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EFFECT OF RELATIVE VOLATILITY ON TEMPERATURE BASED 

INFERENTIAL CONTROL OF TERNARY REACTIVE DISTILLATION 

COLUMNS 

SUMMARY 

The growing environmental and economic concerns, bring up the interest in the 

reactive distillation columns that unites reaction and separation processes in one unit. 

The most common area of usage of these columns is two reactants – two products 

and two reactants – one product exothermic reactions systems. However, the effect 

of relative volatility on steady state design and inferential control for ternary two 

reactants – one product exothermic reactions systems has not been examined in 

literature. 

In order to bridge the gap in this field, in the first part of the study, the effect of 

relative volatility of components to steady state designs has been examined. First of 

all, a steady state column design was built for the chemicals which assumed having 

relative volatilities between the components constant at 2. The RD column has been 

optimized using three optimization variables such as the number of stripping section, 

number of reactive section and operating pressure. This design has the minimum 

Total Annual Cost (TAC) and it was taken as a base case for the rest of the study. 

Afterwards, the impact of the feed of the chemicals having different relative 

volatilities, for the base case was examined. It has been found that the system needs 

more vapor boilup as the relative volatilities get closer, which results in an increase 

of the energy cost. Next, optimum steady state designs have been obtained for the 

chemicals having temperature-dependent relative volatilities. In this case, besides the 

increasing values of vapor boilups, column diameter and the heat transfer areas of 

reboiler and condenser, RD column requires more separation trays as relative 

volatilities get closer.  In the second part of the study, temperature based inferential 

control structure with three different control scheme was designed for the steady 

state columns. Firstly, Singular Value Decomposition (SVD) method and sensitivity 

analysis were used to choose the most sensitive tray in column for the change of 

manipulated variable in designed control structures. As a result of these analyses, the 

trays were found for each steady state design. After that, temperature loops were 

manipulated which will be controlling the sensitive trays, by the Relay Feedback 

Test (ATV) method. The performance of temperature based inferential control 

structures has been examined in the face of different disturbances. It is observed that 

only one control structure (CS3) effectively controls the systems for different relative 

volatility cases. On the other hand, no significant effect of the relative volatilities has 

been observed on the temperature based inferential control of the ternary RD 

columns. 
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RELATĠF UÇUCULUĞUN ÜÇ BĠLEġENLĠ REAKTĠF DĠSTĠLASYON 

KOLONLARININ SICAKLIĞA DAYALI DOLAYLI KONTROLÜNE 

ETKĠSĠ 

ÖZET 

Giderek önem kazanan çevresel ve ekonomik kaygılar, reaksiyon ve ayırma 

işlemlerini tek ünitede birleştiren reaktif distilasyon kolonlarının kullanımına olan 

ilgiyi de beraberinde getirmektedir. Bu kolonların en yaygın kullanım alanı, iki 

reaktan-iki ürün ve iki reaktan-bir ürün içeren ekzotermik reaksiyon sistemleridir. 

Fakat literatürde iki reaktan-bir ürün içeren reaksiyon sistemleri için bileşenler 

arasındaki bağıl uçuculuğun yatışkın hal tasarım ve kontrolüne etkileri 

incelenmemiştir.  

Alandaki bu boşluğu kapatmak adına, çalışmanın ilk aşamasında, bileşenlerin bağıl 

uçuculuklarının değişimlerinin yatışkın hal tasarımlarına etkileri incelenmiştir. İlk 

olarak, birbirleri arasındaki bağıl uçuculukların sıcaklıktan bağımsız sabit iki olduğu 

kabul edilen kimyasallar için yatışkın hal kolonu tasarımı yapılmıştır. Bu kolon, 

optimizasyon değişkenleri olan sıyırma rafı sayısı, reaktif raf sayısı ve operasyon 

basıncı kullanılarak optimize edilmiştir. Optimizasyonu yapılan kolon, toplam yıllık 

maliyet açısından minimum değere sahiptir ve çalışmanın daha sonraki aşamalarında 

temel tasarım olarak ele alınmıştır. Daha sonra, mevcut olan temel tasarıma farklı 

bağıl uçuculuğa sahip kimyasalların beslenmesi sonucu oluşacak etkiler 

incelenmiştir. Bağıl uçuculuğun etkilerin incelenmesinde kimyasalların bağıl 

uçuculuklarının sıcaklığa bağlı ve sıcaklık artışıyla uçuculuları birbirine yaklaşan 

kimyasallar olduğu düşünülmüştür. Elde edilen tasarım sonuçları, bağıl uçuculuklar 

birbirine yaklaşırken kolon için gerekli olan enerji maliyetlerinin arttığını 

göstermiştir. Sonraki aşamada, bağıl uçuculukları sıcaklığa bağlı, sıcaklık artışıyla 

uçuculuları birbirine yaklaşan bu kimyasallar için optimum yatışkın hal kolon 

tasarımları elde edilmiştir. Kimyasalların relatif uçuculuklarının azalması sonucu 

ihtiyaç duyulan buhar debisinin artmasının yanı sıra kolon çapı, reboyler ve 

kondenser ısı transfer alanları artmıştır. 

Çalışmanın ikinci kısmında ise yatışkın hal tasarımları yapılan kolonlar için üç farklı 

sıcaklığa dayalı dolaylı kontrol yapısı tasarlanmıştır. İlk olarak, tasarlanan kontrol 

yapılarındaki ayarlanan değişkenlerin kolon içerisindeki değişimlerine en hassas rafı 

seçmek amacıyla hassaslık analizi ve tekil değer ayrışması (SVD) yöntemi 

kullanılmıştır. Yapılan analizler sonucu her bir yatışkın hal tasarımı için kontrol 

edilecek raflar bulunmuştur. Daha sonra hassas raflardaki sıcaklığı kontrol edecek 

sıcaklık kontrol çevrimleri, otomatik ayar yöntemi (ATV) kullanılarak ayarlanmıştır. 

Prosesler farklı bozan etkenlere maruz bırakılarak, tasarlanan sıcaklığa dayalı dolaylı 

kontrol yapıların etkinlikleri incelenmiştir. Tasarlanan son kontrol yapısının her üç 

farklı bağıl uçuculuk durumu için de değişik bozan etkenlere karşı etkili olduğu  

görülmüştür. Diğer yandan, kimyasalların bağıl uçuculuklarının, üçlü RD 

kolonlarının sıcaklığa bağlı dolaylı kontrolü üzerine etsinin olmadığı görülmüştür. 
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1. INTRODUCTION 

Around the world, a significant fraction of capital investment and operating cost 

involves separation almost in all of the chemical industries. Distillation is the most 

common separation technique based on differences in their volatilities in a boiling 

liquid mixture and is energy intensive. Distillation can consume more than 50% of a 

plant‟s operating energy cost. 

Chemical reactors are also essential parts of many chemical processes because they 

transform raw materials into valuable chemicals. Reactor effluents contain mostly 

products but also unconverted reactants or by-products. Therefore, many chemical 

processes involve separation unit to obtain high purity product. On the other hand, 

due to increased energy demand and environmental concerns worldwide, important 

research is currently underway on process intensification. Process intensification 

gains more and more in importance and interest in many fields, leading to the 

development of novel equipment and techniques which advance the chemical 

processes with respect to decreased costs with reduced equipment size, increased 

energy efficiency, less waste and pollution, improved safety. Reactive distillation 

(RD) is considered as a key technology because of its high potential for process 

intensification. RD combines both separation and reaction in a single column in 

which chemical reaction and product separation occur simultaneously. The 

combination can lead to both economic and environmental gains resulting from the 

process intensification. 

A reactive distillation column usually consists of three sections: reactive section, 

stripping section and rectifying section. In the reactive section, the reactants are 

transformed into products and then by the distillation process the products are 

separated out of reactive zone. The errands of rectifying and stripping sections are 

highly reliant on the boiling points of the reactant and product.  The rule of building 

a RD column is simple. A reactive distillation column is a distillation column having 

a catalyst zone strategically placed in the column to carry out the desired reaction. 

The catalyst can be either in the same phase with the reacting species or in the solid 
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phase. The feed for the process is fed either above or below the reactive zone 

depending upon the volatility of the components and to carry out the desired 

reaction. The reaction occurs mainly in the liquid phase, in the catalyst zone [1,2]. 

RD columns provide numerous advantages over conventional reactor/ separation 

configurations. The main advantages of RD column include: (1) reducing capital 

investment and operational costs (recycle, pumps, piping etc.) by combining two 

equipments into one unit, (2) overcoming chemical equilibrium limitation through 

continuously removing the products from column, (3) eliminating the limitation of 

azeotropic mixture separation by the presence of reaction (reacting away), (4) 

increasing energy efficiency by the internal heat integration of heat of reaction and 

separation, (5) increasing reaction selectivity since elimination of possible side 

reactions by removal of the products from the reaction zone [1,2].  

