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GAS SORPTION IN 3,5-DIAMINOBENZOIC ACID (DABA) BASED 
POLYIMIDES 

ABSTRACT 

Polyimides especially aromatic ones are promising materials for gas separation 
applications due to their outstanding thermal and separation properties which depend 
on chemical structure. Molecular simulation techniques can be used to obtain 
theoretical understanding of the relationship between chemical structure and the 
transport behavior of polyimide membranes. The objective of this study is to predict 
structure-property and structure-solubility relationships of polyimides at the 
atomistic level. In accordance with this purpose, structural properties and sorption 
behaviors of a copolyimide and its polyimides were estimated by using molecular 
simulation techniques. The polyimides and the copolyimide are comprised of 4,4-
hexafluoroisopropylidene-diphthalic anhydride (6FDA) and 3,3’,4,4’-benzophenone 
tetracarboxylic dianhydride (BTDA) as dianhyrides and 3,5- diaminobenzoic acid 
(DABA) as diamine.  

The simulations were carried out using the Accelrys Materials Studio software, with 
all molecular interactions being modeled using the COMPASS force field. The 
simulation cells of 6FDA-DABA, BTDA-DABA and 6FDA/BTDA-DABA 
polyimides were constructed and structural properties were estimated with the help 
of the analysis tools available in the software. Grand Canonical Monte Carlo 
simulations were applied to estimate the sorption of CO2, CH4, O2, N2, propane and 
propylene molecules at different temperatures and pressures.  

Comparison of estimated structural properties with available experimental data in the 
literature revealed a disagreement for BTDA-DABA. Based on the disagreement, the 
synthesis and characterization of BTDA-DABA were carried out. The polyimide is 
characterized by thermal gravimetric analysis (TGA), differential scanning 
calorimetry (DSC), and wide angle x-ray diffraction WA-XRD analyses.  

Results obtained from experimental study of BTDA-DABA are close to our 
estimations and also the structural properties of 6FDA-DABA are in good agreement 
with the data available in the literature. Although polyimides and copolyimide show 
close structural properties fractional free volume, cohesive energy density, radius of 
gyration of BTDA-DABA are higher. The glass transition temperature of BTDA-
DABA is higher than that value of 6FDA-DABA. The carbonyl bridge of BTDA is 
considered to be more rigid than hexafluoroisopropylidene bridge of 6FDA. 
Interchain spacings of 6FDA based polyimide and copolyimide are higher because of 
bulky bridging group. Except glass transition temperature, structural properties of 
6FDA/BTDA-DABA is between its corresponding polyimides. Solubility of N2, O2, 
CO2 and CH4 in BTDA-DABA matrix and solubility of C3H6 and C3H8 in 
copolyimide matrix is higher. Ideal solubility selectivities of 6FDA-DABA in O2/N2, 
CO2/CH4 and C3H6/C3H8 systems are higher than others. The swelling of 
6FDA/BTDA-DABA is stronger than its corresponding polyimides after CO2, C3H6 



 
 xvi 

and C3H8 sorption. Probing test method to obtain the accessible free volume 
distribution of polyimide and copolyimide matrices shows that an increase of the 
radius of the probing results in a decrease of the accessible free volume. Radial 
distribution function analyses revealed that CO2 sorption in 6FDA-DABA occurs 
initially at the imide groups and hydroxyl oxygen site of DABA group, then at higher 
loadings of CO2, interactions occured strongly in oxygen of carboxyl and hydroxyl of 
DABA. CO2 sorption in BTDA-DABA occurs initially at carboxyl of benzophenone 
and imide groups, at high loading preferential sites shifted to oxygen of hydroxyl 
group of DABA moiety. CO2 sorption in 6FDA/BTDA-DABA occurs initially at the 
oxygen atoms at carboxyl of benzophenone and imide group of BTDA and in the 
case of high CO2 loading strong interactions occurs at nitrogen of imide group of 
BTDA and oxygen of hydroxyl group of DABA.  
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3,5-DİAMİNOBENZOİK ASİT (DABA) BAZLI POLİİMİDLERDE GAZ 
SORPSİYONU 

ÖZET 

Aromatik poliimidler ısıl, mekanik ve ayırma özelliklerinden dolayı umut vaadeden 
gaz ayırma malzemeleridir ve bu özellikleri kimyasal yapılarına bağlıdır. Moleküler 
simülasyon teknikleri, poliimid membranların ayırma özellikleriyle kimyasal yapıları 
arasındaki ilişkiyi daha iyi anlamada kullanılabilir. Bu çalışmanın amacı 
poliimidlerde yapı/performans ilişkisinin atomik düzeyde incelenmesidir. Bu amaç 
doğrultusunda moleküler simülasyon tekniklerini kullanarak 4,4-
hekzafloroizopropiliden-diftalik anhidrid (6FDA), 3,3’,4,4’-benzofenon 
tetrakarboksilik dianhidrid (BTDA) ve 3,5-diaminobenzoik asit (DABA) den 
türetilen 6FDA-DABA, BTDA-DABA poliimidleri ile 6FDA/BTDA-DABA 
kopoliimidinin yapısal özellikleri ve sorpsiyon davranımları incelenmiştir.   

Simülasyonlar Accelrys Materials Studio simülasyon paketi kullanılarak 
gerçekleştirilmiş ve moleküler etkileşimler bu paketin içerisinde mevcut olan 
COMPASS kuvvet alanı kullanılarak modellenmiştir. Poliimidlerin ve kopoliimidin 
yapısal özellikleri simülasyon paketinin içinde mevcut olan analiz araçları ile 
hesaplanmıştır. CO2, CH4, O2, N2, propan ve propilen gazlarının farklı sıcaklık ve 
basınçlarda çözünürlük katsayıları Büyük Kanonik Monte Karlo simülasyonları ile 
hesaplanmıştır.  

Simülasyon çalışmalarıyla elde edilen verilerin BTDA-DABA için literatürde var 
olan deneysel çalışmayla uyum göstermediği görülmüştür ve bu poliimidinin sentezi 
ve karakterizasyonu gerçekleştirilmiştir. Sentezlenen poliimid Termogravimetrik 
Analiz (TGA), Diferansiyel Taramalı Kalorimetre (DSC) ve Geniş Açı X-ışını 
Saçılması (WA-XRD) yöntemleri ile karakterize edilmiştir.  

BTDA-DABA için deneysel çalışmayla elde edilen sonuçlar simülasyon çalışmasıyla 
tahmin edilen değerlere yakın sonuçlar vermektedir. 6FDA-DABA için tahmin 
edilen yapısal özellikler ise literatürdeki verilerle uyum içersindedir. Kopoliimid ve 
poliimidler yapısal olarak benzer özellikler gösterselerde, BTDA-DABA 
poliimidinin serbest hacim fraksiyonu, kohesive enerji yoğunluğu ve dönüş yarıçapı 
daha yüksektir. BTDA-DABA’nın camsı geçiş sıcaklığı 6FDA-DABA’nınkinden 
daha yüksektir. BTDA monomerinin karbonil köprü grubunun 6FDA monomerinin 
hekzafloroizopropiliden köprü grubundan daha rijit olduğu kabul edilebilir. Camsı 
geçiş sıcaklığı dışında 6FDA/BTDA-DABA kopoliimidinin yapısal özellikleri 
poliimidlerinin arasında değer vermektedir.  N2, O2, CO2 ve CH4 gazlarının BTDA-
DABA poliimidinde, C3H6 ve C3H8 gazlarının ise 6FDA/BTDA-DABA 
kopoliimidinde çözünürlükleri daha yüksektir. O2/N2, CO2/CH4 ve C3H6/C3H8 gaz 
karışımlar için 6FDA-DABA poliimidinin ideal çözünürlük seçicilikleri daha 
yüksektir. Kopoliimidin ve poliimidlerin erişilebilir serbest hacim dağılımını elde 
etmek için probing test yöntemi uygulanmış ve gazların kinetik yarıçaplarına denk 
düşen prob değerlerinde erişebilir serbest hacmin azaldığı görülmüştür. Radyal 
dağılım fonksiyonu sonuçlarına göre, CO2 gazının 6FDA-DABA poliimidinde 
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sorpsiyonu öncelikle imid grubu ve DABA monomerinin hidroksilindeki oksijen 
atomunda gerçekleşmektedir.  Daha yüksek CO2 yüklemelerinde ise gaz ile 
poliimidin etkileşimi DABA grubunun karbonil ve hidroksilindeki oksijen 
atomlarında gerçekleşmektedir. CO2 gazının BTDA-DABA poliimidinde sorpsiyonu 
öncelikle imid grubu ve BTDA monomerinin karbonil köprüsündeki oksijen 
atomunda gerçekleşmektedir. Daha yüksek CO2 yüklemelerinde ise gaz ile 
poliimidin etkileşimi DABA grubunun hidroksilindeki oksijen atomlarında 
gerçekleşmektedir. CO2 gazının 6FDA/BTDA-DABA kopoliimidindeki sorpsiyonu 
ise öncelikle BTDA-DABA yapısının imid grubu ile BTDA monomerinin karbonil 
köprüsündeki oksijen atomunda gerçekleşmektedir. Daha yüksek CO2 
yüklemelerinde ise imid gruplarındaki azot atomu ile DABA grubunun 
hidroksilindeki oksijen atomlarında daha güçlü etkileşim gözlenmiştir. 
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1.  INTRODUCTION 

Membrane based gas separation processes become a significant separation 

technology for commercially  available gas mixtures. The separation of a gas mixture 

is based on the transport of one or more components from one side of a selectively 

permeable surface to another side by a driving force. Gas separation through 

membranes is best described by the solution-diffusion model that estimates the 

transport of gases into three step [1]; 1) Sorption of gas into the membrane, 2) 

Diffusion through the membrane due to an applied concentration gradient, and 3) 

Desorption of the gas.  

Membrane based processes are attractive because of following reasons: process 

needs low initial investment cost and consumes low energy, the capacity expansion 

and integration with other separation processes can be done easily, and separation is 

carried out continuously. 

In commercial applications, a membrane is desired to be both highly permeable and 

highly selective. In addition, commercially attractive membranes should be 

thermally, chemically and mechanically stable. While high selectivity provides high 

product purity and ensures more efficient separation process, high permeability 

decreases investment and operating costs of membrane system by reducing the 

required membrane area and driving force.  

Polyimides, especially aromatic ones, attract attention in membrane based gas 

separation applications compared to many other polymeric materials due to their high 

thermal stability, chemical resistance and good mechanical characteristics. 

Preparation of polyimide membranes with highly permeable and highly selective is 

an essential in separation applications of commercially important gas pairs such as 

O2/N2, CO2/CH4, H2/CH4, H2/N2 and olefin-paraffin. However, a trade-off exists 

between permeability and selectivity that is known as polymer upper bound limit.   A 

permeability-selectivity trade-off curve for gas pairs such as O2/N2, CO2/CH4, 
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H2/CH4 and for others were described by Robeson in 1991[2] and 2008[3], which is 

shown for H2/N2 pairs in Figure 1.1. 

 

Figure 1.1: Robeson curve for H2/N2 separation application. 

The upper bound of the curve represents commercially attractive region. Therefore, 

production of membrane materials in upper limit has great importance for using 

membrane technology in gas separation processes. 

Although, experimental studies about polyimides have been increased in recent 

years, high permselectivity for commercial applications could not be obtained. For 

that reason, molecular simulation can be an important tool for developing attractive 

membrane materials by predicting structure-solubility relationships of polyimides at 

the atomistic level prior to experimental studies.  

The main purpose of this thesis is to obtain effective and commercially attractive 

polyimide membranes for gas separation applications. Therefore, it is aimed to 

predict sorption behaviour of light gases and gas pairs as well as hydrocarbons on 

6FDA/BTDA-DABA copolyimide, which is studied by Halitoğlu et.al [4] by using 

group contribution method and proposed one of promising copolyimide structure. 

Also structure-property and structure-solubility relationships of this copolyimide and 

its polyimides, 6FDA-DABA and BTDA-DABA, are investigated via molecular 

simulation. Moreover the synthesis and the characterization of BTDA-DABA were 

carried out and the results were compared with the results that were obtained by 

simulation study.  
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2.  THEORY AND BACKGROUND 

This section includes brief information about theoretical background of gas transport 

mechanisms through membrane and a literature review of previous studies on 

structure-property and structure-solubility relationships of polyimide membranes.  

