}^{N} w_{j} H_{j}}$	$F_i + F_n$
5	492.41	15	7386.15	373.42	434.11
4	768.58	12	9222.96	466.29	466.29
3	780.12	9	7021.08	354.97	354.97
2	797.16	6	4782.96	241.81	241.81
1	799.06	3	2397.18	121.19	121.19
		Σ	30810.33	1557.68	1618.37

Çizelge 5.18 : TS-3 deprem kuvvetlerinin katlara dağıtılması.

• Kirişlerin hasar bölgelerinin belirlenmesi

Kirişlerin hasar bölgelerinin belirlenmesinde yapılan tüm hesaplar ile ilgili değerler Çizelge A.12 – A.17'de verilmiştir. TS-3 kirişlerinin enine donatıları ve uç bölgelerinde yapılan sıklaştırmalar, TDY 2007'de verilen şartları sağladığından dolayı, elemanların sargılama durumları var olarak gözönüne alınmıştır.

TS-3'ün kiriş kesitlerinde oluşan hasarlar ve kiriş hasar bölgeleri Çizelge 5.19'da topluca verilmiştir.

Kiriş	Uç	+x Yönlü Depremde Kesit Hasar Bölgeleri	-x Yönlü Depremde Kesit Hasar Bölgeleri	Elverişsiz Kesit Hasar Bölgeleri	Eleman Hasar Bölgeleri
V5 01	Sol	MHB	MHB	MHB	MUD
K 301	Sağ	MHB	MHB	MHB	МПД
K502	Sol	MHB	MHB	MHB	MUD
K 302	Sağ	MHB	MHB	MHB	MIIID
K 503	Sol	MHB	MHB	MHB	MHB
K303	Sağ	MHB	MHB	MHB	MIIID
K 504	Sol	MHB	MHB	MHB	MHB
KJ04	Sağ	MHB	MHB	MHB	MIID
K/01	Sol	MHB	MHB	MHB	MHB
K 4 01	Sağ	MHB	MHB	MHB	MIID
K402	Sol	MHB	MHB	MHB	MHB
K 402	Sağ	MHB	MHB	MHB	MIIID
K103	Sol	MHB	MHB	MHB	MHB
K 403	Sağ	MHB	MHB	MHB	WITID
K101	Sol	MHB	MHB	MHB	MHB
K 4 04	Sağ	MHB	MHB	MHB	
K301 Sa	Sol	BHB	BHB	BHB	рир
	Sağ	BHB	MHB	BHB	
K302	Sol	MHB	MHB	MHB	MHB
K302	Sağ	MHB	MHB	MHB	MIIID
K303	Sol	MHB	MHB	MHB	MHB
K303	Sağ	MHB	MHB	MHB	MIIID
K304	Sol	MHB	BHB	BHB	внв
K304	Sağ	BHB	BHB	BHB	DIID
K201	Sol	BHB	BHB	BHB	внв
K 201	Sağ	BHB	MHB	BHB	DIID
K202	Sol	MHB	BHB	BHB	впв
K 202	Sağ	BHB	MHB	BHB	DIID
K203	Sol	MHB	BHB	BHB	RHR
K 203	Sağ	BHB	MHB	BHB	DIID
к204	Sol	MHM	BHB	BHB	BHB
11207	Sağ	BHB	BHB	BHB	DIID
K101	Sol	BHB	BHB	BHB	RHR
K 101	Sağ	BHB	MHB	BHB	DIID
K102	Sol	MHB	BHB	BHB	RHR
11102	Sağ	BHB	MHB	BHB	
K103	Sol	MHB	BHB	BHB	BHB
1105	Sağ	BHB	MHB	BHB	מוום
K104	Sol	MHM	BHB	BHB	BHB
K104	Sağ	BHB	BHB	BHB	מוום

Çizelge 5.19 : TS-3 kiriş hasar bölgeleri.

Kolon hasar bölgelerinin belirlenmesi

Kolonların hasar bölgelerinin belirlenmesinde yapılan tüm hesaplar ile ilgili tüm değerler Çizelge A.18 – A.22'de verilmiştir. TDY 2007'de kolonların enine donatıları ile ilgili verilen, "etriye kollarının arasındaki yatay uzaklık, a, etriye çapının 25 katından fazla olmayacaktır" şartı TS-3'ün bazı kolonları tarafından sağlanmamaktadır. Bunun dışında kalan sargılama ile ilgili etriye sıklaştırma bölgesinin uzunluğu, minimum enine donatı aralığı ve minimum enine donatı çubuğu çapları gibi tüm şartlar sağlanmaktadır. Sonuç olarak, yukarıda belirtilen ve sağlanmayan etriye kolları arası uzaklık şartı dikkate alınmamış olup tüm kolonların sargılama durumları var olarak gözönüne alınmıştır.

TS-3'ün kolon kesitlerinde oluşan hasarlar ve kolon hasar bölgeleri Çizelge 5.20'de topluca verilmiştir.

Kolon-kiriş birleşim bölgelerinde kesme güvenliğinin irdelenmesi

TS-3'ün tüm kolon kiriş birleşim bölgelerinde denklem 5.22'ye göre hesaplanan kesme kuvveti V_e , denklem 5.23.a ve 5.23.b'ye göre hesaplanan kesme dayanımı V_r 'den daha küçüktür. Dolayısıyla tüm birleşim bölgelerinde kesme güvenliği sağlanmaktadır. Çizelge 5.21

Göreli kat ötelemeleri kontrolü

TS-3 için S101, S102, S103, S104 ve S105 kolonlarında deprem durumunda meydana gelen yatay yerdeğiştirmelere göre hesaplanan göreli kat ötelemeleri değerleri Çizelge 5.22'de verilmiştir.

1. kat kolonları MN hasar sınırının altında olup minimum hasar bölgesindedir. 2, 3, 4 ve 5. kat kolonları MN ve GV hasar sınırları arasında olup belirgin hasar bölgesindedir. Bu hasar bölgeleri, etki kapasite oranları kullanılarak belirlenen kolon hasar bölgelerinden daha elverişsiz bir durum oluşturmadığından dolayı, kolon hasar bölgeleri olarak etki kapasite oranları ile bulunmuş olan hasar bölgeleri kullanılacaktır.

Kolon	Uç	+x Yönlü Depremde Kesit Hasar Bölgeleri	-x Yönlü Depremde Kesit Hasar Bölgeleri	Elverişsiz Kesit Hasar Bölgeleri	Eleman Hasar Bölgeleri
\$501	Üst	MHB	BHB	BHB	DUD
5501	Alt	MHB	BHB	BHB	БПБ
8502	Üst	BHB	BHB	BHB	מוות
5502	Alt	BHB	BHB	BHB	внв
9502	Üst	BHB	BHB	BHB	DUD
2203	Alt	BHB	BHB	BHB	внв
8504	Üst	BHB	BHB	BHB	מוות
5304	Alt	BHB	BHB	BHB	рир
8505	Üst	BHB	MHB	BHB	DUD
5303	Alt	BHB	MHB	BHB	БПБ
S 401	Üst	MHB	BHB	BHB	DIID
5401	Alt	MHB	BHB	BHB	рир
G 400	Üst	BHB	BHB	BHB	DUD
\$402	Alt	BHB	BHB	BHB	BHB
0.402	Üst	BHB	BHB	BHB	DUD
\$403	Alt	BHB	BHB	BHB	BHB
0404	Üst	BHB	BHB	BHB	DUD
\$404	Alt	BHB	BHB	BHB	BHB
G 40 5	Üst	BHB	MHB	BHB	BHB
\$405	Alt	BHB	MHB	BHB	
0001	Üst	MHB	MHB	BHB	DUD
\$301	Alt	MHB	BHB	BHB	BHB
	Üst	BHB	BHB	BHB	
S302	Alt	BHB	BHB	BHB	BHB
	Üst	BHB	BHB	BHB	
\$303	Alt	BHB	BHB	BHB	BHB
0004	Üst	BHB	BHB	BHB	DUD
S304	Alt	BHB	BHB	BHB	BHB
	Üst	MHB	MHB	BHB	DUD
\$305	Alt	BHB	MHB	BHB	BHB
GO 01	Üst	MHB	BHB	BHB	DUD
S201	Alt	MHB	BHB	BHB	BHB
	Üst	BHB	BHB	BHB	
S202	Alt	BHB	BHB	BHB	BHB
a a a a	Üst	BHB	BHB	BHB	
S203	Alt	BHB	BHB	BHB	BHB
GO O (Üst	BHB	BHB	BHB	DUD
S204	Alt	BHB	BHB	BHB	BHB
	Üst	BHB	MHB	BHB	
S205	Alt	BHB	MHB	BHB	BHB
	Üst	MHB	BHB	BHB	
S101	Alt	MHB	BHB	BHB	BHB
	Üst	BHB	BHB	BHB	
S102	Alt	BHB	BHB	BHB	BHB
0105	Üst	BHB	BHB	BHB	PIT
S103	Alt	BHB	BHB	BHB	BHB
6 1 6 1	Üst	BHB	BHB	BHB	
S104	Alt	BHB	BHB	BHB	BHB
~	Üst	BHB	MHB	BHB	
S105	Alt	BHB	MHB	BHB	BHB

Çizelge 5.20 : TS-3 kolon hasar bölgeleri.

Birleşim Bölgesi	$As_1 (cm^2)$	$As_2 (cm^2)$	V _e (kN)	V _r (kN)	$V_e < V_r$
51	4.62	0.00	127.05	393.75	ok.
52	7.70	12.32	550.55	567.00	ok.
53	6.16	12.32	508.20	567.00	ok.
54	7.70	12.32	550.55	567.00	ok.
55	7.70	0.00	211.75	393.75	ok.
41	6.03	0.00	165.83	771.75	ok.
42	12.06	22.24	943.25	1029.00	ok.
43	12.06	20.23	887.98	1029.00	ok.
44	12.06	22.24	943.25	1029.00	ok.
45	14.73	0.00	405.08	771.75	ok.
31	6.03	0.00	165.83	771.75	ok.
32	12.06	22.24	943.25	1344.00	ok.
33	12.06	20.23	887.98	1344.00	ok.
34	12.06	22.24	943.25	1344.00	ok.
35	14.73	0.00	405.08	771.75	ok.
21	6.03	0.00	165.83	771.75	ok.
22	12.06	22.24	943.25	1275.75	ok.
23	12.06	20.23	887.98	1275.75	ok.
24	12.06	22.24	943.25	1275.75	ok.
25	14.73	0.00	405.08	771.75	ok.
11	6.03	0.00	165.83	771.75	ok.
12	12.06	22.24	943.25	1275.75	ok.
13	12.06	20.23	887.98	1275.75	ok.
14	12.06	22.24	943.25	1275.75	ok.
15	14.73	0.00	405.08	771.75	ok.

Çizelge 5.21 : TS-3 birleşim bölgesi kontrolü.

Çizelge 5.22 : TS-3 göreli kat ötelemeleri.

Kolon	hi (m)	di (m)	δi (m)	δi / hi
S501	3.00	0.1717	0.0417	0.0139
S401	3.00	0.1300	0.0379	0.0126
S301	3.00	0.0921	0.0364	0.0121
S201	3.00	0.0557	0.0318	0.0106
S101	3.00	0.0239	0.0239	0.0080

• Bina deprem performansının belirlenmesi

İncelenen konut tipi yapının, aşılma olasılığı 50 yılda %10 olan deprem için hedeflenen performans düzeyi can güvenliği (CG) performans düzeyidir. Çizelge 3.2.

Can güvenliği performans düzeyinde, kolon ve kirişlerin belirtilen oranlar dahilinde bir kısmı ileri hasar bölgesine geçebilmekte, diğer taşıyıcı elemanların ise tümünün minimum veya belirgin hasar bölgesinde kalması gerekmektedir. Kiriş ve kolonların hasar bölgelerinin verildiği Çizelge 5.19 ve 5.20 incelendiğinde hiçbir elemanın ileri hasar bölgesine geçmediği, elemanların hasar bölgelerinin minimum veya belirgin olduğu görülmektedir. Fakat, can güvenliği performans düzeyinin "herhangi bir katta alt ve üst kesitlerinin ikisinde birden minimum hasar sınırı aşılmış olan kolonlar tarafından taşınan kesme kuvvetlerinin, o kattaki tüm kolonlar tarafından taşınan kesme kuvvetine oranının %30'u aşmaması gerekir" koşulu, Çizelge 5.20'den de görüldüğü gibi tüm kolonların her iki ucununda belirgin hasar bölgesinde olmasından dolayı sağlanamamaktadır. Doğrusal elastik yöntemle yapılan hesap için geçerli olmak üzere, yukarıda açıklanan koşul kontrolüne, deprem yönetmeliğinde bulunun kolonların kirişlerden daha güçlü olması şartını her iki ucuda sağlayan kolonlar dahil edilmezler. TS-3'ün düğüm noktalarında kolonların kirişlerden daha güçlü olması şartı sağlanmamaktadır ve yukarıda bahsedilen koşul performans düzeyinin belirlenmesinde dikkate alınacaktır. Sonuç olarak, kolonların her iki ucununda belirtilen minimum hasar sınırını aşması neticesinde, can güvenliği performans düzeyi TS-3 için sağlanamamaktadır.

5.3.3 TS-2 ile TS-3'ün doğrusal elastik yöntemle belirlenen deprem performanslarının karşılaştırılması

Doğrusal elastik yöntem ile yapılan hesaplar sonucunda, TS-2 (TS-1) ve TS-3 yönetmelikte kendileri için öngörülen minimum performans hedefleri olan can güvenliği performans düzeyinin koşullarını sağlayamamaktadırlar. Bu durumda her iki yapının da gerekli olan deprem performansını gösteremediği söylenebilir. Fakat, her iki yapının da deprem performansının aynı olduğunu söyleyemeyiz. TS-2 can güvenliği performans düzeyi için gerekli olan koşulların hiçbirini sağlayamamıştır. TS-3 ise kolon ve kiriş hasar bölgeleri ile ilgili koşulları sağlamış olup, sadece kolonların belirli bir kısmının her iki ucununda minimum hasar sınırını aşmamış olma şartını sağlayamamaktadır.

5.4 Boyutlandırılan Binaların Deprem Performansının Doğrusal Elastik Olmayan Yöntem (Artımsal Eşdeğer Deprem Yükü) İle Belirlenmesi

Bu bölümde, deprem performansı doğrusal elastik eşdeğer deprem yükü yöntemi ile belirlenmiş olan TS-3'ün deprem performansı artımsal eşdeğer deprem yükü yöntemi ile itme analizi (pushover) yapılarak belirlenecektir. TS-1 ve TS-2'nin deprem performansı, sistemlerin gerekli sargılama koşullarını sağlamamasından, kesitlerin yeterli sünekliğe sahip olmamasından dolayı doğrusal elastik olmayan yöntem ile belirlenmemiştir. Sayısal incelemenin daha önceki bölümlerinde doğrusal elastik yöntem ile yapılan analiz sonucunda bu iki sisteminde deprem performansının göçme durumunda olduğu ve birçok kesitinde oluşan hasar da göçme bölgesinde bulunmuştur.

5.4.1 TS-3'ün deprem performansının belirlenmesi

Boyutlandırılması Bölüm 5.2.3'te yapılmış olan TS-3'ün bina geometrisi, eleman detayları ve malzeme özellikleri tam olarak bilindiğinden dolayı bina bilgi düzeyi kapsamlıdır ve bilgi düzeyi katsayısı 1.00 alınmıştır. Çizelge 3.1.

İtme analizi sistemin simetriye sahip olmasından dolayı +X yönünde yapılmıştır. -X yönü için yapılan analiz sonucunda bulunan kesit hasarlarının simetrik olacağı açıktır. İtme analizi SAP2000 [12] yapı analiz programı ile yapılmıştır.

Boyutlandırılmada esas alınan yükler bina yükleri olarak kabul edilmiştir.

Boyutlandırmada kullanılan yapı malzemeleri güncel yönetmeliklerdeki yapı malzemelerine uygun olarak değiştirilmiştir. BIIb beton sınıfı, C14 beton sınıfı olarak gözönüne alınmıştır.

Hesaplarda sırası ile, etkin eğilme rijitlikleri bulunup, kritik kesitlerdeki plastik mafsallar tanımlanmıştır. Daha sonra artımsal eşdeğer deprem yükü dağılımı belirlenip itme analizi (pushover) yapılmış ve plastikleşen kesitlerdeki birim şekildeğiştirme istemleri hesaplanarak kesit hasar bölgeleri belirlenmiştir. Kesit hasar bölgelerinin değerlendirilmesi ile bina performansı belirlenmiştir. Hesaplar S303 kolonu ve K301 kirişi için ayrıntılı olarak verilmiştir. Diğer elemanlarda ise ilgili hesap değerleri tablolarda verilmiştir.

Bölüm 3.6.3.4'te açıklanan koşullar sağlandığından dolayı, artımsal eşdeğer deprem yükü yöntemi ile itme analizi yöntemi TS-3 için kullanılabilmektedir.

