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IDENTIFICATION OF ABRB AND SPO0A BINDING SITES ON                                 
B. SUBTILIS YVFI  PROMOTER 

SUMMARY 

The model organism for the gram-positive bacterium, B.subtilis, can produce more 
than 20 antibiotics which are predominantly peptides. Bacilysin is a dipeptide 
containing L-alanine at its N-terminal and the unusual amino acid L-anticapsine at its 
C terminal. It is produced by certain strains of B.subtilis against some bacteria and 
fungi and interferes with the synthesis of microbial cell walls. The unusual amino 
acid L-anticapsin moiety of bacilysin is generated through the action of a prephenate 
dehydratase and an aminotransferase, products of ywfBG genes, respectively. The 
biosynthesis of the dipeptide bacilysin depends on the ywfBCDEF gene cluster which 
was renamed as bacABCDE. Furthermore, disruption of these genes by plasmid 
integration was shown to cause loss of the ability to produce bacilysin, and also a 
lack of bacilysin synthetase activity in the crude extract. While bacABC genes carry 
the anticapsin synthesis function, the bacD and bacE genes encode for the function 
of amino acid ligation and self-protection to bacilysin, respectively.  
Distruption of phrC, comA and oppA by Tn10 transposon mutagenesis and 
introduction of comQ::cat mutation resulted in the elimination of bacilysin 
biosynthesis, demonstrating that bacilysin biosynthesis is under the feedback 
regulation by the components of global quorum sensing control system. Also, it was 
shown that bacilysin production is regulated on different levels negatively by GTP 
via the transcriptional regulator CodY and AbrB.  
 
During the transition-state from vegetative to stationary phase, a wide variety of two 
component signal transduction systems and global regulators of B. subtilis are 
activated in response to the environmental signals. These regulators have been 
termed transition-state regulators and AbrB, Spo0A, ScoC and Cody are some 
important members of this regulatory protein class. It is undoubtedly known that 
transition state regulator proteins, AbrB and Spo0A have crucial roles in the 
biosynthesis of antibiotics and toxins in Bacillus species. When it comes to the 
bacilysin, it has been proved that bacilysin is also under the regulation of abrB and 
spo0A genes. Insertional mutation in abrB gene resulted in an increase in bacilysin 
production, indicating that bacilysin synthesis is under the negative control of abrB 
gene and moreover it was demonstrated that spo0A blockage resulted in a crucial 
decrease in bacilysin synthesis. 
 
Very recently, through Tn10 mutagenesis studies that were performed to reveal 
related genes with bacilysin biosynthesis in Bacillus subtilis PY79 strain, yvfI gene 
which is similar to transcriptional regulator (GntR family) was found responsible in 
bacilysin production. On the other hand, since yvfI gene is essential for the bacilysin 
biosynthesis, any gene involved in the regulation of yvfI were considered as 
candidates in the regulation of bacilysin production indirectly. Subject to the 
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foregoing provisions, in this study, yvfI gene promoter by DBTBS database was 
examined in order to find putative cis-elements in the promoter region of the B. 

subtilis yvfI gene for candidate regulatory proteins and found putative binding sites 
for AbrB and Spo0A regulatory proteins. AbrB and Spo0A proteins were tested for 
their abilities to bind the yvfI promoter DNA in electromobility shift experiment. 
Furthermore, DNase I footprinting of the yvfI promoter was applied in order to 
discover the exact regions occupied by AbrB and Spo0A trans-acting regulatory 
factors. According to the electropherograms obtained from the capillary-based 
instrument and then aligned using GeneMapper software, binding sites for each 
regulatory protein on yvfI promoter were determined. Data obtained in this study 
suggested that  AbrB and Spo0A regulatory proteins have roles in the bacilysin 
biosynthesis by regulating yvfI gene expression on transcriptional level. 

 
 
 

 

Key words: B. subtilis, bacilysin, yvfI gene, AbrB regulator protein, Spo0A regulator 
protein, Electromobility shift assay, DNase I footprinting. 
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ABRB VE SPO0A TRANSKRĐPSĐYON FAKTÖRLERĐNĐN B. SUBTILIS 

YVFI  PROMOTORUNDAKĐ BAĞLANMA BÖLGELERĐNĐN BULUNMASI 

ÖZET 
 

Gram-pozitif organizmalar için model organizma olarak kabul edilen B.subtilis, 
ağırlıklı olarak peptid olan 20’den fazla antibiyotik üretebilmektedir. Basilisin, N 
ucunda L-alanine ve C ucunda doğal olmayan bir aminoasit olan L-anticapsine 
bulunduran  iki aminoasitten oluşan bir dipeptidtir. B. Subtilis’un bazı şuşları 
tarafından üretilen basilisin, bazı bakteri ve mayalara karşı kullanılmaktadır ve 
mikrobiyal hücre duvarı sentezini engellemektedir. Basilisinin doğal olmayan L-
antikapsin amino asidinin, sırasıyla ywfBG genlerinin ürünleri olan prefenat 
dehidrataz ve aminotransferaz enzimleri aracılığıyla üretildiği düşünülmektedir.  
Basilisinin biyosentezi, daha sonra bacABCDE olarak adlandırılan ywfBCDEF gen 
kümesi tarafından gerçekleşmektedir. Söz konusu gen kümesinin, plazmid 
entegrasyonu ile bozulması sonucu basilisin üretimi durmuş, ayrıca hücre özütünde 
basilisin sentetaz aktivitesi kaybolmuştur. Daha sonra yapılan çalışmalarda, bacABC 

genlerinin antikapsin üretiminden sorumlu olduğu, bacD ve bacE genlerinin ise 
sırasıyla amino asid ligasyonu ve basilisine karşı korunma fonksiyonlarını 
gerçekleştirdiği kanıtlanmıştır.  
 
phrC, comA and oppA genlerinin Tn10 mutagenez yolu ile bozulması veya 
comQ::cat mutasyonunun oluşturulması, basilisin biyosentezinin durmasıyla 
sonuçlanmıştır. Bu çalışmalar basilisin biyosentezinin global quorum sensing kontrol 
sistemi tarafından regule edildiğini göstermektedir. Ayrıca, basilisin üretiminin AbrB 
ve GTP ile negatif olarak düzenlediği gösterilmiştir. 
 
B. subtilis, vegetatif formdan durgun faza geçerken, çevresel sinyallere tepki olarak 
iki bileşenli sinyal iletim sitemlerinin birçoğunu ve çeşitli global düzenleyicilerini 
aktif hale getirir. Bu düzenleyiciler, geçiş (dönüşüm)- düzenleyicileri olarak 
isimlendirilir. AbrB, Spo0A, ScoC ve Cody proteinleri bu düzenleyici protein 
sınıfının en önemli üyelerinden birkaçıdır. AbrB ve Spo0A geçiş-düzenleyici 
proteinlerinin Basillus türlerinde antibiyotik ve toksin biyosentezinde önemli 
görevleri olduğu kesin olarak bilinmektedir.  Sözkonusu basilisine geldiğimizde, 
basilisinin de abrB ve spo0A genleri tarafından regule edildiği gösterilmiştir. abrB 

geninde oluşturulan mutasyonlar sonucu basilisin üretiminde meydana gelen artış, 
basilisin sentezinin abrB geninin negative kontrolü altında olduğunu göstermiştir. 
Aynı çalışmada, spo0A geni bloke edildiğinde basilisin üreteminde büyük bir düşüş 
olduğu gösterilmiştir.  
 
Bacillus subtilis PY79 şuşunda basilisin üretimiyle ilgili genleri açığa çıkarmak için 
son zamanlarda yapılan Tn10 mutagenesis çalışmaları, transkripsiyonel 
düzenleyiciye benzeyen yvfI geninin (GntR ailesi)  basilisin biyosenteziyle ilgisi 
olduğunu kanıtlamıştır. Bununla birlikte, yvfI geninin basilisin üretiminden sorumlu 
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olması nedeniyle, yvfI geninin düzenlenmesinde görev alan herhangi bir gen dolaylı 
olarak basilin üretiminden de sorumludur. Yukardaki çıkarımdan hareketle, DBTBS 
veritabanı (Sierro et al, 2008) kullanılarak B. subtilis yvfI geninin promoter dizisi, 
aday düzenleyici proteinlerin bağlanabileceği cis-elementlerinin bulunması için 
incelendi, ve AbrB ile Spo0A düzenleyici proteinleri için olası bağlanma bölgeleri 
bulundu. Elektromobility shift deneyi ile AbrB ve Spo0A proteinlerinin yvfI 

promoter DNA dizisine bağlandıkları bulunduktan sonra, söz konusu düzenleyici 
proteinlerin (trans-acting protenlerin) yvfI promoter dizisinde bağlandıkları bölgeleri 
açığa çıkarmak için DNase I footprinting deneyi gerçekleştirildi. Kapiler tabanlı 
araçtan elde edilen ve sonrasında GeneMapper programı kullanılarak düzenlenen 
electrophoregramlar incelendi ve her bir düzenleyici protein için yvfI promoter dizisi 
üzerinde bir bağlanma bölgesi bulundu. Elde edilen sonuçlar, AbrB ve Spo0A 
düzenleyici proteinlerinin, basilisin üretimini yvfI geninin ekspresyonunu 
transkripsiyon düzeyinde değiştirerek düzenlediklerini açığa çıkarmıştır. 

 
 
 

Anahtar Sözcükler : B. subtilis, basilisin, yvfI geni, AbrB düzenleyici protein, 
Spo0A düzenleyici protein, Elektromobility shift, DNase I footprinting. 
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1.  INTRODUCTION 

1.1. Bacillus subtilis 

Bacillus subtilis is an endospore-forming rhizobacterium that has always been a 

popular model system for genetic and biochemical investigations due to the 

identification and mapping of most of the genetic loci in B.subtilis (Stein, 2005; 

Harwood et al., 1990).   

Ferdinand Cohn identified and named the bacterium Bacillus subtilis in 1872. The 

organism was placed in the family Bacillaceae. As a member of the genus Bacillus, 

B. subtilis is characterized as rod shaped, gram positive, aeobic or facultative bacteria 

and has the ability of forming a protective endospore, a highly refractile resting 

structure formed within the bacterial cell and helps the bacterium survive in extreme 

environmental conditions (Sonenshein et al.,1993 and Harwood et al., 1990). In 

1961, by the mean of developed fluorescent antibodies against the different proteins 

produced in vegetative and spore forming  B. subtilis, it was observed that this 

species was mostly in its vegetative form (Norris  and Wolf).  

Due to the increase in sequence information in DNA technology, it was revealed that 

B. subtilis 168 strain has no genes encoding the virulance factor, which is also 

compatible with the knowledge that bacterium is not pathogen (Kunst et al., 1997) 

Contrary to the knowledge that B. subtilis is an obligate aerobe, recent studies have 

revealed putative nitrate reductase genes, which explains the source of nitrate 

molecules used as an electron acceptor molecule rather than oxygen when bacterium 

faces to  anaerobic conditions (Kunst et al., 1997). In an attempt to identify the 

fermentation pathway in B. subtilis under anaerobic conditions, fermentation end 

products were analyzed by using in vivo nuclear magnetic resonance scans of whole 

cultures and demonstrated anaerobic growth of B. subtilis in the presence of nitrate 

(Nakano et al., 1997).  
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1.2. Bacillus subtilis Genome 

Bacillus subtilis is the most studied gram-positive bacteria in genome level. The 

complete sequencing of the Bacillus subtilis 168 genome has been published, which 

was done by a European and a Japanese sequencing consortium and a Korean 

laboratory. Its genome  was proposed to consist of 4,214,810 corresponding to  4100 

protein coding genes. G+C content of the B.subtilis genome is about %43 and more 

than a quarter of the genome is predicted to encode several gene families. Moreover, 

a remarkable proportion of its genome was found to be responsible for the utilization 

of different carbon sources, including many plant-derived molecules and synthesis of 

secondary metabolites such as antibiotics which are especially related with 

Streptomyces species. More than ten prophages or prophage remnants in genome 

demonstrated the crucial role of bacteriophage infection on the evolutinary of 

horizontal gene transfer (Kunst et al., 1997, Ghim et al., 1998). 271 of 4200 genes 

are considered as essential genes which are required for sustaining a living cell and 

roughly half of them are directly involved in DNA, RNA and protein metabolism 

(Kobayashia et. al., 2003). 