2.1 Gas Transport Mechanism Through  Membranes 

Membrane based gas separation processes have proved their outstanding properties 

for the separation of commercially important gas pairs such as O2/N2, CO2/CH4, 

H2/CH4, H2/N2 and olefin-paraffin. In the simplest sense, a membrane is used to 

separate mixtures of gases in a feed stream, and generate a permeate rich in a specific 

gas. Gas separation membranes are selective which means one component of mixture 

passes through while the others are being rejected. Permeate stream sorbs the gas 

into the membrane and the gas diffuse down a sorbed concentration gradient, and are 

collected on the downstream side of the membrane. The non-permeating species is 

purged via the unfiltered stream [5]. The driving force for permeation is chemical 

potential difference across the thickness of the material. A schematic representation 

of gas separation through a membrane is shown in Figure 2.1.  

 

Figure 2.1: Schematic representation of gas separation through a membrane [6]. 

In literature various mechanisms are presented to describe transport behavior through 

non-porous membranes. While thermodynamic and mechanical principles are used to 

explain models, some are based upon the correlations between the observed transport 
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behavior and the physical characteristics of membrane material. The most important 

models [7] are Knudsen diffusion, surface diffusion, capillary condensation, 

molecular sieving and solution-diffusion mechanism.  

In Knudsen diffusion, gas molecules moves through pores which are small enough to 

prevent bulk diffusion. The migration of gas molecules along the pore walls of a 

porous membrane is modeled with surface diffusion. The rate, which indicates the 

efficiency of separation, is determined by the intensity of interaction between the 

pore walls and the adsorbed gas. Capillary condensation occurs when sorbed gas 

molecules partially condensate thus condensed gas molecules diffuse faster through 

pores and separation is achieved. In molecular sieving, gas molecules are separated 

by size exclusion.  

Gas separation through membranes is best described by the solution diffusion model. 

This model describes the transport of gases as a three step process [8]:  

1. Sorption of the penetrant in the membrane, 

2. Diffusion of the penetrant through the membrane due to an applied 

concentration gradient,  

3. Desorption at the opposite interface.  

At the feed side, molecules of a given component dissolve in the membrane phase 

and thermodynamic equilibrium exists between the penetrants sorbed in the 

membrane phase and the penetrants in the feed or permeate side compartment. The 

chemical potential of this component at the downstream side is lower than that at the 

feed side which means that its concentration at the membrane downstream side is 

also lower. This driving force causes a continuous diffusional mass transport of the 

component through the membrane.  

Both the sorption/desorption and diffusion steps are dependent on the physical 

properties of the membrane material and the penetrant. Sorption models are based on 

the thermodynamics of the penetrant-membrane interaction, whereas the diffusion is 

primarily modeled with Fick’s laws of diffusion [9].  
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2.2 Polyimide Membranes for Gas Separation Applications 

Gas transport through glassy polyimides has been studied because of their 

outstanding separation properties [5]. In order to describe the observed transport 

behavior, different models were proposed based upon molecular-kinetic, 

phenomenological, and thermodynamic considerations [10]. These models are based 

on three different theories [10]: the “hole” vacancy theory, the activated complex 

theory and the fluctuation theory.  

In the hole vacancy theory, it is assumed that polymer matrix creates or expands a 

hole for the gas molecule which diffused through this successful creations and 

expansions. The activated complex theory defines the movement of gas molecules 

through the matrix with an efficient energy to conquer a potential energy barrier. The 

fluctuation theory based on density or volume fluctuations in the matrix occurred by 

thermal activations. These fluctuations lead an excess space in which gas molecules 

pass through. 

2.2.1  Free volume in polyimides 

All three explanations mentioned above are derived from the free volume theory. 

This theory claims that the movement of gas molecules in polymer matrix is not only 

dependent on the available free volume but also on the sufficient energy of gas 

molecules to beat effective forces between chains. The presence of free volume 

within the polymer, which was first proposed by Fujita in 1960 [10], is related to 

limitations in mobility that induces the non-equilibrium state of the polymer. The 

concept is based on the presence of different types of free volume in polyimides: the 

interstitial free volume and the hole free volume. For example, backbone rotations of 

some polymers are not thermally allowed which leads a rigid helical structure for the 

polyimide thus free volume is formed by the interstitial space between neighboring 

helices, and gas transport occurs through this channel-like free volume. On the other 

hand, some polymers exhibit a flexible backbone, which leads to the formation of 

irregular voids (holes). In this case, gas molecules are free to move within the voids.  

The presence of free volume of polymers are expressed by the fractional free volume 

(FFV) model which provides an estimation for gas transport in polymeric membranes 

roughly but fails especially for the transport of highly condensable gases [11].  
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2.2.2 Gas transport in glassy polyimides 

The gas transport behavior of dense polymeric membranes is widely investigated by 

employing the solution-diffusion model [12]. The model assumes that a polymer 

comprises continuous chain matrix with micro voids (holes). These micro voids are 

caused by the non-equilibrium thermodynamic state of glassy polymers. Based on 

this model, the gas permeability (P) across the membrane is the product of solubility 

(S) and diffusivity (D).  

DSP                                                                                                                  (2.1)  

The permselectivity (αA,B) of the ideal gas pair A and B covers the solubility (SA/SB) 

and diffusivity (DA/DB) selectivities. 



















B

A

B

A

B

A
AB

D

D

S

S

P

P
                                                                                       (2.2) 

Different models have been studied to describe the sorption and diffusion of 

penetrant molecules in glassy polymers but most widely used model is the dual-mode 

sorption theory which is defined in terms of Henry’s law of solubility (dissolution in 

continuous chain matrix) and Langmuir-type of sorption (sorption in microvoids). 

The basic assumptions of this model are [12]: 

1. The two modes occur simultaneously and are always in equilibrium. 

2. The penetrants sorbed under Langmuir mode are completely immobilized. 

3. Diffusion occurs only in the dissolved mode and the diffusion coefficient is 

independent of concentration. 

In dual-mode sorption theory, the gas concentration in the polymer for an applied 

pressure (p) is expressed as:   

bp

bpC
pkCCC H

DHD



1

'
                                                                                (2.3) 

where  

C: the total penetrant concentration 

CD: concentration by Langmuir sites. 

CH: concentration by Henry sites. 

kD: Henry’s solubility constant. 
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C’H: Langmuir hole saturation constant  

b: Langmuir affinity constant which represents the ratio of the rate constants of gas 

adsorption and desorption in the microcavities or defects. 

p: pressure. 

The solubility coefficient (S) (Eqn.2.4) is the ratio of total penetrant concentration to 

pressure. 

bp

bC
k

p

C
S H

D



1

'
                                                                                               (2.4) 

The schematic representation of Henry sorption, Langmuir sorption, and dual-mode 

sorption is shown in Fig.2.2.  

 

Figure 2.2: Schematic representation of Henry sorption (a), Langmuir sorption 

(b) and dual-mode sorption (c) [13]. 

In dual mode, sorption into unrelaxed free volume of the polyimide can be described 

by the Langmuir model however at high pressures this free volume becomes 

saturated, and then the Henry’s law is used [13]. 

According to assumptions of the model the diffusion coefficient is independent of 

concentration thus Arrhenius equation is used to express diffusion coefficient (D). 








 


RT

E
DD D

o exp                                                                                                  (2.5) 
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where, D0 is the pre-exponential factor, R is the gas constant, T is the temperature 

(K) and ED is the activation energy for diffusion.  

The explanation of difference in inherent gas diffusion of the Langmuir and Henry 

sites in dual mobility model was proposed by Paul and Koros [14-15]. This model is 

presented in equation 2.6.  

DD D
bp

FK
kP 












21
1                                                                                            (2.6) 

where; F is the ratio of DH to DD,  DD and DH are the diffusion coefficients in the 

Henry and Langmuir sites, respectively, p2 is the pressure at the upstream boundary 

and K is defined as:  











D

H

k

bC
K

'
                                                                                                           (2.7) 

2.2.3 Plasticization in polyimides  

In glassy polymers, an increase in segmental motion of polymer chain is called 

plasticization. This increased mobility augments the frequency of free volume and 

the average size of holes. Sanders [16] suggested that the movement of side groups 

on polymer chains may decrease the local packing that let the small penetrant 

molecules pass through membrane.  

In the presence of a gas pair, swelling in the matrix causes an increase in the 

fractional free volume of the polymer and thus the permeability of both components 

increases but the selectivity decreases [17]. For example, CO2 plasticize the CO2/CH4 

membrane separation system at elevated pressures [18]. Due to the presence of CO2, 

the polymer matrix swells during the sorption. This plasticizing effect accelerates the 

CH4 permeation thus the membrane system loses its selectivity. Both sorption and 

diffusion coefficients may deviate from the simple dual mode expressions due to the 

increase in segmental motion after the swelling of the polymer [17]. Various models 

have been proposed to describe plasticization behavior. Stern and Saxena [19] 

modified the dual mode transport model to describe the transport of gases in and 

through glassy polymer membranes which are plasticized by the penetrants. Mauze 

and Stern [20] modified this model by neglecting the concentration associated with 
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Langmuir sorption mechanism and Zhou and Stern [21] studied the impacts of 

plasticization on the penetrant transport in the Henry’s law and Langmuir domains 

separately.  

2.3 Review of Structure-Solubility Relationship in Polyimides  

Aromatic polymers such as polysulfones, polycarbonates and polyimides have 

considerable potential as membrane material for gas separation. However, 

polyimides are thermally stable and high performance polymers which provide them 

required specifications for being employed in high temperature and high 

performance gas separation. In addition, they can be packed in the form of modules 

with high surface area and they can be used as thin, defect-free, low-cost membranes. 

The synthesis of polyimide proceeds according to polycondensation reaction of 

equimolar amount of diamine and dianhyride in an aprotic solvent to form polyamic 

acid. The dehydration of poly(amic acid) results in chemically stable polyimide 

formation. 

Wang et al. [22] studied synthesis and characterization of aromatic polyimides 

formed by BTDA and 6FDA dianhydrides with various sizes of alkyl sidechain. 

They reported that the glass transition temperature of BTDA based polyimides 

exceeded that of the 6FDA based ones. They found that thermal stability of 

sidegroup containing polyimides are low than the unsubstituted polyimides.  

Park et al. [23] studied on gas separation properties of 6FDA based polyimides 

having a hydroxyl or carboxyl polar group. They found that polar group-containing 

polyimides showed low CO2 permeability except that they showed high separation 

selectivity for CO2/N2 and CO2/CH4. 6FDA polyimide membranes with 

phenylenediamine having over 3 methyl group exhibited relatively low selectivity 

but high permeability of CO2. They also reported that gas permeabilities and 

diffusion coefficients for the polar group-containing polyimide membranes showed 

similarity.  

Shimazu et al. [24] studied the effect of the chemical structures on the physical and 

gas permeation properties of the 40 different 6FDA based polyimides. They 

investigated permeability of propane and propylene at 298 K.  They found that 

polyimides that have high glass transition temperatures and large fractional free 



10 

 

volumes showed high permeability and low permselectivity for propylene/propane 

mixed-gas system. The –CONH– bridge between the phenylene linkage restricts the 

solubility of propylene, however the –Cl substituent in the phenylene linkage 

exhibits high separation properties for propylene/propane mixture. 

Zhang et al. [25] examined the CO2-induced plasticization of polyimide derived from 

6FDA and 4,4'-oxydianiline (ODA) both experimentally and in atomistic level. The 

radial distribution functions between CO2 and typical atoms of polyimide showed 

that the imide group is the favourable site. With increasing CO2 loading, they found 

that the polyimide membrane exhibits a depressed glass transition temperature, a 

dilated volume, an increased fractional free volume.  They suggested that the 

plasticization could be controlled by fewer substitution of the ether groups which 

have a stronger effect on the mobility of polyimide chains at high pressures.  

Kang et al. [26] used an atomistic modelling technique to develop some structure-

property relationships of four BTDA based polyimides. They used Dreiding force 

field [27] to model interactions and Monte Carlo method to assign dihedral angles 

along the chain backbone of each polyimide. They used Molecular Dynamics method 

to optimize final structure and Molecular Mechanics to obtain mechanical properties 

of polyimides. They found that polyimide with an oxygen linkage has the most 

flexible backbone and polyimide with a sulfonyl linkage had the most rigid one. A 

more flexible chain backbone results higher degree of conformational state, small 

characteristic ratio, low solubility parameter, low elastic modulus and large yield 

strain.   

