<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

BETONARME YAPILARIN TAŞIYICI SİSTEM SEÇİMİNDE PERDE YERLEŞİMİNİN DAVRANIŞA ETKİSİ

YÜKSEK LİSANS TEZİ

Sinan ERKEN

İnşaat Mühendisliği Anabilim Dalı Yapı Mühendisliği Programı

HAZİRAN 2012

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

BETONARME YAPILARIN TAŞIYICI SİSTEM SEÇİMİNDE PERDE YERLEŞİMİNİN DAVRANIŞA ETKİSİ

YÜKSEK LİSANS TEZİ

Sinan ERKEN (501091145)

İnşaat Mühendisliği Anabilim Dalı

Yapı Mühendisliği Programı

Tez Danışmanı: Prof. Dr. Tülay AKSU ÖZKUL

HAZİRAN 2012

İTÜ, Fen Bilimleri Enstitüsü'nün 501091145 numaralı Yüksek Lisans Öğrencisi Sinan ERKEN, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "BETONARME YAPILARIN TAŞIYICI SİSTEM SEÇİMİNDE PERDE YERLEŞİMİNİN DAVRANIŞA ETKİSİ" başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile sunmuştur.

Tez Danışmanı :	Prof. Dr. Tülay AKSU ÖZKUL İstanbul Teknik Üniversitesi	
Jüri Üyeleri :	Doç. Dr. Mustafa GENÇOĞLU İstanbul Teknik Üniversitesi	
	Prof. Dr. İrfan COŞKUN Yıldız Teknik Üniversitesi	

Teslim Tarihi :04 Mayıs 2012Savunma Tarihi :04 Haziran 2012

Aileme,

ÖNSÖZ

Yüksek lisans tezi boyunca bilgi ve deneyimleri ile bana her konuda destek olan değerli tez danışmanım Prof. Dr. Tülay AKSU ÖZKUL'a teşekkürü bir borç bilirim. Ayrıca bu güne kadar üzerimde emeği olan bütün hocalarımı saygıyla hatırlıyorum. Son olarak da bana her şartta destek olan ve güvenen, aileme minnettarım.

May1s 2012

Sinan ERKEN (İnşaat Mühendisi)

İÇİNDEKİLER

<u>Sayfa</u>

ÖNSÖZ	vii
İÇİNDEKİLER	ix
KISALTMALAR	xiii
CİZELGE LİSTESİ	XV
ŞEKİL LİSTESİ	xxiii
SEMBOL LİSTESİ	. xxvii
ÖZET	xxix
SUMMARY	xxxi
1. GİRİŞ	1
1.1 Tezin Amacı ve Kapsamı	1
2. TAŞIYICI SİSTEM DÜZENLENMESİ	3
2.1 Taşıyıcı Sistem Türleri	3
2.1.1 Çubuklar ve çubuk taşıyıcı sistemler	3
2.1.2 Yüzeysel taşıyıcılar	3
2.2 Malzeme ve Taşıyıcı Sistem Seçimi	3
2.3 Taşıyıcı Sistemin Karşılaması Gereken Yapı Mühendisliği Kriterleri	4
2.3.1 Yeterli dayanım	4
2.3.2 Yeterli rijitlik	4
2.3.3 Yeterli süneklik	4
2.3.4 Yeterli kararlılık	5
2.3.5 Yeterli sönüm	6
2.3.6 Yeterli uyum	6
2.4 Taşıyıcı Sistemlerde Dikkat Edilmesi Gereken Hususlar	7
2.4.1 Taşıyıcı sistem teşkilinde planda dikkat edilmesi gereken hususlar	7
2.4.2 Taşıyıcı sistem teşkilinde düşeyde dikkat edilmesi gereken hususlar	11
3. DEPREM BÖLGELERINDE YAPILACAK YAPILARA ILIŞKIN	
BİLGİLER	15
3.1 Düzensiz Binalar	15
3.1.1 A1 Burulma düzensizliği	15
3.1.2 A2 Döşeme süreksizlikleri	17
3.1.3 A3 Planda çıkıntılar bulunması	17
3.1.4 B1 Komşu katlar arası dayanım düzensizliği (Zayıf kat)	18
3.1.5 B2 Komşu katlar arası rijitlik düzensizliği (Yumuşak kat)	19
3.1.6 B3 Taşıyıcı sistem düşey elemanlarının süreksizliği	19
3.2 Deprem Yükü Hesap Yöntemleri	22
3.2.1 Eşdeğer deprem yükü yöntemi	22
3.2.1.1 Spektral ivme katsayısı	22
3.2.1.2 Spektrum katsayısı	24
3.2.2 Elastik deprem yüklerinin azaltılması ve yapı davranış katsayısı	25
3.2.3 Mod birleştirme yöntemi	28

3.2.4 Zaman tanım alanında hesap yöntemi	31
3.2.4.1 Yapay deprem yer hareketleri	32
3.2.4.2 Kaydedilmiş veya benzeştirilmiş yer hareketi	32
3.2.4.3 Zaman tanım alanında hesap	32
3.3 Süneklik Kavramı ve Kapasite Tasarım İlkeleri	33
3.3.1 Kolonların kirişlerden güçlü olması koşulu	34
3.3.2 Süneklik düzeyi yüksek sistemlerde kolon kiriş birleşim bölgeleri	35
3.3.3 Süneklik düzeyi yüksek ve normal kolonların tasarım farkları	36
3.3.4 Süneklik düzeyi yüksek ve normal kiriş tasarım farkları	39
3.3.5 Süneklik düzeyi yüksek ve normal perde tasarım farkları	40
4. BETONARME YAPILARIN TASARIMI	43
4.1 Genel Bilgiler	43
4.1.1 Kullanılan yönetmelikler ve kombinasyonlar	43
4.1.2 Kullanılan yapı malzemelerinin özellikleri	44
4.1.3 Yapılan kabuller	44
4.1.4 Sabit vükler	
4.1.5 Hareketli vükler	
4.1.6 Kar vükü	
4 1 7 Deprem vükü	45
4.2. Tasıyıcı Sistem Elemanlarının Ön Boyutlandırılması	46
4 2 1 Dösemeler	49
4 2 2 Kirisler	49
4 2 3 Kolonlar	49
4 2 4 Perdeler	53
4 2 4 1 Sistem 1 icin önerilen nerde oruhu	53
4 2 4 2 Sistem 2 icin önerilen perde grubu	54
4 2 4 3 Sistem 3 icin önerilen perde grubu	54
4 2 4 4 Sistem 4 icin önerilen perde grubu	
4.2.4.5 Sistem 5 icin önerilen perde grubu	
4.2.4.6 Sistemlerin Sayısal Olarak Karşılaştırılmaşı	
4 3 Vanısal Cözümleme ve Keşit Heşanları	
4.3.1 Sistem 1 icin cözümleme ve keşit heşanları	
4.3.1.1 Esdeğer denrem yükü hesabı	
4.3.1.2 Mod hirlestirme hesabi	
4.3.1.3 Al hurulma düzensizliği kontrolü	05
4.3.1.4 A2 Döseme düzensizlikleri kontrolü	60
4.3.1.5 A.2 Dianda arkintilar hulunmasi durumu	
4.3.1.6 R1 komsu katlar arası dayanım düzensizliği	60
4.3.1.7 B2 Komsu katlar arası rijitlik düzensizliği	07
4.3.1.7 D2 Kollişü Katlal alası Hjitlik düzelisizliği	70
4.3.1.0 Sistem 1 hiringi ket kirja kegit haganlari	73
4.5.1.9 Sistem 1 biringi kat kiliş keşit heşapları	74
4.5.1.10 Sistem 1 biringi kat norda kagit haganlari	70
4.5.1.11 Sistem 1 Ulliner kat perde kesit nesapian	/9 00
4.5.1.12 Kolonianii kirişiciden dana güçlü onnası koşulu	02
4.5.1.15 KOIOII-KIIIŞ DIITEŞIIII DOIGESI KESIIE GUVEIIIGI KOIUOIIEI	82
4.5.1.14 Sistem 1 belon ve donau metraji	ðኃ
4.3.2 Sistem 2 için çozumleme ve kesit nesapları	83
4.5.2.1 Eşdeger deprem yuku nesabi	83
4.5.2.2 Iviou dirieșurme nesadi	ð/
4.5.2.5 A1 buruima duzensiziigi	89

4.3.2.4 A2 Döşeme düzensizlikleri kontrolü	
4.3.2.5 A3 Planda çıkıntılar bulunması durumu	
4.3.2.6 B1 komşu katlar arası dayanım düzensizliği	
4.3.2.7 B2 Komşu katlar arası rijitlik düzensizliği	
4.3.2.8 Göreli kat ötelemeleri ve ikinci mertebe etkileri kontrolü	
4.3.2.9 Sistem 2 birinci kat kiriş kesit hesapları	
4.3.2.10 Sistem 2 birinci kat kolon kesit hesapları	
4.3.2.11 Sistem 2 birinci kat perde kesit hesapları	
4.3.2.12 Kolonların kirişlerden daha güçlü olması koşulu	101
4.3.2.13 Kolon-kiris birlesim bölgesi kesme güvenliği kontrolleri	101
4.3.2.14 Sistem 2 beton ve donati metraji	102
4.3.3 Sistem 3 icin cözümleme ve kesit hesapları	102
4.3.3.1 Esdeğer deprem yükü hesabı	103
4.3.3.2 Mod birlestirme hesabi	106
4.3.3.3 A1 burulma düzensizliği kontrolü	
4.3.3.4 A2 Döseme düzensizlikleri kontrolü	110
4.3.3.5 A3 Planda cıkıntılar bulunması durumu	110
4 3 3 6 B1 komsu katlar arası dayanım düzensizliği	110
4 3 3 7 B2 Komsu katlar arası rijitlik düzensizliği	111
4 3 3 8 Göreli kat ötelemeleri ve ikinci mertebe etkileri kontrolü	113
4 3 3 9 Sistem 3 birinci kat kiris kesit hesapları	114
4 3 3 10 Sistem 3 birinci kat kolon kesit hesapları	116
4 3 3 11 Sistem 3 birinci kat perde kesit hesapları	117
4 3 3 12 Kolonların kirislerden daha güçlü olması kosulu	119
4 3 3 13 Kolon-kiris birlesim bölgesi kesme güvenliği kontrolleri	119
4 3 3 14 Sistem 3 beton ve donati metraji	120
4 3 4 Sistem 4 icin cözümleme ve kesit hesapları	120
4 3 4 1 Esdeğer deprem yükü hesabı	121
4 3 4 2 Mod birlestirme hesabi	124
4 3 4 3 A 1 burulma düzensizliği kontrolü	126
4 3 4 4 A2 Döseme düzensizlikleri kontrolü	128
4 3 4 5 A 3 Planda cikintilar bulunmasi durumu	128
4 3 4 6 B1 komsu katlar arası dayanım düzensizliği	128
4 3 4 7 B2 Komsu katlar arası rijitlik düzensizliği	129
4 3 4 8 Göreli kat ötelemeleri ve ikinci mertebe etkileri kontrolü	131
4 3 4 9 Sistem 4 birinci kat kiris kesit hesapları	132
4 3 4 10 Sistem 4 birinci kat kolon kesit hesapları	135
4 3 4 11 Sistem 4 birinci kat perde kesit hesapları	135
4 3 4 12 Kolonların kirislerden daha güclü olması kosulu	137
4 3 4 13 Kolon-kiris birlesim bölgesi kesme güvenliği kontrolleri	137
4 3 4 14 Sistem 4 beton ve donati metraji	138
4 3 5 Sistem 5 icin cözümleme ve kesit hesapları	138
4 3 5 1 Esdeğer deprem yükü hesabı	139
4 3 5 2 Mod birlestirme hesabi	142
4 3 5 3 A1 burulma düzensizliği kontrolü	144
4 3 5 4 A2 Döseme düzensizlikleri kontrolü	146
4 3 5 5 A 3 Planda cikintilar bulunmasi durumu	146
4 3 5 6 B1 komsu katlar arası dayanım düzensizliği	146
4.3.5.7 B2 Komsu katlar arası rijitlik düzensizliği	147
4.3.5.8 Göreli kat ötelemeleri ve ikinci mertebe etkileri kontrolü	149

4.3.5.9 Sistem 5 birinci kat kiriş kesit hesapları	150
4.3.5.10 Sistem 5 birinci kat kolon kesit hesapları	152
4.3.5.11 Sistem 5 birinci kat perde kesit hesapları	153
4.3.5.12 Kolonların kirişlerden daha güçlü olması koşulu	155
4.3.5.13 Kolon-kiriş birleşim bölgesi kesme güvenliği kontrolleri	156
4.3.5.14 Sistem 5 beton ve donati metraji	156
5. HESAP SONUÇLARININ KARŞILAŞTIRILMASI	157
5.1 Sistemlerin Geometrik Teşkili Bakımından Karşılaştırılması	157
5.2 Sistemlerin Periyotlarının Karşılaştırılması	157
5.3 Taban Kesme Kuvvetlerinin Karşılaştırılması	158
5.3.1 Eşdeğer deprem kuvveti taban kesme kuvvetleri	158
5.3.2 Mod birleştirme yöntemi taban kesme kuvvetleri	160
5.4 Sistemlerin Perde Kesme Kuvvetlerinin Taban Kesme Kuvvetlerine Oranı.	161
5.5 Sistemlerin Kat Yer Değiştirme ve Göreli Kat Ötelemelerinin Karşılaştırılm	ası
	162
5.6 Sistemlerin İkinci Mertebe Etkilerinin Karşılaştırılması	165
5.7 Sistemlerin A1 Burulma düzensizliği Bakımından Karşılaştırılması	167
5.8 Sistemlerin Donatı ve Beton Metrajlarının Karşılaştırılması	169
5.9 Sistemlerdeki Merdiven ve Asansör Perdelerinin Birbirleriyle Karşılaştırılm	iasi
	170
5.9.1 Sistemlerdeki merdiven perdelerinin karşılaştırılması	170
5.9.2 Sistemlerdeki asansör perdelerinin karşılaştırılması	172
6. SONUÇLAR	175
KAYNAKLAR	179
ÖZGEÇMİŞ	181

KISALTMALAR

BÇ	: Betonarme Çeliği
DBYBHY	: Deprem Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik
SAP2000	: Structural Analysis Program
TS	: Türk Standardı
IMO	: İnşaat Mühendisleri Odası
CQC	: Complete Quadratic Combination

ÇİZELGE LİSTESİ

<u>Sayfa</u>

Çizelge 3.1	Etkin yer ivmesi katsayısı.	23
Çizelge 3.2	: Bina önem katsayısı	23
Çizelge 3.3	: Spektrum karakteristik periyotları	24
Çizelge 3.4	: Taşıyıcı sistem davranış katsayısı.	25
Çizelge 3.5	: Eşdeğer deprem yükü yönteminin uygulanabileceği binalar	26
Çizelge 3.6	: Hareketli yük katılım katsayısı	27
Çizelge 4.1	: Döşeme verileri	49
Çizelge 4.2	: Orta katlar için kolon ön boyut yükleri	50
Çizelge 4.3	: Üst kat için kolon ön boyut yükleri	50
Çizelge 4.4	: Katlar için gerekli ön boyut alanları(cm ²)	51
Çizelge 4.5	: Kolonlar için seçilen ön boyutlar.	52
Çizelge 4.6	: Düşey taşıyıcı eleman verileri	56
Çizelge 4.7	: Sistem 1 için ötelenme kütleleri ve dönme atalet kütleleri.	57
Çizelge 4.8	: Sistem 1 periyotları ve modların kütle katılımları	59
Çizelge 4.9	: Sistem 1 için bulunan ön hesap sonuçları.	61
Çizelge 4.10	: Sistem 1 taban ve tepe kesme kuvvetleri	61
Çizelge 4.11	: Sistem 1 için X yönü için kat kesme kuvvetleri	62
Çizelge 4.12	: Sistem 1 için Y yönü için kat kesme kuvvetleri	62
Çizelge 4.13	: Sistem 1 için bulunan bodrum kat kesme kuvvetleri.	62
Çizelge 4.14	: Sistem 1 taban kesme kuvveti ve perde kesme kuvveti oranları	63
Çizelge 4.15	: Ön spektrum çözümü için X ve Y yönü için kullanılan spektrum	
	grafiği.	64
Çizelge 4.16	: Spektrum çözümlemesi sonucunda çıkan yapı davranış katsayıları	65
Çizelge 4.17	: Sistem 1 için X ve Y yönlerinde son şekli ile spektrum grafikleri	65
Cizelge 4.18	: Sistem 1, mod birleştirme ve eşdeğer deprem hesabı taban kesme	
	kuvvetleri.	66
Çizelge 4.19	: Sistem 1 X yönü için A1 burulma düzensizliği	67
Çizelge 4.20	: Sistem 1, X (e=+0,05) yönünde burulma düzensizliği	67
Çizelge 4.21	: Sistem 1, X (e=-0,05) yönünde burulma düzensizliği	67
Çizelge 4.22	: Sistem 1, Y yönünde burulma düzensizliği	68
Çizelge 4.23	: Sistem 1, Y (e=+0,05) yönünde burulma düzensizliği	68
Cizelge 4.24	: Sistem 1, Y (e=-0,05) yönünde burulma düzensizliği	68
Çizelge 4.25	: Sistem 1 için yeni dış merkezlik değerleri.	69
Çizelge 4.26	: Sistem 1, A2 döşeme düzensizliği kontrolleri	69
Çizelge 4.27	: Sistem 1, X yönü için B1 zayıf kat düzensizliği hesap detayları	70
Çizelge 4.28	: Sistem 1, Y yönü için B1 zayıf kat düzensizliği hesap detayları	70
Çizelge 4.29	: Sistem 1, X yönünde yumuşak kat düzensizliği	71
Çizelge 4.30	: Sistem 1, X(+0,058) yönünde yumuşak kat düzensizliği	71
Çizelge 4.31	: Sistem 1, X(-0,058) yönünde yumuşak kat düzensizliği	71
Cizelge 4.32	: Sistem 1, Y yönünde yumuşak kat düzensizliği	72
Çizelge 4.33	: Sistem 1, Y(+0,059) yönünde yumuşak kat düzensizliği	72

Çizelge 4.34 : Sistem 1, Y(-0,059) yönünde yumuşak kat düzensizliği	72
Çizelge 4.35 : Sistem 1, X yönü göreli kat ötelemeleri.	73
Çizelge 4.36 : Sistem 1, Y yönü göreli kat ötelemeleri.	73
Çizelge 4.37 : Sistem 1, X yönü için 2. Mertebe etkileri	74
Çizelge 4.38 : Sistem 1, Y yönü için 2. Mertebe etkileri	74
Çizelge 4.39 : Sistem 1, birinci kat çerçeve oluşturan kirişler için seçilen boyuna	
donatılar.	75
Çizelge 4.40 : Sistem 1, birinci kat balkon ve perde bağ kirişleri boyuna donatılar	1.75
Çizelge 4.41 : Sistem 1, birinci kat tasarım kesme kuvvetleri ve bulunan etriye	
aralıkları	76
Çizelge 4.42 : Sistem 1, birinci kat yatay ötelenme ölçütü değerleri.	77
Çizelge 4.43 : Sistem 1, birinci kat kolonları narinlik değerleri	77
Çizelge 4.44 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna donatıları	78
Çizelge 4.45 : Kolon kesme kuvveti V _e	79
Çizelge 4.46 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri	79
Çizelge 4.47 : Birinci kat perdeleri için seçilen boyuna donatılar	81
Çizelge 4.48 : Perde başlık bölgeleri için gerekli donatı alanları	81
Çizelge 4.49 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme kuvvet	leri.
	81
Çizelge 4.50 : Seçilen etriye aralığı için perde kesme kapasiteleri.	82
Çizelge 4.51 : Kolon ve kirişlerin moment kapasitesi oranları	82
Çizelge 4.52 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım değerleri	82
Çizelge 4.53 : Birinci kat donatı ve beton metrajı.	83
Çizelge 4.54 : Sistem 2 için ötelenme kütleleri ve dönme atalet kütleleri	83
Çizelge 4.55 : Sistem 2 periyotları ve modların kütle katılımları	84
Çizelge 4.56 : Sistem 2 için bulunan ön hesap sonuçları	84
Çizelge 4.57 : Sistem 2, taban ve tepe kesme kuvvetleri	85
Çizelge 4.58 : Sistem 2 için X yönü kat kesme kuvvetleri	85
Çizelge 4.59 : Sistem 2 için Y yönü kat kesme kuvvetleri	85
Çizelge 4.60 : Sistem 2 için bulunan bodrum kat kesme kuvveti	85
Çizelge 4.61 : Sistem 2 taban kesme kuvveti ve perde kesme kuvveti oranları	86
Çizelge 4.62 : Sistem 2 için yeniden düzenlenmiş yapı davranış katsayıları ile ön	
çözüm sonuçları	86
Çizelge 4.63 : Sistem 2 için yeniden hesaplanmış taban ve tepe kuvvetleri	86
Çizelge 4.64 : Sistem 2 için yeniden hesaplanmış X yönü kat kesme kuvvetleri	86
Çizelge 4.65 : Sistem 2 için yeniden hesaplanmış Y yönü kat kesme kuvvetleri	87
Çizelge 4.66 : On spektrum çözümü için X ve Y yönü için tanıtılan spektrum	
grafiği	87
Çizelge 4.67 : Sistem 2 için spektrum çözümlemesi sonucunda çıkan yapı davrar	11Ş
katsayıları	88
Çizelge 4.68 : Sistem 2 için X ve Y yönlerinde son şekli ile spektrum grafikleri	88
Çizelge 4.69 : Sistem 2, mod birleştirme ve eşdeğer deprem hesabi taban kesme	
kuvvetleri	88
Çızelge 4.70 : Sistem 2, X yönü için A1 burulma düzensizliği	89
Çızelge 4.71 : Sistem 2, $X(+0,05)$ yönü için A1 burulma düzensizliği	89
Çızelge 4.72 : Sistem 2, X(-0,05) yönü için A1 burulma düzensizliği	90
Çızelge 4.73 : Sistem 2, Y yönü için A1 burulma düzensizliği	90
Çizelge 4.74 : Sistem 2, $Y(+0,05)$ yönü için A1 burulma düzensizliği	90
Çızelge 4.75 : Sıstem 2, Y(-0,05) yönü ıçın A1 burulma düzensızlığı	91
Çizelge 4.76 : Sıstem 2 A2 döşeme düzensizliği kontrolleri	91

Çizelge 4.77 : Sistem 2, X y	önü için B1 zayıf kat düzensizliği hesap detayları	. 92
Çizelge 4.78 : Sistem 2, Y y	önü için B1 zayıf kat düzensizliği hesap detayları	. 92
Çizelge 4.79 : Sistem 2, X y	/önünde yumuşak kat düzensizliği	. 93
Çizelge 4.80 : Sistem 2, X(+0,05) yönünde yumuşak kat düzensizliği	. 93
Çizelge 4.81 : Sistem 2, X(-	0,05) yönünde yumuşak kat düzensizliği	. 93
Cizelge 4.82 : Sistem 2, Y	vönünde yumuşak kat düzensizliği	. 94
Cizelge 4.83 : Sistem 2, Y(+0,05) yönünde yumuşak kat düzensizliği	. 94
Çizelge 4.84 : Sistem 2, Y(-	0,05) yönünde yumuşak kat düzensizliği	. 94
Cizelge 4.85 : Sistem ,2 X y	vönü göreli kat ötelemeleri	. 95
Cizelge 4.86 : Sistem 2, Y	vönü göreli kat ötelemeleri	. 95
Cizelge 4.87 : Sistem 2, X	vönü için 2. Mertebe etkileri	. 95
Cizelge 4.88 : Sistem 2, Y	vönü için 2. Mertebe etkileri	. 96
Cizelge 4.89 : Sistem 2 bir	inci kat çerçeve oluşturan kirişler için seçilen boyuna	
donatılar	· · · · · · · · ·	. 96
Cizelge 4.90 : Sistem 2 bir	inci kat balkon ve perde bağ kirişleri boyuna donatılar	r1.
		. 97
Çizelge 4.91 : Sistem 2, bin	inci kat tasarım kesme kuvvetleri ve bulunan etriye	
aralıkları	- 	. 98
Çizelge 4.92 : 1. kat kolonla	arı arttırılmış dizayn kuvvetleri ve boyuna donatıları	. 99
Çizelge 4.93 : Kolon dizayı	n kesme kuvvetleri ve kesme kapasiteleri	. 99
Cizelge 4.94 : Birinci kat po	erdeleri için seçilen boyuna donatılar	100
Çizelge 4.95 : Perde başlık	bölgeleri için gerekli donatı alanları	100
Çizelge 4.96 : Perde betona	arme kesit kesme kapasiteleri ve dizayn kesme	
kuvvetleri		101
Çizelge 4.97 : Seçilen etriy	e aralığı için perde kesme kapasiteleri	101
Çizelge 4.98 : Kolon ve kin	işlerin moment kapasitesi oranları.	101
Çizelge 4.99 : Kolon-kiriş	düğüm noktası kesme kuvvetleri ve dayanım değerler	i.
		102
Çizelge 4.100 : Birinci kat d	onatı ve beton metrajı	102
Çizelge 4.101 : Sistem 3 için	n ötelenme kütleleri ve dönme atalet kütleleri	102
Çizelge 4.102 : Sistem 3 pe	riyotları ve modların kütle katılımları	103
Çizelge 4.103 : Sistem 3 için	ı bulunan ön hesap sonuçları.	104
Çizelge 4.104 : Sistem 3 tab	an ve tepe kesme kuvvetleri	104
Çizelge 4.105 : Sistem 3 için	ı bulunan X yönü kat kesme kuvvetleri	104
Çizelge 4.106 : Sistem 3 için	ı bulunan Y yönü kat kesme kuvvetleri	104
Çizelge 4.107 : Sistem 3 için	n bulunan bodrum kat kesme kuvveti	105
Çizelge 4.108 : Sistem 3 tab	an kesme kuvveti ve perde kesme kuvveti oranları	105
Çizelge 4.109 : Sistem 3 için	ı yeniden düzenlenmiş yapı davranış katsayıları ile ön	1
çözüm sonue	çları	105
Çizelge 4.110 : Sistem 3 için	n yeniden hesaplanmış taban ve tepe kuvvetleri	105
Çizelge 4.111 : Sistem 3 için	n yeniden hesaplanmış X yönü kat kesme kuvvetleri.	105
Çizelge 4.112 : Sistem 3 için	n yeniden hesaplanmış Y yönü kat kesme kuvvetleri.	106
Çizelge 4.113 : Ön spektrun	n çözümü için X ve Y yönü için tanıtılan spektrum	
grafiği		106
Çizelge 4.114 : Sistem 3 için	n spektrum çözümlemesi sonucunda çıkan yapı davrar	nış
katsayıları		107
Çizelge 4.115 : Sistem 3 için	n X ve Y yönlerinde son şekli ile spektrum grafikleri.	107
Çizelge 4.116 : Sistem 3, me	od birleştirme ve eşdeğer deprem hesabı taban kesme	
kuvvetleri		107
Çizelge 4.117 : Sistem 3, X	yönü için A1 burulma düzensizliği	108

Çizelge 4.118 :	Sistem 3, X(e=+0,05) yönü için A1 burulma düzensizliği	108
Çizelge 4.119 :	Sistem 3, X(e=-0,05) yönü için A1 burulma düzensizliği	108
Çizelge 4.120 :	Sistem 3, Y yönü için A1 burulma düzensizliği	109
Çizelge 4.121 :	Sistem 3, Y(e=+0,05) yönü için A1 burulma düzensizliği	109
Çizelge 4.122 :	Sistem 3, Y(e=-0,05) yönü için A1 burulma düzensizliği	109
Cizelge 4.123 :	Sistem 3, A2 döşeme düzensizliği kontrolleri.	110
Cizelge 4.124 :	Sistem 3, X yönü için B1 zayıf kat düzensizliği hesap detayları	110
Cizelge 4.125 :	Sistem 3, Y yönü için B1 zayıf kat düzensizliği hesap detayları	111
Cizelge 4.126 :	Sistem 3, X yönünde yumuşak kat düzensizliği	111
Cizelge 4.127 :	Sistem 3, X(+0,05) yönünde yumuşak kat düzensizliği	111
Cizelge 4.128 :	Sistem 3, X(-0,05) yönünde yumuşak kat düzensizliği	112
Cizelge 4.129 :	Sistem 3, Y yönünde yumuşak kat düzensizliği.	112
Cizelge 4.130 :	Sistem 3, Y(+0.05) vönünde vumusak kat düzensizliği	112
Cizelge 4.131 :	Sistem 3. Y(-0.05) vönünde vumusak kat düzensizliği	113
Cizelge 4.132 :	Sistem 3 X vönü göreli kat ötelemeleri	113
Cizelge 4.133 :	Sistem 3 Y vönü göreli kat ötelemeleri	113
Cizelge 4.134 :	Sistem 3 X vönü icin 2 Mertebe etkileri	114
Cizelge 4 135 ·	Sistem 3, Y yönü için 2. Mertebe etkileri	114
Cizelge 4 136 ·	Sistem 3 hirinci kat cerceve olusturan kirisler icin secilen boyuna	
Ç1201ge 4.150 .	donatılar	115
Cizelge 4 137 ·	Sistem 3 hirinci kat halkon ve nerde hağ kirisleri hovuna donatılar	115 7
Çizcige 1 .157 .	Sistem 5 on mer kat barkon ve perde bag knişten böyüna donatnar	1. 115
Cizalga / 138 ·	Sistem 3 hiringi kat tasarım kesme kuyyetleri ve hulunan etriye	115
Çizeige 4.150 .	oroluklori	116
Cizolgo 4 120 .	1 kat kalanlari arttirilmia dizavni kuvuvatlari va havana danatilari.	117
Circles 4.139:	1. Kat Koloman antininis ulzayn kuvvenen ve boyuna uonaman.	117
Circles 4.140:	Rolon dizayn kesme kuvvelleri ve kesme kapasileren	11/
Circles 4.141:	Birinci kat perdeleri için seçilen boyuna donatılar.	118
Çizeige 4.142 :	Perde başlık bolgeleri için gerekli donati alanları.	118
Çizelge 4.143 :	Perde betonarme kesit kesme kapasiteleri ve dizayn kesme	110
<u> </u>	kuvvetleri.	119
Çızelge 4.144 :	Seçilen etriye aralığı için perde kesme kapasiteleri.	119
Çizelge 4.145 :	Kolon ve kirişlerin moment kapasıtesi oranları	119
Çizelge 4.146 :	Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım değerleri	I.
~		120
Çizelge 4.147 :	Birinci kat donati ve beton metraji.	120
Çizelge 4.148 :	Sistem 4 için ötelenme kütleleri ve dönme atalet kütleleri	120
Çizelge 4.149 :	Sistem 4 periyotları ve modların kütle katılımları	121
Çizelge 4.150 :	Sistem 4 için bulunan ön hesap sonuçları	122
Çizelge 4.151 :	Sistem 4, taban ve tepe kesme kuvvetleri	122
Çizelge 4.152 :	Sistem 4 için X yönü kat kesme kuvvetleri	122
Çizelge 4.153 :	Sistem 4 için Y yönü kat kesme kuvvetleri	122
Çizelge 4.154 :	Sistem 4 için bulunan bodrum kat kesme kuvveti	122
Çizelge 4.155 :	Sistem 4 taban kesme kuvveti ve perde kesme kuvveti oranları	123
Çizelge 4.156 :	Sistem 4 için yeniden düzenlenmiş yapı davranış katsayıları ile ön	l
	çözüm sonuçları.	123
Çizelge 4.157 :	Sistem 4 için yeniden hesaplanmış taban ve tepe kuvvetleri	123
Cizelge 4.158 :	Sistem 4 için yeniden hesaplanmış X yönü kat kesme kuvvetleri	123
Cizelge 4.159 :	Sistem 4 için yeniden hesaplanmış Y yönü kat kesme kuvvetleri	124
Cizelge 4.160 :	Ön spektrum çözümü için X ve Y yönü için tanıtılan spektrum	
	grafiği	124

Çizelge 4.161 : Spektrum çözümlemesi sonucunda çıkan yapı davranış ka	atsayıları. 125
Cizelge 4.162 : Sistem 4 icin X ve Y vönlerinde son sekli ile spektrum gr	afikleri 125
Cizelge 4.163 : Sistem 4, mod birlestirme ve esdeğer deprem hesabi tabar	n kesme
kuvvetleri	
Cizelge 4.164 : Sistem 4, X vönü icin A1 burulma düzensizliği	
Cizelge 4.165 : Sistem 4, X(+0,05) yönü için A1 burulma düzensizliği	126
Cizelge 4.166 : Sistem 4, X(-0,05) yönü için A1 burulma düzensizliği	
Çizelge 4.167 : Sistem 4, Y yönü için A1 burulma düzensizliği	127
Çizelge 4.168 : Sistem 4, Y(+0,05) yönü için A1 burulma düzensizliği	127
Çizelge 4.169 : Sistem 4, Y(-0,05) yönü için A1 burulma düzensizliği	
Çizelge 4.170 : Sistem 4, A2 döşeme düzensizliği kontrolleri	
Çizelge 4.171 : Sistem 4, X yönü için B1 zayıf kat düzensizliği hesap deta	ayları 128
Çizelge 4.172 : Sistem 4, Y yönü için B1 zayıf kat düzensizliği hesap deta	ayları 129
Çizelge 4.173 : Sistem 4, X yönünde yumuşak kat düzensizliği	129
Çizelge 4.174 : Sistem 4, X(+0,05) yönünde yumuşak kat düzensizliği	
Çizelge 4.175 : Sistem 4, X(-0,05) yönünde yumuşak kat düzensizliği	
Çizelge 4.176 : Sistem 4, Y yönünde yumuşak kat düzensizliği	
Cizelge 4.1 77 : Sistem 4, $Y(+0.05)$ yonunde yumuşak kat düzensizliği	
Cizelge 4.178 : Sistem 4, Y(-0,05) yonunde yumuşak kat düzensizligi	
Cizelge 4.179 : Sistem 4, X yonu goreli kat otelemeleri	
Cizelge 4.180 : Sistem 4, Y yonu gorell kal olehemeleri	131 123
Cizolgo 4.182 : Sistem 4, X yönü için 2. Mertebe etkileri	132 132
ζ L 4.102 G 4.102	
Cizelge 4 183 · Nistem 4 hiring: kat cerceve ollisturan kirisler igin segilen	hovuna
Cizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar	boyuna 133
Cizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar Cizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirisleri boyuna	boyuna 133 donatıları.
Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar.Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oluşturan kirişleri birinci kat birinci kat başturan kirişleri birinci kat başturan kirişleri birinci kat başturan kirişleri birinci kat birinci kat başturan kirişleri birinci kat başturan kirişleri birinci kat başturan kirişleri birinci kat başturan kirişleri birinci kat başturan kirişleri birinci kat başturan kirişleri birinci kat başturan kirişleri birinci kat başturan kirişleri birinci kat başturan kirişleri birinci kat başturan kirişleri birinci kat başturan kirişleri birinci kat b	boyuna 133 donatıları. 133
Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar.Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyunaÇizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna e Çizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan aralıkları. 	boyuna 133 donatıları. 133 etriye 134
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oluşturan kirişleri boyuna oluşturan kirişleri boyuna oluşturan kirişleri boyuna oluşturan kirişleri çin seçilen donatılar. Çizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna e Çizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna e Çizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar. 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oluşturan kirişleri boyuna donatılar. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar. Çizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları. 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oluşturan kirişleri boyuna oluşturan kirişleri boyuna oluşturan kirişleri boyuna oluşturan kirişleri boyuna oluşturan kirişleri boyuna oluşturan kirişleri boyuna oluşturan kirişleri boyuna donatılar. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar. Çizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları. Çizelge 4.190 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna e Çizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar. Çizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları. Çizelge 4.190 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme kuvvetleri. 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oluşturan kirişleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar. Çizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları. Çizelge 4.190 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesm kuvvetleri. Çizelge 4.191 : Seçilen etriye aralığı için perde kesme kapasiteleri. 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oralıkları. Çizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar. Çizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları. Çizelge 4.190 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme kuvvetleri. Çizelge 4.191 : Seçilen etriye aralığı için perde kesme kapasiteleri. Çizelge 4.192 : Kolon ve kirişlerin moment kapasitesi oranları. 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oluşturan kirişleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve keşme kapaşiteleri. Çizelge 4.188 : Birinci kat perdeleri için şeçilen boyuna donatılar. Çizelge 4.190 : Perde başlık bölgeleri için şerekli donatı alanları. Çizelge 4.191 : Seçilen etriye aralığı için perde keşme kapaşiteleri. Çizelge 4.192 : Kolon ve kirişlerin moment kapaşitesi oranları. Çizelge 4.193 : Kolon-kiriş düğüm noktası keşme kuvvetleri ve dayanım kirişleri ve dayanım kirişleri boyuna keşme kuvvetleri ve dayanım kirişleri boyuna donatılar. 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oluşturan kirişleri boyuna donatılar. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için şeçilen boyuna donatılar. Çizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları. Çizelge 4.190 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesm kuvvetleri. Çizelge 4.191 : Seçilen etriye aralığı için perde kesme kapasiteleri. Çizelge 4.192 : Kolon ve kirişlerin moment kapasitesi oranları. Çizelge 4.193 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oluşturan kirişleri boyuna oluşturan kirişleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar. Çizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları. Çizelge 4.190 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme kuvvetleri. Çizelge 4.191 : Seçilen etriye aralığı için perde kesme kapasiteleri. Çizelge 4.192 : Kolon ve kirişlerin moment kapasitesi oranları. Çizelge 4.193 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım Çizelge 4.194 : Birinci kat donatı ve beton metrajı. Çizelge 4.195 : Şistem 5 için ötelenme kütleleri ve dönme atalet kütleleri 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oluşturan aralıkları. Çizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar. Çizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları. Çizelge 4.190 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme kuvvetleri. Çizelge 4.191 : Seçilen etriye aralığı için perde kesme kapasiteleri. Çizelge 4.192 : Kolon ve kirişlerin moment kapasitesi oranları. Çizelge 4.193 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım Çizelge 4.194 : Birinci kat donatı ve beton metrajı. Çizelge 4.195 : Sistem 5 için ötelenme kütleleri ve dönme atalet kütleleri. 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oralıkları. Çizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar. Çizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları. Çizelge 4.190 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme kuvvetleri. Çizelge 4.191 : Seçilen etriye aralığı için perde kesme kapasiteleri. Çizelge 4.192 : Kolon ve kirişlerin moment kapasitesi oranları. Çizelge 4.193 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım Çizelge 4.195 : Sistem 5 için ötelenme kütleleri ve dönme atalet kütleleri. Çizelge 4.196 : Sistem 5 periyotları ve modların kütle katılımları. 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oralıklari. Çizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar. Çizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları. Çizelge 4.190 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesm kuvvetleri. Çizelge 4.191 : Seçilen etriye aralığı için perde kesme kapasiteleri. Çizelge 4.192 : Kolon ve kirişlerin moment kapasitesi oranları. Çizelge 4.193 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım Çizelge 4.194 : Birinci kat donatı ve beton metrajı. Çizelge 4.195 : Sistem 5 için ötelenme kütleleri ve dönme atalet kütleleri. Çizelge 4.196 : Sistem 5 periyotları ve modların kütle katılımları. Çizelge 4.197 : Sistem 5 için bulunan ön hesap sonuçları. 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oratılıkları. Çizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar. Çizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları. Çizelge 4.190 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme kuvvetleri. Çizelge 4.191 : Seçilen etriye aralığı için perde kesme kapasiteleri. Çizelge 4.192 : Kolon ve kirişlerin moment kapasitesi oranları. Çizelge 4.193 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım Çizelge 4.194 : Birinci kat donatı ve beton metrajı. Çizelge 4.195 : Sistem 5 için ötelenme kütleleri ve dönme atalet kütleleri. Çizelge 4.196 : Sistem 5 periyotları ve modların kütle katılımları. Çizelge 4.197 : Sistem 5 için bulunan ön hesap sonuçları. Çizelge 4.198 : Sistem, 5 taban ve tepe kesme kuvvetleri. 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oralıkları. Çizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan aralıkları. Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna do Çizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri. Çizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar. Çizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları. Çizelge 4.190 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesm kuvvetleri. Çizelge 4.191 : Seçilen etriye aralığı için perde kesme kapasiteleri. Çizelge 4.192 : Kolon ve kirişlerin moment kapasitesi oranları. Çizelge 4.193 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım Çizelge 4.194 : Birinci kat donatı ve beton metrajı. Çizelge 4.195 : Sistem 5 için ötelenme kütleleri ve dönme atalet kütleleri. Çizelge 4.196 : Sistem 5 periyotları ve modların kütle katılımları. Çizelge 4.197 : Sistem 5 için bulunan ön hesap sonuçları. Çizelge 4.198 : Sistem, 5 taban ve tepe kesme kuvvetleri. Çizelge 4.200 : Sistem 5 için Y yönü kat kesme kuvvetleri. 	boyuna
 Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen donatılar. Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna oluşturan kirişleri boyuna oluşturan karişleri birinci kat donatı ve beton metrajı. Çizelge 4.194 : Birinci kat donatı ve beton metrajı. Çizelge 4.195 : Sistem 5 için ötelenme kütleleri ve dönme atalet kütleleri. Çizelge 4.196 : Sistem 5 için bulunan ön hesap sonuçları. Çizelge 4.198 : Sistem 5 için bulunan ön hesap sonuçları. Çizelge 4.199 : Sistem 5 için Yönü kat kesme kuvvetleri. Çizelge 4.200 : Sistem 5 için bulunan bodrum kat kesme kuvvetleri. <th>boyuna </th>	boyuna

Çizelge 4.203 : Sistem 5 için yeniden düzenlenmiş yapı davranış katsayıları ile	ön
çözüm sonuçları	141
Çizelge 4.204 : Sistem 5 için yeniden hesaplanmış taban ve tepe kuvvetleri	141
Çizelge 4.205 : Sistem 5 için yeniden hesaplanmış X yönü kat kesme kuvvetler	i141
Çizelge 4.206 : Sistem 5 için yeniden hesaplanmış Y yönü kat kesme kuvvetler	i142
Çizelge 4.207 : Ön spektrum çözümü için X ve Y yönü için tanıtılan spektrum	
grafiği	142
Çizelge 4.208 : Sistem 5 için spektrum çözümlemesi sonucunda çıkan yapı dav	ranış
katsayıları	143
Çizelge 4.209 : Sistem 5 için X ve Y yönlerinde son şekli ile spektrum grafikle	ri. 143
Çizelge 4.210 : Sistem 5 mod birleştirme ve eşdeğer deprem hesabı taban kesm	ie
kuvvetleri.	143
Çizelge 4.211 : Sistem 5, X yönü için A1 burulma düzensizliği	144
Çizelge 4.212 : Sistem 5, X(+0,05) yönü için A1 burulma düzensizliği	144
Çizelge 4.213 : Sistem 5, X(-0,05) yönü için A1 burulma düzensizliği	144
Çizelge 4.214 : Sistem 5, Y yönü için A1 burulma düzensizliği	145
Çizelge 4.215 : Sistem 5, Y(+0,05) yönü için A1 burulma düzensizliği	145
Çizelge 4.216 : Sistem 5, Y(-0,05) yönü için A1 burulma düzensizliği	145
Çizelge 4.217 : Sistem 5 için yeni dış merkezlik değerleri.	145
Çizelge 4.218 : Sistem 5 A2 döşeme düzensizliği kontrolleri.	146
Çizelge 4.219 : Sistem 5 X yönü için B1 zayıf kat düzensizliği hesap detayları.	146
Çizelge 4.220 : Sistem 5 Y yönü için B1 zayıf kat düzensizliği hesap detayları.	147
Çizelge 4.221 : Sistem 5, X yönünde yumuşak kat düzensizliği	147
Çizelge 4.222 : Sistem 5, X(+0,06) yönünde yumuşak kat düzensizliği	147
Çizelge 4.223 : Sistem 5, X(-0,06) yönünde yumuşak kat düzensizliği	148
Çizelge 4.224 : Sistem 5, Y yönünde yumuşak kat düzensizliği	148
Çizelge 4.225 : Sistem 5 Y(+0.065) yönünde yumuşak kat düzensizliği	148
Çizelge 4.226 : Sistem 5, Y(-0.065) yönünde yumuşak kat düzensizliği	149
Çizelge 4.227 : Sistem 5, X yönü göreli kat ötelemeleri.	149
Çizelge 4.228 : Sistem 5, Y yönü göreli kat ötelemeleri.	150
Çizelge 4.229 : Sistem 5, X yönü için 2. Mertebe etkileri	150
Çizelge 4.230 : Sistem 5, Y yönü için 2. Mertebe etkileri	150
Cizelge 4.231 : Sistem 5 birinci kat çerçeve oluşturan kirişler için seçilen boyu	na
donatilar.	151
Çizelge 4.232 : Sistem 5 birinci kat balkon ve perde bag kirişleri boyuna donat	ilari.
	151
Cizelge 4.233 : Sistem 5, birinci kat tasarim kesme kuvvetleri ve bulunan etriy	e 150
Grales 4 224 - 1 list halanlar attenting direct law yotlari ya hayaya danatila	152
Çizelge 4.234 : 1. kat koloniari arturiimiş dizayn kuvvetleri ve boyuna donatila Çizelge 4.235 : Kalan dizevm kozma huvvetleri ve kozma konasitalari	153
Cizelge 4.235 : Kolon dizayn kesme kuvvelleri ve kesme kapasileleri	155
Cizelge 4.230 : Birinci kat perdeleri için seçilen boyuna donatilar	154
Cizelge 4.23 : Perde başlık bölgeleri için gerekli donali alanları.	134
kuvvetleri.	155
Çizelge 4.239 : Seçilen etriye aralığı için perde kesme kapasiteleri.	155
Çizelge 4.240 : Kolon ve kirişlerin moment kapasitesi oranları	155
Çizelge 4.241 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım değer	leri.
	156
Çizelge 4.242 : Birinci kat donatı ve beton metrajı	156
Çizelge 5.1 : Sistemlerin geometrik özelliklerinin karşılaştırılması	157