Revealing of B. subtilis 168 strain sequence showed that about % 4 of its genome, 

corresponding to nearly 350 kb, is devoted to produce secondary metabolites and 

antimicrobial compounds which serve as effective inhibitors like antibiotics against 

the fungi, bacteria and plants. They are proposed to help the bacterium to compete 

for the nutrients in extreme environmental conditions (Stein, 2005; Kunst et al., 

1997). 

1.3. B. subtilis Antibiotics 

Antibiotics produced by the bacteria of the genus Bacillus can be divided in two 

groups in general; first group includes small and cyclic lipopeptides whose structures 

involves uncommon amino acids such as ornithine or D-amino acids and sometimes 

beta amino acids (Lebbadi et al. 1994; Munimbazi and Bullerman 1998). Second 

group contains hydrophilic antibiotics such as the dipeptide bacilysin and 

phosphonooligopeptide rhizocticin (Walker and Abraham 1970; Kugler et al. 1990). 

Through the genus Bacillus, B. subtilis is considered as the major source for 

antibiotic production and produces more than twenty antibiotics with unusual amino 



 
3

acids (Asaka and Shoda 1996). Post-translational modification, proteolytic  

processing in ribosomal way and non-ribosomal synthesis by the large megaenzymes 

called non-ribosomal peptide synthetases (NRPSs) stand for the main reasons of 

unusual aminoacids in B.subtilis antibiotics (Moszer,1998 and Stein et al., 2005). 

Recently, B. subtilis, among gram-positive members of the aerobic, spore-forming 

genus Bacillus is used as a biocontrol agent thanks to its great abundance of 

antibiotics showing the broad spectrum activity (Stein, 2005; Moszer, 1998; Expert 

and Digat, 1995). Most of the B. subtilis antibiotics are peptides and produced by 

ribosomal or non-ribosomal way. Spectrum action, resistance to peptidase and 

protease hydrolysis are the parameters which stipulate their effectiveness (Souto et 

al., 2004; Stein, 2005). 

In general, B. subtilis antibiotics are resistant to high temperature, a wide range of pH 

and many hydrolytic enzymes. Recently, it has been proved that most of the in vivo 

B. subtilis antibiotics are stable and do not show any significant difference in activity 

when they were treated with high temperature (121oC for 20 min), a broad range of 

pH (from 4 to 10) and hydrolytic enzymes such as trypsin, proteinase K, and lipase A 

(Souto et al., 2004).  

Some antibiotics of B. subtilis display completely dinstinct roles in addition to their 

anti-microbial mission, especially have roles on the morphology and physiology of 

B. subtilis. For instance, non-ribosomal produced antibiotics are not only involved in 

antimicrobial action, but also have roles on colony formation and biofilm. 

Furthermore, lantibiotics act as effective factors in programmed cell death and 

quarum sensing mechanism in B. subtilis (Stein, 2005). 

1.3.1. Ribosomal Synthesis: Lantibiotics 

Lantibiotics are a group of peptide bacteriocins including unusual 3-

methyllanthionine and thioether amino acids lanthionine due to post-translational 

modifications; dehydration of serine and threonine residues and then  addition of 

cysteine thiol groups. The name lantibiotics stands for lanthionine-containing 

antibiotic peptides (Chatterjee et al., 2005). They are synthesized as procursors 

molecules by ribosomal pathway and after the activation by proteolysis, are exported 

out of the cell (Figure 1.1). The genes responsible in biosynthesis and pathway of 

lantibiotics are found in gene clusters (Guder et al, 2000). 
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According to the structural properties, lantibiotics are seperated in two groups: Type 

A lantibiotics, consisting of 21–38 amino acid residues, exhibit a more linear 

secondary structure and kill gram-positive target cells by forming voltage-dependent 

pores into the cytoplasmic membrane. On the contrary, type B lantibiotics have a 

more globular structure and have comparatively small charges (Breukink et. al, 1999; 

Mannanov et al., 2001). 

 

Fig. 1.1: A few Bacillus subtilis lantibiotics, lantibiotic-like peptides and  specifying  
                gene clusters (Guder et al, 2000). 

1.3.2. Non-ribosomal Biosynthesized Peptides 

Some of the peptide antibiotics of B. subtilis are synthesized through the large 

multienzymes called the non-ribosomal peptide synthetases (NRPSs). Selection and 

condensation af the amino acids in peptide are performed by the three catalytic 

domains of the NRPSs according to the multiple-carrier thiotemplate mechanism. 

Each elongation cycle in non-ribosomal peptide biosynthesis needs the cooperation 

of three core domains. Three catalytic domains of the NRPSs; adenylation domain,  

peptidyl carrier domain and condensation domain selects the amino acid, tranfers the 

adenylated amino acid substrate to its prosthetic group and finally catalyses the 

formation of a new peptide bond respectively. The unit of these three core domains 



 
5

which catalyse all the necessary reactions in peptide biosynthesis form a structure 

called module. The arrangement of the modules constitutes the NRPSs (Walker et al., 

1970; Lambalot et al., 1996; Stein et al., 2005).  

1.4. Roles of spo0A and abrB in Antibiotic Biosynthesis 

Under unfavorable conditions like nutrient deprivation and high cell density, B. 

subtilis undergoes a cellular differentiation process called sporulation, leading to the 

formation of a dormant spore (Phillips and  Strauch, 2002). During this transition 

state from vegetative to sporulation phase, a wide variety of two component signal 

transduction systems of B. subtilis are activated in response to the environmental 

signals. Also, small peptide pheromones are excreted and imported by B. subtilis in 

order to sense the environmental situation (Fabret et al., 1999: Stephenson and Hoch 

2002). According to the environmental conditions and signals, various antibiotics 

and antimicrobial factors are excreted out of the cell in order to outcompete other 

microbial species. Production of and resistance to antibiotics are regulated through 

spo0-abrB control system (Figure 1.2). Signals, indicating the hard conditions such 

as high cell density or nutritional stress, pump into cell and promote the Spo0 

phosphorelay, eventually causing the accumulation of Spo0A phosphate (Spo0A-P), 

which activates sporulation gene transcription. Phosphorylated Spo0A (Spo0A-P) 

has a higher DNA binding affinity to the abrB promoter and thus represses the 

transcription of the transition state regulatory gene, abrB. The concentration of the 

AbrB drops below its critical threshold value, and thus AbrB-dependant repressive 

effects over the production of different antibiotics and other stationary phase related 

products are lifted (Burbulys et al, 1991; Ireton et al, 1993; Strauch et al, 1990). 
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Fig. 1.2: The Phosphorelay. The main interactions that occur within and associated   
       with the phosphorelay are illustrated. Arrows indicate activation, and  

                 barred lines indicate repression. Phosphorylated forms of proteins are 
                 indicated by ~P (Phillips and  Strauch, 2002). 

AbrB protein regulates more than 40 genes directly by binding their promoters or 

regulatory regions (Strauch 1993, Strauch 1995a). Additionally, many regulator 

proteins are also under the control of AbrB such as SinR and Abh regulatory 

proteins, since it is also a regulator molecule of other regulator proteins (Fawcett et 

al, 2000; Strauch et al, 2007).  The genes which are controlled directly or indirectly 

by AbrB take part in a wide variety of metabolic processes such as antibiotic 

synthesis, nitrogen utilization, amino acid metabolism, development of competence 

and sporulation (Hahn et al, 1995; Robertson et al, 1989).  



 
7

It is known that AbrB protein regulate several genes which are expressed in the 

transition state from exponential growth to stationary phase by binding directly on 

their promoter regions  (Robertson et al, 1989; Strauch et al, 1989). Dimerization and 

multimerization of the AbrB protein are crucial steps for its binding to target DNA. 

As a result of dimerization of two identical monomeric subunits, a saddle-like cleft is 

formed into which target DNA fits and AbrB protein contact one face of the DNA 

helix (Xu and Strauch, 1996b; Strauch, 1995a; Vaughn et al, 2000).  

AbrB changes the gene expression in three ways after binding on regulatory regions 

of DNA. AbrB can be a repressor (negative regulator) for some genes, and these 

genes are expressed constantly in abrB mutants since repression of AbrB over these 

genes is eliminated. Secondly, and most commonly, AbrB can act as inhibitor for 

some genes. In this manner, AbrB protein is a inhibitory factor which act on 

redundant regulatory network to prevent the control of other regulators over the 

genes that must be inactive. Thirdly, and finally, AbrB can be an activator for some 

genes. In fact, up to now, there has not been reported any case of RNA polymerase 

activation by AbrB. It is thought that AbrB protein is a negative regulator of other 

negative regulators; so that eliminate the negative control by binding the DNA region 

which is also available for other negative regulators (Strauch, 1993; Strauch and 

Hoch, 1993; Strauch, 1995b). 

It is undoubtedly known that transition state regulator protein AbrB and sporulation 

initiation gene Spo0A have crucial roles in the biosynthesis of antibiotics and toxins 

in Bacillus species (Figure 1.3). So far, much more is known about the antimicrobial 

encoding genes and operons which are regulated by Abrb and Spo0A. For instance, it 

has been found that AbrB negatively regulates cyclic bacteriocin subtilosin through 

the antilisterial bacteriocin operon (alb) and sbo gene, which encodes the precursor 

of subtilosin (Zheng et al, 1999). Also, tasA operon whose product is an 

antimicrobial protein called TasA is under the control of transition state regulatory 

genes spo0A and abrB positively and negatively, respectively (Stover and Driks, 

1999). In addition to these findings, recently, it was proven that transcription of бW 

regulon in B. subtilis, which activates the genes responsible in the production of 

antimicrobials and detoxification functions is subject to abrB negative control (Qian 

et al, 2002).  Moreover, mutations in spo0A gene makes the B. subtilis unable to 
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produce some certain antibiotics and sensitive to some antibiotics produced by wild-

type B. subtilis (Zuber et al, 1987).  

 

Fig. 1.3: Regulatory pathways of antibiotic biosynthesis in B. subtilis. Positive and     
             negative regulation of gene expression is indicated by arrows and T-bars   
              respectively. For clarity, the repression of AbrB on sbo-alb and tasA was  

                 omitted (Stein, 2005). 

1.5. Bacilysin 

Bacilysin [L-alanyl-(2.3-epoxycyclohexanone-4)-L-alanine] is one of the simplest 

and smallest peptide antibiotics synthesized and excreted by some bacteria of the 

genus Bacillus such as B . amyloliquefaciens, B. licheniformis and B. pumilus and B. 

subtilis 168 strain (Figure 1.4). Bacilysin is formed during the second phase of 

slower growth, and there is little production during the stationary phase (Loeffler et 

al., 1986; Walker et al. 1970; Stein et al. 2005). It is a dipeptide that consist of an L-

alanine residue at the N terminus and a non proteinogenic amino acid, L-anticapsin, 

at the C terminus (Chatterjee et al. 2005).  

Antibiotic activity of bacilysin depends on the L-anticapsin moiety, which is released 

by peptidases after uptaken of bacilysin into the cell by a peptide permease system 

(Kenig et al. 1976; Chmara et al. 1982; Perry and Abraham 1979). L-anticapsin, 

then, blocks the glucosamine synthetase, thereby, bacterial peptidoglycan or fungal 

mannoprotein synthesis leading cell to protoplasting and cell lysis (Kenig et al. 1976; 

Chmara et al. 1982; Chmara 1985; Milewski 1993). 
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Fig. 1.4: Structural formula of bacilsin (Mannanov et al., 2001). 

1.5.1. Genetic Mechanism of Bacilysin Biosynthesis  

The biosynthesis of the dipeptide bacilysin depends on the ywfBCDEF gene cluster 

and renamed bacABCDE (Figure 1.5). It has been  proved that the disruption of these 

genes by plasmid integration causes the loss of the ability to produce bacilysin, and 

also a lack of bacilysin synthetase activity in the crude extract (Inaoka et al., 2003). 