Pan et al. [28] applied a molecular simulation technique in order to develop structure 

and property relationships of three polyimides with different lengths of methylene 

spacing groups in biphenyl side chain of the diamines moiety. They modeled the 

interaction by using Dreiding 2.21 force field [29]. They found that polyimide with 

six methylene spacing groups has conformational structure which decreases the 

energy barrier in rotational bonds of the backbone resulting a decrement in glass 

transition temperatures.  
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3.  MOLECULAR SIMULATION METHODS 

Molecular simulation is a computational method that is used to predict physical and 

chemical properties of systems prior to experimental studies. Molecular based 

simulations are widely applied to many systems. Calculation of intermolecular 

energies or forces and predictions of the thermodynamic, mechanical, permeability, 

electrical, optical and other properties of theoretical model is accurately done in 

atomistic level.  

In this section, the basic concepts of the statistical ensembles, molecular forcefields, 

molecular dynamics and Monte Carlo methods will be briefly summarized.   

3.1 Statistical Ensembles 

An ensemble is a collection of systems described by the same set of microscopic 

states with common set of macroscopic attributes [30]. An ensemble consists of a 

large number of theorotical copies of a system that represents a possible state that the 

real system might be in. The complexity of real systems makes the characterization 

of system difficult via molecular simulation. Therefore, to characterize and calculate 

overall properties of the whole system statistical ensembles should be established at 

first. According to external macroscopic parameters the state of a system are denoted 

by statistical ensembles. These macroscopic parameters must be same with the 

corresponding real systems.   

Table 3.1 presents common statistical ensembles with their partition function and 

related thermodynamic property. The partition function (Z) is the sum of all different 

probabilities of the system and encodes the statistical properties in thermodynamic 

equilibrium. As seen from Table 3.1 thermodynamic functions are expressed with the 

characteristic partition function of each ensemble. Helmholtz free energy is 

expressed by partition function of canonical ensemble. While pressure is obtained by 

grand canonical ensemble, entropy and Gibbs free energy are estimated from 

microcanonical and isothermal-isobaric ensembles, respectively.    
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Table 3.1: Statistical Ensembles [31] 

Statistical 

ensemble 

Imposed 

variables 

Partition function 

(Z) 

Thermodynamic 

potential 

Canonical  N, V, T 


i

VNEie
),(

 
NVTZkTA ln  

Grand 

Canonical 
V, T, µ 

i

NVT

N Ze 
 VTZkTPV ln  

Microcanonical N, V, E )( EE
i

i   NVEZkS ln  

Isothermal-

Isobaric 
N, P, T 

i

NVT

pV
Ze i

 
NPTzkTG ln  

Grand canonical ensemble (µVT) implies open systems in which the particle number 

is changeable. This statistical ensemble is favourably suitable for treating physical 

system in which particles and energies can be transported crosswise the system 

boundaries [32]. For example sorption behavior of materials is characterized by 

using grand canonical ensemble.   

Canonical (NVT), microcanonical (NVE) and isothermal-isobaric (NPT) ensembles 

denote closed systems that the number of particles is fixed. Information about 

temperature and pressure of a system is more available than information about 

energy; therefore, usage of microcanonical ensemble is rare in molecular simulation. 

Nonetheless, this ensemble is favored to calculate the transport properties. 

In many physical processes, the number of molecules is remained constant and the 

process is carried out at fixed pressure and temperature so canonical and isothermal-

isobaric ensembles will be a more suitable representation of the real system.  

3.2 Molecular Forcefields 

A forcefield is a molecular model that represents the potential energy of the model 

by describing interactions of atoms and molecules in the system. Reliability of 

molecular simulation calculation depends on the forcefield. Therefore, the most 

critical step of molecular simulation is to select an appropriate forcefield in 

accordance with properties of interest [33]. This is important because the selected 

forcefield should represent the structural and dynamical properties of a system 

accurately in thermodynamical equilibrium.    
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The total energy (Etotal) of a system is the sum of two interaction terms: interactions 

between bonded atoms, and non-bonded atoms.  

bondednonbondedtotal EEE 
                                                                                       

(3.1) 

Bonded and non-bonded terms of intermolecular and intramolecular interactions are 

summarized in Figure 3.1[33-34].  

 

Figure 3.1: Intermolecular and intramolecular interactions. 

The bonded potential includes three main contributors; energy of bond stretching, 

energy of angle bending and energy of angle torsion.   

Estretching is energy of bond strain between two atoms and is used to calculate 

deformation energy that is originated by shrinking of bonds. This term is expressed 

as Equation 3.2. 

 20
2

1
rrkE bstretching                                                                                             (3.2) 

where r is the length of bond, r0 is the ideal bond length and kb is stretching 

constant[35]. 

Ebending is deformation energy of bonds between three atoms. It is generated by the 

diversity of angles of these atoms. It is stated as Equation 3.3. 

 20
2

1
  kEbending                                                                                             (3.3) 

where θ is the angle between bonds, θ0 is ideal value of angle and kθ represents 

bending constant.   
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Etorsion is energy that takes its source from the change of angle of a plane that is 

composed four atoms. It needs a periodic function to be calculated. Torsional energy 

is represented as:  

  0cos1
2

1
  nkEtorsion                                                                                 (3.4) 

where   is the torsional angle between planes, n is periodic number, 0  is ideal 

torsional angle and  k  is torsional constant.  

Beside energy of stretching, energy of bending and energy of torsion, the bonded 

potential includes cross terms which are the combination of two or three internal 

coordinates (bond-bond, bond-angle, angle-angle, angle-torsion, and bond-torsion-

angle). 

Independent molecules and atoms interact through non-bonded forces. The non-

bonded interactions are through-space interactions and are usually modelled as a 

function of some inverse power of distance. The non-bonded potential consists of 

two terms, the electrostatic interactions and the dispersive interactions between 

molecules:  

ticelectrostadispersivebondednon EEE                                                           (3.5)  

In this study, dispersive interactions are modelled with a Lennard-Jones pair 

potential and are carried out for all particle pairs. Lennard-Jones potential is 

represented as:  
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where rij is the distance between the interacting particles i and j,  ε is the energy 

parameter, and σij is the finite distance at which the inter-particle potential is zero. 

The electrostatic term is calculated from the Coulombic interaction between point 

charges. Coulombic interaction is defined in Eqn.3.7 where εo is the electric constant 

and qi, qj the charges of particles i and j [33-34]. 
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Many different forcefields exist, such as AMBER [36], widely used for modeling 

proteins and DNA, or CHARMM(Chemistry at HARvard Macromolecular 

Mechanics) [36-37], PCFF (Polymer-Consistent Force Field) [38-39] and 

CVFF(Consistent Valence Force Field) [39], used for macromolecules and proteins, 

DREIDING [27],  GROMOS [37] ve GROMACS (GROningen Machine for 

Chemical Simulations) and COMPASS (Condensed-phase Optimized Molecular 

Potentials for Atomistic Simulation Studies) [40]. 

COMPASS is the first ab initio forcefield that enables an accurate and simultaneous 

prediction of various gas-phase and condensed-phase properties of organic and 

inorganic materials. It is specially designed for modelling of complex molecules’ 

interactions. Consequently, structural, conformational, vibrational, and 

thermophysical properties and lattice energies of various isolated and condensed 

molecules can be precisely predicted by using COMPASS forcefield .  All terms that 

constitute this forcefield is represented in Eqn.3.8.  
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(3.8)       

The Eqn. 3.8 can be divided into two categories: bonded terms, which include 

diagonal and off-diagonal cross terms, and nonbond interaction terms. The bonded 

terms represent internal coordinates of bond (b), angle (θ), torsion angle (), and 

outoff- plane angle (χ), and the cross terms include combinations of two or three 
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internal coordinates (bond-bond, bond-angle, angle-angle, angle-torsion and bond-

torsion-angle). The nonbond interactions include a Coulombic function for an 

electrostatic interaction and a Lennard-Jones-9-6 function for the van der Waals 

term. 

3.3 Molecular Dynamics Methods 

Molecular dynamics (MD) is a deterministic method that integrates Newton’s 

equations of motion for all particles in a system in order to obtain new 

configurations. This method allows the time-dependent properties of the system. The 

force on a moving particle is represented in Eqn.3.9, where m is the mass, a is the 

acceleration, and F is the force on the particle. 

iii amF                                                                                                                   (3.9) 

Acceleration can be defined as: 

2

2

dt

rd

m

F
a i

i

i

i                                                                                                       (3.10) 

where, r represents the position of the particle and t is time. This equation is the basis 

of dynamic behavior. By integration of Eqn. 3.10 with respect to time (Eqn.3.11), 

applying the initial condition (Equation 3.12), (v=vi at t=0, where v is the velocity), 

and once again integrating with respect to time, Equation 3.13 is obtained, 

1ct
m

F

dt

dr

i

ii 




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



                                                                                                     (3.11) 

ivc 1                                                                                                                     (3.12) 

2

2

2
c

ta
tvr i

ii                                                                                                   (3.13)  

where c2 is the initial position of the particle. Using the last equation, it is possible to      

calculate the position of the particle only with its initial velocity and acceleration 

[41]. 

Different types of algorithms can be used to solve the equation of motion. Verlet 

algorithm and its modifications are the most frequently used ones. Verlet algorithm is 

based upon Taylor series expansion (Equation 3.14-16): 
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                                                          (3.15) 

The combination of these equations gives the Verlet algorithm (Equation 3.16): 

      2

2

2

2 t
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rd
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                                                     (3.16) 

As an advantage, this algorithm allows determination of the molecular positions 

without velocity calculation. However, velocities are fundamental in kinetic energy 

calculation.  So that the velocity can be obtained from Equation 3.17. 
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                                                                                  (3.17) 

The Verlet is time reversible and has negligible energy drift for long times, this is 

essential in order to describe systems with constant energy. As a result the algorithm 

conserves energy for long time steps. Higher order algorithms let usage of larger 

time steps, but in general they have large long-time energy drift and this issue 

requires more calculation time [42].  

The velocity term is one step behind the coordinates. In order to take this concern 

away, some modifications are applied to the algorithm. The modified algorithms are 

the Leap-frog Verlet Algorithm and the Velocity Verlet Algorithm. In Leap-frog 

Algorithm even velocity calculations are provided at half time intervals resulting in 

new position calculations, velocity and positions are still not defined simultaneously. 

Velocity Verlet Algorithm makes it possible to calculate both velocity and the 

position at the same time (Equation 3.18-20) [41-43]. 
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For realistic representation of an ensemble the equation of motion has to be adjusted.  

This adjustment should comprise a thermostat and/or a barostat. Various methods 

have been developed to control system temperature and pressure.  Simple velocity 

scaling, heat-bath coupling, Berendsen, Andersen, Nosé and Hoover are the basic 

methods that used for temperature control. Modified methods of Berendsen, 

Andersen, Hoover and Constraint are employed for pressure control.  

In this study Berendsen method was used as both thermostat and barostat. With the 

Berendsen thermostat the system is connected with a heat bath and the deviation of 

system temperature is adjusted with a time constant τ that is added to the equation of 

motion [44].  



TT

dt

dT 
 0                                                                                                           (3.21) 

Next, all velocity are corrected by the factor: 
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Similar to the temperature coupling, with Berendsen barostat pressure fluctuation is 

fixed with a time constant τp term. 

p

PP

dt
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


 0                                                                                                          (3.23) 

To correct cell size variations, cell volume is rescaled by a factor η. The coordinates 

are regulated by η
3
. This rescaling factor is: 
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                                                                                         (3.24) 

where β is isothermal compressibility.  

The advantage of Berendsen control method is that it has little influence on kinetics 

and does not induce any oscillation in dynamic properties [45].  
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3.4 Monte Carlo Methods 

The Monte Carlo (MC) method is a stochastic technique that is based on the use of 

random numbers and probability statistics. By applying MC methods, large and 

complex systems can be described in a number of random configurations. These 

configurations are generated by random changes of species position, both with 

suitable orientations and conformations[46].  

In an MC simulation, the following steps are carried out respectively; a random trial 

configuration is generated initially, then for this trial configuration changes in energy 

and other properties are calculated, and an acceptance criterion is constituted, next 

the acceptance criterion is compared to a random number and the trial configuration 

is either accepted or rejected. 

Sampling rule is one of fundamental term of MC method. Two types of sampling 

includes in MC method; simple sampling and importance sampling. In simple 

sampling technique, each point has equal probability. However not all point 

contributes to the solution equally, some have larger and some have smaller 

proportion therefore, sampling rule is an advantage where contribution to the 

solution is a lot. This type of sampling is called “importance sampling”. The 

difference sampling types is shown in the integral expressions in Equations 3.27-28. 

Simple sampling, 
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Importance sampling,  
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                                                                                        (3.27) 

In the equations above, p represents the probability and f represents the function that 

is integrated. It is obvious from equations that all points contribute the solution with 

the reverse of the probability in importance sampling.  