Çizelge 5.2 : Sistemlerin periyotlarının karşılaştırılması.	. 158
Cizelge 5.3 : Sistem perde taban kesme kuvvetlerinin toplam taban kesme	
kuvvetlerine oranı	. 162
Çizelge 5.4 : Sistemlerdeki merdiven perdelerinin tasarımda kullanılan P-M-M	170
Cizelge 5.5 : Sistemlerdeki asansör perdelerinin tasarımında kullanılan P-M-M	. 170
değerleri	. 172

ŞEKİL LİSTESİ

<u>Sayfa</u>

Şekil 2.1	: Dayanıma göre tasarımda lineer-nonlineer sistem (Aydınoğlu 2008)	5
Şekil 2.2	: Farklı dayanımdaki betonların gerilme-şekil değiştirme eğrileri(Celep	ve
	Kumbasar 2004).	6
Şekil 2.3	: Perdeli sistemlerin deprem etkisi davranışı bakımından plandaki	
	durumu	7
Şekil 2.4	: Perdeli sistemlerde burulma etikisi bakımından çözümler(Gülay2010)	8
Şekil 2.5	: Perdeli sistemlerde burulma etikisi bakımından çözümler(Gülay2010)	8
Şekil 2.6	: Simetriden ayrılma ve ani rijitlik değişimi için hatalı ve doğru	
	çözümler(Celep ve Kumbasar 2004)	9
Şekil 2.7	: İki doğrultu arasındaki rijitlik farkları açısından hatalı ve doğru	
	çözümler(Celep ve Kumbasar 2004)	9
Şekil 2.8	: Plandaki perde yerleşiminine göre yüksek ve düşük burulma rijitliği	
	örnekleri(Celep ve Kumbasar 2004).	9
Şekil 2.9	: Planda çeşitli perde kullanımı örnekleri(Gülay2010)	. 10
Şekil 2.10	: Dış merkezli, dolaylı mesnetleme ve yetersiz çerçeve bakımından	
	taşıyıcı sistemler(Celep ve Kumbasar 2004)	. 10
Şekil 2.11	: Çevre çerçeve kirişi teşkili bakımından uygun olan ve olmayan	
	sistemler(Gülay2010).	. 11
Şekil 2.12	2 : Narin kütle merkezi yüksek ve bodur ve kütle merkezi aşağıda kütle	
	gösterimi(Celep ve Kumbasar 2004).	. 11
Şekil 2.13	3 : Düşeyde eleman süreksizliği(Celep ve Kumbasar 2004)	. 11
Şekil 2.14	: İki yapıyı birleştiren elemanlarda moment aktaran ve aktarmayan	
	bileşimler(Celep ve Kumbasar 2004)	. 12
Şekil 2.15	: Düşeyde kiriş süreksizliği içeren ve içermeyen tipik örnekler(Celep ve	5
	Kumbasar 2004).	. 12
Şekil 2.10	: Faklı seviyede temel kullanımı ve önerilen çözüm(Celep ve Kumbasa	r
	2004)	. 12
Şekil 2.17	: Derzle ayrılmış yapı(Celep ve Kumbasar 2004).	. 13
Şekil 3.1	: Al buruluma düzensızlığı.	. 15
Şekil 3.2	: Çeşitli A2 düzensizliği örnekleri.	. 17
Şekil 3.3	: Çeşitli A3 düzensizliği örnekleri.	. 18
Şekil 3.4	: Perdenin kolonlara oturtulması düzensizliği	. 20
Şekil 3.5	: Perdenin kırışe oturması düzensızlığı	. 20
Şekil 3.6	: Kolonun iki ucundan mesnetli kirişe oturması düzensizliği.	. 21
Şekil 3.7	: Kolonun guse ile kirişe oturtulması.	.21
Şekil 3.8	: I asarım spektrum dıyagramı.	. 24
Şekil 3.9	: Eşdeğer deprem yükü kuvvetleri.	. 28
Şekil 3.1(: Modal deprem yüklerinde eksantırısitenin dikkate alınması	. 29
Şekil 3.11	: Güçlü kolon zayıf kırış gösterimi.	.34
Şekil 3.12	2 : Dugum noktası kesme dayanımı gösterimi	. 36

Şekil	3.13	: Kiriş uç momentleri	37
Şekil	3.14	: Aynı düğüm noktasına bağlanan kolonlar için düğüm noktası	
		momentleri Mhü ve Mha	38
Şekil	3.15	: Kolon uç momentleri	38
Şekil	3.16	: Kiriş uç kuvvetleri	40
Şekil	3.17	: Perde tasarımı için kullanılacak eğilme diyagramı.	41
Şekil	4.1	Bodrum kat mimari planı	47
Şekil	4.2	: Zemin kat mimari planı	48
Şekil	4.3	: Sistem 1, kalıp planı	54
Şekil	4.4	: Sistem 2, kalıp planı.	54
Şekil	4.5	: Sistem 3 kalıp planı.	55
Şekil	4.6	Sistem 4 kalip plani.	55
Şekil	4.7	Sistem 5 kalip plani.	56
Şekil	4.8	Sistem I uç boyutlu SAP2000 matematik modeli	58
Şekil	4.9	: Sistem 1, 1. Mod şekli(Burulma)	60
Şekii	4.10	Sistem 1, 2. Mod şekli(Y yonu)	6U 61
Şekil	4.11	 Sistem 1, 5. Mou şekil(A yonu) Pulunan aşdağar danram yüklərinin diyaframlara tanıtılmaşı 	01 62
Şekil	4.12	• S A D2000 girilan hadangua maktrum grafiži	03 65
Şekil	4.13	 • V doğrultuşunda burulan Sistem 1'in 3 boyutlu görüntüşü 	66
Şekil	4.14	CSI Column ortamındaki merdiyen perdesi	80
Şekil	4 16	• CSI Column ortamındaki asansör perdesi	80
Şekil	5.1	: Sistemlerin esdeğer denrem kuyyeti tahan keşme kuyyeti değerleri 1	59
Şekil	5.2	: Esdeğer deprem kuvveti taban kesme kuvvetinin vanı ağırlığına oranla	nrı
· · · · · · · · · · · · · · · · · · ·		1	60
			.00
Şekil	5.3	: Sistemlerin mod birlestirme vöntemi taban kesme kuvveti değerleri. 1	60
Şekil Şekil	5.3 5.4	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına 	60
Şekil Şekil	5.3 5.4	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	.60 .60
Şekil Şekil Şekil	5.3 5.4 5.5	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	.60 .61
Şekil Şekil Şekil	5.3 5.4 5.5	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	.60 .61 .62
Şekil Şekil Şekil Şekil	5.35.45.55.6	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	.60 .61 .62
Şekil Şekil Şekil Şekil	5.35.45.55.6	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	.60 .61 .62 .63
Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	.60 .61 .62 .63
Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	.60 .61 .62 .63 .64
Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları. X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirmeleri. X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. 	.60 .61 .62 .63 .64
Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 5.0 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	 60 60 61 62 63 64 64
Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 5.9 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları. X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirmeleri. X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. 	 60 61 62 63 64 64 64
Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	 60 60 61 62 63 64 64 66
Şekil Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	 60 60 61 62 63 64 64 66 66
Şekil Şekil Şekil Şekil Şekil Şekil Şekil	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları. X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirmeleri. X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde ikinci mertebe etkileri. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe etkileri. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe 	 60 60 61 62 63 64 64 66 66
Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları. 1 X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirrneleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirrneleri. X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde ikinci mertebe etkileri. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe etkileri. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe etkileri. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe etkileri. 	 60 60 61 62 63 64 64 66 66 67
Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	 60 60 61 62 63 64 64 66 66 67
Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	 60 60 61 62 63 64 64 66 66 67 68
Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları	 60 60 61 62 63 64 64 66 66 67 68 69
Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları. X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde ilişin taşımı taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. X doğrultusundaki deprem için taşıyıcı sistemlerde ki ikinci mertebe etkileri. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe etkileri. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe etkileri. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe etkileri. Sistemler için taşıyıcı sistemlerdeki A1 burulma düzensizliği. Sistemler için beton metrajları. Sistemler için celik metraiları 	 60 60 61 62 63 64 64 66 66 67 68 69 69 69
Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları. X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. X doğrultusundaki deprem için taşıyıcı sistemlerde ikinci mertebe etkileri. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe etkileri. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki A1 burulma düzensizliği. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki A1 burulma düzensizliği. Sistemler için beton metrajları. Sistemler için çelik metrajları. Sistemler için çelik metrajları. 	 60 60 61 62 63 64 64 66 66 67 68 69 69
Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları. 1 X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum düzensizliği. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe etkileri. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki alı burulma düzensizliği. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki A1 burulma düzensizliği. Sistemler için beton metrajları. Sistemler için çelik metrajları. Sistemler için çelik metrajları. 	 60 60 61 62 63 64 64 66 66 67 68 69 69 71
Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil Şekil	 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 	 Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri. 1 Mod birleştirme yöntemi taban kesme kuvvetinin yapı ağırlığına oranları. 1 X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri. Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum düzensizliği. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe etkileri. Y doğrultusundaki deprem için taşıyıcı sistemlerdeki A1 burulma düzensizliği. Sistemler için beton metrajları. Sistemler için beton metrajları. Sistemler için çelik metrajları. Sistemler için çelik metrajları. Sistemlerde merdiven perdesi için kombinasyonlardan gelen kesme kuvvetleri. 	 60 60 61 62 63 64 64 66 66 67 68 69 69 71

Şekil 5.17 : Sistemlerde asansör perdesi için kombinasyonlardan gelen kesme	
kuvvetleri	173
Şekil 5.18 : Sistemlerde asansör perdesi için hesap edilen Ve tasarım kesme	
kuvvetleri	173

SEMBOL LÍSTESÍ

Α	: Etkin yer ivmesi katsayısı
A(T)	: Spektral ivme katsayısı
Es	: Donatı elastisite modülü
F _b	: Eşdeğer deprem yükü yöntemi taban kesme kuvveti
F _{bk}	: Rijit bodrum katına etkiyen eşdeğer deprem yükü
Fi	: İ'inci kata etkiyen eşdeğer deprem yükü
f _{ck}	: Beton karakteristik basınç dayanımı
Н	: Temelden itibaren veya rijit bodrum varsa zemin kat döşemesinden
	itibaren ölçülen bina yüksekliği
H _i	: Binanın i'inci katının temel üstünden veya rijit bodrum varsa zemin
	kat döşemesinden itibaren ölçülen yüksekliği
Н	: Kat yüksekliği
m _i	: Binanın i'inci katının kütlesi
N_d	: Hesap normal kuvveti
Ν	: Hareketli yük katılım katsayısı
R	: Taşıyıcı sistem davranış katsayısı
$R_a(T)$: Deprem yükü azaltma katsayısı
S(T)	: Spektrum katsayısı
Т	: Bina doğal titreşim periyodu
Vi	: Binanın i'inci katına etki eden kat kesme kuvveti
V _t	: Eşdeğer deprem yükü yöntemi taban kesme kuvveti
V _{tB}	: Mod birleştirme yöntemi taban kesme kuvveti
W	: Binanın, hareketli yük katılım katsayısı kullanılarak hesaplanan
	toplam ağırlığı
W _{bk}	: Rijit bodrum katın ağırlığı
Wi	: Binanın i'inci katının, hareketli yük katılım katsayısı kullanılarak
	hesaplanan ağırlığı
αs	: Süneklik düzeyi yüksek perdelerin tabanında elde edilen kesme
	kuvvetleri toplamının, binanın tümü için tabanda meydana gelen
	toplam kesme kuvvetine oranı
$\Delta \mathbf{F}_{\mathbf{N}}$: Binanın en üst katına etkiyen ek eşdeğer deprem yükü
$\Delta_{\mathbf{i}}$: Binanın i'inci katındaki azaltılmış öteleme
E _{cu}	: Beton ezilme birim kısalması
η_{bi}	: l'inci katta tanımlanan burulma düzensizliği katsayısı
η _{ci}	: I'inci katta tanımlanan dayanım düzensizliği katsayısı
η_{ki}	: I'inci katta tanımlanan rijitlik düzensizliği katsayısı
θ_i	: l'inci kat için ikinci mertebe gösterge değeri

xxviii

BETONARME YAPILARIN TAŞIYICI SİSTEM SEÇİMİNDE PERDE YERLEŞİMİNİN DAVRANIŞA ETKİSİ

ÖZET

Bir yapının devamlılığı olan işletme yükleri ve sürekliliği olmayan çeşitli yükler altında belli bir performans seviyesinde davranış gösterebilmesi hayati önem taşır. Yapı davranışının şekillenmesinde en büyük etkenlerden biri teşkil edilen taşıyıcı sistemin özellikleridir. Dünyadaki ve ülkemizdeki birçok yönetmelik bu konuda mühendislere yol gösterici olmakla beraber sağlıklı bir taşıyıcı sistem teşkili için yapı mühendisine büyük görevler düşmektedir.

Bu tez çalışmasında konut amaçlı kullanılacak bir mimari plan için farklı perde kullanımı içeren 5 farklı taşıyıcı sistem önerilmiş olup, bu taşıyıcı sistemlerde kullanılan perde çeşitliliğinin özellikle deprem kuvvetleri altında yapıda şekil ve yer değiştirmeleri ne oranda değiştirdiği, kesit zorlarında ve tasarımda baz alınacak dizayn kuvvetlerinde nasıl farklılıklar yarattığı araştırılmıştır.

Çalışmaya konu olan yapı 1 bodrum ve 9 normal kattan oluşmakta olup, kat yüksekliği 3 metredir, kat oturum alanı ise 385 m²'dir. Yapı 1. derece deprem bölgesinde olup, konut amaçlı kullanılacaktır.

Tasarım için TS 498-1997 "Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri", TS500-2000 "Betonarme Yapıların Tasarım ve Yapım Kuralları" ve DBYBHY-2007 "Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik" yönetmelikleri göz önüne alınmıştır. Yapının analiz ve tasarımı için CSI Berkeley SAP2000(Structural Analysis Program) ve CSI Column adlı programlar kullanılmıştır.

Taşıyıcı sistemin matematik modeli oluşturulurken kolon ve kirişler çubuk eleman, perde ve döşemeler ise sonlu eleman ağı ile oluşturulan shell eleman olarak modellenmiştir. Sonlu elemanlara bölünen döşemelere her katta rijit diyafram atanarak kayma çerçevesi kabulü matematik modelde sağlanmıştır. Eşdeğer deprem yükü deprem kuvvetleri elle hesap yapılarak bulunan kat yatay kuvvetleri rijit diyaframlara etkitilmiş olup, kat kütleleri de ayrıca hesaplanarak SAP2000 programına tanıtılmıştır. Kolon, kiriş ve perde boyuna donatıları SAP2000 ve Column programları vasıtasıyla tayin edilmiş olmakla beraber, enine donatıları ise sünek eleman şartlarını da dikkate alarak Excell ortamında hesaplanmıştır. DBYBHY'de yer alan güçlü kolon zayıf kiriş ve düğüm noktası kesme dayanımı kontrolleri yine Excell ortamında kontrol edilmiştir.

Yapıların çözümü için izlenen yolda, öncelikli olarak yapı için kullanılacak malzemeler seçilmiştir, burada yapı için C30 beton ve ST420 yapı çeliği kullanılmasına karar verilmiştir. Ardından yapı için var olan mimari planla uyumlu olarak ve çeşitli yapı davranışlarını gözlemleyebileceğimiz şartların oluşmasını da dikkate alarak 5 farklı taşıyıcı sistem teşkil edilmiş ve düşey işletme yükleri için ön boyut hesapları yapıldıktan, sonra sonuç olarak tasarım aşamasında nihai hesapları

yapılacak farklı kütle ve rijitliklerde, dolayısıyla birbirinden tamamen bağımsız 5 farklı yapı elde edilmiştir.

Yapı karakteristiğini oluşturan kütle ve rijitlik matrisleri tamamen farklı olan bu yapılar mod analizi vasıtasıyla yapı karakteristik periyotlarına ulaşılmasının ardından, Eşdeğer Deprem Yükü yöntemi için statik analiz ve Mod Birleştirme yöntemi için dinamik analiz yapılmıştır. Bu hesapların sonuçları irdelenmiş olup; yapı düzensizlikleri, ikinci mertebe etkileri, yapı davranış ve elastik deprem yükü azaltma katsayıları gibi birçok çıktı elde edilip yapılar arasında karşılaştırma yapma şansına ulaşılmıştır.

Analiz aşamasının ardından DBYBHY'ye göre yapı düzensizlikleri kontrol edildikten sonra, seçilen kombinasyonlarla kesitlerde oluşan en olumsuz kesit zorları altında sistemin birinci kat kolon, kiriş ve perdelerinin kesit hesaplarına geçilmiş olup bu elemanlar için bütün gerekli kesit hesapları yapılarak, gerekli enine ve boyuna donatı miktarlarına ulaşılmıştır. Bunun ardından da güçlü kolon zayıf kiriş ve kesme kuvveti tasarım ilkeleri her yapı için tahkik edilerek hesaplar tamamlanmıştır.

Son olarak bütün çıktılar karşılaştırılarak taşıyıcı sistemlerde farklı perde kullanımının yapıda nasıl sonuçlar doğurduğu üzerinde çıkarımlarda bulunulmuştur.

EFFECT OF THE WALL GEOMETRY TO STRUCTURAL BEHAVIOUR IN REINFORCED CONCRETE BUILDINGS

SUMMARY

A structure must be both sustainable and economical and it must fulfill some performance levels in both vertical service loads and horizontal earthquake loads, earth pressure loads etc. This obligation has critical importance for life safety. Behavior of structure is very important for the performance level of the structure under effects of the earthquake loads. Behavior of the structure mostly depends on the geometry of the structure's load bearing system and material of the structure. Miscalculated and bad organized load bearing systems can not behave stabile under earthquake loads.

The object of this thesis about effect of the load-bearing system's geometry to the behavior of the structure. In this dissertation 5 different load bearing system by the terms of geometry of the concrete shear walls was chosen for one structure. Five different structure was analyzed and section designed. At the end of the dissertation outputs were examined and try to find answers of questions such as what is the effect of the geometry of the walls to behavior and section design. How much it affects numerically what relationship about them.

In analyses and section design phases Turkish regulations were chosen as a guide which are TS 498-1997 "Design loads for", TS500-200 "Requirements for design and construction of reinforced concrete structures", DBYBHY-2007 " Turkish seismic design code".

In analysis case P-Delta effects were ignored, structural material were chosen linearelastic and linear analysis were made. Columns and walls were assumed that they were braced the surface rigidly.

Structural analysis program CSI Berkeley SAP2000 V15 is used for 3D structural modeling and analysis phases. In creating the three dimensional model of the building, beams and columns are defined as frame elements while shear walls and slabs are defined as shell elements. With the assumption of floor diaphragms are fully rigid, rigid diaphragms are assigned to the joints at each floor level. Effective beam widths are calculated as per TS 500 code and beam section properties are defined manually.

Section design program CSI Column was used for calculations of the longitudinal rebar of the columns, shear and longitudinal rebar design of the beams and also shear design of the columns were made manually.

Introduction of the building considered in the study is presented in a separate chapter. The building considered in analysis is a multistory reinforced concrete residential building which consists of rigid frames and shear walls. Building has one rigid basement, one ground floor and 8 typical floors. All stories have three meters of height. Building is assumed to be constructed in a high seismicity region considered

regulation which is DHYBHY(Turkish Seismic Design Code) in which the building is expected to experience destructive ground shaking.

Slab system of the structure is a two-way, beam-supported system. Design of this slab system is only made according to TS 500 code. Turkish Regulations are taken into consideration for calculating service loads, determining column sizes and the estimation of the weight of the structure in the analysis.

In start of the analyze phase service loads were chosen intended use of the structures, after the loads choose pre section design were made for slabs, columns and beams. After the pre design phase modal analyze were run for the structures, at the end of the modal analyze, important characteristic properties of the structures were obtained such as spectral acceleration factor, mode shapes, periods etc.

In analyze and design phases according to the regulations considered, the calculations of the equivalent seismic load method and the mode superposition method were performed separately. Structural irregularity checks which require the calculation of story drifts are performed under the equivalent seismic load method acting with %5 accidental eccentricities for Turkish seismic code.

The amplified story drifts and the second order effects are checked for each of the three regulations under the equivalent seismic load acting with %5 accidental eccentricity. No violations have been encountered during the checks.

The longitudinal reinforcement and shear rebars for the beams, columns and walls of first floor ceiling were calculated. The amount of total reinforcement and the reinforcement cost of one story have been calculated.

After the reinforcement calculations ductility rules were checked. Column beam capacity ratio 6/5 design rule and column-beam nodal point shear capacity controls checked. No violations have been encountered during the checks.

At the end of the dissertation all outputs compared each other for all 5 systems and achieved some evidence about the effect of wall geometry to, behavior of structure and relation between the sheer walls.

More rigid and heavier systems exposure more earthquake loads. Wall geometry; don't affect the amount of earthquake loads, weight and total cross-sectional area of columns and walls directly affect the earthquake loads.

From the observation of the outputs results of the response spectrum analyze and equivalent earthquake load methods were bit different by the terms of wall behavior.

Maximum and average story drifts are depend on the total cross-sectional area of columns and walls then the wall geometry, L or I shape or the placement are less important for the story drifts.

Structures even symmetric are under the risk of torsion under the earthquake loads, but L shear walls which are at the corners, prevent torsion, even systems which have less column and wall cross-sectional area. Torsion affects of the stories are related with geometry and placement of the walls then the total cross-sectional area of columns and walls.

Cross Sectional calculations for walls shows that the wall behave and performance can be affected negative from additional neighbor walls, especially in ductile sheer walls design. In ductile deign even earthquake shear loads were decreased for a wall. Wall's ductile design sheer forces have increased. One of the reasons of this situation is incensement of the moment capacity because of the decreasing of axial load of the wall. Close placement of walls cause the decrease of the axial load and it cause the incensement of the moment capacity in the interaction surface add to this if the design moment of the walls decrease, it cause the increase of the wall's ductile shear design force too.

In conclusion wall geometry and placement efficiently affect the story torsions, ductile sheer design forces and affect less to total earthquake force and story drifts.

xxxiv
1. GİRİŞ

1.1 Tezin Amacı ve Kapsamı

Bir yapının ekonomi, doğaya uyum, estetik ve yapılış amacına cevap verebilme gibi kendisinden karşılaması beklenen birçok beklenti vardır. Ama bunlara nazaran belki de en hayati öneme sahip olan özelliği; dayanım, dolayısıyla güvenliktir. Yapı mühendisi de projede tam olarak bu beklentiyi karşılamakla görevli teknik kişidir. Yapı mühendisinin görevi değişken, çeşitli büyüklük ve tiplerdeki birçok dış etkiye dayanabilme özelliğini yapıya kazandırmaktır.

Yapı mühendisi; istatistikî, deneysel ve gözlemsel verilerle ancak yaklaşık olarak tanımlanabilmiş dış etkilere karşı, deneysel ve teorik metotlarla özellikleri ancak yaklaşık olarak bilinen malzemelerle ve gerçek uzamdaki davranışı ancak birçok kabulle, belli yakınlıkta çözebilecek çözüm metotlarıyla yapıya dayanım özeliğini katabilmek zorundadır. Disiplinsel anlamda bilgi seviyesinin kesinlikten bu denli uzak olduğu yapı mühendisliği için doğru malzeme ve taşıyıcı sistem seçimi oldukça önem arz etmektedir.

Doğru projelendirilmeyen yapı, güvenlik ihtiyacını karşılayabilmekten uzaktır. Taşıyıcı sistemi hatalı olarak teşkil edilmiş bir yapıda hasar kontrolü sağlanamaz, bu durum elastik deprem kuvvetlerine dayanım olarak değil süneklik olarak cevap verilen günümüz yapı mühendisliği ilkelerini göze alırsak bir felaketle sonuçlanabilir, Türkiye'de ve Dünya'da bunun acı örneklerini tecrübe ettik ve gözlemledik.

Bunun için seçilen, ön boyutlaması yapılan ve matematik modeli oluşturulan taşıyıcı sistemin geometrik ve kesitsel özelliklerinin yapı dayanımını ve davranışını nasıl ve ne seviyede etkilediğinin irdelenmesi konusu bu tezin ana fikrini oluşturmuştur.

Bu tez çalışmasında 10 katlı, konut amaçlı kullanılacak bir betonarme bina için çeşitli boyutlarda ve geometride perdeler içeren 5 farklı taşıyıcı sistem önerilmiş olup taşıyıcı sistem niteliklerinin, yapı davranışına ve günümüz yönetmeliklerine uygun olarak yapılacak kesit hesaplarına etkisi üzerinde çalışılmıştır. Bu bağlamda projelendirilmesi istenen yapıyla önerilen 5 farklı taşıyıcı sistem için çözümleme ve

kesit hesapları yapılmış olup, sonuçlar birbirleriyle karşılaştırılarak taşıyıcı sistemlerin farklılıklarının yapı davranışı ve kesit ekonomisi olarak nasıl ve ne oranda yapıyı etkilediği araştırılmıştır.

Bu tez çalışmasında çözümleme ve kesit hesapları, Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik (DBHBHY), Betonarme Yapıların Tasarım ve Yapım Kuralları TS500 standardına göre yapılmış olup yapılar için kullanılan yükler, Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri TS 498 standardına göre seçilmiştir.

2. TAŞIYICI SİSTEM DÜZENLENMESİ

2.1 Taşıyıcı Sistem Türleri

2.1.1 Çubuklar ve çubuk taşıyıcı sistemler

-Normal kuvvetle zorlanan çubuklar; kafes kiriş çubukları.
-Eğilme ile zorlanan çubuklar; kirişle, tablalı kirişleri boşluklu kirişler.
-Eğilme ve normal kuvvet etkisi altındaki çubuklar; Kemerler, çerçeveler, kuleler ve kolonlar (Altan ve Aka 1992).

2.1.2 Yüzeysel taşıyıcılar

-Yüzeyleri düzlem taşıyıcılar; levhalar, plaklar, katlanmış kabuklar. -Kabuklar (Altan ve Aka 1992).

2.2 Malzeme ve Taşıyıcı Sistem Seçimi

Bir mühendis oluşturacağı mekanizmada çeşitli ihtiyaçlara cevap vermek zorundadır. İnşaat mühendisi için de durum farklı değildir. Yapıyı oluştururken dikkate alması gereken etken sayısı oldukça fazladır. İnşaat mühendisi yapısını oluşturacağı zaman a-Ekonomi yönünden

-işletme ve bakım masrafları

- ilk maliyet

b-Mimari uyum ve estetik

- c- Yapım süresi
- d- Kullanım süresi
- e- Kullanımda esneklik
- f- Mevcut malzeme işgücü deneyimi tipolojisi

g- Yapıya etkiyecek mekanik ve kimyasal etkiler

- h- Zemin şartları
- 1- Deprem durumu

gibi bir çok soruya optimum cevabı verecek çözümü üretmek zorundadır (Doğangün 2009). Bu çözümü oluştururken en önemli konulardan biri doğru yapı-malzemesi seçimi ve doğru taşıyıcı sistem teşkilidir. Bu bölümde yapının taşıyıcı sistemi teşkil edilirken dikkat edilecek yapı mühendisliği hususlarına değinilmiştir.

2.3 Taşıyıcı Sistemin Karşılaması Gereken Yapı Mühendisliği Kriterleri

Oluşturulacak taşıyıcı sistem

- 1- Dayanım
- 2- Rijitlik
- 3- Süneklik
- 4- Kararlılık
- 5- Sönüm
- 6- Uyum

parametrelerinin hepsini yeterlilikle karşılayabilmelidir(Doğangün 2009).

2.3.1 Yeterli dayanım

Yeterli dayanım kavramı taşıyıcı sistem elemanlarının kendi hisselerine düşen moment, eksenel kuvvet, kesme kuvveti kesit zorlarını güvenle taşıyabilecek taşıma gücü dayanımına sahip olması gerekliliğidir.

2.3.2 Yeterli rijitlik

Yapının yeterli rijitliğe sahip olması

-ikinci mertebe etkilerin sınırlandırılması

-kullanılabilir sınır durum şartı için kalıcı hasar oluşmasını engellemek azaltmak açısından yapının yeterli yatay ötelenme rijitliğine sahip olması hayati önem taşır.Ayrıca teşkil edilecek taşıyıcı sistemin rijitlik matrisi kütle matrisi ile beraber yapı davranışının şekillenmesindeki en büyük parametredir.

2.3.3 Yeterli süneklik

Süneklik kavramı toplam yer değiştirmenin elastik yer değiştirmelere oranı olarak açıklanabilir. Bu durumda lineer bölge sonrasında oluşan plastik şekil değiştirmenin artması kesitin sünekliğinin artması anlamına gelir. Süneklik kavramı elastik deprem yüklerinden non-lineer sistem arasındaki bağlantıyı kurmamızı sağlayan en önemli parametrelerden biridir.

Bina taşıyıcı sistemlerinde, özellikle betonarme sistemlerde sünek davranış, kirişlerde basit eğilme etkisi altında, kolon ve perdelerde ise eğilme + eksenel kuvvet etkisi altında gerçekleşir(Doğangün 2009).

Betonarme eğilme ve eğilme + eksenel kuvvet durumları dışında depreme karşı davranış sünek değildir. Eksenel basınç ile özellikle kesme kuvveti ve burulma etkileri altında betonarme kesitlerin plastik şekil değiştirme kapasiteleri hemen hemen hiç yoktur, diğer deyişle bu etkiler altında betonarme kesitler gevrek davranış gösterirler.

Şekil 2.1 : Dayanıma göre tasarımda lineer-nonlineer sistem (Aydınoğlu 2008).

Elastik dayanım istemine cevap verilmeyip sistemde yeterli elastik ötesi şekil değiştirmenin sağlanabilmesi için yapının yeterli süneklikte olması sağlanmalıdır(Aydınoğlu 2008) (Şekil 2.1).

Yeterli süneklik özellikle ekonomi temin ederek projelendirme açısından son derece önemlidir. Bunun bir anlamı daha düşük kesit etkilerine göre daha küçük kesitlerle tasarlama demektir (Doğangün 2009).

2.3.4 Yeterli kararlılık

Yapı emniyeti için, sadece dayanımın dikkate alınması yeterli olmaz.Yapının denge konumunun da, yeterince kararlı olması gerekmektedir. Yapıda stabilite kırılmaları oluşmamalıdır. Bunun için ikinci mertebe etkilerin birinci mertebe etkilere oranı sınırlandırılmalı ve gerektiği durumlarda ikinci mertebe etkiler hesaba katılmalıdır.

2.3.5 Yeterli sönüm

Titreşim hareketi yapmak zorunda kalan yapılarda, enerjinin yutulması genellikle eşdeğer viskoz sönüm ile ifade edilmektedir. Sönümün tam olarak hesaplanması mümkün değildir. Bu durumda, yukarıda belirtilen tüm hususları yaklaşık olarak dikkate alacak şekilde, bir modal sönüm oranı (ξ) tanımlanmaktadır. Modal sönüm oranı, daha önce meydana gelen depremlerde elastik davranış gösteren yapılar için mevcut verilerden yararlanmak suretiyle yaklaşık olarak belirlenmektedir (Doğangün 2009).

Yapıda meydana gelebilecek plastik şekil değiştirmelerin büyük olması, taşıyıcı olan ve olmayan elemanlarda çatlakların artması sönümü artırmaktadır. Diğer taraftan, bazen, yapının sönümünü artırmak için taşıyıcı sisteme sönümleyici yerleştirilmektedir(Doğangün 2009).

2.3.6 Yeterli uyum

Betonarmeyi diğer malzemelerden ayıran özelliklerden biri fazla zorlanan bir lifin, kesitin ya da elemanın zorlamaları komşu lif, kesit ya da elemana aktarabilme özelliğidir(Doğangün 2009).

Şekil 2.2 : Farklı dayanımdaki betonların gerilme-şekil değiştirme eğrileri (Celep ve Kumbasar 2004).

Betonun gerilme-şekil değiştirme eğrisinden gözlemleyebildiğimiz üzere (Şekil 2.2) beton taşıma sınırına maksimum gerilmesinde ulaşmaz, sınır şekil değiştirme değerine ulaşan beton, taşıma gücüne ulaşır. Gerilme değeri pik yaptıktan sonra düşmeye başladığını görürüz, betonun bu karakteristik davranışının nedeni yine gerilen liflerin yardımlaşmasıdır. Betonun ideal taşıyıcı malzemelerden biri olmasını sağlayan nedenlerden biri de budur. Bir kesitte lifler arasındaki uyum böyle iken,

kesitler arasında ise buna benzer bir yardımlaşma vardır. Kesit taşıma limitine ulaşan kesit plastik mafsala dönüşüp serbest dönme yaparken, taşıma gücüne ulaşmamış diğer kesitlere moment aktarır, buna momentlerin yeniden dağılım ilkesi denir.

2.4 Taşıyıcı Sistemlerde Dikkat Edilmesi Gereken Hususlar

Yapı sisteminin davranışa etkisi, özellikle deprem gibi yapıya elastik sınırlar ötesinde zorlayan yükler altında çok önemlidir. Ülkemizde gözlenen deprem hasarlarının bir çoğunda yanlış sistem seçimi büyük rol oynamıştır(Ersoy ve Özcebe 2001).

Teşkil edilmiş taşıyıcı sistemin düşey işletme yüklerini ve yatay deprem, rüzgar gibi etkileri başarıyla ve ekonomik olarak taşıması beklenir. Taşıyıcı sistemin bunu başarabilmesi için yapı mühendisliği ilkelerine göre dizayn edilmiş olması gerekir. DBHBHY düzensizliklerinden farklı olarak yatay ve düşeyde taşıyıcı sistem teşkilinde dikkat edilmesi gereken noktalar aşağıda detaylandırılmıştır.

2.4.1 Taşıyıcı sistem teşkilinde planda dikkat edilmesi gereken hususlar

Perde kullanımının simetrik olmadığı durumlardan kaçılarak dış merkezliğin neden olduğu burulma etkiler engellenmelidir(Celep ve Kumbasar 2004).

Şekil 2.3 : Perdeli sistemlerin deprem etkisi davranışı bakımından plandaki durumu.

Şekil 2.4 : Perdeli sistemlerde burulma etikisi bakımından çözümler(Gülay2010).

Şekil 2.5 : Perdeli sistemlerde burulma etikisi bakımından çözümler(Gülay2010).

Planda döşeme şekli simetriden uzak L, T, H, U gibi şekillerden kaçınılmalıdır, bu sistemler basit dikdörtgenlere ayrılarak çözümlenmelidir(Celep ve Kumbasar 2004) (Şekil 2.6).

Şekil 2.6 : Simetriden ayrılma ve ani rijitlik değişimi için hatalı ve doğru çözümler(Celep ve Kumbasar 2004).

Planda perde yerleşimine bir diğer dikkat edilecek husus ise iki doğrultu arasında büyük rijitlik farkları oluşturacak perde teşkillerinden kaçınılmasıdır(Şekil 2.7).

Şekil 2.7 : İki doğrultu arasındaki rijitlik farkları açısından hatalı ve doğru çözümler(Celep ve Kumbasar 2004).

Rijit perdelerin binanın dış yüzlerinde teşkil edilmesi binanın burulma rijitliğini arttırır.

Şekil 2.8 : Plandaki perde yerleşiminine göre yüksek ve düşük burulma rijitliği örnekleri(Celep ve Kumbasar 2004).

Şekil 2.9 : Planda çeşitli perde kullanımı örnekleri(Gülay2010).

Çerçeve teşkilinde dolaylı mesnetleme, dış merkezli mesnetleme gibi olumsuz düğüm noktası etkilerine neden olacak birleşimlerden kaçınılmalı ve her iki doğrultu için de yeterli sayıda çerçeve teşkil edilmelidir.

UYGUN DEĞİL

UYGUN

Şekil 2.10 : Dış merkezli, dolaylı mesnetleme ve yetersiz çerçeve bakımından taşıyıcı sistemler(Celep ve Kumbasar 2004).

Çevre çerçeve kirişlerinin teşkil edilmemesi yapılarda %5-50 arasında dayanım kaybına neden olur(Bal ve Özdemir 2006), bu durumdan kaçınılmalıdır(Şekil 2.11).

Şekil 2.11 : Çevre çerçeve kirişi teşkili bakımından uygun olan ve olmayan sistemler(Gülay2010).

2.4.2 Taşıyıcı sistem teşkilinde düşeyde dikkat edilmesi gereken hususlar

Düşey kesitte kütle merkezinin aşağıda bulunması taşıyıcı sistemdeki deprem etkilerini azaltacaktır(Celep ve Kumbasar 2004). Özellikle yüksek ve narin binalarda devirici moment alt katlarda zorlanmalara neden olacaktır bu türden taşıyıcı sistem teşkilinden kaçınmak gerekir(Şekil 2.12).

Taşıyıcı sistemde düşeyde eleman süreksizliklerinden kaçınılmalıdır.

Şekil 2.13 : Düşeyde eleman süreksizliği(Celep ve Kumbasar 2004).

İki yapıyı birleştirecek köprü tipi yapılarda yatay kuvvet iletimini engelleyecek tipte bağlantı seçimi ek zorlamaların meydana gelmesini önleyebilir(Şekil 2.14).

Şekii 2.14 : 1ki yapıyı omeşmen elemamarda moment aktaran ve aktarmayan bileşimler(Celep ve Kumbasar 2004).

Kat kirişlerinde düşeyde düzensizlik olmasından kısa kolon davranışına sebep verme riski ve çevre düğüm noktalarında ekstra zorlanmalara neden olması nedeniyle kaçınılmalıdır(Şekil 2.15).

Şekil 2.15 : Düşeyde kiriş süreksizliği içeren ve içermeyen tipik örnekler (Celep ve Kumbasar 2004).

Faklı seviyede temel kullanımı düzenli çerçeve davranışını olumsuz etkileyeceğinden bundan kaçınılmalıdır(Şekil 2.16).

Şekil 2.16 : Faklı seviyede temel kullanımı ve önerilen çözüm (Celep ve Kumbasar 2004).

Bina düşeyde ani süreksizliklere sahipse yapıyı bölerek çözüm yapmak daha doğrudur. Bırakılan derzin yapıların çarpışmasını engelleyecek büyüklükte olması gerektiğine dikkat edilmelidir. Eğer çeşitli nedenlerle yeterli derz mesafesi bırakılamıyorsa bina kat seviyelerinin birbirine yakın olmasına özen gösterilmelidir(Şekil 2.17).

Şekil 2.17 : Derzle ayrılmış yapı(Celep ve Kumbasar 2004).

Dikkat edilmesi gereken bu hususlar dışında DBHBHY' de yapı çözümlemesinde hesaba katılması gereken düzensizlik tanımları yapılmıştır.

3. DEPREM BÖLGELERİNDE YAPILACAK YAPILARA İLİŞKİN BİLGİLER

3.1 Düzensiz Binalar

Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik(DBHBHY)'de Türkiye'de yapılacak yapılar için mertebeleri sınırlandırılmış çeşitli düzensizlikler tanımlanmıştır.

3.1.1 A1 Burulma düzensizliği

Birbirine dik iki deprem doğrultusunun herhangi biri için, herhangi bir katta en büyük göreli kat ötelemesinin o katta aynı doğrultudaki ortalama göreli ötelemeye oranını ifade eden Denklem (3.4)'de burulma düzensizliği katsayısı nbi'nin 1.2'den büyük olması durumudur (Şekil 3.1).

Şekil 3.1 : A1 buruluma düzensizliği.

$$(\Delta_i)\max = (d_i)\max - (d_{i-1})\max$$
(3.1)

$$(\Delta_i)\min = (d_i)\min - (d_{i-1})\min$$
(3.2)

$$(\Delta_i)$$
 ort = $\frac{1}{2} \cdot [(\Delta_i) \max + (\Delta_i) \min]$ (3.3)

$$\eta_{bi} = (\Delta_i) \max / (\Delta_i) \text{ ort } > 1.2$$
(3.4)

Burada;

 (Δ_i) max : İ. kattaki maksimum göreli kat ötelenmesi

 (Δ_i) min : İ. kattaki minimum göreli kat ötelenmesi

(d_i)max : İ. kattaki maksimum kat ötelenmesi

 (d_{i-1}) min : İ. kattaki minimum kat ötelenmesi

olarak tanımlanmaktadır.

Deprem sırasında yapıya gelen deprem kuvvetleri her katta kütlelerin yoğunlaştığı döşeme kotu hizasında ve kat kütle merkezlerine etkidiği kabul edilmektedir. Kat rijitlik merkezi ise düşey taşıyıcı elemanların rijitliklerinin ve kata etkiyen yatay yüklerin bileşke merkezi olarak tanımlanmaktadır. Deprem dolayısıyla kat kütle merkezlerine etkiyen yatay kuvvetler kat kütle merkezlerine etkidiğini dikkate alırsak kat, rijitlik merkezi etrafında burulmaya çalışacaktır. DBYBHY çeşitli yapı hasarları ve uygulama hataları sebebiyle oluşacak etkiler için %5 kütle merkezi eksantirisitesini de dikkate alarak bu etkiyi kontrol etmek ve gerekirse sınırlandırmak için A1 burulma düzensizliği kontrolünü öngörmüştür. Binanın herhangi bir i'inci katında $1.2 < \eta_{bi}$ koşulunun sağlanması durumunda bütün katlar için $\pm\%$ 5 ek dışmerkezlik değeri, her iki deprem doğrultusu için denklem(3.5)'de verilen Di katsayısı ile çarpılarak büyütülecektir. Burulma parametresi η_{bi} 2'yi aştığı durumlar için ise taşıyıcı sistemin yeniden düzenlenip bu değerin 2'nin altına düşürülmesi gerektiği şartını koymaktadır.

$$D_{i} = \left(\frac{\eta_{bi}}{1.2}\right)^{2}$$
(3.5)

Burada;

 η_{bi} : Burulma düzensizliği katsayısı

Di : Eşdeğer deprem yükü yöntemi için dış merkezliği büyütme katsayısı olarak tanımlanmaktadır.

3.1.2 A2 Döşeme süreksizlikleri

Kat seviyelerinde, yatay deprem yüklerini düşey taşıyıcı elemanlara güvenle aktarması istenen döşemeler bu koşulu, barındırmış oldukları mevcut boşlukların kendi düzleminde ani rijitlik ve dayanım azalmasına neden olmasından dolayı sağlayamadıkları durumda ortaya çıkan planda süreksizlik türüdür. Denklem(3.6)'da verilmiş şekli ile

döşeme boşlukları kat seviyesinde toplam döşeme alanının 1/3'ünü geçmemelidir. Şekil 3.2 de bu düzensizliğe ait birkaç örnek gösterilmiştir.

$$\frac{A_{b}}{A} > \frac{1}{3}$$
 (3.6)

Burada;

Ab :Boşluk alanları toplamı

A :Brüt kat alanı

olarak tanımlanmıştır.

Şekil 3.2 : Çeşitli A2 düzensizliği örnekleri.

3.1.3 A3 Planda çıkıntılar bulunması

Bina kat planlarında çıkıntı yapan kısımların her iki bina boyutunun % 20'sini aşması durumunda, Şekil 3.3 'de verilen şekilde ortaya çıkan planda düzensizlik durumudur.

 $a_x\!>\!0.2~L_x$ veya $a_y\!>\!0.2~L_y$

Lx, Ly, ax, ay ifadeleri Şekil 3.3 üzerinde gösterilmiştir.

Şekil 3.3 : Çeşitli A3 düzensizliği örnekleri.

3.1.4 B1 Komşu katlar arası dayanım düzensizliği (Zayıf kat)

Betonarme binalarda, birbirine dik iki deprem doğrultusunun herhangi birinde, herhangi bir kattaki etkili kesme alanının, bir üst kattaki etkili kesme alanına oranı olarak tanımlanan Denklem (3.7)'de verilen Dayanım Düzensizliği Katsayısı nçi'nin 0.80'den küçük olması ile karşılaşılan düşeyde düzensizlik durumudur.

$$\eta ci = \begin{bmatrix} \left(\sum Ae \right)_{i} \\ \left(\sum Ae \right)_{i+1} \end{bmatrix} < 0.8$$
(3.7)

$$\sum A_{e} = \sum A_{w} + \sum A_{g} + 0.15 \times \sum A_{k}$$
(3.8)

Burada ;

 $\sum A_e$: Herhangi bir katta, göz önüne alınan deprem doğrultusunda etkili kesme alanı.

