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DETERMINATION OF LATERAL SWELLING PRESSURE 

SUMMARY 

Expansive soils can be defined as soils that under some conditions are capable of 
increasing its volume when getting wet.  It is well known that structures placed over 
or in expansive soils face problems due to soil heave upon the change of the soil 
moisture. 

The primary aspect of research on swelling has always been to predict the swelling 
behavior of the expansive soils in the vertical direction.  Nevertheless, expansive 
soils change their volumes in lateral direction as well as in the vertical direction.  The 
mandatory to predict lateral swelling pressure has forced the establishment of triaxial 
swelling pressure tests.       

One of the well known methods for measuring the lateral swelling pressure is the use 
of thin wall oedometer which was first introduced by Komornik & Zeitlen, (1965) 
and then also developed by several investigators.   

The objective of this study was to investigate the rate of lateral swelling pressures 
expected to act on retaining systems of deep excavations and tunnels in expansive 
soils.  The variation of swelling pressures dependent on depth and the rigidity of the 
facing element were investigated.   

The Lateral Swell Pressure Ring has been redesigned for this study.  The ring height 
has been increased and a pressure cell has been added to the device.  Different than 
the similar device of Ofer (1981), the cell pressure restaining the specimen to swell 
in lateral direction was hydraulic pressure rather than air pressure.  The pressure cell, 
surrounding the thin walled ring gave the ability to predict the lateral swelling 
pressures under zero lateral strain conditions.  Moreover, three strain gauges have 
been mounted on the ring, each configured as a quarter bridge, to monitor the 
non-homogenous behavior of the specimen in the horizontal plane.  

Several swelling tests have been performed on compacted clay specimens.  Various 
test types have been utilized in order to obtain comprehensive lateral swelling 
pressures.  The results are compared with swell pressures obtained in these tests in 
vertical direction as well as with the triaxial swelling pressure test results of previous 
studies.  

First, a series of tests have been made in accordance with the methodology of the 
previous studies using the thin walled lateral swelling pressure ring.  So, by 
comparing the results obtained from these tests with the results of the tests of other 
researchers, the reliability of the test set up has been validated.  Then, the 
contribution of the pressure cell, added to the recently manufactured testing device 
has been investigated.   



  xviii

The test results have revealed that a strain induced automatic cell pressure triggering 
is necessary for greater accuracy for lateral swelling pressure prediction under zero 
lateral strain conditions.  If, automatic cell pressure triggering is not present, which is 
the case in this study, the adjustment of a testing technique like “The Method of 
Equilibrium (Fourie, 1989)”, will avoid side effects of possible failures of lateral 
stress adjustment by the cell pressure increase.   
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YANAL ŞİŞME BASINCININ BELİRLENMESİ 

ÖZET 

Şişen zeminler, ıslandıkları zaman hacimlerini arttıran zeminler olarak tanımlanırlar.  
Şişen zemin tabakaları üzerine veya içerisine inşa edilen yapılarda, zemin 
tabakalarının su muhtevasındaki değişime bağlı olarak gelişen şişme davranışı 
etkisinde büyük problemler ile karşılaşıldığı bilinmektedir.   

Şişme basıncına yönelik araştırmalarda genel olarak şişme potansiyeline sahip zemin 
tabaklarından düşey yönde etkiyen şişme basıncı araştırılmıştır.  Oysaki şişen 
zeminler, hacimlerini düşey ve yatay yönde şişerek genişletirler.  Yanal şişme 
basıncının belirlenmesinin kaçınılmaz hale gelmesi, üç eksenli şişme basıncı 
deneylerinin gelişimini beraberinde getirmiştir.   

En çok bilinen yanal şişme basıncı ölçme yöntemlerinden bir tanesi, ilk olarak 
Komornik ve Zeitlen (1965) tarafından geliştirilen ince cidarlı ödometre halkası 
kullanılarak yapılan üç eksenli şişme basıncı deneyleridir.  Bu yöntemde kullanılan 
test cihazı çeşitli araştırmacılar tarafından geliştirilerek günümüze kadar gelmiştir.   

Bu çalışmanın çıkış noktası, derin temel kazılarının yapılabilmesi için inşa edilen 
iksa sistemlerine veya tünellere etkiyen şişme basıncının araştırılmasıdır.  Çalışma 
kapsamında, şişme basıncının derinlikle değişimi ve kaplama rijitliği ile değişimi 
araştırılmıştır.  

Bu çalışma için, şişme basıncı ölçen, inceltilmiş ödometre halkasına sahip cihaz 
geliştirilmiş ve yeniden üretilmiştir.  Ofer (1981) tarafından geliştirilen cihazdan 
farklı basınç hücresinde hava basıncı yerine hidrolik basınç kullanılmıştır.  Ödometre 
halkasının etrafına eklenen basınç hücresi sayesinde, numunenin yanal şişmesi 
engellenerek, sabit hacimde şişme basıncının ölçülmesi mümkün hale gelmiştir.  
Buna ilave olarak, inceltilmiş çelik halkaya yerleştirilen üç adet srain gauge çeyrek 
köprü devresi ile bağlanmış ve her bir strain gauge bağımsız ölçü alabilir duruma 
getirilmiştir.  Böylelikle numunenin yatay eksende anizotropik şişme davranışı 
incelenebilmiştir. 

Geliştirilen ekipman ile kompakte edilmiş kil numuneleri üzerinde çok sayıda deney 
yapılmıştır.   Çalışmanın sırasında, karşılaştırılabilir sonuçlara ulaşmak amacıyla, 
birden fazla test yöntemi izlenmiştir.  Böylelikle, çalışma kapsamında yapılan 
testlerden elde edilen sonuçlar, hem kendi içinde hem de önceki çalışmalardan elde 
edilmiş sonuçlar ile karşılaştırılarak değerlendirilmiştir.   

İlk olarak, önceki çalışmalarda izlenen yöntem takip edilmiş ve yapılan testlerden 
elde edilen şişme basıncı dağılımları, diğer araştırmacıların elde ettiği sonuçlar ile 
birlikte ele alınarak, geliştirilen ve bu çalışma için üretilen aletin güvenirliliği 
doğrulanmıştır.  Devamında yapılan şişme basıncı deneyleri ile inceltilmiş ödometre 
ringine eklenen basınç hücresinin katkısı incelenmiştir.   
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Çeşitli yöntemler takip edilerek yapılan şişme basıncı deneylerinin sonucunda,   
hücre basıncını otomatik olarak tetikleyen bir ekipmanın gerçek anlamda sabit 
hacimli şişme basıncı deneyi yapmak için kaçınılmaz bir zorunluluk olduğu 
görülmüştür.  Otomatik tetiklemeye sahip bir test cihazı olmadığı, bu çalışma 
kapsamında kullanılana benzer ekipmanlarla yapılan şişme basıncı deneylerinde, 
numunenin yanal şişme basıncını belirlemek üzere, Fourie (1989) tarafından tavsiye 
edilen “Denge Yöntemi” ile şişme basıncı deneyleri yapılmasının, genleşmeye bağlı 
ferahlama etkisinden dolayı yapılacak ölçüm hatalarının önlenmesi açısından faydalı 
olacağı görülmüştür.    



 
1

1. INTRODUCTION 

1.1 Expansive Soils in General  

Expansive soils can be defined as soils that under some conditions are capable of 

increasing its volume when getting wet. Expansive soils expand to a significant 

degree upon wetting and shrinks upon drying.  It is well known that structures placed 

over expansive soils and tunnels in expansive soils face problems due to soil heave 

upon the change of the soil moisture. “Types of structures most often damaged from 

swelling soil include building foundations and walls of residential and light 

buildings, highways, canal and reservoir linings, and retaining walls” (US Army, TM 

5–818–7, 1983).   

The description in the strategy report of the Transportation Research Laboratory of 

UK on expansive soils, the complexity of understanding the behavior of expansive 

soils has been made as follows: “Expansiveness is a property of the soil. There is no 

direct measure of this property and therefore it is necessary to make use of 

comparative values of swell, measured under known conditions, in order to derive a 

method for assessing expansiveness. Consideration of the mechanisms of interaction 

between water and clay soils show that the three most important components are the 

clay minerals, the change in moisture content or suction and the applied stresses. The 

type of clay mineral is largely responsible for determining the soil property referred 

to as the intrinsic expansiveness. It is the change in moisture content or suction that 

controls the actual amount of swell which a particular soil will exhibit under a 

particular applied stress” (Gourley et. al., 1983). 

Regarding to Fu Hua Chen, the potentially expansive soils are confined to the semi 

arid regions of the tropical and temperate climate zones.  Potentially expansive soils 

can be found everywhere in the world.  The reason why they are still not recognized 

in the underdeveloped nations is the small amount of construction (Chen, 1988). 
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“In semi – arid climates, overlying structures often induce heave in swelling soils 

because the natural transpiration of moisture by vegetation and evaporation from the 

ground surface is inhibited.  In arid climates, the heave of structures arises from the 

alteration of the moisture regime of the subsoil’s as a result of land utilization and 

development (Dhowian et. al., 1990).” 

1.2 Lateral Swelling Pressure and the Aim of the Study 

The primary aspect of research on swelling has always been to predict the swelling 

behavior of the expansive soils in the vertical direction.  Related to this, the uplift 

failure caused by this behavior and remedial measures have been studied extensively.  

Nevertheless, expansive soils change their volumes in lateral direction as well as in 

the vertical direction.  By restraining the lateral volume change tendency of soils 

with the construction of a retaining wall or a tunnel lining, the restraining element is 

being employed with responding the large swell pressures.  This additional lateral 

pressure caused by swelling is being missed in most of the cases during the lateral 

earth pressure calculations.  Furthermore, it has been noted in some of the 

investigations, which will be studied in the following paragraphs of this thesis, that 

lateral swelling pressures may be much greater than swelling pressures to be exerted 

in the vertical direction.   

Adequate and correct prediction of lateral swelling pressure is important in that the 

lateral restrainment elements like a retaining wall or tunnel facing can be designed to 

withstand the earth pressures to act on them in the reality.  Besides, the mandatory to 

predict lateral swelling pressure has forced the establishment of triaxial swelling 

pressure tests.  Triaxial swelling pressure tests have proven that one dimensional 

swelling tests result with overestimation of swelling pressures.       

Several methods have been developed in the past to measure the three dimensional 

swelling behavior of expansive clays.  One of the well known methods for measuring 

the lateral swelling pressure is the use of thin wall oedometer which was first 

introduced by Komornik & Zeitlen, (1965) and then also developed by several 

investigators.  Ofer (1981), has made one of the major developments on this device 

by adding an air tight chamber around the ring of Komornik & Zeitlin in order to 

counterbalance any lateral strain swell with air pressure.   
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The objective of this study is to investigate the rate of lateral swelling pressures 

expected to act on retaining systems of deep excavations and tunnels that are 

constructed in expansive soils.  Furthermore, the variation of swelling pressures 

dependent on depth and the rigidity of the facing element were investigated.  For this 

purpose, the Lateral Swell Pressure Ring of Ofer has been redesigned, by applying 

water pressure instead of air pressure for the restrainment of lateral swell strains. 

Moreover, three strain gauges have been mounted on the ring, each configured as a 

quarter bridge, to monitor the non homogenous behavior of the specimen in the 

horizontal plane.   

Several swelling tests have been performed on compacted clay specimens.  Various 

test types have been utilized in order to obtain comprehensive lateral swelling 

pressures and they were compared with swell pressures obtained in these tests in 

vertical direction as well as with the results of one dimensional swelling pressure 

tests obtained from conventional methods described in ASTM D 4546-03.  
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2. REVIEW OF THE RELATED LITERATURE 

2.1 Type and Origin of Expansive Soils 

As mentioned before, expansive soils are encountered all over semi arid and arid 

regions of the world.  As well described by Rao (2006), the occurrence of swelling is 

only possible if the soil is unsaturated.  If the unsaturated soil increases its water 

content it swells.   

Countries and regions familiar with problems caused by expansive soils can be listed 

as; The United States, India, Countries of the Arabian Gulf, South Africa and West 

European Countries etc.  Turkey also has areas covered with expansive clays.  

Several problems had been faced in the past, starting from Istanbul in the West of 

Turkey passing through Ankara, and spreading to eastern cities like Adana and 

Diyarbakir.      

Soils which can be associated with expansive clays belong to two main groups. The 

first group comprises the basic igneous rocks, such as the basalts of the Deccan 

Plateau in India, the dolerite sills and dykes in the central region of South Africa and 

the gabbros and the parent rocks have decomposed to form montmorillonite and 

other secondary minerals. The second group comprises the sedimentary rocks that 

contain montmorillonite mineral as a constituent which breaks down physically to 

form expansive soils (Chen, 1988). 

The montmorillonite is probably formed from two separate origins.  The products of 

weathering and erosion of the rocks in the highlands are carried by streams to the 

coastal plains.  The fine grained soils eventually become shale accumulating in the 

ocean basin.  Meanwhile, volcanic eruptions sending up clouds of ash, fall on the 

plains and the seas.  These ashes are altered to montmorillonite. (Chen, 1988) 

The swelling clay samples, which were employed in the tests of this thesis, were 

volcanic origin including weathered montmorillonite.  These samples were recovered 

from the Catalca Region of Istanbul City.  According to the investigation made on 
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that area, the thickness of this Oligosen aged clay layers are around 150m 

(Sağlamer, 1991).  Properties of the test samples will be explained detailed in the 

related paragraphs.    

2.2 Clay Mineralogy 

Regarding to Holtz and Kovacs; in civil engineering, clay often means a clay soil – a 

soil which contains some clay minerals as well as other mineral constituents, has 

plasticity and is cohesive.  But clay is also the name of specific minerals such as 

kaolinite, illite and montmorillonite.  Clay minerals are very tiny crystalline 

substances evolved primarily from chemical weathering of certain rock forming 

minerals (Holtz and Kovacs, 1981).  Most soil classification systems arbitrarily 

define clay particles as having an effective diameter of two microns (0.002mm) or 

less.  For small size particles, the electrical forces acting on the surface of the particle 

are much greater in contrast to gravitational forces, so therefore these particles are in 

a colloidal state (Chen, 1988). 

Clay minerals in soils belong to the phyllosilicates mineral family and contain other 

silicates such as serpentine, pyrophyllite, talc, mica and chlorite.  Due to their small 

sizes, their unit cells have a residual negative charge that is balanced by the 

adsorbtion of cations from solution (Mitchell, 1992).  This is the chief property of 

clays controlling their volume change capacity.  Therefore, clay soils differ from 

granular soils in that their water content do affect their engineering behavior to a 

great extend, where for granular soils the grain size distribution is playing major role 

over their engineering behavior.   

The reaction of water with fine grained soils cannot be fully appreciated without an 

understanding of the architecture of both the clay particles and the water on an 

atomic scale. For a grain of quartz with roughly spherical/cubic shape there is no 

important change in the soil/water relationship as the particle size decreases. As the 

particle sizes reduce to less than one micrometer there are few quartz particles and 

the dominant particles are clay minerals. These clay minerals may be of various 

types, but all have a platy or flake shape, being very thin in one direction. This 

follows from the chemical make-up of the minerals. Besides this shape, the clay 

minerals have electrical properties which affect their movement towards one another 

as well as their reaction to water (Raymond, 1997). 
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2.2.1 Physiochemical concepts 

Atoms are the smallest particles possessing definite chemical characteristics. 

Molecules are formed from chemically combined (bonded) atoms.  Molecules 

represent the smallest indivisible particle of a compound.  The atoms of the molecule 

are firmly held together by the electrochemical bonds formed through the exchange 

or the sharing of electrons.  Interatomic bonds are of three principal types: covalent, 

ionic and metallic (Raymond, 1997). 

A covalent bond results from the sharing of pairs of valence electrons by two or more 

atoms. In the ionic bond atoms of different elements, transfer electrons one to the 

other so both have stable outer shells and at the same time become ions, one positive, 

and one negative.  In the metallic bond atoms of the same or different elements give 

up their valence electrons to form an electron cloud (electron gas) throughout the 

space occupied by the atoms (Raymond, 1997). 

Investigations of the chemical composition and crystal structure of soils show that 

individual ions of different minerals may be attached (adsorbed) to the surface of a 

soil crystal. Water, although electrically neutral has a positive and negative centre of 

charge.  These electrostatic charges result in an attraction to a clay crystal and the 

water is held to the clay crystal by hydrogen bonding.  Thus minerals in the presence 

of water are surrounded by (fixed) adsorbed water (Raymond, 1997). 

“The surface area per mass (often volume is used in place of mass) is known as 

"specific surface" and is a good indication of the relative influence of electrical 

forces on the behavior of the particle (Raymond, 1997).” “The amount of water 

adsorption capacity, which is related to the specific surface, is a factor which 

designates the magnitude of expansion.  Other factors influencing soil expansion are 

the exchangeable ions present, electrolyte content of the clay minerals and their 

internal structure (Chen, 1988).” 

2.2.2  Clay minerals 

“Clay minerals are formed through a complicated process from an assortment of 

parent materials.  The parent materials include feldspars, micas, and limestone.  The 

alteration process includes disintegration, oxidation, hydration and leaching (Chen, 

1988).”  
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As mentioned before, Clay minerals form part of a subclass of the silicate class of 

minerals known as the phyllosilicates. The silicates are the largest and most complex 

group of minerals. Approximately 30% of all minerals are silicates.  The basic 

chemical unit of silicates is the SiO4 tetrahedron.  The structural arrangement of the 

tetrahedrons is what classifies the six silicate subclasses and what distinguishes their 

properties (Woodward et. al., 2002). 

In the phyllosilicate subclass, rings of tetrahedrons are linked by shared oxygen’s to 

other rings in a two dimensional plane that produces a sheet-like structure.  The 

typical crystal of this subclass is therefore flat, plate, book-like and displays good 

basal cleavage.  The sheets of tetrahedrons are connected to each other by weakly 

bonded cations and often have water molecules trapped between the sheets.  The clay 

minerals are distinct from other phyllosilicates by having large percentages (often 

70-90%) of water trapped between the silicate sheets (Woodward et. al., 2002).  

Much of the water within clays is not free pore-water but contained in the lattice of 

the clay minerals and adsorbed on to their surface.  To expel this water, temperatures 

of greater than 100C° are required. 

The structures of the common layer silicates are made up of combinations of two 

simple structural units, the tetrahedral or silica, and the octahedral or alumina, sheets. 

The way two fundamental crystal sheets silica and alumina sheets are stacked 

together, the bonding between them and the metallic ions in the crystal lattice 

constitute the different clay minerals  (Holtz and Kovacs, 1981), (Mitchell, 1992). 

The tetrahedral sheet is basically a combination of silica tetrahedral units which 

consist of four oxygen atoms at the corners, surrounding a single atom.  Figure 2.1 

shows a single silica tetrahedron. 

 
Figure 2.1:  Silica Tetrahedron (Mitchell, 1992) 

Figure 2.2 shows how the oxygen atom at the base of each tetrahedron is combined 

to form a sheet structure.  The oxygens at the base of each tetrahedron are in one 

plane, and the un-joined oxygen corners all point in the same direction.  The typical 

schematic representation of the silica tetrahedron which is widely used in soil 
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mechanics is shown in Figure 2.3.  The plain view of a silica sheet has hexagonal 

holes. 

 

Figure 2.2:  Tetrahedral Sheet (Mitchell, 1992) 

 

Figure 2.3: Silica Sheet (Mitchell, 1992). 

The second known sheet in clay mineralogy is the octahedral sheet.  The octahedral 

sheet is basically a combination of octahedral units consisting of six oxygen or 

hydroxyls enclosing aluminum, magnesium, iron or other single atom.  A single 

octahedron is shown in Figure 2.4.  

 

Figure 2.4:  Single Octahedron (Mitchell, 1992) 

In Figure 2.5 the octahedrons are shown combining a sheet structure.   

 

Figure 2.5:  Alumina Sheet (Mitchell, 1992) 

In the octahedral sheet, substitutions of different minerals can take place, which leads 

to different clay minerals.  These ions subjected to these substitutions have 

approximately the same size and the process is therefore isomorphous.  “If all the 

anions of the octahedral sheet are hydroxyls and two thirds of the cation positions are 

filled with aluminum, then the mineral is called gibbsite.  If magnesium is substituted 

for the aluminum in the sheet and it fills all the cation positions, then the mineral is 

called brucite (Holtz and Kovacs, 1981).”     
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Four main groups of clay minerals are well known by geotechnical engineers: 

1. The Kaolinite Group – The general structure of the kaolinite group is composed 

of silicate sheets bonded to aluminum oxide/hydroxide layers referred to as 

gibbsite layers.  The silicate and gibbsite layers are tightly bonded together with 

only weak bonding. Kaolinite is a 1:1 phyllosilicate.  Low charge afforded by 

low substitution is enhanced by hydrogen bonding between the tetrahedral and 

octahedral layers.  This bonding holds 1:1 layers tightly together leaving little to 

no interlayer space for adsorption of cations or water.  Thus kalolinite is a non 

expansive mineral.  A typical kaolin crystal can be 70 to 100 layers thick.  Figure 

2.6 is a schematic diagram of the structure of kaolinite (Woodward et. al., 2002), 

(Holtz and Kovacs, 1981), (Thomas, 1998).  

 

Figure 2.6: Schematic Diagram of Kaolinite Structure (Mitchell, 1992) 

2. The Montmorillonite/Smectite Group – This group has several members which 

differ mostly in chemical content and the amount of water they contain. The 

structure of the group is composed of silicate layers sandwiching a gibbsite layer 

in a silica-gibbsite-silica stacking sequence.  Thus montmorillonite is called a 2:1 

mineral.  The thickness of each 2:1 layer is 0.96nm, and like kaolinite the layers 

extend indefinitely in the other two directions.  Because the bonding by van der 

Waals forces between the tops of the silica sheets is weak and there is a net 

negative charge deficiency in the octahedral sheet, water and exchangeable ions 

can enter and separate the layers.  Thus montmorillonite crystals can be very 

small, but at the same time have a very strong attraction for water  (Holtz and 

Kovacs, 1981), (Woodward et. al., 2002). 

The specific surface area of interlayer zones of the smectites ranges from 50 to 

120m²/g. The secondary specific surface that is exposed by expanding the lattice 

so that polar molecules can penetrate between layers can be up to 840m²/g.     

Moreover, the large amount of unbalanced substitution in the smectite minerals is 

the cause of their high cation exchange capacities, generally in the range of 80 to 

150meq/100gm. All these are evidences of the huge susceptibility to swelling of 
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soils containing montmorillonite or other members of the smectites. In Figure 2.7 

is the schematic diagram of a montmorillonite structure (Mitchell, 1992). 