• Etkin eğilme rijitliklerinin bulunması

Ön düşey yük hesabı sonucunda kolonlarda hesap edilen N_D eksenel kuvvetleri ile elde edilen çatlamış kesite ait etkin eğilme rijitlikleri, TS-3 için doğrusal elastik yöntem ile performans analizinin yapıldığı Bölüm 5.3.2'de hesaplanmıştır. Daha önceden hesaplanan etkin eğilme rijitlikleri, sisteme etkiyen düşey yüklerin aynı olmasından dolayı doğrusal elastik olmayan yöntem ile bulunanlar ile aynıdır. Kolonlarda çatlamış kesitlere ait etkin eğilme rijitlikleri ile ilgili değerler Çizelge 5.17'de verilmiştir. Kirişler için ise etkin eğilme rijitlikleri, çatlamamış kesit rijitliklerinin 0.40 katı olarak alınmıştır.

• Plastik kesitleri (mafsalların) tanımlanması

Kolon ve kirişlerin her iki ucunda olası plastik mafsallar akma yüzeylerinin belirlenmesi ise tanımlanır. Akma yüzeylerinin oluşturulması için yapılan analizde, beton ve donatı çeliğinin bilgi düzeyine göre belirlenen mevcut dayınmaları esas alınır. Betonun maksimum basınç birim şekildeğiştirmesi 0.003, donatı çeliğinin maksimum birim şekildeğiştirmesi ise 0.01 olarak alınarak kesit analizi yapılır. İç kuvvet şekil değiştirme bağıntılarında pekleşme etkisi ihmal edilir. Şekil 3.2.a.

Yukarıda açıklanan şekilde tanımlanan plastik mafsallar modele veri olarak girilir ve kolon ve kirişlerin net açıklıklarının uçlarında tanımlanır. Şekil 5.10

K301 kirişinin sol ucu için örnek hesap aşağıda verilmiştir.

Kirişlerde tabla betonu hesaplarda dikkate alınmıştır. Şekil 5.7. Kesit analizi, kiriş analiz programı ile yapılmıştır, [32].

Şekil 5.7 : TS-3 K301 kirişi sol uç kesiti.

Analiz sonucunda elde edilen plastik moment değerleri aşağıda verilmiştir.

Pozitif eğilme momenti $M_{pa}^{+} = 79.58$ kNm

Negatif eğilme momenti $M_{pa}^{-} = 171.03$ kNm

İlgili plastik moment değerleri modele veri olarak girilir.

S303 kolonu için örnek hesap aşağıda verilmiştir.

Kolonlar eğilme momenti ile beraber normal kuvvet etkisi altında olduğundan dolayı, kolonun eğilme momenti – normal kuvvet etkileşim diyagramına ihtiyaç duyulur. S303 kolonu (Şekil 5.8) için etkileşim diyagramı (Şekil 5.9) kolon analiz programı [32] yardımı ile çizdirilir ve modelde ilgili kesite tanımlanır.

Şekil 5.8 : TS-3 S303 kolon kesiti.

Şekil 5.9 : TS-3 S303 kolonu etkileşim diyagramı.

Şekil 5.10 : TS-3 modele tanıtılan olası plastik mafsal yerleri.

• Artımsal eşdeğer deprem yükü dağılımının belirlenmesi

Artımsal itme analizinden önce, kütlelerle uyumlu olan düşey yüklerin (G+nQ) gözönüne alındığı doğrusal olmayan statik bir analiz yapılır. Bu analiz kuvvet kontrollüdür ve bu analizin sonuçları artımsal itme analizinin başlangıç koşulları olarak dikkate alınır.

Kütlelerle uyumlu düşey yüklerin gözönüne alındığı doğrusal olmayan statik analizin ardından sistem, orantılı olarak arttırılan eşdeğer deprem yükleri altında doğrusal olmayan teoriye göre hesaplanır. Eşdeğer deprem yükü dağılımı, taşıyıcı sistemdeki plastik kesitlerin oluşumlarından bağımsız biçimde sabit kaldığı varsayımı yapılarak, analizin başlangıç adımında doğrusal elastik davranış için hesaplanan birinci doğal titreşim mod şekli genliği ile ilgili kütlenin çarpımından elde edilen değerlerle orantılı olacak şekilde tanımlanır. Çizelge 5.23.

Modal analiz sonucunda binanın birinci doğal titreşim periyodu $T_1 = 0.89773$ s. ve birinci modun kütle katılım oranı 0.7578 olarak bulunmuştur.

Kat	Wi	m_i	Φ_{i}	$m_i\Phi_i$
5	492.41	50.19	0.0878	4.407
4	768.58	78.35	0.0674	5.281
3	780.12	79.52	0.0475	3.777
2	797.16	81.26	0.0285	2.316
1	799.06	81.45	0.0121	0.986

Çizelge 5.23 : TS-3 artımsal eşdeğer deprem yükü dağılımı.

• İtme Analizi

Çizelge 5.23'te gösterilen ve birinci doğal titreşim modu ile orantılı olarak katlara gelen yatay yükler altında itme analizi yapılır. İlk itme analizi 0.30 m. yatay yerdeğiştirme sınırına kadar yapılmıştır. Analizin her adımında taban kesme kuvveti ve tepe noktası yatay yerdeğiştirmesi bulunur. İlgili değerler Çizelge 5.24'te verilmiş ve çizilen statik itme eğrisi Şekil 5.11'de gösterilmiştir.

Çizelge 5.24 : TS-3 taban kesme kuvveti – tepe noktası yerdeğiştirme değerleri.

Adım	$u^{(i)}_{xN1}(m)$	$V^{(i)}_{\ \ x1}(kN)$
0	0.0000	0.00
1	0.0150	139.83
2	0.0300	279.66
3	0.0447	416.25
4	0.0562	508.92
5	0.0612	527.11
6	0.0659	537.24
7	0.0690	539.87
8	0.0736	541.83
9	0.0886	545.92
10	0.1077	549.87
11	0.1227	552.69
12	0.1282	553.73
13	0.1432	555.26
14	0.1487	555.82
15	0.1637	555.84
16	0.1787	555.87
17	0.1937	555.89
18	0.2087	555.92
19	0.2237	555.95
20	0.2387	555.97
21	0.2537	556.00
22	0.2687	556.02
23	0.2837	556.05
24	0.2987	556.07
25	0.3000	556.07

Şekil 5.11 : TS-3 statik itme eğrisi.

Statik itme eğrisinin koordinat dönüşümü, Denklem 3.2 ve 3.3 ile yapılarak, birinci moda ait modal yerdeğiştirme ve modal ivme değerlerinden oluşan modal kapasite diyagramı elde edilir.

Modal yerdeğiştirme ve modal ivme değerlerinin hesaplanması için gerekli olan birinci moda ait etkin kütle ve modal katkı çarpanları değerleri aşağıda verilmiştir. Bu değerlerin hesaplanması için gerekli olan ara değerler ise Çizelge 5.25'te gösterilmiştir.

$$L_{x1} = \sum m_{xi} \phi_{xi1} = 16.7665$$
$$M_{1} = \sum \left(m_{xi} \phi_{xi1}^{2} + m_{xi} \phi_{\theta 1}^{2} \right) = 1.00021$$
$$\Gamma_{x1} = \frac{L_{x1}}{M_{1}} = 16.763 \qquad M_{x1} = \frac{L_{x1}^{2}}{M_{1}} = 281.058$$

Çizelge 5.25 : TS-3 etkin kütle ve modal katkı çarpanı hesap çizelgesi.

Kat	W _{xi}	m _{xi}	Φ_{xi1}	$m_{xi} \Phi_{xi1}$	$m_{xi} \Phi_{xi1}^{2}$
5	492.41	50.19	0.0878	4.40709	0.38694
4	768.58	78.35	0.0674	5.28056	0.35591
3	780.12	79.52	0.0475	3.77734	0.17942
2	797.16	81.26	0.0285	2.31591	0.06600
1	799.06	81.45	0.0121	0.98559	0.01193
			Σ	16.7665	1.00021

Doğrusal elastik (lineer) spektral yerdeğiştirme S_{de1} , elastik spektral ivme S_{ae1} 'e bağlı olarak Denklem 3.7 ile hesaplanır.

$$(\omega_1^{(1)})^2 = \left(\frac{2 \times 3.14}{0.89773}\right)^2 = 48.936$$
$$S_{ae1} = 9.81 \times 0.40 \times 2.5 \times \left(\frac{0.40}{0.89773}\right)^{0.8} = 5.1381 \, m/s^2$$

$$S_{\rm de1} = \frac{S_{\rm ae1}}{(\omega_1^{(1)})^2} = 0.1050 \,\,{\rm m}.$$

Denklem 3.5 ve 3.6 ile modal yerdeğiştirme istemi $d_1^{(p)}$ hesaplanır. Spektral yerdeğiştirme oranı C_{R1} , başlangıç periyodu $T_1 = 0.89773'$ ün, zemin karakteristik periyodu $T_B = 0.40'$ dan büyük olmasından dolayı 1.00 alınır.

$$S_{di1} = C_{R1} S_{de1} = 1.00 \times 0.1050 = 0.1050 m.$$
 $d_1^{(p)} = S_{di1} = 0.1050 m.$

Tepe noktası yatay yerdeğiştirme istemi $u^{(p)}_{xN1}$ Denklem 3.11 ile hesaplanır.

$$u_{\text{xN1}}^{(\text{p})} = \Phi_{\text{xN1}} \Gamma_{\text{x1}} d_1^{(\text{p})} = 0.0878 \times 16.763 \times 0.1050 = 0.1545 \text{m}$$

Modal yerdeğiştirmenin grafik yöntemi ile bulunması Şekil 5.12'de gösterilmiştir.

Şekil 5.12 : TS-3 spektral ivme – spektral yerdeğiştirme diyagramı.

Yapı sistemi, bulunan yatay yerdeğiştirme istemine (0.1545m) kadar itilerek yeniden itme analizi yapılır ve bu analiz sonucunda elde edilen veriler ile kesit hasar bölgeleri belirlenir. Yatay yerdeğiştirme istemine kadar yapılan itme analizi sonucunda sistemde oluşan plastik mafsallar Şekil 5.13'te gösterilmiştir.

Şekil 5.13 : TS-3 sistemde oluşan plastik mafsallar.

İtme analizi sonucunda, tüm plastik mafsallarda elde edilen plastik mafsal dönmeleri plastik mafsal boyuna bölünerek, bu kesitlere ait plastik eğrilik istemleri elde edilir. Denklem 3.12.

Eşdeğer akma eğriliği ϕ_y , Priestley formülü yardımıyla hesaplanır, [33].

$$\phi_{y} = \frac{2.1\varepsilon_{sy}}{h}$$
(5.24)

Eşdeğer akma eğriliği plastik eğrilik istemine eklenerek toplam eğrilik istemi elde edilir. Denklem 3.13.

Plastik mafsal oluşan kiriş ve kolon kesitleri için hesaplanan toplam eğirilik istemleri Çizelge 5.26'da verilmiştir.

Betonun basınç birim şekildeğiştirme istemi ile donatı çeliğinin birim şekildeğiştirme istemi, toplam eğrilik istemine göre moment-eğrilik analizi yapılarak hesaplanmıştır. Moment-eğrilik analizleri XTRACT [34] yazılımı ile yapılmıştır.

No	Kesit	Plastik Mafsal	θp (radyan)	Lp (m)	Фр (1/m)	Фу (1/m)	Φt (1/m)
1	K401SOL	29H1	0.01430	0.300	0.04767	0.00385	0.05152
2	K301SOL	28H1	0.01369	0.300	0.04563	0.00385	0.04948
3	K304SAĞ	43H2	-0.01034	0.300	-0.03445	-0.00385	-0.03830
4	K201SOL	27H1	0.00416	0.325	0.01279	0.00355	0.01635
5	K202SAĞ	32H2	-0.00001	0.325	-0.00003	-0.00355	-0.00358
6	K204SAĞ	42H2	-0.00132	0.325	-0.00406	-0.00355	-0.00762
7	K101SOL	26H1	0.00149	0.325	0.00457	0.00355	0.00812
8	K102SAĞ	31H2	-0.00035	0.325	-0.00106	-0.00355	-0.00462
9	K103SAĞ	36H2	-0.00005	0.325	-0.00014	-0.00355	-0.00369
10	S501ÜST	5H2	-0.00404	0.125	-0.03232	-0.00924	-0.04156
11	S502ALT	10H1	0.01246	0.150	0.08309	0.00770	0.09079
12	S502ÜST	10H2	-0.01128	0.150	-0.07517	-0.00770	-0.08287
13	S503ALT	15H1	0.01197	0.150	0.07980	0.00770	0.08750
14	S503ÜST	15H2	-0.01114	0.150	-0.07425	-0.00770	-0.08195
15	S504ALT	20H1	0.01171	0.150	0.07807	0.00770	0.08577
16	S504ÜST	20H2	-0.01048	0.150	-0.06989	-0.00770	-0.07759
17	S505ALT	25H1	0.01103	0.125	0.08823	0.00924	0.09747
18	S505ÜST	25H2	-0.01048	0.125	-0.08380	-0.00924	-0.09304
19	S402ALT	9H1	0.01809	0.175	0.10337	0.00660	0.10997
20	S402ÜST	9H2	-0.01789	0.175	-0.10222	-0.00660	-0.10882
21	S403ALT	14H1	0.01785	0.175	0.10197	0.00660	0.10857
22	S403ÜST	14H2	-0.01737	0.175	-0.09926	-0.00660	-0.10586
23	S404ALT	19H1	0.01770	0.175	0.10114	0.00660	0.10774
24	S404ÜST	19H2	-0.01719	0.175	-0.09825	-0.00660	-0.10485
25	S405ALT	24H1	0.00648	0.175	0.03701	0.00660	0.04361
26	S405ÜST	24H2	-0.01501	0.175	-0.08577	-0.00660	-0.09237
27	S301ALT	3H1	0.00069	0.175	0.00391	0.00660	0.01051
28	S302ALT	8H1	0.01005	0.200	0.05025	0.00578	0.05602
29	S302ÜST	8H2	-0.00953	0.200	-0.04765	-0.00578	-0.05342
30	S303ALT	13H1	0.01024	0.200	0.05120	0.00578	0.05698
31	S303ÜST	13H2	-0.00940	0.200	-0.04701	-0.00578	-0.05279
32	S304ALT	18H1	0.00990	0.200	0.04948	0.00578	0.05525
33	S304ÜST	18H2	-0.00921	0.200	-0.04606	-0.00578	-0.05183
34	S305ALT	23H1	0.00546	0.175	0.03118	0.00660	0.03778
35	S203ALT	12H1	0.00007	0.225	0.00033	0.00513	0.00546
36	S102ALT	6H1	0.00076	0.225	0.00336	0.00513	0.00850
37	S103ALT	11H1	0.00082	0.225	0.00364	0.00513	0.00877
38	S104ALT	16H1	0.00074	0.225	0.00327	0.00513	0.00840

Çizelge 5.26 : TS-3 kirişler ve kolonlar için toplam eğrilik istem değerleri.

Kesit analizi sonucunda elde edilen beton ve donatı çeliğinin birim şekildeğiştirme istemleri, Bölüm 3.6.3.6'da verilmiş olan birim şekildeğiştirme kapasiteleri ile karşılaştırılarak plastikleşen kesitlerin hasar bölgeleri belirlenir.

Bir kiriş ve bir kolon için ayrıntılı hesap adımları aşağıda verilmiş olup plastikleşen tüm kesitlerin hasar bölgeleri Çizelge 5.27'de topluca verilmiştir.

K301 kirişinin sol ucu için örnek hesap aşağıda verilmiştir.

XTRACT [34] kesit analiz programı ile yapılan analiz modelinde, K301 kirişinin sol ucu için beton modeli olarak Mander sargısız beton modeli seçilmiştir. Şekil 5.14. Donatı çeliğinde ise pekleşmeyi de gözönüne alan model kullanılmıştır. Şekil 5.15.

Şekil 5.14 : Mander beton modeli.

Şekil 5.15 : Pekleşmeli donatı çeliği modeli.

Beton modelinde, ezilme birim kısalması $\varepsilon_{cu} = 0.004$, beton dağılma birim kısalması $\varepsilon_c = 0.005$, sargısız beton dayanımı $f_{co} = 14$ Mpa alınmıştır. Çelik modelinde ise S220 çeliği için akma birim uzaması $\varepsilon_{sy} = 0.0011$, pekleşme başlangıcındaki birim uzama $\varepsilon_{sh} = 0.011$, kopma birim uzaması, $\varepsilon_{su} = 0.16$, donatı çeliği akma dayanımı $f_{sy} = 220$ MPa, kopma dayanımı $f_{su} = 275$ MPa değerlerini almaktadır.