In MC method, there are different types of MC moves: translation, rotation and 

volume change, etc.  Translation is one of the MC moves in which there is no change 

in the internal conformation of the molecule. It is limited with monatomic molecules 

in the NVT ensemble[47]. In the rotational MC move, the molecule moves according 
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to  a random direction and a random angle. In rotational moves, effects of angle 

torsion, angle bending and bond stretching are conserved because the molecule is 

taken as a rigid body. Volume change is occured in order to avoid volume 

fluctuations. In this move the simulation box either expands or shrinks but the center 

of mass do not change.  

A molecule cannot be built partially or totally by using the Metropolis algorithm 

therefore, Configurational bias Monte Carlo (CBMC) method is a good way to build 

flexible, linear or branched molecules. CBMC is also used with insertion and 

deletion, transfer, partial regrowth, reptation and displacement moves [47].  
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4.  SIMULATION STUDY 

4.1 System  

In this study, the structural characteristics, gas separation properties and structure-

solubility relationship of 3,5-diaminobenzoic acid (DABA) containing polyimides 

(PIs) and their copolyimide were aimed to investigate via molecular simulation tools. 

The PIs and their copolyimide are comprised of 4,4-hexafluoroisopropylidene-

diphthalic anhydride (6FDA) and 3,3’,4,4’-benzophenone tetracarboxylic 

dianhydride (BTDA) as dianhyride and DABA as diamine. Therefore, simulations 

included PI matrices of 6FDA-DABA, BTDA-DABA and 6FDA/BTDA-DABA. 

The chemical structures of monomers are given in Figure 4.1. 

 

Figure. 4:1 Structures of monomers used in simulation study. 

The collaboration of polar groups (-COOH) in DABA moiety leads an increase in the 

plasticization resistance in polyimide membranes [48] and constitutes segmental 

packing [49]. The functional group of 6FDA limits torsional movement of polymer 

chain that results increasing in free volume, thereby, permselectivity and 

permeability [23]. Furthermore, previous studies showed that BTDA have 

outstanding thermal and mechanical properties over a large range of temperatures 

[50]. Consequently,  the structure-solubility relationships of promising polyimide and 
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copolyimide membranes containing 6FDA, BTDA and DABA moeities were 

predicted by the atomistic molecular simulation as herein described.   

4.2 Methodology 

All simulations were performed using the Accelrys Materials Studio 4.1 and 5.1 

software package. First, the random configurations of 6FDA-DABA, BTDA-DABA 

and 6FDA/BTDA-DABA matrices were generated by “Amorphous Cell” module. 

Then, the characteristic properties such as glass transition temperature (Tg), d-

spacing value, cohesive energy density (CED), radius of gyration (Rg), fractional free 

volume (FFV), accessible free volume (AFV), and the distribution of dihedral angle 

of the dianhyride and diamine linkage of PI matrices were estimated using the 

analysis tools provided by software. Finally, in order to determine the solubility 

coefficients, solubility selectivities and sorption isotherms of sorbate molecules, 

“Sorption” module was used.  

Intermolecular and intramolecular interactions were modeled using the COMPASS 

forcefield in all simulations. To estimate the van der Waals interactions atom-based 

calculations were used. The cutoff distance was set as the half of the lattice length of 

simulation box to decrease the computation time by restricting the recalculation of 

non-bond energies of the pairs of PI structures. The Columbic interactions were 

evaluated by the Ewald summation method with an accuracy of 10
-3

. Velocity Verlet 

algorithm was used to integrate the equation of motion with time step of 1 fs 

throughout all MD runs. Both temperature and the pressure were controlled by 

Berendsen method. Grand Canonical Monte Carlo (GCMC) ensemble in which 

volume, temperature and chemical potential of the system is fixed was used in all 

sorption simulations.  

In this section, the simulation protocols of construction and characterization of PI 

matrices and sorption of O2, N2, CH4, CO2, C3H6 and C3H8 in PI matrices will be 

explained by subheadings. 

4.2.1 Construction and characterization of polyimide matrices  

The first stage was the construction of the initial structures of the dianhyride and the 

diamine moieties, which were then optimized geometrically. Next, the repeat unit of 
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polymer chain was created by linking the monomer structures. To represent the real 

conformation of polymer chains, large system sizes were prefered. The PI chain of 

6FDA-DABA consisted of 80 repeat units (4002 atoms) whereas the model for 

BTDA-DABA included 120 repeat units (5162 atoms). 6FDA/BTDA-DABA chain 

contained 80 repeat units (3862 atoms) and the ratio of 6FDA to BTDA is 3:1.  

For each polyimide two different PI chains with the same number of repeat unit were 

constructed. The first one was constructed by setting the torsion of polymer chain to 

180O and the other was constructed by setting them randomly.  

PI matrices contain many rings and side groups which may result producing ring 

catenations and spearing in PI chain during the packing process. Therefore in order 

to eliminate these potential problems the structures were gradually compressed that 

the density was ramped up from 0.1 g/cm
3 

to target density and 10 to 250 methanol 

molecules were added randomly into the simulation box. After reaching the target 

density, additional molecules were removed and
 
to adjust the coordinates and the cell 

parameter of PI matrix, minimization of the models were performed. To obtain 

optimized density the packed models were subjected some compression and 

annealing procedure which is provided by Heuchel et al. [51]:  

 The compression was run for 5 ps at 5000 bar via NPT-MD.  

 The annealing was run for 20 ps at 600 K and then at 300 K via NVT-MD.  

 An NPT-MD simulation was performed for 20 ps at 308 K and 1 bar to check 

packing stability. After that run, the density differs from the actual one by 

more than 20 %. In this case, prior compression and annealing simulations 

should be repeated until the difference reaches to 6%.  

 Finally, for data production 300 ps MD simulation was run in an NPT 

ensemble at 308 K and 1 bar. 

The structural properties of constructed simulation cells were estimated by using 

appropriate modules and tools that software provides. These structural properties 

consist of radius of gyration, d-spacing, cohesive energy density, fractional free 

volume, backbone rigidity, and the glass transition temperature.   

The distance between the parallel lattice planes of polymer chains (d spacing) was 

determined from x-ray scattering pattern and calculated by using Bragg’s equation 

[52].  

 sin2dn                                                                                                             (4.1) 
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where n is the order of a reflection, λ is the wavelength, d is d-spacing, and θ is the 

angle between the incident beam and a lattice plane known as the Bragg angle. The 

x-ray analyses were obtained as a function of the scattering vector (1/Å) which can 

be converted to the scattering angle (2θ) through the Eq.4.2.  






sin4
                                                                                                (4.2) 

Radius of gyration (Rg) describes the overall spread of the molecule and is defined as 

the root mean square distance of the collection of atoms from their common center of 

gravity. It shows the chain configuration and the distance where polymer matrix 

packed firmly. Rg is formulated as,  
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where mi is the mass of atom i, si is the distance of atom i from the center of mass, 

and N is the total number of atoms. 

The cohesive energy is defined as the increase in energy per mole of a material if all 

intermolecular forces are eliminated. The CED corresponds to the cohesive energy 

per unit volume. When calculating the cohesive energy density for a simulated 

polymer, it is important to take the non-bond potential into account. So CED can be 

represented as: 

V

EE
CED

PBCnonPBC 
                                                                                           (4.4) 

where EPBC denotes energy calculated with periodic boundary, Enon-PBC denotes 

energy calculated without periodic boundary and V is the volume of the system.  

The fractional free volume of PI matrices were calculated from the following 

equation: 

  TT VVVFFV /0                                                                                                (4.5) 

where VT is the specific volume of a polymer at temperature T. V0 is the volume 

occupied by the polymer chains and it is calculated from the van der Waals volume 

(Vw ) [53]. 

V0=1.3Vw                                                                                                                       (4.6) 
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The rigidity of polymer backbone was estimated from the torsion distribution of the 

linkage between the functional groups of dianhydride and diamine. 

The glass transition temperature (Tg) was determined by the volume change of PI 

matrix as a function of temperature. The system volume was procured through a 

series of subsequent MD runs in the NPT ensemble in which temperature varied from 

700 to 450 K with 25 K cooling rate. At each temperature, the system was 

equilibrated two times by 50 ps runs and the average volume was obtained from the 

last 50 ps production. Volume and corresponding temperature were fitted as a 

straight line. The Tg was the intercept point of two straight lines that have different 

slopes (Figure 4.2). The polyimide chain in glassy state has low mobility and 

unrelaxed volume thus the volume change in this state is low whereas in rubbery 

state the polyimide has mobile chain and relaxed volume thus the volume change is 

high.  

 

Figure 4.2: Polyimide volume as a function of temperature. 

4.2.2 Sorption in polyimide matrices 

The sorption behaviour of O2, N2, CH4, CO2 as well as C3H6 and C3H8 on the PI 

matrices were predicted. The sorption simulations were accomplished by using 

“Sorption” module, which allows simulating the sorption of a pure sorbate or mixture 

of sorbates in a sorbent framework.  

In real sorption experiments, the equilibrium of system between the sorbate and the 

sorbent is reached when the temperature and the chemical potentials are equal [47]. 

Therefore, to determine equilibrium concentration inside the PI matrices only the 
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temperature and the chemical potential in gas molecules have to be known. This is 

possible only with employing GCMC ensemble in which temperature and chemical 

potential of the system is fixed and the number of particles can be fluctuated during 

the simulation. 

Depending on the structure of sorbate molecules, two different Monte Carlo 

algorithms were used. While Metropolis algorithm was used for the sorption of small 

gases (CO2, CH4, N2, O2), for hydrocarbons Configurational Bias algorithm was 

prefered. The structures of small gases are rigid so Metropolis algorithm in which 

only body translations and reorientations are introduced is proper for sorption 

calculations. However, hydrocarbons are large and flexible structures so 

configurational bias algorithm that includes torsional degrees of freedom as well as 

translations and reorientations is useful than Metropolis algorithm.   

Simulation conditions for sorption were chosen from the literature. While 

simulations for CO2 and CH4 were carried out at 35ºC and 10 atm pressure, N2 and 

O2 sorption were performed at 35ºC and 2 atm pressure. In addition, the sorption 

simulations of hydrocarbons were performed at 50 ºC and 2 atm pressure. The 

software allows sorption simulations by using fugacity values thus pressure values 

were converted to fugacity for each gas.  

CO2, propylene and propane are condensed gases thus they tend to plasticize 

polymeric membranes.  In consequence of polymer swelling, plasticization happens. 

To reproduce the plasticization effects of CO2, C3H6 and C3H8, sorption-relaxation 

cycles were applied until the concentrations of those molecules converged to each 

other. At every single cycle, the polymer matrix was loaded with sorbate molecules 

corresponding to its equilibrium capacity at the considered pressure, and then NPT-

MD simulation runs were applied for 40 to 200 ps to obtain an equilibrated matrix. 

Next, the sorbate molecules were removed and the cycle was repeated.  

Solubility coefficient (Si) is the ratio of the volume of sorbed molecule at standard 

temperature and pressure (STP) to the volume of the polymer and the pressure. It was 

calculated by the following formula: 

   
        

            
 

        
  

              

            
                                                                  (4.7) 

 

where; 
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Vsorbate; total volume of sorbate gas (cm
3
) 

Nsorbate; the number of sorbate gas (molecule) 

NA; Avogadro’s number (6.02×10
23

 molecule/mol) 

Vsorbate (STP); the molar volume of gas molecules at standard temperature and pressure 

(22400 cm
3
/mol) 

VPI matrix; volume of the PI matrix (cm
3
) 

P; pressure (atm) 

The sorption isotherms for CH4, N2, and O2 in polyimide matrices were performed 

from a series of fixed pressure simulations at different pressures.  

To determine the ideal sorption selectivity in PI matrices, binary gas mixtures 

(CO2/CH4, C3H6/C3H8 and O2/N2) were considered. The partial pressures were 

calculated by setting the percentages of CO2/CH4, C3H6/C3H8 and O2/N2 50-50%, 50-

50% and 21-79, respectively.  

Finally, in order to provide a microscopic picture of the local interatomic 

environment between sorbates and PI matrices, radial distribution analyses of CO2 

loaded PI matrices and accessible free volume distribution analyses of CO2, 

CO2/CH4, C3H6, C3H8 and C3H6/C3H8 loaded PI systems were carried out. 
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5.  EXPERIMENTAL STUDY 

5.1 Materials 

In polyimide synthesis, in order to control the molecular weight some critical 

precautions and requirements should be employed. Achieving high molecular weight 

polyimide is possible when high purity monomers, anhydrous solvents, and dry 

equipment are used during the synthesis. In order to fulfill these important 

requirements, monomers were purified and dried in a vacuum oven, while solvents 

were dehydrated, and glassware was dried and purged with N2 before charging with 

solvents and monomers.  