“The montmorillonitic minerals are mostly formed by restricted leaching, so that 

magnesium, calcium, sodium, and iron cations may accumulate in the system.  

The formation of montmorillonitic minerals is aided by an alkaline environment, 

presence of magnesium ions, and a lack of leaching.  Such conditions are 

favorable in semi arid regions with relatively low rainfall or highly seasonal 

moderate rainfall particularly where evaporation exceeds precipitation (Chen, 

1988).” 

 

Figure 2.7:  Schematic Diagram of Montmorillonite Structure (Mitchell, 1992) 

3. The Illite Group – This group is basically hydrated microscopic muscovite mica.  

The structure is composed of silicate layers sandwiching a gibbsite layer in a s-g-

s stacking sequence.  It has the same 2:1 structure as the montmorillonite, but the 

interlayers are bonded together with a potassium atom.  The potassium atom that 

bonds the sandwich layers together is much stronger than the weak van der Waals 

forces which bond the same layers by montmorillonitic clay minerals.  Also some 

isomorphous substitution of aluminum for silicon in the silica is by this mineral 

group.  Figure 2.8 is the schematic diagram of illites (Woodward et. al., 2002), 

(Holtz and Kovacs, 1981). 
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Figure 2.8:  Schematic Diagram of Illite Structure (Mitchell, 1992) 

4. The Chlorite Group – This group is relatively common in clay soils.  It is made 

of repeating layers of a silica sheet, an alumina sheet, another silica, and then 

either a gibbsite (Al) or brucite (Mg) sheet (Figure 2.9).  It could be called a 2:1:1 

mineral.  Chlorite can also have considerable isomorphous substitution and be 

missing an occasional brucite or gibbsite layer; thus it may be susceptible to 

swelling because water can enter between the sheets.  Generally, it is 

significantly less active than montmorillonite (Holtz and Kovacs, 1981). 

 

Figure 2.9:  Schematic Diagram of Chlorite Structure (Holtz and Kovacs, 1981) 

2.2.3     Microstructure 

Clay particles are very small, often less than 1m. The actual size depends on the 

specific composition and nanostructure.  Kaolin particles are about 1 m in diameter 

and 0.1m thick. For such small particle sizes, surface forces are very important, and 

clay particles often flocculate. Common microstructures in clay–water suspensions 

are shown in Figure 2.10.  Engineering properties of clays are affected by 

flocculation and aggregation. Particles that are dispersed would obviously allow the 
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maximum permeability. Flocculation reduces permeability, although aggregation by 

itself has little effect.  Flocculation also affects shear strength and compressibility. 

 

Figure 2.10:  Clay microstructures showing dispersed, flocculated (edge–to–face), 
and aggregated (face–to–face) suspensions. (Mitchell, 1992) 

2.3   Mechanism of Swelling; Diffuse Double Layer and Osmosis, Cation     

Exchange Capacity (CEC) 

2.3.1 Mechanism of swelling based on the Double Layer Theory 

The clay particles are in very small sizes and therefore their behavior is dominated 

by surface forces. These surface forces cause clays to adsorb water and consequently 

cause swelling.  The explanation of this swelling is osmosis (US ARMY, TM 5 – 818 

– 7, 1983). 

Osmosis is defined as the movement of water molecules from an area of high 

concentration to an area of low concentration. It is the net movement of solvent 

through a semi permeable membrane from the region where the solution is more 

dilute to the region where the solution is more concentrated (Figure 2.11)  (Chen, 

1988).  The pressure that must be applied to the solution in order to prevent the flow 

of water into the solution through the semipermeable membrane is called the osmotic 

pressure. 
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Figure 2.11:  Osmosis through a Semipermeable Membrane  

Before describing the mechanism of swelling, a short explanation of the double layer 

theory will be useful for the fully understanding of the swelling behavior of clays.   

The adsorbed cations, because of their high concentration near the surfaces of 

particles, try to diffuse away in order to equalize concentrations throughout the pore 

fluid. Their freedom to do so, however, is restricted by both the negative electrical 

field originating in the particle surfaces and ion–surface interactions that are unique 

to specific cations. The escaping tendency due to diffusion and the opposing 

electrostatic attraction lead to ion distributions adjacent to a single clay particle in 

suspension that are often idealized as shown in Figure 2.12 and Figure 2.13. This 

distribution of cations is analogous to that of air molecules in the atmosphere, where 

the escaping tendency of the gas is countered by the gravitational attraction of Earth. 

Anions are excluded from the negative force fields of the particles, with the 

distribution shown in Figure 2.12. The charged surface and the distributed charge in 

the adjacent phase are together termed the “diffuse double layer (Mitchell, 1992)”.  

Among several theories, proposed for the description of ion distributions adjacent to 

charged surfaces, the Gouy - Chapman Theory is the most famous one.   

Besides Mitchell (1992), Aytekin (1992) has also referred in his study to authors 

mentioning the well matching results of the Gouy – Chapman Theory based 

calculations with the compression and swelling behavior of clays. 
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Figure 2.12: Double Layer on Clay Surface (Mitchell, 1992) 

The plate shaped clay particles have negative electrical charges on their surfaces and 

positive charges on their edges.  In order to balance these charges, cations from the 

pore-water solution and water molecules are attracted to the particle surface because 

of the polar nature of the water molecule. The positive side of the water molecule is, 

therefore, attracted to the negative clay surface. The positive charged sides of the 

water molecules cause repulsive forces between the double layers of adjacent clay 

particles. The negative charges on the surface of the clay particle in combination 

with attracted cations and water molecules are called diffuse double layer.  Water 

molecules in diffuse double layers behave differently from water that is beyond the 

double layer in pore spaces. The electrical interparticle force field is a function of 

both the negative surface charges and the electrochemistry of the soil water. Van der 

Waals surface forces and adsorptive forces between the clay crystals and water 

molecules also influence the interparticle force field. The internal electrochemical 

system must be in equilibrium with the externally applied stresses and the capillary 

tension in the soil water. The cations attracted to the clay surfaces provide another 

factor in swelling behavior. Because of the attraction of the negatively charged clay 

particle surfaces for cations, small spaces within or between clay particles may 

contain a higher concentration of cations than larger pores within the soil. These 

conditions create an osmotic potential between the pore fluids and the clay mineral 

The Gouy Diffuse  Double Layer 

Free Cations 
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surfaces. Normally, cations diffuse from a higher concentration to a lower 

concentration in order to evenly distribute the ions throughout the solution. In 

expansive soils, because ions are held by the clay particles, water moves from areas 

of low ionic concentration (high concentration of water) to the areas of high ionic 

concentration (low concentration of water) within the clay particles or aggregates. 

This influx of water exerts pressure, which causes clay to swell (Erzin and Erol, 

2007). The electric field around clay particle acts as a semi-permeable membrane 

(Figure 2.13).  This membrane allows water to enter the double layer but does not 

allow the exchangeable cations to leave.  The rest of the mechanism that affect the 

swelling phenomenon are cation hydration capillary imbibitions and elastic 

relaxation.  When cations hydrate, their ionic radii increase resulting in a change on 

the volume mass (Aytekin, 1992).    

The thickness of the double layer is perhaps 30 nm. For clays that are 500 nm thick, 

the double layer has little effect. But for clays that are only a few nm thick, this 

double layer has a tremendous effect.  One effect of the double layer is to cause two 

clay particles to repel each other when they approach so closely that the double layer 

of each particle begins to overlap. In this way the double layer controls flocculation, 

dispersion and swelling.  Again, this effect is greatest for clays with a very small 

grain size, such that their double layer interaction dominates their behavior.  

Therefore, the greatest swell potential is shown by sodium montmorillonite, which 

has the smallest grain size. Another explanation for the effect of the interlayer cation 

on swelling is to consider the effect of the cation on the double layer. Calcium ions in 

the interlayer region compress the double layer, so the sheets are closer together and 

do not adsorb water and swell as easily.  With sodium ions, the clay swells more 

easily.  Thus the clay mineralogy has a direct effect on its surface chemistry. 

Through its effect on surface chemistry, clay mineralogy controls microstructure.  

The result is the engineering behavior of soil, its cohesive strength, flow behavior, 

permeability, and swelling potential (US ARMY, TM 5 – 818 – 7, 1983), (Chen, 

1988). 
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Figure 2.13:  Double Layers Around Clay Particles After Ladd (1960), 
                                  (Aytekin, 1992) 

2.3.2 Cation exchange capacity (CEC) 

Clay minerals have the property of absorbing certain anions and cations and retaining 

them in an exchangeable state.  The exchangeable state ions are held around the 

outside of the silica alumina clay – mineral structural unit, and the exchange reaction 

does not effect the structure of the silica alumina pocket.  In clay minerals the most 

exchangeable cations are Ca++, Mg++, H+, K+, NH4+, Na+, frequently in about that 

order of general relative abundance. Cations (positive ions) are more readily 

absorbed than anions (negative ions); hence, negative charges must be predominant 

on the clay surface. A cation is never permanently attached to the mineral from 
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the free water 

Higher ion concentration in 
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which it is absorbed; it can be replaced by an excess cation, like absorbed Na+ ion 

can be replaced by a K+ ion if the clay is placed in a potassium chloride.  The 

process of replacement by excess cations is called cation exchange (Figure 2.14) 

(Chen, 1988). The degree of isomorphic substitution in the clay particle surface is 

different; therefore, the layer charge density of clay minerals shows high variety. 

This excess of negative lattice charge is compensated by the exchangeable cations 

(Tombacz and Szekeres, 2006). 

 

Figure 2.14: Shematic Visualization of the Cation Exchange Process 

The cation exchange capacity (CEC) of soils is the maximum number of moles of 

proton charge dissociable from unit mass of soil (100g) under given conditions of 

temperature, pressure and aqueous solution composition (Sposito, 2008). Cation 

exchange capacity is the total of the exchangeable cations that a soil can hold at a 

specified pH.  Soil components known to contribute CEC are clay and organic 

matter.  The exchange sites can be permanent or pH dependent.  Mineral soils have 

an exchange capacity that is a combination of permanent and pH dependent charge 

sites, while organic soils is predominantly pH dependent (Seybold et. al., 2005).   

Swelling potential of soils has been related to many factors by researchers. In 1957, 

Gill and Reaves were the first who had reported the relationship between cation 

exchange capacity and swelling potential (Kariuki and Van der Meer, 2004).  The 

dependence of percent swell on the cation exchange capacity has been shown on 

Figure 2.15 (Yılmaz, 2006). 
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Figure 2.15: Swell Percent vs. Cation Exchange Capacity (Yılmaz, 2006) 

As well known in the literautre, the kaolinite minerals are found in the nature 

positioned as face to edge (Figure 2.16), where the montmorillonite minerals are 

positioned as face to face (Figure 2.16).  The difference in their positioning leads to 

the differences in CEC of kaolinites and montmorillonites (smectites) and therefore 

affects the strength of the bonds holding the minerals together (Tombacz and 

Szekeres, 2006). 

Table 2.1 shows the ranges of cation exchange capacities of various clay minerals 

(Chen, 1988).  Regarding to Table 2.1, montmorillonites are 10 times as active as 

kaolinites in absorbing cations. Table 2.1 also shows that the degrees of particle size 

results with the increase of the cation exchange capacity.  In other words, it can be 

revealed that the cation exchange capacity is a factor which is controlled by the 

diffuse double layer around the clay particles. 
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Figure 2.16:  Kaolinite and Montmorillonite Structure  
      (Tombacz and Szekeres, 2006) 

 

Table 2.1: Cation Exchange Capacities of Clay Minerals (Chen, 1988) 

 Kaolinite Illite Montmorillonite 
Particle Thickness (micron) 0.5 - 2 0.003 – 0.1 9.5 A 
Particle Diameter (micron) 0.5 – 4 0.5 – 10  0.05 – 10  
Specific Surface (m²/g) 10 – 20 65 – 180  50 – 840  
CEC (milliequivalents per 100g) 3 – 15  10 – 40  70 – 80  

In CEC measuring procedures, the negative charge of a material is balanced with an 

index-cation. Then, CEC is determined by measuring the difference between the 

initial and the remaining content of the index-cation.  A further possibility is to re-

exchange the index-cation chosen with an appropriate salt and to determine the 

amount of the released index-cations by radioactive counting, visible spectroscopy or 

by a measurement using atomic absorption. (Dohrmann, 2006) 

2.4 Methods Used to Identify and Classify Expansive Soils 

Many methods have been developed to measure or estimate the shrink – swell 

potential of soils.  Some sources distinguish these methods into two groups called as; 

direct measuring methods and indirect estimation methods.  The indirect methods 

can also be separated into two as mineralogical identification methods of swelling 

clays and as a group of correlations between the index properties and activity method 

results.  Moreover, remote sensing methods such as hyperspectral imaging have been 

a tool for expansive soil detection in recent years (Ben – Door et. al., 2009), 

(Chabrillat et.al. 2002).  Hence, these are the recent developed methods extending 

the scope of this thesis and therefore, they will not be mentioned within the 

methodologies to be described in the paragraphs below.   

Montmorillonite Kaolinite 
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2.4.1  Mineralogical identification 

The negative electric charges on the surface of the clay minerals, the strength of the 

interlayer bonding, and the cation exchange capacity all contribute to the swelling 

potential of clays. So, it is possible to evaluate the swelling potential of clay minerals 

by identifying its mineralogical constitution.  The most used five mineralogical 

identification techniques are; X – Ray diffraction test, differential thermal analysis 

(DTA), dye adsorption, chemical analysis and electron microscope resolution (Chen, 

1988). 

The tests listed above are time consuming and require expensive equipments.  

Although they can be very useful for geologists or soil experts to do their research, 

they are not suitable in most of the cases for geotechnical engineering purposes.  

Most of the civil engineering projects do not require such extended tests. 

The clay samples employed in the tests of this study have been subjected to X-Ray 

diffraction tests and their mineralogical structure has been determined.  X-ray 

scattering technique is a non-destructive and an analytical technique which reveal 

information about the crystallographic structure, chemical composition, and physical 

properties of materials and thin films. This technique is based on observing the 

scattered intensity of an X-ray beam hitting a sample as a function of incident and 

scattered angle, polarization, and wavelength or energy (URL-1). 

The results of the X – Ray diffraction tests about the mineralogical content of the test 

specimens will be given in the related paragraphs. 

2.5  Indirect Measurement Techniques 

Many investigators have studied to improve the indirect measurement techniques, 

because some of them are very fast to run and also cheap to conduct.  The indirect 

measurement methods involve the use of soil properties and classification schemes to 

predict the shrink – swell behavior.  But all these methods are based on correlations 

and are expected to be preliminary indicators of swelling.  They are useful for the 

comparison of the swelling potential of different soil types.  Some of the indirect 

methods used for the evaluation of swelling potential can be listed as Atterberg 

limits, free swell test, colloid content investigation and determination of linear 

extensibility (COLE value).  Holtz and Gibbs (1956), Gill and Reaves (1957), Seed, 
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Woodward and Lundgreen (1962), Snethen et.al. (1977), Sridharan and Rao (1988), 

Kariuki and Frank van Der Meer (2003), Yılmaz (2006), Muntohar (2006), Erzin and 

Erol (2007) and several others have examined the classification of expansive soils 

and have developed charts and tables based on index properties, clay content, colloid 

content and etc.   

2.5.1  Atterberg limits 

Holtz and Gibbs in 1956 and Seed, Woodward and Lundgreen in 1962 have revealed 

the fundamental studies for evaluating the swelling characteristics of expansive clays 

regarding to Atterberg limits, especially to the plasticity index.  Johnson and Snethen 

(1978) and O’Neil and Ghazally (2007) have proposed models outputting free 

swelling by inputting the liquid limit and natural moisture content of the soil.  

Regarding the definition of the swell potential (S): “The swell potential is defined as 

the percentage swell of a laterally confined sample which has soaked under a 

surcharge of 6,89kPa (1pounds/inch²) after being compacted to maximum density at 

optimum moisture content (Chen, 1988).” The models mentioned above have been 

listed in Table 2.2.  The relationships given in Table 2.2 are only a few examples 

indicating the relationships between consistency limits and swelling potential.     

Table 2.2: Some Relationship Between Swell Index and Consistency Limits 

Model Remarks Reference 

2.4460 ( )S K PI  (2.1) 
K: constant 
( 53.6*10  ) 

Seed, Woodward and 
Lundgreen (1962) 

0.0838( )0.2558 PIS e  (2.2) - Chen (1988) 

S=2.77 + 0.131LL – 0.27n (2..3) - O’Neil and Ghazzally 
(1977) 

logs = 0.036LL – 0.0833n + 0.458 (2.4) - Johnson and Snethen 
(1978) 

 

Bowles (2006) has summarized the values of index properties in evaluating swelling 

potential and classification as in Table 2.3. The table is a summary of the 

investigations utilized over several types of soils from different parts of the world.   

A brief review of the results of the study of Kariuki and Van der Meer (2004) and the 

study of Sridharan and Rao (1988) are presented as follows, in order to gain a fully 

understanding about the relationship between consistency limits and swelling 

potential.    
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Table 2.3: Potential Soil Volume Change Classification Chart (Bowles, 2006) 

Potential for 
Volume Change 

Plasticity Index 
Ip 

Shrinkage Limit 
ws, % 

Liquid Limit  
wL, %

Expansion Index 
EI 

Low <18 > 15 20 – 35 21 – 50 

Medium 15 – 28 10 – 15 35 – 50 51 – 90 

High 25 – 41 7 – 12 50 – 70 91 – 130 

Very High > 35 < 11 > 70 > 130 

Kariuki and Van der Meer (2004) have shown in their study that the dependence of 

percent volume swell (PVC) to consistency limits is in the following order; Liquid 

Limit (LL), Plasticity Index (PI) and Plastic Limit (PL).  According to the results of 

their study, Liquid Limit is accepted as the most important sign of swelling.  

Sridharan and Rao (1988) has concluded in their study that; while the index 

properties of the smectits are controlled by the diffuse double layer which also 

controls the swelling, the index properties of the kaolinites are not controlled by the 

diffuse double layer.  Sridharan and Rao exposes that the index properties shall only 

be used for the prediction of swelling potential of smectites.   

2.5.2 Free swell test 

“Free swell test consist of placing a known volume of dry soil in water and noting 

the swelled volume after the material settles, without any surcharge, to the bottom of 

a graduated cylinder.  The difference between the final and the initial volume, 

expressed as a percentage of initial volume, is the free swell value.  The swell test is 

very crude and was used instead of today’s refined testing methods.  It can be noticed 

that soils having free swell values over 100 percent must be considered as soils with 

medium swelling potentials causing damages on light structures (Chen, 1988).” 

2.5.3 The effect of clay and colloid content 

The effect of grain size, particularly the colloid content, on the swelling behavior of 

clayey soils is evident.  As stated before, the swelling behavior is controlled by the 

diffuse double layer which increases its efficiency on the soil mass with the 

decreasing grain sizes.  Therefore, the montmorillonite particles are the most 

vulnerable clay particles to swelling.  The study of Sridharan and Rao (1988), which 

has been mentioned above, reflects this matter from a specific point of view.    
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For any given clay type, the relationship between the swelling potential and 

percentage of clay size can be expressed by the following equation:  

XS KC                                       (2.5), (Chen, 1988) 
Where;  
S: Swelling potential 
C: Percentage of clay size finer than 0.002mm 
X: An exponent depending on the type of clay 
K: Coefficient depending on the type of clay 

“Where the quantity of the clay size particles is determined by a hydrometer test, 

quality or kind of colloid, which is reflected by X and K in Equation 2.5, controls the 

amount of swell.  (Chen, 1988)” 

It should also be noted that the prediction of swelling potential based on colloid 

content is not a reliable way.  Yule and Ritchie (1980), Thomas et. al. (2000), Grey 

and Allbrook (2002) have examined the relationship between clay percentage and 

have found that the relationship given above is not a reliable one for swelling 

potential estimation.  

Thomas (2000) has studied soil samples with different clay contents.  At the end of 

the study Thomas came out with the swelling potentials vs. clay contents as shown in 

Figure 2.17.  The study by Thomas (2000) represents that the clay content is more 

important for the prediction of the swelling potential of clayey soils, rather than the 

clay mineral type.  

 

Figure 2.17:  Classification Chart for Swelling Potential, (Thomas, 2000) 
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The activity method proposed by Seed, Woodward and Lundgreen (1962) was based 

on remolded, artificially prepared soils composed of 23 mixtures of bentonite, illite, 

kaolinite, and fine sand.  The expansion was measured as percent swell on soaking 

from 100 percent maximum density and optimum moisture content in standard 

AASHTO compaction test under surcharge of 6.89kPa.  The activity for the 

artificially prepared sample is defined as: 

10

PI
Activity

C



                  (2.6) 

In the above given equation, where C denotes the percentage clay size finer than 

0.002mm, PI denotes the plasticity index.  The proposed classification regarding the 

activity of the sample is given in Figure 2.18.  Although this method is related with 

the clay content, it is also related to the consistency limits of the clay mass, which is 

controlled by the clay type and diffuse double layer.   The evaluation of swelling on 

both concerns together brings the dependability of the activity method.   

 

Figure 2.18:  Classification Chart for Swelling Potential (Chen, 1988) 

2.5.4 Measurement of suction pressure 

One of the most unfailing indirect measurement technique is the measurement of soil 

suction stress and the volume change due to suction.  Soil suction, or negative pore 

pressure, is significant for the observation of the mechanical properties of partially 
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saturated soils.  Delage et. al., 1998 has visualized the effect of suction on swelling, 

based on their test results as in Figure 2.19. 

 

Figure 2.19: Total Volume Change vs. Change on Water Volume  
                                     (Delage et. al., 1998) 

“Based on Figure 2.19, all swelling points are aligned along the biscentrix. This 

demonstrates that total volume changes coincide exactly with the volume of absorbed 

water (Delage et. al., 1998).”  This clearly demonstrates the role of suction in the 

swelling behavior.   

Richards (1941) has developed the axis translation technique which was able to 

control suction in the limited range of several hundred kPa.  As an alternative Kassif 

and Ben Shalom (1971) have introduced the osmotic technique, which gave the  

ability to measure suction pressures up to 1.5MPa – 2.0MPa.  The development of 

various devices made the measurement of soil suction via humidity control possible.  

Suction measurements up to hundreds MPa’s are nowadays routine procedures 

(Delage et. al., 1998), (Erzin and Erol, 1992). 