 $\sum A_w$: Herhangi bir katta, kolon en kesiti etkin gövde alanları toplamı.

 $\sum A_g$: Herhangi bir katta, göz önüne alınan deprem doğrultusuna paralel doğrultuda perde olarak çalışan taşıyıcı sistem elemanının en kesit alanları toplamı.

 $\sum A_k$: Herhangi bir katta, göz önüne alınan deprem doğrultusuna paralel kargır dolgu duvar alanlarının (Kapı ve pencere boşlukları hariç) toplamı olarak tanımlanmıştır.

B1 türü düzensizliğin bulunduğu binalarda, göz önüne alınan i'inci kattaki dolgu duvarı alanlarının toplamı bir üst kattakine göre fazla ise, ηci'nin hesabında dolgu duvarları göz önüne alınmayacaktır. $0.60 < (\eta_{ci})_{min} < 0.80$ aralığında taşıyıcı sistem davranış katsayısı, 1.25 $(\eta_{ci})_{min}$ değeri ile çarpılarak her iki deprem

doğrultusunda da binanın tümüne uygulanacaktır. Ancak hiçbir zaman $\eta_{ci} < 0.60$ olmayacaktır. Aksi durumda, zayıf katın dayanımı ve rijitliği arttırılarak deprem hesabı tekrarlanacaktır.

3.1.5 B2 Komşu katlar arası rijitlik düzensizliği (Yumuşak kat)

Birbirine dik iki deprem doğrultusunun herhangi biri için, herhangi bir i'inci kattaki ortalama göreli kat ötelemesi oranının bir üst veya bir alt kattaki ortalama göreli kat ötelemesi oranına bölünmesi ile tanımlanan Rijitlik Düzensizliği Katsayısı nki'nin 2.0'dan fazla olması durumudur. Göreli kat ötelemeleri hesabı $\pm\%$ 5 ek dışmerkezlik etkileri de göz önüne alınarak yapılacaktır.

$$\eta_{ki} = \begin{bmatrix} \left(\Delta_{i} \\ h_{i} \right)_{ort} \\ \left(\Delta_{i-1} \\ h_{i-1} \right)_{ort} \end{bmatrix} > 2.0 \text{ veya}$$

$$\eta_{ki} = \begin{bmatrix} \left(\Delta_{i} \\ h_{i} \right)_{ort} \\ \left(\Delta_{i+1} \\ h_{i+1} \right)_{ort} \end{bmatrix} > 2.0$$
(3.10)

Burada;

 (Δ_i) : Binanın i'inci katındaki azaltılmış göreli kat ötelenmesi

(h_i): Binanın i'inci katı kat yüksekliği

 (η_{ki}) : Binanın i'inci katında tanımlanan rijitlik düzensizliği katsayısı olarak tanımlanmaktadır.

3.1.6 B3 Taşıyıcı sistem düşey elemanlarının süreksizliği

DBYBHY üst katlarda teşkil edilmiş bir perdenin kolonların üzerine oturtulmasına asla izin vermez(Şekil 3.4).

Şekil 3.4 : Perdenin kolonlara oturtulması düzensizliği.

Perdelerin kendi düzlemlerindeki kirişlere açıklık ortasında bindirilmesine asla izin verilmez(Şekil 3.5).

Şekil 3.5 : Perdenin kirişe oturması düzensizliği.

Kolonun iki ucundan mesnetli bir kirişe oturması durumunda, kirişin bütün kesitlerinde ve ayrıca göz önüne alınan deprem doğrultusunda bu kirişin bağlandığı düğüm noktalarına birleşen diğer kiriş ve kolonların bütün kesitlerinde, düşey yükler ve depremin ortak etkisinden oluşan tüm iç kuvvet değerleri % 50 oranında arttırılacaktır (Şekil 3.6).

Şekil 3.6 : Kolonun iki ucundan mesnetli kirişe oturması düzensizliği.

Kolonun alt katlarda 1 ucundan mesnetli kirişe guse ile oturtulmasına izin verilmez (Şekil 3.7).

Şekil 3.7 : Kolonun guse ile kirişe oturtulması.

3.2 Deprem Yükü Hesap Yöntemleri

DBYBHY 2007'ye göre yapı sistemlerinin deprem hesabı için 3 farklı metot öngörülmüştür. Bunlar;

1. Eşdeğer Deprem Yükü Yöntemi

2. Mod Birleştirme Yöntemi

3. Zaman Tanım Alanında Hesap Yöntemi

Bu çalışmada eşdeğer deprem yükü ve mod birleştirme yöntemleri kullanılmış olup, bu bölümde zaman tanım alanı hesap yöntemiyle beraber kullanılmış olan bu yöntemler DBYBHY'ye göre etraflıca açıklanmıştır.

3.2.1 Eşdeğer deprem yükü yöntemi

3.2.1.1 Spektral ivme katsayısı

Deprem yüklerinin belirlenmesi için esas alınacak olan Spektral İvme Katsayısı, A(T), Denklem (3.11)'de tanımlanmıştır. %5 sönüm oranı için tanımlanan Elastik İvme Spektrumunun ordinatı olan Elastik Spektral İvme, $S_{ae}(T)$ Denklem (3.12) , Spektral İvme Katsayısı ile yerçekimi ivmesi g'nin çarpımına karşı gelmektedir.

$$A(T) = A_0 \times I \times S(T)$$
(3.11)

$$S_{ae}(T) = A(T) \times g$$
(3.12)

Burada;

A₀: Etkin yer ivmesi katsayısı

I: Bina önem katsayısı

S(T): Spektrum katsayısı

Ra: Taşıyıcı sistem davranış katsayısı

A(T): Spektral ivme katsayısı

S_{ae}(T): Elastik spektral ivme

olarak tanımlanmaktadır.

Deprem Bölgesi	A ₀
1	0.40
2	0.30
3	0.20
4	0.10

Çizelge 3.1: Etkin yer ivmesi katsayısı.

Çizelge 3.2: Bina önem katsayısı.

Pinanın kullanım amaaı yaya türü	Bina önem
Binanni Kunanni anacı veya turu	katsayısı (I)
1. Deprem sonrası kullanımı gereken binalar ve tehlikeli madde içeren	
binalar	
a) Deprem sonrasında hemen kullanılması gerekli binalar	
(Hastaneler, dispanserler, sağlık ocakları, itfaiye bina ve tesisleri, PTT	
ve diğer haberleşme tesisleri, ulaşım istasyonları ve terminalleri, enerji	1.5
üretim ve dağıtım tesisleri; vilayet, kaymakamlık ve belediye yönetim	
binaları, ilk yardım ve afet planlama istasyonları)	
b) Toksik, patlayıcı, parlayıcı, vb özellikleri olan maddelerin bulunduğu veya depolandığı binalar	
2. İnsanların uzun süreli ve yoğun olarak bulunduğu ve değerli eşyanın	
saklandığı binalar	
a) Okullar, diğer eğitim bina ve tesisleri, yurt ve yatakhaneler, askeri	1.4
kışlalar, cezaevleri, vb.	
b) Müzeler	
3. İnsanların kısa süreli ve yoğun olarak bulunduğu binalar	
Spor tesisleri, sinema, tiyatro ve konser salonları, vb.	1.2
4. Diğer binalar	
Yukarıdaki tanımlara girmeyen diğer binalar	1.0
(Konutlar, işyerleri, oteller, bina türü endüstri yapıları, vb)	

3.2.1.2 Spektrum katsayısı

Spektrum Katsayısı, S(T), yerel zemin koşullarına ve bina doğal periyodu T'ye bağlı olarak Denklem (3.13), (3.14), (3.15) ile hesaplanacaktır(Şekil 3.8).

$$S(T) = 1 + 1.5 T / T_A$$
 ($0 \le T \le T_A$) (3.13)

$$S(T) = 2.5$$
 $(T_A < T \le T_B)$ (3.14)

$$S(T) = 2.5 (T_B / T)^{0.8} (T > T_B)$$
 (3.15)

Burada;

T: Bina doğal titreşim periyodu

T_A, T_B: Spektrum karakteristik periyotları

olarak tanımlanmaktadır.

Yerel zemin sınıfı	T _A (s)	$T_{B}(s)$
Z1	0.10	0.30
Z2	0.15	0.40
Z3	0.15	0.60
Z4	0.20	0.90

Çizelge 3.3:	Spektrum	karakteristik	periyotları.

3.2.2 Elastik deprem yüklerinin azaltılması ve yapı davranış katsayısı

Depremde taşıyıcı sistemin elastik ötesi davranışını hesaba katmak için spektral ivme katsayısıyla bulunacak deprem yükleri denklem (3.16), (3.17)'de bulunan deprem yükü azaltma katsayısına bölünecektir.

$$R_{a}(T) = 1.5 + (R - 1.5) \frac{T}{T_{A}}$$
 $(0 \le T \le T_{A})$ (3.16)

$$R_{a}(T)=R$$
 (T_A

T: Bina doğal titreşim periyodu

T_A,: Spektrum karakteristik periyodu

R: Yapı davranış katsayısı(Çizelge 3.4).

olarak tanımlanmaktadır.

(1) Yerinde Dökme Betonarme Binalar	Süneklik	Süneklik
	düzeyi	düzeyi
	normal	yüksek
	sistemler	sistemler
(1.1) Deprem yüklerinin tamamının çerçevelerle	4	8
taşındığı binalar		
(1.2) Deprem yüklerinin tamamının bağ kirişli	4	7
(boşluklu) perdelerle taşındığı binalar		
(1.3) Deprem yüklerinin tamamının boşluksuz		
perdelerle taşındığı binalar	4	6
(1.4) Deprem yüklerinin çerçeveler ile boşluksuz		
ve/veya bağ kiriş kirişli (boşluklu) perdeler tarafından	4	7
birlikte taşındığı binalar		

	T	•	1	1 .
1 jzolgo 1 1.	0.011101	anatom	douronia	Izotooxiidi
1		SISIEIII	HAVIAIIIS	KAISAVISI
	1 401 1 101	DIDUCIII	auriunio	maiba (101.
, 7	• ./		•	-1

Eşdeğer Deprem Yükü Yönteminin uygulanabileceği bina türleri ve bu binalara ait yükseklik bilgileri aşağıda verilmiştir.

Deprem Bölgesi	Bina Türü	Toplam Yükseklik Sınırı
1,2	Her bir katta burulma düzensizliği katsayısının nbi ≤ 2,0 koşulunu sağladığı binalar	$H_N \leq 25 m$
1,2	Her bir katta burulma düzensizliği katsayısının nbi ≤ 2,0 koşulunu sağladığı ve ayrıca B2 türü düzensizliğinin olmadığı binalar	$H_{N} \leq 40 m$
3,4	Tüm Binalar	$H_N \leq 40 m$

Çizelge 3.5 : Eşdeğer deprem yükü yönteminin uygulanabileceği binalar.

Burada kullanılan H_N ifadesi bina toplam yüksekliğini ifade etmektedir. Göz önüne alınan deprem doğrultusunda, binanın tümüne etkiyen Toplam Eşdeğer Deprem Yükü (Taban Kesme Kuvveti), (V_t) Denklem (3.18) ile belirlenecektir.

$$Vt = \frac{W.A(T_1)}{Ra(T_1)} \ge 0.1A_0 \times I \times W$$
(3.18)

Burada;

W : Binanın toplam ağırlığı

T₁ : Binanın birinci doğal titreşim periyodu

Ra(T) : Deprem yükü azaltma katsayısı

A(T) : Spektral ivme katsayısı

A₀ : Etkin yer ivmesi katsayısı

I : Bina önem katsayısı

şeklinde belirtilmiştir.

Bina toplam ağırlığı

$$W = \sum_{i=1}^N w_i$$

wi kat ağırlıkları için

1 katın ağırlığı

$$\mathbf{w}_{i} = \mathbf{g}_{i} + \mathbf{n} \times \mathbf{q}_{i} \tag{3.19}$$

Denklemi ile hesaplamaktır burada ;

g_i: Binanın i'inci katındaki toplam ölü yük

qi: Binanın i'inci katındaki toplam hareketli yük

n: Hareketli yük katılım katsayısı

olarak tanımlanmıştır.

Çizcige 5.0. Hareketir yuk katılılı katsayısı.	
Binanın kullanım amacı	n
Depo, antrepo, vb.	0.80
Okul, öğrenci yurdu, spor tesisi, sinema, tiyatro, konser salonu, garaj, vb.	0.60
Konut, işyeri, otel, hastane, vb.	0.30

Katlara etkiyen eşdeğer deprem yükleri ise Denklem (3.20), (3.21), (3.22) ile belirlenir.

$$\mathbf{V}_{t} = \Delta \mathbf{F}_{N} + \sum_{i=1}^{N} \mathbf{F}_{i}$$
(3.20)

$$\Delta F_{\rm N} = 0.0075 \times \rm N \times V_{\rm t} \tag{3.21}$$

$$F_{i} = (V_{t} - \Delta F_{N}) \times \frac{W_{i} \times H_{i}}{\sum_{j=1}^{N} W_{j} \times H_{j}}$$
(3.22)

Burada ;

Vt: Eşdeğer deprem yükü taban kesme kuvveti

 ΔF_{N} : Binanın tepesine etkiyen eşdeğer deprem yükü

N: Binanın toplam kat sayısı(Bodrum katlarda rijit perdeler varsa zemin kat döşemesinden itibaren kat sayısı)

wi: Kat ağırlığı

H_i: Binanın i'inci katının temel üstünden yüksekliği

Fi: Binanın i'inci katına etkiyen eşdeğer deprem yükü

olarak tanımlanır.

Eğer bina rijit perdelerle çevrili bodrum katlarına sahipse bu katlara etkiyen eşdeğer deprem yükü ise Denklem (3.23) ile hesaplanır.

$$F_{bk} = \frac{A_0 \times I \times W_{bk}}{1.5}$$
(3.23)

Burada;

F_{bk}: Bodrum kata etkiyen yatay deprem kuvveti

A₀: Etkin yer ivmesi

W_{bk}: Bodrum kat ağırlığı

olarak tanımlanır.

Şekil 3.9 : Eşdeğer deprem yükü kuvvetleri.

3.2.3 Mod birleştirme yöntemi

Bu yöntemde maksimum iç kuvvetler ve yer değiştirmeler, binada yeterli sayıda doğal titreşim modunun her biri için hesaplanan maksimum katkıların istatistiksel olarak birleştirilmesi ile elde edilir. Herhangi bir r'inci titreşim modunda göz önüne alınacak ivme spektrumu ordinatı Denklem (3.24) ile belirlenecektir.

$$S_{aR}(T_r) = \frac{S_{ae}(T_r)}{R_a(T_r)}$$
 (3.24)

SaR:Yapının r'inci doğal titreşim periyodu için azaltılmış spektral ivme

S_{ae}(T_r): Elastik spektral ivme

R_a(T_r): Deprem yükü azaltma katsayısı

olarak tanımlanır.

Elastik tasarım ivme spektrumunun özel olarak belirlenmesi halinde, Denklem'de $S_{ae}(Tr)$ yerine, ilgili özel spektrum ordinatı göz önüne alınacaktır.

Döşemelerin yatay düzlemde rijit diyafram olarak çalıştığı binalarda, her bir katta, birbirine dik doğrultularda iki yatay serbestlik derecesi ile kütle merkezinden geçen düşey eksen etrafındaki dönme serbestlik derecesi göz önüne alınacaktır. Her katta modal deprem yükleri bu serbestlik dereceleri için hesaplanacak, ancak ek dışmerkezlik etkisinin hesaba katılabilmesi amacı ile, deprem doğrultusuna dik doğrultudaki kat boyutunun +%5'i ve -%5'i kadar kaydırılması ile belirlenen noktalara ve ek bir yükleme olarak kat kütle merkezine uygulanacaktır. A2 türü döşeme düzensizliğinin ve döşemelerin yatay düzlemde rijit diyafram olarak çalışmadığı binalarda, döşemelerin kendi düzlemleri içindeki şekil değiştirmelerinin göz önüne alınmasını sağlayacak yeterlilikte dinamik serbestlik derecesi göz önüne alınacaktır. Ek dışmerkezlik etkisinin hesaba katılabilmesi için, her katta çeşitli noktalarda dağınık olarak bulunan tekil kütlelere etkiyen modal deprem yüklerinin her biri, deprem doğrultusuna dik doğrultudaki kat boyutunun +%5'i ve -%5'i kaydırılacaktır.

Şekil 3.10 : Modal deprem yüklerinde eksantirisitenin dikkate alınması.

Hesaba katılması gereken yeterli titreşim modu sayısı, göz önüne alınan birbirine dik x ve y yatay deprem doğrultularının her birinde, her bir mod için hesaplanan etkin kütlelerin toplamının hiçbir zaman bina toplam kütlesinin % 90'ından daha az olmaması kuralına göre belirlenecektir(Denklem(3.25), (3.26)).

$$\sum_{n=1}^{Y} M_{xn} = \sum_{n=1}^{Y} \frac{L_{xn}^2}{M_n} \ge 0.90 \sum_{i=1}^{N} m_i$$
(3.25)

$$\sum_{n=1}^{Y} M_{yn} = \sum_{n=1}^{Y} \frac{L_{yn}^2}{M_n} \ge 0.90 \sum_{i=1}^{N} m_i$$
(3.26)

Bu ifadelerde ;

 M_{xn} : Göz önüne alınan x deprem doğrultusunda binanın n'inci doğal titreşim modundaki etkin kütle

 M_{yn} : Göz önüne alınan y deprem doğrultusunda binanın n'inci doğal titreşim modundaki etkin kütle

M_n : n'inci doğal titreşim moduna ait modal kütle

M_i: Binanın i'inci katının kütlesi

olarak tanımlanmıştır.

 L_{xn} ve L_{yn} ile modal kütle M_n 'nin ifadeleri, kat döşemelerinin rijit diyafram olarak çalıştığı binalar için aşağıda Denklem (3.27), (3.28)' de verilmiştir:

$$L_{xn} = \sum_{i=1}^{N} M_{i} \Phi_{xin} \qquad ; \qquad L_{yn} = \sum_{i=1}^{N} M_{i} \Phi_{yin} \qquad (3.27)$$

$$^{M}n = \sum_{i=1}^{N} \left(m_{i} \bigoplus_{xin}^{2} + m_{i} \bigoplus_{yin}^{2} + m_{\theta i} \bigoplus_{\theta in}^{2} \right)$$
(3.28)

Burada;

 Φ_{xin} : Kat döşemelerinin rijit diyafram olarak çalıştığı binalarda, n'inci mod şeklinin i'inci katta x ekseni doğrultusundaki yatay bileşeni

 Φ_{yin} : Kat döşemelerinin rijit diyafram olarak çalıştığı binalarda, n'inci mod şeklinin i'inci katta y ekseni doğrultusundaki yatay bileşeni

 $\Phi_{\Theta in}$: Kat döşemelerinin rijit diyafram olarak çalıştığı binalarda, n'inci mod şeklinin i'inci katta düşey eksen etrafındaki dönme bileşeni olarak tanımlanmıştır.

Bodrum katlarında rijitliği üst katlara oranla çok büyük olan betonarme çevre perdelerinin bulunduğu ve bodrum kat döşemelerinin yatay düzlemde rijit diyafram olarak çalıştığı binaların hesabında, sadece bodrum katların üstündeki katlarda etkin olan titreşim modlarının göz önüne alınması ile yetinilebilir. Bu durumda, Mod Birleştirme Yöntemi ile yapılacak hesapta, bodrumdaki rijit çevre perdeleri göz önüne alınmaksızın seçilen R katsayısı kullanılacak ve sadece üstteki katların kütleleri göz önüne alınacaktır.

Binaya etkiyen toplam deprem yükü, kat kesme kuvveti, iç kuvvet bileşenleri, yer değiştirme ve göreli kat ötelemesi gibi büyüklüklerin her biri için ayrı ayrı

uygulanmak üzere, her titreşim modu için hesaplanan ve eşzamanlı olmayan maksimum katkıların istatistiksel olarak birleştirilmesi için uygulanacak kurallar aşağıda verilmiştir:

 $T_m < T_n$ olmak üzere, göz önüne alınan herhangi bir titreşim moduna ait doğal periyotların daima $T_m / T_n < 0.80$ koşulunu sağlaması durumunda, maksimum mod katkılarının birleştirilmesi için Karelerin Toplamının Kare Kökü Kuralı (SRSS) uygulanabilir.

Yukarıda verilen koşulun sağlanamaması durumunda, maksimum mod katkılarının birleştirilmesi için Tam Karesel Birleştirme Kuralı (CQC) uygulanacaktır. Bu kuralın uygulanmasında kullanılacak çapraz korelasyon katsayılarının hesabında, modal sönüm oranları bütün titreşim modları için %5 olarak alınacaktır.

Göz önüne alınan deprem doğrultusunda, Mod Katkılarının Birleştirilmesi başlığı altında anlatılan şekilde birleştirilerek elde edilen bina toplam deprem yükü V_{tB}'nin, Eşdeğer Deprem Yükü Yönteminde Denklem (3.18) ile hesaplanan bina toplam deprem yükü V_t'ye oranının aşağıda tanımlanan β değerinden küçük olması durumunda (V_{tB} $\leq \beta$.V_t), Mod Birleştirme Yöntemine göre bulunan tüm iç kuvvet ve yer değiştirme büyüklükleri, Denklem (3.29)'e göre büyütülecektir.

$$B_{\rm D} = \frac{\beta V_{\rm t}}{V_{\rm tB}} \times B_{\rm B}$$
(3.29)

Bu ifadede ;

 B_B : Mod Birleştirme Yönteminde mod katkılarının birleştirilmesi ile bulunan herhangi bir büyüklük.

B_D : B_B büyüklüğüne ait büyütülmüş değer

 β : Mod Birleştirme Yöntemi ile hesaplanan büyüklüklerin alt sınırlarının belirlenmesi için kullanılan katsayı olarak tanımlanmıştır.

Yapıda, A1, B2, veya B3 türü düzensizliklerden en az birinin binada bulunması durumunda Denklem (3.29)'de verilen β katsayısı 0.90 alınacak, bu düzensizliklerden hiçbirinin bulunmaması durumunda ise $\beta = 0.80$ alınacaktır.

3.2.4 Zaman tanım alanında hesap yöntemi

Bina ve bina türü yapıların zaman tanım alanında doğrusal elastik yada doğrusal elastik olmayan deprem hesabı için, yapay yollarla üretilen, daha önce kaydedilmiş veya benzeştirilmiş deprem yer hareketleri kullanılabilir.

3.2.4.1 Yapay deprem yer hareketleri

Yapay yer hareketlerinin kullanılması durumunda, aşağıdaki özellikleri taşıyan en az üç deprem yer hareketi üretilecektir.

(a) Kuvvetli yer hareketi kısmının süresi, binanın birinci doğal titreşim periyodunun5 katından ve 15 saniyeden daha kısa olmayacaktır.

(**b**) Üretilen deprem yer hareketinin sıfır periyoda karşı gelen spektral ivme değerinin ortalaması A₀.g'den daha küçük olmayacaktır.

(c) Yapay olarak üretilen bir ivme kaydına göre % 5 sönüm oranı için yeniden bulunacak spektral ivme değerinin ortalaması, göz önüne alınan deprem doğrultusundaki birinci (hakim) periyot T_1 'e göre $0.2T_1$ ile $2T_1$ arasındaki periyotlar için, $S_{ae}(T)$ elastik spektral ivmelerinin % 90'ından daha az olmayacaktır. Zaman tanım alanında doğrusal elastik çözümleme yapılması durumunda, azaltılmış deprem yer hareketinin elde edilmesi için esas alınacak spektral ivme değerleri Denklem (3.24) ile hesaplanacaktır.

3.2.4.2 Kaydedilmiş veya benzeştirilmiş yer hareketi

Zaman Tanım Alanında yapılacak deprem hesabı için kaydedilmiş depremler veya kaynak ve dalga yayılımı özellikleri fiziksel olarak benzeştirilmiş yer hareketleri kullanılabilir. Bu tür yer hareketleri üretilirken yerel zemin koşulları da uygun biçimde göz önüne alınmalıdır. Kaydedilmiş veya benzeştirilmiş yer hareketlerinin kullanılması durumunda en az üç deprem yer hareketi üretilecek ve bunlar 3.2.4 de verilen tüm koşulları sağlayacaktır.

3.2.4.3 Zaman tanım alanında hesap

Zaman Tanım Alanında doğrusal elastik olmayan hesap yapılması durumunda, taşıyıcı sistem elemanlarının tekrarlı yükler altındaki dinamik davranışını temsil eden iç kuvvet–şekil değiştirme bağıntıları, teorik ve deneysel geçerlilikleri kanıtlanmış olmak kaydı ile, ilgili literatürden yararlanılarak tanımlanacaktır. Doğrusal veya doğrusal olmayan hesapta, üç yer hareketi kullanılması durumunda sonuçların maksimumu, en az yedi yer hareketi kullanılması durumunda ise sonuçların ortalaması tasarım için esas alınacaktır.

3.3 Süneklik Kavramı ve Kapasite Tasarım İlkeleri

Yatay deprem yükünün hesabında elastik deprem yükleri bizi tasarım için çok büyük kuvvetlere ulaştırır. Mühendisliğin temel ilkelerinden olan ekonomik çözüm için elastik ötesi davranış hesaba katılmak zorundadır. Deprem kuvvetinin yapıdan istediği dayanım ve yatay yer değiştirme istemlerinden, yatay yer değiştirmeye olumlu ama dayanıma ise olumsuz cevap verilir. Yapının deprem yükleri altında hasar alarak yıkılmaktan kurtulması amaçlanarak tasarım aşamasında sünekliği sağlamak için bazı ilkelere uyulması gerekir. Hasar alan bölgelerin plastik mafsal oluşturarak taşıma gücünü yitirmeden serbest şekilde şekil ve yer değiştirme yaptıkları, komşu düğüm noktalarının ise plastikleşen bölgelerin ekstra kuvvetlerini alarak,elastik taşıma gücü sınırlarına kadar elastik davranış göstermeye devam ettikleri varsayılır.Plastik davranışı belli kesitlerde yoğunlaştığı sistemin geri kalanının ise elastik davranış göstermeye devam ettiği bu duruma plastik mafsal teorisi denmektedir.

Kapasite tasarım ilkeleri ise betonarme için elastik taşıma gücüne ulaşan kesitin taşıma gücünü kaybetmeden serbest şekilde dönebilmesini sağlayan ilkelerdir. Buradaki ayrımı sağlayan ise betonarme kesitin taşıma gücüne hangi etkilerle ulaştığıdır. Burada kırılma biçimleri devreye girer, sünek tasarım yapılmak istenen yapıda hiçbir kesitte gevrek kırılmaya izin verilmez. Kesitin taşıma gücüne eğilme etkileriyle donatının akması ile ulaşarak düğüm noktalarında sünek plastik moment mafsalı oluşmalıdır. Ayrıca yatay deprem yükleri altında en çok zorlanacak kesitler olan düğüm noktaları için ise ayrıca önlem alınmalıdır. Bu bölgelerde oluşacak plastik mafsalın kolon yerine kirişte oluşması sağlanarak herhangi bir mekanizma durumuna izin verilmemelidir. Örneğin kolonların temele bağlandığı kesitlerde zorunlu olarak plastik mafsal oluşacaktır bu yüzden en alt kat kolonlarının üst ucunda kolonda plastik mafsal oluşumu kesinlikle önlenmelidir. Bu yüzden düğüm noktalarında kesişen kolon ve kirişler için bir temel ilke olarak aynı düğüm noktasına birleşen kolonların kirişlerden daha büyük eğilme dayanımına sahip olması sünek tasarım için sağlanmalıdır. Ayrıca düşey ve yatay taşıyıcılar kendi kapasitelerine ulaşmadan düğüm noktalarının taşıma kapasitesine ulaşmasına asla izin verilmemelidir. DBYBHY'de sünek davranışın oluşmasını sağlayacak ilkeler aşağıda açıklanmıştır.

3.3.1 Kolonların kirişlerden güçlü olması koşulu

Sadece çerçevelerden veya perde ve çerçevelerin birleşiminden oluşan taşıyıcı istemlerde, her bir kolon - kiriş düğüm noktasına birleşen kolonların taşıma gücü momentlerinin toplamı, o düğüm noktasına birleşen kirişlerin kolon yüzündeki kesitlerindeki taşıma gücü momentleri toplamından en az %20 daha büyük olacaktır(Denklem (3.30)).

Şekil 3.11 : Güçlü kolon zayıf kiriş gösterimi.

$$(M_{ra} + M_{ru}) \ge 1.2 \times (M_{ri} + M_{rj})$$
 (3.30)

Burada;

M_{ra}: Kolonun serbest boyunun alt ucunda hesaplanan taşıma gücü momenti

M_{rü}: Kolonun serbest boyunun üst ucunda hesaplanan taşıma gücü momenti

M_{ri}: Kirişin sol ucu i'de kolon veya perde yüzünde hesaplanan taşıma gücü momenti M_{rj}: Kirişin sağ ucu j'de kolon veya perde yüzünde hesaplanan taşıma gücü momenti

olarak tanımlanmaktadır.

Burada kolon moment taşıma gücü hesabı için etki-kapasite durumlarından kolon momentini en düşük yapan kombinasyonun normal kuvveti seçilmelidir.

Bu koşulun sağlanamadığı bazı kolonlar olması durumunda ise denklem (3.31)'u sağlamak koşuluyla güçlü kolon şartını sağlayan kolonlar denklem (3.31)'da tanımlanan, $(1/\alpha_i)$ katsayısıyla iç kuvvetler büyütülecektir. Her iki şartın sağlanamaması durumunda çerçeveler süneklik düzeyi normal olarak dikkate alınıp yeni davranış katsayısıyla hesap tekrarlanmalıdır.

$$\alpha_{i} = \frac{V_{is}}{V_{ik}} \ge 0.70$$
 (3.31)

Burada

V_{is}: Binanın i'inci katında güçlü kolon zayıf kiriş şartının her iki düğüm noktasında da sağlandığı kolonlar gelen toplam kesme kuvveti

 V_{ik} : Binanın i'inci katında göz önüne alınan deprem doğrultusunda kat kolonlarına gelen toplam kesme kuvveti

olarak tanımlanır.

$$N_{d} \leq 0.1 \times A_{c} \times f_{ck}$$
 (3.32)

Burada

Ac : Kolon veya perde uç bölgesi brüt alanı

 f_{ck} : Betonun karakteristik silindir basınç dayanımı

olarak tanımlanmaktadır.

Kolonlar güçlü kolon ilkesini sağlayamasalar da Denklem (3.32)' yi sağlarlarsa V_{is} hesabında dikkate alınabilirler.

3.3.2 Süneklik düzeyi yüksek sistemlerde kolon kiriş birleşim bölgeleri

Süneklik düzeyi yüksek kolon kiriş birleşim bölgeleri iki sınıf ayrılır;

- Kolon düğüm noktasında kolona 4 kiriş birleşmesi ve her bir kirişin genişliğinin saplandığı kolon yüzünün 3/4'ünden az olmaması durumunda bu birleşime kuşatılmış birleşim denmektedir.
- Yukarıdaki koşulu sağlamayan bütün birleşimlere kuşatılmamış birleşim denmektedir.

Göz önüne alınan deprem doğrultusu için birleşim bölgesindeki kesme kuvveti Denklem (3.33)'e göre hesaplanacaktır.

$$V_{e} = 1.25f_{yk} \times (A_{s1} + A_{s2}) - V_{kol}$$
(3.33)

Burada;

fyk: Boyuna donatinin karakteristik kopma dayanımı

 A_{s1} , A_{s2} : Düğüm noktasında deprem yönüne göre kiriş kesitinin çekme lifinde kalan ve çekmeye çalışan kiriş kesitindeki donatı alanları

 V_{kol} : Düğüm noktasının altındaki veya üstündeki kolonlarda hesaplanan kesme kuvvetlerinin küçük olanı olarak tanımlanmaktadır.

Hesaplanan bu düğüm noktası kesme kuvveti kuşatılmış ve kuşatılmamış birleşimler için Denklem (3.34) ve Denklem (3.35)'e göre tahkik edilecek ve yeterli dayanım sağlandığından emin olunacaktır.

Kuşatılmış
$$V_e \le 0.60 \times b_j \times h \times f_{cd}$$
 (3.34)

Kuşatılmamış
$$V_e \le 0.45 \times b_j \times h \times f_{cd}$$
 (3.35)

Burada;

b_i : Aşağıda Şekil 3.12'da gösterilmiştir.

h : Kolonun göz önüne alınan doğrultusunda enkesit boyu

 f_{cd} : Betonun tasarım basınç dayanımı

olarak tanımlanır.

Şekil 3.12 : Düğüm noktası kesme dayanımı gösterimi

3.3.3 Süneklik düzeyi yüksek ve normal kolonların tasarım farkları

Bu bölümde süneklik düzeyi yüksek ve süneklik düzeyi normal kolonların tasarım farkı anlatılacaktır. Sünek ve normal kolonlar arasında en kesit ve boyuna donatı tasarımı olarak fark olmasa da iki tip kolon arasında temel dizayn farkı kesit hesabında kullanılacak kesme kuvvetidir. Süneklik düzeyi normal kesit hesabında dizayn için kullanılacak kesme kuvveti hesaplanan dış kuvvetlerin kombinasyonlarından oluşan kesit tesirleri V_d iken, süneklik düzeyi yüksek kolon tasarımında ise kesme güvenliğinde kullanılacak kesme kuvveti Denklem (3.36) ile hesaplanır.
$$V_{e} = \frac{\left(M_{a} + M_{u}\right)}{l_{n}}$$
(3.36)

Burada

 l_n : kolonun kirişler arasında kalan serbest açıklığı

olarak tanımlanır.

Burada, M_a ve $M_{\ddot{u}}$ kolonda güçlü kolon şartının sağlanıp sağlanmadığına göre iki farklı metotla hesaplanır.

Eğer güçlü kolon şartı sağlanmış ise kolon düğüm noktalarındaki kirişleri uç momentleri pekleşme etkisi de hesaba katılarak hesaplanacaktır.

Şekil 3.13 : Kiriş uç momentleri.

. .

$$\sum M_{\rm p} = M_{\rm pi} + M_{\rm pj}$$
 (3.37)

$$M_{u} = \frac{M_{h\bar{u}(i)}}{M_{h\bar{u}(i)} + M_{ha(i+1)}} \times M_{p}$$
(3.38)

$$M_{a} = \frac{M_{ha(i)}}{M_{ha(i)} + M_{h\ddot{u}(i-1)}} \times M_{p}$$
(3.39)

Burada;

M_{pi} : Kirişin i ucundaki kirişin pekleşmesi de dikkate alınarak hesaplanan kiriş kapasitesi.

M_{pj} : Kirişin j ucundaki kirişin pekleşmesi de dikkate alınarak hesaplanan kiriş kapasitesi.

M_{hü(i)}: i'inci kattaki kolonun üst ucunda bulunan moment

M_{ha(i)} : i'inci kattaki kolonun alt ucunda bulunan moment olarak tanımlanmıştır.

Şekil 3.14 : Aynı düğüm noktasına bağlanan kolonlar için düğüm noktası momentleri Mhü ve Mha.

Daha kesin hesap yapılmayan durumlarda $M_{pi}=1.4M_{ri}$ ve $M_{pj}=1.4M_{rj}$ olarak alınabilir. Burada bulunan $\sum M_p$ momenti, kolonların uçlarındaki momentlere göre kolonlara dağıtılacaktır.

Güçlü kolon şartının sağlanamadığı kolonlarda ise M_a ve $M_{\ddot{u}}$ kolon üst ve alt uçlarındaki moment kapasiteleri olarak hesaplanacaktır. Daha kesin hesap yapılmayan durumlarda $M_{pa}=1.4M_{ra}$ ve $M_{p\ddot{u}}=1.4M_{r\ddot{u}}$ olarak alınabilir. Burada uç momentleri maksimum yapacak N_d kuvveti ile hesap yapılmalıdır.

Şekil 3.15 : Kolon uç momentleri.

Bu iki şarta göre hesaplanacak V_e kesme kuvveti deprem yükü azaltma katsayısı R=2 için hesaplanacak V_(R=2) kesme kuvvetinde büyük olmayacaktır. Bu durumda V_(R=2)

V_e kesme tasarım kuvveti olarak kullanılacaktır. Ayrıca sadece deprem yüklerinden oluşacak kesme kuvvetinin depremli durumdaki toplam kesme kuvvetinin yarısından daha büyük olması ve $N_d \le 0.05 \times A_e \times f_{ek}$ şartlarının ikisinin de sağlanması durumunda betonun kesme dayanımına katkısı sıfır olarak alınacaktır. Etriyeli kolonlarda $N_d > 0.20 \times A_e \times f_{ek}$ olması durumunda sarılma bölgesinde kullanılacak minimum etriye alanı ise Denklem (3.40)(3.41) ile bulunacaktır ve elverişsiz olan seçilecektir.

$$\mathbf{A}_{sh} \ge 0.30 \times \mathbf{s} \times \mathbf{b}_{k} \times \left[\left(\begin{array}{c} \mathbf{A}_{c} \\ \mathbf{A}_{ck} \end{array} \right) - 1 \right] \times \left(\begin{array}{c} \mathbf{f}_{ck} \\ \mathbf{f}_{ywk} \end{array} \right)$$
(3.40)

$$A_{sh} \ge 0.075 \times s \times b_k \times \left(\frac{f_{ck}}{f_{ywk}} \right)$$
(3.41)

Burada;

s; Enine donatı aralığı

b_k; Birbirine dik yatay doğrultuların her biri için kolon veya perde uç bölgesi çekirdeğinin en kesit boyutu

A_c; Katta deprem doğrultusundaki kesme alanı

Ack; Sargı donatısının dışından dışına ölçülen çekirdek beton alanı

fck; Betonun karakteristik silindir basınç dayanımı

fywk; Enine donatinin karakteristik akma dayanimi

olarak tanımlanmıştır. Burada her iki yön için bulunan etriye alanı A_{sx} ve A_{sy} olarak adlandırılmıştır.

3.3.4 Süneklik düzeyi yüksek ve normal kiriş tasarım farkları

Bu bölümde süneklik düzeyi yüksek ve süneklik düzeyi normal kirişlerin tasarım farkı anlatılacaktır. Sünek ve normal kirişler arasında en kesit ve boyuna donatı tasarım olarak fark olmasa da iki tip kiriş arasında temel tasarım farkı kesit hesabında kullanılacak kesme kuvvetidir. Süneklik düzeyi normal kiriş kesit hesabında tasarım için kullanılacak kesme kuvveti hesaplanan dış kuvvetlerin kombinasyonlarından oluşan kesit tesirleri iken, süneklik düzeyi yüksek kiriş tasarımında ise kesme güvenliğinde kullanılacak kesme kuvveti denklem (3.42) ile hesaplanır.

$$V_{e} = V_{dy} \pm (M_{pi} + M_{pj}) / l_{n}$$
(3.42)

Burada

V_{dy} : Kirişin herhangi bir kesitinde düşey yüklerden meydana gelen basit kiriş kesme kuvveti

M_{pi} : Kirişin i ucundaki kirişin pekleşmesi de dikkate alınarak hesaplanan kiriş kapasitesi

M_{pj} : Kirişin j ucundaki kirişin pekleşmesi de dikkate alınarak hesaplanan kiriş kapasitesi

 l_n : Kirişin kolon veya perde yüzleri arasındaki serbest açıklığı

olarak tanımlanır.

Burada daha kesin hesap yapılmayan durumlarda $M_{pi}=1.4M_{ri}$ ve $M_{pj}=1.4M_{rj}$ olarak alınabilir. Hesaplanacak V_e kesme kuvveti deprem yükü azaltma katsayısı R=2 için hesaplanacak V_(R=2)kesme kuvvetinde büyük olmayacaktır. Bu durumda V_(R=2), V_e kesme dizayn kuvveti olarak kullanılacaktır. Ayrıca sadece deprem yüklerinden oluşacak kesme kuvvetinin depremli durumdaki toplam kesme kuvvetinin yarısından daha büyük olması durumunda betonun kesme dayanımına katkısı sıfır olarak alınacaktır.

Şekil 3.16 : Kiriş uç kuvvetleri.

3.3.5 Süneklik düzeyi yüksek ve normal perde tasarım farkları

Yüksekliği uzunluğunun iki katı olan perdeler için Denklem (3.43)'a göre hesaplanan H_{cr} boyunca tasarım eğilme momenti perde tabanında öngörülen kombinasyonlar için bulunan momente eşit alınacak. H_{cr} üstünde ise tasarım yükleri ve kombinasyonları altında perdenin tabanında ve tepesinde hesaplanan momentleri birleştiren doğruya paralel olan doğrusal moment diyagramı kullanılacaktır. Ayrıca kolon için aranan güçlü kolon zayıf kiriş şartı kirişin güçlü yönü için perdelerde de aranacaktır.

$$H_{cr} \ge I_{w}$$

$$H_{cr} \ge H_{w} / 6$$
 (3.43)

Burada;

H_{cr}: Kritik perde yüksekliği

lw: Perde uzunluğu

 h_w : Temelden itibaren perde uzunluğu, rijitliği çok fazla bodrum katlarına sahip binalarda ise perde uzunluğunun %20 küçüldüğü döşemeden yukarı kalan yüksekliktir.

Bodrum katı aşırı rijit perdelerle çevrili yapılarda kritik perde yüksekliği, en az katın altındaki ilk bodrum katının yüksekliği boyunca aşağıya doğru ayrıca uzatılacaktır.

Şekil 3.17 : Perde tasarımı için kullanılacak eğilme diyagramı.

Yüksekliği uzunluğunun iki katı olan perdeler için kesme kuvveti V_e Denklem(3.44) ile hesaplanacaktır.

$$V_{e} = \beta_{v} \frac{(M_{p})_{t}}{(M_{d})_{t}} \times V_{d}$$
(3.44)

Burada;

 β_v : Dinamik büyütme katsayısı 1.5 olarak alınacaktır

 $(M_p)_t$: Perde tabanındaki pekleşmeli moment kapasitesi olarak $(M_p)_t=1.4_{(M_r)_t}$ alınabilir

 $(M_d)_t$: Perde tabanında tasarım kombinasyonları altında hesaplanan eğilme momenti

V_d: Perde kesitinde tasarım kombinasyonları altında hesaplanan kesme kuvveti olarak tanımlanmaktadır.

Süneklik düzeyi normal perdeler için ise Ve kuvveti 1.5Vd olarak alınmalıdır. Ulaşılan dizayn kesme kuvveti hem sünek hem normal perdeler için Denklem (3.45)'e göre tahkik edilmelidir.

$$V_{\rm r} = A_{\rm ch} \times (0.65f_{\rm ctd} + \rho_{\rm sh}f_{\rm ywd})$$
(3.45)

Burada;

A_{ch}; Perdenin brüt alanı

 F_{ctd} : Betonun tasarım çekme dayanımı

 ρ_{sh} :Perde de yatay gövde donatılarının hacimsel oranı

 \boldsymbol{f}_{ywd} : Enine donatının tasarım akma dayanımı

olarak belirtilmiştir.

4. BETONARME YAPILARIN TASARIMI

4.1 Genel Bilgiler

4.1.1 Kullanılan yönetmelikler ve kombinasyonlar

Yapılar, Deprem Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik 2007, TS 500 "Betonarme Yapıların Tasarım ve Yapım Kuralları" ve TS 498 "Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri" standartlarına göre yüklemeler, çözümleme ve kesit hesapları yapılmıştır. Kombinasyonlar ise TS 500 ve DBYBHY'de belirtilen kombinasyonlar dikkate alınarak aşağıdaki gibi kullanılmıştır.

G+Q

1.4G+1.6Q

G+Q+EX (±%5 ek dış merkezlik) G+Q+EY (±%5 ek dış merkezlik) G+Q+EX+0.3EY(±%5 ek dış merkezlik) G+Q+EX-0.3EY(±%5 ek dış merkezlik) G+Q-EX+0.3EY(±%5 ek dış merkezlik) G+Q-EX-0.3EY(±%5 ek dış merkezlik) G+Q+EY+0.3EX(±%5 ek dış merkezlik) G+Q-EY+0.3EX(±%5 ek dış merkezlik) G+Q-EY+0.3EX(±%5 ek dış merkezlik)

Bu yük kombinasyonlarında;

G: Ölü yükler

Q: Hareketli yükler

EX: X yönü deprem yükleri

EY: Y yönü deprem yükleri

olarak tanımlanmaktadır.