Reactants and products are continuously separated from the liquid reaction phase into 

the nonreactive vapor phase in RD column. This characteristic allows an enhanced 

conversion and reaction rate in equilibrium limited reversible reactions, a higher 

product selectivity in the case of multiple competing reactions, and provides an 

efficient means of heat removal from the liquid phase for reactions with high heat of 

reaction. However, because heat transfer, mass transfer, and reactions are all 

occurring simultaneously, the dynamics that can be exhibited RD columns can be 

more complex than found in regular columns. During reactive separations, complex 

interactions between vapor-liquid mass and energy transfer and chemical kinetics 

occur strong nonlinearities. This results increase the complexity of process 

operations and the control structure installed to regulate the process. 

The suitability of RD for a particular reaction depends on various factors such as 

relative volatilities between reactants and products, distillation and reaction 

temperature. The volatilities between reactants and products must be suitable to 

ensure high concentrations of reactants and low concentrations of products in 

reactive section. Another important limitation is the temperature suitability for 

reaction and separation since both operations occur in the same unit at the same 

pressure. Low temperatures decrease specific reaction rates thus, very large holdups 

(or large amounts of catalyst) and more separation trays will be needed. High 

temperatures decrease chemical equilibrium constants for exothermic reversible 

reactions and these may also cause undesirable side reactions. If the chemical 
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equilibrium constant decreases, the reaction will reverse so that the conversion 

cannot be the desired product conversion. In either low or high temperatures in RD 

can provoke hydraulic limitations as well. So, the use of RD for every reaction may 

not be feasible and economical. RD is especially suited for equilibrium-limited 

liquid-phase reactions where the products and reactants have suitable volatility. The 

investigation of the candidate reactions for RD is an area that needs considerable 

attention to enhance the domain of RD processes [1-3].  

All the factors that are stated above contribute to the growing academic and 

commercial importance of RD columns. Research on various aspects such as 

modeling and simulation, column hardware design, non-linear dynamics and control 

is in progress. 

RD columns has been studied both real chemical systems and ideal hypothetical 

systems in literature and textbooks [1,2]. Ideal hypothetical reaction systems have 

been usually used to discuss the importance of key design parameters such as 

pressure, reactive zone location, number of reactive trays, holdup on a reactive tray, 

etc. In addition, it is used to synthesize control scheme for RD columns. The results 

obtained from ideal systems are used for generalization of other reaction systems 

which are similar in terms of design, stoichiometry, reaction kinetics and vapor-

liquid equilibrium. Therefore, to examine the effect of relative volatility, a 

hypothetical generic system has been studied. 

Although two reactant-two product generic systems have been widely studied, there 

are relatively few papers dealing with two reactant-one product systems[1]. 

Moreover, for two reactant-one product systems, there is no  research on the effect of 

the relative volatility differences among the components. The relative volatility 

differences could affect ternary RD column design and control. Therefore, in this 

study, how the relative volatility differences among the components affect the RD 

column configurations and the design and robustness of temperature based inferential 

control structures have been investigated. For all these structures, conventional linear 

state feedback controllers have been used. Thus, it is difficult to design nonlinear 

controller that requires extra information about the system. The nonlinearity between 

controlled variable (output) and manipulated variable (input) can limit the usage of 

conventional lineer controller. That is why the use of linear controller is another 

point in the study.  
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The aim of this study is to investigate how the relative volatility differences among 

the components affect the temperature profiles of different RD column 

configurations, and relatedly the design and robustness of temperature based 

inferential control structures.  

This dissertation will provide a datasheet of investigating the design parameters in 

terms of TAC and profound information on how the controllability of RD columns of 

ternary systems using control structures including temperature based inferential 

control are affected by the relative volatility differences among the components. 

With the help of the information gained from the research, for ternary RD column 

configurations with different chemical systems, effective control structures including 

inferential temperature measurements can be proposed.  
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2. BACKGROUND 

Although reactive distillation was invented in 1921 [4], the industrial application of 

RD did not take place before the 1980s. The patents and literature on RD columns 

have increased rapidly in the last two decades. According to a recent book on RD 

design and control, there are 236 different reaction systems which have been studied 

[1]. The most studied reaction types are the quaternary systems (A+B↔C+D) with 

91 examples and the ternary systems (A+B↔C) with 60 examples. RD columns have 

been successfully implemented for esterification and etherification systems in the 

industry. The production of ethyl acetate (EtAc), butyl acetate (BuAc) and methyl 

acetate (MeAc) are important esterification applications, while the production of 

methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl 

ether (TAME) are important etherification applications for RD systems.  

2.1. Reactive Distillation Design  

The design and operation issues of RD columns are more complicated than either 

conventional reactors or conventional distillation columns. Separation and reaction 

occurring simultaneously in a single unit results in complex interactions of vapor-

liquid equilibrium, vapor-liquid mass transfer and chemical kinetics. To understand 

the dynamic behavior of RD columns, these interactions should be depicted by 

having a model of the process. In literature, the most common models that have been 

reported are the equilibrium state model (EQ) consisting of MESH (material balance, 

vapor-liquid equilibrium equations, mole fraction summations, and heat balance) 

equations and the non-equilibrium state model (NEQ) consisting of the so-called 

MERQ (material balance, energy balance, rate equations for mass transfer, and phase 

equilibrium at vapor-liquid interface) equations which are also known as the rate-

base models. The equilibrium based model is assumed that the bulk vapor and the 

bulk liquid phase are in thermodynamic equilibrium with each other. Thus, there is 

no temperature gradient within the state where the equilibrium assumption is valid. 
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In a non-equilibrium model, the liquid and vapor interface is assumed to be in 

equilibrium. Mass transfer takes place at the interface of the bulk phases, and also 

inside these phases. Therefore, a temperature gradient occurs through the phases [3]. 

The application and development of the EQ stage model for conventional distillation 

columns have been reported in several textbooks and review articles [3,5,6]. These 

models have been adopted to RD columns by adding reaction terms. The EQ stage 

model have been modified for RD by adding the rate of the reaction term to the 

material balance equations and by the inclusion of heat of reaction term into the 

energy balance equations [7-10]. 

The NEQ stage model for RD follows the same approach and methodology of the 

rate-based models used for conventional distillation [11-12]. Lee and Dudukovic 

reported the comparison of the equilibrium model with the non-equilibrium model 

for an esterification reaction between ethanol and acetic acid. They proposed that the 

NEQ stage model is to be preferred for the simulation of RD compared to an 

equilibrium based model because of the difficulty associated with the prediction of 

tray efficiencies [13]. Krishna and co-workers also studied the comparison of the 

equilibrium model with the non-equilibrium model for RD columns. It has been 

shown that the NEQ modelling approach affects the hardware design, which might 

have a significant influence on the conversion and selectivity [14]. 

On the other hand, the complexity of the modeling increases greatly if mass transfer 

and/or reaction kinetics are taken into account. The NEQ stage model is more 

complex and requires thermodynamic properties, not only for phase equilibrium, but 

also for the calculation of the driving forces of mass transfer accompanied by 

chemical reactions. In addition, the mass and heat transfer coefficients, interfacial 

areas and physical properties such as surface tension, diffusion coefficients, 

viscosities, etc are required. Therefore, the NEQ stage models have been usually 

used for commercial RD column designs [3,11,12]. 

Since the EQ stage models have less empirical parameters, the usage of this approach 

is more convenient for the design of ideal systems and control purposes. Thus, the 

EQ stage models have been used for several studies on RD.  

Using the EQ stage model, Kaymak and Luyben compared the design of a RD 

column with a conventional multi-unit reactor/column/recycle process for a 
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quaternary reaction system. The reaction considered is a generic exothermic 

reversible reaction system including two reactants and two products. Each flowsheet 

has been optimized in terms of the total annual cost (TAC) for a wide range of 

chemical equilibrium constants KEQ. They showed that the RD configuration has 

lower capital and energy costs than the conventional configuration for all kinetic 

cases [15]. They also demonstrated that TAC increases as the value of chemical 

equilibrium constant decreases for quaternary systems [16].  

Luyben and co-workers also studied the design and control of two alternative 

processes for the production of butyl acetate. One of them is a conventional 

reactor/separator process, while the other one includes a RD column. They showed 

that the TAC of the process including a RD unit is 20% lower than that of the 

conventional process [17]. 

Kaymak and Luyben further represented the quantitative comparison of RD and 

conventional reactor/separator systems for a quaternary system. They investigated 

effects of relative volatility on the design of the flowsheets. Two type of changes in 

relative volatility were considered. Firstly, relative volatilities between adjacent 

products and reactants were independent of the temperature, so they were kept 

constant through the RD but were varied for each case from 2 to 1.25. Secondly, 

relative volatilities of all component were temperature dependent, so they were 

decreased with increasing temperature. It is showed that for the constant relative 

volatility case, the optimum RD configuration is more economical than multi-unit 

system for all values of relative volatilities. For temperature-dependent case, 

Although the TAC of the conventional multi-unit process slightly increases as the 

relative volatilities decrease, both capital and energy costs of the RD column increase 

rapidly [18]. 

Yu and Tung investigated the effects of relative volatility ranking to the design of an 

ideal chemical reaction system. Since the reaction considered is a two-reactant and 

two-product system, there are 24 possible relative volatility arrangements. They 

optimized all arrangements in terms of the total annual cost (TAC), and demonstrated 

that the relative volatility rankings play a key role in RD column configurations [19]. 