Statik itme analizi sonucunda K301 kirişinin sol ucu için elde edilen plastik dönme değeri plastik mafsal boyuna bölünerek plastik eğrilik bulunur. Plastik mafsal boyu çalışan kesit yüksekliğinin yarısı olarak alınır.

h = 60 cm

$$L_{\rm p} = \frac{60}{2} = 30 \,{\rm cm}$$

 $\theta_p = 0.013689 \text{ radyan}$

$$\phi_{\rm p} = \frac{\theta_{\rm p}}{L_{\rm p}} = \frac{0.013689}{0.3} = 0.04563 \ rad \ /m$$

Hesaplanan eğrilik akma eğriliği ile toplanarak toplam eğrilik elde edilir. Akma eğriliğinin hesabı için Denklem 5.24'te verilen Priestley formülü kullanmıştır.

$$\phi_y = \frac{2.1\varepsilon_{sy}}{h} = \phi_y = \frac{2.1 \times 0.0011}{0.6} = 0.00385 \text{ rad} / \text{m}$$

 $\phi_{t} = \phi_{y} + \phi_{p} = 0.04948$ rad / m

Yapılan eğilme momenti - eğrilik analizi sonucunda, bulunan toplam eğriliklerden, beton basınç birim şekildeğiştirmesi ve donatı çeliği birim şekildeğiştirme değerleri elde edilir.

$$\epsilon_{c} = 0.00122, \ \epsilon_{s} = 0.0263$$

Bu istem değerleri kesit düzeyinde çeşitli hasar sınırları için tanımlanan birim şekildeğiştirme kapasiteleri ile karşılaştırılarak sünek davranışa ilişkin kesit hasar bölgeleri belirlenir.

$$\epsilon_c = 0.00122 < (\epsilon_c)_{MN} = 0.0035$$

 $(\epsilon_s)_{MN} = 0.01 < \epsilon_s = 0.0263 < (\epsilon_s)_{GV} = 0.04$

Buna göre kesit hasar bölgesi belirgin hasar bölgesi(BHB) olarak belirlenir.

S303 kolonunun alt ucu için örnek hesap aşağıda verilmiştir.

S303 kolonunun alt ucunun eğilme momenti - eğrilik analiz modelinde, kolon kabuk betonunda Mander sargısız beton modeli, etriyelerle çevrili çekirdek betonunda ise Mander sargılı beton modeli kullanılmıştır. Şekil 5.14. Donatı çeliğinde ise pekleşmeyi de gözönüne alan model kullanılmıştır. Şekil 5.15. Sargı etkisiyle artan beton basınç dayanımı ve beton ezilme birim kısalması enine ve boyuna donatı detayları gözönüne alınarak elde edilir.

Statik itme analizi sonucunda S303 kolonunun alt ucu için elde edilen plastik dönme değeri, plastik mafsal boyuna bölünerek plastik eğrilik bulunur. Plastik mafsal boyu çalışan kesit yüksekliğinin yarısı olarak alınır.

 $h = 40 \ cm$

 $L_p = 40/2 = 20 \text{ cm}$

 $\theta_p = 0.01020$ radyan

$$\phi_{\rm p} = \frac{\theta_{\rm p}}{L_{\rm p}} = \frac{0.01024}{0.20} = 0.05120 \ rad \ /m$$

Hesaplanan eğrilik akma eğriliği ile toplanarak toplam eğrilik elde edilir. Akma eğriliğinin hesabı için Denklem 5.24'te verilen Priestley formülü kullanılır.

$$\phi_y = \frac{2.1\varepsilon_{sy}}{h} = \phi_y = \frac{2.1 \times 0.0011}{0.4} = 0.005775 \text{ rad / m}$$

$$\phi_{t} = \phi_{v} + \phi_{p} = 0.056975$$
 rad / m

S303 kolonu için kesit hasar bölgelerine göre izin verilen beton ve çelik birim şekildeğiştirme sınırları kesit analizi yapılan programda tanımlanarak ilgili kesitin, bu sınırlara karşılık gelen normal kuvvet - toplam eğrilik diyagramları elde edilir. S303 kolonu için elde edilen normal kuvvet-toplam eğrilik diyagramı ve kolon için hesaplanan normal kuvvet-toplam eğrilik istemi değerleri aynı diyagram üzerinde gösterilerek, kesit hasar bölgesi belirlenir. Şekil 5.16.

S303 kolonunun normal kuvveti P = 495.79 kN ve toplam eğriliği ϕ_t = 0.056975 rad / m değerleri diyagrama yerleştirildiğinde, kesitin MN ve GV hasar sınırları arasında olduğu, yani belirgin hasar bölgesinde bulunduğu görülmektedir. Şekil 5.16.

Şekil 5.16 : TS-3 S303 kolonu kesit hasar bölgesinin belirlenmesi.

TS-3 için daha önce Bölüm 5.3.2'de yapılan doğrusal elastik hesap yöntemi ile deprem performansının belirlenmesinde, elemanların kırılma tipi ve kolon-kiriş birleşim bölgesinin kesme güvenliği belirlenmiştir. Aynı yapı için aynı sonuçlar doğrusal olmayan hesap yöntemi içinde geçerlidir. TS-3'ün tüm elemanlarının kırılma türü sünektir ve kolon-kiriş birleşim bölgesinde kesme güvenliği sağlanmaktadır.

+X deprem yönü için plastikleşen kesitlerde oluşan hasar, -X yönündeki deprem için simetrik kesitlerde de oluşacaktır. Plastikleşmenin oluşmadığı kesitlerin ise plastikleşmenin başlangıcı olarak kabul edilen minimum hasar sınırını aşmadığı, dolayısıyla kesit hasar bölgesinin minimum hasar bölgesinde kaldığı herhangi bir hesap yapmadan söylenebilir. Elemanın hasar seviyesi ise en çok hasar gören kesitine göre belirlenir.

+X deprem yönünde kesitlerde oluşan hasarlar, –X deprem yönünde kesitlerde oluşan hasarlar ve sonuç olarak iki yöndede etkiyen deprem sonucunda elemanlarda oluşan hasarlar kirişler için çizelge 5.28'de, kolonlar için ise çizelge 5.29'da verilmiştir.

No	Kesit	Plastik Mafsal	Φt (1/m)	Hasar Bölgesi	
1	K401SOL	29H1	0.05152	BHB	
2	K301SOL	28H1	0.04948	BHB	
3	K304SAĞ	43H2	-0.03830	BHB	
4	K201SOL	27H1	0.01635	BHB	
5	K202SAĞ	32H2	-0.00358	MHB	
6	K204SAĞ	42H2	-0.00762	MHB	
7	K101SOL	26H1	0.00812	MHB	
8	K102SAĞ	31H2	-0.00462	MHB	
9	K103SAĞ	36H2	-0.00369	MHB	
10	S501ÜST	5H2	-0.04156	MHB	
11	S502ALT	10H1	0.09079	BHB	
12	S502ÜST	10H2	-0.08287	BHB	
13	S503ALT	15H1	0.08750	BHB	
14	S503ÜST	15H2	-0.08195	BHB	
15	S504ALT	20H1	0.08577	BHB	
16	S504ÜST	20H2	-0.07759	BHB	
17	S505ALT	25H1	0.09747	BHB	
18	S505ÜST	25H2	-0.09304	BHB	
19	S402ALT	9H1	0.10997	BHB	
20	S402ÜST	9H2	-0.10882	BHB	
21	S403ALT	14H1	0.10857	BHB	
22	S403ÜST	14H2	-0.10586	BHB	
23	S404ALT	19H1	0.10774	BHB	
24	S404ÜST	19H2	-0.10485	BHB	
25	S405ALT	24H1	0.04361	MHB	
26	S405ÜST	24H2	-0.09237	BHB	
27	S301ALT	3H1	0.01051	BHB	
28	S302ALT	8H1	0.05602	BHB	
29	S302ÜST	8H2	-0.05342	BHB	
30	S303ALT	13H1	0.05698	BHB	
31	S303ÜST	13H2	-0.05279	BHB	
32	S304ALT	18H1	0.05525	BHB	
33	S304ÜST	18H2	-0.05183	BHB	
34	S305ALT	23H1	0.03778	MHB	
35	S203ALT	12H1	0.00546	MHB	
36	S102ALT	6H1	0.00850	MHB	
37	S103ALT	11H1	0.00877	MHB	
38	S104ALT	16H1	0.00840	MHB	

Çizelge 5.27 : TS-3 plastikleşen kesitlerin hasar bölgeleri.

• Bina deprem performansının belirlenmesi

+X yönündeki deprem için yapılan statik itme analizinin sonucunda, plastikleşen kesitler için Çizelge 5.27'de verilen kesit hasar bölgeleri bulunmuştur. Bu verilerden yararlanılarak kiriş ve kolonların uç kesitlerinde oluşan elverişsiz kesit hasar bölgeleri ve elemanların hasar bölgeleri elde edilmiştir. Çizelge 5.28 ve 5.29. Bu verilerin değerlendirilmesi ile TS-3'ün deprem performansı belirlenir.

İncelenen konut tipi yapının, aşılma olasılığı 50 yılda %10 olan deprem için hedeflenen performans düzeyi can güvenliği (CG) performans düzeyidir. Çizelge 3.2.

Can güvenliği performans düzeyinde, kolon ve kirişlerin belirtilen oranlar dahilinde bir kısmı ileri hasar bölgesine geçebilmekte, diğer taşıyıcı elemanların ise tümünün minimum veya belirgin hasar bölgesinde kalması gerekmektedir. Kiriş ve kolonların hasar bölgelerinin verildiği Çizelge 5.28 ve 5.29 incelendiğinde hiçbir elemanın ileri hasar bölgesine geçmediği, elemanların hasar bölgelerinin minimum veya belirgin olduğu görülmektedir. Fakat, can güvenliği performans düzeyinin "herhangi bir katta alt ve üst kesitlerinin ikisinde birden minimum hasar sınırı aşılmış olan kolonlar tarafından taşınan kesme kuvvetlerinin, o kattaki tüm kolonlar tarafından taşınan kesme kuvvetine oranının %30'u aşmaması gerekir" koşulu, Çizelge 5.29'dan da görüldüğü gibi her iki ucu da belirgin hasar bölgesinde olan 3, 4 ve 5. kat kolonları tarafından taşınan kesme kuvvetlerinin, o katlardaki tüm kolonlar tarafından taşınan kesme kuvvetlerine oranının %30'u aşmasından dolayı sağlanamamaktadır. Sonuc olarak, 3, 4 ve 5. kat kolonlarının yukarıda açıklanan orandan daha fazlasının her iki ucununda minimum hasar sınırını aşması neticesinde, can güvenliği performans düzeyi doğrusal olmayan yöntem ile yapılan analiz sonucunda TS-3 için sağlanamamaktadır.

		+x Yönlü	-x Yönlü	Elverişsiz	Flomon	
Vinia	Uç	Depremde	Depremde	Kesit	Lieman	
KIFIŞ		Kesit Hasar	Kesit Hasar	Hasar	Hasar Dölgələri	
		Bölgeleri	Bölgeleri	Bölgeleri	Doigeieri	
K501	Sol	MHB	MHB	MHB	MHB	
	Sağ	MHB	MHB	MHB		
K502	Sol	MHB	MHB	MHB	MHB	
	Sağ	MHB	MHB	MHB		
K 503	Sol	MHB	MHB	MHB	MHB	
K202	Sağ	MHB	MHB	MHB		
K504	Sol	MHB	MHB	MHB	MHB	
	Sağ	MHB	MHB	MHB		
V 401	Sol	BHB	MHB	BHB	BHB	
K 401	Sağ	MHB	MHB	MHB		
V 402	Sol	MHB	MHB	MHB	MUD	
K 402	Sağ	MHB	MHB	MHB	МНВ	
V 402	Sol	MHB	MHB	MHB	MIID	
K 405	Sağ	MHB	MHB	MHB	MHB	
V 404	Sol	MHB	MHB	MHB	מוום	
K 404	Sağ	MHB	BHB	BHB	внв	
W201	Sol	BHB	BHB	BHB	BHB	
K301	Sağ	MHB	MHB	MHB		
IZ202	Sol	MHB	MHB	MHB	MHB	
K302	Sağ	MHB	MHB	MHB		
V202	Sol	MHB	MHB	MHB	MHB	
K303	Sağ	MHB	MHB	MHB		
V204	Sol	MHB	MHB	MHB	מוות	
K304	Sağ	BHB	BHB	BHB	внв	
17001	Sol	BHB	MHB	BHB	BHB	
K201	Sağ	MHB	MHB	MHB		
K202	Sol	MHB	MHB	MHB	MHB	
	Sağ	MHB	MHB	MHB		
K203	Sol	MHB	MHB	MHB	MHB	
	Sağ	MHB	MHB	MHB		
K204	Sol	MHB	MHB	MHB	BHB	
	Sağ	MHB	BHB	BHB		
K101	Sol	MHB	MHB	MHB	MHB	
	Sağ	MHB	MHB	MHB		
K102	Sol	MHB	MHB	MHB	MHB	
	Sağ	MHB	MHB	MHB		
K103	Sol	MHB	MHB	MHB	MHB	
	Sağ	MHB	MHB	MHB		
K104	Sol	MHB	MHB	MHB		
	Sağ	MHB	MHB	MHB	MHR	

Çizelge 5.28 : TS-3 kiriş hasar bölgeleri.

Kolon	Uç	+x Yönlü Depremde Kesit Hasar Bölgeleri	-x Yönlü Depremde Kesit Hasar Bölgeleri	Elverişsiz Kesit Hasar Bölgeleri	Eleman Hasar Bölgeleri	
\$501	Üst	MHB	BHB	BHB	סווס	
5501	Alt	MHB	BHB	BHB	рир	
8502	Üst	BHB	BHB	BHB	DUD	
\$502	Alt	BHB	BHB	BHB	внв	
9502	Üst	BHB	BHB	BHB	DUD	
S503	Alt	BHB	BHB	BHB	внв	
0504	Üst	BHB	BHB	BHB	BHB	
S504	Alt	BHB	BHB	BHB		
	Üst	BHB	MHB	BHB	DUD	
\$505	Alt	BHB	MHB	BHB	BHB	
0.40.1	Üst	MHB	BHB	BHB	D	
S401	Alt	MHB	MHB	MHB	BHB	
~	Üst	BHB	BHB	BHB		
S402	Alt	BHB	BHB	BHB	BHB	
~	Üst	BHB	BHB	BHB		
S403	Alt	BHB	BHB	BHB	BHB	
	Üst	BHB	BHB	BHB		
S404	Alt	BHB	BHB	BHB	BHB	
~	Üst	BHB	MHB	BHB		
S405	Alt	MHB	MHB	MHB	BHB	
	Üst	MHB	MHB	MHB	BHB	
S301	Alt	BHB	BHB	BHB		
	Üst	BHB	BHB	BHB	BHB	
S302	Alt	BHB	BHB	BHB		
	Üst	BHB	BHB	BHB	BHB	
S303	Alt	BHB	BHB	BHB		
	Üst	BHB	BHB	BHB		
S304	Alt	BHB	BHB	BHB	BHB	
	Üst	MHB	MHB	MHB	DUD	
\$305	Alt	BHB	BHB	BHB	BHB	
GO 01	Üst	MHB	MHB	MHB		
S201	Alt	MHB	MHB	MHB	MHB	
	Üst	MHB	MHB	MHB		
S202	Alt	MHB	MHB	MHB	MHB	
	Üst	MHB	MHB	MHB		
S203	Alt	MHB	MHB	MHB	MHB	
	Üst	MHB	MHB	MHB	MHB	
S204	Alt	MHB	MHB	MHB		
0205	Üst	MHB	MHB	MHB	MUD	
S205	Alt	MHB	MHB	MHB	MHB	
S101	Üst	MHB	MHB	MHB	MUD	
	Alt	MHB	MHB	MHB	MHB	
S102	Üst	MHB	MHB	MHB	MITE	
	Alt	MHB	MHB	MHB	MHB	
S103	Üst	MHB	MHB	MHB	MHB	
	Alt	MHB	MHB	MHB		
0104	Üst	MHB	MHB	MHB	MHB	
5104	Alt	MHB	MHB	MHB		
S105	Üst	MHB	MHB	MHB	MUD	
	Alt	MHB	MHB	MHB	WIHB	

Çizelge 5.29 : TS-3 kolon hasar bölgeleri

5.5 Doğrusal ve Doğrusal Olmayan Yöntemler İle Yapılan Analiz Sonuçlarının Karşılaştırılması

TS-3'ün deprem performansı, TDY 2007'deki esaslar çerçevesinde doğrusal ve doğrusal olmayan yöntemler ile belirlenmiştir. Bu çalışmada incelenen bina için, doğrusal elastik eşdeğer deprem yükü ve artımsal eşdeğer deprem yükü ile itme analizi yöntemleri ile yapılan analiz sonuçları bire bir aynı olmamasına rağmen, yakın sonuçlar elde edilmiştir. Her iki analiz sonuçlarına göre binanın deprem performans seviyeleri aynı çıkmaktadır. Hedeflenen performans düzeyi olan can güvenliği her iki analiz sonuçlarına göre aynı nedenlerden dolayı sağlanamamaktadır. Elde edilen sonuçların aynı olmasına rağmen eleman ve kesit bazında oluşan hasarlar farklılıklar göstermektedir.