4.1.2 Kullanılan yapı malzemelerinin özellikleri

Hesaplarda kullanılması öngörülen beton sınıfı C30 ve donatı çeliği S420 için malzeme özellikleri; C30 beton sınıfı için 28 günlük Elastisite Modülü; E_c = 32000 MPa C30 beton sınıfı için Karakteristik Basınç dayanımı; f_{ck} = 30 MPa S420 donatı çeliği için Elastisite Modülü; E= 2x10⁵ MPa S420 donatı çeliği için karakteristik akma dayanımı; F_{vk} = 420 Mpa

4.1.3 Yapılan kabuller

Sistemlerin çözümleme aşamasında çözümü için yapılan kabuller aşağıda belirtilmiştir.

-Yapı malzemelerinin lineer- izotropik olduğu kabul edilmiştir.

-Yapı taşıyıcı düşey elemanlarının zemine rijit olarak bağlı olduğu kabul edilmiştir.

-Kayma çerçevesi kabulü doğrultusunda döşemelerin kendi düzlemlerinde aşırı rijit olduğu varsayımıyla katların rijit diyafram olarak davrandığı edilmiştir.

-Türk Deprem Yönetmeliğinin belirttiği yatay sehim değerleri geçilmediği sürece ikinci mertebe etkileri terk edilmiştir.

4.1.4 Sabit yükler

Yapıların bütün sabit yükleri excell ortamında hesaplanıp programa tanıtılmıştır. Bu hesaplarda yapılan birim ağırlık kabulleri aşağıda gösterilmiştir.

Betonarme birim ağırlığı = $25,00 (kN/m^3)$

İç duvar birim ağırlığı =2,5(kN/m)

Dış duvar birim ağırlığı =4,2(kN/m)

Kaplama ve şap betonu ağırlıkları =1,8 (kN/m^2)

Yapılan hesaplarda seçilen 15 cm döşeme kalınlığı ve 30x60 kiriş ön boyutları da dikkate alındığında programa tanıtılan birim yüklemeler aşağıda gösterilmiştir.

Döşemelerde = $5,55 (kN/m^2)$

Bina yüzündeki kirişlerde= 13,46 (kN/m)

İç kirişlerde= 9,38(kN/m)

4.1.5 Hareketli yükler

Bina konut amaçlı kullanılacağı için, katlardaki hareketli yük değeri, TS498 de belirtildiği gibi;

$$q = 2.00 \text{ kN/m}^2$$

Balkonlarda ise ;

$$q = 3.50 \text{ kN/m}^2$$

alınmıştır.

4.1.6 Kar yükü

Bina denizden yüksekliği 200 m. altında ve I. Bölge kabulüyle, TS498 de belirtildiği gibi;

 $P_k = 0.75 \text{ kN/m}^2$

Olarak çatı katına döşeme hareketli yükü olarak etkitilmiştir.

4.1.7 Deprem yükü

Yapılara ait veriler:

- Yapılar süneklik düzeyi yüksek, deprem kuvvetlerinin çerçeveler ile boşluksuz ve/veya bağ kirişli (boşluklu) perdeler tarafından birlikte taşındığı kabulü ile, yapı davranış katsayısı R = 7 alınarak çözüm yapılmıştır.Çözümleme aşamasında taban kesme kuvvetlerine bakılarak, yapı davranış katsayısı R=7 kabulü kontrol edilmiş olup taban kesme kuvvetlerine göre gerekli düzeltmeler yapılmıştır.
- Yapı 1. derece deprem bölgesinde olup $A_0 = 0.40$ alınmıştır.
- Hareketli yük katılım katsayısı n = 0.3 olarak alınmıştır.
- Yapı yerel zemin sınıfı Z2 kabul edilmiş karakteristik periyotlar $T_A = 0.15$ ve $T_B = 0.40$ alınmıştır.
- Bina önem katsayısı olan I = 1.0 alınmıştır.

• Kar yükü, yapılardaki hareketli yükler hareketli yük katılım katsayısı ile deprem hesabına katılmıştır.

Modal çözümleme sırasında, her bir mod için hesaplanan etkin kütlelerin toplamının, hiçbir zaman bina toplam kütlesinin %90'ından daha az olmaması şartı mod birleştirme hesabında dikkate alınmıştır.

4.2 Taşıyıcı Sistem Elemanlarının Ön Boyutlandırılması

Önerilecek taşıyıcı sistemler için bodrum ve normal kat mimari planları aşağıda verilmiştir.

Şekil 4.1 : Bodrum kat mimari planı.

Şekil 4.2 : Zemin kat mimari planı.

4.2.1 Döşemeler

Döşeme kalınlığı TS 500 minimum döşeme kalınlığı şartlarına uyacak şekilde bütün taşıcı sistemler için tüm katlarda 15 cm seçilmiş olup hesap detayları Çizelge 4.1' de gösterilmiştir.

$$h \ge \frac{l_{sn}}{15 + \frac{20}{m}} \left(1 - \frac{\alpha_s}{4}\right)$$
(4.1)

$$h \ge 80 mm \tag{4.2}$$

Döşeme	Büyük	Küçük				
No	Kenar(cm)	Kenar(cm)	m	α_{s}	l _{sn}	h _f min
D01	575	545	1.06	0.50	515.00	13.27
D02	545	340	1.60	0.81	310.00	9.00
D03	585	575	1.02	0.50	545.00	13.76
D04	585	340	1.72	0.82	310.00	9.27
D05	585	345	1.70	0.81	315.00	9.36
D06	575	200	2.88	-	170.00	5.67
D07	340	200	1.70	1.00	170.00	4.76
D08	200	195	1.03	1.00	165.00	3.59
D09	690	545	1.27	0.72	515.00	13.71
DB01	575	165	-	-	150.00	12.50

Çizelge 4.1: Döşeme verileri

4.2.2 Kirişler

Kirişler bütün taşıyıcı sistemlerde, yapının kullanım amacı ve yapısı dikkate alınarak; yüksekliği 60 cm ve genişliği 30 cm olacak şekilde boyutlandırılmıştır.

4.2.3 Kolonlar

Kolonların ön boyutlaması için plan üzerinde yapılan karelaj vasıtasıyla kolonların 1,4G+1,6Q kombinasyonu altında DBYBHY' nin 1. derece deprem bölgesinde yapılacak kolonlar için istenen süneklik şartı dikkate alınarak boyutlandırılmış olup hesap detayları Çizelge 4.2 ve Çizelge 4.3'de gösterilmiştir.

$$A_{c} \ge \frac{N_{dm}}{0.5 \times f_{ck}}$$
(4.3)

	Toplam	Toplam			Toplam	Toplam		
Kolon	döşeme	kiriş	Kolon	Duvar	zati	hareketli		
adı	ağırlığı	ağırlığı	ağırlığı	ağırlığı	yük	yük	G+Q	1,4G+1,6Q
S01	75,70	25,31	21,60	75,60	198,21	34,26	232,47	332,31
S02	97,18	30,04	21,60	80,33	229,15	41,73	270,87	387,56
S03	63,66	22,95	21,60	57,53	165,74	22,94	188,68	268,74
S04	91,30	27,68	21,60	49,20	189,77	32,90	222,67	318,32
S05	56,00	21,77	21,60	38,70	138,07	20,18	158,25	225,58
S06	67,10	23,63	21,60	59,54	171,87	24,18	196,05	279,30
S07	97,46	28,35	21,60	50,40	197,81	35,12	232,93	333,12
S08	59,00	22,44	21,60	39,90	142,94	21,26	164,20	234,13
S09	79,20	25,99	21,60	77,62	204,40	35,52	239,92	342,99
S10	102,23	30,71	21,60	81,53	236,07	43,55	279,62	400,17
S11	88,69	32,43	21,60	72,96	215,68	31,96	247,64	353,09

Çizelge 4.2 : Orta katlar için kolon ön boyut yükleri

Çizelge 4.3 :	Üst kat için	kolon ön	boyut yükleri
----------------------	--------------	----------	---------------

	Toplam	Toplam			Toplam	Toplam		
Kolon	döşeme	kiriş	Kolon	Duvar	zati	hareketli		
adı	ağırlığı	ağırlığı	ağırlığı	ağırlığı	yük	yük	G+Q	1,4G+1,6Q
S01	75,70	25,31	21,60	0,00	122,61	34,26	156,87	226,47
S02	97,18	30,04	21,60	0,00	148,82	41,73	190,54	275,11
S03	63,66	22,95	21,60	0,00	108,21	22,94	131,15	188,20
S04	91,30	27,68	21,60	0,00	140,57	32,90	173,47	249,44
S05	56,00	21,77	21,60	0,00	99,37	20,18	119,55	171,40
S06	67,10	23,63	21,60	0,00	112,32	24,18	136,50	195,94
S07	97,46	28,35	21,60	0,00	147,41	35,12	182,53	262,56
S08	59,00	22,44	21,60	0,00	103,04	21,26	124,30	178,27
S09	79,20	25,99	21,60	0,00	126,79	35,52	162,30	234,32
S10	102,23	30,71	21,60	0,00	154,54	43,55	198,09	286,03
S11	88,69	32,43	21,60	0,00	142,72	31,96	174,68	250,95

Hesaplanan bu yükler neticesinde sistemler için gerekli minimum ve seçilen kolon ön boyutları sistemler için cm cinsinden aşağıda gösterilmiştir.

Kolon adı	Kat no									
Kolon dui	8	7	6	5	4	3	2	1	Ζ	В
S01	196,27	484,27	772,27	1060,27	1348,27	1636,28	1924,28	2212,28	2500,28	2788,28
S02	238,42	574,31	910,20	1246,09	1581,98	1917,87	2253,76	2589,65	2925,54	3261,43
S03	163,10	396,01	628,91	861,81	1094,72	1327,62	1560,53	1793,43	2026,33	2259,24
S04	216,18	492,06	767,94	1043,82	1319,70	1595,58	1871,45	2147,33	2423,21	2699,09
S05	148,55	344,06	539,56	735,07	930,57	1126,08	1321,58	1517,09	1712,60	1908,10
S06	169,82	411,88	653,94	896,01	1138,07	1380,13	1622,20	1864,26	2106,32	2348,39
S07	227,55	516,26	804,97	1093,68	1382,38	1671,09	1959,80	2248,50	2537,21	2825,92
S08	154,50	357,42	560,33	763,25	966,16	1169,08	1371,99	1574,91	1777,82	1980,74
S09	203,08	500,34	797,59	1094,85	1392,10	1689,36	1986,61	2283,87	2581,12	2878,38
S10	247,90	594,71	941,53	1288,34	1635,16	1981,97	2328,79	2675,61	3022,42	3369,24
S11	217,49	523,50	829,51	1135,53	1441,54	1747,55	2053,57	2359,58	2665,59	2971,60

Çizelge 4.4 : Katlar için gerekli ön boyut alanları(cm²).

Kolonadı	6. N	6. Normal kat ve üstü			6. Normal kat ar	ası	Bodrum kat ve 3. kat arası		
KUIUII aui	Kolon X(cm)	Kolon Y(cm)	Alan(cm ²)	Kolon X(cm)	Kolon Y(cm)	Alan(cm ²)	Kolon X(cm)	Kolon Y(cm)	Alan(cm ²)
S01	50	30	1500	60	30	1800	70	40	2800
S02	30	55	1650	30	65	1950	45	75	3375
S03	30	40	1200	30	50	1500	40	60	2400
S04	40	30	1200	50	35	1750	65	45	2925
S05	35	30	1050	40	30	1200	55	35	1925
S06	30	40	1200	30	50	1500	40	60	2400
S07	40	30	1200	50	35	1750	65	45	2925
S08	35	30	1050	45	30	1350	55	40	2200
S09	50	30	1500	60	35	2100	70	45	3150
S10	30	60	1800	35	70	2450	45	80	3600
S11	30	55	1650	30	65	1950	40	75	3000

Çizelge 4.5 : Kolonlar için seçilen ön boyutlar.

4.2.4 Perdeler

Düşey taşıyıcı olarak sistemde konumlandırılacak perdeler yapının rijitliğinin artmasını sağlayarak; yatay yer değiştirmelerin sınırlandırılmasında etkin rol almasıyla ikinci mertebe etkileri sınırlandırmış olurlar. Bunun yanında perde kullanımının yapının hiperstatiklik derecesini düşürdüğü yani sistemin labil duruma geçmeden önce oluşturabileceği plastik mafsal sayısını azalttığı bilinmektedir. Ayrıca yerleştirilen perdelerin yapının rijitlik merkezini kendi üzerlerine çekeceği; kütle merkezine etkiyen yatay yüklerin etkisiyle katın rijitlik merkezi etrafında dönmeye çalışacağı için simetriden uzaklaşan perde yerleşiminin yapının rijitlik merkezini kütle merkezinden uzaklaştıracağı için yapı üzerinde ekstra burulma etkilerine neden olacağı unutulmamalıdır.

Çözümlemede yapının davranışını etkileyen en önemli parametrelerin rijitlik ve kütle matrisleri olduğu dikkate alınırsa, bu çalışmada önerilen taşıyıcı sistemlerin davranışlarında gözlemlenecek farklılığı yaratacak taşıyıcı elemanlar perdelerdir. Taşıyıcı sistemlere eklenecek perdelerin nicel ve nitel özellikleri sistemler için aşağıda açıklanmıştır.

4.2.4.1 Sistem 1 için önerilen perde grubu

Sistem 1 için merdiven ve asansör perdeleri dışındaki düşey taşıyıcılar kolon olarak seçilmiş olup başka perde eleman içermemektedir(Şekil 4.3).

Şekil 4.3 : Sistem 1, kalıp planı.

4.2.4.2 Sistem 2 için önerilen perde grubu

Sistem 2 için asansör ve merdiven perdelerine ek olarak özellikle yapının burulmasını sınırlandırmak amacıyla 4 köşede (2.40mx2.40m) uzunluğunda L perdeler teşkil edilmiştir(

Şekil 4.4).

Şekil 4.4 : Sistem 2, kalıp planı.

4.2.4.3 Sistem 3 için önerilen perde grubu

Sistem 3'de ise iki nolu sisteme benzer şekilde L perdeler teşkil edilmiş olmakla beraber köşe L perdelerle düz perdelerin etkisini karşılaştırabilmek amacıyla y doğrultusuna 2.1m uzunluğunda iki adet perde daha eklenmiş olup düşey taşıyıcı alanını dengelemek için L perdeler 2.15x2.15 boyutlarına düşürülmüştür(Şekil **4.5**).

Şekil 4.5 : Sistem 3 kalıp planı.

4.2.4.4 Sistem 4 için önerilen perde grubu

Sistem 4'de ise rijitlik merkezini ağırlık merkezine yaklaştırmak amacıyla asansör perdelerini dengelemek için sistem 3'e Y doğrultusuna bir düz perde daha eklenmiştir L perdelerin ise boyutları küçültülmüştür.(

Şekil 4.6).

Şekil 4.6 : Sistem 4 kalıp planı.

4.2.4.5 Sistem 5 için önerilen perde grubu

Sistem 5 için öneri ise birbirlerinin türevi olan 2, 3 ve 4 nolu sistemlerden tamamen farklı olarak kütle merkezine yakın teşkil edilmiş 8 adet ek perdeden oluşmaktadır(

Şekil 4.7).

Şekil 4.7 : Sistem 5 kalıp planı.

4.2.4.6 Sistemlerin Sayısal Olarak Karşılaştırılması

Ön boyutlaması yapılmış elemanlar ve önerilen perde gruplarıyla oluşturulan taşıyıcı sistemlerin önemli bazı sayısal özelliklerinin karşılaştırması Çizelge 4.6'da verilmiştir.

Sistem	Sistem	Sistem	G(y)	R(y)	Toplam düşey taşıyıcı
no	$Ix(m^4)$	Iy(m ⁴)	(m)	(m)	alanı(m ²)
1	410,91	188,12	8,80	11,11	12,71
2	550,57	326,24	8,68	9,87	17,55
3	554,98	378,99	8,62	10,09	17,61
4	501,01	370,38	8,54	9,04	17,04
5	784,96	648,01	8,77	9,65	17,68

Çizelge 4.6 : Düşey taşıyıcı eleman verileri

4.3 Yapısal Çözümleme ve Kesit Hesapları

4.3.1 Sistem 1 için çözümleme ve kesit hesapları

Yapısal çözümleme, Computers and Structures Inc. şirketinin SAP2000(Structural Analysis Program) yazılımıyla yapılmış olup istenen kombinasyonlarda yapıdaki kesit zorları ve yer değiştirmelerin tayini için 3 çözümleme yapılmıştır. Düşey yükler için statik çözümlemenin yanında, mod şekilleri ve hakim periyotların belirlenmesi için modal çözümleme ve son olarak da bütün mod şekillerinin depreme olan

katkılarının birleştirildiği mod birleştirme için spektrum çözümlemesi(dinamik çözümleme) yapılmıştır.

Matematik modelin oluşturulmasında ise kiriş ve kolonlar çubuk(frame) eleman olarak, döşeme ve perdeler ise sonlu elemanlar hesabı doğrultusunda shell eleman olarak modellenip sonlu eleman ağı oluşturulmuştur.

Deprem hesabı için hesaplanan kütlelere x ve y yönlerinde ötelenme z ekseni etrafında dönme serbestlikleri verilmiştir. Buna göre her sistem için katların hesaplanan ağırlıklarından türetilen ötelenme kütleleri ve dönme atalet kütleleri hesaplanmıştır.

$$M_{x,y} = \frac{W}{g}$$
(4.4)

$$M_{rz} = \frac{M}{A} \times (I_x + I_y)$$
(4.5)

Burada;

W: Kat ağırlığı

M_{x,y}: X ve Y yönünde ötelenecek kat kütlesi

g: Yer çekimi ivmesi

A: Kat alanı

Ix: Kat döşemesinin X yönündeki atalet momenti

Iy: Kat döşemesinin Y yönündeki atalet momenti

Olarak tanımlanmıştır.

Çizelge 4.7 : Sistem 1 için ötelenme kütleleri ve dönme atalet kütleleri.

Kat No	X ve Y yönünde ötelenen kat kütlesi(Kn.sn2/m)	Z ekseni etrafında dönen kütle ataleti(Knm/sn ²)
8	416,05	28957,15
7	515,82	35901,83
6	515,82	35901,83
5	518,45	36084,87
4	521,08	36267,92
3	521,08	36267,92
2	528,06	36753,21
1	535,03	37238,50
Ζ	535,03	37238,50
В	676,46	47082,15

Her kat için serbestlik derecesi tanınan kütle ve dönme atalet kütleleri hesaplandıktan sonra yapıya etkiyecek deprem yüklerinin hesabına geçilmiştir.

Şekil 4.8 : Sistem 1 üç boyutlu SAP2000 matematik modeli.

4.3.1.1 Eşdeğer deprem yükü hesabı

Bulunan ön boyutlarla yapının matematik modeli SAP2000 programında modellendikten sonra, yapının periyodunun tayini için yapılan ön çözümde modal çözümlemeyle, yapıların hakim periyotları ve mod şekilleri tayin edilmiş ve yapı davranış katsayısı R=7 için katlara etkiyen deprem kuvvetleri hesaplanmıştır. Bulunan yatay kuvvetler her katın kütle merkezine etkitilerek rijit bodrumun üstünde kalan kattaki perdelerin kesme kuvvetleri toplam kat kesme kuvvetine oranına bakılarak DBYBHY'de deprem kuvvetlerinin perde ve çubuk elemanlarla taşındığı yapılar için istenen %75 sınırı tahkik edilmiş, gerekli görülen sistemlerde yapı davranış sayısı düzeltilerek katlara gelen kuvvetler yeniden hesaplanıp çözümleme

tekrar edilerek eşdeğer deprem yükü hesap yöntemi sonlandırılmıştır. Hesap metodu her sistem için aşağıda detaylandırılmıştır.

Yapılan ön çözüm için modal sonuçlar:

Mod No	Periyot(sn)	Ux içinToplam kütle katılımı oranı	Uy içinToplam kütle katılımı oranı	Rz içinToplam kütle katılımı oranı
1	0,8422	0,0029	0,0000	0,1307
2	0,7711	0,0029	0,6411	0,4673
3	0,6903	0,6512	0,6411	0,6471
4	0,2654	0,6517	0,6411	0,6722
5	0,1972	0,7939	0,6411	0,7067
6	0,1952	0,7939	0,7998	0,7901
7	0,1375	0,7939	0,7998	0,8013
8	0,0964	0,8429	0,7998	0,8128
9	0,0879	0,8437	0,7998	0,8196
10	0,0864	0,8437	0,8603	0,8514
11	0,0654	0,8460	0,8603	0,8520
12	0,0591	0,8688	0,8603	0,8621
13	0,0527	0,8697	0,8603	0,8627
14	0,0518	0,8697	0,8922	0,8795
15	0,0458	0,8699	0,8922	0,8799
16	0,0416	0,8857	0,8922	0,8861
17	0,0408	0,8859	0,8922	0,8869
18	0,0367	0,8859	0,9140	0,8983
19	0,0358	0,8864	0,9140	0,8986
20	0,0318	0,8972	0,9140	0,9036
21	0,0289	0,8972	0,9305	0,9123
22	0,0260	0,9048	0,9305	0,9156
23	0,0242	0,9048	0,9445	0,9230
24	0,0225	0,9105	0,9445	0,9254
25	0,0215	0,9105	0,9581	0,9325
26	0,0207	0,9137	0,9581	0,9337
27	0,0200	0,9137	0,9682	0,9390
28	0,0188	0,9137	1,0000	0,9557
29	0,0172	0,9999	1,0000	0,9745
30	0,0139	1,0000	1,0000	1,0000

Çizelge 4.8 : Sistem 1 periyotları ve modların kütle katılımları

Şekil 4.9 : Sistem 1, 1. Mod şekli(Burulma).

Şekil 4.10 : Sistem 1, 2. Mod şekli(Y yönü).

Şekil 4.11 : Sistem 1, 3. Mod şekli(X yönü).

Modal hesabın ardından hakim periyotlar yapının mod şekillerine bakılarak gözlemlendikten sonra spektral ivme ve kat kuvvetleri hesaplanmıştır.

Periyot(X) (sn)	Periyot (Y) (sn)	Yapı ağırlığı (kN)	Spektrum katsayısı S(T)x	Spektrum katsayısı S(T)y	Ra (T _x)	Ra (T _y)	Spektral ivme katsayısı A(Tx)	Spektral ivme katsayısı A(Ty)
0,69028	0,77108	45189,13	1,62	1,48	7	7	0,65	0,59

Çizelge 4.9: Sistem 1 için bulunan ön hesap sonuçları.

28	0,77108 45189,13	1,62	1,48	7	1	0,65	0,5
	Cizelge 4.10 :	Sistem 1	taban ve tep	e kesr	ne kuvve	etleri.	

Sistem no	Taban kesi	ne kuvveti	Tepe kuvveti		
	V _{t(X)} (kN)	V _{t(y)} (kN)	$\Delta F_N(X)(kN)$	$\Delta F_{\rm N}({\rm Y})({\rm kN})$	
1	4172,19	3818,60	281,62	257,76	

Taban ve tepe kesme kuvvetlerinin bulunmasının ardından katlara gelen deprem kuvvetleri bulunmuştur.

Kat no	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Z	5248,64	3,00	15745,92	88,94
1	5248,64	6,00	31491,84	177,89
2	5180,24	9,00	46622,16	263,35
3	5111,84	12,00	61342,08	346,50
4	5111,84	15,00	76677,60	433,12
5	5086,04	18,00	91548,72	517,12
6	5060,24	21,00	106265,04	600,25
7	5060,24	27,00	136626,47	771,75
8	4081,41	30,00	122442,35	691,63

Çizelge 4.11 : Sistem 1 için X yönü için kat kesme kuvvetleri.

Çizelge 4.12 : Sistem 1 için Y yönü için kat kesme kuvvetleri.

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Ζ	5248,64	3,00	15745,92	81,41
1	5248,64	6,00	31491,84	162,81
2	5180,24	9,00	46622,16	241,03
3	5111,84	12,00	61342,08	317,13
4	5111,84	15,00	76677,60	396,42
5	5086,04	18,00	91548,72	473,30
6	5060,24	21,00	106265,04	549,38
7	5060,24	27,00	136626,47	706,35
8	4081,41	30,00	122442,35	633,02

Rijit bodrum kat için ise DBYBHY' de istenen hesaplar doğrultusunda bodrum kat için oluşacak eşdeğer deprem kuvveti hesaplanmıştır.

Çizelge 4.13 : Sistem 1 için bulunan bodrum kat kesme kuvvetleri.

Sistem no	Wbk(kN)	Fbk(kN)
1	6636,07	1769,62

Diaphragm	Diaphragm Z	FX	FY	MZ	X	Y
Diafram_30,	30,	973,25	0,	0,	e	
Diafram_27,	27,	771,75	0,	0,	8	
Diafram_24,	24,	600,25	0,	0,	12	
Diafram_21,	21,	517,12	0,	0,		
Diafram_18,	18,	433,12	0,	0,		
Diafram_15,	15,	346,50	0,	0,		
Diafram_12,	12,	263,35	0,	0,		
Diafram_9,	9,	177,89	0,	0,		
Diafram_6,	6,	88,94	0,	0,		
Diafram_3,	3,	1769,62	0,	0,		
		8		/ /		
User Spec	ified Application F	Point				
		1.1.0.1				-

Şekil 4.12 : Bulunan eşdeğer deprem yüklerinin diyaframlara tanıtılması.

Eşdeğer deprem yükü yöntemi için bulunan kat kesme kuvvetleriyle statik çözümleme yapılmış ve seçilen yapı davranış katsayısı zemin perdelerinde tahkik edilmiştir.

Deprem yönü	Vt(kN)	Vp(kN)	αs
EX	4172,16	2915,26	0,70
EX(+0,05)	4172,16	2954,89	0,71
EX(-0,05)	4172,17	2875,64	0,69
EY	3818,60	2820,79	0,74
EY(+0,05)	3818,58	2820,96	0,74
EY(-0,05)	3818,58	2820,60	0,74

Çizelge 4.14 : Sistem 1 taban kesme kuvveti ve perde kesme kuvveti oranları.

Yapı davranış katsayısı istenen perde kesme oranları için geçerli durumdadır.

4.3.1.2 Mod birleştirme hesabı

Yapının mod şekillerinin katkılarının birleştirilmesiyle, oluşacak atalet kuvvetlerinin bulunduğu mod birleştirme yöntemi için; çözümleme programı vasıtasıyla yapılmış olan modal çözümleme sonucunda elde edilen mod şekilleri ile programa girilen spektral ivme- zaman grafikleri vasıtasıyla katlarda oluşacak yatay kuvvetler bulunmuştur. Modal kütle katılımı kontrolüne dayanarak spektrum çözümlemesi sonucunda bulunan taban kesme kuvveti eşdeğer deprem hesabı yöntemi ile bulunan taban kesme kuvvetiyle karşılaştırılarak gerekli büyütme yapılmıştır.

SAP2000'e girilen spektrum grafiğinde deprem yükü azaltma katsayısı spektral ivme grafiğinde yerine konarak grafik çarpan değeri S(T)/R olarak elde edilmiştir, oluşturulan yükleme için çarpan olarak da A₀.I.g için 3,924 girilmiştir. Başlangıç olarak yapı davranış katsayısı 7 alınmış olup, ikinci aşamada taban kesme kuvvetinin perde taban kesme kuvvetine oranına bakılarak düzeltilen davranış katsayısı ile deprem yükü azaltma katsayısı düzenlenerek son şekli ile spektrum fonksiyonu elde edilmiştir.

Т	S(T)	S(T)/R	R
0,00	1,00	0,67	1,50
0,05	1,50	0,45	3,33
0,10	2,00	0,39	5,17
0,15	2,50	0,36	7,00
0,20	2,50	0,36	7,00
0,30	2,50	0,36	7,00
0,40	2,50	0,36	7,00
0,45	2,28	0,33	7,00
0,50	2,09	0,30	7,00
0,55	1,94	0,28	7,00
0,75	1,51	0,22	7,00
1,00	1,20	0,17	7,00
1,25	1,00	0,14	7,00
1,50	0,87	0,12	7,00
1,75	0,77	0,11	7,00
2,00	0,69	0,10	7,00
2,25	0,63	0,09	7,00

Çizelge 4.15: Ön spektrum çözümü için X ve Y yönü için kullanılan spektrum grafiği.

unction Na	me	
FON	IK.	0,05
) efine Func	tion	
Peri	od Acceleration	
0,	0,667	Add
0, 0,05 0,1 0,15 0,2 0,3 0,4 0,45 0,5	▲ 0.667 ■ 0.45 □.39 □.36 0.36 0.36 0.36 0.33 • 0.3 • 0.3	Modify Delete
	Display Graph	(8.3393 , 0.0366)

Şekil 4.13 : SAP2000 girilen başlangıç spektrum grafiği.

Çizelge 4.16 : Spektrum çözümlemesi sonucunda çıkan yapı davranış katsayıları.

Sistem no	Х	Y		
1	7	6,98		

Bulunan yeni davranış katsayıları ile spektrum grafikleri x ve y yönleri için yeniden türetilmiştir

т		X yönü			Y yönü			
1	S(T)	S(T)/Ra	Ra	S(T)	S(T)/Ra	Ra		
0	1	0,67	1,5	1	0,67	1,5		
0,05	1,5	0,45	3,33	1,5	0,45	3,33		
0,1	2	0,39	5,17	2	0,39	5,15		
0,15	2,5	0,36	7	2,5	0,36	6,98		
0,2	2,5	0,36	7	2,5	0,36	6,98		
0,3	2,5	0,36	7	2,5	0,36	6,98		
0,4	2,5	0,36	7	2,5	0,36	6,98		
0,45	2,28	0,33	7	2,28	0,33	6,98		
0,5	2,09	0,3	7	2,09	0,3	6,98		
0,55	1,94	0,28	7	1,94	0,28	6,98		
0,75	1,51	0,22	7	1,51	0,22	6,98		
1	1,2	0,17	7	1,2	0,17	6,98		
1,25	1	0,14	7	1	0,14	6,98		
1,5	0,87	0,12	7	0,87	0,12	6,98		
1,75	0,77	0,11	7	0,77	0,11	6,98		
2	0,69	0,1	7	0,69	0,1	6,98		
2,25	0,63	0,09	7	0,63	0,09	6,98		

Çizelge 4.17 : Sistem 1 için X ve Y yönlerinde son şekli ile spektrum grafikleri.

Mod birleştirme çözümlemesi sonucu bulunan taban kesme kuvvetleri eşdeğer deprem yükü hesabı bulunan taban kesme kuvvetleriyle karşılaştırılıp gerekli büyütmeler yapılmıştır.

Deprem yönü	V _{tB} (kN)	V _t (kN)	β	βV_t	$\beta V_t\!/V_{tB}$
X	3594,46	5941,81	0,90	5347,63	1,49
у	3256,64	5588,22	0,90	5029,40	1,54

Çizelge 4.18 : Sistem 1, mod birleştirme ve eşdeğer deprem hesabı taban kesme kuvvetleri.

Karşılaştırılan yöntemler arasından eşdeğer deprem kuvveti yöntemi düzensizlik kontrolleri ve kesit hesaplarında dikkate alınmıştır. Hesabın bu aşamasında taşıyıcı sistemin kesit zorlarına ve yer değiştirme değerlerine ulaşılmıştır. Bulunan bu çerçeve sonuçlarının DBYBHY düzensizlik, göreli kat ötelemeleri ve ikinci mertebe etkileri kontrolleri yapılmıştır.

4.3.1.3 A1 burulma düzensizliği kontrolü

Bulunan çerçeve yer ve şekil değiştirme sonuçları kayıt altına alınarak A1 burulma düzensizliği kontrolleri ±0.05 ek dış merkezlik etkisi de dikkate alınarak aşağıda detaylandırılmıştır.

Şekil 4.14 : Y doğrultusunda burulan Sistem 1'in 3 boyutlu görüntüsü.

Kat	$d_{i\text{-max}}(m)$	$d_{i\text{-min}}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0237	0,0193	0,0025	0,0019	0,0022	1,13	YOK
7	0,0212	0,0174	0,0028	0,0021	0,0025	1,14	YOK
6	0,0184	0,0152	0,0030	0,0023	0,0027	1,13	YOK
5	0,0154	0,0129	0,0030	0,0025	0,0027	1,09	YOK
4	0,0125	0,0104	0,0030	0,0025	0,0028	1,08	YOK
3	0,0095	0,0079	0,0029	0,0025	0,0027	1,08	YOK
2	0,0065	0,0054	0,0025	0,0022	0,0024	1,05	YOK
1	0,0040	0,0031	0,0023	0,0019	0,0021	1,09	YOK
Ζ	0,0018	0,0013	0,0018	0,0013	0,0015	1,16	YOK

Çizelge 4.19 : Sistem 1 X yönü için A1 burulma düzensizliği.

Çizelge 4.20 : Sistem 1, X (e=+0,05) yönünde burulma düzensizliği.

Kat	$d_{i-max}(m)$	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0220	0,0205	0,0022	0,0022	0,0022	0,99	YOK
7	0,0198	0,0183	0,0025	0,0024	0,0024	1,01	YOK
6	0,0174	0,0159	0,0026	0,0026	0,0026	1,01	YOK
5	0,0148	0,0133	0,0028	0,0026	0,0027	1,05	YOK
4	0,0120	0,0107	0,0029	0,0026	0,0027	1,06	YOK
3	0,0090	0,0081	0,0029	0,0025	0,0027	1,07	YOK
2	0,0062	0,0056	0,0026	0,0022	0,0024	1,09	YOK
1	0,0036	0,0035	0,0021	0,0019	0,0020	1,05	YOK
Ζ	0,0015	0,0015	0,0015	0,0015	0,0015	0,97	YOK

Çizelge 4.21 : Sistem 1, X (e=-0,05) yönünde burulma düzensizliği.

Kat	$d_{i-max}(m)$	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0269	0,0166	0,0028	0,0017	0,0023	1,24	VAR
7	0,0241	0,0149	0,0031	0,0018	0,0025	1,26	VAR
6	0,0210	0,0130	0,0034	0,0020	0,0027	1,26	VAR
5	0,0176	0,0110	0,0034	0,0021	0,0027	1,22	VAR
4	0,0142	0,0089	0,0034	0,0022	0,0028	1,22	VAR
3	0,0108	0,0067	0,0034	0,0021	0,0027	1,23	VAR
2	0,0074	0,0046	0,0029	0,0019	0,0024	1,20	VAR
1	0,0046	0,0027	0,0026	0,0016	0,0021	1,24	VAR
Ζ	0,0020	0,0011	0,0020	0,0011	0,0016	1,29	VAR

Kat	d _{i-max} (m)	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0251	0,0251	0,0029	0,0029	0,0029	1,00	YOK
7	0,0222	0,0222	0,0030	0,0030	0,0030	1,00	YOK
6	0,0191	0,0191	0,0032	0,0032	0,0032	1,00	YOK
5	0,0159	0,0159	0,0032	0,0032	0,0032	1,00	YOK
4	0,0127	0,0127	0,0032	0,0032	0,0032	1,00	YOK
3	0,0096	0,0096	0,0030	0,0030	0,0030	1,00	YOK
2	0,0065	0,0065	0,0027	0,0027	0,0027	1,00	YOK
1	0,0039	0,0039	0,0022	0,0022	0,0022	1,00	YOK
Ζ	0,0017	0,0017	0,0017	0,0017	0,0017	1,00	YOK

Çizelge 4.22 : Sistem 1, Y yönünde burulma düzensizliği.

Çizelge 4.23 : Sistem 1, Y (e=+0,05) yönünde burulma düzensizliği.

Kat	d _{i-max} (m)	d _{i-min} (m)	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ýbi>1,2
8	0,0315	0,0186	0,0035	0,0023	0,0029	1,20	YOK
7	0,0281	0,0163	0,0037	0,0024	0,0030	1,22	VAR
6	0,0243	0,0139	0,0040	0,0024	0,0032	1,25	VAR
5	0,0204	0,0115	0,0040	0,0024	0,0032	1,26	VAR
4	0,0163	0,0091	0,0040	0,0023	0,0032	1,27	VAR
3	0,0123	0,0068	0,0039	0,0022	0,0030	1,29	VAR
2	0,0084	0,0047	0,0034	0,0019	0,0027	1,28	VAR
1	0,0050	0,0028	0,0028	0,0015	0,0022	1,30	VAR
Ζ	0,0021	0,0012	0,0021	0,0012	0,0017	1,27	VAR

Çizelge 4.24 : Sistem 1, Y (e=-0,05) yönünde burulma düzensizliği.

Kat	d _{i-max} (m)	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ýbi>1,2
8	0,0315	0,0186	0,0035	0,0023	0,0029	1,20	YOK
7	0,0281	0,0163	0,0037	0,0024	0,0030	1,22	VAR
6	0,0243	0,0139	0,0040	0,0024	0,0032	1,25	VAR
5	0,0204	0,0115	0,0040	0,0024	0,0032	1,26	VAR
4	0,0163	0,0091	0,0040	0,0023	0,0032	1,27	VAR
3	0,0123	0,0068	0,0039	0,0022	0,0030	1,29	VAR
2	0,0084	0,0047	0,0034	0,0019	0,0027	1,28	VAR
1	0,0050	0,0028	0,0028	0,0015	0,0022	1,30	VAR
Ζ	0,0021	0,0012	0,0021	0,0012	0,0017	1,27	VAR

Hesaplanan göreli yer değiştirmelere baktığımızda 1 nolu sistemin A1 burulma düzensizliğine sahip olduğu görülmüştür. Bunun için dış merkezlik değeri düzenlenecektir.

D _i Dış merke	zlik büyütme	Yeni dış merkezlik		
katsa	ay1S1	değeri		
X yönü	Y yönü	X yönü	Y yönü	
1,160	1,170	0,058	0,059	

Çizelge 4.25 : Sistem 1 için yeni dış merkezlik değerleri.

Burada Sistem 1 için yeni ek dış merkezlik değerleri yeniden hesaplanmıştır ve sistem 1 için hesabın bundan sonraki evrelerinde X yönü için ± 0.058 , Y yönü için ise ± 0.059 ek dış merkezlik değerleri esas alınmıştır.

4.3.1.4 A2 Döşeme düzensizlikleri kontrolü

Sistemde sadece asansörler için bulunan 2 tane ufak döşeme yırtığı vardır, yapının kullanımı için birkaç ufak mekanik ve elektrik şaftı açılması olası olmakla beraber sonuçta kat döşemelerinde ani rijitlik değişimine neden olacak bir düzensizlik bulunmamaktadır.

Kat	Kat Alanı(m ²)	Boşluk Alanı(m ²)	Oran	Düzensizlik Ab/A >1/3
8	383,20	15,40	0,040	YOK
7	384,20	15,40	0,043	YOK
6	385,20	15,40	0,045	YOK
5	386,20	15,40	0,048	YOK
4	387,20	15,40	0,050	YOK
3	388,20	15,40	0,053	YOK
2	389,20	15,40	0,055	YOK
1	390,20	15,40	0,057	YOK
Ζ	391,20	15,40	0,060	YOK

Cizelge 4.26 : Sistem 1, A2 döşeme düzensizliği kontrolleri.

4.3.1.5 A3 Planda çıkıntılar bulunması durumu

Yapı dikdörtgen olup planda çıkıntılar içermemektedir, dolayısıyla Sistem 1 A3 düzensizliğine sahip değildir.

4.3.1.6 B1 komşu katlar arası dayanım düzensizliği

Yapıda teşkil edilen düşey taşıyıcı elemanlar ve mimari duvarlar dikkate alınarak yapılan B1 zayıf kat hesapları aşağıda detaylandırılmıştır.

Kat	Kolon Alanı(m ²)	Perde Alanı(m ²)	Duvar Alanı(m ²)	Etkili Toplam Alan(m ²)	ήci	Düzensizlik ýci <0,8
8	3,00	3,12	13,40	10,14		YOK
7	3,00	3,12	13,40	10,14	1,00	YOK
6	3,00	3,12	13,40	10,14	1,00	YOK
5	3,86	3,12	13,40	11,00	1,08	YOK
4	3,86	3,12	13,40	11,00	1,00	YOK
3	3,86	3,12	13,40	11,00	1,00	YOK
2	6,14	3,12	13,40	13,28	1,21	YOK
1	6,14	3,12	13,40	13,28	1,00	YOK
Ζ	6,14	3,12	13,40	13,28	1,00	YOK

Çizelge 4.27 : Sistem 1, X yönü için B1 zayıf kat düzensizliği hesap detayları.

Çizelge 4.28 : Sistem 1, Y yönü için B1 zayıf kat düzensizliği hesap detayları.

Kat	Kolon Alanı(m ²)	Perde Alanı(m ²)	Duvar Alanı(m ²)	Etkili Toplam Alan(m ²)	ήci	Düzensizlik ýci <0,8
8	3,00	3,45	10,20	9,51		YOK
7	3,00	3,45	10,20	9,51	1,00	YOK
6	3,00	3,45	10,20	9,51	1,00	YOK
5	3,86	3,45	10,20	10,37	1,09	YOK
4	3,86	3,45	10,20	10,37	1,00	YOK
3	3,86	3,45	10,20	10,37	1,00	YOK
2	6,14	3,45	10,20	12,65	1,22	YOK
1	6,14	3,45	10,20	12,65	1,00	YOK
Ζ	6,14	3,45	10,20	12,65	1,00	YOK

Hesap detaylarında görüldüğü üzere Sistem 1, B1 Zayıf Kat düzensizliğine sahip değildir.

4.3.1.7 B2 Komşu katlar arası rijitlik düzensizliği

Sistem 1 için her iki deprem yönü için ek dış merkezliklerde dikkate alınarak kat ötelemeleri kontrol edilmiş ve yapıda B2 yumuşak kat düzensizliği olup olmadığı araştırılmıştır.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00223	3,00	0,00074	-	0,91	YOK
7	0,00246	3,00	0,00082	1,10	0,93	YOK
6	0,00266	3,00	0,00089	1,08	0,98	YOK
5	0,00272	3,00	0,00091	1,02	0,98	YOK
4	0,00277	3,00	0,00092	1,02	1,02	YOK
3	0,00271	3,00	0,00090	0,98	1,14	YOK
2	0,00238	3,00	0,00079	0,88	1,15	YOK
1	0,00206	3,00	0,00069	0,87	1,34	YOK
Ζ	0,00153	3,00	0,00051	0,74	-	YOK

Çizelge 4.29 : Sistem 1, X yönünde yumuşak kat düzensizliği.

Çizelge 4.30 : Sistem 1, X(+0,058) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00221	3,00	0,00074	-	0,91	YOK
7	0,00243	3,00	0,00081	1,10	0,93	YOK
6	0,00262	3,00	0,00087	1,08	0,97	YOK
5	0,00269	3,00	0,00090	1,03	0,98	YOK
4	0,00275	3,00	0,00092	1,02	1,02	YOK
3	0,00268	3,00	0,00089	0,98	1,14	YOK
2	0,00236	3,00	0,00079	0,88	1,16	YOK
1	0,00204	3,00	0,00068	0,86	1,35	YOK
Ζ	0,00151	3,00	0,00050	0,74	-	YOK

Çizelge 4.31 : Sistem 1, X(-0,058) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ýki > 2
8	0,00226	3,00	0,00075	-	0,91	YOK
7	0,00250	3,00	0,00083	1,10	0,93	YOK
6	0,00269	3,00	0,00090	1,08	0,98	YOK
5	0,00274	3,00	0,00091	1,02	0,98	YOK
4	0,00280	3,00	0,00093	1,02	1,02	YOK
3	0,00274	3,00	0,00091	0,98	1,15	YOK
2	0,00239	3,00	0,00080	0,87	1,15	YOK
1	0,00208	3,00	0,00069	0,87	1,33	YOK
Ζ	0,00156	3,00	0,00052	0,75	-	ҮОК

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki> 2
8	0,00290	3,00	0,00097	-	0,95	YOK
7	0,00305	3,00	0,00102	1,05	0,96	YOK
6	0,00317	3,00	0,00106	1,04	0,99	YOK
5	0,00321	3,00	0,00107	1,01	1,01	YOK
4	0,00318	3,00	0,00106	0,99	1,05	YOK
3	0,00303	3,00	0,00101	0,95	1,14	YOK
2	0,00266	3,00	0,00089	0,88	1,22	YOK
1	0,00219	3,00	0,00073	0,82	1,30	YOK
Ζ	0,00169	3,00	0,00056	0,77	-	YOK

Çizelge 4.32 : Sistem 1, Y yönünde yumuşak kat düzensizliği.

Çizelge 4.33 : Sistem 1, Y(+0,059) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ýki > 2
8	0,00290	3,00	0,00096	-	0,95	УОК
7	0,00305	3,00	0,00102	1,05	0,96	YOK
6	0,00317	3,00	0,00106	1,04	0,99	YOK
5	0,00321	3,00	0,00107	1,01	1,01	YOK
4	0,00318	3,00	0,00106	0,99	1,05	YOK
3	0,00303	3,00	0,00101	0,95	1,14	YOK
2	0,00266	3,00	0,00089	0,88	1,22	YOK
1	0,00219	3,00	0,00073	0,82	1,30	YOK
Ζ	0,00168	3,00	0,00056	0,77	-	ҮОК

Çizelge 4.34 : Sistem 1, Y(-0,059) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00290	3,00	0,00096	-	0,95	YOK
7	0,00305	3,00	0,00102	1,05	0,96	YOK
6	0,00317	3,00	0,00106	1,04	0,99	YOK
5	0,00321	3,00	0,00107	1,01	1,01	YOK
4	0,00318	3,00	0,00106	0,99	1,05	YOK
3	0,00303	3,00	0,00101	0,95	1,14	YOK
2	0,00266	3,00	0,00089	0,88	1,22	YOK
1	0,00219	3,00	0,00073	0,82	1,30	YOK
Ζ	0,00168	3,00	0,00056	0,77	-	YOK

Hesap detaylarında görüldüğü üzere Sistem 1 B2 yumuşak kat düzensizliğine sahip değildir.
4.3.1.8 Göreli kat ötelemeleri ve ikinci mertebe etkileri kontrolü

Çözümleme sonucu bulunan yer değiştirmelerle yapılan göreli kat ötelemelerinin ve ikinci mertebe etkilerinin sınırlandırılması kontrolleri aşağıda detaylandırılmıştır.