Luyben has studied the effects of kinetic and design parameters for an ideal ternary 

system with a chemistry of A+B↔C. Two different cases have been considered. In 

the first case, there are only three components taking part in the reaction. On the 
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other hand, there is a fourth component fed to the process in the second case. 

Although this component is inert in terms of the reaction, it may affect the vapor-

liquid phase equilibrium and the structure of the column. For both processes, effects 

of the design parameters such as number of separation trays, number of reactive 

trays, column pressure, and holdup on reactive trays have been examined. It has been 

pointed out that the presence of the inert component has a major impact on both the 

structure of the column and the vapor-liquid phase equilibrium [20]. 

The coupling of reaction kinetics and vapor-liquid equilibrium causes high nonlinear 

dynamic behavior. As indicated on the papers investigating the open-loop dynamics 

of RD columns, this high non-linearity results in the existence of steady-state 

multiplicities [21-24]. Recently, Kaistha and co-workers have analyzed MTBE and 

methyl acetate RD columns for the possibility of the steady state multiplicities. They 

have demonstrated that the coupling of reaction and separation  causes complex 

input-output relationships leading to both input and output multiplicities. They have 

also highlighted the importance of the column specifications (operating policy) on 

steady state multiplicities [25]. 

2.2. Reactive Distillation Control 

 

The increasing demands for energy saving and product quality require effective 

control systems. However, control of RD columns is a difficult task because of their 

complex dynamics resulting from the interaction between reaction and separation 

[25].  

The direct way to achieve the desired conversion and product purity is using a 

composition analyzer that measures an internal composition in the column. However, 

the maintenance of composition analyzers are expensive, and they introduce large 

dead-times into the control loop. Therefore, reliable composition measurements may 

not be obtained for the control of RD columns. Thus, Roat and co-workers proposed 

a temperature-based inferential control structure for RD column systems to avoid the 

use of analyzers. This control structure was using two conventional proportional-

integral (PI) temperature controllers to control two tray temperatures in the two-

product RD column by manipulating two fresh feed streams. The reboiler heat input 
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was fixed. However, this structure could handle only a 5% increase in the throughput 

[26]. 

Later, Bock and co-workers studied esterification of myristic acid in a RD column 

coupled with a recovery system. A structure controlling the purities of the products 

was proposed for the coupled two-column reactive distillation process. The proposed 

control structure was simply rationing the fresh isopropanol feed to the fresh acid 

feed to balance the reaction stoichiometry. However, this ratio control could not 

effectively handle disturbances for the feed compositions [27].  

Kumar and Daoutidis studied the controllability of an ethylene glycol reactive 

distillation column where ethylene oxide and water are the reactants. Water was fed 

on the top of the column, while ethylene oxide was fed on the fourth tray. In this 

process, ethylene glycol leaves the column from the bottoms and there is no distillate 

stream. The column pressure and the product composition were controlled by 

manipulating the condenser duty and the reboiler duty, respectively. Two fresh feeds 

were flow controlled. The authors claimed that the studied control structure with 

conventional linear PI controllers causes stoichiometry balance problem. Thus, a 

nonlinear controller that performs well with stability in the high-purity region was 

suggested [28].  

Sneesby and co-workers proposed a two-point control structure for an ethyl tert-butyl 

ether (ETBE) RD column in which both product purity and conversion are 

controlled. They used conventional PI controllers to control a tray temperature in the 

stripping section by manipulating the reboiler duty and to control the conversion by 

manipulating the reflux flowrate. It was shown that the two-point control scheme has 

superior disturbance rejection capability compared to the one-point composition 

control scheme [29]. 

Al-Arfaj and Luyben explored a variety of control structures for an ideal two-

reactant and two-product RD column. In their study, six alternative control 

structures, all of which including the composition measurement of a reactant inside 

the reactive section of the column was explored. This composition was controlled by 

adjusting the appropriate fresh feed stream. Al-Arfaj and Luyben claimed that the 

inventory of one of the reactants needs to be detected so that a feedback trim can 

balance feed stoichiometry of the reactants, unless an excess of one of the reactants 
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in the column is incorporated during the design stage. Thus, the use of a composition 

analyzer in the reactive zone was advocated [30]. 

Estrada-Villagrana and co-workers studied the controllability of an MTBE RD 

column with linear control tools. Three control schemes were analyzed to determine 

the best control scheme. The control schemes were constructed to control reflux 

drum level, the base level and MTBE purity in the bottoms. To control the drum 

level, the distillate and the reflux streams were considered as possible manipulating 

variables. The bottoms flowrate was adjusted to control the base level for each 

scheme. A temperature in the stripping zone was controlled by manipulating the 

reboiler duty to maintain the desired MTBE purity at the bottoms. Although the RD 

columns have highly nonlinear behaviors, they demonstrated the use of input-output 

control schemes with linearized control tools for the control of the RD column [31]. 

Vora and co-workers studied the controllability of an ethyl acetate RD column. They 

analyzed the system from steady-state and dynamic point of views. It was found that 

the process has two time scales caused by the liquid hydraulics. Control structure 

manipulating the reflux flow to control the acetate purity at the top of the column and 

the condenser duty to control the operating pressure was used. Nonlinear controllers 

were designed based on the two-time scale model. These nonlinear controllers 

performed well for a 25% increase in the product purity setpoint. However, it was 

demonstrated that the linear controllers for the same configuration were able to 

handle only a 1% product purity change [32]. 

Al-Arfaj and Luyben compared an ideal RD column with a methyl acetate RD 

column in terms of controllability. Three control structures were examined for both 

columns. Three compositions analyzers were used for the first control structure in 

which the vapor boilup and reflux flowrate were manipulated to control the purities 

of the bottoms and distillate streams, respectively. One of the fresh feeds was 

manipulated to control a composition in the reactive section of the column. One 

composition controller and one temperature controller was used. In the second 

control structure, a tray temperature was controlled in the stripping section to 

maintain the bottoms purity. In the third one, two temperatures were controlled by 

manipulating the two fresh feeds. It was demonstrated that the second control 

structure provides effective control of both processes. Controllability using the first 

structure was found difficult for the high-conversion methyl acetate column because 
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of the system nonlinearities. In addition, it was observed that the two-temperature 

control structure provides an effective control when the process is overdesigned [33]. 

This study was extended for an ETBE RD column where two different process 

configurations have been used. The first configuration consists of two fresh reactant 

feed streams, while the second configuration includes a single reactant feed. 

According to the results, an internal composition control of one of the reactants is 

required to balance the stoichiometry perfectly [34]. 

Despite Kumar and Daoutidis‟s claim [28], Al-Arfaj and Luyben demonstrated that 

ethylene glycol RD column can be effectively controlled by a simple PI control 

configuration where inferential temperature control was preferred instead of direct 

composition control. Their proposed control structure achieved balancing the 

stoichiometry of the reactants, and maintained the product purity within reasonable 

bounds. Since there is a big temperature change through the stripping section, the 

tray for temperature control was selected from this section.  This tray temperature 

was controlled by manipulating reboiler duty. The control structure has only 

conventional PI loops and can handle large disturbances. It was reported that this 

control structure can be applicable to different systems which are similar to ethylene 

glycol system in terms of design, stoichiometry, reaction kinetics and vapor-liquid 

equilibrium [35]. 

Wang and co-workers investigated the effect of multiplicity on the control system 

design for an MTBE RD column. A tray temperature in the stripping section was 

controlled by manipulating the vapor boilup, while stoichiometric balance was 

controlled by a feed ratio plus internal composition control loop. It was demonstrated 

that although both input and output state multiplicities occur in the column, a linear 

control is still possible if controlled and manipulated variable pairings that exhibit no 

multiplicities can be found. They proposed that such a scheme can be found by 

operating at constant reflux ratio [36]. 

Luyben and Kaymak evaluated a two-temperature control structure for quaternary 

type of reactive distillation columns. Two different systems were studied; an ideal 

reaction system and a methyl acetate system. They demonstrated that the number of 

reactive trays is a key design variable, which affects the shape of steady-state gain 

curves. They claimed that the controllability of these columns can be increased by 

adding more reactive trays [37]. 
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Kaymak and Luyben compared the effectiveness of two different inferential 

temperature control structures for both ideal quaternary and methyl acetate RD 

columns. In the first control structure, the tray temperatures were controlled by 

manipulating the fresh feed flowrates, and the vapor boilup was the production rate 

handle. On the other hand, one of the fresh feed streams and the vapor boilup were 

manipulated to control the tray temperatures for the second control structure. Other 

fresh feed stream was the production rate handle, and the feed streams were rationed. 

The ratio was set by the temperature controller. They pointed out that the stability of 

the system is seriously affected by the selection of the manipulated fresh feed stream 

in the second structure [38].  

Kumar and Kaistha studied the performance of two temperature based inferential 

control structures for a methyl acetate RD column. They proposed the use of the 

difference between two suitably chosen reactive trays instead of using a single tray 

temperature, also referred to as ΔT. They claimed that controlling ΔT leads to 

improved robustness compared to controlling a single reactive tray temperature [39].  