Analiz sonuçlarına göre hedeflenen performansın sağlanamaması kolonların her iki ucunda da minimum hasar sınırının aşılmış olmasından ileri gelmektedir. Doğrusal elastik hesaba göre bu durumun binanın her katında oluşmasına karşın, doğrusal olmayan hesapta bu durum sadece üç katta karşımıza çıkmaktadır. Can güvenliği deprem performans seviyesinin şartlarının sağlanması açısından bakıldığında her iki analiz sonuçlarına göre de kirişlerde ileri hasar bölgesinde eleman ortaya çıkmamaktadır. Fakat, belirgin hasar bölgesindeki kirişlerin sayısı ve sistem üzerindeki dağılımları farklılıklar göstermektedir. Hem kolonlar, hemde kirişler açısından elemanların hasar durumlarının analiz yöntemine göre değişmesi, doğrusal olmayan analizde sistemin doğrusal olmayan davranışının göz önüne alınması ile açıklanabilir. Doğrusal elastik yöntemler ile yapılan analizlerde deprem etkilerinin daha fazla olduğu alt kat kiriş ve kolonlarında doğrusal elastik olmayan hesaba göre daha büyük hasarlar oluştuğu görülmektedir. Doğrusal elastik olmayan yöntemler ile yapılan analizde ise daha zayıf kesitlere sahip olan üst kat elemanlarında plastikleşmenin daha erken olduğu görülmektedir. Daha güçlü kesitli alt kat kesitleri plastikleşemeden, üst katlarda birbirine yakın kesitlerin ard arda plastikleşmesi ve o bölgede kısmi mekanizma durumlarının oluşması nedeniyle sistem rijitliğini hızlı bir biçimde kaybetmekte ve yatay yerdeğiştirme istemine ulasarak analiz sonuçlanmaktadır. Bu durum esnasında alt katlarda oluşan plastik kesitlere komşu kesitlerde daha az mafsallaşma olmasından dolayı bu kesitlerde meydana gelen plastik dönmelerde daha az olmakta dolayısıyla da bu kesitler daha az hasar görmektedir.

Sonuç olarak incelenen bu bina (TS-3) için hem doğrusal hemde doğrusal olmayan yöntemde aynı sonuca ulaşılmıştır. Fakat, doğrusal olmayan analizde sistem davranışı daha net bir biçimde görülebilmekte ve sistemin ilk zayıflayan bölgeleri tespit edilebilmektedir.

6. SONUÇLAR

Bu tez çalışmasında, ülkemizde olası bir deprem durumunda ağır hasar görme olasılığı yüksek olan 30 ile 50 yaş arasındaki binaları temsil edecek şekilde, geçmiş deprem ve betonarme yönetmeliklerine göre boyutlandırılan üç farklı yapı sisteminin deprem performansı incelenmiştir.

Çalışmada esas olarak iki temel konunun araştırılması hedeflenmiştir. Bunlar, önce binaların eski deprem ve betonarme yönetmeliklerine uygun olacak şekilde boyutlandırılması ve sonra bu binaların TDY 2007'ye göre deprem performansının belirlenmesi ile ilgili elde edilen sonuçların değerlendirilmesidir.

1961 deprem ve 1953 betonarme yönetmeliklerine göre boyutlandırılan bina ile 1968 deprem ve 1967 betonarme yönetmeliklerine göre boyutlandırılan bina arasında önemli farklılıklar meydana gelmemiştir (TS-1, TS-2). Ayrıca boyutlandırma esnasında deprem etkilerinin genelde daha elverişsiz sonuçlar doğurmadığı görülmektedir. Bunun sonucu olarak bu binaların yaklaşık olarak sadece düşey yüklere göre boyutlandırıldığı söylenebilir. Fakat, 1975 deprem ile 1975 betonarme yönetmeliklerine göre boyutlandırılan binanın (TS-3), taşıyıcı elemanlarının kesitleri büyümüş ve donatı miktarları artmıştır. Bu durum binaya etkiyen deprem yüklerinin artması ve düşey etkilere göre daha elverişsiz durumlar ortaya çıkarması ile açıklanabilir.

TDY 2007'ye göre yapılan performans değerlendirmesi sonucunda, üç binanında kendileri için öngörülen can güvenliği deprem performans düzeyinde olmadığı görülmüştür. Bu çalışmada incelenen örneklerden elde edilen sonuçlara göre, eski yönetmelikler esas alınarak boyutlandırılan binaların, güncel deprem yönetmeliğine göre irdelenmesi sonucunda deprem performanslarının yeterli olmadığı ve kullanılmalarının sakıncalı olduğu sonucuna varılmaktadır.

Gerek doğrusal elastik hesapta, gerekse doğrusal elastik olmayan hesapta, incelenen bina için öngörülen performans hedefinin sağlanamamasının nedenleri aşağıda sıralanmıştır.

- Binaların boyutlandırılmasında binaya etki eden deprem etkilerinin oldukça düşük seviyelerde kalması
- Emniyet gerilmeleri esasına göre yapılan betonarme kesit hesaplarında depremli durumda malzeme emniyet gerilmelerinin arttırılması sonucunda kesitlerde elverişsiz durumların ortaya çıkmaması ve bunun sonucunda boyutlandırmada deprem yüklerinin, düşey yüklere göre daha az etkili olması
- Eski yönetmeliklerde bulunan minimum koşulların ve konstrüktif esasların yetersiz olması
- Kirişlerde kesme kuvvetlerinin taşınmasında pliyelerden olabildiğince yararlanılabilmek adına enine donatıların yetersiz kalması ve boyuna donatıların pliyelere göre düzenlenmesi
- Genel tasarım mantığı olarak kirişlerin kolonlardan daha güçlü yapılmak istenmesi, [24].

Doğrusal elastik ve doğrusal elastik olmayan yöntemler ile yapılan değerlendirme sonucunda aynı performans seviyesine ulaşılmıştır fakat, kesit ve eleman hasarları bakımından farklı sonuçlar elde edilmiştir.

Binaların projelerine uygun olarak inşa edildiği ve yapı malzemelerinin, tasarımda seçilen yapı malzemelerinin dayanım değerlerini sağladığı düşünülerek performans analizleri yapılmıştır. Tamamen projelerine uygun inşa edildiği düşünülen binaların bile deprem performanslarının yetersiz olması, projesiz ve düşük kaliteli malzeme ile yapılmış birçok binaya sahip ülkemizdeki mevcut binaların, olası bir deprem durumunda göreceği hasarlar ile ilgili oldukça karamsar sonuçlar çıkarmamıza neden olmaktadır.

Sayısal incelemesi yapılan taşıyıcı sistemler, 3'er metre yüksekliğinde 5 katlı ve 6 metre boyunda 4 açıklıklı düzlem çerçeve olarak, o dönem yürürlükte olan yönetmeliklerde izin verilen en düşük dayanımlı malzemeler ile minimum koşulları sağlayacak şekilde boyutlandırılmıştır. Bu çalışma, daha farklı yükleme durumları için, farklı geometri ve malzemeye sahip, farklı deprem ve zemin bölgerinde yer alan taşıyıcı sistem modelleri üzerinde çalışılarak genişletilebilir ve böylece eski deprem yönetmeliklerinin irdelenmesi ile ilgili daha kesin yargılara varılabilir.

KAYNAKLAR

- [1] Bayındırlık ve İskan Bakanlığı Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi Web Sayfası, http://www.deprem.gov.tr/deprem.htm>, alındığı tarih 04.03.2009
- [2] Özer, E., 2008. Yapı Sistemlerinin Lineer Olmayan Analizi Ders Notları, <<u>http://www.ins.itu.edu.tr/eozer></u>, alındığı tarih 07.02.2008
- [3] **ABYYHY**, 1998. Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik, *Bayındırlık ve İskân Bakanlığı*, Ankara.
- [4] **DBYBHY**, 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, *Bayındırlık ve İskân Bakanlığı*, Ankara.
- [5] Tuncer, Ö., 2008. Betonarme yapıların deprem performansının doğrusal ve doğrusal olmayan yöntemlerle belirlenmesi, Yüksek Lisans Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
- [6] Erdoğan , A., 2008. 1975 öncesinde inşa edilen mevcut betonarme binaların deprem performanslarının belirlenmesi üzerine sayısal bir inceleme, *Yüksek Lisans Tezi*, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
- [7] Çakıroğlu, A., Özden, E., Özmen, G., 1992. Yapı Sistemlerinin Hesabı için Matris Metodları ve Elektronik Hesap Makinası Programları, Cilt I, İ.T.Ü. İnşaat Fakültesi Matbaası, İstanbul.
- [8] Çakıroğlu, A., Özden, E., Özmen, G., 1992. Yapı Sistemlerinin Hesabı için Matris Metodları ve Elektronik Hesap Makinası Programları, Cilt II, İ.T.Ü. İnşaat Fakültesi Matbaası, İstanbul.
- [9] Özer, E., 1969. Lineer olmayan sistemlerin hesabı için bir metod, *Doktora Tezi*, İ.T.Ü. İnşaat Fakültesi Matbaası, İstanbul.
- [10] Özer, E., 1987. Determination of second-order limit load by a method of load increments, Billetin of the Technical University of İstanbul, 40, 815-836
- [11] Girgin, K., 1996. Betonarme yapı sistemlerinde ikinci mertebe limit yükün ve göçme güvenliğinin belirlenmesi için bir yük artımı yöntemi, *Doktora Tezi*, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
- [12] **SAP 2000**, 2005. Structural Analysis Program, Computers and Structures Inc., Berkeley, California.
- [13] **ATC-40**, 1996. Seismic Evaluation and Retrofit of Concrete Buildings, *Applied Technology Council*, California.
- [14] **FEMA-273**, 1997. NEHRP Guidelines for the Seismic Rehabilitation of Buildings, *Federal Emergency Management Agency*, Washington.
- [15] **FEMA-356**, 2000. Prestandart and Commentary for the Seismic Rehabilitation of Buildings, *Federal Emergency Management Agency*, Washington.

- [16] **FEMA-440**, 2005. Improvement of Nonlinear Static Seismic Analysis Procedures, *Federal Emergency Management Agency*, Washington.
- [17] **European Committee for Standardization**, 2004. Design of Structures for Earthquake Resistance-Assessment and Retrofitting of Buildings, Eurocode 8-3.
- [18] **ABYYHY**, 1961. Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik, İmar ve İskân Bakanlığı, Mesken Genel Müdürlüğü, Sayı:1, Ankara.
- [19] **ABYYHY**, 1968. Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik, İmar ve İskân Bakanlığı, Afet İşleri Genel Müdürlüğü, Ankara.
- [20] **ABYYHY**, 1975. Afet Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik, *İmar ve İskân Bakanlığı*, Deprem Araştırma Enstitüsü Başkanlığı, Sayı:1, Ankara.
- [21] **TKİC Betonarme Şartnamesi**, 1953. Betonarme Şartnamesi, *Türkiye Köprü ve İnşaat Cemiyeti*, Ankara.
- [22] **TKİC Betonarme Şartnamesi**, 1967. Betonarme Şartnamesi, *Türkiye Köprü ve İnşaat Cemiyeti*, Ankara.
- [23] **TS-500**, 1975. Betonarme Yapıların Hesap ve Yapım Kuralları, *Türk Standartları Enstitüsü*, Ankara.
- [24] Aydınoğlu, M. N., 2007. Deprem katsayısından performansa göre tasarıma: bir mühendisin bakış açısından deprem mühendisliğinin 40 yılı, Altıncı Ulusal Deprem Mühendisliği Konferansı, Prof. Dr. Rıfat Yarar Konuşması – 2007, İstanbul, 16-20 Ekim.
- [25] Uluğ, T.N., Odabaşı, Y., 1964. Betonarme İnşaat Hesapları, Arı Kitabevi, İstanbul.
- [26] Aka, İ., Keskinel, F., Arda, T. S., 1970. *Betonarmeye Giriş*, İ.T.Ü. Matbaası, İstanbul.
- [27] Özden, K., 1971. Betonarme, İ.T.Ü. Matbaası, İstanbul.
- [28] **Uluğ, T.N., Odabaşı, Y.,** 1985. *Betonarme İnşaat Hesapları*, Matbaa Teknisyenleri Basımevi, İstanbul.
- [29] Aka, İ., Keskinel, F., Arda, T. S., 1981. *Betonarmeye Giriş*, Birsen Kitabevi, İstanbul.
- [30] Celep, Z., Kumbasar, N., 2005. Betonarmeye Yapılar, Beta Dağıtım, İstanbul.
- [31] **TS-500**, 2000. Betonarme Yapıların Tasarım ve Yapım Kuralları, *Türk Standartları Enstitüsü*, Ankara.
- [32] Ersoy, U., Özcebe, G., 2006. Kesit Analiz Yazılımları, <<u>http://www.ce.metu.edu.tr/~betonarme/></u>, alındığı tarih 06.04.2009
- [33] **Priestley, M.J.N.**, 2000, Performance Based Seismic Design, 12th World Conference on Earthquake Engineering, Auckland, New Zealand, January-February 2000.
- [34] XTRACT, 2002, Kesit Analiz Program, Imbsen Software Systems.

EK.A
Vinia	Ue	h (am)	d (am)	Boyuna	a Donatı	M _K	(kNm)
KIГIŞ	Uç	D _w (cm)	a (cm)	Alt (cm ²)	Üst (cm ²)	(+)	(-)
K 501	Sol	20	56	5.09	6.66	60.07	-77.54
K 301	Sağ	20	56	7.35	10.93	85.06	-122.51
V502	Sol	20	56	7.35	10.93	85.06	-122.51
K 302	Sağ	20	56	4.52	10.11	53.61	-114.16
V502	Sol	20	56	4.52	10.11	53.61	-114.16
K 303	Sağ	20	56	7.35	10.93	85.06	-122.51
K504	Sol	20	56	7.35	10.93	85.06	-122.51
K J04	Sağ	20	56	5.09	6.66	60.07	-77.54
K401	Sol	25	56	5.09	9.20	60.60	-106.46
K 401	Sağ	25	56	8.17	18.91	95.22	-203.88
K402	Sol	25	56	8.17	18.91	95.22	-203.88
K 402	Sağ	25	56	6.16	16.84	72.80	-184.40
K/03	Sol	25	56	6.16	16.84	72.80	-184.40
K 403	Sağ	25	56	8.17	18.91	95.22	-203.88
K101	Sol	25	56	8.17	18.91	95.22	-203.88
K 404	Sağ	25	56	5.09	9.20	60.60	-106.46
K 201	Sol	25	56	5.09	9.20	60.60	-106.46
K 301	Sağ	25	56	8.17	18.91	95.22	-203.88
K302	Sol	25	56	8.17	18.91	95.22	-203.88
K 302	Sağ	25	56	6.16	16.84	72.80	-184.40
K303	Sol	25	56	6.16	16.84	72.80	-184.40
K 303	Sağ	25	56	8.17	18.91	95.22	-203.88
K304	Sol	25	56	8.17	18.91	95.22	-203.88
K 304	Sağ	25	56	5.09	9.20	60.60	-106.46
K201	Sol	25	56	5.09	9.20	60.60	-106.46
K 201	Sağ	25	56	8.17	18.91	95.22	-203.88
K202	Sol	25	56	8.17	18.91	95.22	-203.88
K 202	Sağ	25	56	6.16	16.84	72.80	-184.40
K203	Sol	25	56	6.16	16.84	72.80	-184.40
K 203	Sağ	25	56	8.17	18.91	95.22	-203.88
K204	Sol	25	56	8.17	18.91	95.22	-203.88
K 204	Sağ	25	56	5.09	9.20	60.60	-106.46
V101	Sol	25	56	5.09	9.20	60.60	-106.46
K 101	Sağ	25	56	8.17	18.91	95.22	-203.88
V102	Sol	25	56	8.17	18.91	95.22	-203.88
K 102	Sağ	25	56	6.16	16.84	72.80	-184.40
K103	Sol	25	56	6.16	16.84	72.80	-184.40
K103	Sağ	25	56	8.17	18.91	95.22	-203.88
K 104	Sol	25	56	8.17	18.91	95.22	-203.88
K104	Sağ	25	56	5.09	9.20	60.60	-106.46