The purity levels of solvents were greater than 99.5 % so they were used without 

preliminary purification. Properties and chemical structures of solvents are given in 

Table 5.1. 

Table 5.1: Properties of the solvents used in the synthesis of polyimide. 

 1-Methyl-2-
Pyrrolidinone 

(NMP) 

1,4-
Dichlorobenzene 

(DCB) 

Methanol 
(MeOH) 

Supplier Reidel-de Haën Merck Merck 

Empirical Formula C5H9NO C6H4Cl2 CH4O 
Molecular Weight 

(g/mol) 99.13 147.00 32.04 
Density (g/ml) 

(20°C) 1.031 1.306 0.791 

Boiling point (oC) 204.3oC / 760 
mmHg 

174oC / 760 
mmHg 

64.7oC / 760 
mmHg 

Purity >99.5 % >98 % 99.9 % 

Structure 
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1-Methyl-2-Pyrrolidinone (NMP) was the major solvent used in the synthesis of 

polyimide. Due to its hygroscopic feature, this solvent was dehydrated by using 4A 

molecular sieves and then was sealed with a glass stopper.  

1,4-Dichlorobenzene (DCB) was used during imidization to form an azeotrope with 

water, which should be removed from the reaction medium subsequently. DCB was 

dehydrated by using 4A molecular sieves and then was sealed with a glass stopper. 

Methanol (meOH) was used for precipitating polyimide from NMP and DCB. 

Properties of the monomers 3,3’,4,4’-Benzophenone tetracarboxylic dianhydride 

(BTDA) and 3,5- Diaminobenzoic acid (DABA) are  summarized in Table 5.2.  

BTDA was used as received without further purification with a purity level of >97%. 

It was vacuum dried at 105 oC for 3 days prior to use in the synthesis.  

DABA was purified by recrystallization from water, which is described in the next 

section. Prior to use, purified DABA was vacuum dried at 50 oC for 5 days. 

Table 5.2: Properties of the monomers used in the polyimide synthesis.  

 
3,3’,4,4’-Benzophenone 

tetracarboxylic dianhydride 
(BTDA) 

3,5- Diaminobenzoic 
acid (DABA) 

Supplier Merck Fluka 

Empirical Formula C17H6O7 C7H8N2O2 
Molecular Weight (g/mol) 322.23 152.15 

Melting point (oC) 220-223 195-198 

Purity >97 % > = 90 % 

5.2 Monomer Purification 

Due to the oxidation of amino groups, DABA was recrystallized from water 

according to following procedure [54]:  

 100 ml three necked round-bottom flask was employed as glassware. Then a 

condenser was inserted on the middle neck, a septum, through which N2 

purges and a thermocouple was introduced, was inserted into other neck and a 

rubber stopper was inserted into the last neck of the flask.  

 Distilled water was boiled in another flask.  

 DABA to be purified added to the three necked round-bottom flask.  
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 ~ 20 ml hot water per gram of DABA, which is an appropriate amount for 

complete dissolution of monomer, was added to the flask.  

 The solution was heated up to ~95°C.  

 The dissolved hot solution was poured first into heated syringe, which has 0.2 

µm filter, and then into the new flask through that 0.2 µm filter.  

 The solution was allowed to cool slowly and then was put under ice for 1 

hour.  

 To recover crystals, the solution was filtered on cold filter paper.  

This recrystallization procedure was repeated until the filtrate was minimized and 

beige color DABA was obtained.  The purified DABA was vacuum dried at low 

temperatures and was stored in a sealed dark colored glass bottle. 

5.3 Polyimide Synthesis 

The synthesis of polyimide is a step polymerization and is proceeding according to 

the principle of condensation reaction. The procedure of synthesis of polyimides has 

been described in the literature [55].  

In this study, BTDA-DABA was synthesized via two-step reaction by one-pot rule. 

At the first step, poly (amic acid) was derived in an aprotic solvent from the reaction 

of equimolar amount of diamine and dianhyride. The nucleophilic attack of the 

amino group on the carbonyl carbon of the anhydride group leads to the formation of 

the poly (amic acid). At the second step, –OH from the acid group and –H from 

amine group of poly (amic acid) were removed as water from the reaction medium 

by closing the ring structure of poly (amic acid) then chemically stable polyimide 

was formed (Figure 5.1). 

 

 

 

 

 

 

 

 



32 
 

Step 1: Poly(amic acid) formation  

 
Step 2: Ring Closure 

 

      Figure 5.1: Two step condensation reaction for polyimide synthesis. 

First, equiamolar amounts of BTDA and DABA monomers were weighed. Poly 

(amic acid) formation was carried out at room temperature by first charging a 100ml 

three-necked round bottom flask, through which N2 purged, with the DABA, NMP 

and a stir bar. After DABA was dissolved in the solvent, the BTDA was added 

portionwise to the flask. Equilibrium considerations needs higher concentrations, but 

the viscosity of solution limits the reaction kinetics if the concentration is too high 

[54] therefore the amount of NMP was adjusted such that the monomer concentration 

in the reaction solution was 15 % by weight. The conversion of the dianhydride and 

diamine to the desired poly (amic acid) proceeded with continuous stirring for 48 

hours at ambient temperature. 

After 48 hours, when poly (amic acid) formation was completed, the Dean-Stark trap 

and a condenser were inserted to the three-necked round bottom flask (Figure 5.2). 

Then DCB was added to the reaction medium. The molar ratio of NMP to DCB was 

4:1. After stirring this solution for 24 hours with a nitrogen purge at 180oC the 

polyimide was formed. During cyclodehydration of the poly (amic acid) water was 

formed in the reaction medium and it was removed with the Dean-Stark trap and 

condenser by forming an azeotrope with DCB. In order to maintain a constant 

solvent volume in the reaction medium, DCB that is removed during azeotrope was 

refilled by using Dean-Stark trap.  
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Figure 5.2: Equipment set-up for the polyimide synthesis adapted from Ref. [56]. 

After imidization, the solution was cooled and then precipitated out of the solution of 

NMP and DCB by using methanol and the recovered precipitate was dried at first 

80oC for 24 hours and then 150oC in a vacuum oven for another 24 hours. The 

resultant polyimide was stored in dark-colored glass bottle in desiccator.  

During the poly (amic acid) formation, presence of water is a considerable problem. 

If water hydrolyzed dianhyride, the stoichiometry is altered and high molecular 

weight polymer cannot be formed. To eliminate such issues following precautions 

should be taken:  

 All glassware including reactor should be dried  

 Prior to introduce diamine, N2  should pass through the reactor  

 The employed solvents which have hygroscopic feature should be dehydrated 

 Monomers should be dried in vacuum oven prior to use. Synthesis process 

should not be started until it is ensured that diamines, which are highly 

hydrophilic, are dry.    
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 The weighing procedure of monomers and solvents should be done very 

quickly by using covered weighing bottle so that air contact of chemicals can 

be shortened as much as possible.  

Moreover, monomers are sensitive chemicals. Therefore, in order to keep their purity 

level high, they should not be exposed to air or light for a long time. The reactor 

should be wrapped with foil paper during the synthesis of polyimide to eliminate the 

effect of light; otherwise, chain fragmentations and side reactions may take place.  

5.4 Characterization of Polyimide 

Various experimental techniques were used to characterize the synthesized polyimide 

structure. In this section, those characterization techniques with employed 

equipments and experimental conditions were described.  

5.4.1 Fourier transform infrared spectroscopy (FTIR) 

During the synthesis, key functional groups of polyamic acid and polyimide were 

quantitatively identified by employing Perkin-Elmer Spectrum One Fourier 

Transform Infrared (FTIR) Spectroscopy. Formation of functional groups of 

polyamic acid, such that NH-C groups, aliphatic groups and –COOH were identified 

at 3500 cm-1, 2840-3180 cm-1, and 1670 cm-1, respectively. The formation of 

polyimide structure was observed from aromatic imide peaks at 1780 cm-1, 1720cm-1, 

and 1350 cm-1. Furthermore, the formation of by-products such as iso-imides, 

anhydrides, and amines were controlled at 921-934 cm-
1, 1820 cm-1, and 3200 cm-1, 

respectively. 

5.4.2 Thermal gravimetric analysis (TGA) 

Thermal stability, sample purity, and water content of polyimide were determined 

using Perkin-Elmer Thermal Gravimetric Analysis (TGA) instrument. In TGA, a 

sensitive balance is used to observe the weight change of a polymer as a function of 

temperature.  Experimental runs were done at 20oC per minute heating rate from 

50oC to 550 oC under nitrogen purge.  
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5.4.3 Differential scanning calorimetry (DSC) 

The glass transition temperature (Tg) of the polyimide was measured using a Perkin-

Elmer Differential Scanning Calorimetry (DSC) 4000 instrument. DSC measures the 

difference in heat absorbed or released by a sample, as compared to an inert 

reference, as both are heated, cooled or held at constant temperature. During the 

heating process, the polymer will absorb a large amount of heat if glass transition 

occurs, and then the instrument keeps the temperature constant by augmenting the 

heat flow through the pan. Experimental runs were performed with two consecutive 

heating– cooling cycles. The first heating was to eliminate thermal annealing history, 

and the second heating run was recorded for data analysis. The measurement was 

conducted at a heating rate of 20°C/min from room temperature to 400°C under a 

nitrogen purge.  

5.4.4 Wide-angle x-ray diffraction (WA-XRD) 

Wide-angle X-Ray diffraction (WA-XRD) was used to qualitatively determine the 

interchain spacing differences in polyimide. The measurements were performed at 

room temperature using a PANalytical X’Pert PRO diffractometer operating at 40 

kV, 30 mA. The X-Ray source was nickel filtered CuKα radiation with 1.54 Å 

wavelength. The distance between the polymer chains (d spacing) was determined by 

using Bragg’s equation (Eqn.4.1). 
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6.   RESULTS AND DISCUSSION 

In this section, simulation and experimental results are given. Simulation results 

include characterization of 6FDA-DABA, BTDA-DABA and 6FDA/BTDA-DABA 

matrices as well as their sorption behavior and structure-solubility relationships. 

Experimental results related to synthesized BTDA-DABA include characterization of 

polyimide (PI) and the comparison with simulation results.  

6.1 Simulation Results 

In the first part of this study, structural properties of 6FDA-DABA, BTDA-DABA 

and 6FDA/BTDA-DABA were estimated by using molecular simulation tools to 

better understand the relationship among the structural properties of the polyimides 

and the corresponding copolyimide. All simulations were carried out using the 

Accelrys Materials Studio software, with all molecular interactions being modeled 

using the COMPASS force field.   

The model for 6FDA-DABA consists of 80 r epeat units in one PI chain, and the 

lengths of the resulted lattice vector are about 37 Å. The random configuration of 

BTDA-DABA includes 120 repeat units with about 40 Å lattice lengths. The lattice 

lengths of 6FDA/BTDA-DABA, which consists of 80 repeat units, are 36 Å and the 

ratio of 6FDA/BTDA in copolyimide is 3:1. The selection of this ratio is based on 

the study of Halitoğlu et al. [4]. After varying 6FDA/BTDA ratio as 1:1, 1:3 and 3:1, 

they have found that the permeability coefficients of gases in 6FDA/BTDA-DABA 

(3:1) are higher. 

6.1.1 Characterization results 

In order to predict structural properties of constructed PI models, d-spacing value, 

fractional free volume, radius of gyration, cohesive energy density, torsional 

distribution and the glass transition temperature of each polyimide and copolyimide 

were estimated.  
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The d-spacing values, which show the distance between the parallel lattice planes of 

polymer chains, were obtained from x-ray scattering of PI matrices. Figure 6.1 and 

6.2 show the x-ray patterns of 6FDA-DABA and BTDA-DABA, respectively. 

Config-1 is the PI matrix whose chain was constructed by fixing the torsion to 180o 

and config-2 refers the PI matrix that is created with random torsion.  

 
Figure 6.1: X-ray patterns of 6FDA-DABA. 

 
Figure 6.2: X-ray patterns of BTDA-DABA. 

The first configurations of each polyimide show two sharp peaks in their x-ray 

pattern which means the models have 2 di fferent d-spacing values for those 

configurations. However, the PI matrices that were constructed by random torsion 

give only a single peak and d-spacing value. The sharpest peak of first configurations 

presents almost at same scattering angle with the second configurations. This 

indicates that PI matrices that constructed by 180  o torsion is more rigid than those 

whose torsion was set randomly. Therefore, our compression and annealing 

procedure for geometry optimization of DABA containing PI matrices with 180o 

torsion were not carried out sufficiently. 
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Figure 6.3 shows x-ray pattern of polyimides and copolyimide whose torsions were 

set randomly. 