Luyben studied the controllability of two different ideal ternary systems with two 

reactants but only one product. In the first case, there are only three components. In 

the second, one of the feeds has an inert component in terms of reaction which 

affects the vapor-liquid equilibrium in the column. The author pointed out the impact 

of the inert component on both the configuration and control scheme design of the 

column [40]. 

In their recent papers, Kumar and Kaistha have examined the impact of steady-state 

multiplicity on the controllability of RD columns using two-temperature control 

structures. First, the nonlinear dynamic behavior of a generic ideal RD column has 

been explored. They demonstrated that a steady-state transition occurs for large 

production rate decreases, while wrong control action occurs for large production 

rate increases. In addition, they observed that the initial direction of response to the 

disturbance has an important role in determining the control system robustness [41]. 

Kumar and Kaistha further investigated the impact of steady-state multiplicities on 

the control of a methyl acetate RD column. They showed that output multiplicity for 

a fixed reflux ratio can lead to steady-state transition for a pulse decrease. Moreover, 

input multiplicity can lead to “wrong” control action for large disturbance moving 
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the column towards the multiplicity region. They also demonstrated that controlling a 

tray temperature with acceptable sensitivity provides more robust control instead of 

controlling the most sensitive tray temperature since the input multiplicity is avoided 

[42]. 

Later, Kumar and Kaistha examined two-point and three-point temperature control 

structures for an ideal quaternary RD column. They showed that the two-point 

control structures are unsuitable to maintain product purities for large throughput 

increases. They proposed that the reflux ratio must be adjusted to force the escaping 

reactants back into reactive zone. Therefore, they implemented three-point structures 

where reflux rate is manipulated to control a tray temperature in the rectifying 

section. They showed that both three-point control structures maintain the product 

purities effectively as the reflux ratio is indirectly adjusted though the manipulation 

of the reflux flowrate [43].  

Kumar and Kaistha compared the controllability of two alternative designs of the 

ideal quaternary RD column. They also investigated two control structure that is 

limited only temperature inferential control for the designs. It is studied bifurcation 

analysis that performed to understand steady-state transition and „wrong‟ control 

action. They demonstrated that the number of reactive trays is the key design 

variable that affects the column controllability [44]. 

Recently, Kumar and Kaistha investigated the closed loop performance of a two-

temperature control structure that has been originally proposed by Roat and co-

workers. In this study, they modified the structure using ratio controllers. Three 

different configurations have been studied for a methyl acetate RD column. They 

showed that maintaining the fresh feeds in ratio does not lead to an improvement in 

the control performance and robustness [45]. 
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3. DESIGN AND CONTROL FUNDAMENTALS 

3.1.  Process Studied 

In this work, an ideal ternary system with two reactants and one product is studied. 

The considered reaction is a reversible liquid-phase exothermic reaction. 

A + B ↔ C                    (3.1) 

The relative volatilities are such that the heaviest component is the product C and the 

lightest component is the reactant A.  

αA > αB > αC                     (3.2) 

The kinetic and physical properties are taken from the literature [20] and given in 

Table 3.1. 

Table 3.1. Kinetic and Physical Parameters 

 

The flowsheet of the ternary reactive distillation column is shown in Figure 3.1. The 

column has two sections; a stripping section and a reactive section. Reaction occurs 

only in the reactive section having NRX trays, and product C moves down through the 

column as the heaviest component. The task of the stripping section having NS trays 

is to strip reactant B from the product C. There is no need to have a rectifying 

section, because there is no distillate at the top of the column. The column has a 

Parameter Value 

Activation energy  

Forward 30 kcal/mol 

Backward 40 kcal/mol 

Specific reaction rate at 366 K( kmol s
-1

 

kmol
-1

)  

Forward 0.008 

Backward 0.0004 

Chemical equilibrium constant at 366 K 20 

Heat of reaction -10 kcal/mol 

Heat of vaporization 6.944 kcal/mol 

Molecular weights A/B/C (g mol
-1

) 50/50/100 
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partial reboiler and a total condenser that helps the column operating at total reflux. 

The fresh feed stream FOA is fed from the bottom of the reactive section, while the 

fresh feed stream FOB is fed from the top of the reactive section. The product C 

leaves the column from the bottoms. The trays are numbered starting from the 

bottom of the column. 

 

Figure 3.1: Ternary Reactive Distillation Column 

Relative volatilities between adjacent components can directly affect the design 

variables such as the number of separating trays and the operating pressure. Relative 

volatility is a dimensionless quantity that compares the vapor pressures of the 

components in a liquid mixture of chemicals. For an ideal mixture, the relative 

volatility αij is equal to the ratio of the vapor pressure of component i to the vapor 

pressure of component j. 

 /S S

ij i jP P 
                   (3.3) 

The relation between vapor pressure P
S
 and temperature for pure components can be 

described by a two-parameter Antoine equation, where AVP and BVP  are component-

specific constants.   

, ,ln /S

i VP i VP iP A B T 
                  (3.4) 
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For the base case of this study, the relative volatilities between the components are 

kept constant at 2 without changing by temperature. To investigate the effect of 

temperature dependency of relative volatilities, the relative volatilities between 

adjacent components are reduced as the temperature increases. This is done by 

changing the relative volatilities between adjacent components at a reference 

temperature, while they are kept constant at 2 at a temperature of 320 K. The 

reference temperature is selected 390 K, and the value of α390 is varied over a range 

between 1.5 and 2. Figure 3.2 shows the vapor pressure lines for two different cases. 

The left graph is for the base case without any temperature dependency, while the 

right one is for a temperature-dependent case. The slope of the vapor pressure line of 

component A is same for both α390 cases, because the vapor pressure coefficients of 

this component are kept constant. However, to obtain the temperature-dependent 

relative volatilities, the AVP and BVP coefficients of other components are calculated 

for the specified value of the relative volatility at a temperature of 390 K. Therefore, 

the lines get closer while the temperature increases. 

 

Figure 3.2: Vapor Pressures for Different Relative Volatilities: a) α390=2.00 b) 

α390=1.5 

The vapor pressure constants of the components for three case studies are given in 

Table 3.2.  

2.4 2.6 2.8 3 3.2 3.4
10

-2

10
-1

10
0

10
1

1000/T (1/K)

V
a
p
o
r 

P
re

s
s
u
re

(b
a
r)

 

 

A

B

C

2.4 2.6 2.8 3 3.2 3.4
10

-2

10
-1

10
0

10
1

1000/T (1/K)

v
a
p
o
r 

p
re

s
s
u
re

(b
a
r)

 

 

C

B

A

320 K390 K

a) α390 =2 

2.00 

b) α390 = 1.5 

 



 
18 

Table 3.2: Vapor Pressure Constants 

 

 

3.2. Assumptions and Specifications  

RD columns can be represented by a set of algebraic and non-linear differential 

equations describing the physical and chemical properties of the studied process. To 

find the steady state design of a RD column, the design variables of the process 

should be chosen carefully. In addition, there might be a large number of design 

variables. Therefore, following assumptions and specifications are considered in this 

study to reduce the number of design variables for the economically optimum steady-

state design: 

(i) The kinetics holdup (MRX) is assumed constant at 1000 moles 

(ii) Pressure drops in the column are neglected 

(iii) Chemical reaction occurs only in the liquid phase 

(iv) Ideal vapor-liquid equilibrium is assumed on each stage 

(v) Reflux and two fresh feed streams are saturated liquids 

(vi) Equimolal overflow is assumed in the stripping section 

The design objective is to obtain a fixed production rate of product C at 12.6 mol/s 

with 98% purity. This means that the bottoms flow rate is 12.6/0.98 = 12.857 mol/s. 

Thus, the flow rates of both fresh feed streams F0A and F0B require an amount of 12.6 

mol/s at least. Since reactant B is heavier than reactant A, the impurity of the bottoms 

contains mostly reactant B. Therefore, the fresh feed flow rate of reactant B is larger 

than that of reactant A. 

Based on these specifications and assumptions, there are three optimization 

variables: the number of trays in reactive zone NRX, the number of trays in stripping 

section NS, and the column pressure P. 

 

α390 Constant A B C 

2.00 

AVP 12.34 11.65 10.96 

BVP 3862 3862 3862 

1.75 

AVP 12.34 12.4 12.45 

BVP 3862 4100.07 4338.13 

1.50 

AVP 12.34 13.26 14.17 

BVP 3862 4374.9 4887.8 
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3.3. Steady-State Design and Procedure 

In many cases, it has been proven that the equilibrium stage model used for the 

simulation of distillation columns without chemical reactions can be implemented for 

the simulation of reactive distillation columns as well [9,10]. As shown in Figure 3.3, 

vapor rising from the stage below and liquid flowing down from the stage above 

contact each other on a stage together with any fresh feed. The vapor and liquid 

streams departing from the stage are assumed to be in equilibrium with each other. 

Using a sequence of these equilibrium stages, a complete separation process is 

modeled.  