Çizelge A.1 : TS-2 kiriş hasar bölgeleri hesapları - 1

Kiriş	Uç	V _{cr} (kN)	V _w (kN)	$V_r(kN)$	V _{r max} (kN)
V501	Sol	94.64	82.13	157.85	344.96
K301	Sağ	94.64	82.13	157.85	344.96
V502	Sol	94.64	82.13	157.85	344.96
K502	Sağ	94.64	82.13	157.85	344.96
W502	Sol	94.64	82.13	157.85	344.96
K503	Sağ	94.64	82.13	157.85	344.96
V5 04	Sol	94.64	82.13	157.85	344.96
K304	Sağ	94.64	82.13	157.85	344.96
IZ 401	Sol	118.30	144.94	239.58	431.20
K401	Sağ	118.30	144.94	239.58	431.20
12 400	Sol	118.30	144.94	239.58	431.20
K402	Sağ	118.30	144.94	239.58	431.20
V 402	Sol	118.30	144.94	239.58	431.20
N 403	Sağ	118.30	144.94	239.58	431.20
V 404	Sol	118.30	144.94	239.58	431.20
K 404	Sağ	118.30	144.94	239.58	431.20
W201	Sol	118.30	144.94	239.58	431.20
K301	Sağ	118.30	144.94	239.58	431.20
K302	Sol	118.30	144.94	239.58	431.20
	Sağ	118.30	144.94	239.58	431.20
W202	Sol	118.30	144.94	239.58	431.20
K303	Sağ	118.30	144.94	239.58	431.20
W204	Sol	118.30	144.94	239.58	431.20
K 304	Sağ	118.30	144.94	239.58	431.20
V201	Sol	118.30	144.94	239.58	431.20
K201	Sağ	118.30	144.94	239.58	431.20
K202	Sol	118.30	144.94	239.58	431.20
K 202	Sağ	118.30	144.94	239.58	431.20
K202	Sol	118.30	144.94	239.58	431.20
K 205	Sağ	118.30	144.94	239.58	431.20
K204	Sol	118.30	144.94	239.58	431.20
N 204	Sağ	118.30	144.94	239.58	431.20
V101	Sol	118.30	144.94	239.58	431.20
K 101	Sağ	118.30	144.94	239.58	431.20
V102	Sol	118.30	144.94	239.58	431.20
K 102	Sağ	118.30	144.94	239.58	431.20
V 102	Sol	118.30	144.94	239.58	431.20
K103	Sağ	118.30	144.94	239.58	431.20
K 104	Sol	118.30	144.94	239.58	431.20
K 104	Sağ	118.30	144.94	239.58	431.20

Çizelge A.2 : TS-2 kiriş hasar bölgeleri hesapları - 2

Kiriş	Uç	$\frac{M_{pi} + M_{pj}}{(kNm)}$	$(M_{pi} + M_{pj)} \\ / l_n \\ (kN)$	V _{dy} (kN)	V _e (kN)	V _{g+nq+e} (kN)	Min (V _e ;V _{g+nq+ex})
K 501	Sol	192 59	21 75	49.57	17.82	20.68	17.82
K 301	Sağ	102.30	51.75	69.83	101.58	98.72	98.72
K502	Sol	100.22	34.65	61.64	26.99	41.27	26.99
K 302	Sağ	199.22	54.05	57.76	92.41	78.13	78.13
K 503	Sol	176 12	30.63	57.76	27.13	37.41	27.13
K303	Sağ	170.12	30.03	61.64	92.27	81.99	81.99
K504	Sol	162.60	28.28	69.83	41.55	40.97	40.97
KJ04	Sağ	102.00	20.20	49.57	77.85	78.43	77.85
K401	Sol	264.48	46.40	76.87	30.47	6.83	6.83
K 4 01	Sağ	204.40	40.40	102.53	148.93	186.23	148.93
K102	Sol	270.63	19.06	91.84	42.78	26.69	26.69
K 402	Sağ	279.03	49.00	87.56	136.62	152.71	136.62
K103	Sol	276 60	18 51	87.56	39.02	22.46	22.46
K 4 03	Sağ	270.07	40.34	91.84	140.38	156.94	140.38
K404	Sol	201.68	35 38	102.53	67.15	19.02	19.02
11-0-	Sağ	201.00	55.50	76.87	112.25	160.38	112.25
K301	Sol	264.48	46.61	78.11	31.50	43.31	31.50
1301	Sağ	204.40	10.01	101.17	147.78	222.59	147.78
K302	Sol	279.63	49.49	91.05	41.56	25.61	25.61
K 302	Sağ	217.05		88.05	137.54	204.71	137.54
K303	Sol	276 69	48.97	88.05	39.08	28.50	28.50
N 505	Sağ	270.07		91.05	140.02	207.60	140.02
К304	Sol	201.68	35.54	101.17	65.63	19.86	19.86
11301	Sağ	201.00		78.11	113.65	119.14	113.65
K201	Sol	264 48	47 23	79.30	32.07	64.37	32.07
11201	Sağ	204.40	+7.23	99.50	146.73	243.17	146.73
K202	Sol	279.63	50.38	90.00	39.62	66.36	39.62
11202	Sağ	217.05	50.50	88.50	138.88	244.86	138.88
K203	Sol	276 69	49.85	88.50	38.65	67.65	38.65
11203	Sağ	270.07	19.05	90.00	139.85	246.15	139.85
к204	Sol	201.68	36.01	99.50	63.49	43.61	43.61
11201	Sağ	201.00	50.01	79.30	115.31	222.41	115.31
K101	Sol	264.48	47.23	79.60	32.37	65.26	32.37
11101	Sağ	201110	17.20	99.20	146.43	244.06	146.43
K102	Sol	279.63	50.38	90.00	39.62	70.60	39.62
11102	Sağ	217.05	50.50	88.50	138.88	249.10	138.88
K103	Sol	276 69	49.85	88.50	38.65	71.79	38.65
11105	Sağ	_/0.0/	47.0J	90.00	139.85	250.29	139.85
K104	Sol	201.68	36.01	99.20	63.19	44.85	44.85
	Sağ	_01.00	20.01	79.60	115.61	223.65	115.61

Çizelge A.3 : TS-2 kiriş hasar bölgeleri hesapları - 3

Kiriş	Uç	M _D (kNm)	M _E (kNm)	M _K (kNm)	r
K 501	Sol	-9.27	102.64	60.07	1.48
K 301	Sağ	-70.05	-70.67	-122.51	1.35
K502	Sol	-68.25	58.67	85.06	0.38
K 302	Sağ	-55.63	-63.53	-114.16	1.09
V502	Sol	-55.63	63.51	53.61	0.58
K 305	Sağ	-68.25	-58.63	-122.51	1.08
V5 04	Sol	-70.05	70.63	85.06	0.46
K 304	Sağ	-9.27	-102.54	-77.54	1.50
V 401	Sol	-28.05	278.29	60.60	3.14
N 401	Sağ	-105.01	-223.93	-203.88	2.26
V 402	Sol	-99.06	189.37	95.22	0.97
K 402	Sağ	-86.24	-201.52	-184.40	2.05
V 402	Sol	-86.24	201.43	72.80	1.27
K 405	Sağ	-99.06	-189.20	-203.88	1.80
V 404	Sol	-105.01	223.47	95.22	1.12
K 404	Sağ	-28.05	-277.55	-106.46	3.54
V201	Sol	-36.27	367.14	60.60	3.79
K 301	Sağ	-105.45	-361.36	-203.88	3.67
W202	Sol	-96.15	348.56	95.22	1.82
K302	Sağ	-87.15	-351.41	-184.40	3.61
V202	Sol	-87.15	351.18	72.80	2.20
K303	Sağ	-96.15	-348.11	-203.88	3.23
W204	Sol	-105.45	360.38	95.22	1.80
K 304	Sağ	-36.27	-365.82	-106.46	5.21
V201	Sol	-44.98	407.98	60.60	3.86
K 201	Sağ	-105.57	-454.04	-203.88	4.62
V202	Sol	-92.63	470.61	95.22	2.51
K 202	Sağ	-88.12	-467.54	-184.40	4.86
V202	Sol	-88.12	467.12	72.80	2.90
K 205	Sağ	-92.63	-469.77	-203.88	4.22
W204	Sol	-105.57	452.49	95.22	2.25
K 204	Sağ	-44.98	-406.15	-106.46	6.61
V 101	Sol	-47.17	406.43	60.60	3.77
K101	Sağ	-105.96	-462.72	-203.88	4.73
V100	Sol	-92.45	483.17	95.22	2.57
K102	Sağ	-87.96	-480.41	-184.40	4.98
V102	Sol	-87.96	479.80	72.80	2.98
K103	Sağ	-92.45	-481.94	-203.88	4.32
V104	Sol	-105.96	460.45	95.22	2.29
K104	Sağ	-47.17	-403.83	-106.46	6.81

Çizelge A.4 : TS-2 kiriş hasar bölgeleri hesapları - 4

Kiriş	Uç	ρ	ρ'	ρ _b	ρ - ρ' / ρ _b
V 501	Sol	0.0045	0.0059	0.0336	-0.0417
K301	Sağ	0.0098	0.0066	0.0336	0.0951
V502	Sol	0.0066	0.0098	0.0336	-0.0951
K302	Sağ	0.0090	0.0040	0.0336	0.1485
V502	Sol	0.0040	0.0090	0.0336	-0.1485
K303	Sağ	0.0098	0.0066	0.0336	0.0951
K504	Sol	0.0066	0.0098	0.0336	-0.0951
K304	Sağ	0.0059	0.0045	0.0336	0.0417
V401	Sol	0.0036	0.0066	0.0336	-0.0874
K 401	Sağ	0.0135	0.0058	0.0336	0.2283
K402	Sol	0.0058	0.0135	0.0336	-0.2283
K402	Sağ	0.0120	0.0044	0.0336	0.2270
V 402	Sol	0.0044	0.0120	0.0336	-0.2270
K405	Sağ	0.0135	0.0058	0.0336	0.2283
V404	Sol	0.0058	0.0135	0.0336	-0.2283
K 404	Sağ	0.0066	0.0036	0.0336	0.0874
V201	Sol	0.0036	0.0066	0.0336	-0.0874
K301	Sağ	0.0135	0.0058	0.0336	0.2283
1/2002	Sol	0.0058	0.0135	0.0336	-0.2283
K302	Sağ	0.0120	0.0044	0.0336	0.2270
K202	Sol	0.0044	0.0120	0.0336	-0.2270
K303	Sağ	0.0135	0.0058	0.0336	0.2283
K204	Sol	0.0058	0.0135	0.0336	-0.2283
K304	Sağ	0.0066	0.0036	0.0336	0.0874
V201	Sol	0.0036	0.0066	0.0336	-0.0874
K201	Sağ	0.0135	0.0058	0.0336	0.2283
W202	Sol	0.0058	0.0135	0.0336	-0.2283
K202	Sağ	0.0120	0.0044	0.0336	0.2270
K202	Sol	0.0044	0.0120	0.0336	-0.2270
K205	Sağ	0.0135	0.0058	0.0336	0.2283
K204	Sol	0.0058	0.0135	0.0336	-0.2283
K204	Sağ	0.0066	0.0036	0.0336	0.08737
Z101	Sol	0.0036	0.0066	0.0336	-0.0874
K101	Sağ	0.0135	0.0058	0.0336	0.22832
V 100	Sol	0.0058	0.0135	0.0336	-0.2283
K102	Sağ	0.0120	0.0044	0.0336	0.22704
Z 102	Sol	0.0044	0.0120	0.0336	-0.227
K103	Sağ	0.0135	0.0058	0.0336	0.22832
17104	Sol	0.0058	0.0135	0.0336	-0.2283
K104	Sağ	0.0066	0.0036	0.0336	0.08737

Çizelge A.5 : TS-2 kiriş hasar bölgeleri hesapları - 5

Kiriş	Uç	r	ρ - ρ' /ρ _b	Sargılama	V_e / b_w d f_{ctm}	Hasar Bölgesi
V501	Sol	1.48	-0.0417	yok	0.122	MHB
K301	Sağ	1.35	0.0951	yok	0.678	MHB
V502	Sol	0.38	-0.0951	yok	0.185	MHB
K502	Sağ	1.09	0.1485	yok	0.537	MHB
V502	Sol	0.58	-0.1485	yok	0.186	MHB
K303	Sağ	1.08	0.0951	yok	0.563	MHB
K504	Sol	0.46	-0.0951	yok	0.281	MHB
K 304	Sağ	1.50	0.0417	yok	0.535	MHB
V 401	Sol	3.14	-0.0874	yok	0.038	BHB
K 401	Sağ	2.26	0.2283	yok	0.818	BHB
V 402	Sol	0.97	-0.2283	yok	0.147	MHB
K 402	Sağ	2.05	0.2270	yok	0.751	MHB
V 402	Sol	1.27	-0.2270	yok	0.123	MHB
K 403	Sağ	1.80	0.2283	yok	0.771	MHB
K404	Sol	1.12	-0.2283	yok	0.105	MHB
N 404	Sağ	3.54	0.0874	yok	0.617	BHB
V201	Sol	3.79	-0.0874	yok	0.173	BHB
K 301	Sağ	3.67	0.2283	yok	0.812	İHB
K302	Sol	1.82	-0.2283	yok	0.141	MHB
	Sağ	3.61	0.2270	yok	0.756	İΗΒ
W202	Sol	2.20	-0.2270	yok	0.157	MHB
K 303	Sağ	3.23	0.2283	yok	0.769	BHB
K304	Sol	1.80	-0.2283	yok	0.109	MHB
K304	Sağ	5.21	0.0874	yok	0.624	İHB
K201	Sol	3.86	-0.0874	yok	0.176	BHB
K 201	Sağ	4.62	0.2283	yok	0.806	İHB
K202	Sol	2.51	-0.2283	yok	0.218	BHB
K 202	Sağ	4.86	0.2270	yok	0.763	İHB
K203	Sol	2.90	-0.2270	yok	0.212	BHB
K 203	Sağ	4.22	0.2283	yok	0.768	İHB
K204	Sol	2.25	-0.2283	yok	0.240	MHM
K204	Sağ	6.61	0.08737	yok	0.634	GB
V 101	Sol	3.77	-0.0874	yok	0.178	BHB
K 101	Sağ	4.73	0.22832	yok	0.805	İHB
K102	Sol	2.57	-0.2283	yok	0.218	BHB
K 102	Sağ	4.98	0.22704	yok	0.763	İΗΒ
V 102	Sol	2.98	-0.227	yok	0.212	BHB
K103	Sağ	4.32	0.22832	yok	0.768	İHB
V104	Sol	2.29	-0.2283	yok	0.246	MHB
K104	Sağ	6.81	0.08737	yok	0.635	GB

Çizelge A.6 : TS-2 kiriş hasar bölgeleri hesapları - 6

Kolon	b (cm)	h (cm)	V _{cr} (kN)	V _w (kN)	V _r (kN)	V _{r max} (kN)
S501	25	25	46.48	27.10	64.28	169.40
S502	25	25	46.48	36.14	73.32	169.40
S503	25	25	46.48	36.14	73.32	169.40
S504	25	25	46.48	36.14	73.32	169.40
S505	25	25	46.48	27.10	64.28	169.40
S401	30	30	68.45	33.26	88.02	249.48
S402	30	30	68.45	33.26	88.02	249.48
S403	30	30	68.45	33.26	88.02	249.48
S404	30	30	68.45	33.26	88.02	249.48
S405	30	30	68.45	33.26	88.02	249.48
S301	30	30	68.45	33.26	88.02	249.48
S302	35	35	91.68	38.19	111.54	334.18
S303	35	35	91.68	38.19	111.54	334.18
S304	35	35	91.68	38.19	111.54	334.18
S305	30	30	68.45	33.26	88.02	249.48
S201	35	35	91.68	38.19	111.54	334.18
S202	45	45	155.90	40.41	165.13	568.26
S203	45	45	155.90	40.41	165.13	568.26
S204	45	45	155.90	40.41	165.13	568.26
S205	35	35	91.68	38.19	111.54	334.18
S101	35	35	91.68	38.19	111.54	334.18
S102	45	45	155.90	40.41	165.13	568.26
S103	45	45	155.90	40.41	165.13	568.26
S104	45	45	155.90	40.41	165.13	568.26
S105	35	35	91.68	38.19	111.54	334.18