 
Figure 6.3: X-ray patterns of polyimides and copolyimide 

X-ray patterns of 6FDA-DABA, BTDA-DABA and 6FDA/BTDA-DABA display  

sharp peaks at 2θ =16, 20 and 17, respectively. This scattering angles corresponds to 

d-spacing values of 5.37 Å, 4.5 Å and 5.23 Å. Due to the  bulky -C(CF3)2- groups, 

6FDA based polyimide and copolyimide display higher interchain spacings. It is 

obvious from the figure that 6FDA/BTDA-DABA has almost same x-ray pattern 

with 6FDA-DABA and its d-spacing value is in between the corresponding values of 

its polyimides. Although d-spacing value of 6FDA-DABA is in good agreement with 

the value available in the literature, d-spacing value of BTDA-DABA differs from 

value reported by Tsuzumi et al.[56] as presented in Table 6.1.  

Fractional free volumes, cohesive energy densities, radius of gyrations and glass 

transition temperatures are given in Table 6.1 w ith respect to experimental data 

reported in literature.  

Free volume is the result of entangled polymer chains and the restriction in 

intermolecular interaction thus chain rotation [57]. As shown in Table 6.1 t he 

fractional free volumes are in the order of BTDA-DABA > 6FDA/BTDA-DABA > 

6FDA-DABA. This order indicates that BTDA-DABA has more rigid backbone 

compared to 6FDA-DABA and 6FDA/BTDA-DABA. 

Cohesive energy density (CED) represents the packing properties of polymer chain. 

In the case of polymer chains packed closely, cohesive energy density increases. 

BTDA-DABA has the highest CED value, this indicates that this polyimide packed 
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more tightly than others. Although, the CED value of 6FDA/BTDA-DABA is 

between its corresponding polyimides, the values is close to 6FDA-DABA. 

Table 6.1: Structural properties of 6FDA-DABA, BTDA-DABA and 6FDA/BTDA-
DABA 

 6FDA-DABA BTDA-DABA 6FDA/BTDA-DABA 

d-spacing 

(Å) 

Exp 5.37 [23] 11.8-7.4 [56] - 

Config-1 7.11-5.03 6.6-4.8 - 

Config-2 5.39 4.5 5.23 

FFV Exp 0.175 [23] 0.104 [56] - 

Config-1 0.190 0.187 - 

Config-2 0.192 0.203 0.197 

CED 

(Mcal/m3) 

Exp 188 [23] 267 [56] - 

Config-1 41 50 - 

Config-2 38 64 39 

Rg (Å) Exp - - - 

Config-1 19.5 23.4 - 

Config-2 19.8 24.8 19.1 

Tg (oC) Exp 348 [23] 298 [56] - 

Config-1 348 352 - 

Config-2 346 349 380 

 

Radius of gyration (Rg) describes the overall spread of the molecule and is used to 

distribute the area of PI matrix around its centroidal axis. If the concentrated area is 

far from the centroidal axis, PI has greater Rg value which leads resistance to 

bend[58]. The Rg of BTDA-DABA is around 24 Å which exceeded that value of 

6FDA based polyimide and copolyimide. This result shows that BTDA-DABA 

resists bending which means the rigidity of this polyimide with respect to 6FDA 

based polyimides is higher.  
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In order to determine the glass transition temperatures, the volume of PI matrices that 

was obtained from subsequent NPT-MD runs was plotted as a function of 

temperature for both polyimides and the copolyimide (Figure 6.4-5).  

 

 
Figure 6.4: Volume of PI matrices as a function of temperature (a) 6FDA-DABA, 

(b) BTDA-DABA and (c) 6FDA/BTDA-DABA.  
 

Tg value was estimated by the interception point of two straight lines with different 

slopes that are related to glassy and rubbery state of polyimide. The glass transitions 

of polyimides and copolyimide are above 300°C. Although two different models 

were created for 6FDA-DABA and BTDA-DABA, both configurations for each 

polyimides exhibit almost same glass transition temperature as shown in Table 6.1.   

Even though polyimides show similar behaviors, glass transition temperature of 

BTDA-DABA which is 349oC is higher than that of the 6FDA-DABA that is 346oC. 

The glass transition temperature of aromatic polyimides is correlated with the 

chemical structure especially chain stiffness of the polyimide [10] thus the carbonyl-

bridge of BTDA dianhyride can be suggested more rigid than the 

hexafluoroisopropylidene bridge of 6FDA. This result agrees the study of Wang et 

al. [22]. Both carbonyl and hexafluoroisopropylidene bridges restrict the rotation of 

6FDA/BTDA-DABA hence in comparison with corresponding polyimides, 

copolyimide exhibits higher glass transition temperature at 380°C.   
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Like d-spacing, Tg value of 6FDA-DABA shows similarity with the experimental 

value that is 348 °C reported by Park et al [23]. whereas there is a discrepancy with 

the data for BTDA-DABA that is reported by Tsuzumi et al. [56] as 298oC.  

The rigidity of PI backbones were estimated from the torsion distributions of the 

bridging group of dianhyrides and the linkage between amino groups of dianhydrides 

and diamine. Bridging groups are the carbonyl (C=O) of BTDA and the 

hexafluoroisopropylidene (C(CF3)2) of 6FDA.  Figure 6.5 indicates the torsion 

distribution of bridging groups and it is seen that the distribution of BTDA-DABA is 

narrower than 6FDA-DABA. Narrow distribution is the evidence of restricted 

rotation thus this result confirms that carbonyl-bridge of BTDA more rigid than 

C(CF3)2 of 6FDA  dianhyride.     

 

Figure 6.5: Torsion angle distribution of bridging groups of 6FDA-DABA 
and BTDA-DABA. 

Figure 6.6 shows the torsion distribution of the linkage between amino groups of 

dianhydrides and diamine. It is seen that the distributions are almost same. This is 

because the linkage between dianhydrides and diamine of PI matrices are identical 

for both polyimides and copolyimide.  
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Figure 6.6: Torsion angle distribution of linkage between dianhyrides and diamine 
of polyimides and copolyimide. 

6.1.2 Sorption results 

The sorption behavior of O2, N2, CH4, CO2, C3H6 and C3H8 on the PI matrices were 

predicted by using Grand Canonical Monte Carlo (GCMC) simulation in which 

temperature and chemical potential of the system is fixed. Metropolis MC algorithm 

was used for the sorption of small gases (CO2, CH4, N2, O2), for hydrocarbons 

Configurational Bias MC algorithm was preferred. To reproduce the plasticization 

effects of CO2, C3H6 and C3H8, sorption-relaxation cycles were applied until the 

concentrations of those molecules converged to each other. 

Solubility coefficients and selectivities of pure gases as w ell as m ixed pairs were 

calculated. Mixed gas simulations were performed by using partial pressures of 

individual gases. Partial pressures were calculated such that the gas mixture contains  

21/79 % for O2/N2, 50/50 % for CO2/CH4  and 50/50 % for C3H6 /C3H8. 

Table 6.2 shows the solubility coefficients and selectivities of small gases in the PI 

matrices. For all gases, the solubilities are very close to one another in all polyimides 

but solubility of gases in BTDA-DABA is the highest. As mentioned in the 

characterization results BTDA-DABA has the highest FFV thus it has more 

microvoids than 6FDA-DABA and 6FDA/BTDA-DABA. It can be suggested that 

the introduction of carbonyl bridge in BTDA-DABA backbone enlarge the activated 

zone and the accessible free volume thus the gas molecules are capable to penetrate 

through microvoids. In other words, the increase in FFV results an increase in gas 

solubilities. 
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Both ideal and actual selectivities of gas pairs were calculated. Ideal selectivities 

were obtained by the ratio of corresponding solubilities. For pure gases results are 

similar to each other for all polyimides. But for mixed gas case, the selectivity of 

BTDA-DABA for CO2/CH4 mixture is about twice higher than 6FDA-DABA. 

 

Table 6.2: Solubility coefficients and solubility selectivities of O2, N2, CO2 and CH4. 

 S (cm3 (STP) / cm3 atm) Solubility Selectivity 

 O2 N2 CO2 CH4 
O2/N2 

(21:79) 

CO2/CH4 

(50:50) 

6FDA-DABA    

Pure 3.43 2.20 8.61 1.70 1.56 5.06 

Mixed 3.59 2.07 13.00 0.58 1.74 22.41 

BTDA-DABA    

Pure 4.64 2.93 10.22 1.95 1.58 4.97 

Mixed 4.85 2.88 16.63 0.41 1.69 40.56 

6FDA/BTDA-DABA       

Pure 4.15 2.78 9.20 2.17 1.49 4.24 

Mixed 4.34 2.68 15.55 0.53 1.62 29.34 

 

For each polyimides sorption isotherms of  O2, N2, and CH4 were obtained at 35oC 

(Figure 6.7-8). It can be seen from the figures that N2 and CH4 solubility behaviors of 

each polyimides almost same. Compared to N2 and CH4, O2 can be suggested to be 

the most soluable gas in polyimides, however they show similar manners at low 

pressures. 
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Figure 6.7: O2 and N2 sorption isotherms of polyimides and copolyimide at 35oC. 

 

Figure 6.8: CH4 sorption isotherms of polyimides and copolyimide at 35oC. 

Table 6.3 shows the solubility coefficients and selectivities of hydrocarbons in the PI 

matrices at 50oC, 2 a tm. With respect to its polyimides, solubility of propane and 

propylene of 6FDA/BTDA-DABA is the highest. However the ideal solubility 

selectivity of copolyimide is the lowest. Propane solubility of BTDA-DABA is about 

twice higher than 6FDA-DABA. 
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Table 6.3: Solubility coefficients and solubility selectivities of C3H6 and C3H8 

 S (cm3 (STP) / cm3 atm) Solubility Selectivity 

 C3H6 C3H8 C3H6/C3H8 (50:50) 

6FDA-DABA    

Pure 10.88 7.16 1.53 

Mixed 15.83 6.72 2.36 

BTDA-DABA    

Pure 16.22 13.68 1.19 

Mixed 22.83 10.17 2.24 

6FDA/BTDA-DABA    

Pure 21.29 18.57 1.15 

Mixed 29.09 12.39 2.35 

 

Plasticization leads an increment in gas solubility. This is because swelling after 

dissolution of certain gas molecules affects chain packing thus free volume of 

polymer matrix is increased [17]. Table 6.4 and 6.5 present fractional free volume of 

polyimides after CO2, CO2/CH4, C3H6, C3H8 and C3H6/C3H8 sorption. After the 

sorption of all gases and gas pairs, the increase in FFV of 6FDA/BTDA-DABA is the 

highest which means the copolyimide is the most swollen one with respect to its 

polyimides.  

 

Table 6.4: Fractional free volume of the PI matrices after CO2 and CO2/CH4 sorption 

 
FFV Increase % 

Equilibrated 
unit cell CO2 CO2/CH4 CO2 CO2/CH4 

6FDA-DABA 0.192 0.244 0.239 27 25 

BTDA-DABA 0.203 0.268 0.245 32 21 

6FDA/BTDA-DABA 0.197 0.261 0.248 32.5 26 
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Table 6.5: Fractional free volume of the PI matrices after C3H6, C3H8 and 

C3H6/C3H8 sorption 

 
FFV Increase % 

Equilibrated 
unit cell C3H6 C3H8 C3H6/C3H8 C3H6 C3H8 C3H6/C3H8 

6FDA-DABA 0.192 0.211 0.208 0.220 10 9 15 

BTDA-DABA 0.203 0.231 0.230 0.238 14 13 17 

6FDA/BTDA-
DABA 

0.197 0.252 0.264 0.263 28 34 34 

 

Relaxation to obtain an equilibrated matrix during reproduction of the plasticization 

effects of CO2, C3H6 and C3H8 were done by NPT-MD simulation runs for 40 to 200 

ps.  Figures 6.9-11 demonstrate the CO2, C3H6, C3H8, CO2/CH4 and C3H6/C3H8 

sorption steps of 6FDA-DABA matrix. 

Relaxation of 6FDA-DABA in CO2 and C3H8 plasticization was done by 40 ps  

simulation time whereas 200 ps runs were carried out for C3H6 plasticization. Short 

time relaxation enhances sorption steps thus the time of equilibrium of PI matrix 

extends. Similar results were obtained for BTDA-DABA and 6FDA/BTDA-DABA. 

The CO2, C3H6, C3H8, CO2/CH4 and C3H6/C3H8 sorption steps of these PI matrices 

are presented in Appendix A. 