 

Figure 3.3: Equilibrium-Based Stage Model 

A distillation column can be described by a group of equations modeling the 

equilibrium stages. Using the known MESH-equations (material, equilibrium, 

summation and heat equations), an equilibrium stage j can be described. Moreover, 

due to the proceeding reaction, the molar change in the number of moles of 

component i must be considered [10]. 

The simulation solution of RD is found by the simultaneous solution of material, 

energy balances and stoichiometric relationships, which corresponds to the solution 

of a considerable large set of non-linear equations. The relaxation method is a 

reliable and efficient technique in solving this large set of equations [46,47]. This 

method uses the equilibrium-stage model equations in unsteady-state material 

balances. Liquid mole fractions and temperatures on each stage are designated as 

initial guess. During repeated computations, the mole fractions are proceeded 
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towards the steady state values by relaxation method. Steady-state solution is found 

through the change of the column state with time by utilizing numerical integration. 

Here, the tray-by-tray dynamic material and energy balances are integrated until 

steady state. The temperature and the corresponding stoichiometric vapor phase on 

each tray are computed. This is a bubble point calculation and requires an iterative 

method. With the given pressure P and tray liquid composition xj,i, the temperature 

Tj, and the vapor composition yj,i can be calculated by a Newton-Raphson iterative 

convergence method. Raoult‟s law states that the vapor pressure of a component in 

an ideal solution is equal to the vapor pressure of the pure component multiplied by 

its mole fraction, and the total vapor pressure of the solution is the sum of the vapor 

pressures of the individual components. 

, , ( )

1

NC
S

j i j i T

i

P x P



                     (3.5)                     

,

, ,

S

j i

j i j i

P
y x

P


                    (3.6) 

The total and component mole balances throughout the column can be described by 

the following equations: 

Column Base: i = 1 : NC 

1
B

S

dM
L B V

dt
  

                                                                  (3.7) 

,

1 1, , ,[ ] /
B i

i B i S B i B

dx
L x Bx V y M

dt
  

                 (3.8)
 

Trays: i = 1 : NC and j = 1 : NT 

1

j

j j j j j

V

dM
L L r r F

dt H


    


                   (3.9)

 

,

1 1, 1 1, , , , ,[ ] /
j i

j j i j j i j j i j j i j i j j i j

dx
L x V y L x V y r F z M

dt
        

           (3.10) 

At both equations 3.9 and 3.10, the terms including reaction rate rj,i are omitted in the 

stripping section. In addition, Fj term is equal to zero throughout the column except 

the trays where the fresh streams are fed. 

Reflux Drum: i = 1 : NC 
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D
NT

dM
V R

dt
 

                                      (3.11) 

,

, ,[ ] /
NT i

NT NT i D i D

dx
V y Rx M

dt
 

                          (3.12)
 

The vapor flow rate into the first tray, VS, is the L1 fraction vaporized in the reboiler. 

The vapor flow rates on all trays of the column are consecutively calculated from 

stage 1 to stage NT. The liquid molar flow rates of each tray of the column are 

respectively calculated from stage NT to stage 2, using the material balance over each 

tray. Since equimolal overflow is assumed, the liquid and vapor rates are constant in 

the stripping section of the column. However, the liquid and vapor flow rates in the 

reactive section changes because of the following reasons: (i) the reaction is not 

equimolar (since two mole of reactants are consumed, while one mole product is 

produced) and (ii) the some of the liquid is vaporized due to the exothermic reaction. 

That is why vapor flow rate increases up and liquid flow rate decreases down 

through the reactive zone. 

1j j j

V

V V r
H


 

                  (3.13) 

1j j j j

V

L L r r
H


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                 (3.14) 

where λ is the heat of reaction and ΔHv is the latent heat of vaporization. The 

reaction rate on tray j can be expressed in terms of mole fractions (xj,i) and the kinetic 

holdups (Mj). 

, , , ,( )
j jj i i j F j A j B R j Cr M k x x k x                 (3.15) 

where rj,i is the reaction rate of component i on the jth tray (mol/s), νi is the 

stoichiometric coefficient which takes a negative value for the reactants, and Mj is 

the kinetic holdup on reactive tray j (mol). The kinetic holdup represents the amount 

of catalyst installed on a reactive stage.  

The forward and backward specific rates following the Arrhenius law on tray j are 

given by 

/F j

j

E RT

F Fk a e


                             (3.16) 
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/R j

j

E RT

R Rk a e


                  (3.17) 

where aF and aR are the pre-exponential factors, EF and ER are the activation energies, 

and Tj is the absolute temperature on tray j. 

The convergence method uses the following steps in the design procedure: 

1. Fix the column pressure at a small value.  

2. Fix the number of the reactive trays NRX.  

3. Fix the number of stripping trays NS. 

4. Fix the flow rate of the bottoms at 12.857 mol/s. 

5. The flow rates of the fresh feed streams F0A and F0B depend on the amount of 

loss reactants at the bottoms stream. At each point in time during the 

simulation, the fresh feed flowrates are computed from the bottoms flow rate 

B and the value of the bottoms compositions xB,i that change by time until a 

steady-state solution is accomplished. 

0 ,12.6A B AF Bx 
                (3.18)

 

0 ,12.6B B BF Bx 
                (3.19)

 

6. Manipulate the vapor boilup VS with a P-only controller to control the level in 

the column base. There is no controller for the reflux drum level. 

7. Manipulate the reflux flow rate with a PI controller to achieve the desired 

composition of product C in the bottoms. 

8. By using bubble-point calculations, compute the temperatures and vapor 

compositions on each tray. 

9. Compute the reaction rates using Equation 3.15 in the reactive zone. 

10. By assuming equimolal overflow through the stripping section, compute the 

vapor flow rates and the liquid flow rates from Equation 3.13 and Equation 

3.14, respectively. 

11.  Evaluate the time derivatives of the component material balances using 

equations 3.7-3.12. 

12.  Integrate all ODEs using the Euler algorithm. 

13. Repeat from step 5 to step 12 until the desired steady-state solution is 

obtained. 

14. Calculate total annual cost (TAC) of the RD column using the specified and 

calculated parameters.  
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15. Vary the number of the stripping trays over a range, and repeat steps 4-14 

for each value of NS. 

16. Then, vary the number of the reactive trays over a range, and repeat steps 3-

15. 

17. Finally, vary the value of the column pressure over a wide range, and repeat 

steps 2-16 for each pressure value. Select the design with the minimum 

TAC as the economically optimum steady-state design. 

3.4.  Sizing and Economics 

To find the economically optimum steady-state design, total annual cost (TAC) is 

used as the objective function that sums the energy and capital costs of the system 

assuming a payback period (βpay) of 3 years for capital cost. Total annual cost is 

given by 

 Investment
 

pay

Capital
TAC Energy Cost


 

              (3.20)

 

The energy and the capital costs of the process are calculated using the following 

equations [50]. 

1.066 0.802Column cost = 17640DC CL
               (3.21)

 

1.55Tray cost = 229 DC TN
                (3.22)

 

0.65 0.65Heat exchanger cost = 7296(A A )R C
              (3.23)

 

Energy cost = 0.6206 HV SV
                (3.24)

 

To calculate the terms in the TAC equations, following set of equations taken from 

Kaymak and Luyben‟s paper are used [15]. 

(i) The diameter of the column is calculated from the equation  

2 0.25 0.5D  = 1.735 10 ( )W
C NT

M T
V

P


              (3.25)

 

(ii) The column height is calculated assuming a 0.61-m (2-ft) tray spacing 

and allowing 20% more height for base-level volume. 

 0.73152 NC TL 
                           

(3.26)
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(iii) The heat-transfer areas of the reboiler and condenser are calculated using 

the steady-state vapor flow rates and the heat of vaporization. 

 0.0042 S V
R

R R

V H
A

U T




                (3.27)

 

 0.0042 NT V
C

C C

V H
A

U T




                (3.28)

 

The vapor flow rate in the top tray, VNT, is higher than the vapor flow rate 

in the reboiler, VS, because of the liquid vaporized through the reactive 

section. Thus, the heat-transfer areas of the reboiler and condenser are 

calculated using two different vapor rates.  

(iv) The process is assumed to be equally reliable and to operate for 365 days 

per year. 

3.5. Process Control 

The control objective is to maintain the bottoms product purity within a desired range 

in the face of the load disturbances, which are production rate changes and feed 

composition variations. Composition analyzers can be used to control the product 

purities of RD columns. However, direct composition measurements are expensive, 

unreliable and involve large dead-times in the control loops. Therefore, inferential 

variables such as tray temperatures are used to infer the product composition instead 

of direct composition measurement in RD columns.  As Marlin states, although it is 

not always impossible, automated control is difficult because of the lack of 

measurements of key variables in a timely manner. To improve this situation 

inferential control uses extra information. Here, the extra information is additional 

measured variables that, while not giving a perfect indication of the key unmeasured 

variable, provide a valuable inference [48]. 

 

There are six control valves associated with the RD column, as shown in Figure 3.1. 

Therefore, there are six control degrees of freedom. Three of them are used for 

inventory control and pressure control in all control schemes investigated in this 

study. Reflux drum level and base level are controlled by manipulating reflux flow 

rate and bottoms flow rate, respectively. Column pressure is controlled by 

manipulating cooling water of condenser. Two of the remaining three valves can be 
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used to control two tray temperatures. Therefore, three different types of two-

temperature inferential control structures are possible for this column configuration. 