The unusual amino acid anticapsin moiety of bacilysin is probably generated through 

the action of a prephenate dehydratase and an aminotransferase, products of ywfBG 

genes, respectively (Roscoe and Abraham 1966; Hilton et al., 1988). According to 

the similarity features of the bacABC genes, mentioned proteins are most similar to 

following proteins; BacA to prephenate dehydratases, BacB to isomerase/guanylyl 

transferases and BacC to different oxidoreductases. Therefore, the products of 

bacABC genes are good candidates for catalysing the conversion of  prephenate to 

anticapsin (Inaoka et al., 2003; Roscoe and Abraham 1966; Hilton et al. 1988). So as 

to investigate the involved genes in anticapsin production, the candidate bacABC 

genes were transformed into a B. subtilis ∆ (ywfA-bacABCDE) deletion mutant and 

resulted in the accumulation of the anticapsin. Furthermore, individually disruption 

of the each chromosomal genes  bacA, bacB or bacC, in three different mutants 

(bacA::catR-bacBCD, bacA-∆bacB::catR-bacCD and bacAB-∆bacC::catR-bacD), 

blocked anticapsin synthesis in each mutant, strongly suggesting the active roles of 

bacABC genes in anticapsin production (Steinborn, et al. 2005).  
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Fig. 1.5: Organization of the bacilysin gene cluster bacABCDE relative to open      
                 reading frames ywfABCDEFG of Bacillus subtilis 168. Restriction sites   

       used are indicated at the base pair counted from the upstream PstI    
                   site. The DNA comprises the sequence from 3875148–3867678 bp of the   

               SubtiList database R16.1 (Kunst et al. 1997). Proposed terminator (T0)   
       elements are indicated according the SubtiList database. Sigma A   
       promoter (P) elements -35 (TTGACA) and -10 (TAAAATt) were  

                  tentatively detected 56 bp and 33 bp upstream of the ATG codon of the  
                    bacA gene (Steinborn, et al. 2005). 

On the other hand, bacilysin synthesis is proposed not to depend on the multiple 

carrier thiotemplate model requiring non-ribosomal peptide synthetases (Yazgan, et 

al., 2001), the peptide bound between the L-alanine and L-anticapsin must be 

proceeded in a non-ribosomal mode, most likely by an amino acid ligase referred as 

bacilysin synthetase (Sakajoh et al. 1987). In addition to this, since BacD protein was 

most similar to D-alanine - D-alanine ligase, the deduced protein was a good 

candidate to catalyse the proposed peptide bound ligation between the L-alanine and 

L-anticapsin (Inaoka et al., 2003). After complementation of bacD-deficient mutant 

(bacABC-∆bacD::catR) by the plasmid with bacD gene, bacilysin-deficient mutant 

was converted to bacilysin production indicating that mutation in bacD blocked the 

conversion of anticapsin to bacilysin; therefore, blocked the gene to encode the 

proposed ligase function (Steinborn, et al. 2005). In addition to this report, by in 

silico screening, in 2005, it was found that BacD protein catalyzes the formation of 

dipeptide forming L-alanyl-L-glutamine from L-alanine and L-glutamine in an ATP 

dependent manner. ADP and phosphate were formed in the ligation reaction 

catalyzed by BacD protein (Tabata et al., 2005), whereas aminoacyl-tRNA 

synthetase or the adenylation domain of NRPS forms acyl-AMP as a reaction 

products (Cane et al. 1999). Besides, BacD protein does not include any motif of 
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aminoacyl-tRNA synthetase or the adenylation domain of NRPS (Tabata et al., 

2005). So that, in accordance with the previous research (Sakajoh et al. 1987), it has 

been proved once more again that bacilysin synthesizing reaction is carried out on a 

amino acid ligase, which is now known as BacD protein encoded by bacD gene, 

rather than NRPS-like manner (Tabata et al., 2005; Steinborn, et al. 2005; Yazgan et 

al., 2001).  

By the way, over-production of recombinant anticapsin in ∆(ywfA-bacABCDE)::catR 

mutant strain caused cell protoplasting and later cell lysis. This demonstrated that 

chromosomal bacE gene is responsible in self-protection to bacilysin (Steinborn, et 

al. 2005).  

To sum up, bacABC genes carry the anticapsin production functions, while the bacD 

and bacE genes encode the functions of amino acid ligation and self-protection to 

bacilysin, respectively (Inaoka et al., 2003; Steinborn et al. 2005; Tabata et al., 

2005). 

1.5.2. Genetic Regulation of Bacilysin  

When it comes to the bacilysin, it has been proved that even the bacilysin is under 

the regulation of abrB and spo0A genes. Insertional mutation in abrB gene resulted 

in an increase in bacilysin production, indicating that bacilysin synthesis is under the 

negative control of abrB gene. In the same research, spo0A blocked mutant cells 

could not produce bacilysin (Yazgan et al., 2003). 

Bacilysin production is regulated on different levels negatively by GTP via the 

transcriptional regulator CodY and AbrB (Mascher et. al., 2004 and Yazgan et al., 

2003). Distruption of phrC, comA and oppA by Tn10 transposon mutagenesis and 

resulting bacilysin-negative mutants demonstrated the reationship between the 

Spo0K dependent quorum sensing regulation system and bacilysin biosynthesis in B. 

subtilis (Yazgan et al., 2001). In other words, bacilysin biosynthesis is directly 

related with the ComA and PhrC in a Spo0K-dependent manner and under the 

regulation of quorum sensing mechanism in B. subtilis (Yazgan et al., 2001). 

Moreover, the second pathway of quorum sensing system called as two-component 

signal transduction system was also found to be essential for bacilysin biosythesis 

since the introduction of comQ::cat mutation resulted in the elimination of bacilysin 

biosynthesis (Yazgan et al., 2003).    
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Recent researches have showed that disruption of srfA operon in the bacilysin 

producer caused the bacilysin-negative phenotype. Therefore, it is thought that 

bacilysin and surfactin biosynthesis is under control of same regulation factors 

(Yazgan et al., 2003).   

Positive regulation occurs by guanonsine 5'-diphosphate 3'-diphosphate (ppGpp) and 

a quorum-sensing mechanism through the peptide pheromone PhrC (Inaoka et al., 

2003; Yazgan et al., 2001). 

1.6. Electromobility Shift Assay (EMSA) 

Electromobility shift assay, which is also called as mobility shift electrophoresis or 

gel retardation assay is a common electrophorosis technique which is used in 

molecular biology for the protein-DNA or protein-RNA interactions. This technique 

determine whether a protein or protein mixture binds to its target DNA (or RNA) or 

not. While protein-RNA (or protein-DNA) mixture is run on a agarose or 

polyacrylamide gel for a period, control lane is run only with DNA probe (or RNA 

probe). EMSA protocol can be divided three major steps; labelling and isolation of 

the nucleic acids (DNA or RNA), incubation of protein-DNA binding reaction,  and 

finally running the sample on a native poliacrylamide or agarose gel (Figure 1.6). If 

the protein has the capability of binding to its target, the lane with the protein-DNA 

will move more slowly compared the control lane which includes only the free DNA 

and therefore, cause a shift detection (Hellman and Fried,2007; Holden and  Tacon, 

2010). Molecule size, molecular weight and charge are the considerable parameters 

that make samples run on nondenaturing gel matrix in different mobilities 

(Gaudreault, M. et al, 2009; Hellman and Fried,2007). 
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Fig. 1.6: A schematic diagram of EMSA (Holden and  Tacon, 2010). 

1.7. DNase I Footprinting Assay 

Transcription of DNA to RNA requires many factors including enhancer, silencer 

elements and  transcription factors that bind to regulatory regions on DNA. So as to 

identify the DNA regions on which  trans-acting molecules bind, recently being 

common method called DNase footprinting assay has been employed mostly. In this 

assay, one end of the double-stranded DNA is labelled wtih radiactive molecules or a 

fluorescein dyes. Labelled DNA is incubated with the DNA-binding protein and then 

the labelled DNA in sample is cut by chemical (hydroxyl radicals) or enzymatic 

cleavage (DNase 1) agent. Resulted DNA fragments are separated on sequencing gel. 

There will be gaps on the sequencing gel due to the binding proteins which bind to 

DNA and protect the binding region of DNA being cleaved by DNase 1 or hydroxyl 

radicals. The protected region of DNA will be missing (Figure 1.7) and  will be an 

evident as a gap which also called as footprint on the separation gel (Hampshire, et 

al. 2007; Wilson et al., 2001). Recently, instead of sequencing gel, capillary 

electrophoresis is used for separation of the DNA fragments (Wilson et al., 2001; 

Zianni, 2006).  
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Fig. 1.7: Schematic representation of  footprinting assay (Hampshire et al., 2007). 

 

1.8. Aim of the Project 

 
There are strong evidences showing the essential roles of  AbrB and Spo0A on the 

biosynthesis of antibiotics and toxins in Bacillus species. It has been demonstrated 

that even the bacilysin is under the regulatin of abrB and spo0A genes. After the 

recent findings concerning the responsibility of yvfI gene whose product is similar to 

transcriptional regulator (GntR family) in bacilysin production in Bacillus subtilis 

PY79 strain, there needs to find the other genes  regulating bacilysin production 

through yvfI gene, since any gene involved in the regulation of yvfI is also 

responsible in the regulation of bacilysin production indirectly. Subject to the 

foregoing provisions, our studies are focused on determining the cis-elements in the 

promoter region of the B.subtilis yvfI gene to which the candidate regulatory proteins 

are bound.  

For this purpose, B. subtilis yvfI promoter was examined using DBTBS database and 

putative binding sites on yvfI promoter were found for AbrB and Spo0A regulatory 

proteins. After the production of purified Spo0A and AbrB recombinant proteins in 

E. coli, DNA Mobility Shift Assay (EMSA)  and Capillary –Based DNase I 

Footprinting Assay have been employed in order to find the exact binding sites of 

AbrB and Spo0A regulatory proteins on yvfI promoter and to provide further insight 

into the regulation of bacilysin by the means of transcriptional regulation of yvfI 

gene.  
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2. MATERIALS and METHODS 

2.1. Materials  

2.1.1. Bacterial Strains 

 

Table 2.1: Bacterial strains used through the project 

Strain Genotype Source 

Bacillus subtilis PY79 

Wild type, BSP cured 

prototrophic derivative of 

B.subtilis 168 

P.Youngman 

E.coli Top10F’ 

[lacIq Tn10(Tetr)], mcrA ∆(mrr-

hsdRMS-mcrBC), 

f80lacZ∆M15 ∆lacX74, deoR, 

recA1, araD139 

∆(ara-leu)7697, galU, galK,rpsL 

(Strr), endA1, nupG 

M.A.Marahiel 

 

 

2.1.2. Bacterial Culture Media 

The compositions and preparation of bacterial culture media are given in Appendix 
A. 

2.1.3. Buffers and Solutions 

The compositions and preparation of buffers and solutions are given in Appendix B. 

2.1.4. Chemicals and Enzymes 

The chemicals and enzymes used and their suppliers are given in Appendix C. 

2.1.5. Laboratory Equipment 

The laboratory equipment used during the project is listed in Appendix G. 
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2.1.6. Maintenance of Bacterial Strains 
 
PY79 strain of B.subtilis was grown in Luira-Bertani (LB) liquid medium and kept 

on Luira-Bertani (LB) agar plates. E.coli strains were kept on Luira-Bertani (LB) 

agar plates. All cultures were stored at 4 C°.  

 
2.2. Methods 

2.2.1. Construction of pJET-abrB and pJET-spo0A Cloning Vectors 

2.2.1.1. Amplification of abrB and spo0A Genes by Polymerase Chain Reaction  

The oligonucleotide primers abrB F1,  abrB R1, spo0A F1 and  spo0A R1 primers 

given below are the forward and the reverse primers for the amplification of abrB 

and spo0A genes to be cloned into pJET 1.2 / Blunt Cloning Vector, respectively. 

Underlined sequences represent recognition sites for BamHI and NcoI restriction 

enzymes on forward and reverse primers respectively.  

 

abrB F1 : 5' – CGGCCATGGGTATGTTTATGAAATCTACTGGT – 3' 

abrB R1 : 5' – GCCGGATCCTTTAAGGTTTTGAAGCTG – 3' 

spo0A F1: 5' – CGGCCATGGGTGAGAAAATTAAAGTTTGT– 3' 

spo0A R1: 5'– GCCGGATCCAGAAGCCTTATGCTCTAACCT – 3' 

 

PCR components given in Table 2.2 were combined in a 0.2 ml tubes on ice.  

  

Table 2.2 : The volume of PCR components 
 
 

 

 

 

 

 

 

 

 

 

Component Exp. (-) Control 

dH2O 40,5 µl 42,5 µl 

10X pfu Buffer 5 µl 5 µl 

dNTP 1 µl 1 µl 

F Primer 0,5 µl 0,5 µl 

R Primer 0,5 µl 0,5 µl 

Template DNA (PY79) 2 µl - 

pfu DNA polymerase 0,5 µl 0,5 µl 

Total 50 µl 50 µl 
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The final concentrations of the primers and dNTP mix were 0,5 µM and 0,2 µM 

respectively. Chromosomal DNA of B.subtilis PY79 strain was used as template. 