Çizelge A.7 : TS-2 kolon hasar bölgeleri hesapları - 1

17.1	T	N – N	ormal Kuv	vet (kN)	M - Moment (kNm)		
Kolon	Uç	G+nQ	Ex	G+nQ+Ex	G+nQ	Ex	G+nQ+Ex
0501	Üst	-49.57	20.00	-20.69	9.27	-102.64	-93.37
3301	Alt	-54.26	20.00	-25.38	-9.24	98.09	88.85
8502	Üst	-131.47	0.50	-139.99	-1.80	-129.34	-131.14
5502	Alt	-136.15	-8.52	-144.67	1.75	125.60	127.35
\$502	Üst	-115.53	0.00	-115.53	0.00	-127.04	-127.04
3505	Alt	-120.22	0.00	-120.22	0.00	122.69	122.69
\$504	Üst	-131.47	Q 50	-122.97	1.80	-129.26	-127.46
5504	Alt	-136.15	8.50	-127.65	-1.75	125.53	123.78
\$505	Üst	-49.57	28.86	-78.43	-9.27	-102.54	-111.81
3505	Alt	-54.26	-28.80	-83.12	9.24	98.02	107.26
\$401	Üst	-131.13	112 50	-18.54	18.81	-180.19	-161.38
5401	Alt	-137.88	112.39	-25.29	-17.63	177.96	160.33
\$402	Üst	-330.52	27.07	-357.59	-4.21	-287.69	-291.90
5402	Alt	-337.27	-27.07	-364.34	3.76	272.53	276.29
\$403	Üst	-295.34	0.05	-295.39	0.00	-280.27	-280.27
5405	Alt	-302.09	-0.05	-302.14	0.00	267.57	267.57
\$404	Üst	-330.52	26.00	-303.62	4.21	-287.13	-282.92
5404	Alt	-337.27	20.90	-310.37	-3.76	272.00	268.24
\$405	Üst	-131.13	-112 37	-243.50	-18.81	-179.53	-198.34
5405	Alt	-137.88	-112.37	-250.25	17.63	177.34	194.97
\$201	Üst	-215.99	234.00	18.01	18.64	-189.18	-170.54
3501	Alt	-222.74	234.00	11.26	-17.17	190.18	173.01
\$302	Üst	-529.49	-31.83	-561.32	-5.54	-437.40	-442.94
5502	Alt	-538.68		-570.51	4.43	413.95	418.38
\$303	Üst	-478.19	0.17	-478.36	0.00	-435.02	-435.02
5505	Alt	-487.38	-0.17	-487.55	0.00	414.76	414.76
\$304	Üst	-529.49	31 39	-498.10	5.54	-436.48	-430.94
5501	Alt	-538.68	51.57	-507.29	-4.43	413.14	408.71
\$305	Üst	-215.99	-233.40	-449.39	-18.64	-188.48	-207.12
2000	Alt	-222.74	200110	-456.14	17.17	189.51	206.68
S201	Üst	-302.04	377.67	75.63	27.81	-217.80	-189.99
	Alt	-311.23		66.44	-26.96	219.96	193.00
S202	Üst	-728.18	-19.14	-747.32	-8.46	-510.71	-519.17
~~~~	Alt	-743.36		-762.50	8.02	505.15	513.17
S203	Ust	-664.37	-0.38	-664.75	0.00	-519.90	-519.90
	Alt	-679.56		-679.94	0.00	513.94	513.94
S204	Ust	-728.18	18.35	-709.83	8.46	-509.18	-500.72
	Alt	-743.36		-725.01	-8.02	503.83	495.81
S205	Ust	-302.04	-376.50	-678.54	-27.81	-216.64	-244.45
	Alt	-311.23		-687.73	26.96	218.90	245.86
S101	Ust	-390.83	522.53	131.70	20.21	-186.47	-166.26
	Alt	-400.02		122.51	-10.01	239.07	229.06
S102	Ust	-932.56	-3.40	-935.96	-5.49	-440.77	-446.26
	Alt	-947.75		-951.15	2.55	694.44	696.99
S103	Ust	-856.56	-0.07	-856.63	0.00	-446.27	-446.27
	Alt Ü-+	-8/1./5		-8/1.82	0.00	095.70	095.70
S104		-932.30	2.10	-930.40	3.49 2.55	-428.33	-423.00
	Alt Üst	-74/./3		-743.03	-2.35	184.02	205.13
S105	0.St A 1+	-370.03	-520.55	-911.30	-20.21	-104.93	-203.14
	Alt	-400.02		-920.37	10.01	257.10	24/.11

**Çizelge A.8 :** TS-2 kolon hasar bölgeleri hesapları - 2

Kolon	Uç	N _{G+nQ+Ex} (kN)	M _ü (kNm) M _a (kNm)	V _e (kN)	N _K (kN)	M _K (kNm)
\$501	Üst	-20.69	24.58	20.67	-39.55	-26.36
3501	Alt	-25.38	25.02	20.07	-43.67	26.74
8502	Üst	-139.99	27.08	22.72	-132.91	-26.51
5502	Alt	-144.67	27.44	22.12	-137.80	27.17
8502	Üst	-115.53	25.05	21.05	-115.53	-25.03
3305	Alt	-120.22	25.46	21.05	-120.22	25.46
8504	Üst	-122.97	25.69	21.59	-132.53	-26.44
5304	Alt	-127.65	26.09	21.38	-112.88	24.79
\$505	Üst	-78.43	30.02	25.20	-54.79	-27.80
\$505	Alt	-83.12	30.46	25.20	-59.87	28.28
C 401	Üst	-18.54	36.99	21.16	-90.88	-45.61
5401	Alt	-25.29	37.80	31.16	-97.38	46.38
0.402	Üst	-357.59	56.95	17.00	-335.37	-55.60
S402	Alt	-364.34	57.28	47.60	-342.46	56.00
C 402	Üst	-295.39	53.31	44 61	-295.35	-53.31
\$403	Alt	-302.14	53.75	44.61	-302.10	53.75
0.40.4	Üst	-303.62	53.85	45.05	-324.96	-55.09
5404	Alt	-310.37	54.28	45.05	-331.41	55.49
0.405	Üst	-243.50	61.37	51.27	-152.27	-52.59
5405	Alt	-250.25	61.92	51.37	-160.61	53.50
0001	Üst	18.01	32.59	27.50	-130.73	-50.28
\$301	Alt	11.26	33.40	27.50	-138.64	51.78
	Üst	-561.32	90.64	75.00	-535.58	-89.24
\$302	Alt	-570.51	90.99	/5.68	-545.25	89.90
6202	Üst	-478.36	86.47	72.29	-478.23	-86.46
\$303	Alt	-487.55	87.01	12.28	-487.42	87.00
5204	Üst	-498.10	87.61	72.00	-522.70	-88.88
5304	Alt	-507.29	88.11	13.22	-531.56	89.27
\$205	Üst	-449.39	72.28	60.20	-271.31	-63.32
3303	Alt	-456.14	72.45	00.50	-276.74	61.02
C201	Üst	75.63	30.19	25 (9	-148.45	-57.67
5201	Alt	66.44	31.45	25.08	-156.81	61.85
5202	Üst	-747.32	177.86	149.75	-734.48	-176.59
\$202	Alt	-762.50	179.13	148.75	-749.80	177.94
5202	Üst	-664.75	170.16	140.42	-664.49	-170.04
\$205	Alt	-679.94	171.66	142.43	-679.65	171.29
\$204	Üst	-709.83	174.50	146.00	-721.55	-175.42
5204	Alt	-725.01	175.90	140.00	-736.63	176.83
\$205	Üst	-678.54	100.77	94.01	-407.58	-88.54
5205	Alt	-687.73	100.86	84.01	-418.63	89.42
C101	Üst	131.70	22.48	10.20	-160.08	-62.14
5101	Alt	122.51	23.75	19.20	-297.16	78.60
6102	Üst	-935.96	202.45	1.00.00	-934.08	-202.23
\$102	Alt	-951.15	203.19	169.02	-948.73	203.02
0102	Üst	-856.63	197.88	165.20	-856.59	-197.79
5103	Alt	-871.82	198.85	105.30	-871.77	198.64
\$104	Üst	-930.46	202.18	168 70	-931.54	-202.03
5104	Alt	-945.65	202.92	100.79	-947.13	202.63
\$105	Üst	-911.38	93.20	77 40	-613.45	-99.30
5105	Alt	-920.57	92.56	//.40	-594.69	98.67

**Çizelge A.9 :** TS-2 kolon hasar bölgeleri hesapları - 3

Kolon	Uç	M _D (kNm)	M _E (kNm)	M _K (kNm)	r
\$501	Üst	9.27	-102.64	-26.36	2.88
5501	Alt	-9.24	98.09	26.74	2.73
\$502	Üst	-1.80	-129.34	-26.51	5.23
3502	Alt	1.75	125.60	27.17	4.94
\$503	Üst	0.00	-127.04	-25.03	5.08
5505	Alt	0.00	122.69	25.46	4.82
\$504	Üst	1.80	-129.26	-26.44	4.58
+050	Alt	-1.75	125.53	24.79	4.73
\$505	Üst	-9.27	-102.54	-27.80	5.53
5565	Alt	9.24	98.02	28.28	5.15
\$401	Üst	18.81	-180.19	-45.61	2.80
5401	Alt	-17.63	177.96	46.38	2.78
\$402	Üst	-4.21	-287.69	-55.60	5.60
5402	Alt	3.76	272.53	56.00	5.22
\$403	Üst	0.00	-280.27	-53.31	5.26
5105	Alt	0.00	267.57	53.75	4.98
S404	Úst	4.21	-287.13	-55.09	4.84
5101	Alt	-3.76	272.00	55.49	4.59
S405	Úst	-18.81	-179.53	-52.59	5.31
	Alt	17.63	177.34	53.50	4.94
\$301	Üst	18.64	-189.18	-50.28	2.74
5501	Alt	-17.17	190.18	51.78	2.76
S302	Úst	-5.54	-437.40	-89.24	5.23
	Alt	4.43	413.95	89.90	4.84
S303	Ust	0.00	-435.02	-86.46	5.03
	Alt	0.00	414.76	87.00	4.77
S304	Ust	5.54	-436.48	-88.88	4.62
	Alt	-4.43	413.14	89.27	4.41
S305	Ust	-18.64	-188.48	-63.32	4.22
	Alt	17.17	189.51	61.02	4.32
S201	Ust	27.81	-217.80	-57.67	2.55
	Alt	-26.96	219.96	61.85	2.48
S202	Ust	-8.46	-510.71	-176.59	3.04
	Alt	8.02	505.15	177.94	2.97
S203	Ust	0.00	-519.90	-170.04	3.06
	Alt	0.00	513.94	1/1.29	3.00
S204	USt Alt	8.46	-509.18	-1/5.42	2.77
	Alt Üst	-8.02	503.85	1/0.85	2.13
S205		-27.81	-210.04	-88.34	3.37
	Alt	20.90	218.90	69.42	3.30
S101	Ust	20.21	-186.47	-62.14	2.26
	Alt	-10.01	239.07	78.60	2.70
S102	Ust	-5.49	-440.77	-202.23	2.24
	Alt	2.55	694.44	203.02	5.46
S103	Ust	0.00	-446.27	-19/./9	2.26
	Alt Üzt	0.00	095.70	198.64	3.50
S104		5.49 2.55	-428.33	-202.03	2.07
	All Üst	-2.33	194.02	202.03	3.37
S105		-20.21	-104.93	-99.30	2.34
	Alt	10.01	237.10	90.07	2.07

Çizelge A.10 : TS-2 kolon hasar bölgeleri hesapları - 4

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Kolon	Uç	$N_K/A_c f_{cm}$	Sargılama	$V_e / b_w d f_{ctm}$	r	Hasar Bölgesi
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$501	Üst	0.045	yok	0.280	2.88	BHB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5501	Alt	0.050	yok	0.289	2.73	BHB
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8502	Üst	0.152	yok	0.219	5.23	GB
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5502	Alt	0.157	yok	0.518	4.94	GB
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$502	Üst	0.132	yok	0.204	5.08	GB
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3303	Alt	0.137	yok	0.294	4.82	GB
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$504	Üst	0.151	yok	0.302	4.58	İHB
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5504	Alt	0.129	yok	0.302	4.73	İHB
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$505	Üst	0.063	yok	0.352	5.53	GB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3505	Alt	0.068	yok	0.332	5.15	GB
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$401	Üst	0.072	yok	0.206	2.80	BHB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3401	Alt	0.077	yok	0.290	2.78	BHB
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$402	Üst	0.266	yok	0.452	5.60	GB
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5402	Alt	0.272	yok	0.432	5.22	GB
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$403	Üst	0.234	yok	0.424	5.26	GB
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3403	Alt	0.240	yok	0.424	4.98	GB
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$404	Üst	0.258	yok	0.428	4.84	GB
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5404	Alt	0.263	yok	0.420	4.59	GB
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$405	Üst	0.121	yok	0.488	5.31	GB
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5405	Alt	0.127	yok	0.400	4.94	GB
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$301	Üst	0.104	yok	0.261	2.74	BHB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5501	Alt	0.110	yok	0.201	2.76	BHB
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S302	Üst	0.312	yok	0.537	5.23	GB
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Alt	0.318	yok	0.557	4.84	GB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\$303	Üst	0.279	yok	0.512	5.03	GB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Alt	0.284	yok	0.512	4.77	GB
Alt 0.310 yok 0.017 4.41 GB   S305 Üst 0.215 yok 0.573 4.22 İHB   Alt 0.220 yok 0.573 4.22 İHB   S201 Üst 0.087 yok 0.182 2.55 BHB   Ált 0.091 yok 0.182 2.48 BHB   Üst 0.259 yok 3.04 İHB	\$304	Üst	0.305	yok	0.519	4.62	GB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Alt	0.310	yok		4.41	GB
Alt 0.220 yok 4.32 GB   S201 Üst 0.087 yok 0.182 2.55 BHB   Alt 0.091 yok 0.182 2.48 BHB   Üst 0.259 yok 3.04 İHB	S305	Ust	0.215	yok	0.573	4.22	IHB
S201 Ust 0.087 yok 0.182 2.55 BHB   Alt 0.091 yok 0.182 2.48 BHB   Üst 0.259 yok 3.04 İHB		Alt	0.220	yok		4.32	GB
Alt 0.091 yok 2.48 BHB   Üst 0.259 yok 3.04 İHB	S201	Ust	0.087	yok	0.182	2.55	BHB
$1 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad$		Alt	0.091	yok		2.48	BHB
S202 Cor 0.22 Jok 0.620 S.07 HID	S202	Ust	0.259	yok	0.620	3.04	IHB
Alt 0.264 yok 2.97 IHB		Alt	0.264	yok		2.97	IHB
S203 Ust 0.234 yok 0.594 3.06 IHB	S203	Ust	0.234	yok	0.594	3.06	IHB
Alt 0.240 Yok 3.00 IHB		Alt	0.240	УОК		3.00	IHB
S204 Ust 0.255 Yok 0.609 2.77 IHB	S204	USt A 14	0.255	YOK	0.609	2.77	İHB
Alt 0.200 y0k 2.73 IHB   Ület 0.228 male 2.57 IHD		Alt	0.200	YOK		2.73	İHB
S205 Ost 0.238 yok 0.596 3.37 IHB	S205	USL Alt	0.238	yok volu	0.596	3.37	іпр
Alt 0.244 yok 5.30 IHB			0.244	уок		3.30	ППВ
S101 Ust 0.093 Yok 0.137 2.20 BHB	S101	USt A 14	0.093	YOK	0.137	2.20	BHB
Alt 0.1/3 yok 2./0 BHB   Ület 0.220 web 2.24 DUD		Alt	0.173	YOK		2.70	BHB
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S102	0.St A 1+	0.329	yok vol	0.705	2.24	рцр іпр