In swell prediction methods based on suction, swell is related to the change in the 

swell suction through a volume change parameter.  This parameter is analogous to 

the compression Index (Cc) for the consolidation process, and is a property of soil 

(Chen, 1988), (Bowles, 2006).  “The ultimate goal of the measurement of soil suction 

is the prediction of moisture movement and moisture equilibrium rather than the 

direct measurement of the swell potential (Chen, 1988).” 
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2.5.5 Percent Volume Change (PVC) methods 

A well known indirect measurement technique is the determination of the potential 

volume change (PVC) of soil and was developed by T. W. Lambe (1951) under the 

auspices of the Federal Housing Administration.  In this method, a sample is 

artificially compacted and placed in a fixed ring consolidometer.  An overburden 

pressure is adapted to the sample and its vertical expansion is partially restrained by 

a proving ring over which a scala is placed.  After adding water and waiting for two 

hours, the reading of the proving ring is converted to swelling pressure and to 

swelling index (Chen, 1988). 

Another version of the same test was suggested by Anderson and Lade in 1981, 

which is called “Volume Change Related to the Expansion Index”  (Bowles, 2006).  

This method is classified as a indirect method since it only intends to measure the 

expansion potential of the sample.   

2.6  Direct Measurement Technique  

The widely used method to determine the swelling pressure of an expansive soil is 

the direct measurement.  For the direct measurement of swelling pressure 

conventional one dimensional consolidometer (odometer) is used.   

Testing procedures for four alternative methods are standardized by ASTM with a 

designation number ASTM D 4546 – 86.  All testing methods require that a soil 

specimen be restrained laterally and loaded axially in a consolidometer with access 

to free water.   

The most accepted and common methods, which are standardized by ASTM are as 

follows (Dhowian et. al., 1990): 

 Free Swell: The sample is allowed to swell freely under a seating load, and 

then loaded to overburden pressure plus the simulated foundation stress.  

 Swell under Low Confining Stress: In this method, the sample is soaked in 

the oedometer at a low confining pressure, and the amount of swell is 

determined.  The sample is then loaded to a stress level which is also referred 

to as the swell pressure, s, to attain the original void ratio.  
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 Saturating the Sample Under Vertical Stress:  The sample is loaded to 

vertical stress, o, in one increment and then water is added to saturate the 

sample under the stress o.  The amount of volume change is related to 

swelling pressure.  

 Saturation at a Constant Volume: The sample is saturated at a constant 

volume in the odometer, followed by a reduction of vertical stress, o.  

Constant volume tests often terminate within 24 to 48 hours (Ofer 1981).   

In the performance of a typical swell test, the more important variables involved are; 

state of sample, moisture content, the applied stress and the time allowed for 

swelling.   

The free swell test gives generally the largest swelling pressure values.  According to 

Thomas (2008), this is because that the specimen going from drier to wetter state 

during the first part of the test, the matric suction of the sample decreases.  Then in 

the second part of the test, as water is forced out of the soil mass and void spaces try 

to return to the original void ratio upon this applied force, the original high level of 

matric suction is restored.  Thomas (2008) states, that a part of the added force in the 

second part of the test shall be accepted as a type of friction as the water molecules 

are forced to pass between many clay particles trying to electrochemically retain 

them.  This condition is only limited in an unswelled specimen and therefore unable 

to take place in a constant volume test.    

As well as uniaxial direct measuring techniques, triaxial direct measuring techniques 

have also been developed.  Since the main subject of this thesis is the lateral swelling 

pressure, triaxial direct measuring techniques and uniaxial techniques with limited 

restrainment are represented in details in the following chapters. 

2.7 The Importance of Soil Sampling on Swelling Pressure Prediction  

Undisturbed soil samples are needed to conduct an oedometer test and it is essential 

that the natural water content of soil samples must be preserved.  Moreover, special 

sampling methods must be used to minimize the sampling disturbance, since most of 

the standard samplers are suitable for sampling relatively soft clays, whereas the 

consistencies of expansive soils vary from medium to firm (Dhowian et. al., 1990).   
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For remolded and artificially compacted samples it is obvious that the initial 

moisture content of the sample will affect the swelling pressure (Chen, 1988).  

Gürtuğ (2004) has investigated the effect of compaction energy on the behavior of 

expansive clays and has clearly shown the increase in swelling due to the increase in 

compaction energy.  So, it shall be notified that, the variation in compaction ratio or 

state of the artificially prepared soil sample against its in situ state will lead to 

erroneous prediction of swelling pressure.   

The samples subjected to swelling tests within this thesis have been artificially 

prepared by means of the standard proctor test.    Since this study is based on the 

evaluation of the test results instead of reflecting an in – situ state, the use of 

undisturbed soil samples was not necessary.  Furthermore, for a valuable comparison 

between the test results, all samples have been prepared under similar conditions.  

2.8  Lateral Restrainment Effect on Expansion Pressure 

As it is well known, most of the studies on expansive soils considered vertical 

expansion and with testing equipment confining the expansive clay sample laterally. 

Considering the volume change capacity of soils to be constant it is obvious that the 

tests conducted restraining the lateral expansion behavior of soil samples will lead to 

exaggerated expansion pressures or vertical heave.   

Many engineers have recognized the three dimensional phenomenon of swelling in 

their early studies. Researchers like Mc Dowell (1956) and Erol et. al. (1987) have 

assumed in their studies that only one-third of the total volume change occurs 

vertically.  On the contrary, Crilly et. al. (1992) indicates that the use of a single 

swell reduction factor would tend to overestimated heave near surface and 

underestimated swelling pressure at depth (Thomas 2008).     

Due to Mosleh A. Al Shamrani et. Al. (2003), “A large discrepancy is usually found 

between heaves predicted using parameters obtained from oedometer swelling tests 

and those actually measured in the field.  This is simply because the oedometer 

provides a rigid lateral confinement to the expanding soil; hence all volumetric 

swells are measured as vertical swells, while the vertical swell measured in the field 

is only part of the total volume change”.   
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Mosleh A. Al Shamrani et. Al. (2003) have tried to minimize the restrain effect of 

the testing devices by measuring the swelling pressure with a modified triaxial 

testing device instead of an oedometer.  The use of a triaxial device gave the ability 

to represent the loading conditions more accurately than the oedometer ring.  They 

have experimentally evaluated the effect of lateral restraint conditions on the 

predicted heave of expansive soils.  They have conducted a series of tests and 

measurements by using the triaxial and oedometer device and have compared the 

results with in – situ measurements.  The measured swell parameters and indices 

were utilized to predict field heave measured in an expansive shale formation in 

Saudi Arabia.  The soil formation in the region represents typical expansive shale 8m 

to 10m thick with relatively high - swell parameters.  The experimental station to 

take the in situ measurements covered an area of 20m x 20m.  Approximately 1.5m 

of overburden was removed before the installation of the instruments in order to 

expose the expansive material.  A saturation system was provided to facilitate water 

entry to the shale formation.  Six instrumented units were installed at 1m intervals.  

Each unit consisted of a thermocouple psychrometer stack, moisture access tube, 

surface heave plate, and five deep heave plates.  A schematic representation of the 

field instruments is given in Figure 2.20.  Heave, suction and moisture content have 

been taken regularly over a period of 54 weeks.  The profile of cumulative heave 

down the soil profile, the initial and final moisture content and related initial and 

final suction values are shown in Figure 2.21. 
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Figure 2.20:  Schema of Al - Shamrani and Dhowian’s Field Instrumentation 

 

Figure 2.21: In situ Data Recorded by the Field Measurements. (Al - Shamrani and  
                        Dhowian, 2003) 

As mentioned before, the laboratory swell behavior of the shale was evaluated using 

various oedometer testing procedures and triaxial swell tests.  The aim of the study 

was to find out the best testing procedure and testing device which will match with 

results observed from field measurements.  
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“For laboratory tests, undisturbed samples for the oedometer were recovered from 

boreholes of depths ranging from 2m to 10m.  Due to the highly fissured and 

laminated structure of the shale, it was difficult to extract intact undisturbed samples 

for the triaxial tests. Triaxial swell tests were, therefore, limited to compacted 

specimens prepared at a unit weight and moisture content comparable to the field 

values.  In order to be able to compare the results, a series of oedometer tests were 

also conducted on compacted samples” (Al - Shamrani and Dhowian, 2003). 

By the swell tests carried out with the oedometer, tree different procedures have been 

used. They were; free swell tests (ISO), constant volume test (CVS) and swell 

overburden test (SO).     

“The triaxial swell tests were carried out in a hydraulic triaxial stress path cell of the 

type reported by Bishop and Wesley (1975).  A schematic diagram of the layout of 

the testing system is shown in Figure 2.22.  The axial load is applied to the sample by 

pressurizing the lower chamber at the bottom of the cell. The piston pushes up a 

loading ram, at the top end of which is the pedestal on which the soil sample is 

mounted. The sample is pushed upward against a stationary submersible load cell. 

This is a salient feature of the stress path cell that makes it possible to measure the 

vertical swell” (Al - Shamrani and Dhowian, 2003). 

 

Figure 2.22: Bishop–Wesley Stress Path Triaxial and Experimental Set-up 

In order to represent the stress and moisture conditions as likely as the field, the 

swell overburden test procedure has been applied by the triaxial tests and symbolized 

as TSO. 
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The average magnitudes of swell pressure, Ps, and swell index, Cs, for the shale, 

obtained in oedometer and triaxial tests, are given in Table 2.4. 

Table 2.4: Shale Swell Parameters obtained from Oedometer and Triaxial Swell  
                      Tests (Al - Shamrani and Dhowian, 2003) 

Swell Test Test Equipment 
Swell 

Pressure (kPa) 
Swell Index Cs 

Free Swell (ISO) 

Oedometer 

829 0.069 
Constant Volume Test  

(CVS) 
586 0.054 

Swell Overburden Test 
(SO) – Undisturbed 

Sample 
390 0.156 

Swell Overburden Test 
(SO) – Compacted Sample 

860 0.145 

Triaxial Swell Test Triaxial 1070 0.041 

Subsequent to the performance of laboratory tests, heave predictions have been made 

based on the pressure approach.  The heave values calculated based on the OSO 

(Oedometer Swell overburden Test) and TSO (Triaxial Swell overburden Test) test 

results and the in situ measured field heave values are shown in Figure 2.23. (Al - 

Shamrani and Dhowian, 2003) 

 

              Figure 2.23: Measured and predicted heave based on pressure technique:  
                                    (a)using oedometer swell parameters, and (b) comparison of  
                                    heave predictions based on oedometer and triaxial data.  
                                    (Al - Shamrani and Dhowian, 2003) 
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As it can be seen from Figure 2.23., where predicted heave values based on the 

triaxial test results match with the data obtained from field measurements, the 

oedometer test results lead to overestimated heave prediction due to lateral restraint.     

A second study, pointing out the importance of the lateral restrain in swelling 

pressure testing was made by T. Windal, and I. Shahrour (2002).  This study was 

based on making axial swelling deformation measurements in means of permitting 

the sample to deform laterally during swelling.   

Windal and Shahrour have performed several free swell tests with flexible oedometer 

rings having different stiffnesses.  The results of this study are shown in Table 2.5.  

Lateral swell pressures and axial swell strains recorded on free swell tests using 

oedometer rings with different stiffness as Kr = 850MPa and Kr = 3075MPa ended up 

with completely different results.  Under a surcharge load of 732kPa, axial strain 

recorded with the stiff ring was a = 1.8%, where for the ring with 850MPa stiffness 

the axial strain value was only a = 0.2% (Windal and Sharour, 2002).   

Table 2.5: Influence of the Oedometer Ring Stiffness on Compacted Clay Samples  
                   Subjected to Swell Test (Windal and Sharour, 2002) 
 

Surcharge (kPa) Oedometer Ring 
Stiffness Kr (MPa) 

Axial Strain a(%) Lateral Swelling 
Pressure (kPa) 

732 850 0.2 566 
732 3075 1.8 1187 

Together with the development and use of testing equipment not restraining the 

swelling clay specimens in lateral direction, the ability to measure the lateral 

swelling pressure was gained.  Subsequently, the importance of lateral swelling 

pressure has been understood.  Especially for deep excavations in areas having soil 

profiles consisting of soils with high swelling capacities the earth retaining systems 

should be designed as to be able to overcome the lateral swelling pressures.  

Concerning the anisotropic behavior of clay type soils, lateral swelling pressures may 

exceed the vertical swelling pressures.  Richards and Kurzene (1973) have measured 

on a 7.5m high retaining system in stiff clay that lateral pressures have stabilized at 

1.3 to 5.0 times the overburden pressure (Fourie, 1989). 
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2.9  Lateral Swelling Pressure and Measurement Techniques                                                         

The development of lateral swelling pressure has been described by Aytekin (1992) 

in his Ph. D. thesis “Finite Element Modelling of Lateral Swelling Pressure 

Distribution Behind Earth Retaining Structures”.  Aytekin (1992) has described the 

development of lateral swelling pressure as follows: “Boundaries of an expansive 

soil must not be restrained if the soil is to increase its volume.  The ground surface 

increases in elevation as expansive soils swell vertically.  If the ground surface is 

cracked and fissured, the lateral increase in volume accommodated by cracks or 

fissures closing as the soil mass expands into the voids of the cracks.  However, 

when there are no cracks or fissures or when they are very small, the soil becomes 

restrained in the lateral directions.  Thus, no volume change occurs and a lateral 

swelling pressure develops.” It is very easy to assume the restrain of adjacent soil 

body’s to be alike the restrain of a rigid earth retaining system.  So, it wont be wrong 

if it is said that an improper designed earth retaining system holding back a swelling 

type of soil will be the cause of the development of significant lateral swelling 

pressures.  For this reason, understanding of lateral swelling behavior of soils and the 

employment of the determined facts into the design has major importance. As well as 

earth retaining structures, buried structures, such as pipelines or tunnels are also 

subjected to triaxial swelling pressure.  Einstein (1989) has reported a number of 

swelling cases about invert heave and crown displacements of tunnels in Europe.  In 

some sections of the Kappelesberg Tunnel with a length of 415m in Germany an 

invert heave of 4.7m has been recorded (Hawlader et. al.) 

Some examples of laboratory studies performed in order to specify the three 

dimensional swelling behavior including lateral swelling pressure as well as vertical 

swelling pressure, are summarized in the following paragraphs.   

2.9.1 Thin walled lateral swelling pressure ring 

Lateral swelling pressure measurements have been done by using several devices.  A 

widely known device is a modified type oedometer.  It is an oedometer with a thin 

walled ring instrumented with strain gauges.  This thin walled ring is known as the 

“Lateral Swelling Pressure Ring (LSPR)” and was mainly presented by Komornik, 

A. and Zeitlen J., G. in 1965.   
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The Lateral Swelling Pressure Ring is an oedometer ring made of stainless steel, with 

an internal diameter of 81.4mm and a height of 42.0mm (Figure 2.24).  The ring has 

the middle of its section trimmed to a thickness of 0.7mm.  The trimmed section, 

15mm high, is instrumented with 4 strain gauges of 350 ohm in a full bridge 

configuration, attached to the ring at mid – height of this section.  The ring is 

calibrated by clamping it between end plates, introducing air under pressure to the 

inner part of the ring and recording the corresponding strain with a digital strain 

indicator and a strain recorder. 

 

Figure 2.24: Lateral Swelling Pressure Ring 

Ofer (1981) has conducted some comparative tests by using this lateral swelling 

pressure ring. The aim of its comparative study was to show that the possibility of 

lateral movement is a situation not simulated in nature and will lead to errors in 

lateral pressure measurement.  The lateral swelling pressures determined with the 

lateral pressure ring has been compared with the test results obtained by means of an 

in situ swelling pressure probe (Thomas, 2008). 

The tests with lateral swelling pressure ring were conducted by compacting the 

specimen into the ring and then loading and allowing it for consolidation for a period 

of 24 hours under an applied pressure of 19 kPa.  Afterwards, the clay was inundated 

with water.  Horizontal strains and vertical movements were recorded until the 

sample had stabilized and no further variation in horizontal and vertical strains was 

noted. Figure 2.25 shows the results of the tests.  From the LSP ring test results, it 

was anticipated that for a clay compacted to a density of 1,45t/m³ at an initial 

moisture of 15,2% and loaded with a vertical pressure of 17 kPa, a lateral swelling 

pressure of 100 kPa and a swell of 8% would develop. 

Porous Stone

Clay Sample

Porous Stone
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A schematic drawing of the in situ swelling probe is given as Figure 2.26.  The in-

situ swelling pressure probe consists of a cutting edge at the bottom, a hollow 

cylinder above with an inner diameter of 70mm and thinned wall of 0.6mm.  

Connected with a water reservoir at the surface, two water supply rings were 

mounted at each end of the measuring module.  The pressure transducer is a cylinder 

which has an airtight chamber at mid-height. Holes are provided to allow connection 

of tubes from an air pressure system and to allow passage of electric leads from the 

strain gage to a strain indicator.  Ofer et. al.  (1984) have further developed the in - 

situ pressure probe having a double shear vane added on it.  This further 

development gave the possibility to determine the variation of the shear strength 

simultaneous to swelling pressure (Ofer, 1981), (Ofer et. al., 1984), (Thomas, 2008). 

 

 

        Figure 2.25:  Density v.s % Swell – Lateral Swelling Pressure Relation for the                  
                               LSP Ring Test (Ofer, 1981) 

% Swell 

h (kPa) 
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Figure 2.26:  In Situ Swelling Pressure Probe (Ofer, 1981) 

In the contrary to the test results obtained by the lateral swelling pressure ring, the 

results of the in-situ probe reveal much higher values.  Lateral swelling pressures up 

to 575kPa were recorded after 8 days with a limited percent swell of 2.9% (Ofer, 

1981). 

Ofer (1981) has reported that the degree of confinement together with the dimension 

of the specimen, are major factors affecting the lateral swelling pressure. Ofer and 

Komornik (1982) have determined that lateral swelling pressure decreases rapidly 

with the increase in lateral strain.      

Based on Ofer’s findings, Thomas (2008) states in his study that Ofer has enhanced 

the ability of the lateral swelling pressure ring by introducing air pressure into the 

system to counterbalance any lateral swell strain.  The air pressure was applied from 

a second circular cell confining the thin walled ring (Figure 2.27).  



 
39

 

 

Figure 2.27:  The Lateral Pressure Ring of Ofer (Thomas, 2008) 

Ertekin (1991) constructed a lateral pressure measuring flexible ring oedometer as 

described by Komornik and Zeitlin (1965).  Edil and Alanzy (1992), Erol and Ergun 

(1994), Ergüler (2001), Ergüler and Ulusay (2003), Sapaz (2004) and Avşar et al. 

(2009) have conducted a number of swelling tests with a similar or a modified 

version of this equipment.  For the tests that have been conducted within this thesis, a 

modified version of the thin walled oedometer ring has been used.  The modified ring 

in this study has been based on the lateral pressure ring of Ertekin (1991).   

Ertekin (1991), has rebuild the lateral pressure ring in the Middle East Technical 

University.  This ring, which is a thin walled oedometer ring is similar to the one 

developed by Komornik and Zeitlen in 1965.  The main ring of the device is made of 

high quality alloy steel.  The material Code is Ç4140, which is equal to DIN 42 Cr 

Mo 4.  The internal diameter of the ring is 63,5mm.  The wall thickness and the 

height of the ring are 0,35mm and 78mm, respectively.  A Wheatstone bridge was 

made up by means of mounting four strain gauges 90° apart on the outer wall of the 

ring.  The thin wall of the oedometer was protected against shocks by installing pivot 

bolts through three holes staggered as 120° apart from each other.  Since the 

calibration of the device is made by means of applying fluid pressure on to the ring, 

the outer ends of the ring body are screw threaded.  These ends are designed to hold 

top and bottom caps fluid tight during the calibration process.  The fluid tightness of 

the caps is supported with o – rings.    The ring body was subjected to a head 

treatment and hardening process, in order to avoid any deformations after release of 
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pressure during testing.  The setup has been protected against rust by galvanization.  

A cross – section of the set up of Ertekin is shown in Figure 2.28 and a photograph of 

the device is shown in Figure 2.29. 

 

 

Figure 2.28:  Lateral Swell Pressure Test Set Up of Ertekin (Ertekin, 1991) 



 
41

 

 

Figure 2.29:  Photographs of the Lateral Swell Pressure Test Set Up of Ertekin  

The electrical strain gauges, which are mounted on the exterior surface of the ring, 

measure the lateral swelling pressure.  Four 120ohms electrical strain gauges are 

installed to the mid – height of the ring.  Cu – Ni alloy foil is the sensing element of 

the strain gauge which is fixed into epoxy carrier.  Operational temperature range is 

between -20° to +80° C.  Strain limit of this gauge type and gauge factor are 3% 

maximum and 2.1, respectively.  The gauge length is 10mm (Sapaz, 2004), 

(Ertekin, 1991). 

Katti and Katti (1987) determined in 1987 that the saturated expansive soil behaves 

unusually with respect to the development of lateral pressure both at active and at 
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rest conditions.  Considering this aspect of Katti and Katti, (1987), Erol and Ergun 

(1994) performed constant volume swell tests and swell overburden tests on 

statically compacted clay samples from the Aegean Coast of Turkey.   

In the constant volume test procedure, the specimen was left for relaxation for some 

time after it was placed into the ring.  Then, the specimen was inundated with water, 

and the swelling of the specimen in vertical direction was avoided by means of 

gradually increasing the applied vertical pressure.  The test continued until the 

termination of swelling.  Continuous records of lateral pressures were obtained 

throughout the experiments.  At the equilibrium, the vertical and lateral stresses are 

defined as swelling pressures.  The rebound characteristics were obtained by 

reducing the vertical pressures in decrements. 

In the swell overburden test, a predetermined surcharge pressure was applied to the 

specimen in dry, and kept for one hour for equilibrium.  Then the sample was 

inundated with water and allowed to swell while registering the lateral pressures 

continuously. The ultimate swell percent under particular surcharge and variations in 

the lateral stresses were obtained. 

Samples with identical dry densities and varying initial water contents in the range 

between 27% and 43% weresubjected to the CVS test.  According to the results 

shown in Figure 2.30, the rate of development of vertical pressure is faster in 

comparison to the lateral swell pressure.  This behavior is more dominant with 

increasing water content.  On the contrary, the development of lateral swell pressure 

continuous to increase at faster rates after the development of vertical pressure slows 

down.  The lateral swell pressure reaches values in excess of vertical swell pressure. 
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    Figure 2.30: Development of Vertical and Lateral Stresses in CVS Tests (Erol   
                          and Ergun, 1994) 

The variation of Ks (swell pressure ratio) with initial water content obtained at the 

end of the CVS tests by Erol and Ergun (1994) is given in Figure 2.31.  The Ks ratio 

rises up to 1.55 with the increase of initial water content. 