PCR reaction was performed according to the following cycling program, enabling 

the heated lid: 

 
PCR conditions 
 
95 °C,  3 min           1 cycle (Initial denaturation) 
 
95 °C,  1 min 

55 °C,  1 min         30 cycles  +  72 °C, 10 min       1 cycle  (Final extension) 

72 °C,  2 min 

 
2.2.1.2. Agarose Gel Electrophoresis of PCR Products 

After the amplification of the desired genes, PCR products were analyzed on agarose 

gel electrophoresis. Firstly, for %1 gel, 0.5 gr agarose was added in 50 ml 0.5X TAE 

buffer (Appendix B) and then gel solution was boiled in a microwave until the 

agarose was completely dissolved. After cooling the solution to about 60°C, 

ethidium bromide was added to the gel solution to a final concentration of 0.5 ug/ml. 

Then, gel solution was poured into gel casting tray and a proper comb was placed in 

gel tray. After the gel had been solidified, the comb was removed and gel was placed 

in electrophoresis chamber containing the appropriate amount of 0.5X TAE buffer 

(Appendix B). An appropriate molecular weight marker (Marker 9, Fermentas) and 

PCR product samples that were mixed with the 6X loading dye depending on volume 

were pipeted into the gel wells. Gel was run at 80 V for 20 min. EtBr-stained DNA 

bands were visualized by UV trans-illuminator. 

 
2.2.1.3. Ligation of the PCR Product Into pJET 1.2 / Blunt Cloning Vector           

For the ligation of the PCR products into pJET 1.2/Blunt Cloning Vector, CloneJET 

PCR Cloning Kit (Fermentas) was used and the following reaction was set up for 

each PCR product. All components were added into a 1.5 ml eppendorf tube 

according to volumes that are given in Table 2.3. The eppendorf tube including all 

components was incubated at 25 oC for 30 min.  
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Table 2.3 : Volume of components used in ligation of the                                                                                 

                         PCR product into pJET 1.2 / blunt cloning vector 

Component Volume/reaction 

pJET1.2/blunt Cloning Vector (50 ng/ul) 1 µl 

PCR product 3 µl 

2X Reaction Buffer 10 µl 

T4 DNA Ligase 1 ul 

Water, nuclease-free 5 µl 

Total volume 20 µl 

 

Thereby, blunt-ended PCR products generated with the pfu DNA polymerase were 

ligated directly into the cloning vector. The newly contructed vectors were renamed 

as pJET-abrB and pJET-spo0A. 

2.2.1.4. Preparation of Electrocompotent E.coli Top 10F' Cells  

To make the electrocompotent cells, one night before E.coli Top10F' strain was 

inoculated into 500 ml 2xYT broth (Tet 20 µg/ml) with a 1/100 dilution rate and 

incubated at 37°C until OD600 reached 0.6. After incubation, the flask containing 

E.coli Top10F' strain was stayed on ice for 30 min. Then, cells were centrifuged in a 

50 ml ependorf tube at 4000 rpm for 15 minutes. Supernatant was removed and pellet 

was resuspended in 40 ml of cold dH2O and centrifuged at 4000 rpm for 15 min. 

After having removed the supernatant, the pellet was again resuspended in 20 ml of 

cold dH2O in a 50 ml tube at 4000 rpm for 15 minutes. Then supernatant was 

discarded and cells were resuspended in 1 ml of 10% glycerol. Aliquots were 

prepared as 40 µl volume in the 1.5 ml eppendorf tubes. The samples were stored at  

-80°C. 

2.2.1.5. Transformation of pJET-abrB and pJET-spo0A to Electrocompotent 

E.coli Top10 Cells 

Initially, electrocompotent E.coli top 10 cells were thawed on ice. 10 µl of the   

pJET-abrB ligation sample which had been obtained in section 2.2.1.3, was added to 

the tube containing 40 µl E.coli top 10F’ cells and all together were transferred into 

the electroporater tube which had been cooled before on ice for 10 min. Then, the 
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electroporator tube was placed into electroporation machine and transformation 

processed at 1800V for 2-3 second. After addition of 1 ml of LB broth to the 

electroporator tube, the mixture was transferred to a 2 ml eppendorf tube and 

incubated at 37°C for 1 h. For negative control, 1 ml LB broth was added into the 

another 2 ml eppendorf tube containing only the compotent cells. After 1 hour 

incubation of both tubes at 37 °C, the tubes were centrifuged for 10 min. at 5000 rpm 

so as to harvest cells. The supernatants were removed and the pellets were 

resuspended in 100 µl of 0.85% NaCl2. 100 µl of each suspention was spread out on 

LB plates containing ampicilin (100 µg/ml). Agar plates were incubated at 37°C for 

16 hours. Colonies are selected and inoculated into LB broth with amp (100µg/ml) 

and also sketched to a LB agar plate with amp (100µg/ml). Both agar plate and broth 

cultures were incubated at 37°C for 16 hours. 

All the protocol has been done exactly in the same way for the transformation of the 

pJET-spo0A to E.coli Top10 cells.  

2.2.1.6. Plasmid DNA Isolation  

Plasmid DNA isolation of the cultures incubated for 16 hours in LB broth was 

applied through using the buffers and solutions of the QIAquick Plasmid DNA 

Isolation Kit (Qiagen). 

After centrifugation in 2 ml ependorf tubes at 13000 rpm for 5 minute, bacterial cells 

were harvested. The supernatant was removed and the pellet was resuspended in 300 

µl P1 buffer completely by vortexing and pipetting up and down. 300 µl P2 buffer 

was added and the suspention was mixed by inverting tubes 4-6 times before the 

incubation at room temperature for 5 minutes. Then, 300 µl P3 buffer was added into 

the tubes and mixed by inverting until lysate is no longer viscous. After that, 

ependorf tubes were stayed on ice for 15 minutes before centrifugation at 13000 rpm 

for 15 minutes. With the help of pipette, the supernatant part of the suspention was 

put to new 1.5 ml eppendorf tubes. According to the volume of the supernatant, 0.7 

volume of isopropanol was added into the tubes and centrifuged at 13000 rpm for 30 

minutes. After the removal of supernatant, 1ml of 70% ethanol was added and 

centrifugation at 13000 rpm for 5 minutes was applied to wash the pellets. 

Supernatant was removed and pellets were dried out at 37°C for 15 minutes for the 
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complete removal of ethanol by evaporation. Finally, 15 µl of EB buffer was added 

and the tubes were incubated at 37°C for 15 minutes at 350 rpm.  

2.2.1.7. Agarose Gel Electrophoresis 

% 0.8 agarose gel was prepared to check the result of the plasmid isolation. Firstly, 

0.4 gr agarose was added in 50 ml of 0.5X TAE buffer (Appendix B), then gel was 

boiled in a microwave oven until completely melted. After cooling the solution, to 

facilitate visualization of DNA after electrophoresis, a final concentration of 0.5 

ug/ml of ethidium bromide was added to the gel solution. Then it was poured into a 

casting tray containing a sample comb and allowed to solidify at room temperature. 

After the solidification, the comb was removed and plasmid DNA samples and 

moleculer weight Marker 3 (Fermentas, Appendix D) were loaded into the gel wells 

after all samples were mixed with 6X gel loading dye depending on volume. Gel was 

run at 80V for 25 min. and plasmids DNA bands were visualized by UV trans-

illuminator. 

 
2.2.2. Construction of pQE60-abrB and pQE60-spo0A Expression Vectors 

2.2.2.1. Enzymatic Digestion 

Concentrated plasmids having the different conformations on agarose gels were 

chosen for enzymatic digestion. Following reaction including the components as 

shown in Table 2.4 was set up for each vector construct, pJET-abrB and pJET-spo0A 

and digestion proceeded with  BamHI and NcoI restriction enzymes at 37°C for 3 

hours in order to check whether abrB and spo0A genes had been cloned into the 

pJET1.2/blunt Cloning Vector. Then enzymes were denaturated at 65°C for 20 min.  

 

Table 2.4 : The components of the enzymatic digestion reaction 

Component Volume/reaction 

pJET-abrB (or pJET-spo0A ) 2 µl 

Buffer 10 X Tango 2 µl 

BamHI 0.25 µl 

NcoI 0.25 ul 

dH2O 15.5 µl 

Total volume 20 µl 
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For constructing expression vectors containing the abrB (or spo0A) gene, pQE60 

Expression Vector, pJET-abrB and pJET-spo0A were digested with same restriction 

enzyme, BamHI and NcoI in the same conditions provided for pJET1.2/blunt Cloning 

Vector. As fragments including abrB and spo0A genes and pQE60 Expression 

Vector both were digested with same restriction enzymes, direct ligation of abrB and 

spo0A genes to pQE60 Expression Vector would be applied. The components of the 

reactions are given in Table 2.5 and Table 2.6. 

 

Table 2.5 : The components of the pJET-abrB enzymatic digestion 

Component Volume/reaction 

pJET-abrB (or pJET-spo0A ) 9 µl 

Buffer 10 X Tango 4 µl 

BamHI 0.5 µl 

NcoI 0.5 ul 

dH2O 26 µl 

Total volume 40 µl 

 

 

Table 2.6 : The components of the pQE60 enzymatic digestion 

Component Volume/reaction 

pQE60 Expression Vector 9 µl 

Buffer 10 X Tango 4 µl 

BamHI 0.5 µl 

NcoI 0.5 ul 

dH2O 26 µl 

Total volume 40 µl 

 

 
2.2.2.2. Gel Extraction 

After 3 hours incubation of both reactions at 37°C in thermomixer, the samples that 

had been digested by restriction enzymes were loaded on agarose gel in order to 

isolate only the linearized pQE60  and DNA fragments including abrB and spo0A 
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genes from the rest of the DNA fragments for direct ligation. In that purpose,   

QIAquick Gel Extraction Kit (Qiagen) was used for the gel extraction of the 

enzymatic digestion. The fragments pQE60 in lineer form and DNA fragments 

including abrB and spo0A genes were excised from the gel and put into the different 

ependorf tubes. After that, depending on the weight of the fragments, 3 volumes of 

buffer QG were added. In order to dissolve the gels, tubes were incubated for 10 

minutes at 50°C by shortly vortexing every 2-3 minutes, until the gels were dissolved 

completely. Following, 1 volume of isopropanol was added into tubes. The samples 

were mixed by inverting several times and then applied to the QIAquick column for 

centrifugation at 13000 rpm for 1 minute. Then the flow through was discarded and 

the QIAquick column was placed back into the same collection tube. After addition 

of 500 µl buffer QG, the samples were centrifuged at 13000 rpm for 1 minute. Later, 

the flow through was removed and 750 µl buffer PE was added so as to wash the 

samples. The columns were standed for 2-5 minutes and then centrifuged at 13000 

rpm for 1 minute. For complete removal of ethanol, the columns were centrifuged at 

13000 rpm for an additional 1 minute. Finally, the columns were placed into clean 2 

ml microfuge tubes and 40 µl  of EB buffer was added to the center of the  QIAquick 

membranes. The samples were standed for 1 minute and then centrifuged for 1 

minute at 13000 rpm. The final solutions contaning the linearized pQE60 expression 

vector  and DNA fragments including abrB and spo0A genes in discrete tubes were 

stored at  –20 °C until the next ligation step.  