All 0.555 y0K 5.40 IHB   Üct 0.302 wok 2.26 DUD		All Üst	0.333	yok vok		2.40 2.26	ппр
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S103	Δ1t	0.302	yok	0.689	2.20	iup
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- All Ület	0.300	yok		2.07	RHR
S104 $Alt = 0.324$ yok $0.704$ $2.07$ $BHB$	S104	Alt	0.329	vok	0.704	3 37	İHR
Úst 0.358 yok 2.34 iHR		Üst	0 358	vok		2.34	İHR
S105 Alt 0.347 yok 0.549 2.67 İHB	S105	Alt	0.347	yok	0.549	2.67	İHB

**Çizelge A.11 :** TS-2 kolon hasar bölgeleri hesapları - 5

Vinia	Lla	h (am)	d (am)	Boyuna	a Donatı	$\mathbf{M}_{\mathbf{K}}$ (	(kNm)
KIFIŞ	Uç	D _w (cm)	a (cm)	Alt (cm ² )	Üst (cm ² )	(+)	(-)
<b>V</b> 501	Sol	20	56	4.62	7.70	54.75	-88.84
<b>K</b> 301	Sağ	20	56	7.70	12.32	88.84	-136.35
V502	Sol	20	56	7.70	12.32	88.84	-136.35
<b>K</b> 302	Sağ	20	56	6.16	12.32	72.03	-136.35
V502	Sol	20	56	6.16	12.32	72.03	-136.35
<b>K</b> 303	Sağ	20	56	7.70	12.32	88.84	-136.35
K504	Sol	20	56	7.70	12.32	88.84	-136.35
<b>K</b> 304	Sağ	20	56	4.62	7.70	54.75	-88.84
V 401	Sol	30	56	6.03	14.73	71.82	-166.77
<b>K</b> 401	Sağ	30	56	12.06	22.24	138.72	-240.47
V402	Sol	30	56	12.06	22.24	138.72	-240.47
<b>K</b> 402	Sağ	30	56	12.06	20.23	138.72	-221.49
V 402	Sol	30	56	12.06	20.23	138.72	-221.49
<b>K</b> 403	Sağ	30	56	12.06	22.24	138.72	-240.47
K404	Sol	30	56	12.06	22.24	138.72	-240.47
<b>N</b> 404	Sağ	30	56	6.03	14.73	71.82	-166.77
K301 —	Sol	30	56	6.03	14.73	71.82	-166.77
	Sağ	30	56	12.06	22.24	138.72	-240.47
<b>V202</b>	Sol	30	56	12.06	22.24	138.72	-240.47
K302	Sağ	30	56	12.06	20.23	138.72	-221.49
<b>W202</b>	Sol	30	56	12.06	20.23	138.72	-221.49
K303	Sağ	30	56	12.06	22.24	138.72	-240.47
V204	Sol	30	56	12.06	22.24	138.72	-240.47
<b>K</b> 304	Sağ	30	56	6.03	14.73	71.82	-166.77
V201	Sol	30	61	6.03	14.73	78.46	-182.97
<b>K</b> 201	Sağ	30	61	12.06	22.24	151.99	-264.93
<b>V202</b>	Sol	30	61	12.06	22.24	151.99	-264.93
K202	Sağ	30	61	12.06	20.23	151.99	-243.74
<b>V202</b>	Sol	30	61	12.06	20.23	151.99	-243.74
K203	Sağ	30	61	12.06	22.24	151.99	-264.74
K204	Sol	30	61	12.06	22.24	151.99	-264.74
<b>N</b> 204	Sağ	30	61	6.03	14.73	78.46	-182.97
V101	Sol	30	61	6.03	14.73	78.46	-182.97
K101	Sağ	30	61	12.06	22.24	151.99	-264.93
V102	Sol	30	61	12.06	22.24	151.99	-264.93
K102	Sağ	30	61	12.06	20.23	151.99	-243.74
V102	Sol	30	61	12.06	20.23	151.99	-243.74
K103	Sağ	30	61	12.06	22.24	151.99	-264.74
<b>V104</b>	Sol	30	61	12.06	22.24	151.99	-264.74
K104	Sağ	30	61	6.03	14.73	78.46	-182.97

Çizelge A.12 : TS-3 kiriş hasar bölgeleri hesapları - 1

Kiriş	Uç	V _{cr} (kN)	V _w (kN)	$V_r(kN)$	V _{r max} (kN)
V501	Sol	94.64	123.20	198.91	344.96
K501	Sağ	94.64	123.20	198.91	344.96
W500	Sol	94.64	123.20	198.91	344.96
K502	Sağ	94.64	123.20	198.91	344.96
V502	Sol	94.64	123.20	198.91	344.96
K503	Sağ	94.64	123.20	198.91	344.96
<b>V504</b>	Sol	94.64	123.20	198.91	344.96
K304	Sağ	94.64	123.20	198.91	344.96
V 401	Sol	141.96	154.00	267.57	517.44
K401	Sağ	141.96	154.00	267.57	517.44
17 400	Sol	141.96	154.00	267.57	517.44
K402	Sağ	141.96	154.00	267.57	517.44
V 402	Sol	141.96	154.00	267.57	517.44
<b>K</b> 405	Sağ	141.96	154.00	267.57	517.44
V404	Sol	141.96	154.00	267.57	517.44
<b>N</b> 404	Sağ	141.96	154.00	267.57	517.44
V201	Sol	141.96	154.00	267.57	517.44
K301	Sağ	141.96	154.00	267.57	517.44
W202	Sol	141.96	154.00	267.57	517.44
K302	Sağ	141.96	154.00	267.57	517.44
V202	Sol	141.96	154.00	267.57	517.44
<b>K</b> 303	Sağ	141.96	154.00	267.57	517.44
V204	Sol	141.96	154.00	267.57	517.44
K304	Sağ	141.96	154.00	267.57	517.44
<b>V201</b>	Sol	154.64	167.75	291.46	563.64
<b>K</b> 201	Sağ	154.64	167.75	291.46	563.64
K202	Sol	154.64	167.75	291.46	563.64
<b>K</b> 202	Sağ	154.64	167.75	291.46	563.64
K203	Sol	154.64	167.75	291.46	563.64
<b>K</b> 203	Sağ	154.64	167.75	291.46	563.64
K204	Sol	154.64	167.75	291.46	563.64
N204	Sağ	154.64	167.75	291.46	563.64
<b>V</b> 101	Sol	154.64	167.75	291.46	563.64
K101	Sağ	154.64	167.75	291.46	563.64
K102	Sol	154.64	167.75	291.46	563.64
K102	Sağ	154.64	167.75	291.46	563.64
K103	Sol	154.64	167.75	291.46	563.64
<b>K</b> 105	Sağ	154.64	167.75	291.46	563.64
K104	Sol	154.64	167.75	291.46	563.64
K104	Sağ	154.64	167.75	291.46	563.64

**Çizelge A.13 :** TS-3 kiriş hasar bölgeleri hesapları - 2

Kiriş	Uç	$\frac{\mathbf{M}_{\mathbf{pi}} + \mathbf{M}_{\mathbf{pj}}}{(\mathbf{kNm})}$	$\begin{array}{c} (M_{pi}+M_{pj)} \\ / \ l_n \\ (kN) \end{array}$	V _{dy} (kN)	V _e (kN)	V _{g+nq+e} (kN)	Min (V _e ;V _{g+nq+ex} )
<b>V</b> 501	Sol	101 10	22.29	49.20	15.82	20.51	15.82
<b>K</b> 301	Sağ	191.10	33.38	70.20	103.58	96.89	96.89
V502	Sol	225 19	20.51	61.77	22.26	33.00	22.26
K502	Sağ	225.18	39.51	57.63	97.14	86.40	86.40
V502	Sol	200 20	26.56	57.63	21.07	28.90	21.07
<b>K</b> 303	Sağ	200.30	30.30	61.77	98.33	90.50	90.50
K504	Sol	177 67	21.02	70.20	39.17	43.58	39.17
KJ04	Sağ	177.07	51.05	49.20	80.23	75.82	75.82
K401	Sol	312 20	55 27	79.34	24.07	12.24	12.24
<b>K</b> 401	Sağ	512.29	55.27	103.36	158.63	194.54	158.63
K402	Sol	360.21	63 75	93.05	29.30	15.53	15.53
<b>K</b> 402	Sağ	500.21	03.75	89.65	153.40	167.17	153.40
K403	Sol	270.10	67 11	89.65	22.54	12.20	12.20
<b>K</b> 403	Sağ	579.19	07.11	93.05	160.16	170.50	160.16
K404	Sol	305 / 9	54.07	103.36	49.29	12.13	12.13
K404	Sağ	505.49	54.07	79.34	133.41	170.57	133.41
K301	Sol	212 20	55 57	81.60	26.08	58.08	26.08
K301	Sağ	213.29	55.52	100.98	156.50	240.66	156.50
K302	Sol	260 21	64.32	92.09	27.77	35.38	27.77
K302	Sağ	300.21	04.32	90.31	154.63	217.78	154.63
K303	Sol	370 10	67.71	90.31	22.60	36.98	22.60
K303	Sağ	579.19		92.09	159.80	219.38	159.80
K304	Sol	305 / 9	54 31	100.98	46.67	38.09	38.09
K304	Sağ	505.47	54.51	81.60	135.91	220.67	135.91
K201	Sol	3/13 00	61 32	81.60	20.28	83.79	20.28
<b>K</b> 201	Sağ	545.77	01.32	103.05	164.37	268.44	164.37
K202	Sol	305 73	71 30	93.02	21.72	86.77	21.72
K202	Sağ	373.13	/1.50	91.33	162.63	271.12	162.63
K203	Sol	416.92	75.12	91.33	16.21	88.19	16.21
<b>K</b> 203	Sağ	+10.72	75.12	93.02	168.14	272.54	168.14
к204	Sol	334.95	59.81	103.05	43.24	61.57	43.24
11207	Sağ	554.75	57.01	81.60	141.41	246.23	141.41
K101	Sol	343 39	61 32	80.29	18.97	86.77	18.97
<b>R</b> 101	Sağ	515.57	01.52	103.64	164.96	270.70	164.96
K102	Sol	395 73	71 30	93.00	21.70	98.91	21.70
<b>K</b> 102	Sağ	575.15	/1.30	90.63	161.93	282.54	161.93
K103	Sol	416.92	75.12	90.63	15.51	100.91	15.51
11103	Sağ	110.72	,5.12	93.00	168.12	284.54	168.12
K104	Sol	334 95	59.81	103.64	43.83	62.50	43.83
Sağ	Sağ	55 6.75	J7.01	80.29	140.10	246.43	140.10

**Çizelge A.14 :** TS-3 kiriş hasar bölgeleri hesapları - 3

Kiriş	Uç	M _D (kNm)	M _E (kNm)	M _K (kNm)	r
<b>K</b> 501	Sol	-8.57	79.45	54.75	1.25
K301	Sağ	-71.57	-80.70	-136.35	1.25
V502	Sol	-68.64	88.15	88.84	0.56
K502	Sağ	-56.22	-84.46	-136.35	1.05
K503	Sol	-56.22	84.39	72.03	0.66
	Sağ	-68.64	-88.01	-136.35	1.30
<b>K</b> 504	Sol	-71.57	80.52	88.84	0.50
K504	Sağ	-8.59	-79.20	-88.84	0.99
K401	Sol	-34.13	294.59	71.82	2.78
	Sağ	-106.20	-254.85	-240.47	1.90
K402	Sol	-98.92	228.57	138.72	0.96
	Sağ	-88.70	-236.59	-221.49	1.78
K403	Sol	-88.70	236.43	138.72	1.04
<b>K403</b>	Sağ	-98.92	-228.24	-240.47	1.61
<b>K</b> 404	Sol	-106.20	254.04	138.72	1.04
<b>K</b> 404	Sağ	-34.14	-293.36	-166.77	2.21
K301	Sol	-46.60	431.29	71.82	3.64
<b>K</b> 501	Sağ	-104.73	-406.78	-240.47	3.00
V202	Sol	-95.33	379.28	138.72	1.62
<b>K</b> 302	Sağ	-90.00	-385.52	-221.49	2.93
K303	Sol	-90.00	385.18	138.72	1.68
K303	Sağ	-95.33	-378.59	-240.47	2.61
K304	Sol	-104.73	405.23	138.72	1.66
K304	Sağ	-46.60	-429.17	-166.77	3.57
<b>V201</b>	Sol	-44.22	470.94	78.46	3.84
<b>K</b> 201	Sağ	-108.58	-521.42	-264.93	3.33
K202	Sol	-96.08	541.64	151.99	2.18
K202	Sağ	-90.99	-537.13	-243.74	3.52
K202	Sol	-90.99	536.57	151.99	2.21
K203	Sağ	-96.08	-540.52	-264.93	3.20
K204	Sol	-108.58	519.34	151.99	1.99
K204	Sağ	-44.22	-468.44	-182.97	3.38
<b>V</b> 101	Sol	-40.68	460.46	78.46	3.86
<b>K</b> 101	Sağ	-110.74	-541.89	-264.93	3.51
V102	Sol	-96.83	578.88	151.99	2.33
<b>K</b> 102	Sağ	-89.75	-572.57	-243.74	3.72
V102	Sol	-89.75	571.86	151.99	2.37
K103	Sağ	-96.83	-577.43	-264.93	3.43
V104	Sol	-110.74	539.31	151.99	2.05
K104	Sağ	-40.68	-457.54	-182.97	3.22

**Çizelge A.15 :** TS-3 kiriş hasar bölgeleri hesapları - 4

Kiriş	Uç	ρ	ρ'	ρь	ρ - ρ' / ρ _b
<b>V5</b> 01	Sol	0.0041	0.0069	0.0336	-0.0818
<b>K</b> 301	Sağ	0.0110	0.0069	0.0336	0.1228
K 502	Sol	0.0069	0.0110	0.0336	-0.1228
K302	Sağ	0.0110	0.0055	0.0336	0.1637
V502	Sol	0.0055	0.0110	0.0336	-0.1637
K305	Sağ	0.0110	0.0069	0.0336	0.1228
<b>V</b> 504	Sol	0.0069	0.0110	0.0336	-0.1228
<b>K</b> 304	Sağ	0.0069	0.0041	0.0336	0.0818
V 401	Sol	0.0036	0.0088	0.0336	-0.1541
K401	Sağ	0.0132	0.0072	0.0336	0.1803
V 402	Sol	0.0072	0.0132	0.0336	-0.1803
<b>K</b> 402	Sağ	0.0120	0.0072	0.0336	0.1447
V 402	Sol	0.0072	0.0120	0.0336	-0.1447
<b>K</b> 405	Sağ	0.0132	0.0072	0.0336	0.1803
<b>V</b> 404	Sol	0.0072	0.0132	0.0336	-0.1803
<b>K</b> 404	Sağ	0.0088	0.0036	0.0336	0.1541
K301	Sol	0.0036	0.0088	0.0336	-0.1541
	Sağ	0.0132	0.0072	0.0336	0.1803
K302	Sol	0.0072	0.0132	0.0336	-0.1803
	Sağ	0.0120	0.0072	0.0336	0.1447
V202	Sol	0.0072	0.0120	0.0336	-0.1447
<b>K</b> 303	Sağ	0.0132	0.0072	0.0336	0.1803
K304	Sol	0.0072	0.0132	0.0336	-0.1803
K304	Sağ	0.0088	0.0036	0.0336	0.1541
<b>K</b> 201	Sol	0.0033	0.0080	0.0336	-0.1415
<b>K</b> 201	Sağ	0.0122	0.0066	0.0336	0.1656
<b>K</b> 202	Sol	0.0066	0.0122	0.0336	-0.1656
<b>K</b> 202	Sağ	0.0111	0.0066	0.0336	0.1329
K203	Sol	0.0066	0.0111	0.0336	-0.1329
<b>K</b> 203	Sağ	0.0122	0.0066	0.0336	0.1656
K204	Sol	0.0066	0.0122	0.0336	-0.1656
K204	Sağ	0.0080	0.0033	0.0336	0.1415
<b>K</b> 101	Sol	0.0033	0.0080	0.0336	-0.1415
<b>K</b> 101	Sağ	0.0122	0.0066	0.0336	0.1656
<b>V</b> 102	Sol	0.0066	0.0122	0.0336	-0.1656
<b>K</b> 102	Sağ	0.0111	0.0066	0.0336	0.1329
K103	Sol	0.0066	0.0111	0.0336	-0.1329
K105	Sağ	0.0122	0.0066	0.0336	0.1656
K104	Sol	0.0066	0.0122	0.0336	-0.1656
18104	Sağ	0.0080	0.0033	0.0336	0.1415

**Çizelge A.16 :** TS-3 kiriş hasar bölgeleri hesapları - 5

Kiriş	Uç	r	ρ - ρ' /ρ _b	Sargılama	$V_e$ / $b_w$ d $f_{ctm}$	Hasar Bölgesi
<b>V</b> 501	Sol	1.25	-0.0818	var	0.109	MHB
<b>K</b> 301	Sağ	1.25	0.1228	var	0.665	MHB
V 502	Sol	0.56	-0.1228	var	0.153	MHB
<b>K</b> 302	Sağ	1.05	0.1637	var	0.593	MHB
K503	Sol	0.66	-0.1637	var	0.145	MHB
	Sağ	1.30	0.1228	var	0.622	MHB
K504	Sol	0.50	-0.1228	var	0.269	MHB
KJ04	Sağ	0.99	0.0818	var	0.521	MHB
V 401	Sol	2.78	-0.1541	var	0.056	MHB
<b>K4</b> 01	Sağ	1.90	0.1803	var	0.726	MHB
V 402	Sol	0.96	-0.1803	var	0.071	MHB
<b>N</b> 402	Sağ	1.78	0.1447	var	0.702	MHB
V 402	Sol	1.04	-0.1447	var	0.056	MHB
<b>K403</b>	Sağ	1.61	0.1803	var	0.733	MHB
K404	Sol	1.04	-0.1803	var	0.056	MHB
<b>N</b> 404	Sağ	2.21	0.1541	var	0.611	MHB
V201	Sol	3.64	-0.1541	var	0.119	BHB
K301	Sağ	3.00	0.1803	var	0.717	BHB
<b>W202</b>	Sol	1.62	-0.1803	var	0.127	MHB