 

Figure 2.31:  Swell Pressure Ratio vs. Initial Water Content in CVS Tests  
                    (Erol and Ergun, 1994) 
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Swell overburden (SO) tests have also been made by Erol and Ergun on compacted 

samples of the same clay.  By employing samples with identical dry density and 

water content, the development of lateral swell pressure with increasing vertical 

swell deformation under constant surcharge pressures of 50kPa, 100kPa, 150kPa, and 

200kPa has been studied. The investigators have noted that under constant surcharge 

load, the lateral swelling pressure increases rapidly with time at the beginning of the 

saturation phase.  Further increase in time and vertical swell deformation ends up 

with the decrease of lateral swelling pressure.  This has been illustrated by the 

investigators as in Figure 2.32. 

 

Figure 2.32:  Typical Lateral Pressure vs. Vertical Swell Behavior in Swell  
                               Overburden Tests (Erol and Ergun, 1994) 

As it can be seen from Figure 2.32, the decrease of lateral swelling pressure under 

high surcharge values like 100kPa and 150kPa is very limited in comparison with the 

decrease of the lateral swell pressure in tests conducted by applying lower surcharge 

pressures (Erol and Ergun, 1994). 

Sapaz (2004) investigated the anisotropic characteristics of the clayey samples 

encountered in the excavations of the Batıkent – Sincan Metro Line Tunnel in 

Ankara.  Sapaz (2004) has employed compacted clay samples in the tests.  The tests 

have been conducted according to the constant volume test procedure as described in 
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the ASTM D 4546 – 03.  Sapaz (2004) has tabulated the results of the triaxial 

swelling tests as in Figure 2.33.  It should be noted that the constant volume test 

procedure applied by Sapaz was only restraining the occurrence of strain in the 

vertical direction.  In the contrary, the device used by Sapaz (2004), which is the 

same device regenerated by Ertekin (1991) as a prototype of the lateral swelling 

pressure ring of Komornik and Zeitlin (1965), does allow the specimen expand 

laterally.   

 = 1.10  (kg/cm³)  = 1.15  (kg/cm³)  = 1.20  (kg/cm³)  = 1.25  (kg/cm³)  = 1.30  (kg/cm³)

Pv (kg/cm²) 0,66 0,83 1,01 1,91 2,43

Ph (kg/cm²) 0,45 0,54 0,68 1,20 1,86

Sr = Ph/Pv 0,68 0,65 0,67 0,63 0,77

 f 48,63 45,48 45,55 43,39 38,66

Pv (kg/cm²) 0,52 0,80 0,90 1,60 2,06

Ph (kg/cm²) 0,41 0,47 0,62 1,05 1,69

Sr = Ph/Pv 0,79 0,59 0,69 0,66 0,82

 f 49,99 47,87 43,80 40,89 38,76

Pv (kg/cm²) 0,47 0,69 0,80 1,25

Ph (kg/cm²) 0,37 0,45 0,58 0,82

Sr = Ph/Pv 0,79 0,65 0,73 0,66

 f 50,12 48,76 43,51 42,50

Pv (kg/cm²) 0,40 0,63 0,73

Ph (kg/cm²) 0,33 0,41 0,54

Sr = Ph/Pv 0,83 0,65 0,74

 f 50,84 47,59 44,75

Pv (kg/cm²) 0,36 0,52

Ph (kg/cm²) 0,31 0,37

Sr = Ph/Pv 0,86 0,71

 f 49,95 47,57

Pv (kg/cm²) 0,31

Ph (kg/cm²) 0,27

Sr = Ph/Pv 0,87

 f 50,29
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Figure 2.33: Test Results of Sapaz (2004) 

As it can be seen Figure 2.33, both lateral and vertical swelling pressures increase 

with increasing dry unit density.  Oppositely, the increase in water content leads to a 

decrease in swelling pressure.  Day (1998) has performed swelling tests on 

dessicated California Clay samples, which have ended up with similar findings 

(Avşar et al., 2009). 

The test results point out that the development of vertical swelling pressure is much 

faster than the development of lateral swelling pressure.  Figure 2.34 is a typical 

example visualizing the time shift in the development sequence of vertical and lateral 

swelling pressure.  Sapaz has stated the time necessary for fully development of 
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lateral swelling pressure as to be recorded within a range of 5000min – 8000min, 

which corresponds to 4 to 5 days.    

 

Figure 2.34:  Lateral and Vertical Swelling Pressure vs. Time Graph (Sapaz, 2004) 

Avşar et al. (2009) have also investigated the anisotropic behavior of Ankara Clay.  

Districts like Balgat, Çukurambar and Karasunlar in Ankara has been selected as 

sampling area.  The sampling depth has been selected within the active zone, which 

corresponds to depths varying between 1.0m and 2.4m.  The tests have been 

conducted on disturbed and undisturbed soil samples.  Avşar et al. have used a 

similar, but smaller manufactured version of the thin walled oedometer ring of 

Ertekin (1991) (Figure 2.35).   

According to the results of the study of Avşar et al. (2009), the lateral swelling 

pressure is lower than the vertical swelling pressure in Ankara Clay.  The authors 

refer to the previous triaxial swelling tests in Ankara Clay, and point out that the 

swelling pressure ratios (Ph/Pv) within the range of 0.34 – 0.98 are in harmony with 

the test results having an average swelling pressure ratio of 0.75 as obtained by 

Sapaz (2004). 

Avşar et al. (2009) have also investigated the effect of orientation of the clay 

particles on anisotropic swelling behavior of clays.  They have confirmed that as 

reported by Chen and Huang (1987), the swelling pressure in the direction 

perpendicular to particle orientation is greater than that in the direction parallel to 

particle orientation.  Additional to swelling pressure tests, SEM records of the 

specimen have been obtained for the prediction of this issue. 
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Figure 2.35: Smaller Regenerated Version of the Thin Walled Oedometer 

                              (Avşar et al., 2009) 
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2.9.2  Other equipment for direct measurement of lateral swelling pressure 

Joshi and Katti (1984) have investigated the variation of lateral expansion pressure 

with a special designed apparatus.  They have undertaken a large scale model study 

in order to simulate the field conditions (Figure 2.36).  The height of the model was 

2.75m.  The setup had lateral pressure measuring units at various depths.   Also the 

probe plates for measuring vertical movement and the vanes for measuring vane 

shear strength were embedded at various depths.  The sides of the tank were smeared 

with grease and covered with polyethylene sheets to avoid the effect of side friction.   

The authors have investigated the anisotropic behavior of black cotton soil, which is 

very famous in India for its swelling potential.  They have determined that the lateral 

pressure at the site surface was negligible as the shear strength of the specimen.  

Then, the lateral pressure and the shear strength of the soil increased rapidly with 

increasing depth up to 0.92m.  Below this depth, both the lateral pressure and the 

shear strength remain constant.  The recorded lateral pressure in 0.92m depth, which 

is relatively shallow, was 287kPa.  These results have made them realize that the 

lateral pressure characteristics of the expansive soils are different than conventional 

soils.   
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Figure 2.36: Large Scale Model (Joshi and Katti, 1984) 

So, a second device (Figure 2.37) was designed, for the study of lateral pressure 

characteristics under varying dead load surcharges.  This second equipment consists 

of a container fabricated out of 6.4mm thick mild steel plates having internal 

dimensions of 0.31m x 0.31m x 0.46m (width x length x height).  Lateral pressure 

measuring unit of the device is a piston sleeve, which is fixed to the side of the 

container.  The piston is connected to a dial gauge.  The desired surcharge is applied 

via a lever arm.   
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Figure 2.37:  Equipment for the Measurement of Lateral Pressure under  
                     Dead Load Surcharges 

Similar to the test results obtained by Ofer (1981) in the lateral pressure ring, the 

lateral pressure increased rapidly with time in the beginning of saturation process.  

Then the rate of increase slowed down and the lateral pressure attained a peak value.  

Afterwards, the lateral pressure decreased down to a value where it remained 

constant (Figure 2.38).   

 
 

Figure 2.38: Development of Lateral Expansion Pressure under an 
             Initial Surcharge with Time (Joshi and Katti, 1984) 
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Figure 2.39 shows the increment of equilibrium lateral pressure due to the increment 

of dead load surcharge.  The ratio of increase in lateral pressure to the corresponding 

increase in dead load surcharge is more than 1.0 in case of increments up to the 

swelling pressure of the soil.  For the incremental surcharges beyond the swelling 

pressure the ratio works out to be 0.2. This indicates that the basic nature of 

development of lateral pressure within the swelling pressure range is different from 

the basic nature of development of lateral pressure beyond the swelling pressure 

range of soil.  Equilibrium of lateral pressure is equal 10 times the vertical pressure 

until a depth of 0.28m.  For a dead load surcharge of 95.8 kPa this ratio decreases 

down to 3.25.  It continues to reduce and reaches the value of 1.19 for a dead load 

surcharge of 479 kPa (Figure 2.40) (Joshi and Katti, 1984).   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.39:  Initial Surcharge v.s Lateral Pressure (Joshi and Katti, 1984) 
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Figure 2.40:  K Ratio vs. Initial Surcharge (Joshi and Katti, 1984) 

Fourie (1989) has defined a new laboratory technique to determine lateral swelling 

pressures in expansive clay.  Fourie has made his tests by using a Bishop – Wesley 

(1975) hydraulic triaxial apparatus.  The sample was confined with a lateral strain 

belt like as it had  been described by Bishop and Henkel (1962).      

A modernized Bishop – Wesley Type Triaxial Apparatus is being produced by GDS 

Instruments. A schematic drawing showing pictures, together with the working 

sequence of the Bishop – Wesley Type Triaxial Apparatus is given in Figure 2.41.  

This device is equipped with an improved strain belt confining the specimen and 

provides therefore an increased pressure / volume control during the test (URL – 2).   
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Figure 2.41:  Modified Bishop – Wesley Type Triaxial App. (URL–2) 

Fourie (1989) has further developed and adopted the “Method of Equilibrium Void 

Ratios” method discussed by Sridharan, et al. (1986) for lateral swelling pressure 

determination. The major advantage of the triaxial apparatus is that a confining 

pressure can be applied to the swelling clay sample.  So, based on the same principle, 

the lateral swelling pressure probe has been built-up by adding a pressure cell around 

it.  The technique originally put into practice the continuous increase of cell pressure.  

The strain belt detects the increase of the diameter of the sample due to the ingress of 

water.  It was found impossible to avoid overcompensating and thus the sample was 

compressed beyond its original diameter.  To prevent strain based failures, Fourie 

(1989) modified the technique so that lateral strains under varying constant confining 

pressures could be recorded.  Then, lateral swelling pressure has been determined by 

drawing the lateral strain vs. lateral pressure curve.  Based on Fourie’s (1989) 

technique, the lateral pressure point, where the curve intersects the zero strain axis is 

the lateral swelling pressure (Figure 2.42).   
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   Figure 2.42:  Initial Cell Pressure vs. Lateral Strain (Fourie, 1989) 

Snethen and Haliburton (1973) measured lateral swelling pressures of two type of 

Oklahoma Clay.  They used a device consisting of a pressure transducer and strip 

chart recorder.  In the device, the compacted expansive soil sample was surrounded 

by a filter paper and a rubber membrane.  The soil samples were not allowed to 

deform in lateral and in vertical directions.  Influences of initial moisture content, dry 

density and compacted soil structure on lateral swelling pressure have been 

investigated.  They have found that the swelling ratio of lateral swelling pressure to 

vertical swelling pressure approximately equal to 1.0 at moisture content above 

optimum for both soil types (Aytekin, 1992). 

İkizler et. al. (2008) investigated the effect of using a compressible material, which 

was EPS Geofoam in this example, between the retaining wall and clay backfill with 

high swelling potential on lateral swelling pressure.  They have conducted triaxial 

swelling tests using a self developed swelling pressure measuring steel box.  The 

steel testing box, with dimensions as 250mm x 250mm x 300mm has a wall 

thickness of 3mm (Figure 2.43).  The box is fitted with a pressure transducer on each 

side.  Lateral and vertical swelling pressures were measured with the help of the 

pressure transducers.  Water absorption of the specimen was maintained by the 

porous stones which were mounted on the sides of the testing box.  The study 

concludes that there is a remarkable decrease in lateral swelling pressure with the 

placement of the compressible EPS Geofoam between the retaining system and the 

swelling clay backfill (Figure 2.44).    
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Figure 2.43: Steel Testing Box Developed by İkizler et al. (2008) 

 

Figure 2.44:  Lateral Swelling Pressure vs. Time (İkizler et al., 2008) 
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Wattanasanticharoen et al.in 2007, studied three-dimensional anisotropic stress 

conditions of swelling clays using a modified triaxial cell equipment.  This triaxial 

cell can be classified as a combination of the lateral swelling pressure ring and the 

modified Bishop – Wesley Triaxial Apparatus.  The sample is placed in a membrane, 

instead of thin walled ring. The membrane together with the sample is placed into an 

airtight triaxial cell where a confining pressure can be applied via water pressure 

(Figure 2.45). Vertical load is applied using a conventional consolidometer system of 

weights and lever arms. Swell strains in the lateral direction are measured 

immediately at the completion of the test by measuring the sample. (Thomas, 2008) 

 

Figure 2.45: Triaxial Swelling Pressure Device of Wattanasanticharoen et al. (2007) 

2.9.3 Triaxial swelling behavior of rock 

Especially in tunneling design, the triaxial swelling behavior of rock layers has major 

importance.  Since swelling of rock has great importance in tunneling, which is 

consequently within the scope of this thesis, some studies from the literature will be 

presented in the following paragraphs. 

Sadisun et. al., (2002), Hawlader et. al. (2003), Barla (2007) and Schwingenschloegl 

and Lehmann (2008) are some of the investigators who have studied the three axial 

swelling behavior of rock in recent years.    

Sadisun et. al. (2002), have fabricated an unconfined swelling test device, which is 

able to measure the strains caused by swelling of cubic or cylindrical shaped rock 
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specimens in all three dimensions.  A schematic drawing of the device is shown in 

Figure 2.46. 

 

Figure 2.46:  Unconfined Swelling Test Equipment (Sadisun et. al., 2002) 

Hawlader et. al. (2003) have investigated the triaxial swelling behavior of Quenstone 

shale rock samples obtained from the Niagara Falls at depths between 80m and 

120m.  They conducted tests by using the modified testing device of Lo and Lee 

(1990) and the biaxial testing. 
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3. TEST MATERIAL AND EQUIPMENT 

3.1 Test Material 

All swelling pressure tests presented within this thesis have been performed with 

compacted clay samples.  The clay used in the tests has been taken in a disturbed 

condition from ISBAS (Istanbul Thrace Free Zone) in the Çatalca Region at the 

western part of Istanbul City.  As mentioned in the early paragraphs, the Çatalca clay 

is volcanic in origin.  The thicknesses of these Oligosen aged clay layers are around 

150m (Sağlamer, 1991). 

3.1.1 Visual characteristics of the sample 

The clay sample subjected to swelling tests is brown – grey colored and has hard 

consistency.  Although the natural water content of the sample could not be 

measured because of being in disturbed condition, the fissures at the surface of the 

block samples indicate that the clay sample was dry. 

3.1.2  Grain size distribution 

To designate the grain size distribution of the clay sample, sieve analyses and 

hydrometer tests have been performed.  Results of the tests have shown that the 

samples consist of 100% silt + clay sized particles.  A typical grain size distribution 

graph of the sample is given in Figure 3.1.  

3.1.3 Atterberg limits 

The index properties of clays are basic indicators of the swelling potential.  

Therefore, Atterberg limits of the Çatalca clay were determined in the laboratory.  

Table 3.1 shows the results of these tests.    
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Figure 3.1: Grain Size Distribution of ISBAS Site Clay Sample 

Table 3.1:  Index Properties of ISBAS Site Clay Sample 

Sample No.  1 2 3 
Liquid Limit (%) wL 70 71 68 
Plastic Limit (%) wP 36 35 33 
Plasticity Index (%) Ip = wP - wL 34 36 35 

A comparison of the results summarized in Table 3.1, with the plasticity index and 

liquid limit intervals given in Table 2.3, reveals that the clay sample taken from 

ISBAS site has high swelling potential.   

According to Figure 3.1, the amount of the clay sized particles inside the tested 

clayey soil is about C = 32%.  Utilizing this value in Equation 2.6, the activity of the 

sample is calculated as follows; 

10

PI
Activity

C



= 35 / (32-10) = 1.6 

Employing the given results above in the classification chart given in Figure 3.2, the 

swelling potential of the ISBAS sample is found to be S = 10% - 15%, which 

corresponds to a highly expansive soil.  The swelling potential of the ISBAS sample 

has also been determined using Equation 2.1 as: 

2.4460 ( )S K PI = 60 * (3,6 * 10-5)*(35)2,44 =  12.65. 

S = 12.65 corresponds to high swelling potential.     

Gravel Sand Clay Silt 
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Figure 3.2:  The Swelling Potential of ISBAS Sample Regarding its Activity 

3.1.4 Mineralogy 

Mineralogical specifications of the clay sapmle, subjected to lateral swelling tests has 

been identified with a X – Ray diffraction test.   The X – Ray diffraction test was 

made in the Marmara Research Center of Tubitak (The Scientific and Technological 

Research Council of Turkey).   

Based on the X – Ray diffraction test results, the mineralogical composition of the 

clay sample that has been used in the tests is as follows: 56.18% calcite, 32.02% 

quartz, 4.49% montmorillonite, 3.93%feldspar, 2.25%kaolinite and 1.13% illite.  

Although the montmorillonite content of the sample is not as much as expected, the 

clay sample has high swelling potential. 
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3.1.5 Standard Proctor tests 

Since compacted samples have been employed in all the swelling tests within the 

scope of this thesis, optimum moisture content and the maximum dry unit weight of 

the clay material had to be determined.  It has been decided to work with compacted 

samples prepared within a standard proctor mold, since it was easier to cover 

undisturbed swelling samples from this mold instead of the present modified proctor 

mold in the laboratory.   

All standard proctor tests within the coverage of this study have been made in 

accordance with the ASTM D 698–07; Standard Test Methods for Laboratory 

Compaction Characteristics of Soil Using Standard Effort.   

To prepare the clay samples for proctor tests, they have been laid to dry into the oven 

for a period longer than 24 hours.  Then they have been pulverized. Finally, two 

standard proctor tests have been performed on them.  The results of the standard 

proctor tests are given in Table 3.2, where one representative graph is given as in 

Figure 3.3. 

Table 3.2: Standard Proctor Test Results 

dry,max (t/m
3) wopt (%) 

1.32 32 
1.37 29 

3.1.6 Uniaxial swell test 

Prior to subjecting the clay samples to triaxial swelling tests, uniaxial swelling 

pressure tests following the constant volume procedure (CVS) and the free swell 

method have been made in accordance with the ASTM D 4546– 03.  Two samples 

were prepared in the laboratory; both compacted with the standard proctor procedure.  

Initial water content of the samples were  = 19% and 20%, respectively.   

Two specimens have been taken from the first sample and subjected to a constant 

volume swell test.  The tests began on 04.11.2009 and have reached equilibrium at 

06.11.2009 after a period of 48 hours.   Final swelling pressures were determined at 

the end of these tests as 153kPa and 150kPa.  The final moisture contents of the 

specimens were final = 37% and final = 39%.       

Two specimens recovered from the second sample with an initial water content of  

= 19% were subjected to free swell test.  The specimens have been saturated and left 
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to swell freely starting from 12.11.2009 until 19.11.2009 in the conventional 

oedometer.  Subsequent to the termination of swelling, a pressure of 200kPa for each 

specimen had to be applied, so that the initial volume of samples could be achieved.  

In other words, the free swell tests resulted with a swelling pressure of 200kPa.   

 
 

Figure 3.3:  Dry Unit Weight – (%) Water Content Graph obtained from Standard  
                    Proctor Test 
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3.2 Test Set Up 

3.2.1 Lateral swelling pressure probe used in this thesis 

The main idea was to design and to manufacture a lateral pressure probe, mainly a 

thin walled oedometer with a pressure cell added around it.  This probe is based on 

the investigations of Komornik and Zeitlin (1965), Ofer (1981), and Ertekin (1991) 

in principle.  As mentioned earlier, Komornik and Zeitlin (1965) designed and used 

the Lateral Swelling Pressure ring, and Ofer in 1981 has further developed the ring 

and added a back pressure cell around this ring.  Ertekin (1991) has rebuilt a device 

similar to that of Komornik and Zeitlin’s thin walled ring in the laboratories of 

Middle East Technical University. The specifications of the device developed by 

Ertekin (1991) are given in details in Paragraph 2.9.1.  

The device, that has been built for this study is based more on the investigations of 

Ofer (1981) and is therefore equipped with a confining back pressure cell.  As stated 

previously, the results of the tests made with the In-Situ Probe by Ofer reveal 

different values than the results obtained from the tests with the Lateral Swelling 

Pressure Ring.  With 2.9% swell, a lateral swelling pressure of 575kPa was recorded 

in the test with the In Situ Probe, where a test with a sample of the same soil in the 

thin walled oedometer had terminated with a peak lateral pressure value of 100kPa 

and a swell strain of 8%.  So it was obvious that the degree of confinement and the 

amount of strain had major roles in the development of swelling pressure.   

As mentioned before, Bishop and Wesley (1975) type hydraulic triaxial apparatus 

which allows stress controlled loading of both axial and radial pressures has been 

founded due to equal considerations represented in Ofer’s (1981) study and can be 

accepted as an alternative testing equipment serving for the same purpose. 

The main reason of deciding to rebuild and further develop a thin walled ring rather 

than the hydraulic triaxial apparatus was the ease of capturing undisturbed samples 

for the thin walled ring with limited height in comparison to cover specimens for the 

triaxial apparatus.  Especially with compacted samples, conducting tests with a thin 

walled lateral pressure ring has always been more practical. 
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3.2.2 The production phase of the lateral swelling pressure probe 

A schematic drawing showing the lateral pressure measurement device that has been 

utilized is given in Figure 3.4.  The device has been manufactured in the workshop of 

Kurtuluşlar Hava Sinai Ltd. Şti.  The device is a modified version of the device used  

by Ertekin (1991).  The thin walled ring and its top and bottom collars have been 

shaped from a single cylindrical block. 

One other consideration during the manufacture sequence was to increase the height 

of the specimen.  This has been made to avoid the limiting effect of the top and 

bottom boundaries on the deflection of the thin walled ring.  In other words, the 

surface with decreased rigidity has been increased so that the confining effect of the 

ring can be minimized.  So, it has been tried to maintain an unconfined swelling 

option for the specimen in lateral direction and it has also been tried to retain a 

suitable condition for the direct effect of the back pressure to be applied on the 

specimen. 