All structures consist of multi-loop SISO (single input-single output) controllers 

where one controlled variable paired with one manipulated variable. Figure 3.4 

shows the block diagram of a feedback control loop. 

 

Figure 3.4: A Feedback Control Loop 

The output y(t) is a tray temperature or liquid level. The measuring device or sensor 

measures the value of the output variable. The value of the process measurement is 

compared with a set point (target value) and subtracted from it. The difference or 

error serves as input to a controller. The controller calculates a change of the signal 

for the control valve. The correcting device adjusts the corresponding flow rate. 

Conventional linear PI controllers are used in temperature control loops. The PI 

controllers solve the following equation [49]: 

1
( ) ( ) ( ) ( )C

I

u t K e t e t d t


 
  

 
                (3.29) 

where KC is the controller gain, τı is integral (or reset) time, u is the control signal and 

e is the control error e (ysp – y). 

Both level controllers in the structure are P-only controllers. The describing equation 

is 

( ) ( )Cu t K e t                             (3.30) 

3.5.1. Control Structure CS1 

Figure 3.5a shows the first control structure CS1 in which the fresh feed stream F0A 

and vapor boilup VS are manipulated by two temperature controllers. The heavy 

reactant fresh feed stream F0B is flow controlled and serves as the production rate 

handle. Feed ratio control CS1-FR examined as a second version of CS1 is given in 
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Figure 3.5.b. The light reactant fresh feed is ratioed to the heavy reactant feed. The 

ratio is set by a temperature controller. The heavy reactant fresh feed stream F0B 

serves as the production rate handle and is flow controlled as well. 

 

Figure 3.5: Control Structures: a) CS1 b) CS1-FR 

3.5.2. Control Structure CS2 

Figure 3.6 gives the second control structure in which two temperature controllers 

manipulate the fresh feed stream F0B and the vapor boilup VS to maintain the 

temperatures on two trays. The throughput is set by flow controlling the fresh feed of 

F0A. 
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Figure 3.6: Control Structure CS2 

3.5.3 Control Structure CS3 

Control structure CS3 is given in Figure 3.7, where two temperature controllers 

manipulate two fresh feed streams to maintain the temperatures of two trays. In this 

case, the vapor boilup is the production-rate handle and is flow controlled. 

 

Figure 3.7: Control Structure CS3 
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3.5.6. Selection of Temperature Control Trays 

A procedure consisting of two methods are performed to find which trays should be 

selected to apply the inferential control. A dynamics response analysis (sensitivity 

analysis) is applied as the first part of the procedure. Sensitivity analysis is used to 

find the steady-state gains of the column in the face of small changes in the 

manipulated variables [50]. While the input is changed in small positive and negative 

steps, the corresponding output responses to these steps are observed. Therefore, the 

change in tray temperature is rationed to the change in the manipulated variable. That 

gives the open-loop steady-state gain between tray temperatures and manipulated 

variable. The tray having the largest temperature change is the most sensitive tray, 

and selected to be controlled. To support the obtained sensitivity analysis results, 

singular value decomposition (SVD) method is used to select the most sensitive trays 

to be controlled by using the steady-state gains. SVD is a method for identifying and 

ordering the dimensions along which data points exhibit the most variation [51]. To 

perform an SVD method, a gain matrix KP having NT rows (the number of trays) and 

two columns (the number of manipulated variables) are formed. This matrix is 

broken down by using standard SVD into the product of three matrices; a left 

singular vector matrix U, a diagonal matrix of singular values Σ, and the right 

singular vector matrix V. The method is usually expressed as: 

T

pK U V 
                (3.31)

 

The columns of U matrix are plotted versus trays. The largest elements of columns 

indicate the tray locations which are the most sensitive to input changes applied and 

can be effectively controlled [52,53].  

3.5.7. Controller Tuning 

In 1984, Astrom and Hagglund presented a relay feedback system to generate 

sustained oscillation for controller tuning [54]. Many researches on extending and 

modifying the relay feedback auto-tuning method have been reported in recent years 

[55-57]. The relay feedback test identifies two important parameters for controller 

tuning, the ultimate gain and ultimate period. This test is based on the observation 

that a closed-loop system in which the output lags (y) behind the input (u) by π 

radians may oscillate with the period Pu under relay control. The relay controller is a 
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simple on-off controller. The block diagram of a relay feedback system is shown in 

Figure 3.8. 

 

Figure 3.8: Block Diagram of a Relay Feedback System 

The relay controller has a specified amplitude h and a time delay. A relay with the 

specified amplitude is inserted in the feedback loop. Initially, the input u(t) becomes 

+h as shown in Figure 3.9. As the output y(t) starts increasing after the dead time (D), 

the relay switches to the opposite direction, u(t) = -h. Since there is a phase lag of –π, 

a limit cycle with a period is generated. The period of the limit cycle is the ultimate 

period, Pu. From the principle harmonic approximation of the oscillations, the 

ultimate gain (Ku) can be approximated as  

4
u

h
K

a
                   (3.32) 

where h is the relay amplitude and a is the amplitude of oscillation [55-57]. 

 

Figure 3.9: Typical Relay Feedback Response 
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Using the ultimate gain Ku and the ultimate period Pu obtained from the relay 

feedback test, controllers for the temperature loops are tuned using Tyreus-Luyben 

tuning method [58]. 

3.2

U
C

K
K 

                  (3.33)
 

2.2I UP 
                  (3.34)

 

Two first-order measurement lags with a time constant of 60 s each are used in 

temperature loops. Temperature transmitter spans of 100 K are used for 

dimensionless controller gains. To get a faster closed-loop response while avoiding 

large oscillations, a detuning factor f is used in some temperature loops. The detuning 

factor is obtained empirically. 

3.2

U
C

K
K

f


                  (3.35)

 

2.2I UP f  
                 (3.36)

 

The base and reflux drum levels are controlled by P-only controllers with a gain of 2. 

All valves are designed to be half open at steady state. 

 

 

 

 

 

 

 

 

 

 

 



 
31 

 

4. RESULTS AND DISCUSSIONS 

4.1. Effect of Design Variables 

Design variables have been examined to find optimum designs of the ternary RD 

process. The detailed results are given just for the base case, α390 = 2. Figure 4.1 

shows the impact of design variables for ternary RD process. The left column graphs 

in Figure 4.1 shows the effect of number of stripping trays, while number of reactive 

trays is kept constant at 5. It is demonstrated that the increase in the number of 

stripping trays decreases the vapor boilup. Despite the decreasing vapor boilup, 

adding more stripping trays increases the capital cost. The change in the number of 

reactive trays is given on the right column graphs of Figure 4.1, where the number of 

stripping trays is kept constant at 13. It is demonstrated that having too few reactive 

trays increases the vapor boilup to obtain desired product purity. However, adding 

more reactive trays increases the capital cost. As the result of the tradeoff between 

energy and capital costs, it is found that there is an optimum tray number for the 

ternary RD column. 

 

Figure 4.1: Effect of Design Variables 
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Figure 4.2 gives the effect of changing column pressure on temperature profiles. 

Since operating pressure affects the temperature of the reactive zone, there is an 

optimum pressure. High column pressures cause an increase in the temperature of the 

reactive section. Although high temperatures increase the specific reaction rates, they 

drop the chemical equilibrium constants because of the exothermic reaction system. 

That is, the reaction yield decreases in high temperatures of the reactive zone. On the 

other hand, low column pressures give lower temperatures declining specific reaction 

rates. Therefore, both for high and low pressures, the column requires higher vapor 

heat input to obtain desired product impurity. 

 

    Figure 4.2: Effect of Pressure on Temperature Profiles 

4.2. Effect of Relative Volatility  

First, the effect of relative volatility on the base case configuration has been 

investigated. The optimum column design for α390 = 2 case is taken as the base case 

configuration. The optimum results of this configuration for different α390 values are 

given in Table 4.1. Since the separation gets more difficult as the relative volatilities 

get closer, the system needs more vapor boilup. Thus, the energy cost increases as 

the result of the increase in the vapor boilup. Moreover, the column diameter and the 

heat transfer areas of reboiler and condenser increase as the result of the increasing 

vapor boilup. Therefore, the capital cost increases when relative volatilities get 

closer. That is why the total annual cost increases as the relative volatilities get 

closer.  
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Table 4.1: Results of the Base Case 

  

α390 

 

 

2 1.75 1.5 

Design Parameters 

  NS 13 13 13 

NRX 5 5 5 

P(bar) 6 6 6 

F0A (mol/s) 12.60 12.60 12.60 

F0B (mol/s) 12.857 12.857 12.857 

VS (mol/s) 33.45 47.15 85.89 

R (mol/s) 51.60 65.30 104.03 

Dc (m) 0.93 1.05 1.32 

CE ($10
3
/year) 144.1 203.1 370.1 

CC ($) 395.3 463.7 631.3 

TAC ($10
3
/year) 275.9 357.7 580.5 

Figure 4.3 shows the effect of relative volatilities on temperature profiles for the base 

case configuration. As the relative volatilities get closer, the average temperature of 

the column decreases. In addition, temperature profile in reactive section becomes 

linear. 