Kat	d _{i-max} (m)	hi(m)	$\Delta max(m)$	δimax	δi/hi	Koşul < 0,02
8	0,02692	3,00	0,00281	0,01966	0,00655	TAMAM
7	0,02411	3,00	0,00314	0,02201	0,00734	TAMAM
6	0,02096	3,00	0,00338	0,02369	0,00790	TAMAM
5	0,01758	3,00	0,00336	0,02351	0,00784	TAMAM
4	0,01422	3,00	0,00342	0,02393	0,00798	TAMAM
3	0,01080	3,00	0,00336	0,02349	0,00783	TAMAM
2	0,00745	3,00	0,00286	0,02001	0,00667	TAMAM
1	0,00459	3,00	0,00257	0,01800	0,00600	TAMAM
Ζ	0,00202	3,00	0,00202	0,01411	0,00470	TAMAM

Çizelge 4.35 : Sistem 1, X yönü göreli kat ötelemeleri.

Çizelge 4.36 : Sistem 1, Y yönü göreli kat ötelemeleri.

Kat	d _{i-max} (m)	hi(m)	$\Delta max(m)$	δimax	δi/hi	Koşul < 0,02
8	0,03152	3,00	0,00347	0,02428	0,00809	TAMAM
7	0,02805	3,00	0,00373	0,02614	0,00871	TAMAM
6	0,02432	3,00	0,00396	0,02773	0,00924	TAMAM
5	0,02036	3,00	0,00403	0,02818	0,00939	TAMAM
4	0,01633	3,00	0,00405	0,02834	0,00945	TAMAM
3	0,01228	3,00	0,00390	0,02732	0,00911	TAMAM
2	0,00838	3,00	0,00340	0,02378	0,00793	TAMAM
1	0,00498	3,00	0,00284	0,01989	0,00663	TAMAM
Ζ	0,00214	3,00	0,00214	0,01497	0,00499	TAMAM

Sistem 1 için her iki deprem yönü doğrultusunda da etkin göreli kat ötelemeleri maksimum sınırların altındadır.

Çizelge 4.37 : Sistem 1, X yönü için 2. Mertebe etkileri.

Kat	$\Delta ort(m)$	w _j (kN)	(Δi) _{ort} xwj	V _i (kN)	Hi(m)	Vihi	θi	Koşul < 0,12
8	0,00223	4081,41	9,11991	973,25	3,00	2919,76	0,00312	TAMAM
7	0,00246	5060,24	12,45072	771,75	3,00	2315,26	0,00538	TAMAM
6	0,00266	5060,24	13,43747	600,25	3,00	1800,76	0,00746	TAMAM
5	0,00272	5086,04	13,81877	517,12	3,00	1551,37	0,00891	TAMAM
4	0,00277	5111,84	14,17002	433,12	3,00	1299,37	0,01091	TAMAM
3	0,00271	5111,84	13,85820	346,50	3,00	1039,50	0,01333	TAMAM
2	0,00238	5180,24	12,31084	263,35	3,00	790,05	0,01558	TAMAM
1	0,00206	5248,64	10,80170	177,89	3,00	533,66	0,02024	TAMAM
Z	0,00153	5248,64	8,04354	88,94	3,00	266,83	0,03014	TAMAM

Çizelge 4.38 : Sistem 1, Y yönü için 2. Mertebe etkileri.

Kat	$\Delta ort(m)$	ort(m) w _i (kN) (Δi) _{ort} xw		V _i (kN)) Hi(m) Vihi		θi	Koşul < 0,12
8	0,00290	4081,41	11,81976	890,77	3,00	2672,32	0,00442	TAMAM
7	0,00305	5060,24	15,42361	706,35	3,00	2119,04	0,00728	TAMAM
6	0,00317	5060,24	16,05614	549,38	3,00	1648,15	0,00974	TAMAM
5	0,00321	5086,04	16,31093	473,30	3,00	1419,90	0,01149	TAMAM
4	0,00318	5111,84	16,26076	396,42	3,00	1189,25	0,01367	TAMAM
3	0,00303	5111,84	15,47354	317,13	3,00	951,40	0,01626	TAMAM
2	0,00266	5180,24	13,76390	241,03	3,00	723,10	0,01903	TAMAM
1	0,00219	5248,64	11,47353	162,81	3,00	488,43	0,02349	TAMAM
Z	0,00169	5248,64	8,84396	81,41	3,00	244,22	0,03621	TAMAM

Sistem 1 için 2. Mertebe gösterge değeri DBYBHY sınır değerinden daha düşüktür.

4.3.1.9 Sistem 1 birinci kat kiriş kesit hesapları

Sistem 1 birinci kat kirişleri boyuna donatı hesabında daha önce belirtilen kombinasyonlar için SAP2000 V15 programı vasıtasıyla TS500 ilkelerine göre gerekli donatı alanları hesaplatılarak kiriş için gerekli açıklık ve mesnet donatı alanları elde edilmiştir. Bu alanlar baz alınarak kiriş boyuna donatıları seçilmiştir. Donatı bindirmeleri kiriş açıklıklarına gelecek şekilde seçimler yapılmış olup mesnetlerde gereken düğüm noktalarında ek donatılar öngörülmüştür. Çerçeve

oluşturan donatı devamlılığı olan, ek donatıların beraber kullanıldığı kirişler ve tek başına çalışan kirişlerin donatı seçimleri aşağıda detaylandırılmıştır.

Kiriş no	Donatı lifi	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı	Kiriş no	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı	Kiriş no	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı
V 101	Üst donatı	4Ø12	3Ø14	2Ø16	K102	-	3Ø14	-	V102	4Ø12	3Ø14	2Ø16
K 101	Alt donatı	-	3Ø14	-	K102	-	3Ø14	-	K105	-	3Ø16	-
V104	Üst donatı	2Ø14	3Ø14	2Ø14	V105	-	3Ø14	2Ø14	V 106	-	3Ø16	3Ø16
K 104	Alt donatı	-	3Ø14	-	K 105	2Ø14	3Ø14	-	K 100	3Ø16	3Ø14	1Ø16
V107	Üst donatı	2Ø14	3Ø14	2Ø14	V109	-	3Ø14	2Ø14	V 100	-	3Ø14	2Ø16
K107	Alt donatı	-	3Ø14	-	K108	2Ø14	3Ø14	-	K109	2Ø12	3Ø14	-
V110	Üst donatı	2Ø16	3Ø14	2Ø16	V111	-	3Ø16	2Ø16				
K110	Alt donatı	-	3Ø14	-	K III	2Ø16	3Ø14	1Ø12				
V114	Üst donatı	2Ø16	3Ø14	3Ø16	V115	-	3Ø14	-	V116	4Ø12	3Ø14	4Ø12
K 114	Alt donatı	-	3Ø14	-	KI13	1Ø12	3Ø14	1Ø12	K110	-	3Ø14	-
V117	Üst donatı	3Ø12	3Ø14	3Ø16	1/110	-	3Ø14	-	V110	4Ø12	3Ø14	1Ø16
K117	Alt donatı	-	3Ø14	1Ø12	KII8	-	3Ø14	-	K119	-	3Ø14	-
V120	Üst donatı	2Ø14	3Ø14	3Ø16	V121	-	3Ø14	-	V122	5Ø12	3Ø14	1Ø14
K120	Alt donatı	-	3Ø14	-	N 121	-	3Ø14	-	N 122	2Ø12	3Ø14	-

Çizelge 4.39 : Sistem 1, birinci kat çerçeve oluşturan kirişler için seçilen boyuna donatılar.

Çizelge 4.40 : Sistem 1, birinci kat balkon ve perde bağ kirişleri boyuna donatıları.

Kiriş no	Donatı lifi	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı
	Üst donatı	3Ø16	3Ø14	3Ø16
K112	Alt donatı	3Ø12	3Ø14	3Ø12
	Üst donatı	3Ø16	3Ø14	3Ø16
K113	Alt donatı	3Ø12	3Ø14	3Ø12
	Üst donatı	-	2Ø14	-
K123	Alt donatı	-	3Ø14	-
	Üst donatı	-	2Ø14	-
K124	Alt donatı	-	3Ø14	-
	Üst donatı	-	2Ø14	-
K125	Alt donatı	-	3Ø14	-
	Üst donatı	2Ø14	3Ø14	3Ø14
K126	Alt donatı	-	3Ø14	-

Birinci kat kirişleri etriye hesabında ise süneklik düzeyi yüksek kiriş kabulü gereği donatı seçiminde baz alınacak V_e kesme kuvveti hesabı yapılmıştır. Kiriş uç momentlerinin hesaplanmasının ardından, pekleşmeli moment kapasiteleri bulunup uç kesme kuvvetlerine ulaşılmış olup bulunan Ve kesme kuvveti R=2 alınarak yenilenen kesme değeriyle karşılaştırılarak, dizayn kesme kuvveti olarak tayin edilmiştir. Burada V_{cr} beton kapasitesi kirişler için çıkarıldıktan sonra etriyelerin karşılaması gereken V_w çelik dizayn kuvvetine ulaşılmıştır. Bulunan tasarım kesme kuvvetleri ve seçilen etriye aralıkları Çizelge 4.41'de gösterilmiştir.

Kiriş no	Vei(kN)	Vej(kN)	Vi(R=2) (kN)	Vj(R=2) (kN)	Vwi(kN)	Vwj(kN)	i ucu sıklaştırma bölgesi etriye aralığı (cm)	Kiriş ortası için seçilen etriye aralığı(cm)	j ucu sıklaştırma bölgesi etriye aralığı (cm)
K101	168.42	158.71	238.20	223.06	59.22	49.51	11	25	11
K102	155.16	164.60	243.60	252.79	155.16	164.60	11	26	11
K103	153.46	151.21	168.60	168.60	44.26	42.01	11	28	11
K104	156.44	134.75	187.14	196.50	47.24	25.55	11	27	11
K105	186.18	194.80	299.32	328.53	186.18	194.80	11	22	11
K106	221.80	355.75	547.65	625.17	221.80	355.75	11	12	9
K107	154.88	134.47	184.47	199.05	45.68	25.27	11	28	11
K108	153.22	202.81	297.57	323.43	153.22	202.81	11	21	11
K109	201.12	467.33	509.38	99.20	201.12	467.33	11	9	7
K110	183.51	159.21	234.53	223.99	74.31	50.01	11	23	11
K111	147.99	206.72	302.91	288.23	147.99	206.72	11	21	11
K112	179.58	181.55	170.69	170.69	170.69	170.69	11	24	11
K113	179.06	152.11	135.62	115.38	135.62	115.38	11	24	11
K114	140.84	149.17	195.56	193.48	31.64	39.97	11	29	11
K115	321.54	313.99	423.30	-437.81	321.54	313.99	10	13	10
K116	136.62	150.07	188.916	204.51	27.42	40.87	11	29	11
K117	146.10	170.20	208.11	220.21	36.90	61.00	11	25	11
K118	274.91	278.68	389.91	393.38	274.91	278.68	11	15	11
K119	154.68	132.69	220.98	128.45	45.48	19.25	11	28	11
K120	132.20	158.33	160.78	239.83	23.00	49.13	11	27	11
K121	289.10	268.23	128.45	149.38	128.45	149.38	11	15	11
K122	164.60	138.15	325.38	237.83	164.60	138.15	11	26	11
K123	-	-	26.32	40.80	26.32	40.80	11	26	11
K124	-	-	31.22	45.37	31.22	45.37	11	14	11
K125	-	-	31.10	21.20	31.10	21.20	11	30	11
K126	124.60	111.24	82.98	56.32	82.98	56.32	11	30	11

Çizelge 4.41 : Sistem 1, birinci kat tasarım kesme kuvvetleri ve bulunan etriye aralıkları.

4.3.1.10 Sistem 1 birinci kat kolon kesit hesapları

Kolon boyuna donatı hesabında kolonların yanal ötelenmesinin engellenip engellenmediği araştırılmıştır bunu için TS 500 yatay ötelenme ölçütü hesabı yapılmıştır(Denklem (4.6)).

$$\varphi = 1.5 \times \Delta_{i} \times \frac{\sum \frac{N_{di}}{l_{i}}}{V_{fi}} \le 0.05$$
(4.6)

Burada;

φ: Yatay ötelenme ölçütü

 Δ_i : i katında göreli kat ötelemesi

N_{di}: Tasarım eksenel kuvveti

V_{fi}: i katı toplam kesme kuvveti

l_i: i katı kolon boyu eksenden eksene

olarak verilmiştir.

Çizelge 4.42 : Sistem 1, birinci kat yatay ötelenme ölçütü değerleri.

Hesap	Yatay ötelenme
yönü	ölçütü
Х	0.009
Y	0.010

Sistem 1 için bulunan yatay ötelenme ölçütü değeri 0.05den küçüktür. Sistem 1 ötelenmesi önlenmiş sistem kabul edilecektir.

Kolon narinliği hesapları;

Kolon etkili boy katsayısı k=1 alınarak kolon L_k etkili boylarının bulunmasının ardından kolon narinlik katsayıları hesaplanmıştır.

Ix(m ⁴)	Iy(m ⁴)	İx(m)	İy(m)	Ln(m)	L _{kx} /i	L _{ky} /i
0,0114	0,0037	0,20	0,12	2,40	11,88	20,78
0,0057	0,0158	0,13	0,22	2,40	18,48	11,09
0,0032	0,0072	0,12	0,17	2,40	20,78	13,86
0,0103	0,0049	0,19	0,13	2,40	12,79	18,48
0,0049	0,0020	0,16	0,10	2,40	15,12	23,75
0,0032	0,0072	0,12	0,17	2,40	20,78	13,86
0,0103	0,0049	0,19	0,13	2,40	12,79	18,48
0,0055	0,0029	0,16	0,12	2,40	15,12	20,78
0,0129	0,0053	0,20	0,13	2,40	11,88	18,48
0,0061	0,0192	0,13	0,23	2,40	18,48	10,39
0,0040	0,0141	0,12	0,22	2,40	20,78	11,09

Çizelge 4.43 : Sistem 1, birinci kat kolonları narinlik değerleri.

Bulunan narinlik değerleri TS500'de öngörülen narinlik kontrolü doğrultusunda tahkik edilmiştir.

$$(lk / i) \le 34 - 12 (M1 / M2) \le 40$$
 (4.7)

Bulunan narinlik değerlerinin hepsi Denklem (4.7)'yi sağladıkları görülmüştür. Diğer sistemlerin Sistem 1'e göre daha rijit olması nedeniyle, Sistem 1 için yapılan narinlik ve ötelenme indeksi kontrolü hesabı diğer sistemlerde tekrarlanmadan diğer sistemlerde narin olmayan ötelenmesi engellenmiş kolon kabulü yapılacaktır.

Kolonların narin kolon olmadığı ispatlandıktan sonra, SAP2000 programında TS500-2000 yönetmeliğine göre kesit hesabı yapılarak her kolon için kapasite

kullanım oranının en yüksek olmasını sağlayan kombinasyonlar seçilmiştir. Seçilen kombinasyonlar altında bulunan moment normal kuvvet değerlerinde TS500 minimum dış merkezlik tahkiki yapılarak gerekli kombinasyonların momentleri büyütülerek dizayn kuvvetlerine ulaşılmıştır. Bu aşamada abaklar yardımıyla kolon boyuna donatıları seçilmiştir.

$$min = 15 mm + 0.03 h$$
 (4.8)

Burada;

e_{min}: minimum dış merkezlik.

h: Kolonun eğilme düzlemindeki kesit boyutu

olarak verilmiştir.

Kolon Adı	My(knm)	Mx(knm)	P(kN)	Köşe donatılar	Orta donatılar
S1	82	100	2215	3Ø16	1Ø16
S2	-75	84	2250	3Ø18	1Ø14
S 3	-65	66	1787	3Ø14	1Ø14
S4	74	60	2100	3Ø16	1Ø16
S5	174	25	67,37	3Ø18	1Ø18
S6	64	69	1868	3Ø14	1Ø14
S 7	78	65	2243	3Ø16	1Ø16
S 8	206	-43	147	3Ø16	1Ø16
S9	-109	66	2360	3Ø16	1Ø16
S10	-84	103	2944	3Ø18	1Ø14
S11	-66	91	2458	3Ø16	1Ø16

Çizelge 4.44 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna donatıları.

Kesme donatisi hesaplari;

Birinci kat kolanlarında süneklik düzeyi yüksek kolon kabulüne göre Ve kesme kuvveti hesaplanıp deprem yükü azaltma katsayısı R=2 alınarak yapılan çözümleme sonucu bulunan kesme kuvvetiyle karşılaştırılarak küçük olan değer, dizayn kesme kuvveti olarak seçilmiştir. Burada öncelikle kiriş uç kapasitelerinin dağılımı için kolon düğüm noktalarındaki kesitlerin momentleri hesaplanmıştır.Aynı düğüm noktasına bağlanan kolonların komşu kesitleri oranlanarak katlara düşecek oranlar hesaplanmıştır(Denklem (3.38)(3.39)), birinci kat kolonlarının alt ve üst düğüm noktaları için dağıtma oranları bulunmuştur.Her iki deprem doğrultusu için de + ve – yönlerde zemin ve 1. kat kiriş uç kapasiteleri Mp hesaplanıp düğüm noktalarında katlar arasındaki moment oranları vasıtasıyla dağıtılarak 1 kat kolon alt ve üst uç momentleri M_a ve $M_{\tilde{u}}$ bulunmuştur. Bu aşamada bulunan iki uç moment toplanıp temiz açıklığa bölünerek x ve yönü için V_e kesme kuvvetine ulaşılmıştır.

Х	Y		Х	Y
(Ma+Mü)	(Ma+Mü)	Ln(m)	Ve(kN)	Ve(kN)
232.26	284.56	2.40	96.77	118.56
475.74	245.13	2.40	198.23	102.14
203.05	391.98	2.40	84.60	163.32
368.95	396.45	2.40	153.73	165.19
402.47	398.50	2.40	167.69	166.04
202.76	367.33	2.40	84.48	153.05
379.91	365.65	2.40	158.30	152.35
479.04	404.42	2.40	199.60	168.51
229.85	270.34	2.40	95.77	112.64
354.58	368.11	2.40	147.74	153.38
393.97	178.76	2.40	164.16	74.49

Çizelge 4.45 : Kolon kesme kuvveti Ve.

Burada deprem yükü azaltma katsayısı R=2 alınarak bulunan kesme kuvvetleri Ve ile karşılaştırılarak küçük olan değer dizayn kuvveti olarak seçilmiştir. Kolon etriyesi için Denklem ((3.40)(3.41)) kullanılarak alanlar bulunduktan sonra istenen kesme dayanımları için gerekli olan minimum etriye aralığı s bulunmuştur, bulunan s değeri DBHBHY sıklaştırma bölgesi etriye şartları da dikkate alınarak kolon kesitleri donatılmıştır.

Burada enine donatıların karşılaması gereken kesme kuvveti bulunduktan sonra bu kolon sarılma bölgesinde donatı aralığı s=10 için gerekli donatı alanı hesap edilerek kolon kesme kapasitesi hesaplanmış kapasitenin kesme kuvvetlerinden büyük olduğu gösterilmiştir(Çizelge 4.46).

Kolon adı	Vex	Vey	Vx(R=2)	Vy(R=2)	Asx	Asy	Vwx	Vwy	Vx	Vy
Kololi aui	(kN)	(kN)	(kN)	(kN)	(cm^2)	(cm^2)	(kN)	(kN)	dayanım(kN)	dayanım(kN)
S1	96,77	118,56	189,19	120,43	200	350	594,19	555,43	776,19	737,43
S2	198,23	102,14	303,67	159,25	400	250	710,01	781,65	929,39	1001,02
S3	84,60	163,32	138,67	276,03	300	200	483,09	509,30	639,09	665,30
S4	153,73	165,19	327,47	262,71	250	350	677,43	629,07	867,55	819,20
S5	167,69	166,04	330,34	135,74	150	200	358,48	284,46	358,48	284,46
S 6	84,48	153,05	140,24	268,34	300	200	483,09	509,30	639,09	665,30
S 7	158,30	152,35	323,39	259,88	250	350	677,43	629,07	867,55	819,20
S 8	199,60	168,51	374,33	169,44	150	200	350,15	325,10	350,15	325,10
S9	95,77	112,64	189,87	132,91	250	350	729,54	624,86	934,29	829,61
S10	147,74	153,38	273,59	178,95	400	250	706,45	833,76	940,45	1067,76
S11	164,16	74,49	221,77	197,14	400	200	631,12	636,63	826,12	831,63

Çizelge 4.46 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri.

4.3.1.11 Sistem 1 birinci kat perde kesit hesapları

Sistem 1 birinci kat perde kesit hesapları SAP 2000'de bulunan depremli kombinasyonların P- M_x - M_y değerleri için CSI Column programında perdeler teker teker tasarlanarak boyuna donatı hesabı yapılmıştır. Her minimum değeri 4.5 m

bulunmuştur bu değer 1. katın tamamını içine alacak şekilde kritik perde yüksekliği değeri 6 m. seçilmiştir. Bu durumda hesap için seçilen 1. kat Hcr bölgesinde kaldığından DBHBHY şartı gereği tasarım eğilme momentleri perde taban kesiti deperleri olarak alınmıştır. Bu durumda Sistem 1 için yapının 1 bodrum katı olduğu düşünülürse zemin kat taban kesiti kesit zoru değerleri 1. kat perde tasarım değerleri olarak alınmıştır.

Şekil 4.15 : CSI Column ortamındaki merdiven perdesi.

Şekil 4.16 : CSI Column ortamındaki asansör perdesi.

Perde no	Y doğrultusundaki gövde	X doğrultusundaki gövde	Y doğrultusundaki başlıklar	X doğrultusundaki başlıklar	Toplam donatı
Merdiven perdesi	20Ø14/23	20Ø14/24	16Ø14	14Ø14	152Ø14
Asansör perdesi	10Ø14/23	10Ø14/23	10Ø14	8Ø14	86Ø14

Çizelge 4.47 : Birinci kat perdeleri için seçilen boyuna donatılar.

Perde enine donatı hesapları için ise dizayn kombinasyonu altında CSI Column programı yardımıyla perdelerin moment ve pekleşmeli moment kapasiteleri bulunarak süneklik düzeyi yüksek perde kesme kuvveti koşullarınca pekleşmeli moment kapasitesi dizayn momentine bölünerek ve dinamik büyütme katsayısı da hesaba katılarak kombinasyonlar sonucu bulunan maksimum kesme kuvveti V_d büyütülerek dizayn kesme kuvveti Ve hesaplanmıştır. Burada kolon etriye alanı hesabında gösterilen Denklem(3.40)(3.41) ile başlık bölgesi etriye alanları s=10 cm için hesaplanarak enine donatı seçimi yapılmıştır.

Çizelge 4.48 : Perde başlık bölgeleri için gerekli donatı alanları.

Perde No	Başlık bölgesi etriye donatı alanı x	Başlık bölgesi etriye donatısı alanı y	Seçilen etriye alanı
Merdiven perdesi	307,14	92,86	1 adet Ø12 sargı ve 1 adet Ø12 çiroz(339)
Asansör perdesi	200,00	92,86	1 tam Ø12 sargı(226)

Bulunan kesme kuvvetleri karşılaştırılıp küçük değer dizayn kesme kuvveti olarak seçilirken perde betonarme kesitinin taşıyabileceği maksimum kesme kuvveti de hesaplanarak betonarme kesitin yeterliliği tahkik edilmiştir.

Perde No	V(ex)(kN)	V(ey)(kN)	V(R=2)x (kN)	V(R=2)y (kN)	V(x) dizayn(kN)	V(y) dizayn(kN)	Vmax x(kN)	Vmax y(kN)
Merdiven perdesi	3950	3535	5347	6270	3950	3535	4356	10824
Asansör perdesi	1637	1352	2470	1850	1637	1352	5280	2772

Çizelge 4.49 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme kuvvetleri.

Seçilen dizayn kesme kuvveti için Ø12/25 etriye seçilerek perde kapasiteleri Denklem (3.45) yardımıyla hesaplanarak seçilen etriye aralığı tahkik edilmiştir.

Perde No	Ø12/25 enine p(x)	Ø12/25 enine p(y)	Ax(m ²)	Ay(m ²)	Perde kesme kapasitesi x	Perde kesme kapasitesi y
Merdiven perdesi	0,0094	0,0030	0,990	2,460	4207,09	4704,42
Asansör perdesi	0,0030	0,0030	1,200	1,200	2294,84	2294,84

Çizelge 4.50 : Seçilen etriye aralığı için perde kesme kapasiteleri.

4.3.1.12 Kolonların kirişlerden daha güçlü olması koşulu

Aynı düğüm noktasına birleşen kolonların taşıma gücü momentleri toplamı aynı noktaya birleşen kirişlerin taşıma gücü momentleri toplamından %20 daha büyük olması şartı her iki deprem doğrultusunda + ve – yönlü depremler için 1.kat kolonları üst düğüm noktası için araştırılmış olup kolonların güçlü olması koşulunun sağlandığı tespit edilmiştir.

Çizelge 4.51 : Kolon ve kirişlerin moment kapasitesi oranları.

Deprem		Düğüm noktası kolon/kiriş kapasite oranları									
yönü ve doğrultusu	S01	S02	S03	S04	S05	S06	S07	S08	S09	S10	S11
X+	13,39	2,45	5,83	3,75	1,25	5,72	3,77	1,69	13,93	3,81	2,54
Х-	8,01	2,57	3,66	4,05	1,53	3,79	4,01	2,43	7,61	3,74	2,42
Y+	2,46	6,63	2,71	2,81	1,37	2,38	2,44	1,31	4,12	9,14	14,03
Y-	3,45	6,56	2,43	2,84	1,30	2,46	2,52	2,81	3,04	7,06	8,62

4.3.1.13 Kolon-kiriş birleşim bölgesi kesme güvenliği kontrolleri

Süneklik düzeyi yüksek çerçeve sistemler için öngörülen birleşim bölgesi kesme kontrolleri için her iki deprem doğrultusunda + ve – yönlü depremler için 1.kat kolonları üst düğüm noktaları kesme kuvvetleri ve düğüm noktası kapasiteleri hesaplanarak düğüm noktası kesme kapasitelerinin yeterli olduğu gösterilmiştir.

Çizelge 4.52 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım değerleri.

Kolon no	Bağlantı tipi	Vex+(kN)	Vex-(kN)	Vey+(kN)	Vey-(kN)	Vdayanımx(kN)	Vdayanımy(kN)
S01	kuşatılmamış	241,50	395,18	682,50	697,88	1890	1080
S02	kuşatılmış	795,26	890,42	532,07	568,63	1620	4050
S03	kuşatılmamış	240,60	343,70	733,23	685,99	2160	1620
S04	kuşatılmış	665,92	723,80	669,61	634,96	5070	2430
S05	kuşatılmış	653,03	703,54	863,20	860,70	2310	2331
S06	kuşatılmamış	241,44	342,54	752,03	786,62	2160	1620
S07	kuşatılmış	668,80	721,86	754,32	789,27	3510	3510
S08	kuşatılmış	759,30	838,36	693,25	724,71	2640	2640
S09	kuşatılmamış	238,99	392,14	681,24	645,36	1890	1215
S10	kuşatılmış	598,79	652,53	651,08	590,21	1620	4320
S11	kuşatılmamış	718,61	664,33	233,74	321,53	1080	2700

4.3.1.14 Sistem 1 beton ve donatı metrajı

Hesaplanan birinci kat kolon, kiriş ve perdelerinde kullanılacak donatılar ve katın bütün elemanlarının toplam beton hacmi hesaplanmıştır. Sonuçlar Çizelge 4.53'de verilmiştir

Yapı elemanı	Donatı Miktarı(Ton)	Beton Miktarı (m ³)
Kiriş	4,77	
Kolon	3,35	
Perde	3,35	
Toplam	11,47	129,45

Çizelge 4.53 : Birinci kat donatı ve beton metrajı.

4.3.2 Sistem 2 için çözümleme ve kesit hesapları

Deprem hesabı için hesaplanan kütlelere x ve y yönlerinde ötelenme z ekseni etrafında dönme serbestlikleri verilmiştir. Buna göre her sistem için katların hesaplanan ağırlıklarından türetilen ötelenme kütleleri ve dönme atalet kütleleri hesaplanmıştır.

Kat	X ve Y yönünde ötelenen kat	Z ekseni etrafında dönen kütle
No	kütlesi(Kn.sn ² /m)	ataleti(Knm/sn ²)
8	423,42	29470,54
7	530,58	36928,60
6	530,58	36928,60
5	532,72	37077,59
4	534,86	37226,58
3	534,86	37226,58
2	541,52	37690,59
1	548,19	38154,59
Ζ	548,19	38154,59
В	685,22	47692,16

Çizelge 4.54 : Sistem 2 için ötelenme kütleleri ve dönme atalet kütleleri.

Her kat için serbestlik derecesi tanınan kütle ve dönme atalet kütleleri hesaplandıktan sonra yapıya etkiyecek deprem yüklerinin hesabına geçilmiştir.

4.3.2.1 Eşdeğer deprem yükü hesabı

Yapılan ön çözümü için modal sonuçlar:

Mod	Perivot(sn)	Ux içinToplam kütle katılımı	Uy içinToplam kütle	Rz içinToplam kütle
No		oranı	katılımı oranı	katılımı oranı
1	0,6802	0,0000	0,6393	0,3376
2	0,6209	0,6424	0,6393	0,4769
3	0,5295	0,6443	0,6393	0,6385
4	0,1693	0,6443	0,8030	0,7249
5	0,1688	0,7930	0,8030	0,7594
6	0,1355	0,7930	0,8030	0,7951
7	0,0789	0,8491	0,8030	0,8084
8	0,0742	0,8491	0,8697	0,8436
9	0,0595	0,8491	0,8697	0,8588
10	0,0479	0,8796	0,8697	0,8658
11	0,0441	0,8796	0,9086	0,8863
12	0,0351	0,8798	0,9086	0,8955
13	0,0337	0,9012	0,9086	0,9002
14	0,0311	0,9012	0,9377	0,9155
15	0,0261	0,9176	0,9377	0,9190
16	0,0246	0,9182	0,9377	0,9262
17	0,0243	0,9182	0,9614	0,9387
18	0,0215	0,9317	0,9614	0,9413
19	0,0204	0,9317	0,9805	0,9514
20	0,0191	0,9371	0,9805	0,9601
21	0,0188	0,9450	0,9805	0,9603
22	0,0180	0,9450	0,9927	0,9668
23	0,0173	0,9537	0,9927	0,9685
24	0,0164	0,9537	0,9983	0,9715
25	0,0163	0,9903	0,9983	0,9843
26	0,0157	0,9999	0,9983	0,9844
27	0,0156	0,9999	1,0000	0,9853
28	0,0139	1,0000	1,0000	0,9881
29	0,0129	1,0000	1,0000	0,9910
30	0,0123	1,0000	1,0000	1,0000

Çizelge 4.55 : Sistem 2 periyotları ve modların kütle katılımları

Modal hesabın ardından hakim periyotlar yapını mod şekillerine bakılarak gözlemlendikten sonra spektral ivme ve kat kuvvetleri hesaplanmıştır.

Periyot(X) (sn)	Periyot(Y) (sn)	Yapı ağırlığı (kN)	Spektrum katsayısı S(T)x	Spektrum katsayısı S(T)y	Ra (T _x)	Ra (T _y)	Spektral ivme katsayısı A(Tx)	Spektral ivme katsayısı A(Ty)
0,62086	0,68024	46351,45	1,76	1,63	7	7	0,7	0,65

Çizelge 4.56: Sistem 2 için bulunan ön hesap sonuçları.

Sistem no	Taban kesi	me kuvveti	Tepe k	cuvveti
Sistem no	$V_{t(X)}(kN)$	$V_{t(y)}(kN)$	$\Delta F_N(X)(kN)$	$\Delta F_{\rm N}({\rm Y})({\rm kN})$
2	4658,20	4329,96	314,43	292,27

Çizelge 4.57 : Sistem 2, taban ve tepe kesme kuvvetleri.

Taban ve tepe kesme kuvvetlerinin bulunmasının ardından katlara gelen deprem kuvvetleri bulunmuştur.

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Ζ	5377,76	3,00	16133,28	99,21
1	5377,76	6,00	32266,56	198,41
2	5312,36	9,00	47811,24	294,00
3	5246,96	12,00	62963,52	387,17
4	5246,96	15,00	78704,40	483,97
5	5225,96	18,00	94067,28	578,44
6	5204,96	21,00	109304,16	672,13
7	5204,96	27,00	140533,91	864,17
8	4153,77	30,00	124613,15	766,27

Çizelge 4.58 : Sistem 2 için X yönü kat kesme kuvvetleri.

Çizelge 4.59 : Sistem 2 için Y yönü kat kesme kuvvetleri.

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Ζ	5377,76	3,00	16133,28	92,22
1	5377,76	6,00	32266,56	184,43
2	5312,36	9,00	47811,24	273,28
3	5246,96	12,00	62963,52	359,89
4	5246,96	15,00	78704,40	449,87
5	5225,96	18,00	94067,28	537,68
6	5204,96	21,00	109304,16	624,77
7	5204,96	27,00	140533,91	803,28
8	4153,77	30,00	124613,15	712,27

Çizelge 4.60 : Sistem 2 için bulunan bodrum kat kesme kuvveti.

Sistem no	Wbk(kN)	Fbk(kN)
2	6722,05	1792,55

Deprem yönü	Vt(kN)	Vp(kN)	αs
EX	4658,20	3752,13	0,81
EX(+0,05)	4658,20	3765,53	0,81
EX(-0,05)	4658,19	3689,94	0,79
EY	4329,95	3536,16	0,82
EY(+0,05)	4329,90	3636,66	0,84
EY(-0,05)	4329,94	3636,77	0,84

Çizelge 4.61 : Sistem 2 taban kesme kuvveti ve perde kesme kuvveti oranları.

Yapı davranış katsayısı tekrar seçilerek hesaplar tekrarlanmıştır.

Çizelge 4.62 : Sistem 2 için yeniden düzenlenmiş yapı davranış katsayıları ile ön çözüm sonuçları.

Periyod(X) (sn)	Periyod(Y) (sn)	Yapı ağırlığı(kN)	Spektrum katsayısı S(T)x	Spektrum katsayısı S(T)y	Ra(T _x)	Ra(T _y)	Spektral ivme katsayısı A(TX)	Spektral ivme katsayısı A(Ty)
0,62086	0,68024	46351,45	1,76	1,63	6,78	6,64	0,70	0,65

Çizelge 4.63 : Sistem 2 için yeniden hesaplanmış taban ve tepe kuvvetleri.

Sistem no V	Taban kesr	ne kuvveti	Tepe kuvveti		
	V _{t(X)} (kN)	V _{t(y)} (kN)	$\Delta F_{\rm N}(X)(k{\rm N})$	$\Delta F_{\rm N}(Y)(kN)$	
2	4809,35	4564,71	324,63	308,12	

Taban ve tepe kesme kuvvetlerinin bulunmasının ardından katlara gelen deprem kuvvetleri bulunmuştur.

Çizelge 4.64 : Sistem 2 için yeniden hesaplanmış X yönü kat kesme kuvvetleri.

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Z	5377,76	3,00	16133,28	102,43
1	5377,76	6,00	32266,56	204,85
2	5312,36	9,00	47811,24	303,54
3	5246,96	12,00	62963,52	399,74
4	5246,96	15,00	78704,40	499,67
5	5225,96	18,00	94067,28	597,21
6	5204,96	21,00	109304,16	693,94
7	5204,96	27,00	140533,91	892,21
8	4153,77	30,00	124613,15	791,13

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Z	5377,76	3,00	16133,28	97,22
1	5377,76	6,00	32266,56	194,43
2	5312,36	9,00	47811,24	288,10
3	5246,96	12,00	62963,52	379,40
4	5246,96	15,00	78704,40	474,26
5	5225,96	18,00	94067,28	566,83
6	5204,96	21,00	109304,16	658,64
7	5204,96	27,00	140533,91	846,83
8	4153,77	30,00	124613,15	750,89

Çizelge 4.65 : Sistem 2 için yeniden hesaplanmış Y yönü kat kesme kuvvetleri.

Son şekli ile eşdeğer deprem yükü kuvvetlerine ulaşılmıştır.

4.3.2.2 Mod birleştirme hesabı

SAP2000'e girilen spektrum grafiğinde deprem yükü azaltma katsayısı spektral ivme grafiğinde yerine konarak grafik çarpan değeri S(T)/R olarak elde edilmiştir, oluşturulan yükleme için çarpan olarak da A₀.I.g için 3,924 girilmiştir. Başlangıç olarak yapı davranış katsayısı 7 alınmış olup, ikinci aşamada taban kesme kuvvetinin perde taban kesme kuvvetine oranına bakılarak düzeltilen davranış katsayısı ile deprem yükü azaltma katsayısı düzenlenerek son şekli ile spektrum fonksiyonu elde edilmiştir.

Cizelge 4.66:	Ön spektrum	cözümü	icin X	ve Y v	vönü icin	tanıtılan sı	bektrum	grafiği.
3 . 8		· · · · ·	3) - ·· 3			00

Т	S(T)	S(T)/R	R
0,00	1,00	0,67	1,50
0,05	1,50	0,45	3,33
0,10	2,00	0,39	5,17
0,15	2,50	0,36	7,00
0,20	2,50	0,36	7,00
0,30	2,50	0,36	7,00
0,40	2,50	0,36	7,00
0,45	2,28	0,33	7,00
0,50	2,09	0,30	7,00
0,55	1,94	0,28	7,00
0,75	1,51	0,22	7,00
1,00	1,20	0,17	7,00
1,25	1,00	0,14	7,00
1,50	0,87	0,12	7,00
1,75	0,77	0,11	7,00
2,00	0,69	0,10	7,00
2,25	0,63	0,09	7,00

Çizelge 4.67 : Sistem 2 için spektrum çözümlemesi sonucunda çıkan yapı davranış katsayıları.

Sistem no	Х	Y
2	6,63	6,6

Bulunan yeni davranış katsayılar ile spektrum grafikleri x ve y yönleri için yeniden türetilmiştir

	X yönü				Y yönü	
Т	S(T)	S(T)/Ra	Ra	S(T)	S(T)/Ra	Ra
0,00	1,00	0,67	1,50	1,00	0,67	1,50
0,05	1,50	0,47	3,21	1,50	0,47	3,20
0,10	2,00	0,41	4,92	2,00	0,41	4,90
0,15	2,50	0,38	6,63	2,50	0,38	6,60
0,20	2,50	0,38	6,63	2,50	0,38	6,60
0,30	2,50	0,38	6,63	2,50	0,38	6,60
0,40	2,50	0,38	6,63	2,50	0,38	6,60
0,45	2,28	0,34	6,63	2,28	0,34	6,60
0,50	2,09	0,32	6,63	2,09	0,32	6,60
0,55	1,94	0,29	6,63	1,94	0,29	6,60
0,75	1,51	0,23	6,63	1,51	0,23	6,60
1,00	1,20	0,18	6,63	1,20	0,18	6,60
1,25	1,00	0,15	6,63	1,00	0,15	6,60
1,50	0,87	0,13	6,63	0,87	0,13	6,60
1,75	0,77	0,12	6,63	0,77	0,12	6,60
2,00	0,69	0,10	6,63	0,69	0,10	6,60
2,25	0,63	0,09	6,63	0,63	0,10	6,60

Cizelge 4.68 : Sistem 2 için X ve Y yönlerinde son şekli ile spektrum grafikleri.

Mod birleştirme çözümlemesi sonucu bulunan taban kesme kuvvetleri eşdeğer deprem yükü hesabı bulunan taban kesme kuvvetleriyle karşılaştırılıp gerekli büyütmeler yapılmıştır.

Çizelge 4.69 : Sistem 2, mod birleştirme ve eşdeğer deprem hesabı taban kesme kuvvetleri

Deprem yönü	V _{tB} (kN)	V _t (kN)	β	βV_t	$\beta V_t\!/V_{tB}$
Х	3868,19	6601,90	0,90	5941,71	1,54
у	3645,13	6357,26	0,90	5721,53	1,57

Karşılaştırılan yöntemler arasından eşdeğer deprem kuvveti yöntemi düzensizlik kontrolleri ve kesit hesaplarında dikkate alınmıştır.

4.3.2.3 A1 burulma düzensizliği

Bulunan çerçeve yer ve şekil değiştirme sonuçları kayıt altına alınarak A1 burulma düzensizliği kontrolleri ±0.05 ek dış merkezlik etkisi de dikkate alınarak aşağıda detaylandırılmıştır.

Kat	d _{i-max} (m)	d _{i-min} (m)	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0205	0,0187	0,0023	0,0020	0,0021	1,06	YOK
7	0,0182	0,0167	0,0024	0,0022	0,0023	1,06	YOK
6	0,0158	0,0146	0,0026	0,0023	0,0024	1,05	YOK
5	0,0132	0,0122	0,0026	0,0024	0,0025	1,04	YOK
4	0,0106	0,0098	0,0026	0,0024	0,0025	1,04	YOK
3	0,0079	0,0074	0,0025	0,0024	0,0024	1,04	YOK
2	0,0054	0,0050	0,0022	0,0021	0,0022	1,03	YOK
1	0,0032	0,0030	0,0019	0,0017	0,0018	1,03	YOK
Ζ	0,0013	0,0012	0,0013	0,0012	0,0013	1,04	YOK

Çizelge 4.70 : Sistem 2, X yönü için A1 burulma düzensizliği.

Çizelge 4.71 : Sistem 2, X(+0,05) yönü için A1 burulma düzensizl	iği.
---	------

Kat	$d_{i-max}(m)$	d _{i-min} (m)	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0200	0,0190	0,0022	0,0021	0,0021	1,02	YOK
7	0,0179	0,0169	0,0023	0,0022	0,0023	1,02	YOK
6	0,0155	0,0147	0,0025	0,0024	0,0024	1,02	YOK
5	0,0131	0,0123	0,0026	0,0024	0,0025	1,03	YOK
4	0,0105	0,0098	0,0026	0,0024	0,0025	1,03	YOK
3	0,0079	0,0074	0,0025	0,0024	0,0024	1,03	YOK
2	0,0054	0,0050	0,0022	0,0021	0,0022	1,04	YOK
1	0,0031	0,0030	0,0018	0,0017	0,0018	1,03	YOK
Ζ	0,0013	0,0012	0,0013	0,0012	0,0013	1,02	YOK

Kat	d _{i-max} (m)	d _{i-min} (m)	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ýbi>1,2
8	0,0220	0,0174	0,0025	0,0019	0,0022	1,14	YOK
7	0,0195	0,0156	0,0026	0,0020	0,0023	1,13	YOK
6	0,0169	0,0136	0,0028	0,0022	0,0025	1,12	YOK
5	0,0141	0,0114	0,0028	0,0022	0,0025	1,12	YOK
4	0,0113	0,0092	0,0028	0,0023	0,0025	1,11	YOK
3	0,0085	0,0069	0,0027	0,0022	0,0025	1,11	YOK
2	0,0058	0,0047	0,0024	0,0020	0,0022	1,10	YOK
1	0,0034	0,0028	0,0020	0,0016	0,0018	1,10	YOK
Ζ	0,0014	0,0012	0,0014	0,0012	0,0013	1,09	YOK

Çizelge 4.72 : Sistem 2, X(-0,05) yönü için A1 burulma düzensizliği.

Çizelge 4.73 : Sistem 2, Y yönü için A1 burulma düzensizliği.

Kat	d _{i-max} (m)	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ýbi>1,2
8	0,0228	0,0228	0,0027	0,0027	0,0027	1,00	YOK
7	0,0201	0,0201	0,0028	0,0028	0,0028	1,00	YOK
6	0,0173	0,0173	0,0029	0,0029	0,0029	1,00	YOK
5	0,0144	0,0144	0,0029	0,0029	0,0029	1,00	YOK
4	0,0115	0,0115	0,0029	0,0029	0,0029	1,00	YOK
3	0,0086	0,0086	0,0027	0,0027	0,0027	1,00	YOK
2	0,0058	0,0058	0,0024	0,0024	0,0024	1,00	YOK
1	0,0034	0,0034	0,0019	0,0019	0,0019	1,00	YOK
Ζ	0,0015	0,0015	0,0015	0,0015	0,0015	1,00	YOK

Çizelge 4.74 : Sistem 2, Y(+0,05) yönü için A1 burulma düzensizliği.