The inner diameter and the height of the ring are 70mm.  Different than the ring of 

Komornik A. and Zeitlen J. (1965), the new ring has a thickness of 0.35mm, like the 

one of Ertekin (1991).  The code of the ring material is Ç4140, which is equal to DIN 

42 Cr Mo 4.  The Shock protection has been made by installing pivot bolts through 

three holes staggered as 120° apart from each other, as in the device of Ertekin 

(1991).  The ring has a top and a bottom collar.   Following the completion of the 

production, the device has been covered with chrome in order to avoid rusting.   
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Figure 3.4:  Drawing of the Regenerated Device 

Both ends of the ring body are screw threaded.  This screw treatment is provided for 

the installation of the calibration caps.  The ring body with its collars is shown in 

Figure 3.5. 
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Figure 3.5:  The ring body, top and bottom collars and the pivot bolts 

The back pressure cell is a cylinder with a diameter of 130mm.  The top and bottom 

openings of the back pressure ring were sealed with o – ring.  A valve is mounted on 

the periphery of the back pressure cell, on which the pipe of the regulator is mounted 

during the test.  The back pressure cell is shown in Figure 3.6. 

The calibration of the strain gauges is made by sealing the top and bottom caps of the 

ring.  Water pressure is used for the calibration.   After the completion of the 

calibration of the strain gauges, the specimen is being placed into the ring and the 

ring body is being placed inside the back pressure cell.   Finally, a top cap of the 

pressure cell, with a cyclic gap, as large as the specimen diameter, is placed.  The 

completed set up is placed under a conventional oedometer lever arm holder, by 

applying vertical pressure to the specimen.  Figure 3.7 is a photograph of the sealed 

test setup. 
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Figure 3.6:  Back Pressure Cell 

 

Figure 3.7:  The sealed test set up 



 
69

The strains and pressures on the thin walled ring are measured via waterproof strain 

gauges, which are mounted on the ring.  The back pressure is provided by applying 

water pressure from a pressure regulator. 

3.2.3 Read – out and data logging 

As mentioned before, water proof strain gauges are mounted on the thin walled ring.  

Instead to build up a full Wheatstone bridge as in the original testing equipment, 

quarter bridges have been assembled with the strain gauges.   The quarter-bridge type 

I, which has been designed for data collection measures either axial or bending 

strain.  It was sufficient to obtain the axial strain alone.  Figure 3-8 shows the type of 

strain gauges used in the Quarter Bridge Type I.   

 

Figure 3.8: Quarter-Bridge Type I Measuring Axial and Bending Strain 

Main characteristics of a quarter bridge type I are as follows:  

 A single active strain-gauge element is mounted in the principle direction of axial 
or bending strain. 

 A passive quarter-bridge completion resistor (dummy resistor) is required in 
addition to half-bridge completion. 

 Temperature variation in specimen decreases the accuracy of the measurements. 

 Sensitivity at 1000 me is ~ 0.5 mVolt/ VEX input. 

Figue 3–9 shows the circuit diagram of a Quarter Bridge Type I.   

 

Figure 3.9: Quarter-Bridge Type I Circuit Diagram 

• R1 and R2 are half-bridge completion resistors. 
• R3 is the quarter-bridge completion resistor (dummy resistor). 
• R4 is the active strain-gauge element measuring tensile strain (+e). 
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The disadvantage of using a quarter bridge is that the data accuracy was susceptible 

to temperature changes.  Therefore, the tests have been conducted in an temperature 

conditioned test room with limited temperature variation.  The advantage and the 

progressing step of the quarter bridge in comparison to the full bridge is that 

particular readings could be taken from each strain gauge instead of taking one 

reading from all four strain gauges.  So, this gave us the ability to see the time 

depending non-homogeneous behavior of the clay specimens.  

 Although the back pressure was given through the pressure regulator in the 

laboratory, a pressure cell has been mounted on the outer periphery of the back 

pressure cell, right over the valve, to see the deviation of the back pressure 

throughout the duration of the test.    This has shown how proper the pressure 

regulator has worked during the test.  A milivolt output pressure transducer of 

Omega Electronics has been used for this purpose (Figure 3.10).   

The vertical pressure that was applied to the specimen via the lever arm of the 

oedometer has been measured by means of a cylindrical load cell.  Also the load cell 

has been provided from Omega Electronics.  The surface mounted type load cell has 

a capacity of 50kN (Figure 3.11).         

 

Figure 3.10:  Pressure Transducer 
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Figure 3.11:  Surface Mounted Load Cell 

The whole data has been collected via a four channel collector connected to a 

desktop computer.  Detailed descriptions of the data logger and the evaluation of the 

data has been given in the related paragraphs..   

3.2.4 The installation phase in the laboratory 

The lateral pressure measuring modified oedometer ring has been put into service in 

that manner that it has been installed into a existing oedometer apparatus in the Soil 

Mechanics Laboratory of Istanbul Technical University.  Therefore, the load 

transferring arms of the conventional oedometer apparatus were also subjected to 

small modifications.  The width between the two arms of the set up was increased so 

that enough space could be provided for a aluminum pot holding water.  The test 

setup shown in Figure 3.7 has been mounted into this pot (Figure 3.12).   

To prevent direct contact between the specimen bottom and the pot base and to 

uphold drainage during the swelling process, a porous stone with a diameter, 0,5cm 

smaller than the specimen’s diameter is placed at the bottom of the specimen.  Also 

the top of the specimen iss sealed with a porous stone and a hard plastic cylindrical 

shaped elevating equipment with tubes on top of it.  The load cell is placed to the top 

of this elevating cylinder (Figure 3.13). The elevating cylinder is essential in 

avoiding the contact of the cables of the load cell with water.    
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Figure 3.12:  Test Apparatus 

 

Figure 3.13: Big Scale Picture of the Test Apparatus 

Elevating Load Transfer Equipment 

Load Cell 

Pressure Transducer 

Back Pressure Tube 

Aluminium Bottom Pot 

Top Water Reservoir 



 
73

As it can be seen from Figure 3.13, the water reservoir on the top of the pressure cell 

is established via a cone shaped hollow cylinder.  This cone is threaded so that it can 

be screw fixed.  Conclusively, the specimen is saturated from the top and the bottom. 

While the applied vertical pressure is measured with the help of the load cell, the 

pressure transducer that is screwed on the back pressure cell is used for back pressure 

measurement. 

3.2.5 Calibration 

The load cell which is used for vertical pressure readings was calibrated in the 

manufacturing factory.  The strain gauges and the back pressure cell have been 

calibrated in the soils laboratory.  Calibration of both strain gauges and back pressure 

cell were made by separating the ring body from the back pressure cell.   

For the calibration of the strain gauges, the top and bottom of the ring body has been 

sealed via the screw fixed caps.  On the top cap, a valve is built up which is 

connected to the water pressure regulator (Figure 3.14).  Afterwards, the strain 

gauges were connected to the data logger, their calibration was made by increasing 

and decreasing the water pressure in stages of 50kPa. It was sufficient to select a 

pressure range of 0.00kPa – 500kPa for the calibration of the strain gauges. 

 

Figure 3.14: The top calibration cap 

The standby duration in each loading and unloading stage was selected as 2 minutes 

in the calibration of the set up in our case.  The setup duration has been determined 
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as the duration necessary for the damp of the oscillation of the strain gauge readings.  

In order to gain a reliable calibration curve, the process which has been described 

above was repeated for three times.  The pressure – strain diagram showing the 

calibration curves of the strain gauges is shown in Figure 3.15. 

 

Figure 3.15:  Strain Gauge Calibration Curve 

Similar to the calibration of the strain gauges, the pressure transducer was calibrated 

with applying water pressure to the sealed ring body.  For the calibration of the 

pressure transducer, the valve at the top calibration cap was removed, and the 

pressure transducer was screw fixed to the cap.  Then again, three cyclic loading and 

unloading steps have been utilized to determine the calibration curve of the pressure 

transducer.   

3.2.6 Sample preparation 

The clay samples, which have been subjected to the swelling tests for this study were 

taken as disturbed samples from a construction site at Thrace Free Trade Zone, in 

Çatalca.  Properties of the clayey soil samples, which were determined by means of 

laboratory tests, have already been given in detail above.   

The clay samples were stored in an oven and kept there until they were dry.  

Afterwards, oversized grains (sand and gravel) were sieved and the remaining 
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cohesive soil were pulverized.  It was restored again in an oven for duration of 24 

hours, to ensure that the sample is dry. 

A dried clay sample was mixed prior to compaction with an amount of water 

bringing it to a determined water ratio.  The water ratio of the specimens were 

selected as to below the optimum water ratio.  The water content was kept around 

 = 20%. Then, the operation has followed with compaction of the pulverized clay 

particles within a proctor mold.  The compaction of the clay sample has been made 

in accordance with the ASTM D 698 “Standard Test Methods for Laboratory 

Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-

m/m3))”. 

Following the compaction, the prepared specimen was taken out from the standard 

proctor mold and it was put into a desiccator for at least 24 hours, in order to 

maintain the homogeneity of the samples water ratio (Figure 3.16). 

 

Figure 3.16:  Compacted Sample 

After taking the artificially prepared clay sample out from the desiccator, the 

specimen was recovered from the compaction sample by means of penetrating the a 

specially manufactured sampler as shown in Figure 3.17, into the compacted clay 

sample.   
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Figure 3.17:  A Photograph Taken During the Penetration of the Sampler  
         into the Specimen 

Finally, the specimen within the sampler was transferred into the thin oedometer ring 

via a hard plastic pull having a base diameter 2mm lesser than the sample diameter. 

The strain gauges mounted on the thin ring were readjusted after the installation of 

the specimen in all tests, so that the residual strains that may have been accumulated 

on the ring during the specimen transfer do not affect the zero readings which will be 

taken from the strain gauges.  Briefly, the residual strains occurred up to the starting 

stage have been accepted as zero strain, and the lateral pressure readings have been 

based on the further strains which occur during the test.   

3.2.7 Data collection, evaluation and presentation 

The test data consists of vertical pressure, vertical displacement, lateral swelling 

pressure, lateral cell pressure and lateral strain.  To collect the whole data, a four 

channel data logger of National Instruments has been used.  Since the channel 
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number of the data logger was limited, vertical displacements have been monitored 

via a manual micrometer.  Moreover, only two strain gauges of three could be 

employed during the tests, while the load cell and the pressure transducer were 

connected to the third and fourth channel of the data logger.     

As data logger, the NI-USB 9162 of National Instruments has been used in the tests 

(Figure 3.18).  The standard software of NI, Lab View 3.0 has been used for data 

interpretation.  The software has recorded strain and volt data with 0,51 second 

intervals.  Since, data measurements with such short intervals were not necessary for 

the evaluation of the swelling behavior; a data reduction has been made via 

transforming the saved files into Microsoft Excel files.  Finally, read-outs per minute 

interval have been listed and visualized in time – swelling graphs.  The results of 

swelling tests that have been conducted within this thesis will be presented in the 

related paragraphs. 

 

Figure 3.18: Four Channel Data Logger 

3.2.8 Test methodology 

Swelling tests in vertical direction have been made in correspondence with  ASTM D 

4546 – 03, “Standard Test Method for One Dimensional Swell or Settlement 

Potential of Cohesive Soils”.  Three different test methods known as; Method A or 

Free Swell, Method B, and Method C or Constant Volume Swell (CVS), are 

described in ASTM standard. 
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Method A, the Free Swell Method: The specimen is inundated, and is allowed to 

swell in the vertical direction, under a seating pressure of at least 1kPa (20 lbf/ft2).  

The seating pressure is applied as the sum of the weight of the top porous stone and 

the load plate.  The load on the specimen is increased after primary swell has 

completed up to the value consolidating it to its initial volume (height). 

Method B: A vertical pressure exceeding the seating pressure is applied to the 

specimen before placement of free water into the consolidometer. The magnitude of 

vertical pressure is usually equivalent to the in situ vertical overburden pressure or 

structural loading, or both, but may vary depending on the application of the test 

results. Afterwards, access of free water to the specimen is given. This may result 

with swell, swell then contraction, contraction, or contraction then swell. The amount 

of swell or settlement is measured at the applied pressure when the settlement or 

swell of the specimen reaches a negligible speed. 

Methods C: This is defined as the Constant Volume Swell Method (CVS).  In this 

method, the specimen is preserved at a constant height by adjustments of vertical 

pressure.   A consolidation test is subsequently performed in accordance with Test 

Method ASTM D 2435-04.  The Rebound data is used to estimate the potential 

heave. 

The above summarized test methods of ASTM, are swelling tests methodologies 

mainly generated for one directional swelling tests conducted in the oedometer.  

Some of these methodologies has been implement to the triaxial testing device used 

in this thesis.  The tests have been conducted in groups following the below 

described groups.  

Some initial tests have been conducted as free swell tests.  During these tests, the 

specimen was left free to swell on both vertical and lateral directions.  It has been 

observed that the specimen tends to swell in vertical direction and thus no lateral 

swelling pressure was observed.   

In the following group of tests, the swelling of the specimen in vertical direction has 

been prevented by load adjustment in vertical direction after the specimen was 

inundated like as in the CVS (ASTM 2435-04, Method C) type swelling pressure 

test.  Simultaneously, the specimen has been let to swell in lateral direction.  Both 

vertical and lateral swelling pressures have been recorded.  The vertical swelling 
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pressure has been accepted as to be the applied pressure to maintain zero vertical 

swelling strain, where the lateral swelling pressure has been calculated by employing 

the recorded lateral strain values into the calibration curve given in Figure 3.15. 

The third test method preserves the volume of the specimen in both, vertical and 

lateral directions.  As like the vertical pressure regulation, lateral pressure adjustment 

has been made via applying hydraulic cell pressure on to the thin walled lateral 

pressure ring.   

The fourth group tests were based on the test methodology of Windal and Sharour 

(2002).  A vertical surcharge has been adopted to the specimen and the lateral 

swelling has been measured.  This problem has been considered as to be a typical 

swelling pressure problem acting on buried structures such as tunnels, basement 

walls, retaining system of deep excavations, etc.  The specimen was consolidated 

under varying vertical surcharge pressures between 100kPa and 200kPa.  Afterwards, 

the specimen was inundated and the mobilized lateral and vertical pressures were 

determined. 

The fifth group of tests represents the adoption of the method of equilibrium method 

generated by Fourie (1989) for swelling tests made with a modified triaxial testing 

device. 
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4. TEST RESULTS 

The results of the tests are presented in this chapter under subtitles based on the 

testing methodogy. Solely, test results will be presented in this chapter without any 

comments. Evaluation of the test results are presented in the next chapter. 

4.1 Free Swell Tests in Vertical and Lateral Directions 

During these type of tests no lateral swelling can be recorded.  Nevertheless, the tests 

done as free swell tests were useful in a way in a way that the vertical heave of the 

specimen must be restricted by applying vertical pressure.   

4.2 Vertically Restrained Laterally Free Swell Tests (VR-LFST) 

Several tests were made by employing this method in order to monitor the lateral 

swelling behavior of the specimen.  Restrain of swelling in vertical direction was 

maintained by applying gradually increased vertical stress to the specimen.  So, by 

means of gradual increment of vertical loading, vertical displacement was kept as 

zero as in the CVS (constant volume swell) testing method in an conventional 

uniaxial swelling test.   

The first test according to this methodology was made on 02.06.2009.  The initial 

and final water contents of the specimen and the recorded lateral and vertical 

swelling pressures are depicted on Figure 4.1 and Figure 4.2, respectively.   
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Figure 4.1:  Initial and Final Water Contents, (Test: 02.06.2009) 

   Figure 4.2:  Pressure versus Time Graph (Test: 02.06.2009) 

As it can be seen from Figure 4.1, the initial water content of the clay sample was 

wi,ave = 29% in average.  Water content measurements made at the end of the test on 

the uncovered sample, by slicing it into five pieces from top to bottom have shown a 

water content increase varying between w = 12% - 15%.  This test has been 

finalized with an average water content of wf,ave = 43%.  Water content distribution 

of the specimen clearly indicates that water ingress into the sample is from the top 

and the bottom.   
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Further tests with this method have been made on 28.08.2009, 02.09.2009, 

05.09.2006, 16.10.2009.  Results of five tests in this group are given on Table 4.1.  

Figure 4.1 and Figure 4.2 reveal the results of one test that was conducted on 

02.06.2009, out of these five tests.  

Table 4.1: Summary of the Test Results made with Vertical Strain Limitation 

Test Date: Stratification 

Average 
Initial 
Water 

Content 
wi(%) 

Average 
Final 
Water 

Content 
wf(%) 

Vertical 
Swelling 
Pressure 

(kPa) 

Lateral 
Swelling 
Pressure 

(kPa) 

r = 
sL/sv 

Total 
Test 

Duration 
(h) 

Duration of 
Vertical 
Swelling 
Pressure 

Mobilization 

Duration of 
Lateral 

Swelling 
Pressure 

Mobilization 

02.06.2009 Horizontal 29 41 80 90 70 1,00 26 2 3 

28.08.2009 Horizontal 19 46 - 39 70 120 120 1,71 68 5 68 

02.09.2009 Horizontal 19 45 - 39 80 110 90 1,25 29 2 29 

05.09.2009 Horizontal 19 39 - 45 80 115 115 1,44 72 4 58 

16.10.2009 Horizontal 19 38 - 43 120 150 150 1,25 52 20 49 

 

Additionally, three tests on 09.09.2009, 13.09.2009 and 16.09.2009 have been made 

using the same method. In these tests, the sample was recovered from the compacted 

sample in the horizontal direction.  This has been made to investigate the effect of 

stratification on swelling.  The initial water content of the specimens have been kept 

within a range of wi,ave = 19% - 20% in all of these tests.  The results of the tests have 

been visualized as graphical outputs and enclosed to the thesis. 

The swelling tests have been terminated after the full mobilization of the swelling 

pressure, Final water contents of the specimens have attained values within a range 

of wf,ave = 40% - 42% in all of the tests.  Considering that the initial water content of 

the specimens was around wi,ave = 19%, all specimens doubled their water content by 

soaking water.   

The vertical swelling pressure range of the specimens has varied in vertically 

encapsulated specimens between 70kPa and 120kPa.  Swelling behavior of the 

specimens in vertical direction terminated before than lateral direction.  The full 

vertical swelling pressure has mobilized within durations varying between 5 to 8 

hours in all the tests.  On the contrary, mobilization of lateral swelling pressures has 

continued up to 72 hours.  The recorded lateral swelling pressures were between 

100kPa to 150kPa.  The specimens behaved almost homogenous in the horizontal 

direction.   
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As mentioned before, three additional tests were made by utilizing the same method 

on samples recovered horizontally from the compacted clay block.  In other words, 

vertical direction of the sample has been rotated, so that the surcharging axis and the 

lamination plain were perpendicular.  Related time – swelling and water content 

variation graphics are given in the attachment of this thesis.  The results of these tests 

are summarized in Table 4.2.  Vertical swelling pressures have been determined as 

70 – 105kPa, where the recorded lateral swelling pressures were above 110kPa.   

Table  4.2: Results of the Tests on Vertically Laminated Specimens Subjected to 
                      Vertically Restrained Swelling Tests  

Test Date: Stratification 

Average 
Initial 
Water 

Content 
wi(%) 

Average 
Final 
Water 

Content 
wf(%) 

Vertical 
Swelling 
Pressure 

(kPa) 

Lateral 
Swelling 
Pressure 

(kPa) 

r = 
sL/sv

Total 
Test 

Duration 
(h) 

Duration of 
Vertical 
Swelling 
Pressure 

Mobilization 

Duration of 
Lateral 

Swelling 
Pressure 

Mobilization 

09.09.2009 Vertical  19 39 - 45  105 130 140 1,29 47  18  6  

13.09.2009 Vertical  19 39 - 45  70 110 110 1,57 46  2  14  

16.09.2009 Vertical 19 38 - 42 110 180 220 1,82 54 6 50 

4.3  Constant Volume Swelling Pressure Tests (CVS)  

In these tests, the volume change in both, vertical and horizontal directions was 

restricted.  In the vertical direction, the swelling of the specimen was avoided in the 

conventional way, by surcharging the specimen gradually if the sample had a 

tendency to swell.  The horizontal swell strains were monitored through the strain 

gauges. The hydraulic cell pressure prevented the occurrence of any lateral strain.  

The pressure transducer measured the applied lateral pressure.   

The first test with this method was made on 01.07.2009.  The initial water content of 

this test was selected as wi,ave = 30,5%.  The mobilization of the lateral and the 

vertical swelling pressures were completed more or less simultaneously after 4 hours.  

At the end of the test, the water content at the top and bottom of the specimen have 

increased about 3% to 5%.  At the mid-height of the specimen the increase in water 

content was limited with 2%.  A lateral swelling pressure of 140kPa was recorded in 

this test together with a vertical swelling pressure of 60kPa.  The resulting graphics 

of the test held on 01.07.2009, including the variation of strain with time are given in 

Figure 4.3, Figure 4.4 and Figure 4.5. 
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Figure 4.3:  Initial and Final Water Contents, (Test: 01.07.2009) 
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Figure 4.4: Pressure vs. Time Graph (Test: 01.07.2009) 
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Figure 4.5: Lateral Strain vs. Time Graph (Test: 01.07.2009) 

Additional constant volume tests were made on 07.07.2009, 09.07.2009, 13.08.2009, 

17.08.2009, 25.09.2009, 02.10.2009 and 08.10.2009.  Furthermore, three swelling 

tests on samples recovered from with rotated block were conducted on 20.08.2009, 

22.08.2009 and 26.08.2009.  Outputs of these tests in graphical form are given in the 

attachment of this thesis.  Results of the horizontally laminated specimens are 

summarized in Table 4.3 and the results of the tests on vertically stratified samples 

are given in Table 4.4. 

4.4  Tests under Constat Vertical Surcharge [(CS – LFST) and (CS-ZLST)]  

These tests are based on the study of Windal and Sharour (2002).  These tests can be 

considered as simple examples to the swelling problems faced in tunneling or a 

retaining wall construction.  Similar as in these tests, the swelling pressures will act 

to the retaining system or to the tunnel lining in one plane while the generation of 

them will be hindered in the perpendicular plane by the effect of the earth pressure 

acting from overburden.   

A vertical surcharge of 200kPa was applied to the dry specimen inside the test set up 

in the first tests.  Then, the settlement of the specimen has been monitored and 
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recorded.  Following the completion of the settlements, the specimen has been 

inundated. After the inundation of the specimen some further settlements have 

occurred, where simultaneously the swelling progress has started.  The clay sample 

has swelled laterally, since the vertical swelling pressure of the specimen was not 

great enough to resist the vertical surcharge.  Only limited vertical pressure has been 

recorded in these tests. The results of these tests, conducted on 05.06.2009 and 

10.06.2009 are given below on Figures 4.6 ~ 4.11.   