 
2.2.2.3. Ligation of abrB and spo0A Genes Into pQE60 Expression Vector 

To begin up, 9 µl sample of DNA fragment containing abrB gene as insert and 2 µl 

pQE60 vector were added into an eppendorf tube and incubated at 65°C for 5 

minutes. After that, the tube was cooled on ice. Before having started the ligation, 

eppendorf tube was spanned down so as to collect the whole mixture at bottom of the 

tube. Following, 2µl of ligation 10 X buffer, 2µl of T4 DNA ligase (Roche), 6µl of 

dH2O were added into the same eppendorf tube. The mixture was again spanned 

down for a quick spin and incubated at 16°C for 16 hours. After incubation, the tube 

was incubated at 65°C for 10 minutes for denaturation of the enzyme. Same protocol 

was done exactly in the same way for the ligation of spo0A gene into linearized 

pQE60 expression vector. The newly contructed vectors were renamed as pQE60-

abrB and pQE60-spo0A. 
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2.2.2.4. Transformation of pQE60-abrB and pQE60-spo0A to Electrocompotent 

E.coli Top10 Cells 

40 µl aliquot of electrocompotent E.coli top 10 cells was thawed on ice. 10 µl of the 

pQE60-abrB ligation sample which had been obtained in section 2.2.2.5, was added 

to the tube containing 40 µl E.coli top 10F’ cells and all together were transferred 

into the electroporation cuvette which had been cooled on ice before. Then, the 

electroporator cuvette was placed into electroporation machine and transformation 

processed at 1800V for 2-3 second. After addition of 1 ml of LB broth to the 

electroporator cuvette, the mixture was mixed gently by pipetting up-down and 

transferred to a 2 ml eppendorf tube for the incubation at 37°C for 1 h. For negative 

control, 1 ml LB broth was added into the another 2 ml eppendorf tube containing 

only the compotent cells. After 1 hour incubation of both tubes at 37 °C, the tubes 

were centrifuged for 10 min. at 5000 rpm so as to harvest cells. The supernatants 

were removed and the pellets were resuspended in 100 µl of 0.85% NaCl2. 100 µl of 

each suspention was spread out on LB plates containing 100 µg/ml final 

concentration of ampicilin. Agar plates were incubated at 37°C for 16 hours. 

Colonies are selected and inoculated into LB broth with amp (100µg/ml) and also 

sketched to a LB agar plate with amp (100µg/ml). Both agar plate and broth cultures 

were incubated at 37°C for 16 hours. 

All the protocol has been done exactly in the same way for the transformation of the 

pQE60-spo0A vector to E.coli Top10 cells.  

2.2.3. Expression and Purification of 6xHis-tagged Spo0A and AbrB Proteins 

2.2.3.1. Expression of 6xHis-tagged AbrB and 6xHis-tagged Spo0A  Proteins 

Selected recombinant clones from each transformation were inoculated into the fresh 

10 ml LB medium containing 100 ug/ ml amp and incubated overnight at 37°C at 

200 rpm shaking. After that 3 ml of the each culture was transferred to fresh 100 ml 

LB medium with 100 ug/ ml amp and cells were grown until the the OD600 reaches 

0,55. Immediately before the induction, 2 ml sample from each culture was taken 

into new tubes and cells collected by centrifugation at 4000 g for 20 min at 4°C and 

were stored at -80°C until the purification step. This samples were the noninduced 

controls. In order to induce T7 RNA polymerase, and hopefully our target proteins, 

AbrB and Spo0A, IPTG was added to a final concentration of 1 uM and cells were 
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grown for an additional 5 hours at 30°C with gentle shaking at 200 rpm. Then, cells 

were harvested by centrifugation at 4000 g for 20 min at 4°C and were stored at -

80°C until the purification step. 

 
2.2.3.2. Purification of 6xHis-tagged AbrB and 6xHis-tagged Spo0A Proteins 

Since our overexpressed proteins were soluble proteins, they were purified  under the 

native conditions. Also, to prevent the degradation of the proteins, cells and proteins 

solutions were kept at 0 - 4°C at all times and an air-cooled centrifuge with 

swinging-bucket rotor was used. 

 
1. Cell pellets obtained in previous step by centrifugation before (noninduced 

samples) and after induction (induced samples) were thawed on ice for 15 

min. Then, pellets of noninduced and induced samples were resuspended in 

100ul and 10 ml lysis buffer, respectively (Appendix B). For further cell 

distruption, lysozyme to a final  concentration of 0.2 mg/ml was added to 

each solution and incubated on ice for 30 min. So as to lyse the cells as much 

as possible, sonicator equipped with a microtip was used with a 10 s cooling 

period between six 10 s bursts at 70 W.  

 
20  ul of each cell lysate (induced AbrB, induced Spo0A, noninduced AbrB 

and noninduced Spo0A) was kept in 1.5 ml tubes for subsequent SDS-PAGE 

analysis. These cell lysates contain all the proteins expressed by E.coli, so 

that marked as total homogenate. 

 
2. Insoluble materials of induced AbrB and induced Spo0A cell lysates were 

removed from the soluble fraction by centrifugation at 4°C for 30 min at 

4000g and supernatant fraction of each culture was collected into fresh tubes. 

 
20  ul of each supernatant solution (induced AbrB, induced Spo0A) was kept 

in 1.5 ml tube for subsequent SDS-PAGE analysis. These samples contain all 

the soluble proteins expressed by E.coli, so that marked as total supernatant. 

 
3. 1 ml of the 50% slurry of Ni-NTA resin was added to each tube and mixed 

gently by shaking at 50 rpm on a rotary shaker  for 30 min at 4°C. Then the 

tubes were centrifuged at 1000 g for 1 min to pellet the resin.  
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20 ul of each supernatant solution was transferred into 1.5 ml tube for 

subsequent SDS-PAGE analysis. These supernatant solutions contain all the 

proteins which have not bound to the resin, so that marked as unbound 

samples. Remaining supernatants were discarded. 

 
4. Ni-NTA resins were washed twice with 1 ml of wash buffer (Appendix B). 

Tubes were centrifuged for 1 min at 1000 g between each wash step and the 

supernatants were carefully removed. 

 
20 ul of each supernatant solution was kept in 1.5 ml tube for subsequent 

SDS-PAGE analysis. These supernatant solutions were marked as wash 1 and 

wash 2.  

 
5. Our interested proteins, AbrB and Spo0A, were eluted 3 times with 500 ul 

elution buffer (Appendix B). Tubes were centrifuged for 1 min at 1000 g 

between each elution step and the supernatants were carefully transferred into 

new fresh tubes. 

 
20 ul of each supernatant solution was kept in 1.5 ml tube for subsequent 

SDS-PAGE analysis. These supernatant solutions contain our target proteins 

and so that marked as elution 1, elution 2 and elution 3.  

 

Thereby, by the way of metal chelation affinity between the Ni2+ metal ions on NTA 

and  imidazole ring on histidine residues (6xHis tag), overexpressed recombinant 

Spo0A and AbrB proteins were purified for the electromobility shift and Dnase I 

footprinting assays. 

 
2.2.3.3. SDS-Polyacrylamide Gel Electrophoresis of AbrB and Spo0A  

In order to analyze the samples obtained during purification steps (section 2.2.3.2) 

and purification quality of the AbrB and Spo0A proteins, two SDS polyacrylamide 

gels were prepared one for AbrB, and other one for Spo0A protein analysis by 

mixing the ingredients needed for % 12 gel as shown in Table 2.7 and Table 2.8.  
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Table 2.7 : Components of Lower Resolving Gel (12 % Acrylamide/Bis-acrylamide) 

Components Volume 

H2O 3.3 ml 

1.5 M Tris-HCI (pH:8.8) 2.5 ml 

SDS (10%, w/v) 0.1 ml 

Acrylamide:bis-acrylamide (29:1) (30%, w/v) 4.0 ml 

Ammonium Persulfate (APS) (10%, w/v) 0.1 ml 

TEMED 10 ul 

Total 10 ml 

 

Prepared solution was poured into the gel casting forms provided that leaving 2 cm 

below the bottom of the comb for the upper stacking gels. Top of the gels were 

layered with 200 ul isopropanol to remove the bubbles. After the polymerization of 

the lower resolving gels, isopropanol was washed out completely.  

 

Table 2.8 : Components  of  Upper Stacking Gel (5 %  Acrylamide/Bis-acrylamide) 

Components  Volume 

H2O 1.4 ml 

1 M Tris-HCI (pH:6.8) 0.25 ml 

SDS (10%, w/v) 0.02 ml 

Acrylamide:bis-acrylamide (29:1) (30%, w/v) 0.33 ml 

Ammonium Persulfate (APS) (10%, w/v) 0.02 ml 

TEMED 6 ul 

Total  2 ml 

 

Prepared upper stacking gel solution was poured on the top of the lower resolving 

gels and combs were inserted. After this, gels were allowed for complete 

polymerization. 12 ul of each sample obtained in purification steps were mixed with 

6 ul of 3X SDS loading dye (Appendix B) and boiled for 5 min at 95 °C for protein 

denaturation. After loading all the samples and protein marker (Fermentas, Appendix 

D) to the gel lanes, gels were run at 80 volt for upper stacking gels and 140 volt for 

lower resolving gels until the loading dyes reached the bottom of the gels. 
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Visualization of the protein bands were accomplished by staining the gels with 100 

ml of gel stain solution (Appendix B) with shaking at 40 rpm for 1 hour at 37 °C. 

Finally, gels were destained by 100 ml of gel destain solution (Appendix B) with 

gentle shaking at 30 rpm for 2 hours at 37 °C. 

 
2.2.4. Electromobility Shift Assay of AbrB and Spo0A Proteins 

2.2.4.1. Cloning of yvfI Promoter Into  pJET 1.2 / Blunt Cloning Vector 

The oligonucleotide primers yvfI P/ F1  and  yvfI P/ R1 primers given below are the 

forward and the reverse primers for the amplification of the DNA fragments 

including the yvfI promoter to be cloned, respectively.  

 

yvfI P/ F1  : 5' – CGGCCATGGGTATGTTTATGAAATCTACTGGT – 3' 

yvfI P/ R1  : 5' – GCCGGATCCTTTAAGGTTTTGAAGCTG – 3' 

 

Underlined sequences represent recognition sites for EcoRI and BamHI restriction 

enzymes on forward and reverse primers respectively.  

 
                            Table 2.9 : The volume of PCR components                                                                    
 

 

 

 

 

 

 

 

 

 

 
 
PCR components given in Table 2.9 were combined in a 0.2 ml tubes on ice. PCR 

reaction was performed according to the following cycling program, enabling the 

heated lid: 

 
 

Component  Exp. (-) Control 

dH2O 40,5 µl 42,5 µl 

10X pfu Buffer 5 µl 5 µl 

dNTP 1 µl 1 µl 

F Primer 0,5 µl 0,5 µl 

R Primer 0,5 µl 0,5 µl 

Template  2 µl - 

pfu DNA polymerase 0,5 µl 0,5 µl 

Total  50 µl 50 µl 
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PCR conditions 
 
95 °C,  3 min           1 cycle (Initial denaturation) 
 
95 °C,  1 min 

55 °C,  1 min           30 cycles  +  72 °C, 10 min       1 cycle  (Final extension) 

72 °C,  2 min 

 

The final concentrations of the primers and dNTP mix were 0,5 µM and 0,2 µM 

respectively. Chromosomal DNA of B.subtilis PY79 strain was used as template.  

Having performed the PCR reaction, components needed for cloning of the yvfI 

promoter into  pJET 1.2 / Blunt Cloning Vector were added into a 1.5 ml eppendorf 

tube according to volumes that was given in Table 2.10. The eppendorf tube 

including all components was incubated at 25 oC for 30 min. for ligation and then 

ligase was denatured at 70 °C for 10 minutes. 

                 

Table 2.10 : Volume of components used in ligation of the 

                             PCR product into pJET 1.2 / blunt Cloning Vector 

 Component Volume/reaction 

pJET1.2/blunt Cloning Vector (50 ng/ul) 1 µl 

PCR product 3 µl 

2X Reaction Buffer 10 µl 

T4 DNA Ligase 1 ul 

Water, nuclease-free 5 µl 

Total volume 20 µl 

 

 

After the ligation reaction, the newly constructed plasmid renamed as pJET-

yvfIprom. Bacterial transformation and plasmid isolation of the  pJET-yvfIprom was  

performed exactly in the same way as mentioned before in section 2.2.1.5 and 

2.2.1.6, respectively. pJET-yvfIprom plasmid was used as a template for the 

synthesis of unlabelled oligonucleotide and FAM-labelled probe, needed for 

subsequent electromobility shift and DNase I footprinting assays, respectively. 
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2.2.4.2. yvfI Promoter Synthesis from pJET-yvfIprom for EMSA  

Double-stranded oligonucleotides that encompasses bases –396 to + 18 relative to the 

translational start point of yvfI (Appendix F) were synthesized by PCR from the 

pJET-yvfIprom using following primers: 

 
yvfI E/ F  : 5' – CTGGCGCCATATGTAAGCGGT – 3' 

yvfI E/ R  : 5' – GCCTTCTCCCAGTTTCAT – 3' 

 

The final concentrations of the primers and dNTP mix were 0,5 µM and 0,2 µM 

respectively. pJET-yvfIprom was used as template.   