Kat	$d_{i-max}(m)$	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0259	0,0196	0,0031	0,0023	0,0027	1,14	YOK
7	0,0229	0,0173	0,0032	0,0024	0,0028	1,14	YOK
6	0,0197	0,0149	0,0033	0,0025	0,0029	1,14	YOK
5	0,0164	0,0124	0,0033	0,0025	0,0029	1,14	YOK
4	0,0130	0,0099	0,0033	0,0025	0,0029	1,14	YOK
3	0,0097	0,0074	0,0031	0,0024	0,0027	1,14	YOK
2	0,0066	0,0051	0,0027	0,0021	0,0024	1,14	YOK
1	0,0039	0,0030	0,0022	0,0017	0,0019	1,14	YOK
Ζ	0,0017	0,0013	0,0017	0,0013	0,0015	1,11	YOK

Kat	d _{i-max} (m)	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ýbi>1,2
8	0,0259	0,0196	0,0031	0,0023	0,0027	1,14	YOK
7	0,0229	0,0173	0,0032	0,0024	0,0028	1,14	YOK
6	0,0197	0,0149	0,0033	0,0025	0,0029	1,14	YOK
5	0,0164	0,0124	0,0033	0,0025	0,0029	1,14	YOK
4	0,0130	0,0099	0,0033	0,0025	0,0029	1,14	YOK
3	0,0097	0,0074	0,0031	0,0024	0,0027	1,14	YOK
2	0,0066	0,0051	0,0027	0,0021	0,0024	1,14	YOK
1	0,0039	0,0030	0,0022	0,0017	0,0019	1,14	YOK
Ζ	0,0017	0,0013	0,0017	0,0013	0,0015	1,11	YOK

Çizelge 4.75 : Sistem 2, Y(-0,05) yönü için A1 burulma düzensizliği.

Hesaplanan göreli yer değiştirmelere baktığımızda Sistem 2'nin, A1 burulma düzensizliğine sahip olmadığı görülmüştür.

4.3.2.4 A2 Döşeme düzensizlikleri kontrolü

Sistemde sadece asansörler için bulunan 2 tane ufak döşeme yırtığı vardır, yapının kullanımı için birkaç ufak mekanik ve elektrik şaftı açılması olası olmakla beraber sonuçta kat döşemelerinde ani rijitlik değişimine neden olacak bir düzensizlik bulunmamaktadır.

Kat	Kat Alanı(m ²)	Boşluk Alanı(m ²)	Oran	Düzensizlik Ab/A >1/3
8	383,20	15,40	0,040	YOK
7	383,20	15,40	0,040	ҮОК
6	383,20	15,40	0,040	ҮОК
5	383,20	15,40	0,040	ҮОК
4	383,20	15,40	0,040	УОК
3	383,20	15,40	0,040	ҮОК
2	383,20	15,40	0,040	УОК
1	383,20	15,40	0,040	ҮОК
Ζ	383,20	15,40	0,040	УОК

Çizelge 4.76 : Sistem 2 A2 döşeme düzensizliği kontrolleri.

4.3.2.5 A3 Planda çıkıntılar bulunması durumu

Yapı dikdörtgen olup planda çıkıntılar içermemektedir, dolayısıyla Sistem 2, A3 düzensizliğine sahip değildir.

4.3.2.6 B1 komşu katlar arası dayanım düzensizliği

Yapıda teşkil edilen düşey taşıyıcı elemanlar ve mimari duvarlar dikkate alınarak yapılan B1 zayıf kat hesapları aşağıda detaylandırılmıştır.

Kat	Kolon Alanı(m ²)	Perde Alanı(m ²)	Duvar Alanı(m ²)	Etkili Toplam Alan(m ²)	ήci	Düzensizlik ήci <0,8
8	2,70	5,82	11,00	11,82		YOK
7	2,70	5,82	11,00	11,82	1,00	YOK
6	2,70	5,82	11,00	11,82	1,00	YOK
5	3,40	5,82	11,00	12,52	1,06	YOK
4	3,40	5,82	11,00	12,52	1,00	YOK
3	3,40	5,82	11,00	12,52	1,00	YOK
2	5,58	5,82	11,00	14,70	1,17	YOK
1	5,58	5,82	11,00	14,70	1,00	YOK
Ζ	5,58	5,82	11,00	14,70	1,00	YOK

Çizelge 4.77 : Sistem 2, X yönü için B1 zayıf kat düzensizliği hesap detayları.

Çμ										
Kat	Kolon Alanı(m ²)	Perde Alanı(m ²)	Duvar Alanı(m ²)	Etkili Toplam Alan(m ²)	ήci	Düzensizlik ýci <0,8				
8	2,70	6,15	8,72	11,47		YOK				
7	2,70	6,15	8,72	11,47	1,00	YOK				
6	2,70	6,15	8,72	11,47	1,00	YOK				
5	3,40	6,15	8,72	12,17	1,06	YOK				
4	3,40	6,15	8,72	12,17	1,00	YOK				
3	3,40	6,15	8,72	12,17	1,00	YOK				
2	5,58	6,15	8,72	14,35	1,18	YOK				
1	5,58	6,15	8,72	14,35	1,00	YOK				
Ζ	5,58	6,15	8,72	14,35	1,00	YOK				

Çizelge 4.78 : Sistem 2, Y yönü için B1 zayıf kat düzensizliği hesap detayları

Hesap detaylarında görüldüğü üzere Sistem 2, B1 zayıf kat düzensizliğine sahip değildir.

4.3.2.7 B2 Komşu katlar arası rijitlik düzensizliği

Sistem 2 için her iki deprem yönü için ek dış merkezliklerde dikkate alınarak Kat ötelemeleri kontrol edilmiş ve yapıda B2 yumuşak kat düzensizliği olup olmadığı araştırılmıştır.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00214	3,00	0,00071	-	0,93	YOK
7	0,00230	3,00	0,00077	1,07	0,94	YOK
6	0,00244	3,00	0,00081	1,06	0,97	YOK
5	0,00252	3,00	0,00084	1,03	0,99	YOK
4	0,00254	3,00	0,00085	1,01	1,04	YOK
3	0,00245	3,00	0,00082	0,96	1,13	YOK
2	0,00216	3,00	0,00072	0,89	1,21	YOK
1	0,00179	3,00	0,00060	0,83	1,41	YOK
Ζ	0,00127	3,00	0,00042	0,71	-	YOK

Çizelge 4.79 : Sistem 2, X yönünde yumuşak kat düzensizliği.

Çizelge 4.80 : Sistem 2, X(+0,05) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00213	3,00	0,00071	-	0,93	YOK
7	0,00228	3,00	0,00076	1,07	0,94	YOK
6	0,00243	3,00	0,00081	1,06	0,97	YOK
5	0,00250	3,00	0,00083	1,03	0,99	YOK
4	0,00253	3,00	0,00084	1,01	1,04	YOK
3	0,00244	3,00	0,00081	0,96	1,13	YOK
2	0,00216	3,00	0,00072	0,89	1,21	YOK
1	0,00179	3,00	0,00060	0,83	1,41	YOK
Ζ	0,00126	3,00	0,00042	0,71	-	YOK

Çizelge 4.81 : Sistem 2, X(-0,05) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00216	3,00	0,00072	-	0,93	YOK
7	0,00231	3,00	0,00077	1,07	0,94	YOK
6	0,00246	3,00	0,00082	1,06	0,97	YOK
5	0,00253	3,00	0,00084	1,03	0,99	YOK
4	0,00255	3,00	0,00085	1,01	1,04	YOK
3	0,00245	3,00	0,00082	0,96	1,13	YOK
2	0,00217	3,00	0,00072	0,88	1,21	YOK
1	0,00180	3,00	0,00060	0,83	1,41	YOK
Ζ	0,00128	3,00	0,00043	0,71	-	YOK

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00268	3,00	0,00089	-	0,96	YOK
7	0,00280	3,00	0,00093	1,05	0,97	YOK
6	0,00290	3,00	0,00097	1,04	0,99	YOK
5	0,00293	3,00	0,00098	1,01	1,01	YOK
4	0,00289	3,00	0,00096	0,99	1,06	YOK
3	0,00274	3,00	0,00091	0,95	1,14	YOK
2	0,00240	3,00	0,00080	0,88	1,24	YOK
1	0,00194	3,00	0,00065	0,81	1,30	YOK
Ζ	0,00149	3,00	0,00050	0,77	-	YOK

Çizelge 4.82 : Sistem 2, Y yönünde yumuşak kat düzensizliği.

Çizelge 4.83 : Sistem 2, Y(+0,05) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00268	3,00	0,00089	-	0,96	YOK
7	0,00280	3,00	0,00093	1,05	0,97	YOK
6	0,00290	3,00	0,00097	1,04	0,99	YOK
5	0,00293	3,00	0,00098	1,01	1,01	YOK
4	0,00289	3,00	0,00096	0,99	1,06	YOK
3	0,00274	3,00	0,00091	0,95	1,14	YOK
2	0,00240	3,00	0,00080	0,88	1,24	YOK
1	0,00194	3,00	0,00065	0,81	1,30	YOK
Ζ	0,00149	3,00	0,00050	0,77	-	YOK

Çizelge 4.84 : Sistem 2, Y(-0,05) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ńki > 2
8	0,00268	3,00	0,00089	-	0,96	YOK
7	0,00280	3,00	0,00093	1,05	0,97	YOK
6	0,00290	3,00	0,00097	1,04	0,99	YOK
5	0,00293	3,00	0,00098	1,01	1,01	YOK
4	0,00289	3,00	0,00096	0,99	1,06	YOK
3	0,00274	3,00	0,00091	0,95	1,14	YOK
2	0,00240	3,00	0,00080	0,88	1,24	YOK
1	0,00194	3,00	0,00065	0,81	1,30	YOK
Ζ	0,00149	3,00	0,00050	0,77	-	YOK

Hesap detaylarında görüldüğü üzere Sistem 2, B2 yumuşak kat düzensizliğine sahip değildir.

4.3.2.8 Göreli kat ötelemeleri ve ikinci mertebe etkileri kontrolü

Çözümleme sonucu bulanan yer değiştirmelerle yapılan göreli kat ötelemelerinin ve ikinci mertebe etkilerinin sınırlandırılması kontrolleri aşağıda detaylandırılmıştır.

Kat	$d_{i-max}(m)$	hi(m)	$\Delta max(m)$	δimax	δi/hi	Koşul < 0,02
8	0,02196	3,00	0,00245	0,01639	0,00546	TAMAM
7	0,01950	3,00	0,00262	0,01749	0,00583	TAMAM
6	0,01688	3,00	0,00276	0,01845	0,00615	TAMAM
5	0,01412	3,00	0,00282	0,01885	0,00628	TAMAM
4	0,01130	3,00	0,00283	0,01888	0,00629	TAMAM
3	0,00847	3,00	0,00271	0,01812	0,00604	TAMAM
2	0,00576	3,00	0,00239	0,01597	0,00532	TAMAM
1	0,00337	3,00	0,00198	0,01320	0,00440	TAMAM
Ζ	0,00140	3,00	0,00140	0,00933	0,00311	TAMAM

Çizelge 4.85 : Sistem ,2 X yönü göreli kat ötelemeleri.

Çizelge 4.86 : Sistem 2, Y yönü göreli kat ötelemeleri.

Kat	d _{i-max} (m)	hi(m)	$\Delta max(m)$	δimax	δi/hi	Koşul < 0,02
8	0,02593	3,00	0,00306	0,02029	0,00676	TAMAM
7	0,02288	3,00	0,00320	0,02121	0,00707	TAMAM
6	0,01968	3,00	0,00331	0,02198	0,00733	TAMAM
5	0,01637	3,00	0,00334	0,02219	0,00740	TAMAM
4	0,01303	3,00	0,00330	0,02191	0,00730	TAMAM
3	0,00973	3,00	0,00312	0,02073	0,00691	TAMAM
2	0,00661	3,00	0,00274	0,01819	0,00606	TAMAM
1	0,00387	3,00	0,00221	0,01467	0,00489	TAMAM
Ζ	0,00166	3,00	0,00166	0,01102	0,00367	TAMAM

Sistem 2 için her iki deprem yönü doğrultusunda da etkin göreli kat ötelemeleri maksimum sınırların altındadır.

Kat	$\Delta ort(m)$	w _j (kN)	(Δi) _{ort} xwj	V _i (kN)	Hi(m)	Vihi	θi	Koşul < 0,12
8	0,00214	4153,77	8,8953	1115,77	3,00	3347,30	0,00266	TAMAM
7	0,00230	5204,96	11,9558	892,21	3,00	2676,63	0,00447	TAMAM
6	0,00244	5204,96	12,7157	693,94	3,00	2081,83	0,00611	TAMAM
5	0,00252	5225,96	13,1485	597,21	3,00	1791,62	0,00734	TAMAM
4	0,00254	5246,96	13,3063	499,67	3,00	1499,02	0,00888	TAMAM
3	0,00245	5246,96	12,8288	399,74	3,00	1199,21	0,01070	TAMAM
2	0,00216	5312,36	11,4959	303,54	3,00	910,62	0,01262	TAMAM
1	0,00179	5377,76	9,6316	204,85	3,00	614,55	0,01567	TAMAM
Ζ	0,00127	5377,76	6,8271	102,43	3,00	307,28	0,02222	TAMAM

Çizelge 4.87 : Sistem 2, X yönü için 2. Mertebe etkileri.

Kat	$\Delta ort(m)$	w _j (kN)	(Δi) _{ort} xwj	V _i (kN)	Hi(m)	Vihi	Өi	Koşul < 0,12
8	0,00268	4153,77	11,1363	1059,01	3,00	3177,03	0,00351	TAMAM
7	0,00280	5204,96	14,5843	846,83	3,00	2540,48	0,00574	TAMAM
6	0,00290	5204,96	15,0996	658,64	3,00	1975,93	0,00764	TAMAM
5	0,00293	5225,96	15,3016	566,83	3,00	1700,49	0,00900	TAMAM
4	0,00289	5246,96	15,1690	474,26	3,00	1422,77	0,01066	TAMAM
3	0,00274	5246,96	14,3557	379,40	3,00	1138,21	0,01261	TAMAM
2	0,00240	5312,36	12,7656	288,10	3,00	864,30	0,01477	TAMAM
1	0,00194	5377,76	10,4490	194,43	3,00	583,29	0,01791	TAMAM
Ζ	0,00149	5377,76	8,0129	97,22	3,00	291,65	0,02747	TAMAM

Çizelge 4.88 : Sistem 2, Y yönü için 2. Mertebe etkileri.

Sistem 2 için 2. Mertebe gösterge değeri DBYBHY sınır değerinden daha düşüktür.

4.3.2.9 Sistem 2 birinci kat kiriş kesit hesapları

Burada Sistem 2 birinci kat boyuna donatı hesabında Sistem 1 'de uygulanan metotlar aynen tekrarlanmıştır. Seçilen boyuna donatılar Çizelge 4.89 ve Çizelge 4.90'de gösterilmiştir.

Kiriş no	Donatı lifi	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı	Kiriş no	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı	Kiriş no	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı
V 101	Üst donatı	2Ø16	3Ø14	2Ø12	K102	-	3Ø14	-	K103	2Ø16	3Ø14	2Ø16
K101	Alt donati	-	3Ø14	2Ø12		-	3Ø14	-		-	5Ø14	-
V104	Üst donatı	2Ø14	3Ø14	1Ø14	K105	-	3Ø14	1Ø14	K106	-	3Ø14	5Ø12
K104	Alt donati	-	3Ø14	-		1Ø16	3Ø14	-		2Ø16	3Ø14	1Ø12
V107	Üst donatı	2Ø14	3Ø14	1Ø14	K108	-	3Ø14	1Ø16	K109	-	3Ø14	2Ø14
K107	Alt donati	-	3Ø14	-		2Ø12	3Ø14	-		1Ø14	3Ø14	-
W110	Üst donatı	3Ø12	3Ø14	2Ø12	K111	-	3Ø14	4Ø12				
K110	Alt donati	-	3Ø14	-		2Ø12	3Ø14	1Ø12				
V114	Üst donatı	2Ø14	3Ø14	3Ø16	K115	-	3Ø14	-	K116	2Ø12	3Ø14	2Ø16
N 114	Alt donati	2Ø16	3Ø14	-		1Ø12	3Ø14	-		1Ø12	3Ø14	3Ø12
V117	Üst donatı	2Ø12	3Ø14	3Ø14	K118	-	3Ø14	-	K119	3Ø12	3Ø14	1Ø16
K 11/	Alt donatı	-	3Ø14	-		-	3Ø14	-		-	3Ø14	-
K120	Üst donatı	2Ø12	3Ø14	2Ø16	K121	-	3Ø14	-	K122	2Ø16	3Ø14	1Ø12
K120	Alt donatı	-	3Ø14	-		-	3Ø14	-		1Ø12	3Ø14	-

Çizelge 4.89 : Sistem 2 birinci kat çerçeve oluşturan kirişler için seçilen boyuna donatılar.

Kiriş no	Donatı lifi	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı
V112	Üst donatı	2Ø14	3Ø14	2Ø14
K 112	Alt donati	1Ø16	3Ø14	1Ø16
V112	Üst donatı	3Ø12	3Ø14	3Ø12
K115	Alt donati	1Ø16	3Ø14	1Ø16
V100	Üst donatı	-	2Ø14	-
K123	Alt donati	-	3Ø14	-
V104	Üst donatı	-	2Ø14	-
K124	Alt donatı	-	3Ø14	-
1/10/	Üst donatı	-	2Ø14	-
K125	Alt donatı	-	3Ø14	-
V10/	Üst donatı	2Ø14	3Ø14	-
K126	Alt donati	-	3Ø14	-

Cizelge 4.90 : Sistem 2 birinci kat balkon ve perde bağ kirişleri boyuna donatıları.

Birinci kat kirişleri etriye hesabında süneklik düzeyi yüksek kiriş kabulü gereği donatı seçiminde baz alınacak V_e kesme kuvveti hesabı yapılmıştır. Bunun için + ve – deprem yönlerinde kiriş uç taşıma gücü momentleri ve pekleşme göz önüne alınarak moment kapasiteleri hesaplanmış, her iki uç için bulunan pekleşmeli moment kapasiteleri toplanıp kiriş temiz açıklığına bölünerek uç kesme kuvvetlerine ulaşıldıktan sonra, dizayn kombinasyonlarından hesaplanan dizayn kesme kuvveti Vd ile toplanarak Ve elde edilmiştir. Bu aşamada deprem yükü azaltma katsayısı R=2 alınarak yapılan yeni deprem hesabından gelen uç kesme dizayn değeri V_e karşılaştırılıp küçük olan değer kesit hesabı için seçilmiştir. Bulunan Ve kesme kuvveti R=2 için yenilenen çözümleme kesme değeriyle karşılaştırılarak, dizayn kesme kuvveti olarak tayin edilmiştir. Burada V_{cr} beton kapasitesi kirişler için çıkarıldıktan sonra çeliğin karşılaması gereken V_w çelik dizayn kuvvetine ulaşılmıştır. Bulunan tasarım kesme kuvvetleri için seçilmiş etriye aralıkları Çizelge 4.91'de gösterilmiştir.

Kiriş no	Vei(kN)	Vej(kN)	Vi(R=2) (kN)	Vj(R=2) (kN)	Vwi(kN)	Vwj(kN)	i ucu sıklaştırma bölgesi etriye aralığı (cm)	Kiriş ortası için seçilen etriye aralığı(cm)	i ucu sıklaştırma bölgesi etriye aralığı (cm)
K101	194,65	142,83	299,95	287,53	194,65	142,83	11	22	11
K102	141,06	176,33	231,95	228,34	141,06	176,33	11	24	11
K103	164,76	162,71	158,73	158,73	49,53	49,53	11	26	11
K104	148,51	125,02	164,39	178,46	39,31	15,82	11	29	11
K105	168,93	171,80	268,74	292,43	168,93	171,80	11	25	11
K106	179,72	338,21	467,82	142,22	179,72	142,22	11	13	11
K107	147,96	124,61	161,25	181,00	38,76	15,41	11	29	11
K108	139,47	178,28	266,82	287,87	139,47	178,28	11	24	11
K109	175,50	422,19	441,65	87,16	175,50	422,19	11	10	8
K110	187,51	143,44	300,45	288,92	187,51	143,44	11	23	11
K111	134,68	186,83	278,80	257,18	134,68	186,83	11	23	11
K112	150,97	151,03	153,22	152,22	150,97	151,03	11	28	11
K113	153,92	126,13	134,06	109,34	153,92	126,13	11	28	11
K114	142,11	207,51	290,25	307,61	142,11	207,51	11	21	11
K115	312,14	272,11	446,92	460,68	312,14	272,11	11	14	11
K116	181,70	170,91	295,25	311,56	181,70	170,91	11	24	11
K117	136,79	161,32	187,61	192,71	27,59	52,12	11	27	11
K118	259,64	238,10	343,48	343,24	259,64	238,10	11	16	11
K119	147,33	127,90	180,51	195,67	38,13	18,70	11	29	11
K120	133,97	152,95	146,24	217,66	24,77	43,75	11	28	11
K121	253,10	241,26	110,74	128,67	110,74	128,67	11	17	11
K122	153,49	124,97	254,54	156,88	153,49	124,97	11	28	11
K123	-	-	13,39	21,30	13,39	21,30	11	28	11
K124	-	-	17,00	26,97	17,00	26,97	11	15	11
K125	-	-	54,09	42,16	54,09	42,16	11	30	11
K126	124,46	88,56	75,23	50,09	75,23	50,09	11	30	11

Çizelge 4.91 : Sistem 2, birinci kat tasarım kesme kuvvetleri ve bulunan etriye aralıkları.

4.3.2.10 Sistem 2 birinci kat kolon kesit hesapları

Sistem 2 için SAP2000 programında TS500-2000 yönetmeliğine göre kesit hesabı yapılarak her kolon için kapasite kullanım oranının en yüksek olmasını sağlayan kombinasyonlar seçilmiştir. Seçilen kombinasyonlar altında bulunan moment normal kuvvet değerlerinde TS500 minimum dış merkezlik tahkiki yapılarak gerekli kombinasyonların momentleri büyütülerek dizayn kuvvetlerine ulaşılmıştır. Bu aşamada abaklar yardımıyla kolon boyuna donatıları seçilmiştir.

Kolon Adı	My(knm)	Mx(knm)	P(kN)	Köşe donatılar	Orta donatılar
S2	152,35	46,36	1200,63	3Ø18	1Ø14
S3	57,26	178,82	904,74	3Ø14	1Ø14
S4	68,76	56,8	1959,54	3Ø16	1Ø16
S5	155,54	18,83	101,77	3Ø16	1Ø16
S6	59,87	160,65	999,82	3Ø14	1Ø14
S 7	73,61	60,81	2097,86	3Ø16	1Ø16
S 8	182,95	45,44	185,83	3Ø16	1Ø16
S10	62,35	75,74	2158,56	3Ø18	1Ø14
S11	65,62	91,88	2413,35	3Ø16	1Ø16

Çizelge 4.92 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna donatıları.

Kesme donatisi hesaplari;

Birinci kat kolanlarında süneklik düzeyi yüksek kolon kabulüne göre Ve kesme kuvveti hesaplanıp deprem yükü azaltma katsayısı R=2 alınarak yapılan çözümleme sonucu bulunan kesme kuvvetiyle karşılaştırılarak küçük olan değer, dizayn kesme kuvveti olarak seçilmiştir. Kolon sarılma bölgesi etriye donatısı için s=10 cm kabulü ile Denklem ((3.40)(3.41)) kullanılarak gerekli donatı alanı hesap edilerek kolon kesme kapasitesi hesaplanmış kapasitenin kesme kuvvetlerinden büyük olduğu gösterilmiştir(Çizelge 4.93).

Çizelge 4.93 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri.

Kolon adı	Vex (kN)	Vey (kN)	Vx(R=2) (kN)	Vy(R=2) (kN)	Asx (cm ²)	Asy (cm ²)	Vwx (kN)	Vwy (kN)	Vx dayanım(kN)	Vy dayanım(kN)
S2	157,47	131,70	294,57	133,21	400	250	710,01	781,65	929,39	1001,02
S3	85,04	198,94	116,58	307,43	300	200	483,09	509,30	639,09	665,30
S4	147,13	154,81	281,63	223,35	250	350	677,43	629,07	867,55	819,20
S5	143,49	155,11	283,25	113,64	150	200	358,48	284,46	483,61	409,59
S6	85,22	176,88	118,46	296,96	300	200	483,09	509,30	639,09	665,30
S7	138,11	148,73	276,15	223,49	250	350	677,43	629,07	867,55	819,20
S8	173,17	162,98	320,22	144,11	150	200	350,15	325,10	493,15	468,10
S10	156,72	194,48	263,20	151,53	400	250	706,45	833,76	940,45	1067,76
S11	157,90	84,48	198,22	176,08	400	200	631,12	636,63	826,12	831,63

4.3.2.11 Sistem 2 birinci kat perde kesit hesapları

Sistem 2 birinci kat perde kesit hesapları SAP 2000'de bulunan depremli kombinasyonların P- M_x - M_y değerleri için CSI Column programında perdeler teker teker tasarlanarak boyuna donatı hesabı yapılmıştır. Hcr minimum değeri 4.5 m bulunmuştur bu değer 1. katın tamamını içine alacak şekilde kritik perde yüksekliği

değeri 6 m. seçilmiştir. Bu durumda hesap için seçilen 1. kat Hcr bölgesinde kaldığından DBHBHY şartı gereği tasarım eğilme momentleri perde taban kesiti değerleri olarak alınmıştır. Bu durumda Sistem 2 için yapının 1 bodrum katı olduğu düşünülürse zemin kat taban kesiti kesit zoru değerleri 1. kat perde tasarım değerleri olarak alınmıştır.

Perde no	Y doğrultusundaki gövde	X doğrultusundaki gövde	Y doğrultusundaki başlıklar	X doğrultusundaki başlıklar	Toplam donatı
Merdiven perdesi	20Ø14/23	20Ø14/24	16Ø14	14Ø14	152Ø14
Asansör perdesi	10Ø14/23	10Ø14/23	6Ø14	6Ø14	86Ø14
P1	8Ø14	8Ø14	10Ø14	10Ø14	68Ø14
P2	8Ø14	8Ø14	10Ø14	10Ø14	68Ø14

Çizelge 4.94 : Birinci kat perdeleri için seçilen boyuna donatılar.

Perde enine donatı hesapları için ise dizayn kombinasyonu altında CSI Column programı yardımıyla perdelerin moment ve pekleşmeli moment kapasiteleri bulunarak süneklik düzeyi yüksek perde kesme kuvveti koşullarınca pekleşmeli moment kapasitesi dizayn momentine bölünerek ve dinamik büyütme katsayısı da hesaba katılarak kombinasyonlar sonucu bulunan maksimum kesme kuvveti V_d büyütülerek dizayn kesme kuvveti Ve hesaplanmıştır. Burada kolon etriye alanı hesabında gösterilen Denklem(3.40)(3.41) ile başlık bölgesi etriye alanları s=10 cm için hesaplanarak enine donatı seçimi yapılmıştır.

Perde No	Başlık bölgesi etriye donatı alanı x	Başlık bölgesi etriye donatısı alanı y	Seçilen etriye alanı
Merdiven perdesi	307,14	92,86	1 adet Ø12 sargı ve 1 adet Ø12 çiroz(339)
Asansör perdesi	200,00	92,86	1 tam Ø12 sargı(226)
P1	200,00	92,86	1 tam Ø12 sargı(226)
P2	200,00	92,86	1 tam Ø12 sargı(226)

Çizelge 4.95 : Perde başlık bölgeleri için gerekli donatı alanları.

Bulunan kesme kuvvetleri karşılaştırılıp küçük değer dizayn kesme kuvveti olarak seçilirken perde betonarme kesitinin taşıyabileceği maksimum kesme kuvveti de hesaplanarak betonarme kesitin yeterliliği tahkik edilmiştir.

Perde No	V(ex) (kN)	V(ey) (kN)	V(R=2)x(kN)	V(R=2)y(kN)	V(x) dizayn(kN)	V(y) dizayn(kN)	Vmax x(kN)	Vmax y(kN)
Merdiven perdesi	2195	3846	3352	3987	2195	3846	4356	10824
Asansör perdesi	1555	1272	1966	1303	1555	1272	5280	2772
P1	980	976	1490	1603	980	976	3168	3168
P2	937	1023	1666	1607	937	1023	3168	3168

Cizelge 4.96 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme kuvvetleri.

Seçilen dizayn kesme kuvveti için Ø12/25 etriye seçilerek perde kapasiteleri Denklem (3.45) yardımıyla hesaplanarak seçilen etriye aralığı tahkik edilmiştir.

Perde No	Ø12/25 enine p(x)	Ø12/25 enine p(y)	Ax(m2)	Ay(m2)	Perde kesme kapasitesi x	Perde kesme kapasitesi y
Merdiven perdesi	0,0038	0,0030	0,990	2,460	2165,46	4704,42
Asansör perdesi	0,0030	0,0030	1,200	1,200	2294,84	2294,84
P1	0,0030	0,0030	0,720	0,720	1376,90	1376,90
P2	0,0030	0,0030	0,720	0,720	1376,90	1376,90

Çizelge 4.97 : Seçilen etriye aralığı için perde kesme kapasiteleri.

4.3.2.12 Kolonların kirişlerden daha güçlü olması koşulu

Aynı düğüm noktasına birleşen kolonların taşıma gücü momentleri toplamı aynı noktaya birleşen kirişlerin taşıma gücü momentleri toplamından %20 daha büyük olması şartı her iki deprem doğrultusunda + ve – yönlü depremler için 1.kat kolonları üst düğüm noktası için araştırılmış olup kolonların güçlü olması koşulunun sağlandığı tespit edilmiştir.

Deprem yönü	Düğüm noktası kolon/kiriş kapasite oranları								
ve doğrultusu	S02	S03	S04	S05	S06	S07	S08	S10	S11
X+	2,95	5,07	4,14	2,42	5,02	4,34	1,95	3,50	2,19
Х-	2,87	3,59	4,60	3,24	3,73	4,73	2,73	3,03	2,58
Y+	7,01	2,63	3,01	1,40	2,22	2,82	1,43	8,44	13,76
Y-	6,43	2,65	3,00	1,31	2,20	2,92	2,26	5,21	8,27

Çizelge 4.98 : Kolon ve kirişlerin moment kapasitesi oranları.

4.3.2.13 Kolon-kiriş birleşim bölgesi kesme güvenliği kontrolleri

Süneklik düzeyi yüksek çerçeve sistemler için öngörülen birleşim bölgesi kesme kontrolleri için her iki deprem doğrultusunda + ve – yönlü depremler için 1.kat kolonları üst düğüm noktaları kesme kuvvetleri ve düğüm noktası kapasiteleri hesaplanarak düğüm noktası kesme kapasitelerinin yeterli olduğu gösterilmiştir.

Kolon no	Bağlantı tipi	Vex+(kN)	Vex-(kN)	Vey+(kN)	Vey-(kN)	Vdayanımx(kN)	Vdayanımy(kN)
S02	kuşatılmış	628,72	647,97	536,37	576,82	1620	4050
S03	kuşatılmamış	239,87	365,95	579,73	565,50	2160	1620
S04	kuşatılmış	584,39	632,99	613,74	586,17	5070	2430
S05	kuşatılmış	546,41	594,17	722,13	720,77	2310	2331
S06	kuşatılmamış	238,85	348,27	722,50	722,05	2160	1620
S07	kuşatılmış	574,66	618,21	649,00	681,45	3510	3510
S08	kuşatılmış	664,02	716,57	641,26	674,13	2640	2640
S10	kuşatılmış	644,07	646,03	656,82	596,28	1620	4320
S11	kuşatılmamış	837,93	616,69	237,28	341,84	1080	2700

Çizelge 4.99 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım değerleri.

4.3.2.14 Sistem 2 beton ve donatı metrajı

Hesaplanan birinci kat kolon, kiriş ve perdelerinde kullanılacak donatılar ve katın bütün elemanlarının toplam beton hacmi hesaplanmıştır. Sonuçlar Çizelge 4.100'de verilmiştir.

Çizelge 4.100 : Birinci kat donatı ve beton metrajı.

Yapı elemanı	Donatı Miktarı(Ton)	Beton Miktarı (m ³)
Kiriş	3,29	
Kolon	2,68	
Perde	6,11	
Toplam	12,07	139,32

4.3.3 Sistem 3 için çözümleme ve kesit hesapları

Deprem hesabı için hesaplanan kütlelere x ve y yönlerinde ötelenme z ekseni etrafında dönme serbestlikleri verilmiştir. Buna göre her sistem için katların hesaplanan ağırlıklarından türetilen ötelenme kütleleri ve dönme atalet kütleleri hesaplanmıştır.

Çizelge 4.101 : Sistem 3 için ötelenme kütleleri ve dönme atalet kütleleri

	V va V vänända ätalanan	Z ekseni
Kat No	X ve Y yonunde otelenen	etrafinda donen
Ixat 110	kat kütlesi(Kn.sn2/m)	kütle
		ataleti(Knm/sn2)
8	423,61	29483,31
7	530,94	36954,14
6	530,94	36954,14
5	532,99	37096,75
4	535,04	37239,35
3	535,04	37239,35
2	540,97	37652,28
1	546,91	38065,20
Ζ	546,91	38065,20
В	681,69	47445,97

Her kat için serbestlik derecesi tanınan kütle ve dönme atalet kütleleri hesaplandıktan sonra yapıya etkiyecek deprem yüklerinin hesabına geçilmiştir.

4.3.3.1 Eşdeğer deprem yükü hesabı

Yapılan ön çözüm için modal sonuçlar:

Mod No	Periyot(sn)	Ux içinToplam kütle katılımı oranı	Uy içinToplam kütle katılımı oranı	Rz içinToplam kütle katılımı oranı
1	0,6457	0,0000	0,6536	0.3456
2	0,5843	0,6604	0,6536	0,4704
3	0,5286	0,6694	0,6536	0,6568
4	0,1638	0,6694	0,8053	0,7370
5	0,1625	0,7986	0,8053	0,7654
6	0,1409	0,7987	0,8053	0,7980
7	0,0790	0,8497	0,8053	0,8094
8	0,0730	0,8497	0,8694	0,8433
9	0,0640	0,8499	0,8694	0,8582
10	0,0489	0,8790	0,8694	0,8643
11	0,0436	0,8790	0,9080	0,8847
12	0,0379	0,8794	0,9080	0,8942
13	0,0345	0,8992	0,9080	0,8981
14	0,0305	0,8992	0,9369	0,9134
15	0,0266	0,9149	0,9369	0,9169
16	0,0262	0,9153	0,9369	0,9235
17	0,0237	0,9153	0,9610	0,9362
18	0,0220	0,9281	0,9610	0,9386
19	0,0201	0,9301	0,9610	0,9455
20	0,0197	0,9301	0,9805	0,9558
21	0,0191	0,9394	0,9805	0,9570
22	0,0175	0,9467	0,9805	0,9588
23	0,0173	0,9467	0,9933	0,9656
24	0,0168	0,9654	0,9933	0,9772
25	0,0162	0,9997	0,9933	0,9799
26	0,0157	0,9997	0,9990	0,9829
27	0,0148	0,9997	1,0000	0,9834
28	0,0145	1,0000	1,0000	0,9855
29	0,0133	1,0000	1,0000	0,9874
30	0,0126	1,0000	1,0000	1,0000

Çizelge 4.102 : Sistem 3 periyotları ve modların kütle katılımları

Modal hesabın ardından hakim periyotlar yapını mod şekillerine bakılarak gözlemlendikten sonra spektral ivme ve kat kuvvetleri hesaplanmıştır.

Periyot(X) (sn)	Periyot(Y) (sn)	Yapı ağırlığı (kN)	Spektrum katsayısı S(T)x	Spektrum katsayısı S(T)y	Ra (T _x)	Ra (T _y)	Spektral ivme katsayısı A(Tx)	Spektral ivme katsayısı A(Ty)
0,58429	0,64568	46336,15	1,85	1,7	7	7	0,74	0,68

Çizelge 4.103: Sistem 3 için bulunan ön hesap sonuçları.

Çizelge 4.104 : Sistem 3 taban ve tepe kesme kuvvetleri.

Taban kesr	ne kuvveti	Tepe kuvveti				
V _{t(X)} (kN)	V _{t(y)} (kN)	$\Delta F_{\rm N}(X)(k{\rm N})$	$\Delta F_{\rm N}({\rm Y})({\rm kN})$			
4888,40	4512,90	329,97	304,62			

Taban ve tepe kesme kuvvetlerinin bulunmasının ardından katlara gelen deprem kuvvetleri bulunmuştur.

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Ζ	5365,16	3,00	16095,48	103,84
1	5365,16	6,00	32190,96	207,68
2	5306,96	9,00	47762,64	308,15
3	5248,76	12,00	62985,12	406,35
4	5248,76	15,00	78731,40	507,94
5	5228,66	18,00	94115,88	607,20
6	5208,56	21,00	109379,76	705,67
7	5208,56	27,00	140631,11	907,30
8	4155,57	30,00	124667,15	804,30

Çizelge 4.105 : Sistem 3 için bulunan X yönü kat kesme kuvvetleri.

Çizelge 4.106 : Sistem 3 için bulunan Y yönü kat kesme kuvvetleri.

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Z	5365,16	3,00	16095,48	95,86
1	5365,16	6,00	32190,96	191,73
2	5306,96	9,00	47762,64	284,48
3	5248,76	12,00	62985,12	375,14
4	5248,76	15,00	78731,40	468,93
5	5228,66	18,00	94115,88	560,56
6	5208,56	21,00	109379,76	651,47
7	5208,56	27,00	140631,11	837,60
8	4155,57	30,00	124667,15	742,52

Çizelge 4.107 : Sistem 3 için bulunan bodrum kat kesme kuvveti.

Wbk(kN)	Fbk(kN)
6687,35	1783,29

Cizelge 4.108 : Sistem 3 taban kesme kuvveti ve perde kesme kuvveti oranları.

Deprem yönü	Vt(kN)	Vp(kN)	αs
EX	4888,38	4144,36	0,85
EX(+0,05)	4888,39	4148,74	0,85
EX(-0,05)	4888,41	4140,02	0,85
EY	4512,90	3910,90	0,87
EY(+0,05)	4512,90	3910,91	0,87
EY(-0,05)	4512,90	3910,91	0,87

Yapı davranış katsayısı tekrar seçilerek hesaplar tekrarlanmıştır.

Çizelge 4.109 : Sistem 3 için yeniden düzenlenmiş yapı davranış katsayıları ile ön çözüm sonuçları.

Periyod(X) (sn)	Periyod(Y) (sn)	Yapı ağırlığı(kN)	Spektrum katsayısı S(T)x	Spektrum katsayısı S(T)y	Ra(T _x)	Ra(T _y)	Spektral ivme katsayısı A(TX)	Spektral ivme katsayısı A(Ty)
0,58429	0,64568	46336,15	1,85	1,70	6,61	6,53	0,74	0,68

Çizelge 4.110 : Sistem 3 için yeniden hesaplanmış taban ve tepe kuvvetleri.

Sistem no —	Taban kesr	Taban kesme kuvveti		uvveti
	$V_{t(X)}(kN)$	$V_{t(y)}(kN)$	$\Delta F_N(X)(kN)$	$\Delta F_{\rm N}({\rm Y})({\rm kN})$
3	5176,83	4837,72	349,44	326,55

Taban ve tepe kesme kuvvetlerinin bulunmasının ardından katlara gelen deprem kuvvetleri bulunmuştur.

Çizelge 4.111 : Sistem 3 için yeniden hesaplanmış X yönü kat kesme kuvvetleri.

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Ζ	5365,16	3,00	16095,48	109,97
1	5365,16	6,00	32190,96	219,94
2	5306,96	9,00	47762,64	326,33
3	5248,76	12,00	62985,12	430,33
4	5248,76	15,00	78731,40	537,91
5	5228,66	18,00	94115,88	643,02
6	5208,56	21,00	109379,76	747,31
7	5208,56	27,00	140631,11	960,83
8	4155,57	30,00	124667,15	851,76

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Ζ	5365,16	3,00	16095,48	102,76
1	5365,16	6,00	32190,96	205,53
2	5306,96	9,00	47762,64	304,95
3	5248,76	12,00	62985,12	402,14
4	5248,76	15,00	78731,40	502,68
5	5228,66	18,00	94115,88	600,90
6	5208,56	21,00	109379,76	698,36
7	5208,56	27,00	140631,11	897,89
8	4155,57	30,00	124667,15	795,96

Çizelge 4.112 : Sistem 3 için yeniden hesaplanmış Y yönü kat kesme kuvvetleri.

4.3.3.2 Mod birleştirme hesabı

SAP2000'e girilen spektrum grafiğinde deprem yükü azaltma katsayısı spektral ivme grafiğinde yerine konarak grafik çarpan değeri S(T)/R olarak elde edilmiştir, oluşturulan yükleme için çarpan olarak da A₀.I.g için 3,924 girilmiştir. Başlangıç olarak yapı davranış katsayısı 7 alınmış olup, ikinci aşamada taban kesme kuvvetinin perde taban kesme kuvvetine oranına bakılarak düzeltilen davranış katsayısı ile deprem yükü azaltma katsayısı düzenlenerek son şekli ile spektrum fonksiyonu elde edilmiştir.

Т	S(T)	S(T)/R	R
0,00	1,00	0,67	1,50
0,05	1,50	0,45	3,33
0,10	2,00	0,39	5,17
0,15	2,50	0,36	7,00
0,20	2,50	0,36	7,00
0,30	2,50	0,36	7,00
0,40	2,50	0,36	7,00
0,45	2,28	0,33	7,00
0,50	2,09	0,30	7,00
0,55	1,94	0,28	7,00
0,75	1,51	0,22	7,00
1,00	1,20	0,17	7,00
1,25	1,00	0,14	7,00
1,50	0,87	0,12	7,00
1,75	0,77	0,11	7,00
2,00	0,69	0,10	7,00
2,25	0,63	0,09	7,00

Çizelge 4.113: Ön spektrum çözümü için X ve Y yönü için tanıtılan spektrum grafiği.

Çizelge 4.114 : Sistem 3 için spektrum çözümlemesi sonucunda çıkan yapı davranış katsayıları.

Y
6,51

Bulunan yeni davranış katsayılar ile spektrum grafikleri x ve y yönleri için yeniden türetilmiştir.

		X yönü			Y yönü	
Т	S(T)	S(T)/Ra	Ra	S(T)	S(T)/Ra	Ra
0,00	1,00	0,67	1,50	1,00	0,67	1,50
0,05	1,50	0,47	3,20	1,50	0,47	3,17
0,10	2,00	0,41	4,90	2,00	0,41	4,84
0,15	2,50	0,38	6,60	2,50	0,38	6,51
0,20	2,50	0,38	6,60	2,50	0,38	6,51
0,30	2,50	0,38	6,60	2,50	0,38	6,51
0,40	2,50	0,38	6,60	2,50	0,38	6,51
0,45	2,28	0,34	6,60	2,28	0,35	6,51
0,50	2,09	0,32	6,60	2,09	0,32	6,51
0,55	1,94	0,29	6,60	1,94	0,30	6,51
0,75	1,51	0,23	6,60	1,51	0,23	6,51
1,00	1,20	0,18	6,60	1,20	0,18	6,51
1,25	1,00	0,15	6,60	1,00	0,15	6,51
1,50	0,87	0,13	6,60	0,87	0,13	6,51
1,75	0,77	0,12	6,60	0,77	0,12	6,51
2,00	0,69	0,10	6,60	0,69	0,11	6,51
2,25	0,63	0,10	6,60	0,63	0,10	6,51

Cizelge 4.115 : Sistem 3 için X ve Y yönlerinde son şekli ile spektrum grafikleri.

Mod birleştirme çözümlemesi sonucu bulunan taban kesme kuvvetleri eşdeğer deprem yükü hesabı bulunan taban kesme kuvvetleriyle karşılaştırılıp gerekli büyütmeler yapılmıştır.

Çizelge 4.116 : Sistem 3, mod birleştirme ve eşdeğer deprem hesabı taban kesme kuvvetleri.

Deprem yönü	V _{tB} (kN)	V _t (kN)	β	βV_t	$\beta V_{t}\!/V_{tB}$
Х	4079,66	6960,13	0,90	6264,12	1,54
У	3805,43	6621,00	0,90	5958,90	1,57

Karşılaştırılan yöntemler arasından eşdeğer deprem kuvveti yöntemi düzensizlik kontrolleri ve kesit hesaplarında dikkate alınmıştır.

4.3.3.3 A1 burulma düzensizliği kontrolü

Bulunan çerçeve yer ve şekil değiştirme sonuçları kayıt altına alınarak A1 burulma düzensizliği kontrolleri ±0.05 ek dış merkezlik etkisi de dikkate alınarak aşağıda detaylandırılmıştır.