Table 4.3: Results of the Constant Volume Tests (Horizontally Laminated) 

Test Date: Stratification 

Average 
Initial 
Water 

Content 
wi(%) 

Average 
Final 
Water 

Content 
wf(%) 

Vertical 
Swelling 
Pressure 

(kPa) 

Lateral 
Swelling 
Pressure 

(kPa) 

r = 
sL/sv

Total 
Test 

Duration 
(h) 

Duration of 
Vertical 
Swelling 
Pressure 

Mobilization 

Duration of 
Lateral 

Swelling 
Pressure 

Mobilization 

01.07.2009 Horizontal 30 33 - 36 60 140 2,33 27 3 3 

07.07.2009 Horizontal 25 42 - 35 65 105 1,62 24 3 3 

09.07.2009 Horizontal 23 41 - 34 70 120 1,71 30 20 4 

13.08.2009 Horizontal 17 23 - 46 95 95 1,00 29 8 23 

17.08.2009 Horizontal 17 47 - 40 85 60 0,71 30 7 7 

25.09.2009 Horizontal 18 37 - 43 120 80 0,67 57 24 24 

02.10.2009 Horizontal 17 39 - 44 75 90 1,20 98 8 72 

08.10.2009 Horizontal 18 39 - 45 80 85 1,06 52 24 24 

 

Table 4.4: Results of the Constant Volume Tests (Vertically Laminated) 

Test Date: 
Specimen 

Encapsulation 
Direction 

Average 
Initial 
Water 

Content 
wi(%) 

Average 
Final 
Water 

Content 
wf(%) 

Vertical 
Swelling 
Pressure 

(kPa) 

Lateral 
Swelling 
Pressure 

(kPa) 

r = 
sL/sv

Total 
Test 

Duration 
(h) 

Duration of 
Vertical 
Swelling 
Pressure 

Mobilization 

Duration of 
Lateral 

Swelling 
Pressure 

Mobilization 

20.08.2009 Vertical 17 45 - 41 100 135 1,35 46 2 26 

22.08.2009 Vertical 17 43 - 41 90 260 2,89 28 4 5 

26.08.2009 Vertical 17 46 - 43 65 150 2,31 29 20 23 
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Figure 4.6: Initial and Final Water Contents, (Test: 05.06.2009) 

 

 

Figure 4.7: Vertical Strain vs. Time Graph (Test: 05.06.2009) 
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Figure 4.8: Pressure vs. Time Graph (Test: 05.06.2009) 

 

 

Figure 4.9:  Initial and Final Water Contents, (Test: 10.06.2009) 

First test by employing a pre-described vertical surcharge was made on 05.06.2009.  

The initial water content of the specimen was w= 29%.  In this test, the consolidation 

of the specimen was completed in 24 hours.  Following the inundation of the 

specimen, some further settlements occurred, which were completed in 28th hours 

(Figure 4.7).  As shown on Figure 4.8, the behavior of the specimen was non – 
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homogeneous up to this stage.  Nevertheless, beginning from the 28th hour until the 

end of the test, strain gauges have revealed a parallel increase in vertical strain.  

Accepting the 28th hour as to be the stage where the lateral swelling pressure is zero, 

the lateral swelling pressure of the clay sample under the constant surcharge pressure 

of 194,6kPa has been recorded by the strain gauges SG 1 and SG 2 as 20kPa and 

35kPa, respectively.  The variation of the water content of the specimen at the end of 

the test is shown in Figure 4.6.   

The test has been repeated by employing the same constant surcharge pressure of 

194,6kPa.  In this second test the initial water content of the specimen was dropped 

down to 24% (Figure 4.9).     

Compared with lateral pressure values obtained under constant vertical surcharge 

given in similar previous studies, the lateral pressure values recorded in the test on 

05.06.2010.  So, this has forced us to revise the test methodology.  

A reevaluation of the present test sequence has shown that letting the specimen 

consolidate within the test device causes some residual strains on the ring, which 

decreases the accuracy of lateral pressure readings.  Hence, the decision was to 

consolidate the specimen in the sampling tube under the constant vertical testing 

surcharge and to transfer the specimen to the measuring equipment following the 

completion of consolidation.  Now, the specimen was overconsolidated and only 

minor settlements have occurred after surcharging the specimen following its transfer 

to the test set up.  The specimen reached an equilibrium condition in the test setup 

prior to inundation.  Then the strain gauges were adjusted to zero and the test 

progressed with the inundation of the specimen.    

Total 7 tests under constant vertical surcharge pressures varying between 75kPa to 

125kPa have been made.  All of the specimens have been consolidated inside the 

sampling tube.  After transferring the specimens into the testing equipment, the same 

surcharge pressure have been applied.  The specimens have been inundated right 

after they have been left to relaxation for a short time after the transfer.  Vertical 

settlement or heaves of the specimens have been observed through an analog 

micrometer.  The results of the first tests made with this method on 21.10.2009 are 

given on Figure 4.10 to Figure 4.12. 
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Figure 4.10:  Initial and Final Water Contents (Test: 21.10.2009) 

 

Figure 4.11:  Vertical Strain vs. Time (Test: 21.10.2009) 
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Figure 4.12:  Pressure vs. Time (Test: 21.10.2009) 

The test performed on 21.10.2009 with the revised technique under constant vertical 

surcharge pressure has resulted successfully, revealing a lateral swelling pressure of 

160kPa, as it can be seen in Figure 4.12.  It should also be noticed that the vertical 

swelling pressure of the specimen has exceeded the applied constant surcharge 

pressure.  Figure 4.11 represents the vertical heave that has occurred during the test.  

The decrease of lateral swelling pressure in the SG 1 strain gauge is related to the 

increasing volume of the specimen in the vertical direction.  On the contrary, the 

second strain gauge has reached the peak lateral swelling pressure value.  The 

behavior of the second strain gauge is normally unexpected.     

As mentioned before, additional six tests have been conducted with this 

methodology. The results of these tests are summarized in Table 4.5 and the 

graphical outputs envisioning the pressure – time variations are given in the 

attachment.  In all the tests, with vertical surcharge pressure lower than 165kPa, the 

vertical swelling pressure of the specimen were greater than the applied surcharge.  

Being related to the volume increase ability of the specimens, lateral swelling 

pressure has dissipated in the later stages of the tests.                
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Table 4.5: Results of the Lateral Free Swell Tests made under Constant 
                             Predetermined Vertical Surcharge (CS-LFTS) 

Test Date: 

Average 
Initial 
Water 
Content 

i(%) 

Average 
Final 
Water 
Content 

f(%) 

Vertical 
Surcharge 
Pressure 
(kPa) 

(constant) 

Lateral 
Swelling 
Pressure 
(kPa) 

r = 
sL/sv

Total Test 
Duration 

(h) 

Duration of 
Lateral Swelling 

Pressure 
Mobilization 

(h) 

21.10.2009 19 37 - 40 75 170 120 1,93 48 4 

24.10.2009 19 38 - 41 72 70 100 1,18 75 12 

28.10.2009 19 36-41 100 100 160 1,30 125 5 

03.11.2009 19 36 - 40 100 260 260 2,60 52 50 

04.12.2009 19 37 - 39  125 100 100 0,80 72 10 

08.12.2009 19  37 – 38 125 160 110 1,08 96 10 

12.12.2009 19  32 – 34 165 180 180 1,09 52 26 

29.12.2009 19  37 – 38 170 160 160 0,94 46 24 

 

The tests have been repeated under similar constant vertical surcharge pressures with 

restraint lateral strain.  In these tests, the vertical swelling pressure has been assumed 

to be equal to the lateral back pressure applied to the specimen to keep the initial 

lateral strain.  Lateral pressure measurements have been made via a pressure 

transducer.  The results of this second group of tests under constant vertical 

surcharge have been summarized in Table 4.6.  Comparison of the results of the tests 

performed under zero lateral strain condition with the test results given in Table 4.5, 

shows the slight increase in the vertical swelling pressure/lateral swelling pressure 

ratios.       

Table 4.6: Results of the Tests made under Constant Predetermined Vertical 
                          Surcharge with Lateral Cell Pressure Application (CS-LR) 

Test Date: 

Average 
Initial 
Water 
Content 

i(%) 

Average 
Final 
Water 
Content 

f(%) 

Vertical 
Surcharge 
Pressure 
(kPa) 

(constant) 

Lateral 
Swelling 
Pressure 
(kPa) 

r = 
sL/sv

Total Test 
Duration 

(h) 

Duration of 
Lateral Swelling 

Pressure 
Mobilization (h)

19.01.2010 19 36 - 37 112 95 0,85 54 32 

28.01.2010 19 36 - 40 138 98 0,71 30 28 

02.02.2010 18 38 - 39 85 70 0,82 50 8 

05.02.2010 17,5 40 85 50 0,59 50 7 

09.02.2010 18 37 85 105 1,24 72 54 

13.02.2010 17 37-40 115 115 1,00 25 8 
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4.5  Lateral Swelling Pressure Tests with Fourie Method 

Fourie’s (1989) method has been followed in the fifth group of tests.  Considering 

that strain based failures may have a significant effect on the lateral swelling pressure 

determination, the lateral strains under varying lateral back pressures have been 

recorded.   

Fourie has investigated the lateral swelling pressures of expansive soils based on the 

"Method of Equilibrium Void Ratios" of Sridharan et al. (1986).  Fourie (1989) has 

conducted the tests in a hydraulic triaxial cell under varying initial cell pressures.  

The fifth group of tests within this thesis, which will be mentioned in the following 

paragraphs have been made following the same methodology.  The similarity of the 

modified thin lateral pressure ring used in this study with the triaxial apparatus of 

Bishop and Wesley (1975) having the Bishop and Henkel (1962) strain belt has given 

the possibility of adopting the testing methodology followed by Fourie (1989) to this 

study.   

Varying back pressures have been applied to the samples and they were allowed to 

change the volume until an equilibrium under a constant surcharge of 125 kPa was 

achieved.  Since predicting the lateral swelling pressure was the main intention, a 

constant surcharge has been applied in all of the tests performed within this group. A 

total number of eight tests have been made within this group.  The test results have 

been tabulated on Table 4.7.  Related graphics illustrating the results of the tests are 

given in the attachment.  The observed lateral strains and the related cell pressures 

are given in Chapter 5. 
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Table 4.7: Results for Lateral Swelling Pressure Tests Made in Accordance with  
                      “Method of Equilibrium” 

Test Date: 

Average 
Initial Water 
Content 

i(%) 

Average 
Final Water 
Content 

f(%) 

Vertical 
Surcharge 
(kPa) 

Lateral 
Back 

Presure 
Pressure 
(kPa) 

Average 
Lateral Strain 

19.02.2010 19 38 - 41 125 4 0,000030 

24.02.2010 19 35 - 37  125 25 -0,000010 

27.02.2010 17 33 - 35 125 20 0,000030 

03.03.2010 18 35 - 37  125 35 0,000025 

06.03.2010 19 32 - 34 125 40 0,000030 

10.03.2010 17 38 - 39 125 95 -0,000010 

13.03.2010 20 34 - 35 125 115 -0,000020 

17.03.2010 17 33 - 34 125 25 0,000020 

 

Only one set of tests have been conducted by using the “Method of Equilibrium”.  

Additional tests may be conducted by applying different vertical surcharges on clay 

samples. 
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5. EVALUATION OF TEST RESULTS 

Results of the tests that have been conducted with the modified thin walled 

oedometer have been summarized in Chapter 4.  The test results have been evaluated 

in this chapter.  Findings given in this Chapter also represent the reliability of 

different test methods that may be followed when using the thin walled lateral 

swelling pressure ring.  Applicability of different test methods shall also be 

discussed.   

As mentioned previously, the inspiration of concentrating this study to lateral 

swelling pressure was based on the idea to design a testing device so that test results 

to be obtained from this device can directly be employed in geotechnical design.  To 

be more precise, the aim was,  

 to predict the swelling pressure without any overestimation as in the 

conventional uniaxial test methodologies 

 to predict the anisotropic swelling behavior and to find out the ratio of lateral 

swelling pressure to vertical swelling pressure  

 to investigate the variation of lateral swelling pressure with depth for a given 

soil profile 

 to represent the variation of the lateral pressure with the rigidity of a retaining 

structure or a tunnel lining.  In other words, to demonstrate the attenuation of 

the swelling pressure with deformation.    

Prior to the start of the evaluations of the test results, it will be helpful to review the 

test results explained previously in the following paragraphs. 

All of the tests have been conducted on compacted samples that have been prepared 

in the laboratory, under similar conditions and using the same clayey soil.  The 

samples have been compacted under equal compaction energy in accordance with 
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ASTM D4546 – 03 “Standard Test Method for One Dimensional Swell or Settlement 

Potential of Cohesive Soils”.   

The effect of initial water content on swelling pressure is well known.  Hence, the 

subject of this thesis was to present a method on the determination of lateral swelling 

pressure, and the variation of the swelling pressure due to the variation of the initial 

moisture content is not a matter of subject in this study.  For this reason, the initial 

water content of the samples has been kept constant in the tests.  Generally, the initial 

water content values of the specimens vary between 17% and 19%.  Only a few 

samples in the trial tests had higher initial water content values.    The laboratory 

program has been generated so that all the tests have been repeated once at least. The 

test results have been verified in this manner. 

The tests performed within the scope of this research have been evaluated under 

groups according to their stress – strain conditions as illustrated in the schema below 

(Figure 5.1).   

 

Figure 5.1: Stress - Strain Conditions of the Tests Performed for this Study  

5.1 Lateral Swelling Tests Based on the Method C in ASTM 4546-03  

Two types of lateral swelling tests have been made, based on the Method C in ASTM 

4536-03.  In the first group of tests, swelling of the specimen in vertical direction has 

been prevented by load adjustment in vertical direction following the inundation of 

the specimen.  Simultaneously, the specimen swelled in lateral direction.  The 

vertical swelling pressure has been accepted as the value of surcharge necessary to 

Zero Vertical Strain  
(v = 0) (VR) 

Zero Lateral Strain  
(h = 0)  
Constant Volume Test 
(CVS) 

Lateral Free 
Swell Tests 
(LFST)  
(h ≠ 0)  

Constant Vertical Surcharge 
(CS) 

Lateral Free 
Swell Tests 
(LFST)  
(h ≠ 0)

Zero Lateral Strain  
(h = 0) (ZLST) 

“Method of Equilibrium” 
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prevent the swelling of the specimen in vertical direction.  Lateral swelling pressure 

has been determined by calculating the corresponding pressure from the occurred 

lateral strain.  These tests are defined as “vertically restrained - lateral free swell tests 

– (VR-LFST)” (Figure5.2).  These tests are alike the Method C given ASTM 4536-

04 in restaining the vertical strain of the specimen.  However, they do differ from 

Method C, in that the specimen swells free in lateral direction.    

Similar to these tests, a group of tests have been made in which both, the vertical 

strain and the lateral strain have been kept zero (h = v = 0).  The vertical strain was 

kept as zero as in the previous VR-LFST tests.  Hydraulic cell pressure restrained the 

occurrence of lateral strain.  These tests satisfy completely the requirements of 

ASTM D4546 -03, Method C and are defined as “constant volume tests – (CVS)” 

(Figure5.2).   

Swelling Clay Sample

v = vs; v = 0

l s = h

VR-LFST

Swelling Clay Sample

v = vs; v = 0

l s = c

CVS

h=0

v: Applied Vertical Pressure
vs: Vertical Swelling Pressure
v: Vertical Strain

c: Cell Pressure (Hydraulic)
l s: Lateral Swelling Pressure
h: Lateral Strain

l s = h

 

Figure 5.2: Comparison of VR-LFST and CVS Tests  

The tests within this group were necessary to understand the effects of modifications 

made on the testing device as a part of the research program.  In view of the fact that 

most of the previous studies have also used similar techniques, the results of swelling 

tests conducted in this research are comparable with the results of other studies on 

swelling behavior of soils. 
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5.1.1 Validation of initial test results in contrast to the results of previous  

           studies 

The origin of the testing device developed and used within this study bases the 

device designed by Komornik and Zeitlin (1965).  Ertekin has regenerated Komornik 

and Zeitlin’s device in 1991.  As mentioned in the paragraphs above, Erol and Ergun 

(1994) and Sapaz (2004) have conducted a number of swelling tests with Ertekin’s 

(1991) device.   

The testing device developed for this thesis is different than the one regenerated by 

Ertekin (1991) in a way that it can measure lateral swelling pressure under zero 

lateral strain by its ability to apply cell pressure in lateral direction.  Applying the 

lateral cell pressure is an option that can either be used or not.  Another major change 

is that the dimensions of the thin walled ring have been increased from 63.5mm / 

50mm (diameter / height) to 70mm/70mm by the author.  As already cited in the 

related paragraphs above, especially the ring height has been increased to reduce the 

effect of the rigid top and bottom plates on the deformability of the thin walled ring 

at its mid height where the strain gauges are mounted.      

Before reviewing the complete results obtained from the tests within this study, it 

will be useful to compare the results of initial tests with the results of similar tests.  

In other words, a validity check on the dependability of the new test equipment has 

been made.   

Results of the VR-LFST tests based on Method C, which were made without the 

application of cell pressure are compared.    First of all, the distribution of lateral 

swelling pressures versus vertical swelling pressures obtained in these tests are 

illustrated in Figure 5.3.   
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Figure 5.3:  Results of VR-LFST 

The results reveal that clays has an anisotropic swelling behavior.  The results 

depicted in Figure 5.3 match the swelling pressure ratios mentioned by Mc Dowell 

(1956) and Crilly (1992).  The lateral swelling pressure is greater than the vertical 

swelling pressure and is in a range between L/v = 1 ~ 2.  The results depicted in 

Figure 5.3 have also been depicted in Figure 5.4 showing the results of earlier studies 

as well. 

In addition to the results of Sapaz (2004) and Erol and Ergun (1994), the test results 

of Erguler and Ulusay (2003) and Avşar et al.(2009) reflecting the anisotropic 

behavior of Ankara clay have been shown in Figure 5.4 as a basis for comparison.   

Different than rest of the investigators, Avşar et al. have made triaxial swelling tests 

by using a testing device similar to that of Ertekin’s ring in a smaller scale.  The 

diameter of the shrunken ring was 54.5mm and the height was 30mm.  Avşar et al. 

have resized the ring in order to raise the ring rigidity and by this way avoiding the 

lateral deformation in a different way than a back (cell) pressure applicable device as 

Ofer (1980) has generated.   

Avşar et al. have realized the tests in accordance with the Method B in ASTM 4546 – 

03 (2003).  Briefly, the specimen is left to swell under a vertical surcharge 

corresponding to its natural geological overburden stress at the beginning.  Then, 
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after completion of swell, vertical pressure was applied until the specimen was 

recompressed to its initial height. The magnitude of applied vertical pressure is 

accepted as the vertical swelling pressure.   

Even though the test method of Avşar et al. was different than the rest of the 

investigators and the test method followed in this thesis, the results have been 

considered to be significant and have been presented therefore in this thesis for 

comparison.  The primary vertical pressure under which the specimens of Avşar et al. 

(2009) had been left to swell freely was 4kPa.  

The peak values of the swelling pressures mobilized in lateral and vertical directions 

during the tests of the studies mentioned above have been depicted in Figure 5.4.   
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Figure 5.4: Peak Vertical Swelling Pressure vs. Lateral Swelling Pressure 

 

The tests of Sapaz (2004) have terminated with higher vertical swelling pressures 

than lateral.  On the contrary, the samples taken from the Aegean coast by the 

investigators Erol and Ergun (1994) have exposed grater lateral swelling pressures 

than vertical swelling pressures alike the clay used in present research.  The general 

distribution of the test results is around the equality line ( = 45°).  As mentioned in 

the previous paragraphs, the volumetric strain ratio of a swelling samples yields to 

l/v = 1. 
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An important fact that could be noted from Figure 5.4 is that the lateral swelling 

pressures obtained from the tests with the shortened thin walled lateral pressure ring 

of Avşar et al. (2009), have been accumulated in an upper limit within the range of 

500kPa to 600kPa. For tests with respectively low vertical swelling pressures, the 

ratio of vertical to lateral swelling pressure is slightly over 1.0.  With the increase of 

vertical swelling pressures, the ratio increases rapidly to the constant lateral swelling 

pressure values within the range of 500kPa – 600kPa.  This may be attributed 

because of the limited deformation ability of the testing device due to the decrease of 

the ring height.  Although, the ring wall is as thin as the ring used in this thesis, the 

short height of the ring may be effected from the rigid top and bottom plates.  Based 

on this matter, the ring starts to act as a normal oedometer ring after reaching a 

certain lateral displacement and the swelling pressure build up continues merely in 

the vertical direction. 

On the contrary, the height of the ring used in this study has been increased up to 

70mm.  So, the effect of the rigid top and bottom plates on the thin walled oedometer 

ring has been minimized.  The increase of the ring height may raise the question that 

the ease of bending the thin walled ring may lead to overestimated lateral swelling 

pressure.  As stated by Azam (2009), especially the loading induced volume decrease 

or limitation may force the specimen to shear, leading to overestimated lateral 

swelling pressures.  To avoid the overestimation of lateral swelling pressure due to 

the shear of the specimen,  a pressure cell has been added to the ring.  With the help 

of this pressure cell surrounding the thin walled ring, constant volume tests can be 

made with the recently generated testing device. 

To conclude, the lateral swelling pressure test results of the tests conducted with the 

device designed for this study agree with the results of tests that were carried out 

with the same method and simliar testing devices, previously.  This comparison has 

validated the reliability of the test set up. 

5.1.2 Comparison of laterally restrained and lateral free swell tests based  

          on ASTM 4546-03, Method C 

The addition of the cell around the thin walled oedometer ring is one of the major 

developments that has been accomplished in the test device that were used in this 

study.  The aim of designing such a testing device was to see the effect of lateral 
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strains on swelling pressure development.  For this reason, the lateral swelling 

pressures obtained from lateral free swell tests have been compared with the results 

of the tests, in which the lateral strain has been kept in its initial state (h = 0) by 

applying cell pressure.  As stated before, the lateral swelling pressure has been 

determined by reading the corresponding pressure from the strain – pressure 

calibration curve of the thin walled ring (Figure 3.15).   

Figure 5.5 depicts the results gathered from specimens tested by both methods.  In 

the first group of tests, samples were restrained in vertical direction with lateral free 

swell and in a second group of tests, the samples were triaxially confined.    
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   Figure 5.5: Comparison of LFST - CVS test results 

Against the expectations, the variations in the test results were minor.  As depicted in 

Figure 5.5, the range of lateral swelling pressures vary within a range of 80kPa to 

150kPa in both test methods.  To reflect the test results in a better way, the test 

swelling pressure ratios (sh/sv) observed for different vertical swelling pressure 

values have been illustrated in Figure 5.6 and Figure 5.7.   
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Figure 5.6:  Comparison of swelling pressure ratios 

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

60 70 80 90 100 110 120 130

S
w

el
lin

g 
P

re
ss

u
re

 R
at

io
 (

sh
/

sv
)

Vertical Swelling Pressure (kPa)

Lateral Free Swell Tests (VR - LFST)

Constant Volume Tests (CVS)

 

     Figure 5.7:  Comparison of swelling pressure ratios 

Figure 5.6 and Figure 5.7 illustrate the variation of swelling pressure ratios, which 

are defined as the ratio of lateral swelling pressure to vertical swelling pressure.  