 

                            Table 2.11 : The volume of PCR components 
 

 

 

 

 

  

 

 

 

 

 

PCR components given in Table 2.11 were combined in a 0.2 ml tubes on ice. PCR 

reaction was performed for 30 cycles under the following conditions, enabling the 

heated lid: 

 

PCR conditions 
 
95 °C,  2 min           1 cycle (Initial denaturation) 

95 °C,  1 min 

55 °C,  1 min           30 cycles  +  72 °C, 10 min       1 cycle  (Final extension) 

72 °C,  1 min 

Component  Exp.      (-) Control 

dH2O 40,5 µl 42,5 µl 

10X pfu Buffer 5 µl 5 µl 

dNTP 1 µl 1 µl 

F Primer 0,5 µl 0,5 µl 

R Primer 0,5 µl 0,5 µl 

Template ( pJET-yvfIprom) 2 µl - 

pfu DNA polymerase 0,5 µl 0,5 µl 

Total  50 µl 50 µl 
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As a result of the PCR reaction, amplification of the 414 bp DNA fragment that 

encompasses bases –396 to +18 of yvfI (according to the translational start point of 

yvfI) was accomplished. 

  
2.2.4.3. Purification of the yvfI Promoter 

So as to purify the PCR product, QIAquick PCR Purification Kit (Qiagen) was used.  

1. 250 ml of the Buffer PBI was added to 50 ml of PCR product and mixed. 

2. Sample was applied to the  QIAquick column and centrifuged 1 min at 13.000 

rpm. 

3. Flow-through was discarded from the tube and QIAquick column was placed 

into the same collection tube. 

4. 0.75 ml of the Buffer PE was added to the QIAquick column and centrifuged 

1 min at 13.000 rpm for washing the sample. 

5. Flow-through was discarded from the collection tube and QIAquick column 

was placed back in the same collection tube. Sample was centrifuged at 

13.000 rpm for for an additional 1 min to remove the ethanol from the sample 

completely. 

6. After replacing the collection tube with a clean 1.5 ml microcentrifuge tube, 

40 ul of ddH2O (pH:7.0-8.5) was added to the center of the QIAquick 

membrane and the  sample was centrifuged at 13.000 rpm for 1 min.  

 
2.2.4.4. Binding Reactions of Protein-yvfI Promoter DNA for EMSA 

Binding reactions for Spo0A-yvfI promoter were employed by incubating varying 

amounts of Spo0A proteins ranging from 0 to 60 ug with 1 ug of DNA fragments  

(414 bp DNA fragments consisting of bases –396 to + 18 relative to the  translational 

start point of the yvfI gene, Appendix F) and 2 µg of Poly(dI-dC)  as a non-specific 

competitor  DNA at  room temperature for 25 min in binding buffer A [20 mM 

Hepes, 1 mM EDTA, 10 mM (NH)4SO4, 1 mM DTT, %0,2 Tween 20 and 30 mM 

KCI, pH:8.0]. The reaction mixtures in 0.2 ml tubes were completed to a final 

volume of 25 µL with ddH2O after combining all the components as shown in Table 

2.12. Control tube contained BSA protein instead of AbrB protein.  
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Table 2.12 : Binding Reactions for Electromobility Shift Assay of Spo0A Protein 

 1 2 3 4 5 6 7 8 

DNA 
fragments 

1 ug 1 ug 1 ug 1 ug 1 ug 1 ug 1 ug 1 ug 

Poly(dI-dC) 2 ug 2 ug 2 ug 2 ug 2 ug 2 ug 2 ug 2 ug 

Spo0A 
protein 

- - 10ug 20ug 30ug 40ug 50ug 60ug 

BSA - 20ug - - - - - - 

5X binding 
buffer A 

5 ul 5 ul 5 ul 5 ul 5 ul 5 ul 5 ul 5 ul 

 
 
Binding reactions of AbrB-yvfI promoter were performed by incubating varying 

amounts of AbrB proteins ranging from 0 to 42 ug with 1 ug of DNA fragments  

(414 bp DNA fragments consisting of bases –396 to + 18 in relation to the 

translational start point of the yvfI gene, Appendix F) and 2 ug of Poly(dI-dC)  as a 

non-specific competitor  DNA at  room temperature for 20 min in binding buffer B 

(50 mM KCI, 5 mM MgCI2,, 0.1 mM EDTA, 1 mM DTT and % 8  glycerol, 

pH:8.0). The reaction mixtures in 0.2 ml tubes were completed to a final volume of 

25 µL with ddH2O after combining all the components in reaction tubes as shown in 

Table 2.13. Control tube contained BSA protein instead of AbrB protein. 

 
Table 2.13 : Binding Reactions for Electromobility Shift Assay of AbrB Protein 

 1 2 3 4 5 6 7 8 9 

DNA 
fragments 

1 ug 1 ug 1 ug 1 ug 1 ug 1 ug 1 ug 1 ug 1 ug 

Poly      
(dI-dC) 

2 ug 2 ug 2 ug 2 ug 2 ug 2 ug 2 ug 2 ug 2 ug 

AbrB 
protein 

- - 6ug 12ug 18ug 24ug 30ug 36ug 42ug 

BSA - 16ug - - - - - - - 

5X binding 
buffer B 

5 ul 5 ul 5 ul 5 ul 5 ul 5 ul 5 ul 5 ul 5 ul 

 

2.2.4.5. Non-denaturing Polyacrylamide Gel Analysis 

In order to resolve the protein-DNA complexes from the free DNA, %6 non-

denaturing TBE polyacrylamide gels were prepared according to the table below 
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(Table 2.14), which gives the amount of each ingredient required to make 2 gel of 

0.75 mm thickness. 

 

Table 2.14 : The volume of  TBE Polyacrylamide Gels Components 

Component Volume 

Acrylamide:bisacrylamide (29:1) (30%, w/v)                   

H2O   

5x TBE buffer 

Ammonium Persulfate (APS) (10%, w/v) 

TEMED 

2.4 ml 

7.2 ml 

2.4 ml 

200 ul 

20 ul 

Total volume 12 ml 

 

Non-denaturing gel solution was poured into the gel casting forms and alllowed for 2 

hours at room temperature for complete polymerization. Then, gels were pre-run at 

60 volt for 30 min so as to remove the all the traces of ammonium persulfate and to 

provide an ion equilibration between the gels and running buffer. After loading all 

the AbrB and Spo0A binding reaction samples into the wells, gels were run in 

electrophoresis buffer (50 mM KCI, 5 mM MgCI2, 0.1 mM EDTA) at 80 volts for 3 

hours. After that, polyacrylamide gels were stained in TBE buffer (Appendix B) 

containing  1:10.000 diluted SYBR Green dye for 30 min with a gentle shaking in 

the dark. Gels stained with SYBR Green stain were visualized using the UV 

transilluminator source. 

 
2.2.5. DNase I Footprinting of AbrB and Spo0A Proteins 

2.2.5.1. Synthesis and Purification of FAM-Labelled Probe 

pJET-yvfIprom plasmid, which contain the yvfI promoter, was used in PCR reaction 

as a template in order to prepare 414 bp single end 5'-FAM-labelled probe. The 

oligonucleotide primers yvfI P/ F2  and  yvfI P/ R2, given below, are the forward and 

the reverse primers for the amplification of the FAM-labelled DNA probe 

comprising the putative binding regions for AbrB and Spo0A proteins. 

 
yvfI P/ F2  : 5' – 5'-FAM- CTGGCGCCATATGTAAGCGGT– 3' 

yvfI P/ R2  : 5' – GCCTTCTCCCAGTTTCAT– 3' 
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                            Table 2.15 : The volume of PCR components 
 

 

 

 

 

 

 

 

 

 

 

PCR components given in Table 2.15 were combined in a 0.2 ml tubes on ice. The 

final concentrations of the primers and dNTP mix were 0,5 µM and 0,2 µM 

respectively. PCR reaction was cycled 30 times according to the cycling program 

below, enabling the heated lid: 

 

PCR conditions 

 

95 °C,  2 min           1 cycle (Initial denaturation) 

95 °C,  1 min 

55 °C,  1 min           30 cycles  +  72 °C, 10 min       1 cycle  (Final extension) 

72 °C,  1 min 

 

After the amplification of the 414 bp FAM-labelled DNA probe that encompasses 

bases –396 to +18 in relation to the translational start point of the yvfI gene 

(Appendix F), probe was purified using the QIAquick PCR Purification Kit (Qiagen), 

as done in section 2.2.4.3 exactly in the same way. 

 
2.2.5.2. Binding Reactions of Protein-Probe DNA  

After the amplification and purification of the single end FAM-labelled probe, the 

following binding reactions were set up according to the Table 2.16 for the DNase I 

footprinting of AbrB and brought to 35 ul with the dH2O. AbrB reaction tubes (1-4) 

included varying amounts of AbrB protein ranging from 0 to 45 ug were incubated at 

Component  Exp.      (-) Control 

ddH2O 40,5 µl 42,5 µl 

10X pfu Buffer 5 µl 5 µl 

dNTP 1 µl 1 µl 

F Primer 0,5 µl 0,5 µl 

R Primer 0,5 µl 0,5 µl 

Template  2 µl - 

pfu DNA polymerase 0,5 µl 0,5 µl 

Total  50 µl 50 µl 
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room temperature for 25 min in binding buffer B (50 mM KCI, 5 mM MgCI2,, 0.1 

mM EDTA, 1 mM DTT and % 8  glycerol, pH:8.0). Reaction tube 1 including the 

BSA protein instead of the AbrB protein was the control tube of the footprinting 

assay. 

 

Table 2.16 : Binding Reactions for DNase I Footprinting of AbrB Protein 

 1 2 3 4 

DNA fragments 1 ug 1 ug 1 ug 1 ug 

Poly      (dI-dC) 2 ug 2 ug 2 ug 2 ug 

AbrB protein - 15 ug 30 ug 45 ug 

BSA 20 ug - - - 

5X binding buffer B 7 ul 7 ul 7 ul 7 ul 

 

For the Spo0A footprinting assay, all the ingredients shown in Table 2.17 were 

mixed in 0.2 ml reaction tubes and brought to 35 ul with the dH2O. Reaction tubes 

(1-4)  containing different amounts of Spo0 protein ranging from 0 to 60 ug were 

incubated at room temperature for 25 min in binding buffer A (20 mM Hepes, 1 mM 

EDTA, 10 mM (NH)4SO4, 1 mM DTT, %0,2 Tween 20 and 30 mM KCI, pH:8.0). 

BSA protein was used instead of AbrB protein in reaction tube 1 (Control tube). 

 

Table 2.17 : Binding Reactions for DNase I Footprinting of Spo0A Protein 

 1 2 3 4 

DNA fragments 1 ug 1 ug 1 ug 1 ug 

Poly      (dI-dC) 2 ug 2 ug 2 ug 2 ug 

Spo0A protein - 20 ug 40 ug 60 ug 

BSA 16 ug - - - 

5X binding buffer A 7 ul 7 ul 7 ul 7 ul 

 

2.2.5.3. DNase Treatment  

After binding reaction of protein-probe DNA, 0.00816 Knutz Unit of DNase I 

(Roche) is added to reaction tubes and incubation proceeded for 3 min at room 

temperature. DNase I was inhibited by incubating the reaction tubes at 75°C for 10 
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min. Then, resulted DNA fragments were purified with the QIAquick PCR 

Purification kit and eluted with 30 µl dd H2O, previously as done in section 2.2.4.3. 

10 µl of digested DNA was added to 9.9 µl Hi-Di formamide and   0.1 µl 500 LIZ 

size standart. 