Kat	d _{i-max} (m)	d _{i-min} (m)	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ýbi>1,2
8	0,0187	0,0169	0,0017	0,0015	0,0016	1,07	YOK
7	0,0169	0,0154	0,0019	0,0017	0,0018	1,07	YOK
6	0,0150	0,0137	0,0021	0,0019	0,0020	1,06	YOK
5	0,0129	0,0118	0,0023	0,0021	0,0022	1,05	YOK
4	0,0106	0,0097	0,0024	0,0022	0,0023	1,04	YOK
3	0,0081	0,0075	0,0024	0,0022	0,0023	1,04	YOK
2	0,0057	0,0053	0,0023	0,0021	0,0022	1,04	YOK
1	0,0034	0,0031	0,0020	0,0018	0,0019	1,04	YOK
Ζ	0,0014	0,0013	0,0014	0,0013	0,0014	1,04	YOK

Çizelge 4.117 : Sistem 3, X yönü için A1 burulma düzensizliği.

Çizelge 4.118 : Sistem 3, X(e=+0,05) yönü için A1 burulma düzensizliği.

Kat	$d_{i-max}(m)$	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta \min(m)$	$\Delta ort(m)$	ńbi	Düzensizlik
	T mux()	T mm()			()		ήb1>1,2
8	0,0183	0,0171	0,0016	0,0016	0,0016	1,02	YOK
7	0,0166	0,0156	0,0018	0,0018	0,0018	1,02	YOK
6	0,0148	0,0138	0,0021	0,0020	0,0020	1,03	YOK
5	0,0127	0,0118	0,0023	0,0021	0,0022	1,03	YOK
4	0,0105	0,0097	0,0024	0,0022	0,0023	1,04	YOK
3	0,0081	0,0075	0,0024	0,0022	0,0023	1,04	YOK
2	0,0056	0,0053	0,0023	0,0021	0,0022	1,04	YOK
1	0,0033	0,0032	0,0020	0,0018	0,0019	1,03	YOK
Ζ	0,0014	0,0013	0,0014	0,0013	0,0014	1,02	YOK

Çizelge 4.119 : Sistem 3, X(e=-0,05) yönü için A1 burulma düzensizliği.

Kat	d _{i-max} (m)	d _{i-min} (m)	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ýbi>1,2
8	0,0202	0,0156	0,0019	0,0014	0,0016	1,16	YOK
7	0,0183	0,0142	0,0021	0,0016	0,0018	1,15	YOK
6	0,0162	0,0127	0,0023	0,0018	0,0020	1,14	YOK
5	0,0139	0,0109	0,0025	0,0019	0,0022	1,13	YOK
4	0,0114	0,0090	0,0026	0,0020	0,0023	1,12	YOK
3	0,0088	0,0070	0,0026	0,0021	0,0023	1,12	YOK
2	0,0061	0,0049	0,0025	0,0020	0,0022	1,11	YOK
1	0,0036	0,0029	0,0021	0,0017	0,0019	1,11	YOK
Ζ	0,0015	0,0012	0,0015	0,0012	0,0014	1,10	YOK
Kat	d _{i-max} (m)	d _{i-min} (m)	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
-----	------------------------	------------------------	-----------------	-----------------	-----------------	------	------------------------
8	0,0212	0,0212	0,0023	0,0023	0,0023	1,00	YOK
7	0,0189	0,0189	0,0024	0,0024	0,0024	1,00	YOK
6	0,0165	0,0165	0,0026	0,0026	0,0026	1,00	YOK
5	0,0139	0,0139	0,0027	0,0027	0,0027	1,00	YOK
4	0,0112	0,0112	0,0027	0,0027	0,0027	1,00	YOK
3	0,0085	0,0085	0,0026	0,0026	0,0026	1,00	YOK
2	0,0059	0,0059	0,0024	0,0024	0,0024	1,00	YOK
1	0,0035	0,0035	0,0020	0,0020	0,0020	1,00	YOK
Ζ	0,0015	0,0015	0,0015	0,0015	0,0015	1,00	YOK

Çizelge 4.120 : Sistem 3, Y yönü için A1 burulma düzensizliği.

Çizelge 4.121 : Sistem 3, Y(e=+0,05) yönü için A1 burulma düzensizliği.

Kat	$d_{i-max}(m)$	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0244	0,0180	0,0026	0,0019	0,0023	1,14	YOK
7	0,0218	0,0160	0,0028	0,0021	0,0024	1,15	YOK
6	0,0190	0,0140	0,0030	0,0022	0,0026	1,15	YOK
5	0,0161	0,0118	0,0031	0,0023	0,0027	1,15	YOK
4	0,0130	0,0095	0,0031	0,0023	0,0027	1,16	YOK
3	0,0098	0,0072	0,0031	0,0022	0,0026	1,16	YOK
2	0,0068	0,0050	0,0028	0,0020	0,0024	1,16	YOK
1	0,0040	0,0030	0,0023	0,0017	0,0020	1,16	YOK
Ζ	0,0017	0,0013	0,0017	0,0013	0,0015	1,13	YOK

Çizelge 4.122 : Sistem 3, Y(e=-0,05) yönü için A1 burulma düzensizliği.

Kat	d _{i-max} (m)	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ýbi>1,2
8	0,0244	0,0180	0,0026	0,0019	0,0023	1,14	YOK
7	0,0218	0,0160	0,0028	0,0021	0,0024	1,15	YOK
6	0,0190	0,0140	0,0030	0,0022	0,0026	1,15	YOK
5	0,0161	0,0118	0,0031	0,0023	0,0027	1,15	YOK
4	0,0130	0,0095	0,0031	0,0023	0,0027	1,16	YOK
3	0,0098	0,0072	0,0031	0,0022	0,0026	1,16	YOK
2	0,0068	0,0050	0,0028	0,0020	0,0024	1,16	YOK
1	0,0040	0,0030	0,0023	0,0017	0,0020	1,16	YOK
Ζ	0,0017	0,0013	0,0017	0,0013	0,0015	1,13	YOK

Hesaplanan göreli yer değiştirmelere baktığımızda Sistem 3'ün A1 burulma düzensizliğine sahip olmadığı görülmüştür.

4.3.3.4 A2 Döşeme düzensizlikleri kontrolü

Sistemde sadece asansörler için bulunan 2 tane ufak döşeme yırtığı vardır, yapının kullanımı için birkaç ufak mekanik ve elektrik şaftı açılması olası olmakla beraber sonuçta kat döşemelerinde ani rijitlik değişimine neden olacak bir düzensizlik bulunmamaktadır.

Kat	Kat Alanı(m ²)	Boşluk Alanı(m ²)	Oran	Düzensizlik Ab/A >1/3
8	383,20	15,40	0,040	ҮОК
7	383,20	15,40	0,040	YOK
6	383,20	15,40	0,040	YOK
5	383,20	15,40	0,040	YOK
4	383,20	15,40	0,040	YOK
3	383,20	15,40	0,040	YOK
2	383,20	15,40	0,040	YOK
1	383,20	15,40	0,040	YOK
Ζ	383,20	15,40	0,040	УОК

Çizelge 4.123 : Sistem 3, A2 döşeme düzensizliği kontrolleri.

4.3.3.5 A3 Planda çıkıntılar bulunması durumu

Yapı dikdörtgen olup planda çıkıntılar içermemektedir, dolayısıyla Sistem 3, A3 düzensizliğine sahip değildir.

4.3.3.6 B1 komşu katlar arası dayanım düzensizliği

Yapıda teşkil edilen düşey taşıyıcı elemanlar ve mimari duvarlar dikkate alınarak yapılan B1 zayıf kat hesapları aşağıda detaylandırılmıştır.

Kat	Kolon Alanı(m ²)	Perde Alanı(m ²)	Duvar Alanı(m ²)	Etkili Toplam Alan(m ²)	ήci	Düzensizlik ýci <0,8
8	2,37	5,52	10,80	11,13		YOK
7	2,37	5,52	10,80	11,13	1,00	YOK
6	2,37	5,52	10,80	11,13	1,00	YOK
5	3,04	5,52	10,80	11,80	1,06	YOK
4	3,04	5,52	10,80	11,80	1,00	YOK
3	3,04	5,52	10,80	11,80	1,00	YOK
2	4,98	5,52	10,80	13,74	1,16	YOK
1	4,98	5,52	10,80	13,74	1,00	YOK
Ζ	4,98	5,52	10,80	13,74	1,00	YOK

Çizelge 4.124 : Sistem 3, X yönü için B1 zayıf kat düzensizliği hesap detayları.

Kat	Kolon Alanı(m ²)	Perde Alanı(m ²)	Duvar Alanı(m ²)	Etkili Toplam Alan(m ²)	ήci	Düzensizlik ńci <0,8
8	2,37	7,11	8,20	11,94		YOK
7	2,37	7,11	8,20	11,94	1,00	YOK
6	2,37	7,11	8,20	11,94	1,00	YOK
5	3,04	7,11	8,20	12,61	1,06	YOK
4	3,04	7,11	8,20	12,61	1,00	YOK
3	3,04	7,11	8,20	12,61	1,00	YOK
2	4,98	7,11	8,20	14,55	1,15	YOK
1	4,98	7,11	8,20	14,55	1,00	YOK
Ζ	4,98	7,11	8,20	14,55	1,00	YOK

Çizelge 4.125 : Sistem 3, Y yönü için B1 zayıf kat düzensizliği hesap detayları.

Hesap detaylarında görüldüğü üzere Sistem 3, B1 zayıf kat düzensizliğine sahip değildir.

4.3.3.7 B2 Komşu katlar arası rijitlik düzensizliği

Sistem 3 için her iki deprem yönü için ek dış merkezliklerde dikkate alınarak kat ötelemeleri kontrol edilmiş ve yapıda B2 yumuşak kat düzensizliği olup olmadığı araştırılmıştır.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00161	3,00	0,00054	-	0,89	YOK
7	0,00182	3,00	0,00061	1,13	0,90	YOK
6	0,00203	3,00	0,00068	1,12	0,92	YOK
5	0,00221	3,00	0,00074	1,09	0,95	YOK
4	0,00232	3,00	0,00077	1,05	0,99	YOK
3	0,00234	3,00	0,00078	1,01	1,05	YOK
2	0,00222	3,00	0,00074	0,95	1,17	YOK
1	0,00190	3,00	0,00063	0,86	1,39	YOK
Ζ	0,00137	3,00	0,00046	0,72	-	YOK

Çizelge 4.126 : Sistem 3, X yönünde yumuşak kat düzensizliği.

Çizelge 4.127 : Sistem 3, X(+0,05) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ńki > 2
8	0,00160	3,00	0,00053	-	0,89	YOK
7	0,00180	3,00	0,00060	1,13	0,90	YOK
6	0,00201	3,00	0,00067	1,12	0,92	YOK
5	0,00219	3,00	0,00073	1,09	0,95	YOK
4	0,00231	3,00	0,00077	1,05	0,99	YOK
3	0,00233	3,00	0,00078	1,01	1,05	YOK
2	0,00221	3,00	0,00074	0,95	1,17	YOK
1	0,00189	3,00	0,00063	0,86	1,39	YOK
Ζ	0,00136	3,00	0,00045	0,72	-	YOK

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00162	3,00	0,00054	-	0,89	YOK
7	0,00183	3,00	0,00061	1,13	0,90	YOK
6	0,00204	3,00	0,00068	1,11	0,92	YOK
5	0,00222	3,00	0,00074	1,09	0,95	YOK
4	0,00233	3,00	0,00078	1,05	0,99	YOK
3	0,00235	3,00	0,00078	1,01	1,05	YOK
2	0,00223	3,00	0,00074	0,95	1,17	YOK
1	0,00191	3,00	0,00064	0,86	1,39	YOK
Ζ	0,00138	3,00	0,00046	0,72	-	YOK

Çizelge 4.128 : Sistem 3, X(-0,05) yönünde yumuşak kat düzensizliği.

Çizelge 4.129 : Sistem 3, Y yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00227	3,00	0,00076	-	0,94	YOK
7	0,00242	3,00	0,00081	1,07	0,94	YOK
6	0,00257	3,00	0,00086	1,06	0,96	YOK
5	0,00268	3,00	0,00089	1,04	0,99	YOK
4	0,00272	3,00	0,00091	1,01	1,03	YOK
3	0,00264	3,00	0,00088	0,97	1,10	YOK
2	0,00240	3,00	0,00080	0,91	1,22	YOK
1	0,00197	3,00	0,00066	0,82	1,31	YOK
Ζ	0,00151	3,00	0,00050	0,76	-	YOK

Çizelge 4.130 : Sistem 3, Y(+0,05) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00227	3,00	0,00076	-	0,94	YOK
7	0,00242	3,00	0,00081	1,07	0,94	YOK
6	0,00257	3,00	0,00086	1,06	0,96	YOK
5	0,00268	3,00	0,00089	1,04	0,99	YOK
4	0,00272	3,00	0,00091	1,01	1,03	YOK
3	0,00264	3,00	0,00088	0,97	1,10	YOK
2	0,00240	3,00	0,00080	0,91	1,22	YOK
1	0,00197	3,00	0,00066	0,82	1,31	YOK
Ζ	0,00151	3,00	0,00050	0,76	-	YOK

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00227	3,00	0,00076	-	0,94	YOK
7	0,00242	3,00	0,00081	1,07	0,94	YOK
6	0,00257	3,00	0,00086	1,06	0,96	YOK
5	0,00268	3,00	0,00089	1,04	0,99	YOK
4	0,00272	3,00	0,00091	1,01	1,03	YOK
3	0,00264	3,00	0,00088	0,97	1,10	YOK
2	0,00240	3,00	0,00080	0,91	1,22	YOK
1	0,00197	3,00	0,00066	0,82	1,31	YOK
Ζ	0,00151	3,00	0,00050	0,76	-	YOK

Çizelge 4.131 : Sistem 3, Y(-0,05) yönünde yumuşak kat düzensizliği.

Hesap detaylarında görüldüğü üzere Sistem 3 B2 yumuşak kat düzensizliğine sahip değildir.

4.3.3.8 Göreli kat ötelemeleri ve ikinci mertebe etkileri kontrolü

Çözümleme sonucu bulanan yer değiştirmelerle yapılan göreli kat ötelemelerinin ve ikinci mertebe etkilerinin sınırlandırılması kontrolleri aşağıda detaylandırılmıştır.

Kat	$d_{i-max}(m)$	hi(m)	$\Delta max(m)$	δimax	δi/hi	Koşul < 0,02
8	0,02020	3,00	0,00188	0,01244	0,00415	TAMAM
7	0,01832	3,00	0,00211	0,01392	0,00464	TAMAM
6	0,01621	3,00	0,00233	0,01539	0,00513	TAMAM
5	0,01389	3,00	0,00251	0,01661	0,00554	TAMAM
4	0,01137	3,00	0,00262	0,01734	0,00578	TAMAM
3	0,00875	3,00	0,00263	0,01737	0,00579	TAMAM
2	0,00612	3,00	0,00248	0,01641	0,00547	TAMAM
1	0,00364	3,00	0,00212	0,01402	0,00467	TAMAM
Ζ	0,00152	3,00	0,00152	0,01004	0,00335	TAMAM

Çizelge 4.132 : Sistem 3, X yönü göreli kat ötelemeleri.

Çizelge 4.133 : Sistem 3, Y yönü göreli kat ötelemeleri.

Kat	$d_{i-max}(m)$	hi(m)	$\Delta max(m)$	δimax	δi/hi	Koşul < 0,02
8	0,02438	3,00	0,00259	0,01692	0,00564	TAMAM
7	0,02179	3,00	0,00277	0,01811	0,00604	TAMAM
6	0,01902	3,00	0,00296	0,01931	0,00644	TAMAM
5	0,01606	3,00	0,00309	0,02020	0,00673	TAMAM
4	0,01297	3,00	0,00314	0,02052	0,00684	TAMAM
3	0,00983	3,00	0,00305	0,01994	0,00665	TAMAM
2	0,00677	3,00	0,00279	0,01819	0,00606	TAMAM
1	0,00399	3,00	0,00228	0,01490	0,00497	TAMAM
Ζ	0,00171	3,00	0,00171	0,01113	0,00371	TAMAM

Sistem 3 için her iki deprem yönü doğrultusunda da etkin göreli kat ötelemeleri maksimum sınırların altındadır.

Kat	$\Delta ort(m)$	w _j (kN)	(Δi) _{ort} xwj	V _i (kN)	Hi(m)	Vihi	θi	Koşul < 0,12
8	0,00161	4155,57	6,6967	1201,19	3,00	3603,58	0,00186	TAMAM
7	0,00182	5208,56	9,4640	960,83	3,00	2882,48	0,00328	TAMAM
6	0,00203	5208,56	10,5525	747,31	3,00	2241,93	0,00471	TAMAM
5	0,00221	5228,66	11,5370	643,02	3,00	1929,07	0,00598	TAMAM
4	0,00232	5248,76	12,1771	537,91	3,00	1613,74	0,00755	TAMAM
3	0,00234	5248,76	12,2716	430,33	3,00	1290,99	0,00951	TAMAM
2	0,00222	5306,96	11,7761	326,33	3,00	978,98	0,01203	TAMAM
1	0,00190	5365,16	10,1884	219,94	3,00	659,81	0,01544	TAMAM
Ζ	0,00137	5365,16	7,3422	109,97	3,00	329,91	0,02226	TAMAM

Çizelge 4.134 : Sistem 3, X yönü için 2. Mertebe etkileri.

Çizelge 4.135 : Sistem 3, Y yönü için 2. Mertebe etkileri.

Kat	$\Delta ort(m)$	w _j (kN)	(Δi) _{ort} xwj	V _i (kN)	Hi(m)	Vihi	θi	Koşul < 0,12
8	0,00227	4155,57	9,4207	1122,51	3,00	3367,53	0,00280	TAMAM
7	0,00242	5208,56	12,6151	897,89	3,00	2693,67	0,00468	TAMAM
6	0,00257	5208,56	13,3964	698,36	3,00	2095,07	0,00639	TAMAM
5	0,00268	5228,66	14,0285	600,90	3,00	1802,71	0,00778	TAMAM
4	0,00272	5248,76	14,2609	502,68	3,00	1508,03	0,00946	TAMAM
3	0,00264	5248,76	13,8357	402,14	3,00	1206,42	0,01147	TAMAM
2	0,00240	5306,96	12,7473	304,95	3,00	914,85	0,01393	TAMAM
1	0,00197	5365,16	10,5801	205,53	3,00	616,59	0,01716	TAMAM
Ζ	0,00151	5365,16	8,0907	102,76	3,00	308,29	0,02624	TAMAM

Sistem 3 için 2. Mertebe gösterge değeri DBYBHY sınır değerinden daha düşüktür.

4.3.3.9 Sistem 3 birinci kat kiriş kesit hesapları

Burada Sistem 3 birinci kat boyuna donatı hesabında Sistem 1 'de uygulanan metotlar aynen tekrarlanmıştır. Seçilen boyuna donatılar Çizelge 4.136 ve Çizelge 4.137'de gösterilmiştir.

Kiriş no	Donatı lifi	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı	Kiriş no	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı	Kiriş no	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı
W101	Üst donatı	3Ø14	3Ø14	2Ø14	K102	-	3Ø14	-	K103	1Ø16	3Ø14	1Ø16
K101	Alt donatı	-	3Ø14	1Ø14		-	3Ø14	-		-	6Ø12	-
V104	Üst donatı	2Ø14	3Ø14	1Ø16	K105	-	3Ø14	1Ø14	K106	-	3Ø14	5Ø12
K104	Alt donatı	-	3Ø14	-		1Ø16	3Ø14	-		2Ø16	3Ø14	1Ø14
V107	Üst donatı	2Ø14	3Ø14	1Ø14	K108	-	3Ø14	1Ø14	K109	-	3Ø14	2Ø14
K 107	Alt donatı	-	3Ø14	-		1Ø16	3Ø14	-		1Ø14	3Ø14	-
V110	Üst donatı	4Ø12	3Ø14	1Ø16	K111	-	3Ø14	4Ø12				
K110	Alt donatı	-	3Ø14	-		2Ø12	3Ø14	1Ø12				
V114	Üst donatı	2Ø14	3Ø14	5Ø12	K115	-	3Ø14	-	K116	-	3Ø14	2Ø14
K 114	Alt donatı	2Ø16	3Ø14	1Ø14		-	3Ø14	-		-	3Ø14	2Ø14
V117	Üst donatı	2Ø12	3Ø14	4Ø12	K118	-	3Ø14	-	K119	2Ø16	3Ø14	1Ø16
K117	Alt donatı	-	3Ø14	-		-	3Ø14	-			3Ø14	-
V120	Üst donatı	1Ø16	3Ø14	-	K121	-	3Ø14	-	K122	4Ø12	3Ø14	1Ø12
K120	Alt donatı	-	3Ø14	-		-	3Ø14	-		1Ø12	3Ø14	-

Çizelge 4.136 : Sistem 3 birinci kat çerçeve oluşturan kirişler için seçilen boyuna donatılar.

Çizelge 4.137 : Sistem 3 birinci kat balkon ve perde bağ kirişleri boyuna donatıları.

Kiriş no	Donatı lifi	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı
V112	Üst donatı	3Ø12	3Ø14	3Ø12
K 112	Alt donati	2Ø14	3Ø14	2Ø14
V112	Üst donatı	2Ø16	3Ø14	2Ø16
K113	Alt donati	2Ø14	3Ø14	2Ø14
V122	Üst donatı	-	3Ø14	-
K125	Alt donatı	-	3Ø14	-
V124	Üst donatı	-	3Ø14	-
K124	Alt donatı	-	3Ø14	-
V125	Üst donatı	-	3Ø14	-
K125	Alt donatı	-	3Ø14	-
V126	Üst donatı	2Ø12	3Ø14	-
K120	Alt donatı	-	3Ø14	-

Birinci kat kirişleri etriye hesabında süneklik düzeyi yüksek kiriş kabulü gereği donatı seçiminde baz alınacak V_e kesme kuvveti hesabı yapılmıştır. Bunun için + ve – deprem yönlerinde kiriş uç taşıma gücü momentleri ve pekleşme göz önüne alınarak moment kapasiteleri hesaplanmış, her iki uç için bulunan pekleşmeli moment kapasiteleri toplanıp kiriş temiz açıklığına bölünerek uç kesme kuvvetlerine ulaşıldıktan sonra, dizayn kombinasyonlarından hesaplanan dizayn kesme kuvveti Vd ile toplanarak Ve elde edilmiştir. Bu aşamada deprem yükü azaltma katsayısı R=2 alınarak yapılan yeni deprem hesabından gelen uç kesme dizayn değeri V_e

karşılaştırılıp küçük olan değer kesit hesabı için seçilmiştir.Bulunan Ve kesme kuvveti R=2 için yenilenen çözümleme kesme değeriyle karşılaştırılarak, dizayn kesme kuvveti olarak tayin edilmiştir. Burada V_{cr} beton kapasitesi kirişler için çıkarıldıktan sonra çeliğin karşılaması gereken V_w çelik dizayn kuvvetine ulaşılmıştır. Bulunan tasarım kesme kuvvetleri için seçilmiş etriye aralıkları Çizelge 4.138'de gösterilmiştir.

Kiriş no	Vei(kN)	Vej(kN)	Vi(R=2) (kN)	Vj(R=2) (kN)	Vwi(kN)	Vwj(kN)	i ucu sıklaştırma bölgesi etriye aralığı (cm)	Kiriş ortası için seçilen etriye aralığı (cm)	i ucu sıklaştırma bölgesi etriye aralığı (cm)
K101	182,87	136,15	302,42	276,17	182,87	136,15	11	23	11
K102	119,10	163,19	159,54	146,34	119,10	146,34	11	26	11
K103	127,54	127,78	82,01	82,01	-27,19	-27,19	11	30	11
K104	144,97	129,34	165,07	180,40	35,77	20,14	11	30	11
K105	171,29	172,59	253,29	276,06	171,29	172,59	11	25	11
K106	196,50	338,37	540,70	139,62	196,50	139,62	11	13	11
K107	143,63	125,95	162,20	181,25	34,43	16,75	11	30	11
K108	142,22	172,83	256,26	271,72	142,22	172,83	11	25	11
K109	173,39	424,28	441,14	86,66	173,39	86,66	11	10	11
K110	187,80	130,52	297,03	266,34	187,80	130,52	11	23	11
K111	124,77	161,98	261,93	243,18	124,77	161,98	11	26	11
K112	157,11	157,08	158,32	159,32	157,11	157,08	11	27	11
K113	168,64	140,68	151,24	151,24	151,24	140,68	11	25	11
K114	157,37	171,19	269,73	-124,64	157,37	-124,64	11	25	11
K115	298,46	231,48	348,93	358,91	298,46	231,48	11	14	11
K116	143,05	140,16	212,53	235,65	143,05	140,16	11	30	11
K117	129,03	145,79	190,87	181,60	19,83	36,59	11	29	11
K118	218,04	250,53	271,04	274,04	218,04	250,53	11	17	11
K119	150,42	128,40	181,18	196,40	41,22	19,20	11	28	11
K120	131,93	118,87	176,80	197,03	131,93	118,87	11	30	11
K121	187,80	248,87	78,63	95,30	78,63	95,30	11	17	11
K122	152,80	122,59	190,64	157,74	152,80	122,59	11	28	11
K123	-	-	13,92	21,02	152,80	122,59	11	28	11
K124	-	-	18,30	28,62	18,30	28,62	11	15	11
K125	-	-	55,55	40,48	55,55	40,48	11	30	11
K126	115,24	86,68	86,96	44,22	86,96	44,22	11	30	11

Çizelge 4.138 : Sistem 3 birinci kat tasarım kesme kuvvetleri ve bulunan etriye aralıkları.

4.3.3.10 Sistem 3 birinci kat kolon kesit hesapları

Sistem 3 için SAP2000 programında TS500-2000 yönetmeliğine göre kesit hesabı yapılarak her kolon için kapasite kullanım oranının en yüksek olmasını sağlayan kombinasyonlar seçilmiştir. Seçilen kombinasyonlar altında bulunan moment normal

kuvvet değerlerinde TS500 minimum dış merkezlik tahkiki yapılarak gerekli kombinasyonların momentleri büyütülerek dizayn kuvvetlerine ulaşılmıştır. Bu aşamada abaklar yardımıyla kolon boyuna donatıları seçilmiştir.

Kolon Adı	My(knm)	Mx(knm)	P(kN)	Köşe donatılar	Orta donatılar
S2	160,66	46,62	1206,08	3Ø18	1Ø14
S 3	57,51	139,85	1183,33	3Ø14	1Ø14
S4	65,93	54,84	1879,02	3Ø16	1Ø16
S5	160,42	20,63	91,33	3Ø16	1Ø16
S 6	60,53	154,69	1100,09	3Ø14	1Ø14
S 7	69,03	57,02	1967,36	3Ø16	1Ø16
S 8	186,68	32,44	126,68	3Ø14	1Ø14
S10	147,59	66,39	1703,33	3Ø18	1Ø14

Çizelge 4.139 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna donatıları.

Kesme donatısı hesapları;

Birinci kat kolanlarında süneklik düzeyi yüksek kolon kabulüne göre Ve kesme kuvveti hesaplanıp deprem yükü azaltma katsayısı R=2 alınarak yapılan çözümleme sonucu bulunan kesme kuvvetiyle karşılaştırılarak küçük olan değer, dizayn kesme kuvveti olarak seçilmiştir. Kolon sarılma bölgesi etriye donatısı için s=10 cm kabulü ile Denklem ((3.40)(3.41)) kullanılarak gerekli donatı alanı hesap edilerek kolon kesme kapasitesi hesaplanmış kapasitenin kesme kuvvetlerinden büyük olduğu gösterilmiştir(Çizelge 4.140).

Çizelge 4.140 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri.

Kolon adı	Vex	Vey	Vx(R=2)	Vy(R=2)	Asx	Asy	Vwx	Vwy	Vx davanım(kN)	Vy davanım(kN)
Kololi aui	(kN)	(kN)	(kN)	(kN)	(cm^2)	(cm^2)	(kN)	(kN)	v x uayaiiiii(KiN)	v y uayaiiiii(Kiv)
S2	164,87	130,76	302,09	143,62	400	250	710,01	781,65	929,39	1001,02
S3	84,10	209,85	123,87	273,26	300	200	483,09	509,30	639,09	665,30
S4	130,48	137,85	292,34	214,09	250	350	677,43	629,07	867,55	819,20
S5	150,13	127,54	289,19	113,82	150	200	358,48	284,46	483,61	409,59
S6	84,18	157,88	125,68	276,56	300	200	483,09	509,30	639,09	665,30
S7	152,48	154,26	290,25	213,23	250	350	677,43	629,07	867,55	819,20
S 8	180,59	162,13	326,25	151,15	150	200	350,15	325,10	493,15	468,10
S10	158,79	160,14	270,71	153,30	400	250	706,45	833,76	940,45	1067,76

4.3.3.11 Sistem 3 birinci kat perde kesit hesapları

Sistem 3 birinci kat perde kesit hesapları SAP 2000'de bulunan depremli kombinasyonların P- M_x - M_y değerleri için CSI Column programında perdeler teker teker tasarlanarak boyuna donatı hesabı yapılmıştır. Hcr minimum değeri 4.5 m bulunmuştur bu değer 1. katın tamamını içine alacak şekilde kritik perde yüksekliği değeri 6 m. seçilmiştir. Bu durumda hesap için seçilen 1. kat Hcr bölgesinde kaldığından DBHBHY şartı gereği tasarım eğilme momentleri perde taban kesiti

değerleri olarak alınmıştır. Bu durumda Sistem 3 için yapının 1 bodrum katı olduğu düşünülürse zemin kat taban kesiti kesit zoru değerleri 1. kat perde tasarım değerleri olarak alınmıştır.

Perde no	Y doğrultusundaki gövde	X doğrultusundaki gövde	Y doğrultusundaki başlıklar	X doğrultusundaki başlıklar	Toplam donatı
Merdiven perdesi	20Ø14/23	20Ø14/24	16Ø14	14Ø14	152Ø14
Asansör perdesi	10Ø14/23	10Ø14/23	6Ø14	6Ø14	86Ø14
P1	6Ø14	6Ø14	10Ø14	10Ø14	60Ø14
P2	6Ø14	6Ø14	10Ø14	10Ø14	64Ø14
P3	8Ø14	-	9Ø14	-	26Ø14

Çizelge 4.141 : Birinci kat perdeleri için seçilen boyuna donatılar.

Perde enine donatı hesapları için ise dizayn kombinasyonu altında CSI Column programı yardımıyla perdelerin moment ve pekleşmeli moment kapasiteleri bulunarak süneklik düzeyi yüksek perde kesme kuvveti koşullarınca pekleşmeli moment kapasitesi dizayn momentine bölünerek ve dinamik büyütme katsayısı da hesaba katılarak kombinasyonlar sonucu bulunan maksimum kesme kuvveti V_d büyütülerek dizayn kesme kuvveti Ve hesaplanmıştır. Burada kolon etriye alanı hesabında gösterilen Denklem(3.40)(3.41) ile başlık bölgesi etriye alanları s=10 cm için hesaplanarak enine donatı seçimi yapılmıştır.

Perde No	Başlık bölgesi etriye donatı alanı x	Başlık bölgesi etriye donatısı alanı y	Seçilen etriye alanı
Merdiven perdesi	307,14	92,86	1 adet Ø12 sargı ve 1 adet Ø12 çiroz(339)
Asansör perdesi	200,00	92,86	1 tam Ø12 sargı(226)
P1	200,00	92,86	1 tam Ø12 sargı(226)
P2	200,00	92,86	1 tam Ø12 sargı(226)
P3	200,00	92,86	1 tam Ø12 sargı(226)

Çizelge 4.142 : Perde başlık bölgeleri için gerekli donatı alanları.

Bulunan kesme kuvvetleri karşılaştırılıp küçük değer dizayn kesme kuvveti olarak seçilirken perde betonarme kesitinin taşıyabileceği maksimum kesme kuvveti de hesaplanarak betonarme kesitin yeterliliği tahkik edilmiştir.

Perde No	V(ex) (kN)	V(ey) (kN)	V(R=2)x(kN)	V(R=2)y(kN)	V(x) dizayn(kN)	V(y) dizayn(kN)	Vmax x(kN)	Vmax y(kN)
Merdiven perdesi	3533	3043	4007	4180	3533	3043	4356	10824
Asansör perdesi	1728	1351	2163	1335	1728	1335	5280	2772
P1	814	769	1389	1272	814	769	2838	2838
P2	911	845	1595	1397	911	845	2838	2838
P3	-	874	-	1075	-	874	-	2772

Çizelge 4.143 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme kuvvetleri.

Seçilen dizayn kesme kuvveti için Ø12/25 etriye seçilerek perde kapasiteleri denklem (3.45) yardımıyla hesaplanarak seçilen etriye aralığı tahkik edilmiştir.

Perde No	Ø12/25 enine p(x)	Ø12/25 enine p(y)	Ax(m2)	Ay(m2)	Perde kesme kapasitesi x	Perde kesme kapasitesi y
Merdiven perdesi	0,0075	0,0030	0,990	2,460	3526,55	4704,42
Asansör perdesi	0,0030	0,0030	1,200	1,200	2294,84	2294,84
P1	0,0030	0,0030	0,645	0,645	1233,48	1233,48
P2	0,0030	0,0030	0,645	0,645	1233,48	1233,48
Р3	-	0,0030	-	0,630	-	1204,79

Çizelge 4.144 : Seçilen etriye aralığı için perde kesme kapasiteleri.

4.3.3.12 Kolonların kirişlerden daha güçlü olması koşulu

Aynı düğüm noktasına birleşen kolonların taşıma gücü momentleri toplamı aynı noktaya birleşen kirişlerin taşıma gücü momentleri toplamından %20 daha büyük olması şartı her iki deprem doğrultusunda + ve – yönlü depremler için 1.kat kolonları üst düğüm noktası için araştırılmış olup kolonların güçlü olması koşulunun sağlandığı tespit edilmiştir.

Deprem yönü			Düğüm nol	ktası kolon	/kiriş kapas	site oranlar	1	
ve doğrultusu	S02	S03	S04	S05	S06	S07	S08	S10
X+	3,00	4,96	4,03	2,46	5,02	4,01	1,69	3,49
Х-	2,88	4,00	4,80	3,24	4,07	4,60	2,59	3,02
Y+	7,04	4,05	2,97	1,39	2,08	3,20	1,62	7,44
Y-	6,32	3,43	2,86	1,25	2,24	3,43	2,77	8,04

Çizelge 4.145 : Kolon ve kirişlerin moment kapasitesi oranları.

4.3.3.13 Kolon-kiriş birleşim bölgesi kesme güvenliği kontrolleri

Süneklik düzeyi yüksek çerçeve sistemler için öngörülen birleşim bölgesi kesme kontrolleri için her iki deprem doğrultusunda + ve – yönlü depremler için 1.kat kolonları üst düğüm noktaları kesme kuvvetleri ve düğüm noktası kapasiteleri hesaplanarak düğüm noktası kesme kapasitelerinin yeterli olduğu gösterilmiştir.

Kolon no	Bağlantı tipi	Vex+(kN)	Vex-(kN)	Vey+(kN)	Vey-(kN)	Vdayanımx(kN)	Vdayanımy(kN)
S02	kuşatılmış	609,81	632,55	532,47	573,14	1620	4050
S03	kuşatılmamış	242,05	318,02	410,88	396,18	2160	1620
S04	kuşatılmış	565,67	615,08	649,77	620,24	5070	2430
S05	kuşatılmış	542,54	590,26	748,37	745,98	2310	2331
S06	kuşatılmamış	241,30	316,78	777,32	778,53	2160	1620
S07	kuşatılmış	590,80	640,72	527,98	557,88	3510	3510
S08	kuşatılmış	661,04	710,10	435,11	445,57	2640	2640
S10	kuşatılmış	610,05	630,77	595,00	536,42	1620	4320

Çizelge 4.146 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım değerleri.

4.3.3.14 Sistem 3 beton ve donatı metrajı

Hesaplanan birinci kat kolon, kiriş ve perdelerinde kullanılacak donatılar ve katın bütün elemanlarının toplam beton hacmi hesaplanmıştır. Sonuçlar Çizelge 4.149'de verilmiştir

Çizelge 4.147 : Birinci kat donatı ve beton metrajı.

Yapı elemanı	Donatı Miktarı(Ton)	Beton Miktarı (m ³)
Kiriş	3,27	
Kolon	2,32	
Perde	6,56	
Toplam	12,14	141,25

4.3.4 Sistem 4 için çözümleme ve kesit hesapları

Deprem hesabı için hesaplanan kütlelere x ve y yönlerinde ötelenme z ekseni etrafında dönme serbestlikleri verilmiştir. Buna göre her sistem için katların hesaplanan ağırlıklarından türetilen ötelenme kütleleri ve dönme atalet kütleleri hesaplanmıştır.

Cizelge 4.148 : Sistem 4 için ötelenme kütleleri ve dönme atalet kütleleri.

Kat	X ve Y yönünde ötelenen kat	Z ekseni etrafında dönen kütle
No	kütlesi(Kn.sn2/m)	ataleti(Knm/sn2)
8	426,47	29682,79
7	536,68	37353,10
6	536,68	37353,10
5	538,72	37495,71
4	540,77	37638,31
3	540,77	37638,31
2	541,02	37655,34
1	541,26	37672,37
Ζ	541,26	37672,37
В	671,69	46750,30

Her kat için serbestlik derecesi tanınan kütle ve dönme atalet kütleleri hesaplandıktan sonra yapıya etkiyecek deprem yüklerinin hesabına geçilmiştir.

4.3.4.1 Eşdeğer deprem yükü hesabı

Yapılan ön çözüm için modal sonuçlar:

Mod	Perivot(sn)	Ux içinToplam kütle	Uy içinToplam kütle	Rz içinToplam kütle
No	5 - (-)	katılımı oranı	katılımı oranı	katılımı oranı
1	0,7041	0,0000	0,6476	0,3432
2	0,6509	0,5469	0,6476	0,6113
3	0,6387	0,6548	0,6476	0,6488
4	0,1833	0,7449	0,6476	0,7109
5	0,1789	0,7449	0,8037	0,7936
6	0,1783	0,7951	0,8037	0,7947
7	0,0867	0,8472	0,8037	0,8090
8	0,0824	0,8473	0,8037	0,8210
9	0,0788	0,8473	0,8665	0,8543
10	0,0531	0,8747	0,8665	0,8591
11	0,0479	0,8757	0,8665	0,8688
12	0,0468	0,8757	0,9025	0,8879
13	0,0373	0,8942	0,9025	0,8907
14	0,0327	0,8942	0,9290	0,9047
15	0,0324	0,8958	0,9290	0,9120
16	0,0287	0,9093	0,9290	0,9139
17	0,0253	0,9093	0,9509	0,9255
18	0,0243	0,9122	0,9509	0,9318
19	0,0234	0,9215	0,9509	0,9327
20	0,0210	0,9215	0,9704	0,9430
21	0,0203	0,9316	0,9704	0,9452
22	0,0196	0,9327	0,9704	0,9492
23	0,0186	0,9377	0,9704	0,9499
24	0,0184	0,9377	0,9863	0,9584
25	0,0170	0,9539	0,9863	0,9671
26	0,0168	0,9539	0,9954	0,9720
27	0,0164	0,9991	0,9954	0,9783
28	0,0159	0,9991	1,0000	0,9808
29	0,0154	1,0000	1,0000	0,9810
30	0,0131	1,0000	1,0000	1,0000

Çizelge 4.149 : Sistem 4 periyotları ve modların kütle katılımları.

Modal hesabın ardından hakim periyotlar yapının mod şekillerine bakılarak gözlemlendikten sonra spektral ivme ve kat kuvvetleri hesaplanmıştır.

Periyot(X) (sn)	Periyot(Y) (sn)	Yapı ağırlığı(kN)	Spektrum katsayısı S(T)x	Spektrum katsayısı S(T)y	Ra (T _x)	Ra (T _y)	Spektral ivme katsayısı A(Tx)	Spektral ivme katsayısı A(Ty)
0,65094	0,70408	46535,22	1,69	1,59	7	7	0,68	0,64

Çizelge 4.150: Sistem 4 için bulunan ön hesap sonuçları.

Bulunan bu değerlerle yapılan eşdeğer deprem yükü hesabıyla taban ve tepe kesme kuvvetleri bulunmuştur.

Çizelge 4.151 : Sistem 4, taban ve tepe kesme kuvvetleri.

Taban kesme kuvveti		Tepe kuvveti		
$V_{t(X)}(kN)$	$V_{t(y)}(kN)$	$\Delta F_N(X)(kN)$	$\Delta F_{\rm N}({\rm Y})({\rm kN})$	
4502,97	4228,97	303,95	285,46	

Taban ve tepe kesme kuvvetlerinin bulunmasının ardından katlara gelen deprem kuvvetleri bulunmuştur.

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Z	5309,79	3,00	15929,38	93,93
1	5309,79	6,00	31858,75	187,85
2	5307,39	9,00	47766,53	281,65
3	5304,99	12,00	63659,90	375,36
4	5304,99	15,00	79574,88	469,20
5	5284,89	18,00	95128,05	560,91
6	5264,79	21,00	110560,63	651,90
7	5264,79	27,00	142149,38	838,16
8	4183,69	30,00	125510,63	740,06

Çizelge 4.152 : Sistem 4 için X yönü kat kesme kuvvetleri.

Çizelge 4.153 : Sistem 4 için Y yönü kat kesme kuvvetleri.

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Ζ	5309,79	3,00	15929,38	88,21
1	5309,79	6,00	31858,75	176,42
2	5307,39	9,00	47766,53	264,51
3	5304,99	12,00	63659,90	352,52
4	5304,99	15,00	79574,88	440,65
5	5284,89	18,00	95128,05	526,78
6	5264,79	21,00	110560,63	612,24
7	5264,79	27,00	142149,38	787,16
8	4183,69	30,00	125510,63	695,02

Çizelge 4.154 : Sistem 4 için bulunan bodrum kat kesme kuvveti.

Wbk(kN)	Fbk(kN)
6589,30	1757,15

Deprem yönü	Vt (kN)	Vp(kN)	αs
EX	4502,90	3746,43	0,83
EX(+0,05)	4502,96	3749,11	0,83
EX(-0,05)	4502,92	3743,82	0,83
EY	4228,99	3570,93	0,84
EY(+0,05)	4228,99	3570,94	0,84
EY(-0,05)	4228,99	3570,93	0,84

Cizelge 4.155 : Sistem 4 taban kesme kuvveti ve perde kesme kuvveti oranları.

Yapı davranış katsayısı tekrar seçilerek hesaplar tekrarlanmıştır.

Çizelge 4.156 : Sistem 4 için yeniden düzenlenmiş yapı davranış katsayıları ile ön çözüm sonuçları.

Periyod(X) (sn)	Periyod(Y) (sn)	Yapı ağırlığı(kN)	Spektrum katsayısı S(T)x	Spektrum katsayısı S(T)y	Ra(T _x)	Ra(T _y)	Spektral ivme katsayısı A(TX)	Spektral ivme katsayısı A(Ty)
0,65094	0,70408	46535,22	1,69	1,59	6,67	6,62	0,68	0,64

Çizelge 4.157 : Sistem 4 için yeniden hesaplanmış taban ve tepe kuvvetleri.

Taban kesi	ne kuvveti	Tepe kuvveti				
$V_{t(X)}(kN)$	$V_{t(y)}(kN)$	$\Delta F_N(X)(kN)$	$\Delta F_{\rm N}({\rm Y})({\rm kN})$			
4725,75	4471,72	318,99	301,84			

Taban ve tepe kesme kuvvetlerinin bulunmasının ardından katlara gelen deprem kuvvetleri bulunmuştur.

Çizelge 4.158 : Sistem 4 için yeniden hesaplanmış X yönü kat kesme kuvvetleri.

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Z	5309,79	3,00	15929,38	98,57
1	5309,79	6,00	31858,75	197,14
2	5307,39	9,00	47766,53	295,58
3	5304,99	12,00	63659,90	393,93
4	5304,99	15,00	79574,88	492,42
5	5284,89	18,00	95128,05	588,66
6	5264,79	21,00	110560,63	684,16
7	5264,79	27,00	142149,38	879,63
8	4183,69	30,00	125510,63	776,67

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Ζ	5309,79	3,00	15929,38	93,27
1	5309,79	6,00	31858,75	186,55
2	5307,39	9,00	47766,53	279,69
3	5304,99	12,00	63659,90	372,76
4	5304,99	15,00	79574,88	465,95
5	5284,89	18,00	95128,05	557,02
6	5264,79	21,00	110560,63	647,38
7	5264,79	27,00	142149,38	832,35
8	4183,69	30,00	125510.63	734.92

Çizelge 4.159 : Sistem 4 için yeniden hesaplanmış Y yönü kat kesme kuvvetleri.

Son şekli ile eşdeğer deprem yükü kuvvetlerine ulaşılmıştır.

4.3.4.2 Mod birleştirme hesabı

SAP2000'e girilen spektrum grafiğinde deprem yükü azaltma katsayısı spektral ivme grafiğinde yerine konarak grafik çarpan değeri S(T)/R olarak elde edilmiştir, oluşturulan yükleme için çarpan olarak da A₀.I.g için 3,924 girilmiştir. Başlangıç olarak yapı davranış katsayısı 7 alınmış olup, ikinci aşamada taban kesme kuvvetinin perde taban kesme kuvvetine oranına bakılarak düzeltilen davranış katsayısı ile deprem yükü azaltma katsayısı düzenlenerek son şekli ile spektrum fonksiyonu elde edilmiştir.