Some constant volume tests have resulted with higher swelling pressure ratios.  

Especially Figure 5.7 shows that the average of the swelling pressure ratios obtained 

from the constant volume tests are higher than those obtained from the lateral free 
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swell tests.  On the contrary, Figure 5.6 compares the tests results for different 

vertical swelling pressures in particular groups.  Based on the comparisons on 

Figure 5.6, the difference between the test methods may be neglected, since, some of 

the LFST tests have resulted with higher lateral swelling pressures as well.         

A potential reason for having almost similar results (Figure 5.5) obtained from the 

triaxial swelling tests that were realized with and without restrained lateral strain, 

may be the limited swelling potential of the clay type that were used in the 

experiments.  The variation in the test results may be more pronounced for a clay 

type soil that has a much higher swelling potential.   

Moreover, the volume of the specimens has been kept constant by increasing vertical 

and lateral pressures gradually so that no vertical and lateral strains occur.  As the 

vertical and lateral pressure increase has been made manually, a small amount of 

strain has occurred first, than the occurred strain has returned to its initial state by 

increasing the vertical and lateral pressure.  On the contrary, Windal and Shahrour 

(2001), and Ofer (1981) have stated that even a small amount of deformation highly 

decreases the lateral swelling pressures.  So, instead of applying back pressure 

manually, implementing a strain induced automatic cell pressure triggering may 

possibly raise the accuracy of the triaxial swelling pressure test results to be obtained 

from the thin walled swelling pressure device used in this thesis.   

As observed in several studies, the swelling pressure of the same specimen can vary 

in a free swell or a constant volume test.  Usually, higher swelling pressures are 

obtained in free swell tests than in constant volume swell test.  Results of the uniaxial 

tests conducted in this thesis given in Subtitle 3.1.6 confirm this conclusion.  The 

uniaxial constant volume test results have reached a peak swelling pressure value of 

136kPa, while the specimen taken from the same compaction mold has ended up 

with a vertical swelling pressure of 200kPa in free swell test.  The vertical swelling 

pressure established in the free swell test is 47% more than the vertical swelling 

pressure determined by the constant volume test.   

Like in the vertical direction, the degree of limitation of strain in the lateral direction 

may have an effect on swelling pressure.  Prior to analyzing this matter, the 

difference in the physical conditions in both cases has to be set well.   
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As mentioned before, in the swelling tests within this group, the vertical strain has 

been kept as zero by increasing the vertical pressure gradually.  No cell pressure has 

been applied in these tests. The lateral swelling pressure has been obtained by 

utilizing the final lateral strain value in to the calibration chart and lateral swell 

pressure has been determined indirectly.  Since no cell pressure was applied in lateral 

direction, these tests are lateral free swell tests (LFST).   

The explanations below are quite informing about the reason of higher swelling 

pressure observations in uniaxial - vertical free swell tests than in uniaxial - vertical 

constant volume tests.  Lambe (1966) has set the following relationship: 

 = ’ + u + (R - A)                  (15.1) 
Where;  
: total stress 
': intergranular (or particle to particle) stress; 
u = pore water pressure; 
(R - A) = net repulsive or attractive force between particles due to Coulomb or Van 

der Waal's forces. 

“For the case of dispersed soils, there is no interparticle contact. This may not be the 

case for highly precompressed clays but for a constant volume condition it may be 

reasonable to assume that the value of the term remains constant. For this case, the 

following relationship is obtained 

' =  - u = (R - A)                   (5.2) 

For a given electrolyte concentration, type of absorbed ion, and temperature, there is 

a unique curve of net interparticle force versus particle spacing (Lambe, 1953, 1958; 

Scott, 1963). Thus, in a constant volume consolidation test, the value of (R - A) 

cannot change. The load added in a constant volume consolidation test merely 

balances the negative pore pressure, which is released due to immersion. Thus, the 

immersion water has the same ion concentration as the free pore water, the value of 

(R - A) remains constant and, by equation (5.2), the effective stress must also remain 

constant.  In the case of a free swell test, the pore pressure again goes to zero with 

time after immersion and the value of (R - A) decreases due to an increased particle 

spacing until an equilibrium is reached with the confining pressure. (Hardy, 1965; 

Noble, 1965). 
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The different swelling mechanism in the uniaxial free swell test and the uniaxial 

constant volume test is one of the major causes for the disagreeing test results.  

Another cause may be the change in structure of the soil during the recompression 

stage of the free swell test.  Seed et. al. (1962) has highlighted the reality that in 

attempting to measure the total swelling potential in a constant volume consolidation 

test, it should be recognized that even small changes in volume would greatly affect 

the measured swelling pressure.   

In a triaxial swelling test with a thin walled swelling pressure ring, the case is 

different from the classical free swell test as described above.  At first, it is still not a 

total free swell test in that the volume change of the specimen has to be avoided in 

the vertical direction by whether staged incremented or constant applied vertical 

surcharge.  The specimen is laterally free to deform and strain is developed in lateral 

direction. However, a ring confines the sample, although this is a thin wall ring.  

Conclusively, the volume change and the related increase in particle distances is 

limited and the decrease in (R – A) is not as high as in the vertical free swell test.   

One other fact to emphasize is that the swelling pressure in a lateral free swell test is 

calculated from the recorded lateral strain.  Therefore, the soil structure is not 

recompressed and deformed, like in the vertical free swell test.   

5.2 Lateral swelling tests under constant surcharge 

Lateral swelling pressures acting on structures in shallow depths (in active zone) may 

be solved by soil improvement or soil replacement.   The increase of depth in 

swelling pressure problems such as swelling pressures acting on earth retaining 

systems in deep excavations, tunnels or buried pipes entails the necessity to predict 

the variation of swelling pressure with depth.  To be more explanatory, the 

distribution of swelling pressure with depth has to be known for design of structures 

in expansive soils.   

Windal and Sharour (2002) have made lateral swelling pressure tests under constant 

vertical surcharge.  The vertical surcharge employed in a test represents the 

overburden pressure corresponding to that depth.  As a part of this research, several 

tests have been made based on Windal and Sharour’s (2002) test methodology.  

Some of the tests have been made by employing cell pressure increase during the 
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test, while some of them have been made as lateral free swell tests, i.e., not applying 

any the cell pressure.   

Prior to testing, the specimens have been consolidated under varying vertical 

surcharge pressures in a range of 100kPa to 200kPa.  Swelling tests have started after 

inundating the consolidated specimen.  In eight of these tests, the specimens have 

been let to swell free laterally and six of them were conducted under zero lateral 

strain (h = 0) condition, or otherwise said, under cell pressure.     

5.2.1 Principles of the method followed in lateral swelling pressure tests   

           under constant vertical surcharge 

Prior to discussing the test results, the test procedure will be explained.  As 

mentioned in Paragraph 4.14, in the primary tests under constant vertical surcharge, 

the artificially prepared specimens have been consolidated inside a thin walled ring.   

Figure 4.8 reveals that only minor lateral swelling pressures have been observed in 

these tests.  In order to prevent the overestimation of lateral swelling pressure, the 

lateral strain tha might cause some shear strain in the specimen during the 

consolidation phase has been neglected.  As shown in Figure 4.8, the strain already 

occurred until the completion of the consolidation of the specimen has been accepted 

as zero.   

Even though, these tests resulted with noticeable lateral swelling pressures, the 

accuracy of these results is doubtful.  It is easy to realize that the rigidity of the thin 

walled ring will be higher than in the zero strain condition since it is already been 

strained under the shear force acting from the specimen.  So, to overcome this kind 

of problems, the testing procedure has been modified.  The intention of the modified 

testing procedure was to maintain minor or almost zero strain condition at the 

beginning of the test.  This has been realized by pre-consolidating the specimen 

inside the encapsulation tube.  After the completion of the consolidation phase under 

the constant vertical surcharge pressure to be applied during the swelling test, the 

specimen has been transformed into the thin walled ring.  Then the specimen has 

been left to swell under the previously applied surcharge. 

Figure 5.8 illustrates the vertical strain range of the swelling tests made under 

constant vertical swelling pressure.  By consolidating the compacted samples in the 
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sampling tube prior to swell tests have succeeded in that the vertical strains recorded 

in these tests have fitted into a narrow range between -1% and +3%.    The limited 

vertical strains occurred in the tests under constant vertical surcharge pressures are 

substantiate the reliability of the lateral swelling pressure values obtained at the end 

of the tests.   The vertical strain values recorded in the tests on which the specimens 

were consolidated inside the test ring instead of the sampling tube were in a range 

between 7% to 15% (Figure 4.7).      
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Figure 5.8: Recorded Vertical Strain Values vs. Lateral Swelling Pressure of  
                          Swelling Tests under Constant Vertical Surcharge 

5.2.2 Comparison of lateral swelling pressures in various tests under  

          constant vertical surcharge 

As stated above, one of the aims of this study was to reflect the effect of strain on 

swelling pressure development.  Therefore, a pressure cell surrounds the swelling 

pressure ring in the test set up.  As well as the tests according to Method C, also in 

the tests under constant vertical surcharge, both test methods have been followed to 

achieve comparable results.  

In Figure 5.9, the results of the tests conducted under zero lateral strain conditions 

(h= 0), and the results of the lateral free swell tests are shown together.   
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Figure 5.9 and Figure 5.10 show that greater lateral swelling pressures are obtained 

from Lateral Free Swell Tests under constant surcharge when compared with tests 

under Zero Lateral Strain Condition, in general.   

The expectations were that the tests under lateral cell pressure would end up with 

higher lateral swelling pressures than the tests on which the specimen have been left 

free to swell in lateral direction.  On the contrary, results of the tests on which the 

specimen has been left free to swell in lateral direction have resulted with slightly 

higher lateral swelling pressures than the tests under zero lateral strain condition.  

Regarding the fact that the difference is negligible, it is concluded that magnitude of 

ultimate swell pressure is not affected by the test method.   

Results of these tests are in agreement with the results obtained from the tests in 

accordance with Method C.  As a parallel statement to the evaluations made in 

Paragraph 5.1.2, the occurrence of even very small strains leading to volumetric 

increase in sample causes significant decrease in lateral swelling pressure.    

Evaluating all the test results together reveal that a strain induced automatic cell 

pressure triggering for lateral swelling pressure prediction under zero lateral strain 

conditions is necessary for greater accuracy.  If, automatic cell pressure triggering is 

not present, which is the case in this study, the adjustment of a testing technique like 

“The Method of Equilibrium (Fourie, 1989)”, will avoid side effects of possible 

failures of lateral stress adjustment by the cell pressure increase.  The lateral swelling 

pressure is obtained from a set of tests under different constant lateral cell pressures 

in “The Method of Equilibrium” suggested by (Fourie, 1989).   
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Figure 5.9: Lateral Swelling Pressure under Varying Constant Vertical Surcharge 
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A series of tests in accordance with the “Method of Equilibrium” have been made 

within this study and the results of these tests are given in sub-title 4.5.  An 

evaluation of the results obtained from these tests will be given in the following 

paragraphs.     

5.2.3 Variation of lateral swelling pressure with variation of vertical  

           surcharge 

Test results shown on Figure 5.9, point out a certain increase in lateral swelling 

pressure with increasing vertical surcharge.  Simply, two straight lines drawn on 

Figure 5.9 show that there is a well defined increase in lateral swelling pressure, as 

the vertical stress increases.   

Hence, Joshi and Katti (1984) and Windal and Shahrour (2002) have conducted  

lateral swelling pressure tests under varying vertical surcharge pressures.  So, the test 

results given on Figure 5.9 have been compared with the test results of these 

researchers in Figure 5.10.  Similar to the test results obtained within this study, the 

results of Joshi and Katti (1984) and Windal and Shahrour (2002) also reflect a 

significant increase in lateral swelling pressure with increasing vertical surcharge. 

The lateral swelling pressure has an asymptotic behavior with increasing vertical 

surcharge and reaches an ultimate value as an upper limit in the tests. 

The ratio of Lateral swelling pressure to the vertical surcharge is shown on Figure 

5.11.  Again, as in the results of the previous, gradually loaded swelling pressure 

tests in vertical direction, pressure ratios within a range in between 0.60 and 1.30 

have been obtained in most of the tests.  Figure 5.11 clearly reveals that the average 

ratio sl/v ratio is 1.00.  The average value of the sl/v ratio points ones more out 

that the lateral and vertical swelling pressures are almost equal.   

As in the results the tests under constant surcharge within this study, the tests of 

Joshi and Katti (1984) and Windal and Shahrour (2001) have resulted with 

mobilization of increasing lateral swelling pressures under increasing vertical 

surcharge.  Considering the vertical surcharge as the overburden pressure, the lateral 

swelling pressure increases to a certain depth.  From this point on the increase in 

depth, i.e., the overburden pressure has no effect on lateral swelling pressure.  Of 

course, this conclusion is valid only for a specific type of clay in the soil profile 

having the same natural (initial) water content.  Higher plasticity indices and 
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decreasing water contents of the swelling clay certainly lead to higher swelling 

pressures. 

Figure 5.10 gives also an impression that the depth, which happens to be a major 

factor for the variation of lateral swelling pressure, may increase with the increased 

swelling potential of the clay layer.    To be certain at this point it is necessary to 

conduct a certain number of tests with clay samples having different swelling 

potential. 

On the contrary to the test results obtained within this study, the results of the 

aforementioned researchers have revealed that the lateral swelling pressure/vertical 

surcharge ratio (sl/v) is much greater (up to 6) for tests conducted under lower 

vertical surcharge pressures.   Based on the fact that Joshi and Katti (1984) have 

realized their tests on a large scale model, their test results may be evaluated as to be 

more accurate.  The test results depicted on Figure 5.11 do also reflect a slight 

decrease in the lateral swelling pressure/vertical surcharge ratio with increasing 

vertical surcharge, i.e. increasing overburden.  Swelling pressure/vertical surcharge 

ratios (sl/v) obtained by Joshi and Katti (1984), Windal and Shahrour (2002) and 

the in this study are depicted together on Figure 5.11.   
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Figure 5.10:  Lateral Swelling Pressure under Varying Constant Vertical Surcharge 
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Figure 5.11:  Vertical Surcharge vs. Lateral Swelling Pressure 
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  Figure 5.12: Comparison of Vertical Surcharge vs. Lateral Swelling Pressure  
                   Distributions 

Again, the tests under varying vertical surcharges have resulted with almost similar 

lateral swelling pressures as the constant vertical strain tests evaluated in the first part 

of this paragraph.. Based on the test results of Ofer (1981) and Windal and Shahrour 

(2002), the expectations were to obtain greater lateral swelling pressures in cell 
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pressure applied tests.  The increase in the lateral swelling pressures with increasing 

ring rigidity can be seen in Windal and Shahrour’s (2002) test results (Figure 5.10).  

The cell pressure applied to keep the lateral strain in its initial state increases the 

rigidity of the thin walled ring in a way.  So, the reason for not obtaining a similar 

increase in lateral swelling pressure must be questioned. 

Several factors have been considered so far affecting the results of swelling pressure 

tests under zero lateral strain conditions.  The affect of manual cell pressure 

application was already mentioned in the paragraphs above.  The lateral cell pressure 

has always been applied following the development of some lateral strain.  Since the 

lateral pressure increase was not automatic triggered by the lateral strain occurrence 

there was no way to prevent the occurrence of these small lateral strains.   

In addition, the lower swelling potential of the clay used in this thesis against the 

much higher swelling potential of the expansive clay samples in the compatible 

studies, may also lead to similar results on tests performed under zero and free lateral 

strain conditions.     

As a final reason, the specimens employed in the tests of this study were prepared by 

compaction in the laboratory.  So, the specimens employed in the tests are not alike 

each other as the undisturbed samples of other researchers.   
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  Figure 5.13: Lateral Swelling Pressure Test Results of Windal and Shahrour (2002) 
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5.3 The Effect of Stratification on Swelling Pressure 

To determine the effect of lamination to swelling pressure, some of the samples have 

been encapsulated laterally, after the compacted sample has been removed from the 

compaction mold, while the rest of the samples have been encapsulated directly by 

penetrating the encapsulation mold into the compaction mold.  Hence, the 

stratification in the laterally recovered specimens were in vertical direction.  The 

vertical and lateral swelling pressures observed in swelling tests that have been 

conducted on the horizontal and vertically laminated samples are illustrated on 

Figure 5.11.   

40

50

60

70

80

90

100

110

120

130

40 60 80 100 120 140 160 180 200 220 240 260 280

V
er

ti
ca

l S
w

el
li

n
g

 P
re

ss
u

re
 (

k
P

a
)

Lateral Swelling Pressure (kPa)

Horizontal Laminated

Vertical Laminated

 

Figure 5.14:  Effect of Sample Lamination on Swelling Pressure 

Vertically laminated specimens having vertical water flow paths have resulted with 

higher lateral swelling pressures.  Furthermore, considering that a horizontally 

encapsulated specimen consists of multiple vertical plates, which tend to bend, 

enables to understand the increase in the lateral swelling even better.   
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5.4 Recommended Test Method for Lateral Swelling Pressure Prediction:  

       “The Method of Equilibrium” 

To equip a thin walled lateral pressure ring with a surrounding cell and to maintain 

tests in which the volume of the specimen is kept in its initial state has been a major 

objective in this study.  However, different than anticipated, the presence of a 

surrounding ring alone was not enough to reflect the effect of strain occurrence on 

swelling pressure development.  As pointed out in the evaluations above, the cell 

pressures was applied manually.  In other words, the cell pressure increase was after 

observing a lateral strain increase in the specimen, i.e, thin ring around the specimen.  

The recorded magnitudes of lateral strain were always very small in these tests, and 

the volume of the specimen reduced to its initial state with cell pressure increase.   

Even this very small magnitude of strain may have resulted with a remarkable 

decrease in swelling pressure.   

In order to find out the most reliable testing technique to be employed for tests made 

with the lateral pressure testing equipment that has been used in this study, the 

technique followed by Windal and Shahrour (2002) with rings of varying stiffness 

has been considered.  The major difference was that the stiffness of the rings on 

Windal and Shahrour (2002)’s tests were present from the beginning of the test.  In 

other words, the expansion ability of the specimen inside the stiffer ring was limited 

from the beginning of the test.   

So, based on the reality that to limit the expansion causes mobilization of an 

increased lateral swelling pressure, the “Method of Equilibrium” testing technique 

has also been adopted in this research program.  Fourie (1989), has conducted several 

triaxial swelling pressure tests according to “Method of Equilibrium” with a 

modified triaxial testing device.  The test methodology described by Fourie (1989) 

has the similar rigidity effect as depicted in the test of Windal and Shahrour (2002).   

The “Method of Equilibrium” is a method to obtain the lateral swell pressure from a 

group of test without manually intervening to the device following the start of the 

test.  From another point of view, to follow the “Method of Equilibrium” testing 

method has also avoided the possible accuracy problems that may occur due to the 

absence of integrated strain based automatic cell pressure triggering system.       
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In all of the tests conducted to obtain the lateral swelling pressure by following the 

method of equilibrium, the lateral strain of the specimen under constant cell 

pressures has been recorded.  Then, the lateral swelling pressure has been determined 

by a graphical method that is based on lateral strains and corresponding cell 

pressures (Figure 5.12).   

 

 

Figure 5.15: Lateral Swelling Pressure Determination according to 
                        “Method of Equilibrium 

The intersecting point at zero lateral strain of the straight line drawn through the 

points on the graphic on Figure 5.12 has been accepted as the lateral swelling 

pressure.  One group of tests has been made under a vertical surcharge of 112kPa to 

obtain the lateral swelling pressure by the method of equilibrium.  The test results 

reveal that the lateral swelling pressure at zero strain is 80kPa (Figure 5.12).   

It is concluded that the most reliable method for predicting the lateral swelling 

pressure for a clay sample with a specified initial water content would be to conduct 

swelling tests by the “Method of Equilibrium” technique in the testing apparatus 

designed and used in this research program.   
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6. CONCLUSION 

This study is on the determination of the triaxial swelling behavior of soils.  A testing 

equipment that can measure lateral swelling pressures on real time basis has been 

designed and manufactured for this study.  The test equipment is based on the thin 

walled oedemoter rings designed and used by Komornick and Zeitlin (1965), Ofer 

(1981) and Ertekin (1991).   

The testing apparatus has been equipped with a confining back pressure cell.  The 

height of the ring is designed as 70mm whereby the flexibility of the ring has been 

increased.  The thickness of the ring is kept as 0.35mm, like the one of Ertekin 

(1991).  The back pressure cell is a cylinder with a diameter of 130mm, surrounding 

the thin walled lateral swelling pressure (oedometer) ring.  Strains and pressures on 

the thin walled ring are measured via three waterproof strain gauges, mounted on the 

ring.  With quarter bridge connection, each strain gauge on the ring is a separate 

indicator.  One pressure transducer is present at the outer surface of the pressure cell. 

All swelling pressure tests have been performed on compacted clay samples.  The 

clay has been taken in a disturbed condition from ISBAS (Istanbul Thrace Free 

Zone) in the Çatalca Region of Istanbul City.    The initial water content of the 

samples have been kept constant in the tests.  Generally, the initial water content 

values of the specimens vary between 17% and 19%.   

The tests performed within the scope of this research are assembled in five groups 

according to their stress-strain conditions (see Figure 5.1).   

Two types of lateral swelling tests have been made, based on the Method C in ASTM 

4536-03.  In the first group of tests, swelling of the specimen in vertical direction has 

been prevented by load adjustment in vertical direction, while laterally the specimen 

has been let to swell (VR-LFST).     In the second group of tests both the vertical 

strain and the lateral strain have been kept as zero (h=v=0) (CVS).  The lateral 

strain has been restrained by applying hydraulic cell pressure. 
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Three group of tests have been made under constant vertical surcharge pressure.  One 

group of the tests have been made by employing cell pressure increase during the 

test, while the other group have been made as lateral free swell tests, i.e., not 

applying any cell pressure. Finally, to see the real effect of the limitation of lateral 

expansion, “ the Method of Equilibrium” (Fourie, 1989) testing technique has been 

adopted into the research program.   

The conclusions of this study are summarized below: 

 Test results obtained from this study utilizing the specially designed and  

manufactured apparatus agree with the results of previous studies, in general.  