 
2.2.5.4. DNA Fragment Analysis  

All samples were analyzed with the 3130 DNA Sequence Analyzer (Applied 

Biosystems) running a default Genemapper 50-POP7-1 module with the 3 kV 

injection voltage and 30 seconds injection time. After running the samples, 

electropherograms obtained from the DNA sequence analyzer (Applied Biosystems) 

were aligned with Peak Scanner Software v1.0 (Applied Biosystems). 
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3. RESULTS AND DISCUSSION 

3.1. Construction of pJET-abrB and pJET-spo0A Cloning Vectors 
 
The insert preparation that would be  cloned into cloning vectors had been achieved 

by the means of polymerase chain reaction using the chromosomal DNA of B. 

subtilis PY79 wild type strain as template DNA. The primers 5'– CGGCCATGGGT 

ATGTTTATGAAATCTACTGGT – 3' and 5' – GCCGGATCCTTTAAGGTTTTGA 

AGCTG – 3' were the forward and reverse primers that had been used for the 

amplification of 288 bp abrB gene. For the  amplification of  375 bp spo0A gene,  5'–

CGGCCATGGGTGAGAAAATTAAAGTTTGT– 3' and 5'– GCCGGATCCAG 

AAGCCTTATGCTCTAACCT – 3' forward and reverse primers were used in PCR 

reaction. Underlined sequences are the recognition sites for BamHI and NcoI 

restriction enzymes on forward and reverse primers respectively. After PCR, the 

amplified fragments including the abrB and spo0A genes were seperated on %1 

agarose gel electrophoresis and visualized by UV trans-illuminator.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Amplification  of abrB  gene by PCR. Marker 10 : PhiX174 DNA / BsuRI 
(lane 1), amplified abrB gene fragment (lane 2), control pcr (lane3) 

 

Agarose gel images of abrB and spo0A PCRs have demonstrated the amplifications 

of the 375 bp spo0A and 288 bp abrB genes (Fig. 3.1 and Fig 3.2). 
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Fig. 3.2: Amplification  of spo0A gene by PCR. Marker10 : PhiX174 DNA / BsuRI 

     (lane 1), amplified spo0A gene fragment (lane 2), control pcr (lane3) 
 

Amplified DNA fragments including abrB and spo0A genes were ligated into the 

pJET cloning vectors (Fermentas) and the newly contructed vectors,  pJET-abrB and 

pJET-spo0A, were transformed to electrocompotent E.coli Top 10F' cells via  

Eppendorf Electroporator 2510.  

Having done the transformation of the new generated plasmids, pJET-abrB and 

pJET-spo0A, to the E.coli cells, plasmids were amplified in E.coli cells and they 

were harvested through plasmid isolation protocol, and visualized on agarose gel as 

shown in Fig. 3.3 and Fig. 3.4.  

 

 

 

 
 
 
 
 
 

Fig. 3.3: Plasmid DNAs containing abrB gene isolated from E.coli Top10 AmpR 
            transformants (lane 1-6). Marker 3: Lambda DNA / EcoRI + HindIII 

                   (lane 7). 
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Fig. 3.4: Plasmid DNAs containing spo0A gene isolated from E.coli Top10 AmpR 
                  transformants (lane 1-6). Marker 3: Lambda DNA / EcoRI + Hind III    
                  (lane 7). 
 

Plasmids having different conformations and concentrations were selected and 

digested with BamHI and NcoI restriction enzymes so as to confirm whether abrB 

and spo0A genes had been cloned into cloning vector or not. Convenient plasmids 

including the abrB and spo0A genes (pJET-abrB and pJET-spo0A) were selected as 

subcloning sources for ligation into pQE60 vector. 

 

3.2. Construction of pQE60-abrB and pQE60-spo0A Expression Vectors  
 

Plasmids including abrB and sp0A genes (pJET-abrB and pJET-spo0A) were 

selected for ligation of the abrB and spo0A genes into the pQE60 vector. In this 

purpose, 3431 bp pQE60 expression vector and and selected plasmids were digested 

with the same enzymes, BamHI and NcoI,  in order to create sticky ends that could 

be hybridized with each other. Agarose gel images of the double digestions were 

shown in Fig. 3.5 and Fig.3.6. 

 

 
Fig. 3.5: Double digestions of pJET vector including abrB (lane 2) and spo0A genes   
                with BamHI and NcoI (lane3).  Marker 10 : PhiX174 DNA /BsuRI (lane 1). 
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Fig. 3.6: Double digestions of pQE60 vectors with BamHI and NcoI (lane1-2). 
                    Marker 10 : PhiX174 DNA /BsuRI (lane 3). 
 

After that, linearized form of pQE60 vector and digested abrB and spo0A fragments 

from pJET-abrB and pJET-spo0A were exracted from agarose gel. DNA fragments 

including abrB and spo0A genes were ligated into linearized pQE60 with T4 DNA 

ligase by incubation at 16°C for overnight to create the pQE60-abrB and pQE60-

spo0A plasmids. Following that, transformations of pQE60-abrB and pQE60-spo0A 

plasmids into the E.coli competent cells via  Eppendorf Electroporator 2510 were 

performed. After 16 hours inoculaton of the cells on LB agar plate containing amp 

(100µg/ml), the resulting 50 transformants were picked up and used for plasmid 

DNA isolation to verify the cloning of abrB and spo0A genes fragments. Insertions 

of the abrB and spo0A genes into the pQE60 expression vectors were confirmed by 

double digestion of the newly constructed plasmids, pQE60-abrB and pQE60-spo0A, 

with BamHI and NcoI restriction enzymes. Figure 3.7 and Figure 3.8 indicated the 

insertions of the abrB and spo0A genes into the pQE60 expression vectors. 

 

 
Fig. 3.7: The double digestion of a selected plasmid including abrB gene isolated 

        from E.coli AmpR transformants (lane2). Marker 3: Lambda DNA / 
                  EcoRI + HindIII (lane 1). 
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Fig. 3.8: The double digestion of a selected plasmid including spo0A gene isolated 
                 from E.coli AmpR transformants (lane2). Marker 3: Lambda DNA / EcoRI       
                 + HindIII (lane 1). 

 

Selected pQE60-abrB and pQE60-spo0A plasmids were sequenced by using  PRISM 

Ready Reaction Dye-Deoxy terminator cycle sequencing kit (Applied Biosystems) 

and sequence results were analyzed on the ABI PRISM 3100 DNA sequencer. 

Obtained sequence data sets for abrB and spo0A genes were compared to the B. 

subtilis 168 genome sequence at National Center for Biotechnology Information 

(NCBI) database using the BLAST search. 

 

3.3. Expression and Purification of 6xHis-tagged Spo0A and AbrB Proteins 

After the transformation of pQE60-abrB and pQE60–spo0A plasmids to the E.coli 

cells, colonies harboring the convenient pQE60-abrB and pQE60-spo0A plasmids 

were selected according to the results of BLAST searches. After that, desired 

colonies were grown in LB medium and were induced with IPTG for overexpression 

of interested AbrB and Spo0A proteins. Overexpressied proteins were purified using 

Ni-NTA resin molecules. To evaluate the expression level of the desired proteins and 

purification quality of each step, all fractions collected during protein purification  

were analyzed by SDS-PAGE staining with Coomassie brilliant blue (Fig. 3.9 and 

Fig. 3.10).  
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Fig. 3.9: Purified AbrB protein. Protein Molecular Weight Marker (M), total 
           homogenate from uninduced cell (lane 1), total homogenate from  
          induced cell (lane 2), total supernatant fraction from induced cell  

                      (lane 3), subsequent washes of supernatant fraction  (lane 4-6),   
                      subsequent elutes from supernatant fraction (lane 7-9). 
 
 
While lane 1 in Figure 3.9 belongs to the total homogenate of uninduced colony, lane 

2 and lane 3 represent the total homogenate and total supernatant fractions that were 

obtained from the induced abrB colony, respectively. When compared to the induced 

and uninduced total homogenate fractions (lane 1 and lane 2), a notable thick band, 

near the bottom of the SDS-PAGE, corresponding to a protein of approximately 11 

kDa implies the successful AbrB induction. The wash fractions (lane 4-6) and elution 

fractions (lane 7-9) indicate that unwanted proteins had been removed efficiently and 

most of the target AbrB protein retained and purifed. In elution fractions (lane 7-9), 

there is also a thick band corrosponding to the protein of about 25 kDa suggesting the 

existence of dimeric form AbrB protein (Fig. 3.9).  
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Fig. 3.10: Purified Spo0A protein. Total homogenate from uninduced cell (lane 1),   

             protein molecular weight marker (M), total homogenate from induced    
                   cell (lane 2), total supernatant fraction from induced cell (lane 3),   
                   subsequent washes of supernatant fraction  (lane 4-6), subsequent elutes   
                   from supernatant fraction (lane 7-9) 

 
 
When it comes to Spo0A protein, lane 1 and lane 2 in figure 3.10 represent total 

homogenates from uninduced and induced colonies, respectively. A notable thick 

band whose size is  approximately 13 kDa at the bottom of the SDS-PAGE indicates 

the induction of the Spo0A protein. Subsequent washes of the supernatant fraction 

(lane 4-6) removed most of the unwanted proteins and a remarkable amount of the 

desired Spo0A protein (lane 7-9) was purified efficiently (Fig. 3.10). 

 

3.4. Electromobility Shift Assays of AbrB and Spo0A Proteins 

 
The possible binding sites for AbrB and Spo0A regulator proteins on yvfI promoter 

were studied by electromobility shift assay. EMSA was performed using non-specific 

double stranded oligonucleotides (Poly [dI-dC]). The binding of purified AbrB and 

Spo0A  proteins to the double stranded oligonucleotides is presented in Fig. 3.11 and 

Fig. 3.12. Clear shifts were produced for both of the AbrB and Spo0A proteins. 
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Fig. 3.11 :  Non-denaturing polyacrylamide gel image of electromobility shift assay    

                 (EMSA) of purified AbrB with yvfI promoter of B. subtilis. Free DNA     
            (yvfI promoter DNA, lane 1), yvfI promoter DNA with BSA protein   

               (lane 2), increasing amounts of AbrB protein from 6 ug to 42 ug with   
     yvfI promoter (lane 3-9). Specific DNA/protein interactions are  

                     indicated at the level of two arrows. 
 

Fig. 3.11 shows the effect of increasing amounts of AbrB protein on the 

electromobility of B. Subtilis yvfI promoter DNA. In lane 1 containing B. Subtilis yvfI 

promoter DNA alone, a single band was observed. The same band was observed for 

the samples containing B. Subtilis yvfI promoter DNA and AbrB protein (lane 3- 9) ; 

but the intensity of the band was lower when the amount of the AbrB protein 

increased. On the other hand, existence of the BSA protein instead of AbrB protein 

(lane 2) did not produce any shift, thereby indicating the specifity of DNA-protein 

complex. 
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Fig. 3.12 : Non-denaturing polyacrylamide gel image of electromobility shift assay 
                 (EMSA) of purified Spo0A with yvfI promoter of B. subtilis. Free DNA   

           (yvfI promoter DNA, lane 1), yvfI promoter DNA with BSA protein   
                    (lane 2), increasing amounts of AbrB protein from 10 ug to 60 ug with           
                    yvfI promoter (lane 3-8). Specific DNA/protein interactions  are   
                    indicated at the level of two arrow. 
 
 
In electromobility shift of Spo0A protein, mobility of the yvfI promoter DNA was 

not retarded and migrated to the bottom of the gel faster in the absence of the Spo0A 

protein (Fig. 3.12, lane 1), even in the presence of the non-specific competitor 

protein, BSA (Fig. 3.12, lane 2). However, when the yvfI promoter DNA was 

incubated with the Spo0A protein, mobility of the DNA was retarded because of the 

DNA-protein complex formation (Fig. 3.12, lane 3-8). Besides, intensities of the 

bands were reduced due to the increasing amount of the Spo0A protein in the 

samples (lane 3-8). 

These results suggest that transcriptional regulators,  AbrB and Spo0A proteins, bind 

to yvfI promoter and are involved in the transcriptional regulation of the yvfI gene 

expression. 

 
3.5. DNase I Footprinting of AbrB and Spo0A Proteins 

 
After revealing that both of the transcriptional regulator proteins, AbrB and Spo0A,  

bind to the yvfI promoter, DNase I footprinting assay was employed to verify the 

exact binding sites of the regulator proteins. For this aim, 414 bp single end 5'-FAM-

labelled probe (-396 to +18 relative to the translational start point of the yvfI gene, 

Appendix F) was synthesized and incubated with the increasing amount of the 

interested protein. After the DNase I digestion, samples were run on 3130 DNA 

Sequence Analyzer and aligned with Peak Scanner Software v1.0 for protection 
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pattern. As negative control reaction, BSA protein was used instead of the AbrB and 

Spo0A proteins. As expected, the digested DNA patterns were very similar when 

comparing desired proteins to BSA-involved control fragments. In other words, BSA 

involvement did not produce any protected region.  