 

Figure 6.9: CO2, propylene and propane sorption in 6FDA-DABA. 
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Figure 6.10: CO2/CH4 sorption in 6FDA-DABA. 

 

Figure 6.11: C3H6/ C3H8 sorption in 6FDA-DABA. 

As an effect of plasticization, which induced by both C3H6 and C3H8, the 6FDA-

DABA matrix swells during the sorption. As seen from Fig. 6.11 that this effect 

increases the solubility of C3H6 while the solubility of C3H8 in PI matrix decreases or 

vice versa thus the selectivity of membrane system decreases. Similar behaviors for 

C3H6/C3H8 sorption in BTDA-DABA and 6FDA/BTDA-DABA matrices were 

observed and the results are presented in Appendix.  

The percentage of accessible free volume and the probe radius in the 6FDA-DABA, 

BTDA-DABA and 6FDA/BTDA-DABA matrices were obtained as results of the 

probing test method. The accessible free volume was calculated by rolling a probe 

with a given radius. The reason for choosing the probing radius between 0–3.2 Å is 

that the kinetic radii of CO2, CH4, C3H6 and C3H8 are 1.65, 1.91, 2.2, and 2.3 Å [25], 

respectively.  
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Figure 6.12-14 show the accessible free volume distribution of PI and PI/sorbate 

systems. The available free volumes in PI matrices in the absence of sorbate 

molecules are distributed with radius < 0.8 Å where the percentages of accessible 

free volume of empty cells are higher.  An increase of the radius of the probing 

results in a decrease of the accessible free volume this is because gas molecules 

occupy free volumes that are correspond to kinetic radii of gas molecules.  

 

 

Figure 6.12: Accessible free volume distribution of 6FDA-DABA and 6FDA-
DABA/sorbate systems.  

 

Figure 6.13: Accessible free volume distribution of BTDA-DABA and BTDA-
DABA/sorbate systems. 
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Figure 6.14: Accessible free volume distribution of 6FDA/BTDA-DABA and     

6FDA/BTDA-DABA/sorbate systems. 

 

Figure 6.15 shows the accessible free volume distribution of empty cells of 

polyimides and copolyimide, and also their CO2 loaded systems. At probing radius of 

1.6 Å, which is the kinetic radius of CO2, the accessible free volume of  B TDA-

DABA/CO2 system is higher. As mentioned previously, the solubility of CO2 in 

BTDA-DABA matrix is the highest which means interactions between CO2 and 

BTDA-DABA is the strongest, this strong interaction dilates the volume of PI matrix 

thus larger accessible voids appear. 

 

Figure 6.15: Accessible free volume distribution of polyimides/CO2 and 
copolyimide/CO2 systems. 
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Figure 6.16-17 show the accessible free volume distribution of empty cells of 

polyimides and copolyimide, and also their C3H6 and C3H8 loaded systems, 

respectively. At probing radius between 1.6 and 2.0 Å, accessible free volumes of  

6FDA/BTDA-DABA- C3H6 and 6FDA/BTDA-DABA-C3H8 system are higher. 

Solubility of C3H6 and C3H8 in copolyimide is the highest and also copolyimide 

swelled more significant than its polyimides after C3H6 and C3H8 sorption. Therefore 

volume dilatation occurs in copolyimide matrix more than polyimide matrices thus 

more accessible voids appear for copolyimide/ C3H6 and copolyimide/C3H8 systems. 

 

Figure 6.16: Accessible free volume distribution of polyimides/C3H6 and 
copolyimide/ C3H6 systems. 

 

 

Figure 6.17: Accessible free volume distribution of polyimides/C3H8 and 
copolyimide/ C3H8 systems. 
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In order to investigate microscopic view of the interatomic environment of CO2 

solubility in PI matrices, radial distribution analysis were performed. The radial 

distribution function g(r) is pair correlation that describes the quantity of atomic 

density that varies as a function of the distance r  from one particular atom with 

respect to the bulk phase [25]. 

Figure 6.18 shows one 6FDA-DABA repeat unit and the atoms, whose interactions 

with CO2 were estimated. They are defined as F, N1, O1, O2 and O3. F is the 

fluorine in - CF3 group of 6FDA, N1 and O1 are the nitrogen and oxygen in imide, 

O2 and O3 are the oxygen from carbonyl and hydroxyl group of DABA, 

respectively. 

 

 
Figure 6.18: Repeat unit of 6FDA-DABA. 

 

6FDA-DABA matrix is loaded 54 CO2 molecules at first sorption step, after reaching 

the equilibrium the polyimide is loaded 128 CO2 molecules. The number of loaded 

CO2 molecules may shift the interaction sites of PI matrix. In order to account for 

this behavior 128 CO2 loaded polyimide also analyzed by the radial distribution 

function.  

Figure 6.19 shows the g(r) of CO2 around selected atoms of the 6FDA-DABA 

matrix. The location of peaks in g(r) can be used to identify the interaction distance 

between gas molecules and PI matrices. 
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Figure 6.19: Radial distribution functions of CO2 around F, N1, O1, O2 and O3 
atoms of 6FDA-DABA. 

The most distinctive peaks in the presence of 54 CO2 molecules are seen at 3.1 Å, 3.7 

Å and 4.7 Å which correspond to the g(r) of CO2–O1, CO2–O3 and CO2–N1, 

respectively. It indicates that the O1 and N1 atoms in imide and O3 atom from 

DABA are the preferential sorption sites for CO2.  The g(r) of CO2– F and CO2– O2 

show lower peaks which means these atoms are not accessible by CO2 molecules. 

The interaction between CO2 and F atoms is the weakest one. In the presence of 128 

CO2 molecules, distinct peaks are observed at 3.1 Å, 3.1 Å and 3.7 Å which are 

related to O1, O2 and O3 atoms, respectively.  This shows clearly that preferential 

sites shift to carboxyl and hydroxyl group of DABA at high loading.  

The differences between interactions at low and high loading corresponding initial 

and final stages of sorption are shown in Figure 6.20 for each sorption site 

separately. There is no pronounced change in CO2-F and CO2-N1. Interactions 

between CO2-O2 and CO2-O3 increase when CO2 loading increased. The favored 

site that is CO2-O1 shows no change. During loading, CO2 occupies initially to the 

O1 sites of 6FDA-DABA matrix, but after a time these sites are saturated with CO2 

molecules so at high loadings these gas molecules occupy the least preferential sites 

like O2.  
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Figure 6.20: Radial distribution functions of CO2 around F, N1, O1, O2 and  
O3 in 6FDA-DABA/CO2 system at a loading of 54 and 128 CO2. 

 

Figure 6.21 shows one BTDA-DABA repeat unit with chosen atoms whose 

interactions with CO2 were estimated. These atoms are; the nitrogen and oxygen in 

imide, the oxygen of carbonyl and hydroxyl group of DABA and the oxygen of 

carbonyl of benzophenone. They are defined as N1, O1, O2, O3 and O4. 
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Figure 6.21: Repeat unit of BTDA-DABA. 

BTDA-DABA matrix loaded 83 CO2 molecules at first sorption step, and the 

polyimide loaded 198 CO2 molecules when it re ached the equilibrium after 

plasticization. In order to account for the change in interaction sites 198 CO2 loaded 

polyimide also analyzed by radial distribution function.  

Figure 6.22 shows the g(r) of CO2 around characteristic atoms of the BTDA-DABA 

matrix which includes 83 and 198 CO2 molecules in simulation box. It is  clearly 

observed in the g(r) that O1, N1 and O4 show explicit peaks at 3.5 Å, 3.7 Å and 4.7 

Å, respectively in the presence of 83 CO2 molecules. Although this situation 

indicates that CO2 molecules are sorbed initially by O1, N1 and O4 sites, O2 and O3 

atoms also prominently interact with CO2.  

  

Figure 6.22: Radial distribution functions of CO2 around N1, O1, O2, O3 and O4 
atoms of BTDA-DABA. 

In the presence of 198 CO2 molecules, distinct peaks are observed at 3.7 Å which is 

related to O3 as shown Figure 6.22.  This shows clearly that O3 sites of the PI matrix 

interact with CO2 strongly than other sites.  
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The differences between interactions at low and high loading corresponding initial 

and final stages of sorption are shown in Figure 6.23 for each sorption site 

separately.  

 

 

 

Figure 6.23: Radial distribution functions of CO2 around N1, O1, O2, O3 and O4 in 
BTDA-DABA/CO2 system at a loading of 83 and 198 CO2. 

It is obvious in figure that the peak height of CO2-N1 and CO2-O1 decrease as CO2 

loading increases from 83 to 198. This is because that O4 and N1 are strongly 

interacted sites, and they are fully occupied by CO2 molecules. With increasing CO2 

loading, these sites become saturated and CO2 starts to occupy O3 sites that are less 

preferential sites at low loadings. It is particularly obvious for the O3 atoms that the 

peak at around 4Å become sharper when the loading is increased to 198.  
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Repeat unit of 6FDA/BTDA-DABA with chosen atoms whose interactions with CO2 

were estimated is shown in Figure 6.24. These atoms are; the fluorine (F) in –CF3 

group of 6FDA, the nitrogen (N1, N2) and oxygen (O1, O3) in imides, the oxygen 

(O2) of carbonyl of benzophenone and the oxygen (O4, O5) of carbonyl and 

hydroxyl group of DABA.  

 

Figure 6.24: Repeat unit of 6FDA/BTDA-DABA 

The g(r) of CO2 around typical atoms of the 61 CO2 loaded 6FDA/BTDA-DABA 

matrix is shown in Figure 6.25. 

 

Figure 6.25: Radial distribution functions of CO2 around F N1, N2, O1, O2, O3, O4 
and O5 atoms of 6FDA/BTDA-DABA at a loading of 61 CO2 

The most distinctive peaks for 6FDA/BTDA-DABA-CO2 system belong to the g(r) 

of CO2–O2 and CO2–O3 both at 3.1 Å. This shows that O2 and O3 atoms from 

BTDA unit are the favorable sites for CO2 sorption. Furthermore, CO2-N2 and CO2-

O1 show pronounced peaks at 5.3 Å and 2.9 Å, respectively. The O4, O5 and N1 

atoms have relatively weak interactions as seen from the Fig.6.25.  Likewise 6FDA-
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DABA matrix, the g(r) of CO2– F shows lower peak because of limited interaction 

caused by the bulky -CF3 group. 

After increasing loading to 132 CO2 molecules, the strong interactions noticeably 

shift to O5 and N2 sites as shown in Figure 6.26.  Except for F, all atoms interact 

with CO2. 

 

Figure 6.26: Radial distribution functions of CO2 around F, N1, N2, O1, O2, O3, O4 
and O5 atoms of 6FDA/BTDA-DABA at a loading of 132 CO2 

Individual change between the interactions of CO2 and entire typical atoms is shown 

in Figure 6.27.  It is obvious that the peak height of CO2-O2 and CO2-O3 decrease 

as CO2 loading increases from 61 to 132. 

The height of peaks related with CO2-O1 diminishes depending on t he loading.  

These are all because of that O2, O3 and also O1 are the preferential interaction sites, 

and they are fully occupied with CO2 molecules. With increasing CO2 loading, these 

sites become saturated and cannot interact with CO2 molecules. 
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Figure 6.27: Radial distribution functions of CO2 around F, N1, N2, O1, O2, O3, O4 
and O5 in 6FDA/BTDA-DABA/CO2 system at a loading of 61 and 132 
CO2. 
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6.2 Experimental Results 

Th glass transition temperatures (Tg) and d-spacing values of BTDA-DABA that 

were obtained from molecular simulation was compared with experimental data in 

literature. The comparison indicates that the reported Tg and d-spacing values did not 

match from simulation results that obtained. Due to the disaggrement, the synthesis 

and characterization of BTDA-DABA were performed using the procedure outlined 

in the experimental section. 

The synthesis was carried out via two-step polycondensation reaction by one-pot 

rule. First, equimolar amount of dianhydride and daimine react to form a poly (amic 

acid) solution, which is then cyclodehydrated by solution imidization to yield the 

polyimide. Water that is formed during cyclodehydration was removed by 1,4-

dichlorobenzene (DCB).  

Fourier Transform Infrared Spectroscopy (FTIR) was employed in order to observe 

the formation of poly (amic acid) and the conversion of poly (amic acid) to the 

polyimide. The FTIR spectrum of both poly (amic acid) and polyimide were given in 

Figure 6.28.  