 

Figure 4.3: Effect of Relative Volatility on Temperature Profile 

Secondly, the effect of relative volatility on the optimum column configurations has 

been investigated. Optimum designs of all relative volatility cases are summarized in 

Table 4.2. As the relative volatilities get closer, separation gets more difficult. Thus, 

RD column requires more separation trays and vapor boilup. The decrease in the 

0 2 4 6 8 10 12 14 16 18
370

380

390

400

410

420

430

T
e
m

p
  

(K
)

Tray

 

 

r.v.=2

r.v.=1.75

r.v.=1.5



 
34 

average reactive zone temperature results in a decrease of specific reaction rates. 

Therefore, trays that are more reactive are required at the relative volatility of 1.5 as 

shown in Figure 4.4. As the result, TAC of the column increases as the temperature 

dependence of the relative volatilities increases. 

Table 4.2: Results of the Optimum Designs 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 shows the effect of relative volatilities on temperature profiles for the 

optimum column configurations. The sharpness of the temperature profile in the 

stripping section decreases, as the relative volatilities get closer. Thus, the 

temperature range between bottoms and reflux drum decreases. 

 

Figure 4.4: Temperatures Profiles for Optimum Designs for Three Different Cases 
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     α390 

 

 

2 1.75 1.5 

Design Parameters 

   NS 13 18 20 

NRX 5 5 9 

P(bar) 6 7 6 

F0A (mol/s) 12.60 12.60 12.60 

F0B (mol/s) 12.857 12.857 12.857 

VS (mol/s) 33.45 41.12 51.77 

R (mol/s) 51.60 59.26 69.91 

Dc (m) 0.93 0.97 1.09 

CE  ($10
3
/year) 144.1 177.1 223.2 

CC  ($10
3
) 395.3 459.7 559.1 

TAC ($10
3
/year) 275.9 330.4 409.7 
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Figure 4.5 shows the composition profiles of the optimum designs for three different 

relative volatility cases. The highest composition of reactant A is at the reflux drum 

because reactant A is the lightest component in RD column. The other reactant B has 

its highest composition at the top of reactive zone which is also its feed tray. While 

the composition of product C increases down through the stripping section, the 

composition of reactant A decreases. 

 

Figure 4.5 : Compositions of Profiles of Optimum Designs for Three different Cases 

4.3. Controllability of Base Case Design for Different Relative Volatility Cases 

4.3.1. Control Structure CS1 

Figure 4.6 shows the steady-state gains and SVD results for base case designs. The 

graphs on the first row show the sensitivity analysis, while the ones on the bottom 

row give the SVD results. The steady state gains between tray temperatures and the 

fresh feed stream F0A are negative. Having the biggest gains KF0A in the stripping 

section indicates that the trays in this section have higher sensitivity to the changes in 

input F0A. On the other hand, the most sensitive trays are at the top of the reactive 

zone for the second input VS. Moreover, the steady state gains between the tray 

temperatures and vapor boilup are positive. The SVD analysis results support the 

sensitivity analysis results for all relative volatility cases. The SVD analysis for the 

base case suggests that the temperature of tray 4 in the stripping section should be 
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controlled by manipulating the fresh feed flow rate F0A, while the temperature of tray 

18 in the reactive section should be controlled by manipulating the vapor boilup VS 

for control structure CS1. As the relative volatilities decrease, the sensitivity of trays 

for F0A gets smaller and the place of the most sensitive tray shifts towards reactive 

section. On the other hand, no gradually change is observed in the magnitude of 

steady-state gains for VS. It is seen that tray 17 is the most sensitive tray for VS at the 

relative volatilities 1.75 and 1.5.  

 

Figure 4.6: Steady-State Gains and SVD Analysis Results 

Controller parameters calculated for CS1 are given in Table 4.3 for all relative 

volatility cases. 

Table 4.3 : Tuning Parameters of CS1 

Design α390 Control Loop KU PU (min) KC τ I (min) F 

13/5 2.00 F0A - T4 53.05 7.62 16.58 16.764 1 

  VS -T18 13.49 36.42 4.22 80.124 1 

 1.75 F0A - T5 63.66 8.4 19.89 18.48 1 

  VS -T17 39.79 8.22 12.43 18.084 1 

 1.50 F0A – T6 121.26 6.96 37.89 15.312 1 

  VS -T17 475.09 2.16 49.49 14.256 3 
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Figure 4.7 shows the closed-loop responses of control structures CS1 and CS1-FR to 

a positive 20% step change in the production rate handle, F0B. The systems shut 

down in the face of this disturbance for all the relative volatility cases. 

 

 

Figure 4.7: Results of a) CS1 b) CS1-FR for +20% F0B Step Change 
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negative for the increase of F0A, and positive for the decrease of F0A. Similarly, the 

increase of F0B increases the temperature of tray 18, while the decrease of F0B 

decreases the temperature of tray 18 as expected. However, this tray temperature 

exhibits an open-loop input multiplicity with respect to VS. This is illustrated in 

Figure 4.8 that plots input output relations exhibiting process gain reversal. A cross-

over slope for a large increase in VS occurs, which is opposite the base-case slope. 

This multiplicity shows that the system is highly nonlinear, and this can cause wrong 

control action or steady state transition [41-45]. Thus, it is claimed that the fail of the 

control structure is because of this wrong action problem. Because of step change, 

the system is pushed towards the input multiplicity region, resulting with wrong 

control action as suggested by the input output relations. 

 

Figure 4.8 : Steady State Variation in Controlled Reactive Tray Temperature T18 
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and KVS are positive and their characters are very similar. It is seen that the top tray 

of the reactive section is the most sensitive tray for both manipulated variables F0B 

and VS. The SVD analysis results also support the sensitivity analysis results. The 

control loops and related PI controller parameters are given in Table 4.4. 

 

Figure 4.9: Steady-State Gains and SVD Analysis 

Table 4.4 : Tuning Parameters of CS2 

Design α390 Control Loop KU PU (min) KC τ I (min) F 

13/5 2 F0B - T18 125.07 3.42 39.08 7.524 1 

    VS -T17 23.58 15.48 7.37 34.056 1 

  1.75 F0B - T18 293.37 2.7 91.68 5.94 1 

    VS -T17 39.79 8.22 12.43 18.084 1 

  1.5 F0B - T18 573.53 2.7 179.23 5.94 1 

    VS -T17 475.09 2.16 49.48 12.96 3 

 

Figure 4.10 shows the closed loop responses of the control structure for ±%20 step 

changes in the production rate handle, F0A. Although both controlled temperatures 

turn back to their set points by manipulating F0A and VS, the purity of the bottoms 

product settles down to a new steady state. 
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Figure 4.10: Results of Control Structure CS2: a) +20%F0A, b) -20%F0A 
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Figure 4.11 compares the difference between the two fresh feed flow rates for ±20% 

throughput changes for the base case. It is seen that these disturbances effect 

stoichiometric feed balance. As the result of this balance problem, there is not 

enough reactant A to prevent the heavy reactant B from the reaction section into the 

stripping section. Therefore, the impurity of B in the bottoms stream increases and 

the product purity (and conversion) converges to a different value than the initial 

steady state value.  

 

Figure 4.11: The Transient Stoichiometric Imbalance (F0B – F0A) for the Base Case 

4.3.3. Control Structure CS3 

Figure 4.12 shows the steady-state gains and SVD analysis. The graphs at the top 

row show the sensitivity analysis, and the bottom ones give SVD analysis. According 

to the results, the most sensitive trays are in the stripping section for the fresh feed 

flow rate of F0A, while the most sensitive trays are at the top of the reactive zone for 

the fresh feed flow rate of F0B. The SVD analysis supports the sensitivity analysis 

results. As the relative volatilities decrease, the sensitivity of trays paired with F0A 

gets smaller. However, the relative volatility does not affect the location of the most 

sensitive trays. The control loops and PI controller parameters are given in Table 4.5. 
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Figure 4.12 : Steady-State Gains and SVD Analysis 

Table 4.5 : Tuning Parameters of CS3 

 

 

 

 

 

 

 

Figure 4.13 and Figure 4.14 give the closed loop responses of control structure CS1 

for the base case designs. In Figure 4.13A, the disturbance is a positive 20% step 

change in the production rate handle, VS. Figure 4.13B gives the results for a 

negative 20% step change in VS. Figure 4.14A shows the closed loop response when 

the composition of the fresh feed F0A is changed from pure A (z0A(A) = 1) to a mixture 

of A and B (z0A(A) = 0.95 and z0A(B) = 0.05). Figure 4.14B gives the closed loop 

response when the composition of the fresh feed F0A is changed from pure A (z0A(A) = 

1) to a mixture of A and C (z0A(A) = 0.95 and z0A(C) = 0.05).  
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    F0B - T18 125.07 3.42 13.03 22.572 3 

  1.75 F0A - T5 63.66 8.4 9.95 36.96 2 

    F0B - T17 89.16 5.04 9.29 33.264 3 

  1.5 F0A - T6 121.26 6.96 37.89 15.312 1 

    F0B - T17 81.1 10.02 8.45 66.132 3 
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Figure 4.13: Result of Control Structure CS3: a) +20%VS  b) -20%VS  

Although the manipulated fresh feed streams have opposite actions, the systems are 

dynamically stable, and the control structure CS3 successfully provides column 

regulation for a wide range of disturbances. The column settles down to the final 

steady state within 3 h.  
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Since this control structure works well, in spite of the opposite actions of temperature 

controller loops, it deserves a closer look. An increase in the vapor boilup results in 

an initial increase of the temperature of both control trays (trays 4 and tray 18). 