 
In Figure 3.13, blue electropherograms represent the protected sample, while the red 

ones represent the unprotected sample in AbrB footprinting.  After superimposing 

the red (in absence of the AbrB protein) and blue (in presence of AbrB protein) 

electropherograms for the visual analysis of the protected regions, the protected 

region for AbrB was determined to be 12 bases in length, from -316 to -304 relative 

to the translational start point of the yvfI gene (Appendix F) as seen in Fig. 3.13. The 

protected region is indicated by the horizontal bracket. 

 

 
Fig. 3.13: Electropherograms shows the protection pattern of the yvfI promoter in the   

              presence (blue) or absence (red) of AbrB. From top to bottom, increasing   
               amount of the AbrB protein protects the DNA being cleaved by DNase I. 
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Moreover, increasing amount of the AbrB protein (from top to bottom) protects the 

binding location more efficiently as seen in Fig. 3.13.  

 

 
Fig. 3.14: Electropherograms shows the protection pattern of the yvfI promoter in the 

            presence (blue) or absence (red) of Spo0A protein. From top to bottom,   
               increasing amount of the Spo0A protein protects the DNA being cleaved   

                  by DNase I. 
 

In Figure 3.14, the blue electropherograms represent the Spo0A involved samples, 

whereas the red electropherograms are from the BSA control. After superimposing 

the protected (blue electropherograms) and unprotected (red electropherograms) 

samples, the binding region of the Spo0A, thereby the protected region, was 
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corresponded to the bases -7 to +1 in relation to the translational start point of the 

yvfI gene (Appendix F). The protected region is indicated by the horizontal bracket. 

Also, the increasing amount of the Spo0A protein (from top to bottom) make the 

protected region being cleaved by the DNase I, more efficiently (Fig. 3.14). 

 
The proteced regions for AbrB and Spo0A proteins on yvfI promoter are compatible 

with the putative binding sites exactly the same size and same location that were 

determined previously (Sierro et al, 2008).   
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4. CONCLUSION  

It is known that AbrB and Spo0A regulator proteins to be responsible in antibiotic 

synthesis. There are so many genes and operons that are regulated by Spo0A and 

AbrB. TasA operon (Stover and Driks, 1999) and subtilosin operon  (Zheng et al, 

1999) are a few examples whose regulations are subject to AbrB and Spo0A 

proteins. Dipeptide antibiotic bacilysin is also under the regulatiom of AbrB and 

Spo0A proteins. B. subtilis whose spo0A gene is mutated can not produce bacilysin 

efficiently compared to the wild type ones. On the other hand, mutation in the abrB 

makes the B. subtilis produce more bacilysin indicating its negative control on 

bacilysin (Zuber et al, 1987; Yazgan et al., 2003). Recently, the necessity of the yvfI 

gene in bacilysin biosynthesis has been proved (Köroğlu et al, 2008).  

Besides, yvfI gene promoter contains potential binding sites for AbrB and Spo0A 

transcriptional regulators. In order to determine whether AbrB and Spo0A proteins 

bind to the mentioned region, firstly FAM-labelled oligonucleotide encompassing the 

candidate binding sites, -396 to +18 in relation to the translational start point of the 

yvfI gene (Appendix F), was synthesized. Candidate proteins were subjected to the 

EMSA for their abilities to bind the target probe. Results obtained from the 

electromobility of AbrB and Spo0A revealed the shift in yvfI promoter, thereby 

binding abilities of the  mentioned proteins to the yvfI promoter. Subsequent capillary 

electrophoresis based DNase I footprinting experiments demonstrated that AbrB 

binds to a region covering the sequence from -316 to -304 and Spo0A to -7 to +1 

relative to the translational start point of the yvfI gene. The found binding regions of 

AbrB and Spo0A on yvfI promoter are well matched to putative DNA sequences 

previously shown (Sierro et al., 2008).  

 

Based on these results, it can be said that transcription of the yvfI gene underlies a 

regulation exerted by the global regulator proteins, AbrB and Spo0A. When taken 

the recent findings into consideration (Yazgan et al., 2003), it is figured out that 

global transient-phase regulator protein, AbrB, is  a repressor of the bacilysin by 
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hindering the yvfI expression, while the Spo0A is a transcritional factor acting as 

activator on yvfI expression so that on bacilysin production in B. subtilis. 
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APPENDIX A 

Compositions and Preparation of Culture Media 

 

Luria Bertani (LB) Medium (1000ml) 

Tryptone                   10 g/L 

Yeast Extract  5 g/L 

NaCl   5 g/L 

Distilled H2O was added up to 1000 ml and then autoclaved for 15 min. 

 

Luria Bertani (LB) Agar Medium (1000 ml) 

Tryptone  10 g/L 

Yeast Extract    5 g/L 

NaCl2     5 g/L 

Agar   15 g/L 

Distilled H2O was added up to 1000 ml and then autoclaved for 15 min. 
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APPENDIX B 

Compositions of Buffers and Solutions 

 

Gel Stain  

Methanol 50 ml 
Glacial acetic acid                                                10 ml 
H2O                                                                       50 ml 
Coomassie Brilliant Blue R 0.275 g 

 
 

Destaining Solution  

Methanol 75 ml 
Glacial acetic acid                                                50 ml 
H2O                                                                       875 ml 

 

 

50X TAE Buffer (Tris-Acetate-EDTA) 

Tris base                               242 gm                                                                                                                      
Acetic Acid                          57.1 mL                                                                                                          
0.5 M EDTA                        100  mL (shake vigorously before use) 

Add ddH2O to 1 Liter and adjust pH to 8.5 using KOH.  

 
 
TBE Buffer  (Tris-Boric acid-EDTA) 

Tris base                                 108g 
 Boric acid                              55g 
0.5M  EDTA                          40ml,  (pH 8.0) 
  
Add ddH2O to 1 Liter.  
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Lysis Buffer  

50 mM NaH2PO4  
300 mM NaCl  
10 mM imidazole  
 
Adjust pH to 8.0 using NaOH. 
 
 
Wash Buffer  

50 mM NaH2PO4  
300 mM NaCl  
20 mM imidazole  
 
Adjust pH to 8.0 using NaOH. 

 
 
Elution Buffer  

50 mM NaH2PO4  
300 mM NaCl  
250 mM imidazole  
Adjust pH to 8.0 using NaOH. 
 
 
3X SDS Loading Dye 

200 mM  Tris-HCl (pH 6.8)                                                                                                  
100 mM  NaCl                                                                                                                     
100 mM  DTT                                                                                                                          
3 mM      EDTA                                                                                                           
30%        Glycerol                                                                                                                             
6%          SDS                                                                                                                           
0.02%     Bromophenol blue 
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APPENDIX C 

Enzymes and Chemicals 

Enzyme 

 

Supplier 

Lysozyme                                                                       Sigma 

 

Chemical  

 

Supplier 

Acrylamide Merck 

Agar                                                    

Alanine 

Sigma 

AppliCHEM 

Ammonium persulfate Merck 

Bis-acrylamide Merck 

Coomassie Brilliant Blue R Sigma 

Ethanol Riedel-de Haën  

Fructose Merck 

Glycial Acetic Acid Riedel-de Haën 

Glycerol Merck 

Glycine Merck 

HCl  Merck 

KH2PO4 Merck 

K2HPO4 Merck 

KOH Sigma 

Methanol                                                                              Riedel-de Haën 

Na2SO4.10H2O Merck 

Natrum hydroxid (NaOH) Riedel-de Haën 

Nutrient broth Merck 

Potassium chloride (KCl) Riedel-de Haën 
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2-propanol Riedel-de Haën 

Riboflavin Merck 

SDS Merck 

Sodium chloride (NaCl) Riedel-de Haёn 

Sodium hydrogen phosphate(Na2HPO4.7H2O) Merck 

TEMED Carlo Ederba 

Tris (hydrocymethyl) aminomethane Merck 

Tryptone Sigma 

Yeast Extract Sigma 
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APPENDIX D 

Markers………………………………………………………………Fermentas  

 

phiX174 DNA/HinfI Marker, 10                   Lambda DNA/EcoRI+HindIII Marker, 3 

 

   

         

 

 

 

 

 

                                                 

               

 

 

Unstained Protein Molecular Weight Marker 
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APPENDIX E 

 

      yvfI DNA Sequence 

       1 atgaaacagg gagaaggcac gtatctgaag gaatttgagc tcaatcaaat ttctcagccg 

      61 ctctcagccg cccttctgat gaaaaaagag gacgtcaagc agctgctcga ggtcagaaaa          

     121 ctgcttgaaa tcggcgtggc ttcactagcg gctgaaaaaa ggacagaagc agatctcgaa 

     181 agaattcagg atgcactaaa ggaaatgggc agcattgaag cggacgggga gctgggagag 

     241 aaagcagact ttgcatttca tcttgcgctt gcggacgctt ctcaaaatga acttcttaaa 

     301 cacttgatga atcacgtgtc atcattgctg ctggaaacaa tgagggaaac gaggaaaatc 

     361 tggctgtttt ccaagaagac ctccgttcag cggctgtatg aggagcacga acggatttac             

     421 aatgctgtgg ctgccgggaa cggtgcacag gcggaagccg ccatgctggc gcatttgacg 

     481 aatgtggaag atgtgctttc gggatatttc gaggaaaatg tgcaataa 
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APPENDIX F 

 

Mapping of the yvfI Promoter 

 

aataatcggtacaagtgcggcaagcgctgataatagcaaatttccccctataggcgtatatgcctgtgtccattgcatccca

aacccctccttgaaacataaactggcgccatatgtaagcggtttctatagatgatatgatcatctgatgactgggtaataaga 

ccagttacctagcattatattttgaaaaaaatcaaagtacaagactttttgacaaaatagtcaaaatcttttggcggccc  
                           AbrB                                  AbrB          AbrB       
acaaaacagagtataatagatcgtaaacagccagacctacaagttacggggtgaattgcattgaaatataaacagatt 
 
aaaacaaaaaaatatatgaagaagtagcggatgccctattagatatgatcaaaaatggcgaattgaagccgggggata 
                                                                                             Spo0A    
aactggactctgttcaggcgcttgctgagagctttcaagtcagccgttcagcggttcgcgaagcactttctgcgctaaa 
 
agcgatggggcttgtcgaa       Atg aaa cag gga gaa ggc acg tat ctg  
                    Spo0A         M   K   Q    G    E   G    T    Y   L 
 

 

The translational start point of the yvfI is indicated by bold uppercase letter.  

Potential cis-acting elements to which AbrB and Spo0A might bind were found by 

the help of the DBTBS database (Sierro et. al., 2008). These potential binding sites 

are indicated with names below the sequences and shown in blue and yellow 

background colors respectively.  
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APPENDIX G 

 

Laboratory Equipment  

 

Autoclave: Tuttnauer Systec Autoclave (2540 ml) 

Balances: Precisa 620C SCS 

      Precisa 125 A SCS 

Centrifuge: Beckman Coulter, Microfuge 18  

Centrifuge rotor: F241.5P 

Deep freezes and refrigerators: -80°C Heto Ultrafreeze 4410 

           -20°C Arçelik 209lt 

            +4°C Arçelik 

Electrophoresis equipments: E – C mini cell primo EC320 

Gel documentation system: UVI PHotoMW Version 99.05 for Windows 

Incubators: Nüve EN400 

          Nüve EN500 

Orbital shaker incubators: Sertomat S – 2 

              Thermo 430 

Pipettes: Gilson pipetteman 10 µl, 20 µl, 200 µl, 1000 µl 

      Volumate Mettler Toledo 10 µl, 20 µl, 200 µl, 1000 µl 

      Eppendorf research 10 µl, 20 µl, 200 µl, 1000 µl 

pH meter: Mettler Toledo MP220 

Spectrophotometer: PerkinElmer Lambda25 UV/VIS Spectrometer 

Thermomixer: Eppendorf thermomixer comfort (1.5 ml) 

Transillumunator: Biorad UV transilluminator 2000 

Vortexing machine: Heidolph Raax top  

Waterbaths: Memmert wb-22 

Ultrafiltration tube: VIVASPIN 

Lyophilizator : ALPHA 1-2 LD plus 

Power supply: Bio-Rad 

Dialysis Tubing Cellulose Membrane: Sigma-Aldrich 

SDS-PAGE Apparatus: Bio-Rad 
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Polyacrylamide Gel Electrophoresis Apparatus: Bio-Rad 

GS-800 CALIBRATED DENSITOMETER: Bio-Rad 
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