 

Figure 6.28: FTIR spectrum of poly(amic acid) and polyimide of BTDA-DABA              

 



61 
 

In poly (amic acid) spectrum, the characteristic absorption bands of acid are 

observed. While 3460 cm-1 indicates amide groups (NH-C), the two bands at 2879 

cm-1 and 1662 cm-1 demonstrates the aliphatic groups and carboxylic groups (–

COOH), respectively. 

The FTIR spectrum of BTDA-DABA displays several bands associated with its 

functional groups. The spectrum shows bands at around 1780 cm-1, which is assigned 

to C=O asymmetric stretch of imide groups, 1724 cm-1 that is related with C=O 

symmetric stretch of imide groups, and 1396 cm-1 which is attributed to C–N stretch 

of imide groups. Peaks at 1092 cm-1 and 752 cm-1 are from the imide ring bending 

vibration. The additional band at 1669 cm-1 is associated with C=O stretches of 

benzophenone[59].  

Furthermore, it is obvious that all peaks related with poly (amic acid) dissapeared in 

polyimide spectrum. Also the absence of the absorption bands of the amide group at 

3460 cm-1 indicating that polymer had been completely imidized. FTIR bands of 

poly(amic) acid and polyimide of BTDA-DABA with respect to their functional 

groups are presented in Table 6.6. 

  Table 6.6: FTIR bands of poly(amic) acid and polyimide of BTDA-  

DABA with respect to their functional groups 

Poly(amic acid) Polyimide 

Absorption bands 

(cm-1) 
Functional Group 

Absorption bands 

(cm-1) 
Functional Group 

3460 NH-C 1780 
C=O asymmetric 

stretch of imide 

2879 Aliphatic group 1724 
C=O symmetric of 

imide stretch 

1662 –COOH 1669 
C=O stretch of 

benzophenone 

  1396 
C–N stretch of 

imide 

  1092 and 752 Imide ring bending 

 



62 
 

Molecular weight and polydispersity index of synthesized polyimide were tried to 

estimate by Gel Permeation Chromatography (GPC) which is relative to polystyrene 

standards with Tetrahydrofuran (THF) as mobile phase.  However it was observed 

that BTDA-DABA is not soluble in THF therefore the molecular weight value 

cannot be obtained with available analysis system.   

Differential scanning calorimetry (DSC) measurements were conducted using a 

Perkin-Elmer DSC 4000 c alorimeter under nitrogen purge at a heating rate of 

20oC/min. In the DSC measurement, two heating cycles were carried out but glass 

transition of polyimide was observed at the first heating which is up to 350oC. At the 

second heating polyimide showed no glass transition. It is known that the polyimide 

chains can be thermally crosslinked after heating treatments at inert medium [18]. 

Due to the polar groups of DABA, polyimide may thermally crosslinked therefore 

the PI showed no Tg after second heating process which is up to 400oC.  

The DSC thermogram of the first heating process, which is given in Figure 6.29, 

shows that synthesized BTDA-DABA exhibits a glass transition temperature at 342 

oC which was calculated by half-Cp extrapolation. This result agrees well with our 

simulation result that is 349 oC.  

 

Figure 6.29: DSC thermogram of BTDA-DABA. 

 

Thermal gravimetric analysis (TGA) was done in order to evaluate thermal stability, 

weight loss, and sample purity of polyimide. Thermogram was collected with 20oC 

per minute heating rate from 50oC to 550oC in the presence of nitrogen purge. 
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Weight loss is illustrated as the function of temperature and BTDA-DABA exhibited 

4 different weight loss step as shown in Figure 6.30. and Table 6.7.  

 

Figure 6.30: TGA thermogram of BTDA-DABA 

Due to hygroscopic feature of DABA moiety, weight loss from 50oC to 150oC can be 

considered as water content of polyimide. NMP and DCB that were used as solvent 

during synthesis have boiling point at 204oC and 174oC, respectively. The weight 

loss between 150oC and 300oC is resulted from solvent content of polyimide, after 

glass transition, chain mobility of polyimide increases so polyimide released all 

solvent inside its chain between 300oC and 390oC. Finally, thermal degradation of 

polyimide started at 390oC where polyimide exhibits weight loss about 11%. High 

degradation temperature indicates that BTDA-DABA is a thermally stable 

polyimide.  

Table 6.7: Weight Loss of BTDA-DABA  

Temperature (oC)  Weight Loss (%) 

50-150 0.687 

150-300 4.512 

300-390 1.457 

390-550 11.549 

 

Wide-angle X-Ray diffraction (WA-XRD) was used to determine the interchain 

spacing (d-spacing) in synthesized polyimide. Bragg’s equation (Eqn. 4.1) was used 
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to determine d-spacing value. Two sharp diffraction peaks are observed in XRD 

pattern of BTDA-DABA as shown in Figure 6.31. These peaks appear at 2θ = 15 and 

26 which correspond to d-spacing value of 3.60 Å, and 6.24 Å, respectively. 

However, weak diffraction peaks are observed at 2θ = 10 and 13. This situation can 

be considered as small crystal regions which may formed because of increased 

solubility of the monomers in the solvent medium during synthesis [60].                                      

 

Figure 6.31: X-ray diffraction curve of synthesized BTDA-DABA 

Table 6.8 presents glass transition temperatures and d-spacing values that are 

obtained from experimental and simulation study of BTDA-DABA. The DSC 

analysis yielded a Tg value of 342oC for the synthesized BTDA-DABA that agrees 

well with our simulation result which is 349oC. However, there is dissimilarity 

between results of both studies in comparison with the the experimental values which 

are reported by Tsuzumi et al [56]. These dissimilarity may be due to difference in 

procedure of both synthesis and characterization.   

Table 6.8: The glass transition temperature and d-spacing values of BTDA-
DABA obtained from simulation and experimental study  

 Experimental Simulation Literature[56] 

d-spacing (Å) 6.24-3.60 6.6-4.8 11.8-7.4 

Tg (oC) 342 349 298 
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7.  CONCLUSIONS AND RECOMMENDATIONS 

Structural properties and sorption behaviors of 6FDA/BTDA-DABA, 6FDA-DABA 

and BTDA-DABA have been estimated using molecular simulation tools in order to 

develop the relationship among the structural properties and structure-solubility 

relationship of the polyimides and the corresponding copolyimide. All simulations 

were performed using the Accelrys Materials Studio 4.1 and 5.1 software packages 

and molecular interactions were modeled using the COMPASS forcefield. Random 

configurations of 6FDA-DABA, BTDA-DABA and 6FDA/BTDA-DABA matrices 

were generated, and characteristic properties such as glass transition temperature 

(Tg), d-spacing value, cohesive energy density (CED), radius of gyration (Rg), 

fractional free volume (FFV), accessible free volume (AFV), and the distribution of 

dihedral angle of the dianhyride and diamine linkage and bridging groups of 

polyimide matrices were estimated. Finally solubility coefficients and solubility 

selectivities of sorbate molecules and radial distribution function analyses of CO2 

molecules were determined. 

BTDA-DABA has the lowest d-spacing value than 6FDA-DABA and 6FDA/BTDA-

DABA. The latter two exhibit similar x-ray patterns with the d-spacing value of 

6FDA/BTDA-DABA being between the corresponding values of its polyimides. 

FFV, CED and Rg values of BTDA-DABA are greater than 6FDA-DABA and 

6FDA/BTDA-DABA. All these values of 6FDA/BTDA-DABA are between the 

corresponding values of its polyimides. 

Tg of polyimides are close to each other but BTDA-DABA has higher glass 

transition temperature than 6FDA-DABA. The torsion angle distribution of the 

carbonyl bridge of BTDA is narrower that confirms rigidity of carbonyl-bridge of 

BTDA with respect to hexafluoroisopropylidene bridge of 6FDA.The linkage 

between amino groups of dianhydrides and diamine of polyimide and copolyimide 

matrices are identical therefore the torsion angle distributions of the linkage are 

almost same. The higher Tg value of BTDA-DABA indicates that the backbone 
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rotation of BTDA-DABA is restricted therefore it creates more free volume thus 

FFV of BTDA-DABA is higher than 6FDA-DABA. 

Compared to its corresponding polyimides 6FDA/BTDA-DABA exhibits glass 

transition unexpectedly at a higher temperature because both carbonyl and 

hexafluoroisopropylidene bridges restrict the rotation of copolyimide. 

In agreement with aforementioned properties, higher CED and Rg values show that 

BTDA-DABA packed closely than others, therefore interchain spacing (d-spacing) 

of BTDA-DABA is the lowest. 

Structural properties of 6FDA-DABA are in good agreement with the data available 

in the literature. Tg and d-spacing values of BTDA-DABA that were obtained from 

our experimental study are close to that estimated from molecular simulation 

technique however there is a discrepancy with respect to values reported in the 

literature. 

Sorption behaviors of O2, N2, CO2 and CH4 in polyimides and copolyimide are 

similar but solubility of these gases in BTDA-DABA is the highest. For mixed gas 

case; the selectivity of BTDA-DABA for CO2/CH4 mixture is higher than 6FDA-

DABA and 6FDA/BTDA-DABA. Solubility coefficients of C3H6 and C3H8 in 

6FDA/BTDA-DABA are higher than its polyimides. 

Radial distribution function analyses indicate that stronger interactions between 

polyimides and gas molecules lead to volume dilatation and plasticization, which 

increase accessible free volume of the polyimide matrices to accommodate sorbate 

molecules. Simulations of plasticization induced by CO2, C3H6 and C3H8 shows that 

the swelling of 6FDA/BTDA-DABA is more significant than its corresponding 

polyimides. 6FDA-DABA is the most resistant polyimide to plasticization.   

The investigation of structural properties and structure-solubility relationship in the 

polyimide membranes by an atomistic level simulation is essential to develop high 

performance polymeric membranes for gas separation applications. Therefore, in 

order to predict permeabilities of O2, N2, CH4, CO2, C3H6 and C3H8 in 6FDA-DABA, 

BTDA-DABA and 6FDA/BTDA-DABA matrices, diffusion coefficients of these 

gases should be estimated in the future work. Furthermore, in order to estimate 

molecular weight and polydispersity index of synthesized BTDA-DABA, solubility 
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tests of the polyimide should be carried out, and Gel Permeation Chromatography 

(GPC) analysis should be performed with an elution solvent in which the polyimide 

is soluble. Moreover the synthesis and the characterization of 6FDA/BTDA-DABA 

should be performed.  
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APPENDIX. Sorption behaviors of CO2, C3H6, C3H8, CO2/CH4 and C3H6/C3H8 
in BTDA-DABA and 6FDA/BTDA-DABA matrices.  

 

Figure A.1: CO2, propylene and propane sorption in BTDA-DABA. 

 

Figure A.2: CO2/CH4 sorption in BTDA-DABA. 
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Figure A.3: C3H6/ C3H8 sorption in BTDA-DABA. 

 

 

 

Figure A.4: CO2, propylene and propane sorption in 6FDA/BTDA-DABA. 
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Figure A.5: CO2/CH4 sorption in 6FDA/BTDA-DABA. 

 

 

 

Figure A.6: C3H6/ C3H8 sorption in 6FDA/BTDA-DABA. 

 

 

0

5

10

15

20

0 2 4 6 8 10

So
lu

bi
lit

y 
C

oe
ff

ic
ie

nt
 

(c
m

3
(S

T
P)

 / 
(c

m
3

po
ly

m
er

-a
tm

)

Sorption Step

6FDA/BTDA-DABA-CO2

6FDA/BTDA-DABA-CH4

0

5

10

15

20

25

30

0 4 8 12 16

So
lu

bi
lit

y 
co

ef
fic

ie
nt

cm
3 (

ST
P)

/c
m

3
po

ly
m

er
.a

tm

Sorption Step

6FDA/BTDA-DABA-C3H6

6FDA/BTDA-DABA-C3H8



76 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 
 

 

 

 

 

CURRICULUM VITAE             

                      

Candidate’s full name :       Işıl KABACAOĞLU  

Place and date of birth:       Van 02/04/1984  

Universities and 
Colleges attended         :       B.S.: Chemical Engineering, İzmir Institute of                               

                                                 Technology (2003-2008) 

    M.S.:   Chemical Engineering, İstanbul Technical  

 University (2009-2011) 
 


	KAPAK
	FOREWORD
	ABBREVIATIONS

	1-INTRODUCTION
	2-THEORY AND BACKGROUND
	3-MOLECULAR SIMULATION METHODS
	4-SIMULATION STUDY
	5-EXPERIMENTAL STUDY
	6-RESULTS AND DISCUSSION
	7-CONCLUSION AND RECOMMENDATIONS
	REFERENCES
	[2] Robeson, L.M., 1991: Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62, 165-185