<b>N</b> 302	Sağ	2.93	0.1447	var	0.708	MHB
V202	Sol	1.68	-0.1447	var	0.103	MHB
K303	Sağ	2.61	0.1803	var	0.732	MHB
V204	Sol	1.66	-0.1803	var	0.174	MHB
K304	Sağ	3.57	0.1541	var	0.622	BHB
V201	Sol	3.84	-0.1415	var	0.085	BHB
<b>K</b> 201	Sağ	3.33	0.1656	var	0.691	BHB
<b>V202</b>	Sol	2.18	-0.1656	var	0.091	MHB
<b>N</b> 202	Sağ	3.52	0.1329	var	0.684	BHB
K202	Sol	2.21	-0.1329	var	0.068	MHB
K203	Sağ	3.20	0.1656	var	0.707	BHB
K204	Sol	1.99	-0.1656	var	0.182	MHB
N204	Sağ	3.38	0.1415	var	0.594	BHB
V101	Sol	3.86	-0.1415	var	0.080	BHB
K101	Sağ	3.51	0.1656	var	0.693	BHB
V102	Sol	2.33	-0.1656	var	0.091	MHB
K102	Sağ	3.72	0.1329	var	0.681	BHB
V102	Sol	2.37	-0.1329	var	0.065	MHB
K103	Sağ	3.43	0.1656	var	0.707	BHB
V104	Sol	2.05	-0.1656	var	0.184	MHB
K104	Sağ	3.22	0.1415	var	0.589	BHB

**Çizelge A.17 :** TS-3 kiriş hasar bölgeleri hesapları - 6

Kolon	b (cm)	h (cm)	V _{cr} (kN)	V _w (kN)	V _r (kN)	V _{r max} (kN)
S501	25	25	46.48	80.67	117.85	169.40
S502	30	30	68.45	79.20	133.96	249.48
S503	30	30	68.45	79.20	133.96	249.48
S504	30	30	68.45	79.20	133.96	249.48
S505	25	25	46.48	80.67	117.85	169.40
S401	35	35	91.68	126.77	200.12	334.18
S402	35	35	91.68	80.24	153.58	334.18
S403	35	35	91.68	80.24	153.58	334.18
S404	35	35	91.68	80.24	153.58	334.18
S405	35	35	91.68	126.77	200.12	334.18
S301	35	35	91.68	126.77	200.12	334.18
S302	40	40	121.68	79.20	176.54	443.52
S303	40	40	121.68	79.20	176.54	443.52
S304	40	40	121.68	79.20	176.54	443.52
S305	35	35	91.68	126.77	200.12	334.18
S201	35	35	91.68	126.77	200.12	334.18
S202	45	45	155.90	142.52	267.24	568.26
S203	45	45	155.90	142.52	267.24	568.26
S204	45	45	155.90	142.52	267.24	568.26
S205	35	35	91.68	126.77	200.12	334.18
S101	35	35	91.68	126.77	200.12	334.18
S102	45	45	155.90	142.52	267.24	568.26
S103	45	45	155.90	142.52	267.24	568.26
S104	45	45	155.90	142.52	267.24	568.26
S105	35	35	91.68	126.77	200.12	334.18

Çizelge A.18 : TS-3 kolon hasar bölgeleri hesapları - 1

		N – Normal Kuvvet (kN)			M - Moment (kNm)		
Kolon	Uç	G+nQ	Ex	G+nQ+Ex	G+nQ	Ex	G+nQ+Ex
0501	Üst	-49.20	26.60	-22.51	8.57	-79.45	-70,88
5501	Alt	-53.87	20.09	-27.18	-8.03	74.22	66.19
9502	Üst	-131.97	2.00	-129.89	-2.93	-168.85	-171.78
\$502	Alt	-138.72	2.08	-136.64	2.56	163.84	166.40
8502	Üst	-115.26	0.02	-115.29	0.00	-168.85	-168.45
3505	Alt	-122.01	-0.05	-122.04	0.00	161.87	161.87
\$504	Üst	-131.97	2 11	-134.08	2.93	-168.52	-165.59
5504	Alt	-138.72	-2.11	-140.83	-2.56	163.52	160.96
\$505	Üst	-49.20	26.62	-75.82	-8.57	-79.20	-87.77
3303	Alt	-53.87	-20.02	-80.49	8.03	74.00	82.03
\$401	Üst	-133.23	118 27	-14.96	26.09	-220.37	-194.28
5401	Alt	-142.41	110.27	-24.14	-23.75	209.77	186.02
\$402	Üst	-335.14	11.07	-347.11	-4.71	-319.58	-324.29
5402	Alt	-344.32	-11.97	-356.29	3.99	300.63	304.62
\$403	Üst	-301.30	0.12	-301.42	0.00	-311.15	-311.15
5405	Alt	-310.49	-0.12	-310.61	0.00	292.85	292.85
\$404	Üst	-335.14	11.68	-323.46	4.71	-318.76	-314.05
5707	Alt	-344.32	11.00	-332.64	-3.99	299.88	295.89
\$405	Üst	-133.23	-117 85	-251.08	-26.09	-219.36	-245.45
5405	Alt	-142.41	-117.05	-260.26	23.75	208.85	232.60
\$201	Üst	-224.01	257 94	33.93	22.85	-221.52	-198.67
5501	Alt	-233.20	257.74	24.74	-21.34	233.86	212.52
\$302	Üst	-537.39	-24.18	-561.57	-5.42	-485.43	-490.85
5502	Alt	-549.39		-573.57	4.88	470.91	475.79
\$303	Üst	-491.11	-0.29	-491.40	0.00	-477.84	-477.84
5505	Alt	-503.11		-503.40	0.00	470.18	470.18
\$304	Üst	-537.39	23.45 -256.92	-513.94	5.42	-483.94	-478.52
	Alt	-549.39		-525.94	-4.88	469.49	464.61
S305	Ust	-224.01		-480.93	-22.85	-220.32	-243.17
	Alt 	-233.20		-490.12	21.34	232.62	253.96
S201	Ust	-314.80	423.34	108.54	22.88	-237.08	-214.20
	Alt	-323.99		99.35	-22.99	241.54	218.55
S202	Ust	-745.46	-9.78	-755.24	-7.62	-592.15	-599.77
	Alt	-760.65		-770.43	7.84	579.78	587.62
S203	Ust	-685.77	-0.57	-686.34	0.00	-603.52	-603.52
	Alt	-700.95		-701.52	0.00	592.82	592.82
S204	Ust	-745.46	8.56	-/36.90	7.62	-590.37	-582.75
	Alt Üst	-/60.65		-752.09	-7.84	5/8.15	570.31
S205	USt A 1+	-314.80	-421.55	-/30.33	-22.88	-235.82	-258.70
	Alt	-323.99		-/45.54	22.99	240.31	263.30
S101	Ust	-404.28	590.40	186.12	17.69	-218.91	-201.22
	Alt Üst	-413.40		1/6.94	-8./5	259.64	250.89
S102		-931.29	15.07	-942.22	-0.07	-340.99 756 65	-347.00
	Alt Üat	-712.48		-73/.41	2.80	551.60	551 62
S103	0.5t A 1+	-002.22	-0.93	-003.13	0.00	-331.02	-331.02
	All Üst	-097.41		-070.34 97/1/	6.00	-538 58	-532 51
S104		-951.29	-16.85	-080 33	-2.86	-550.50	750 58
	– – – – – – – – – – – – – – – – – – –	-212.40		-909.55	-2.00	-217.23	-234 92
S105	Alt	-413.46	-587.69	-1001 15	875	257.62	266 37
	1 11 L	110.40	1	1001.15	0.75	251.02	200.57

**Çizelge A.19 :** TS-3 kolon hasar bölgeleri hesapları - 2

Kolon	Uç	N _{G+nQ+Ex} (kN)	$\frac{M_{\ddot{u}}(kNm)}{M_{a}(kNm)}$	V _e (kN)	N _K (kN)	M _K (kNm)
\$501	Üst	-22.51	24.75	20.81	-37.48	-26.33
5501	Alt	-27.18	25.20	20.81	-41.44	26.53
\$502	Üst	-129.89	43.93	36.93	-131.46	-44.11
5502	Alt	-136.64	44.71	30.75	-138.18	44.89
\$503	Üst	-115.29	42.22	35 51	-115.26	-42.22
6505	Alt	-122.04	43.01	55.51	-122.02	42.99
<b>S</b> 504	Üst	-134.08	44.41	37 33	-132.56	-44.10
	Alt	-140.83	45.19	57.55	-139.33	45.02
S505	Ust	-75.82	29.78	25.00	-55.69	-27.89
	Alt	-80.49	30.21		-61.20	28.40
S401	Ust	-14.96	68.43	57.54	-78.82	-77.03
	Alt	-24.14	69.67		-85.11	77.87
S402	Ust	-347.11	83.57	69.99	-338.06	-82.67
	Alt	-356.29	84.41		-347.49	83.53
S403	Ust	-301.42	79.13	66.33	-301.33	-79.11
	Alt	-310.61	80.07		-310.52	80.03
S404	Ust	-323.46	81.37	68.16	-331.96	-82.09
	Alt	-332.64	82.22		-340.93	82.94
S405		-251.08	99.44	83.30	-100.90	-88.70
	Alt Üst	-200.20	100.49		-100.00	90.30
S301	Ust Alt	33.93	62.05	52.03	-103.81	-80.38
	Alt Üst	24.74	142.88	119.48	-110.00	02.30
S302		-573 57	142.86		-544.10	-141.27
	Üst	-491 40	136.62	114.32	-491 19	-136.47
S303	Alt	-503.40	137.75		-503.19	137.66
<b>~~</b>	Üst	-513.94	138.74		-530.33	-140.17
S304	Alt	-525.94	139.83	116.07	-542.09	141.24
8205	Üst	-480.93	119.48	00.90	-322.13	-106.99
\$305	Alt	-490.12	120.03	99.80	-328.40	107.54
5201	Üst	108.54	51.67	44 51	-125.30	-83.24
5201	Alt	99.35	52.92	44.31	-135.43	84.59
\$202	Üst	-755.24	203.11	173 40	-740.90	-190.70
5202	Alt	-770.43	204.37	175.40	-763.95	203.65
\$203	Üst	-686.34	196.87	168 17	-685.96	-196.74
6205	Alt	-701.52	198.32	100.17	-701.14	198.10
S204	Üst	-736.90	201.54	172.08	-742.42	-201.88
	Alt	-752.09	202.85	1/2.00	-759.15	203.43
S205	Ust	-736.35	126.85	107.95	-488.05	-119.80
	Alt	-745.54	126.84		-494.47	120.18
S101	Ust	186.12	41.09	35.50	-130.24	-83.92
	Alt	176.94	42.34		-204.39	83.19
S102	Ust	-942.22	244.19	208.14	-950.65	-244.44
	Alt	-957.41	244.93		-967.65	245.27
S103	Ust	-883.15	240.97	205.46	-882.63	-240.47
	Alt Üst	-898.34	241.87		-897.52	241.08
S104	ΟSL Λ1+	7/4.14 _080 22	243.00 2/6.21	209.35	-703.14	-244.91 215 66
	– All Üst	-909.33	110.82		-578.04	-126.79
S105	Alt	-1001.15	110.02	93.98	-682.11	125.87

**Çizelge A.20 :** TS-3 kolon hasar bölgeleri hesapları - 3

Kolon	Uç	M _D (kNm)	M _E (kNm)	M _K (kNm)	r
\$501	Üst	8.57	-79.45	-26.33	2.28
5501	Alt	-8.03	74.22	26.53	2.15
8502	Üst	-2.93	-168.85	-44.11	4.10
5302	Alt	2.56	163.84	44.89	3.87
\$502	Üst	0.00	-168.85	-42.22	4.00
\$503	Alt	0.00	161.87	42.99	3.77
S504	Üst	2.93	-168.52	-44.10	3.58
	Alt	-2.56	163.52	45.02	3.44
S505	Üst	-8.57	-79.20	-27.89	4.10
	Alt	8.03	74.00	28.40	3.63
S401	Üst	26.09	-220.37	-77.03	2.14
	Alt	-23.75	209.77	77.87	2.06
S402	Üst	-4.71	-319.58	-82.67	4.10
	Alt	3.99	300.63	83.53	3.78
S402	Üst	0.00	-311.15	-79.11	3.93
5405	Alt	0.00	292.85	80.03	3.66
6404	Üst	4.71	-318.76	-82.09	3.67
5404	Alt	-3.99	299.88	82.94	3.45
S 405	Üst	-26.09	-219.36	-88.76	3.50
5405	Alt	23.75	208.85	90.50	3.13
0201	Üst	22.85	-221.52	-80.38	2.15
\$301	Alt	-21.34	233.86	82.38	2.25
0202	Üst	-5.42	-485.43	-141.27	3.57
\$302	Alt	4.88	470.91	142.40	3.42
S303	Üst	0.00	-477.84	-136.47	3.50
	Alt	0.00	470.18	137.66	3.42
G204	Üst	5.42	-483.94	-140.17	3.32
\$304	Alt	-4.88	469.49	141.24	3.21
0205	Üst	-22.85	-220.32	-106.99	2.62
\$305	Alt	21.34	232.62	107.54	2.70
6201	Üst	22.88	-237.08	-83.24	2.23
\$201	Alt	-22.99	241.54	84.59	2.25
	Üst	-7.62	-592.15	-190.70	3.23
S202	Alt	7.84	579.78	203.65	2.96
<b>G202</b>	Üst	0.00	-603.52	-196.74	3.07
\$203	Alt	0.00	592.82	198.10	2.99
6204	Üst	7.62	-590.37	-201.88	2.82
5204	Alt	-7.84	578.15	203.43	2.74
6205	Üst	-22.88	-235.82	-119.80	2.43
\$205	Alt	22.99	240.31	120.18	2.47
<b>6101</b>	Üst	17.69	-218.91	-83.92	2.15
S101	Alt	-8.75	259.64	83.19	2.82
	Üst	-6.07	-540.99	-244.44	2.27
S102	Alt	2.86	756.65	245.27	3.12
<u></u>	Üst	0.00	-551.62	-240.47	2.29
S103	Alt	0.00	760.43	241.68	3.15
~	Üst	6.07	-538.58	-244.97	2.15
S104	Alt	-2.86	753.44	245.66	3.03
010 <i>5</i>	Üst	-17.69	-217.23	-126.79	1.99
S105	Alt	8.75	257.62	125.87	2.20

**Çizelge A.21 :** TS-3 kolon hasar bölgeleri hesapları - 4

Kolon	Uç	N _K /A _c f _{cm}	Sargılama	$V_e / b_w d f_{ctm}$	r	Hasar Bölgesi
	Üst	0.043	var		2.28	MHB
S501	Alt	0.043	var	0.291	2.28	MHB
	Üst	0.104	var		4 10	BHB
S502	Alt	0.110	var	0.351	3.87	BHB
	Üst	0.091	var		4.00	BHB
S503	Alt	0.097	var	0.337	3.77	BHB
<i></i>	Üst	0.105	var		3.58	BHB
S504	Alt	0.111	var	0.355	3.44	BHB
	Üst	0.064	var	0.050	4.10	BHB
\$505	Alt	0.070	var	0.350	3.63	BHB
G 401	Üst	0.046	var	0.400	2.14	MHB
S401	Alt	0.050	var	0.408	2.06	MHB
G 102	Üst	0.197	var	0.40.6	4.10	BHB
S402	Alt	0.203	var	0.496	3.78	BHB
G 102	Üst	0.176	var	0.470	3.93	BHB
S403	Alt	0.181	var	0.470	3.66	BHB
6404	Üst	0.194	var	0.402	3.67	BHB
\$404	Alt	0.199	var	0.483	3.45	BHB
S 405	Üst	0.097	var	0.501	3.50	BHB
5405	Alt	0.105	var	0.591	3.13	BHB
S201	Üst	0.061	var	0.369	2.15	MHB
\$301	Alt	0.069	var		2.25	MHB
6202	Üst	0.243	var	0.629	3.57	BHB
5302	Alt	0.248	var	0.038	3.42	BHB
\$202	Üst	0.219	var	0.611	3.50	BHB
3303	Alt	0.225	var	0.011	3.42	BHB
\$304	Üst	0.237	var	0.620	3.32	BHB
5504	Alt	0.242	var	0.020	3.21	BHB
\$305	Üst	0.188	var	0 708	2.62	MHB
5505	Alt	0.191	var	0.700	2.70	BHB
S201	Üst	0.073	var	0.316	2.23	MHB
5201	Alt	0.079	var	0.510	2.25	MHB
S202	Üst	0.261	var	0.723	3.23	BHB
5202	Alt	0.269	var	0.725	2.96	BHB
S203	Ust	0.242	var	0.701	3.07	BHB
	Alt	0.247	var		2.99	BHB
S204	Ust	0.262	var	0.717	2.82	BHB
	Alt	0.268	var		2.74	BHB
S205	Ust	0.285	var	0.765	2.43	BHB
	Alt	0.288	var		2.47	BHB
S101	Ust	0.076	var	0.252	2.15	MHB
	Alt	0.119	var		2.82	MHB
S102	Ust	0.335	var	0.868	2.27	BHB
	Alt	0.341	var		3.12	BHB
S103	Ust	0.311	var	0.857	2.29	BHR
		0.317	var		3.13 2.15	BHB
S104		0.340	var	0.873	2.13	рпр
	All Üct	0.343	var		5.05	рпр
S105	0 SL Λ1+	0.408	vai	0.666	1.99	впв
	All	0.398	var	1	2.20	DIJD

**Çizelge A.22 :** TS-3 kolon hasar bölgeleri hesapları - 5

## ÖZGEÇMİŞ

Ad Soyad: Mustafa Tuna ÖZTÜRK

Doğum Yeri ve Tarihi: Ankara 1984

Adres: Ataköy 5. Kısım E2-5 Blok B kapısı D:31 Bakırköy/İSTANBUL 34158

Lisans Üniversite: İstanbul Teknik Üniversitesi – İnşaat Mühendisliği