Temperature controller of tray 4 has a direct action, so it increases the F0A feed flow 

rate. However, temperature controller of tray 18 has a reverse action, and it decreases 

the F0B flow feed flow rate. This change corresponds to an increase in the amount of 

reactant A. This excess reactant A starts to move up through the column. Since there 

is no distillate stream in this configuration, all light reactant A moving up turns back 

to the column by the reflux, which decreases the temperatures at the top of the 

reactive section. Therefore, temperature controller of tray 18 starts to increase the F0 

flow rate. Finally, the fresh feed streams settle down to new steady state values 

providing a precise balance of stoichiometry. 
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Figure 4.14: Result of Control Structure CS3: a) z0A(B) = 0.05, and b) z0A(C) = 0.05 

4.4. Controllability of Optimum Designs for Different Relative Volatility Cases 

4.4.1. Control Structure CS1 

Figure 4.15 shows the results of the steady-state gains and SVD analysis for the 

optimum designs of different relative volatility cases. According to the results, the 

most sensitive trays to the changes in fresh feed flow rate F0A are in the stripping 

section, while the most sensitive trays are at the top of the reactive zone for the flow 

rate of VS. The SVD analysis results for both manipulated variables support the 

sensitivity analysis results. It is seen that the sensitivity of trays for F0A gets smaller 

as the relative volatilities decrease. On the other hand, the magnitudes of steady state 

gains for VS increase when relative volatility changes from 2 to 1.75, while they 

decrease with the decrease of relative volatility to 1.5. The control loops and PI 

controller parameters are given in Table 4.6 for each design. 
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Figure 4.15 : Steady-State Gains and SVD Analysis 

Table 4.6 : Tuning Parameters of CS1 

Design    α390 Control Loop KU PU (min) KC τ I (min) F 

13/5 2 F0A - T4 53.05 7.62 16.58 16.764 1 

    VS -T18 13.49 36.42 4.22 80.124 1 

 18/5 1.75 F0A – T6 63.66 8.4 19.89 18.48 1 

    VS -T18 39.79 8.22 12.43 18.084 1 

20/9  1.5 F0A – T9 121.26 6.96 37.89 15.312 1 

    VS –T29 475.09 2.16 49.49 14.256 3 

Figure 4.16 shows the closed loop responses of the control structure to +%20 step 

change in the production rate handle, F0B. The column shuts down in the face of this 

disturbance for all three cases. 
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Figure 4.16: Result of Control Structure CS1: +20%F0B Step Change 

4.4.2. Control Structure CS2 

Figure 4.17 gives the results of the sensitivity and SVD analysis for CS2 where F0B 

and VS are the manipulated variables. According to the results, the top of the reactive 

section is the most sensitive region for both manipulated variables. These results are 

also supported by the SVD analysis results. The results show that the sensitivity of 

trays for F0B and VS increases when relative volatility changes from 2 to 1.75, and 

decreases when it is decreased to 1.5. The control loops and PI controller parameters 

are given in Table 4.7 for each case. 
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Figure 4.17 : Steady-State Gains and SVD Analysis 

Table 4.7. Tuning Parameters of CS2 

Design α390 Control Loop KU PU (min) KC τ I (min) f 

13/5 2 VS – T17 23.58 15.48 7.37 34.06 1 

    F0B - T18 125.07 3.42 39.09 7.54 1 

18/5  1.75 VS – T22 7.76 4.8 2.48 10.56 1 

    F0B – T23 72.09 5.1 22.53 11.22 1 

20/9  1.5 VS – T28 13.75 85.5 4.3 188.1 1 

   F0B – T29 979.2 3.06 106.02 20.19 3 

Figure 4.18 shows the closed loop responses of the control structure to ±%20 step 

change in the production rate handle, F0A. The systems are dynamically stable and 

both controlled temperatures turn back to their set points. However, the purity of the 

bottoms product settles down to a new steady state instead of turning back to its 

desired specification. 

0 10 20 30
-20

0

20

40

60
K

P
, F

B

 

 

0 10 20 30
0

10

20

30

40

50

K
P
, V

S

 

 
13/5

18/5

20/9

0 10 20 30
-0.2

0

0.2

0.4

0.6

U
1

Tray

 

 

0 10 20 30
-0.4

-0.2

0

0.2

0.4

U
2

Tray

 

 



 
49 

 

 

Figure 4.18: Result of Control Structure CS2: a) +20%F0A  b) -20%F0A 
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4.4.3. Control Structure CS3 

Figure 4.19 shows the results of the steady-state gains and SVD analysis for CS3. 

The manipulated variables for this control structure are F0A and F0B. The results 

indicate that the most sensitive trays for the fresh feed flow rates F0A and F0B are in 

the stripping section and at the top of the reactive zone, respectively. As the relative 

volatilities decrease, the sensitivity of trays for F0A gets smaller. For each relative 

volatility case, the controller loops and PI controller parameters are given in Table 

4.8.   

 

 

Figure 4.19: Steady-State Gains and SVD Analysis 

Table 4.8 : Tuning Parameters 

Design α390 Control Loop KU PU (min) KC τ I (min) F 

13/5 2 F0A - T4 53.05 7.62 16.58 16.764 1 

    F0B - T18 125.07 3.42 13.03 22.572 3 

18/5  1.75 F0A – T6 72.92 35.76 22.79 19.16 1 

    F0B – T23 72.09 5.1 22.53 11.22 1 

20/9  1.5 F0A – T9 113.48 9.12 35.46 20.06 1 

   F0B – T29 979.2 3.06 106.02 20.19 3 
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Figure 4.20 and Figure 4.21 give the closed loop responses of control structure CS3 

for the optimum designs. In Figure 4.20A, the disturbance is a positive 20% step 

change in the production rate handle VS. Figure 4.20B gives results for a negative 

20% step change in VS. On the other hand, Figure 4.21A shows the closed loop 

response when the composition z0A of the fresh feed F0A is changed from pure A 

(z0A(A) = 1) to a mixture of A and B (z0A(A) = 0.95 and z0A(B) = 0.05). Figure 4.21B 

gives the closed loop response of the case where the composition z0A of the fresh 

feed F0A is changed from pure A (z0A(A) = 1) to a mixture of A and C (z0A(A) = 0.95 

and z0A(C) = 0.05). It is observed that the systems are dynamically stable for a wide 

range of disturbances. The column settles down to its steady state operating 

conditions within 3 h.  
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Figure 4.20 : Result of Control Structure CS3: a) +20%VS b) -20%VS 
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Figure 4.21 : Result of Control Structure CS3: a) z0A(B) = 0.05, and b) z0A(C) = 0.05 
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5. CONCLUSION 

In this study, the effects of relative volatility of components on steady state design 

and temperature based inferential control of an ideal ternary system with two 

reactants and one product have been examined. 

Firstly, a steady state column design has been built for the chemicals, which are 

assumed having relative volatilities between the adjacent components constant at 2. 

The RD column has been optimized using three optimization variables such as the 

number of stripping section, number of reactive section and operating pressure. The 

objective of the optimization problem was to minimize the Total Annual Cost (TAC).  

Then, chemicals having temperature-dependent volatilities are fed to the existing 

column. It has been found that the system needs more vapor boilup as the relative 

volatilities get closer, which results in an increase of the energy cost. The increase of 

vapor boilup also affects column diameter and heat transfer areas of reboiler and 

condenser. Therefore, the increase in the capital and energy costs results in an 

increase of the total annual cost as the relative volatilities get closer.  

Next, optimum steady state designs have been obtained for the chemicals having 

temperature-dependent relative volatilities. In this case, besides the increasing values 

of vapor boilups, column diameter and the heat transfer areas of reboiler and 

condenser, RD column requires more separation trays as relative volatilities get 

closer.   

In the control part of the study, three different temperature based inferential control 

structures have been investigated. Sensitivity analysis and Singular Value 

Decomposition (SVD) method have been used to choose the most sensitive tray in 

the columns for the change of manipulated variable in designed control structures. 

Temperature loops have been adjusted by the Relay Feedback Test (ATV) method. 

Then, the performance of control structures has been examined in the face of 

different disturbances. The results show that control structure CS3, where the fresh 

feed streams are manipulated to control the tray temperatures, has been successful in 
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handling the disturbances for RD columns including ternary systems. On the other 

hand, no significant effect of the relative volatilities has been observed on the 

temperature based inferential control of the ternary RD columns. 
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