This comparison has validated the reliability of the test set up. 

 A comparison of the results of the present study with previous studies has shown 

that to increase the height of the thin walled ring has minimized the restrainment 

effect of the rigid top and bottom plates of the ring on the lateral deformation 

ability of the ring.  So, lateral strains caused by the swelling of the specimen 

could be recorded with a greater accuracy due to the increased flexibility of the 

ring.    

 The range of vertical and lateral swelling pressures obtained from all of the tests 

vary within a range of 80kPa to 150kPa.  As well as the tests under zero vertical 

strain (v = 0), the tests under constant vertical surcharge pressure have resulted 

with lateral swelling pressures fitting into the same range.   

 Full mobilization of vertical swelling pressures took 5 to 8 hours during the tests.  

On the contrary, the mobilization of lateral swelling pressure has continued up to 

72 hours.  

 Swell pressures obtained from triaxial tests against the swell pressures recorded 

on uniaxial tests performed on likewise prepared samples of the ISBAS clay has 

shown that uniaxial swell tests (conventional swell tests) may result with 

overestimated swelling pressures.  The outcomes of the uniaxial swelling 

pressure tests were sv=150kPa–200kPa. 

 Average range of the swelling pressure ratios (sL/sV) obtained from vertically 

restained (VR) tests are in the range of 1.0 – 2.0.  CVS tests, which were 

preformed by applying hydraulic cell pressure restraining the lateral strain of the 
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specimen have resulted with slight higher swelling pressure ratios than the lateral 

free swell tests (VR-LFST).  Nevertheless, the difference between the two test 

methods was less significant than expected. 

 The average range of the lateral swelling pressure to surcharge ratio (sL/ss) 

observed from the swelling pressure tests under constant surcharge was equal to 

0.9 to 1.0.  No great difference was recorded between CS – ZLS and CS LFST 

tests.   

 Based on the test results of Ofer (1981) and Windal and Shahrour (2002), the 

expectations were to obtain greater lateral swelling pressures in cell pressure 

applied tests.  The cell pressure keeps the lateral strain in its initial state and 

increases the rigidity of the thin walled ring.   

 Similar test results on LFST and ZLST and CVS tests are consequences of 

manual cell pressure application.  During the tests, a small amount of strain has 

occurred first, than the occurred strain has returned to its initial state after 

increasing the cell pressure.  On the contrary, even a small amount of 

deformation highly decreases the lateral swelling pressures.  Therefore, to obtain 

satisfactory test results, automatic cell pressure triggering is necessary. 

 Similar to the test results of Windal and Shahrour (2002) on Bavent Clay and 

Joshi and Katti (1984), the results of the tests under constant surcharge within 

this study, have resulted with mobilization of increasing lateral swelling pressure 

under increasing vertical surcharge.  Considering the vertical surcharge as the 

overburden pressure, the lateral swelling pressure increases to a certain depth.  

From this point on the increase in depth, i.e., the overburden pressure has no 

effect on lateral swelling pressure.   

 The lateral swelling pressure  is also determined by a group of tests by employing  

the ”Method of Equilibrium”.  One group of tests has been made in accordance 

with the “Method of Equilibrium”.  The constant vertical surcharge was kept 

112kPa in those tests and the lateral swelling pressure at zero strain  has been 

determined as 80kPa from the diagram shown in Fig. 6.1.  The swelling pressure 

ratio is 80kPa/112kPa = 0,71.   
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 The “Method of Equilibrium” testing method avoids the possible accuracy 

problems that may occur due to the absence of strain based automatic cell 

pressure triggering system.   

 No manual intervention to the cell pressure is necessary for the swelling pressure 

tests according to “Method of Equilibrium”.  Therefore, tests to be made with the 

testing apparatus designed and used in this research program is readily capable of 

performing reliable swelling tests in accordance with the “Method of 

Equilibrium” technique.      
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TEST NO: 16 

Test Start: 

Date: 28.08.2009 

Time: 10:45 

Test Duration:  68 hours 

Test End: 

Date: 31.08.2009 

Time:  06:45 

 
 

19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Top

Bottom

Initial Water Content;  i = 19%

Final Water Content Distribution  (%) of the Specimen

 
Figure A1.1: Initial and Final Water Contents, Test No: 16; (28.08.2009)  
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Figure A1.2: Pressure – Time Graph Test No: 16, (28.08.2009) 
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TEST NO: 17 

Test Start: 

Date: 02.09.2009 

Time: 12:00 

Test Duration:  29 hours 

Test End: 

Date: 03.09.2009 

Time:  17:00 
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Figure A1.3: Initial and Final Water Contents Test No: 17; (02.09.2009) 
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Figure A1.4: Time Graph Test No: 17; (02.09.2009) 
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TEST NO: 18 

Test Start: 

Date: 05.09.2009

Time: 10:00  

Test Duration:  71 hours 

Test End: 

Date: 08.09.2009 

Time:  09:00 
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Figure A1.5: Initial and Final Water Contents Test No: 18; (05.09.2009) 
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Figure A1.6: Pressure – Time Graph Test No: 18; (05.09.2009) 
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TEST NO: 25 

Test Start: 

Date: 16.10.2009

Time: 13:30 

Test Duration:  49 hours 

Test End: 

Date: 18.10.2009 

Time:  14:30 
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Figure A1.7: Initial and Final Water Contents Test No: 25; (16.10.2009) 
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Figure A1.8: Pressure – Time Graph Test No: 25; (16.10.2009) 
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TEST NO: 19 

Test Start: 

Date: 09.09.2009

Time: 13:00 

Test Duration:  45 hours 

Test End: 

Date: 11.09.2009 

Time:  10:00  
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Figure A2.1: Initial and Final Water Contents Test No: 19; (09.09.2009) 
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Figure A2.2: Pressure – Time Graph Test No: 19; (09.09.2009) 
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TEST NO: 21 

Test Start: 

Date: 16.09.2009 

Time: 11:00  

Test Duration:  53 hours 

Test End: 

Date: 18.09.2009

Time:  16:00  
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Figure A2.3: Initial and Final Water Contents Test No: 21; (16.09.2009) 
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Figure A.24: Pressure – Time Graph Test No: 21; (16.09.2009) 
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APPENDIX B 

CONSTANT VOLUME TESTS (CVS) 
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TEST NO: 9 

Test Start: 

Date: 07.07.2009 

Time: 13:00 

Test Duration:  24 hours 

Test End: 

Date: 08.07.2009 

Time:  13:00  

 

 

Figure B1.1: Initial and Final Water Contents Test No: 9; (07.07.2009) 
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Figure B1.2: Pressure – Time Graph Test No: 9; (07.07.2009) 
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Figure B1.3: Strain – Time Graph Test No:9; (07.07.2009) 
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TEST NO: 10 

Test Start: 

Date: 09.07.2009 

Time: 13:00  

Test Duration:  30 hours 

Test End: 

Date: 10.07.2009  

Time:  19:00  

 

 

Figure B1.4: Initial and Final Water Contents Test No: 10; (09.07.2009) 
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Figure B1.5: Pressure – Time Graph Test No: 10; (09.07.2009) 
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Figure B1.6: Strain – Time Graph Test No:10; (09.07.2009) 
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TEST NO: 11 

Test Start: 

Date: 13.08.2009 

Time: 09:00  

Test Duration:  29 hours 

Test End: 

Date: 14.08.2009 

Time:  14:00  

 

 

Figure B1.7: Initial and Final Water Contents Test No:11; (13.08.2009) 
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Figure B1.8: Pressure – Time Graph Test No: 11; (13.08.2009) 
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Figure B1.9: Strain – Time Graph Test No: 11; (13.08.2009) 
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TEST NO: 12 

Test Start: 

Date: 17.08.2009 

Time: 15:00 

Test Duration:  48 hours 

Test End: 

Date: 19.08.2009  

Time:  15:00 

 

 

Figure B1.10: Initial and Final Water Contents Test No: 12;  (17.08.2009) 
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Figure B1.11: Pressure – Time Graph Test No: 12; (17.08.2009) 
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Figure B1.12: Strain – Time Graph Test No: 12; (17.08.2009) 
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TEST NO: 22 

Test Start: 

Date: 25.09.2009

Time: 09:00 

Test Duration:  57 hours 

Test End: 

Date: 27.09.2009

Time:  18:00 

 

 

Figure B1.13: Initial and Final Water Contents Test No: 22; (25.09.2009) 
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Figure B1.14: Pressure – Time Graph Test No: 22; (25.09.2009) 
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Figure B1.15: Strain – Time Graph Test No: 22; (25.09.2009) 
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TEST NO: 23 

Test Start: 

Date: 02.10.2009 

Time: 08:30 

Test Duration:  57 hours 

Test End: 

Date: 04.10.2009 

Time:  17:30 

 

 

Figure B1.16: Initial and Final Water Contents Test No: 23; (02.10.2009) 
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Figure B1.17: Pressure – Time Graph Test No: 23; (02.10.2009) 
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Figure B1.18: Strain – Time Graph Test No: 23; (02.10.2009) 
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TEST NO: 24 

Test Start: 

Date: 08.10.2009 

Time: 10:00  

Test Duration:  52 hours 

Test End: 

Date: 10.10.2009 

Time:  14:00  

 

 

Figure B1.19: Initial and Final Water Contents Test No: 24; (08.10.2009) 
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Figure B1.20: Pressure – Time Graph Test No: 24;  (08.10.2009) 
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Figure B1.21: Strain – Time Graph Test No: 24; (08.10.2009) 
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TEST NO: 13 

Test Start: 

Date: 20.08.2009 

Time: 12:00  

Test Duration:  45 hours 

Test End: 

Date: 22.08.2009 

Time:  09:00 

 

 

Figure B2.1: Initial and Final Water Contents Test No: 13; (20.08.2009) 
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Figure B2.2: Pressure – Time Graph Test No: 13; (20.08.2009) 
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Figure B2.3: Strain – Time Graph Test No: 13; (20.08.2009) 
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TEST NO: 14 

Test Start: 

Date: 22.08.2009 

Time: 10:45 

Test Duration:  51 hours 

Test End: 

Date: 24.09.2009 

Time:  13:45  

 

 

Figure B2.4: Initial and Final Water Contents Test No: 14; (22.08.2009) 
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Figure B2.5: Pressure – Time Graph Test No: 14; (22.08.2009) 
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Figure B2.6: Strain – Time Graph Test No: 14; (22.08.2009) 
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TEST NO: 15 

Test Start: 

Date: 26.08.2009 

Time: 11:40  

Test Duration:  45,00 hours 

Test End: 

Date: 28.08.2009 

Time:  08:40  

 

 

Figure B2.7: Initial and Final Water Contents Test No: 15; (26.08.2009) 
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Figure B2.8: Pressure – Time Graph Test No: 15; (26.08.2009) 
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Figure B2.9: Strain – Time Graph Test No: 15; (26.08.2009) 
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APPENDIX C 

CONSTANT VERTICAL SURCHARGE  LATERAL FREE SWELL TESTS 
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TEST NO: 26 

Test Start: 

Date: 21.10.2009 

Time: 15:20  

Test Duration:  45 hours 

Test End: 

Date: 23.10.2009 

Time:  12:20 

 

 

Figure C.1: Initial and Final Water Contents Test No: 26; (21.10.2009) 
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Figure C2: Pressure – Time Graph Test No: 26; (21.10.2009) 
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Figure C3: Vertical Strain – Time Graph Test No: 26; (21.10.2009) 
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TEST NO: 27 

Test Start: 

Date: 24.10.2009 

Time: 08:00  

Test Duration:  74 hours 

Test End: 

Date: 27.10.2009 

Time:  10:00 

 

 

Figure C4:  Initial and Final Water Contents Test No: 27; (24.10.2009) 
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Figure C5: Pressure – Time Graph Test No: 27; (24.10.2009) 
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Figure C6: Vertical Strain – Time Graph Test No: 27; (24.10.2009) 
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TEST NO: 28 

Test Start: 

Date: 28.10.2009 

Time: 09:00:00  

Test Duration:  125 hours 

Test End: 

Date: 02.11.2009 

Time:  09:05:00  

 

 

Figure C7: Initial and Final Water Contents Test No: 28; (28.10.2009) 
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Figure C8: Pressure – Time Graph Test No: 28; (28.10.2009) 
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Figure C9: Vertical Strain – Time Graph Test No: 28; (28.10.2009) 
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TEST NO: 29 

Test Start: 

Date: 03.11.2009 

Time: 14:00 

Test Duration:  51,00 hours 

Test End: 

Date: 05.11.2009 

Time:  17:00  

 

 

Figure C10: Initial and Final Water Contents Test No: 29; (03.11.2009) 
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Figure C11: Pressure – Time Graph Test No: 29; (03.11.2009) 

 



 

19

 

Figure C12: Vertical Strain – Time Graph Test No: 29; (03.11.2009) 
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TEST NO: 32 

Test Start: 

Date: 04.12.2009 

Time: 13:00 

Test Duration:  67 hours 

Test End: 

Date: 06.12.2009 

Time:  08:00  

 

 

Figure C13: Initial and Final Water Contents Test No: 32; (04.12.2009) 
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Figure C14: Pressure – Time Graph Test No: 32; (04.12.2009) 



 

19

 

Figure C15: Vertical Strain – Time Graph Test No: 32; (04.12.2009) 
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TEST NO: 33 

Test Start: 

Date: 08.12.2009 

Time: 09:30  

Test Duration:  96 hours 

Test End: 

Date: 12.12.2009 

Time:  09:30  

 

 

Figure C16: Initial and Final Water Contents Test No: 33; (08.12.2009) 
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Figure C17: Pressure – Time Graph Test No: 33; (08.12.2009) 

 



 

19

 

Figure C18: Vertical Strain – Time Graph Test No: 33; (08.12.2009) 
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TEST NO: 34 

Test Start: 

Date: 12.12.2009 

Time: 11:45 

Test Duration:  70,00 hours 

Test End: 

Date: 15.12.2009 

Time:  09:45 

 

 

Figure C19: Initial and Final Water Contents Test No: 34; (12.12.2009) 
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Figure C20: Pressure – Time Graph Test No: 34; (12.12.2009) 
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Figure C21: Vertical Strain – Time Graph Test No: 34; (12.12.2009) 
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TEST NO: 37 

Test Start: 

Date: 29.12.2009 

Time: 17:00  

Test Duration:  45 hours 

Test End: 

Date: 31.12.2009 

Time:  12:00 

 

 

Figure C22: Initial and Final Water Contents Test No: 37; (29.12.2009) 
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Figure C23: Pressure – Time Graph Test No: 37; (29.12.2009) 
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Figure C24: Vertical Strain – Time Graph Test No: 37; (29.12.2009) 
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APPENDIX D 

CONSTSANT VER. SURCHARGE–ZERO LATERAL STRAIN TESTS 
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TEST NO: 38 

Test Start: 

Date: 19.01.2010 

Time: 10:00  

Test Duration:  52 hours 

Test End: 

Date: 21.01.2010 

Time:  14:00 

 

 

Figure D1: Initial and Final Water Contents Test No: 38; (19.01.2010) 
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Figure D2: Pressure – Time Graph Test No: 38; (19.01.2010) 
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Figure D3: Lateral Strain – Time Graph Test No: 38; (19.01.2010) 
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Figure D4: Vertical Strain – Time Graph Test No: 38; (19.01.2010) 
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TEST NO: 39 

Test Start: 

Date: 28.01.2010 

Time: 10:45  

Test Duration:  29 hours 

Test End: 

Date: 29.01.2010 

Time:  14:45  

 

 

Figure D5: Initial and Final Water Contents Test No: 39; (28.01.2010) 
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Figure D6: Pressure – Time Graph Test No: 39; (28.01.2010) 
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Figure D7: Lateral Strain – Time Graph Test No: 39; (28.01.2010) 
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Figure D8: Vertical Strain – Time Graph Test No: 39; (28.01.2010) 
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TEST NO: 40 

Test Start: 

Date: 02.02.2010 

Time: 10:00 

Test Duration:  48 hours 

Test End: 

Date: 04.02.2010 

Time:  10:00 

 

 

Figure D9: Initial and Final Water Contents Test No: 40; (02.02.2010) 
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Figure D10: Pressure – Time Graph Test No: 40; (02.02.2010) 
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Figure D11: Lateral Strain – Time Graph Test No: 40; (02.02.2010) 
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Figure D12: Vertical Strain – Time Graph Test No: 40; (02.02.2010) 
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TEST NO: 41 

Test Start: 

Date: 05.02.2010 

Time: 08:00  

Test Duration:  51 hours 

Test End: 

Date: 07.02.2010 

Time:  11:00  

 

 

Figure D13: Initial and Final Water Contents Test No: 41; (05.02.2010) 
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Figure D14: Pressure – Time Graph Test No: 41; (05.02.2010) 
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Figure D15: Lateral Strain – Time Graph Test No: 41; (05.02.2010) 
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Figure D16: Vertical Strain – Time Graph Test No: 41; (05.02.2010) 
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TEST NO: 42 

Test Start: 

Date: 09.02.2010

Time: 08:30 

Test Duration:  48 hours 

Test End: 

Date: 04.02.2010

Time:  08:30 

 

 

Figure D17: Initial and Final Water Contents Test No: 42; (09.02.2010) 
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: 

Figure D18: Pressure – Time Graph Test No: 42; (09.02.2010) 
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Figure D19: Lateral Strain – Time Graph Test No: 42; (09.02.2010) 
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Figure D20: Vertical Strain – Time Graph Test No: 42; (09.02.2010) 
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TEST NO: 43 

Test Start: 

Date: 13.02.2010 

Time: 09:00  

Test Duration:  25 hours 

Test End: 

Date: 14.02.2010 

Time:  10:00 

 

 

Figure D21: Initial and Final Water Contents Test No: 43; (13.02.2010) 
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Figure D22: Pressure – Time Graph Test No: 43; (13.02.2010) 
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Figure D23: Lateral Strain – Time Graph Test No: 43; (13.02.2010) 
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Figure D24: Vertical Strain – Time Graph Test No: 43; (13.02.2010) 
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APPENDIX E 

LATERAL SWELLING PRESSURE DETERMINATION BASED ON THE 
METHOD OF EQUILIBRIUM 

(UNDER CONSTANT VERTICAL SURCHARGE) 
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TEST NO: 44 

Test Start: 

Date: 19.02.2010 

Time: 15:00  

Test Duration:  70 hours 

Test End: 

Date: 22.02.2010 

Time:  13:00  

 

 

Figure E1: Initial and Final Water Contents Test No: 44; (19.02.2010) 
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Figure E2: Pressure – Time Graph Test No: 44; (19.02.2010) 
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Figure E3: Lateral Strain – Time Graph Test No: 44; (19.02.2010) 
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Figure E4: Vertical Strain – Time Graph Test No: 44; (19.02.2010) 
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TEST NO 45 

Test Start: 

Date: 24.02.2010 

Time: 15:00 

Test Duration:  48 hours 

Test End: 

Date: 26.02.2010 

Time:  15:00  

 

 

Figure E5: Initial and Final Water Contents Test No: 45; (24.02.2010) 
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Figure E6: Pressure – Time Graph Test No: 45; (24.02.2010) 
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Figure E7: Lateral Strain – Time Graph Test No: 45; (24.02.2010) 
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Figure E8: Vertical Strain – Time Graph Test No: 45; (24.02.2010) 
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TEST NO: 46 

Test Start: 

Date: 27.02.2010 

Time: 09:30  

Test Duration:  72 hours 

Test End: 

Date: 02.03.2010 

Time:  09:30  

 

 

Figure E9: Initial and Final Water Contents Test No: 46; (27.02.2010) 
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Figure E10: Pressure – Time Graph Test No: 46; (27.02.2010) 
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Figure E11: Lateral Strain – Time Graph Test No: 46; (27.02.2010) 
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Figure E12: Vertical Strain – Time Graph Test No: 46; (27.02.2010) 
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TEST NO: 47 

Test Start: 

Date: 03.03.2010 

Time: 11:30 

Test Duration:  48 hours 

Test End: 

Date: 05.03.2010 

Time:  11:30  

 

 

Figure E13: Initial and Final Water Contents Test No: 47; (03.03.2010) 
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Figure E14: Pressure – Time Graph Test No: 47; (03.03.2010) 
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Figure E15: Lateral Strain – Time Graph Test No: 47; (03.03.2010) 
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Figure E16: Vertical Strain – Time Graph Test No: 47; (03.03.2010) 
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TEST NO: 48 

Test Start: 

Date: 06.03.2010 

Time: 11:00  

Test Duration:  48 hours 

Test End: 

Date: 08.03.2010 

Time:  11:00  

 

 

Figure E17: Initial and Final Water Contents Test No: 48; (06.03.2010) 
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Figure E18: Pressure – Time Graph Test No: 48; (06.03.2010) 
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Figure E19: Lateral Strain – Time Graph Test No: 48; (06.03.2010) 
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Figure E20: Vertical Strain – Time Graph Test No: 48; (06.03.2010) 
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TEST NO: 49 

Test Start: 

Date: 10.03.2010 

Time: 12:00  

Test Duration:  48 hours 

Test End: 

Date: 12.03.2010 

Time:  12:00  

 

 

Figure E21: Initial and Final Water Contents Test No: 49; (10.03.2010) 
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Figure E22: Pressure – Time Graph Test No: 49; (10.03.2010) 
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Figure E23: Lateral Strain – Time Graph Test No: 49; (10.03.2010) 
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Figure E24: Vertical Strain – Time Graph Test No: 49; (10.03.2010) 
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TEST NO: 50 

Test Start: 

Date: 1303.2010 

Time: 1000  

Test Duration:  52 hours 

Test End: 

Date: 15.03.2010 

Time:  14:00  

 

20 22 24 26 28 30 32 34 36

Top
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Initial Water Content; wi = 20%

Final Water Content Distribution  (%) of the Specimen

 

Figure E25: Initial and Final Water Contents Test No: 50; (13.03.2010) 
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Figure E26: Pressure – Time Graph Test No: 50; (13.03.2010) 
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Figure E27: Lateral Strain – Time Graph Test No: 50; (13.03.2010) 
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Figure E28: Vertical Strain – Time Graph Test No: 50; (13.03.2010) 
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TEST NO: 51 

Test Start: 

Date: 17.03.2010 

Time: 11:00 

Test Duration:  46 hours 

Test End: 

Date: 19.03.2010 

Time:  09:00 

 

 

Figure E29: Initial and Final Water Contents Test No: 51; (17.03.2010) 



 

26

 

Figure E30: Pressure – Time Graph Test No: 51; (17.03.2010) 
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Figure E31: Lateral Strain – Time Graph Test No: 51; (17.03.2010) 
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Figure E31: Vertical Strain – Time Graph Test No: 51; (17.03.2010) 
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