Т	S(T)	S(T)/R	R
0,00	1,00	0,67	1,50
0,05	1,50	0,45	3,33
0,10	2,00	0,39	5,17
0,15	2,50	0,36	7,00
0,20	2,50	0,36	7,00
0,30	2,50	0,36	7,00
0,40	2,50	0,36	7,00
0,45	2,28	0,33	7,00
0,50	2,09	0,30	7,00
0,55	1,94	0,28	7,00
0,75	1,51	0,22	7,00
1,00	1,20	0,17	7,00
1,25	1,00	0,14	7,00
1,50	0,87	0,12	7,00
1,75	0,77	0,11	7,00
2,00	0,69	0,10	7,00
2,25	0.63	0,09	7,00

Çizelge 4.160: Ön spektrum çözümü için X ve Y yönü için tanıtılan spektrum grafiği.

Çizelge 4.161 : Spektrum çözümlemesi sonucunda çıkan yapı davranış katsayıları.

Bulunan yeni davranış katsayılar ile spektrum grafikleri x ve y yönleri için yeniden türetilmiştir.

		X yönü			Y yönü	
Т	S(T)	S(T)/Ra	Ra	S(T)	S(T)/Ra	Ra
0,00	1,00	0,67	1,50	1,00	0,67	1,50
0,05	1,50	0,47	3,22	1,50	0,46	3,23
0,10	2,00	0,41	4,93	2,00	0,40	4,96
0,15	2,50	0,38	6,65	2,50	0,37	6,69
0,20	2,50	0,38	6,65	2,50	0,37	6,69
0,30	2,50	0,38	6,65	2,50	0,37	6,69
0,40	2,50	0,38	6,65	2,50	0,37	6,69
0,45	2,28	0,34	6,65	2,28	0,34	6,69
0,50	2,09	0,31	6,65	2,09	0,31	6,69
0,55	1,94	0,29	6,65	1,94	0,29	6,69
0,75	1,51	0,23	6,65	1,51	0,23	6,69
1,00	1,20	0,18	6,65	1,20	0,18	6,69
1,25	1,00	0,15	6,65	1,00	0,15	6,69
1,50	0,87	0,13	6,65	0,87	0,13	6,69
1,75	0,77	0,12	6,65	0,77	0,11	6,69
2,00	0,69	0,10	6,65	0,69	0,10	6,69
2,25	0,63	0,09	6,65	0,63	0,09	6,69

Çizelge 4.162 : Sistem 4 için X ve Y yönlerinde son şekli ile spektrum grafikleri.

Mod birleştirme çözümlemesi sonucu bulunan taban kesme kuvvetleri eşdeğer deprem yükü hesabı bulunan taban kesme kuvvetleriyle karşılaştırılıp gerekli büyütmeler yapılmıştır.

Çizelge 4.163 : Sistem 4, mod birleştirme ve eşdeğer deprem hesabı taban kesme kuvvetleri

Deprem yönü	V _{tB} (kN)	V _t (kN)	β	βV_t	$\beta V_{t}\!/V_{tB}$
Х	3789,77	6482,91	0,90	5834,62	1,54
У	3569,58	6228,88	0,90	5605,99	1,57

Karşılaştırılan yöntemler arasından eşdeğer deprem kuvveti yöntemi düzensizlik kontrolleri ve kesit hesaplarında dikkate alınmıştır.

4.3.4.3 A1 burulma düzensizliği kontrolü

Bulunan çerçeve yer ve şekil değiştirme sonuçları kayıt altına alınarak A1 burulma düzensizliği kontrolleri ±0.05 ek dış merkezlik etkisi de dikkate alınarak aşağıda detaylandırılmıştır.

Kat	d _{i-max} (m)	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0209	0,0203	0,0022	0,0021	0,0021	1,03	YOK
7	0,0187	0,0182	0,0024	0,0023	0,0023	1,03	YOK
6	0,0163	0,0159	0,0026	0,0025	0,0025	1,02	YOK
5	0,0138	0,0135	0,0027	0,0026	0,0026	1,01	YOK
4	0,0111	0,0109	0,0027	0,0027	0,0027	1,01	YOK
3	0,0084	0,0082	0,0026	0,0026	0,0026	1,01	YOK
2	0,0058	0,0056	0,0024	0,0023	0,0023	1,01	YOK
1	0,0034	0,0033	0,0020	0,0019	0,0020	1,02	YOK
Ζ	0,0014	0,0013	0,0014	0,0013	0,0014	1,02	YOK

Çizelge 4.164 : Sistem 4, X yönü için A1 burulma düzensizliği.

Çizelge 4.165 : Sistem 4, X(+0,05) yönü için A1 burulma düzensizliği.

Kat	$d_{i-max}(m)$	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0221	0,0189	0,0023	0,0020	0,0021	1,07	YOK
7	0,0199	0,0170	0,0025	0,0022	0,0023	1,07	YOK
6	0,0174	0,0148	0,0027	0,0023	0,0025	1,07	YOK
5	0,0147	0,0125	0,0028	0,0024	0,0026	1,08	YOK
4	0,0119	0,0101	0,0029	0,0024	0,0027	1,09	YOK
3	0,0090	0,0076	0,0028	0,0024	0,0026	1,09	YOK
2	0,0061	0,0053	0,0025	0,0021	0,0023	1,09	YOK
1	0,0036	0,0031	0,0021	0,0018	0,0020	1,08	YOK
Ζ	0,0015	0,0013	0,0015	0,0013	0,0014	1,06	YOK

Çizelge 4.166 : Sistem 4, X(-0,05) yönü için A1 burulma düzensizliği.

Kat	$d_{i-max}(m)$	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0229	0,0184	0,0024	0,0019	0,0021	1,12	YOK
7	0,0205	0,0165	0,0026	0,0021	0,0023	1,12	YOK
6	0,0179	0,0145	0,0028	0,0022	0,0025	1,11	YOK
5	0,0151	0,0122	0,0029	0,0023	0,0026	1,11	YOK
4	0,0121	0,0099	0,0030	0,0024	0,0027	1,10	YOK
3	0,0092	0,0075	0,0029	0,0024	0,0026	1,10	YOK
2	0,0063	0,0051	0,0026	0,0021	0,0024	1,10	YOK
1	0,0037	0,0030	0,0022	0,0018	0,0020	1,11	YOK
Ζ	0,0015	0,0012	0,0015	0,0012	0,0014	1,10	YOK

Kat	d _{i-max} (m)	d _{i-min} (m)	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ýbi>1,2
8	0,0235	0,0235	0,0027	0,0027	0,0027	1,00	YOK
7	0,0208	0,0208	0,0028	0,0028	0,0028	1,00	YOK
6	0,0180	0,0180	0,0030	0,0030	0,0030	1,00	YOK
5	0,0151	0,0151	0,0030	0,0030	0,0030	1,00	YOK
4	0,0120	0,0120	0,0030	0,0030	0,0030	1,00	YOK
3	0,0090	0,0090	0,0029	0,0029	0,0029	1,00	YOK
2	0,0062	0,0062	0,0025	0,0025	0,0025	1,00	YOK
1	0,0036	0,0036	0,0021	0,0021	0,0021	1,00	YOK
Ζ	0,0016	0,0016	0,0016	0,0016	0,0016	1,00	YOK

Çizelge 4.167 : Sistem 4, Y yönü için A1 burulma düzensizliği.

Çizelge 4.168 : Sistem 4, Y(+0,05) yönü için A1 burulma düzensizliği.

Kat	d _{i-max} (m)	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0279	0,0192	0,0031	0,0022	0,0027	1,17	YOK
7	0,0247	0,0169	0,0033	0,0023	0,0028	1,18	YOK
6	0,0214	0,0146	0,0035	0,0024	0,0030	1,18	YOK
5	0,0179	0,0122	0,0036	0,0024	0,0030	1,19	YOK
4	0,0144	0,0097	0,0036	0,0024	0,0030	1,19	YOK
3	0,0108	0,0073	0,0034	0,0023	0,0029	1,20	YOK
2	0,0073	0,0050	0,0030	0,0020	0,0025	1,20	YOK
1	0,0043	0,0030	0,0025	0,0017	0,0021	1,20	YOK
Ζ	0,0018	0,0013	0,0018	0,0013	0,0016	1,16	YOK

Çizelge 4.169 : Sistem 4, Y(-0,05) yönü için A1 burulma düzensizliği.

Kat	d _{i-max} (m)	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ýbi>1,2
8	0,0279	0,0192	0,0031	0,0022	0,0027	1,17	YOK
7	0,0247	0,0169	0,0033	0,0023	0,0028	1,18	YOK
6	0,0214	0,0146	0,0035	0,0024	0,0030	1,18	YOK
5	0,0179	0,0122	0,0036	0,0024	0,0030	1,19	YOK
4	0,0144	0,0097	0,0036	0,0024	0,0030	1,19	YOK
3	0,0108	0,0073	0,0034	0,0023	0,0029	1,20	YOK
2	0,0073	0,0050	0,0030	0,0020	0,0025	1,20	YOK
1	0,0043	0,0030	0,0025	0,0017	0,0021	1,20	YOK
Ζ	0,0018	0,0013	0,0018	0,0013	0,0016	1,16	YOK

Hesaplanan göreli yer değiştirmelere baktığımızda Sistem 4'ün A1 burulma düzensizliğine sahip olmadığı görülmüştür.

4.3.4.4 A2 Döşeme düzensizlikleri kontrolü

Sistemde sadece asansörler için bulunan 2 tane ufak döşeme yırtığı vardır, yapının kullanımı için birkaç ufak mekanik ve elektrik şaftı açılması olası olmakla beraber sonuçta kat döşemelerinde ani rijitlik değişimine neden olacak bir düzensizlik bulunmamaktadır.

Kat	Kat Alanı(m ²)	Boşluk Alanı(m ²)	Oran	Düzensizlik Ab/A >1/3
8	383,2	15,4	0,04	YOK
7	383,2	15,4	0,04	YOK
6	383,2	15,4	0,04	YOK
5	383,2	15,4	0,04	YOK
4	383,2	15,4	0,04	YOK
3	383,2	15,4	0,04	YOK
2	383,2	15,4	0,04	YOK
1	383,2	15,4	0,04	YOK
Ζ	383,2	15,4	0,04	YOK

Çizelge 4.170 : Sistem 4, A2 döşeme düzensizliği kontrolleri.

4.3.4.5 A3 Planda çıkıntılar bulunması durumu

Yapı dikdörtgen olup planda çıkıntılar içermemektedir, dolayısıyla Sistem 4, A3 düzensizliğine sahip değildir.

4.3.4.6 B1 komşu katlar arası dayanım düzensizliği

Yapıda teşkil edilen düşey taşıyıcı elemanlar ve mimari duvarlar dikkate alınarak yapılan B1 zayıf kat hesapları aşağıda detaylandırılmıştır.

Kat	Kolon Alanı(m ²)	Perde Alanı(m ²)	Duvar Alanı(m ²)	Etkili Toplam Alan(m ²)	ήci	Düzensizlik ýci <0,8
8	2,37	5,55	10,70	11,13		YOK
7	2,37	5,55	10,70	11,13	1,00	YOK
6	2,37	5,55	10,70	11,13	1,00	YOK
5	3,04	5,55	10,70	11,80	1,06	YOK
4	3,04	5,55	10,70	11,80	1,00	YOK
3	3,04	5,55	10,70	11,80	1,00	YOK
2	4,98	5,55	10,70	13,74	1,16	YOK
1	4,98	5,55	10,70	13,74	1,00	YOK
Ζ	4,98	5,55	10,70	13,74	1,00	YOK

Çizelge 4.171 : Sistem 4, X yönü için B1 zayıf kat düzensizliği hesap detayları.

Kat	Kolon Alanı(m ²)	Perde Alanı(m ²)	Duvar Alanı(m ²)	Etkili Toplam Alan(m ²)	ήci	Düzensizlik ńci <0,8
8	2,37	6,51	10,20	11,94		YOK
7	2,37	6,51	10,20	11,94	1,00	YOK
6	2,37	6,51	10,20	11,94	1,00	YOK
5	3,04	6,51	10,20	12,61	1,06	YOK
4	3,04	6,51	10,20	12,61	1,00	YOK
3	3,04	6,51	10,20	12,61	1,00	YOK
2	4,98	6,51	10,20	14,55	1,15	YOK
1	4,98	6,51	10,20	14,55	1,00	YOK
Ζ	4,98	6,51	10,20	14,55	1,00	YOK

Çizelge 4.172 : Sistem 4, Y yönü için B1 zayıf kat düzensizliği hesap detayları.

Hesap detaylarında görüldüğü üzere Sistem 4, B1 zayıf kat düzensizliğine sahip değildir.

4.3.4.7 B2 Komşu katlar arası rijitlik düzensizliği

Sistem 4 için her iki deprem yönü için ek dış merkezliklerde dikkate alınarak Kat ötelemeleri kontrol edilmiş ve yapıda B2 yumuşak kat düzensizliği olup olmadığı araştırılmıştır.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00213	3,00	0,00071	-	0,92	YOK
7	0,00233	3,00	0,00078	1,09	0,93	YOK
6	0,00251	3,00	0,00084	1,08	0,96	YOK
5	0,00262	3,00	0,00087	1,04	0,98	YOK
4	0,00268	3,00	0,00089	1,02	1,02	YOK
3	0,00262	3,00	0,00087	0,98	1,11	YOK
2	0,00235	3,00	0,00078	0,90	1,19	YOK
1	0,00197	3,00	0,00066	0,84	1,43	YOK
Ζ	0,00138	3,00	0,00046	0,70	-	YOK

Çizelge 4.173 : Sistem 4, X yönünde yumuşak kat düzensizliği.

Cizelge 4.174 : Sistem 4, X(+0,05) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00212	3,00	0,00071	-	0,92	YOK
7	0,00232	3,00	0,00077	1,09	0,93	YOK
6	0,00251	3,00	0,00084	1,08	0,96	YOK
5	0,00262	3,00	0,00087	1,04	0,98	YOK
4	0,00268	3,00	0,00089	1,02	1,02	YOK
3	0,00261	3,00	0,00087	0,98	1,11	YOK
2	0,00234	3,00	0,00078	0,90	1,19	YOK
1	0,00197	3,00	0,00066	0,84	1,43	YOK
Ζ	0,00138	3,00	0,00046	0,70	-	YOK

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00214	3,00	0,00071	-	0,92	YOK
7	0,00233	3,00	0,00078	1,09	0,93	YOK
6	0,00252	3,00	0,00084	1,08	0,96	YOK
5	0,00263	3,00	0,00088	1,04	0,98	YOK
4	0,00268	3,00	0,00089	1,02	1,02	YOK
3	0,00262	3,00	0,00087	0,98	1,11	YOK
2	0,00235	3,00	0,00078	0,90	1,19	YOK
1	0,00198	3,00	0,00066	0,84	1,43	YOK
Ζ	0,00138	3,00	0,00046	0,70	-	YOK

Çizelge 4.175 : Sistem 4, X(-0,05) yönünde yumuşak kat düzensizliği.

Çizelge 4.176 : Sistem 4, Y yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00268	3,00	0,00089	-	0,95	YOK
7	0,00282	3,00	0,00094	1,05	0,96	YOK
6	0,00296	3,00	0,00099	1,05	0,98	YOK
5	0,00301	3,00	0,00100	1,02	1,00	YOK
4	0,00300	3,00	0,00100	1,00	1,05	YOK
3	0,00287	3,00	0,00096	0,95	1,13	YOK
2	0,00254	3,00	0,00085	0,89	1,23	YOK
1	0,00207	3,00	0,00069	0,82	1,32	YOK
Ζ	0,00157	3,00	0,00052	0,76	-	YOK

Çizelge 4.177 : Sistem 4, Y(+0,05) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00268	3,00	0,00089	-	0,95	YOK
7	0,00282	3,00	0,00094	1,06	0,96	YOK
6	0,00296	3,00	0,00099	1,05	0,98	YOK
5	0,00301	3,00	0,00100	1,02	1,00	YOK
4	0,00300	3,00	0,00100	1,00	1,05	YOK
3	0,00287	3,00	0,00096	0,95	1,13	YOK
2	0,00254	3,00	0,00085	0,89	1,23	YOK
1	0,00207	3,00	0,00069	0,82	1,32	YOK
Ζ	0,00157	3,00	0,00052	0,76	-	YOK

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00268	3,00	0,00089	-	0,95	YOK
7	0,00282	3,00	0,00094	1,06	0,96	YOK
6	0,00296	3,00	0,00099	1,05	0,98	YOK
5	0,00301	3,00	0,00100	1,02	1,00	YOK
4	0,00300	3,00	0,00100	1,00	1,05	YOK
3	0,00287	3,00	0,00096	0,95	1,13	YOK
2	0,00254	3,00	0,00085	0,89	1,23	YOK
1	0,00207	3,00	0,00069	0,82	1,32	YOK
Ζ	0,00157	3,00	0,00052	0,76	-	YOK

Çizelge 4.178 : Sistem 4, Y(-0,05) yönünde yumuşak kat düzensizliği.

Hesap detaylarında görüldüğü üzere Sistem 4, B2 yumuşak kat düzensizliğine sahip değildir.

4.3.4.8 Göreli kat ötelemeleri ve ikinci mertebe etkileri kontrolü

Çözümleme sonucu bulanan yer değiştirmelerle yapılan göreli kat ötelemelerinin ve ikinci mertebe etkilerinin sınırlandırılması kontrolleri aşağıda detaylandırılmıştır.

Kat	$d_{i-max}(m)$	hi(m)	$\Delta max(m)$	δimax	δi/hi	Koşul < 0,02
8	0,02288	3,00	0,00240	0,01600	0,00533	TAMAM
7	0,02048	3,00	0,00261	0,01744	0,00581	TAMAM
6	0,01786	3,00	0,00281	0,01874	0,00625	TAMAM
5	0,01505	3,00	0,00291	0,01939	0,00646	TAMAM
4	0,01215	3,00	0,00296	0,01972	0,00657	TAMAM
3	0,00919	3,00	0,00288	0,01924	0,00641	TAMAM
2	0,00631	3,00	0,00259	0,01728	0,00576	TAMAM
1	0,00371	3,00	0,00219	0,01461	0,00487	TAMAM
Ζ	0,00152	3,00	0,00152	0,01017	0,00339	TAMAM

Çizelge 4.179 : Sistem 4, X yönü göreli kat ötelemeleri.

Çizelge 4.180 : Sistem 4, Y yönü göreli kat ötelemeleri.

Kat	d _{i-max} (m)	hi(m)	$\Delta max(m)$	δimax	δi/hi	Koşul < 0,02
8	0,02787	3,00	0,00313	0,02045	0,00682	TAMAM
7	0,02474	3,00	0,00332	0,02167	0,00722	TAMAM
6	0,02142	3,00	0,00349	0,02281	0,00760	TAMAM
5	0,01793	3,00	0,00358	0,02336	0,00779	TAMAM
4	0,01435	3,00	0,00358	0,02340	0,00780	TAMAM
3	0,01077	3,00	0,00343	0,02241	0,00747	TAMAM
2	0,00733	3,00	0,00304	0,01987	0,00662	TAMAM
1	0,00429	3,00	0,00248	0,01618	0,00539	TAMAM
Ζ	0,00181	3,00	0,00181	0,01184	0,00395	TAMAM

Sistem 4 için her iki deprem yönü doğrultusunda da etkin göreli kat ötelemeleri maksimum sınırların altındadır.

Kat	$\Delta ort(m)$	w _j (kN)	(Δi) _{ort} xwj	V _i (kN)	Hi(m)	Vihi	θi	Koşul < 0,12
8	0,00213	4183,69	8,9113	1095,66	3,00	3286,97	0,00271	TAMAM
7	0,00233	5264,79	12,2485	879,63	3,00	2638,89	0,00464	TAMAM
6	0,00251	5264,79	13,2330	684,16	3,00	2052,47	0,00645	TAMAM
5	0,00262	5284,89	13,8649	588,66	3,00	1765,98	0,00785	TAMAM
4	0,00268	5304,99	14,2094	492,42	3,00	1477,25	0,00962	TAMAM
3	0,00262	5304,99	13,8752	393,93	3,00	1181,80	0,01174	TAMAM
2	0,00235	5307,39	12,4591	295,58	3,00	886,75	0,01405	TAMAM
1	0,00197	5309,79	10,4842	197,14	3,00	591,43	0,01773	TAMAM
Ζ	0,00138	5309,79	7,3275	98,57	3,00	295,72	0,02478	TAMAM

Çizelge 4.181 : Sistem 4, X yönü için 2. Mertebe etkileri.

Çizelge 4.182 : Sistem 4, Y yönü için 2. Mertebe etkileri.

Kat	$\Delta ort(m)$	w _j (kN)	(Δi) _{ort} xwj	V _i (kN)	Hi(m)	Vihi	Өi	Koşul < 0,12
8	0,00268	4183,69	11,2039	1036,76	3,00	3110,28	0,00360	TAMAM
7	0,00282	5264,79	14,8678	832,35	3,00	2497,04	0,00595	TAMAM
6	0,00296	5264,79	15,5575	647,38	3,00	1942,14	0,00801	TAMAM
5	0,00301	5284,89	15,9287	557,02	3,00	1671,05	0,00953	TAMAM
4	0,00300	5304,99	15,9309	465,95	3,00	1397,84	0,01140	TAMAM
3	0,00287	5304,99	15,2094	372,76	3,00	1118,27	0,01360	TAMAM
2	0,00254	5307,39	13,4755	279,69	3,00	839,08	0,01606	TAMAM
1	0,00207	5309,79	11,0019	186,55	3,00	559,64	0,01966	TAMAM
Ζ	0,00157	5309,79	8,3151	93,27	3,00	279,82	0,02972	TAMAM

Sistem 4 için 2. Mertebe gösterge değeri DBYBHY sınır değerinden daha düşüktür.

4.3.4.9 Sistem 4 birinci kat kiriş kesit hesapları

Burada Sistem 4 birinci kat boyuna donatı hesabında Sistem 1 'de uygulanan metotlar aynen tekrarlanmıştır. Seçilen boyuna donatılar Çizelge 4.183 ve Çizelge 4.184'de gösterilmiştir.

Kiriş no	Donatı lifi	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı	Kiriş no	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı	Kiriş no	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı
W101	Üst donatı	3Ø12	3Ø14	2Ø14	K102	-	3Ø14	-	K103	-	3Ø14	1Ø12
K101	Alt donatı	-	3Ø14	-		-	3Ø14	-		-	5Ø14	-
V104	Üst donatı	2Ø14	3Ø14	1Ø16	K105	-	3Ø14	2Ø14	K106	-	3Ø14	5Ø12
K 104	Alt donatı	-	3Ø14	-		2Ø14	3Ø14	-		4Ø12	3Ø14	1Ø14
V107	Üst donatı	1Ø16	3Ø14	1Ø16	K108	-	3Ø14	2Ø14	K109	-	3Ø14	3Ø12
K107	Alt donatı	-	3Ø14	-		2Ø14	3Ø14	-		1Ø16	3Ø14	-
K110	Üst donatı	3Ø12	3Ø14	2Ø14	K111	-	3Ø14	3Ø16				
KIIU	Alt donatı	-	3Ø14	-		2Ø14	3Ø14	1Ø12				
V114	Üst donatı	2Ø14	3Ø14	3Ø14	K115	-	3Ø14	-	K116	4Ø12	3Ø14	2Ø16
K114	Alt donatı	1Ø16	3Ø14	-		2Ø16	3Ø14	-		1Ø12	3Ø14	2Ø14
V117	Üst donatı	2Ø14	3Ø14	3Ø14	K118	-	3Ø14	-	K119	2Ø16	3Ø14	2Ø12
K 117	Alt donatı	-	3Ø14	-		-	3Ø14	-		-	3Ø14	-
V120	Üst donatı	2Ø12	3Ø14	2Ø14	K121	-	3Ø14	-	K122	2Ø14	3Ø14	-
K120	Alt donatı	1Ø12	3Ø14	1Ø12		-	3Ø14	-		-	3Ø14	-

Çizelge 4.183 : Sistem 4 birinci kat çerçeve oluşturan kirişler için seçilen boyuna donatılar.

Çizelge 4.184 : Sistem 4 birinci kat balkon ve perde bağ kirişleri boyuna donatıları.

Kiriş no	Donatı lifi	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı
K112	Üst donatı	4Ø12	3Ø14	4Ø12
K112	Alt donatı	3Ø12	3Ø14	3Ø12
V112	Üst donatı	4Ø12	3Ø14	4Ø12
K115	Alt donatı	3Ø12	3Ø14	3Ø12
V122	Üst donatı	-	3Ø14	-
K125	Alt donati	-	3Ø14	-
K124	Üst donatı	-	3Ø14	-
K124	Alt donati	-	3Ø14	-
K125	Üst donatı	-	3Ø14	-
K125	Alt donatı	-	3Ø14	-
K126	Üst donatı	1Ø14	3Ø14	1Ø12
к126	Alt donati	-	3Ø14	-

Birinci kat kirişleri etriye hesabında süneklik düzeyi yüksek kiriş kabulü gereği donatı seçiminde baz alınacak V_e kesme kuvveti hesabı yapılmıştır. Bunun için + ve – deprem yönlerinde kiriş uç taşıma gücü momentleri ve pekleşme göz önüne alınarak moment kapasiteleri hesaplanmış, her iki uç için bulunan pekleşmeli moment kapasiteleri toplanıp kiriş temiz açıklığına bölünerek uç kesme kuvvetlerine ulaşıldıktan sonra, dizayn kombinasyonlarından hesaplanan dizayn kesme kuvveti Vd ile toplanarak Ve elde edilmiştir. Bu aşamada deprem yükü azaltma katsayısı

R=2 alınarak yapılan yeni deprem hesabından gelen uç kesme dizayn değeri V_e karşılaştırılıp küçük olan değer kesit hesabı için seçilmiştir. Bulunan Ve kesme kuvveti R=2 için yenilenen çözümleme kesme değeriyle karşılaştırılarak, dizayn kesme kuvveti olarak tayin edilmiştir. Burada V_{cr} beton kapasitesi kirişler için çıkarıldıktan sonra çeliğin karşılaması gereken V_w çelik dizayn kuvvetine ulaşılmıştır. Bulunan tasarım kesme kuvvetleri için seçilmiş etriye aralıkları Çizelge 4.185'da gösterilmiştir.

Kiriş no	Vei(kN)	Vej(kN)	Vi(R=2) (kN)	Vj(R=2) (kN)	Vwi(kN)	Vwj(kN)	i ucu sıklaştırma bölgesi etriye aralığı (cm)	Kiriş ortası için seçilen etriye aralığı(cm)	i ucu sıklaştırma bölgesi etriye aralığı (cm)
K101	167,92	157,09	247,37	249,00	58,72	139,80	11	25	11
K102	152,59	108,49	166,83	99,94	152,59	108,49	11	28	11
K103	194,46	208,20	171,57	213,72	171,57	208,20	11	21	11
K104	147,72	127,00	174,16	189,45	38,52	17,80	11	29	11
K105	156,91	177,89	276,03	305,78	156,91	177,89	11	24	11
K106	197,96	320,83	545,55	133,64	197,96	133,64	11	13	11
K107	145,47	127,04	171,39	190,87	36,27	17,84	11	29	11
K108	136,27	182,93	282,01	304,10	136,27	182,93	11	23	11
K109	156,74	446,50	481,11	92,12	156,74	92,12	11	10	11
K110	179,58	148,46	252,40	253,30	70,38	39,26	11	24	11
K111	140,43	200,00	295,67	271,10	140,43	200,00	11	21	11
K112	174,67	174,52	162,96	162,96	162,96	162,96	11	24	11
K113	176,36	147,48	163,99	163,99	163,99	147,48	11	24	11
K114	171,32	154,97	233,70	232,83	171,32	154,97	11	25	11
K115	310,90	361,56	443,23	441,53	310,90	361,56	11	12	9
K116	166,09	155,90	256,94	222,93	166,09	155,90	11	26	11
K117	147,93	142,29	186,70	199,31	38,73	33,09	11	29	11
K118	260,08	248,23	368,57	367,83	260,08	248,23	11	16	11
K119	139,12	143,09	203,55	191,48	29,92	33,89	11	30	11
K120	139,21	155,40	219,34	274,68	139,21	155,40	11	28	11
K121	220,43	243,66	123,33	139,21	123,33	139,21	11	18	11
K122	145,01	105,68	252,11	139,56	145,01	105,68	11	30	11
K123	-	-	14,47	26,37	14,47	26,37	11	30	11
K124	-	-	21,68	33,15	21,68	33,15	11	15	11
K125	-	-	54,09	30,99	54,09	30,99	11	30	11
K126	105,00	100,78	89,96	50,64	89,96	50,64	11	30	11

Çizelge 4.185 : Sistem 4 birinci kat tasarım kesme kuvvetleri ve bulunan etriye aralıkları.

4.3.4.10 Sistem 4 birinci kat kolon kesit hesapları

Sistem 4 için SAP2000 programında TS500-2000 yönetmeliğine göre kesit hesabı yapılarak her kolon için kapasite kullanım oranının en yüksek olmasını sağlayan kombinasyonlar seçilmiştir. Seçilen kombinasyonlar altında bulunan moment normal kuvvet değerlerinde TS500 minimum dış merkezlik tahkiki yapılarak gerekli kombinasyonların momentleri büyütülerek dizayn kuvvetlerine ulaşılmıştır. Bu aşamada abaklar yardımıyla kolon boyuna donatıları seçilmiştir.

Kolon Adı	My(knm)	Mx(knm)	P(kN)	Köşe donatılar	Orta donatılar
S2	169,53	54,61	1237,8	3Ø18	1Ø14
S 3	59,34	180,64	952,07	3Ø14	1Ø14
S4	69,72	57,59	1986,92	3Ø16	1Ø16
S5	169,44	19,57	64,62	3Ø16	1Ø16
S 6	66,2	54,4	1468,87	3Ø14	1Ø14
S 7	57,79	58,49	2052,11	3Ø16	1Ø16
S 8	192,82	36,39	103,04	3Ø16	1Ø16
S10	61,55	75,78	2159,77	3Ø18	1Ø14

Çizelge 4.186 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna donatıları.

Birinci kat kolanlarında süneklik düzeyi yüksek kolon kabulüne göre Ve kesme kuvveti hesaplanıp deprem yükü azaltma katsayısı R=2 alınarak yapılan çözümleme sonucu bulunan kesme kuvvetiyle karşılaştırılarak küçük olan değer, dizayn kesme kuvveti olarak seçilmiştir. Kolon sarılma bölgesi etriye donatısı için s=10 cm kabulü ile Denklem ((3.40)(3.41)) kullanılarak gerekli donatı alanı hesap edilerek kolon kesme kapasitesi hesaplanmış kapasitenin kesme kuvvetlerinden büyük olduğu gösterilmiştir(Çizelge 4.187).

Cizelge 4.187 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri.

Kolon adı	Vex (kN)	Vey (kN)	Vx(R=2) (kN)	Vy(R=2) (kN)	Asx (cm ²)	Asy (cm ²)	Vwx (kN)	Vwy (kN)	Vx dayanım(kN)	Vy dayanım(kN)
S2	176,34	119,59	301,03	147,03	400	250	710,01	781,65	929,39	1001,02
S3	73,80	184,55	127,17	287,96	300	200	483,09	509,30	639,09	665,30
S4	148,09	156,15	305,52	239,15	250	350	677,43	629,07	867,55	819,20
S5	161,36	145,78	307,21	122,94	150	200	358,48	284,46	483,61	409,59
S6	85,53	176,99	128,60	281,74	300	200	483,09	509,30	639,09	665,30
S 7	149,79	148,18	301,98	240,34	250	350	677,43	629,07	867,55	819,20
S 8	191,22	155,01	339,96	174,97	150	200	350,15	325,10	493,15	468,10
S10	138,54	178,50	253,57	152,43	400	250	706,45	833,76	940,45	1067,76

4.3.4.11 Sistem 4 birinci kat perde kesit hesapları

Sistem 4 birinci kat perde kesit hesapları SAP 2000'de bulunan depremli kombinasyonların P-M_x-M_y değerleri için CSI Column programında perdeler teker teker tasarlanarak boyuna donatı hesabı yapılmıştır. Hcr minimum değeri 4.5 m

bulunmuştur bu değer 1. katın tamamını içine alacak şekilde kritik perde yüksekliği değeri 6 m. seçilmiştir. Bu durumda hesap için seçilen 1. kat Hcr bölgesinde kaldığından DBHBHY şartı gereği tasarım eğilme momentleri perde taban kesiti değerleri olarak alınmıştır. Bu durumda Sistem 4 için yapının 1 bodrum katı olduğu düşünülürse zemin kat taban kesiti kesit zoru değerleri 1. kat perde tasarım değerleri olarak alınmıştır.

Perde no	Y doğrultusundaki gövde	X doğrultusundaki gövde	Y doğrultusundaki başlıklar	Xdoğrultusundak i başlıklar	Toplam donatı
Merdiven perdesi	20Ø14/23	20Ø14/24	16Ø14	14Ø14	152Ø1 4
Asansör perdesi	10Ø14/23	10Ø14/23	6Ø14	6Ø14	86Ø14
P1	4Ø14	4Ø14	8Ø14	8Ø14	40Ø14
P2	4Ø14	4Ø14	8Ø14	8Ø14	40Ø14
P3	8Ø14	-	9Ø14	-	26Ø14
P4	8Ø14	-	9Ø14	-	26Ø14

Cizelge 4.188 : Birinci kat perdeleri için seçilen boyuna donatılar.

Perde enine donatı hesapları için ise dizayn kombinasyonu altında CSI Column programı yardımıyla perdelerin moment ve pekleşmeli moment kapasiteleri bulunarak süneklik düzeyi yüksek perde kesme kuvveti koşullarınca pekleşmeli moment kapasitesi dizayn momentine bölünerek ve dinamik büyütme katsayısı da hesaba katılarak kombinasyonlar sonucu bulunan maksimum kesme kuvveti V_d büyütülerek dizayn kesme kuvveti Ve hesaplanmıştır. Burada kolon etriye alanı hesabında gösterilen Denklem(3.40)(3.41) ile başlık bölgesi etriye alanları s=10 cm için hesaplanarak enine donatı seçimi yapılmıştır.

Perde No	Başlık bölgesi etriye donatı alanı x	Başlık bölgesi etriye donatısı alanı y	Seçilen etriye alanı
Merdiven perdesi	307,14	92,86	1 adet Ø12 sargı ve 1 adet Ø12 çiroz(339)
Asansör perdesi	200,00	92,86	1 tam Ø12 sargı(226)
P1	200,00	92,86	1 tam Ø12 sargı(226)
P2	200,00	92,86	1 tam Ø12 sargı(226)
Р3	200,00	92,86	1 tam Ø12 sargi(226)
P4	200,00	92,86	1 tam \emptyset 12 sargi(226)

Cizelge 4.189 : Perde başlık bölgeleri için gerekli donatı alanları.

Bulunan kesme kuvvetleri karşılaştırılıp küçük değer dizayn kesme kuvveti olarak seçilirken perde betonarme kesitinin taşıyabileceği maksimum kesme kuvveti de hesaplanarak betonarme kesitin yeterliliği tahkik edilmiştir.

Perde No	V(ex) (kN)	V(ey) (kN)	V(R=2)x(kN)	V(R=2)y(kN)	V(x) dizayn(kN)	V(y) dizayn(kN)	Vmax x(kN)	Vmax y(kN)
Merdiven perdesi	2942	3041	3703	4423	2942	3041	4356	10824
Asansör perdesi	1550	1404	2135	1379	1550	1379	5280	2772
P1	655	723	860	913	655	723	2178	2178
P2	684	800	931	913	684	800	2178	2178
P3	-	1219	-	1093	-	1093		2772
P4	1069	-	1341	-	1069	-	2772	

Çizelge 4.190 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme kuvvetleri.

Seçilen dizayn kesme kuvveti için Ø12/25 etriye seçilerek perde kapasiteleri Denklem (3.45) yardımıyla hesaplanarak seçilen etriye aralığı tahkik edilmiştir.

Perde No	$\emptyset 12/25$ enine p(x)	Ø12/25 enine p(y)	Ax(m2)	Ay(m2)	Perde kesme kapasitesi x	Perde kesme kapasitesi y
Merdiven perdesi	0,0063	0,0030	0,990	2,460	3072,85	4704,42
Asansör perdesi	0,0030	0,0030	1,200	1,200	2294,84	2294,84
P1	0,0030	0,0030	0,495	0,495	946,62	946,62
P2	0,0030	0,0030	0,495	0,495	946,62	946,62
P3	-	0,0030	-	0,630	-	1204,79
P4	0,0030	-	0,630	-	1204,79	-

Çizelge 4.191 : Seçilen etriye aralığı için perde kesme kapasiteleri.

4.3.4.12 Kolonların kirişlerden daha güçlü olması koşulu

Aynı düğüm noktasına birleşen kolonların taşıma gücü momentleri toplamı aynı noktaya birleşen kirişlerin taşıma gücü momentleri toplamından %20 daha büyük olması şartı her iki deprem doğrultusunda + ve – yönlü depremler için 1.kat kolonları üst düğüm noktası için araştırılmış olup kolonların güçlü olması koşulunun sağlandığı tespit edilmiştir.

Deprem yönü	Düğüm noktası kolon/kiriş kapasite oranları									
ve doğrultusu	S02	S03	S04	S05	S06	S07	S08	S10		
X+	2,67	5,50	3,90	2,13	5,40	3,92	1,84	3,81		
Х-	2,70	4,23	4,19	2,83	3,73	4,32	2,64	3,54		
Y+	6,85	2,47	2,93	1,65	1,92	2,78	1,38	7,84		
Y-	6,62	2,35	2,88	1,49	2,08	2,83	2,15	7,94		

Çizelge 4.192 : Kolon ve kirişlerin moment kapasitesi oranları.

4.3.4.13 Kolon-kiriş birleşim bölgesi kesme güvenliği kontrolleri

Süneklik düzeyi yüksek çerçeve sistemler için öngörülen birleşim bölgesi kesme kontrolleri için her iki deprem doğrultusunda + ve – yönlü depremler için 1.kat

kolonları üst düğüm noktaları kesme kuvvetleri ve düğüm noktası kapasiteleri hesaplanarak düğüm noktası kesme kapasitelerinin yeterli olduğu gösterilmiştir.

Kolon no	Bağlantı tipi	Vex+(kN)	Vex-(kN)	Vey+(kN)	Vey-(kN)	Vdayanımx(kN)	Vdayanımy(kN)
S02	kuşatılmış	705,40	741,70	544,94	586,17	1620	4050
S03	kuşatılmamış	241,98	289,64	705,69	688,86	2160	1620
S04	kuşatılmış	642,44	694,29	641,69	614,37	5070	2430
S05	kuşatılmış	614,17	664,33	611,10	608,88	2310	2331
S06	kuşatılmamış	242,12	344,62	847,19	865,51	2160	1620
S07	kuşatılmış	614,46	668,28	643,45	676,67	3510	3510
S08	kuşatılmış	735,48	787,45	650,25	658,88	2640	2640
S10	kuşatılmış	560,45	589,61	608,08	553,28	1620	4320

Çizelge 4.193 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım değerleri.

4.3.4.14 Sistem 4 beton ve donatı metrajı

Hesaplanan birinci kat kolon, kiriş ve perdelerinde kullanılacak donatılar ve katın bütün elemanlarının toplam beton hacmi hesaplanmıştır. Sonuçlar Çizelge 4.197 ve Çizelge 4.53'de verilmiştir

Çizelge 4.194 : Birinci kat donatı ve beton metrajı.

Yapı elemanı	Donatı Miktarı(Ton)	Beton Miktarı (m ³)
Kiriş	3,39	
Kolon	2,36	
Perde	6,49	
Toplam	12,24	139,88

4.3.5 Sistem 5 için çözümleme ve kesit hesapları

Deprem hesabı için hesaplanan kütlelere x ve y yönlerinde ötelenme z ekseni etrafında dönme serbestlikleri verilmiştir. Buna göre her sistem için katların hesaplanan ağırlıklarından türetilen ötelenme kütleleri ve dönme atalet kütleleri hesaplanmıştır.

Çizelge 4.195 : Sistem 5 için ötelenme kütleleri ve dönme atalet kütleleri.

Kat	X ve Y yönünde ötelenen kat	Z ekseni etrafında dönen kütle
No	kütlesi(Kn.sn2/m)	ataleti(Knm/sn2)
8	430,60	29970,30
7	544,94	37928,12
6	544,94	37928,12
5	546,31	38023,91
4	547,69	38119,69
3	547,69	38119,69
2	552,57	38459,18
1	557,45	38798,67
Ζ	557,45	38798,67
В	710,08	49422,39

Her kat için serbestlik derecesi tanınan kütle ve dönme atalet kütleleri hesaplandıktan sonra yapıya etkiyecek deprem yüklerinin hesabına geçilmiştir.

4.3.5.1 Eşdeğer deprem yükü hesabı

Yapılan ön çözüm için modal sonuçlar:

Mod No	Periyot(sn)	Ux içinToplam kütle katılımı oranı	Uy içinToplam kütle katılımı oranı	Rz içinToplam kütle katılımı oranı
1	0,7408	0,0021	0,0000	0,1704
2	0,5985	0,0021	0,6612	0,5188
3	0,5228	0,6790	0,6612	0,6645
4	0,2235	0,6791	0,6612	0,6946
5	0,1585	0,6791	0,8106	0,7734
6	0,1519	0,8032	0,8106	0,8000
7	0,1114	0,8034	0,8106	0,8127
8	0,0754	0,8524	0,8106	0,8232
9	0,0724	0,8524	0,8701	0,8545
10	0,0686	0,8530	0,8701	0,8618
11	0,0486	0,8554	0,8701	0,8627
12	0,0463	0,8817	0,8701	0,8730
13	0,0437	0,8817	0,9049	0,8913
14	0,0374	0,8821	0,9049	0,8925
15	0,0324	0,9020	0,9049	0,8994
16	0,0309	0,9022	0,9049	0,9000
17	0,0307	0,9022	0,9306	0,9135
18	0,0270	0,9023	0,9306	0,9139
19	0,0249	0,9062	0,9306	0,9142
20	0,0247	0,9183	0,9306	0,9197
21	0,0238	0,9183	0,9522	0,9311
22	0,0203	0,9326	0,9522	0,9358
23	0,0198	0,9326	0,9718	0,9462
24	0,0176	0,9467	0,9718	0,9504
25	0,0175	0,9467	0,9876	0,9587
26	0,0161	0,9595	0,9876	0,9618
27	0,0160	0,9595	0,9966	0,9665
28	0,0153	1,0000	0,9966	0,9731
29	0,0152	1,0000	1,0000	0,9749
30	0,0138	1,0000	1,0000	1,0000

Çizelge 4.196 : Sistem 5 periyotları ve modların kütle katılımları

Modal hesabın ardından hakim periyotlar yapının mod şekillerine bakılarak gözlemlendikten sonra spektral ivme ve kat kuvvetleri hesaplanmıştır.

Periyot(X) (sn)	Periyot(Y) (sn)	Yapı ağırlığı(kN)	Spektrum katsayısı S(T)x	Spektrum katsayısı S(T)y	Ra (T _x)	Ra (T _y)	Spektral ivme katsayısı A(Tx)	Spektral ivme katsayısı A(Ty)
0,52279	0,59846	47378,68	2,02	1,81	7	7	0,81	0,72

Çizelge 4.197: Sistem 5 için bulunan ön hesap sonuçları.

Çizelge 4.198 : Sistem, 5 taban ve tepe kesme kuvvetleri.

Taban kesme kuvveti		Tepe kuvveti		
V _{t(X)} (kN)	V _{t(y)} (kN)	$\Delta F_{\rm N}(X)(k{\rm N})$	$\Delta F_{\rm N}({\rm Y})({\rm kN})$	
5463,50	4903,48	368,79	330,99	

Taban ve tepe kesme kuvvetlerinin bulunmasının ardından katlara gelen deprem kuvvetleri bulunmuştur.

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Ζ	5468,54	3,00	16405,62	115,63
1	5468,54	6,00	32811,24	231,25
2	5420,69	9,00	48786,21	343,84
3	5372,84	12,00	64474,08	454,41
4	5372,84	15,00	80592,60	568,01
5	5359,34	18,00	96468,12	679,90
6	5345,84	21,00	112262,64	791,22
7	5345,84	27,00	144337,67	1017,29
8	4224,21	30,00	126726,35	893,16

Çizelge 4.199 : Sistem 5 için X yönü kat kesme kuvvetleri.

Çizelge 4.200 : Sistem 5 için Y yönü kat kesme kuvvetleri.

w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
5468,54	3,00	16405,62	103,77
5468,54	6,00	32811,24	207,55
5420,69	9,00	48786,21	308,60
5372,84	12,00	64474,08	407,83
5372,84	15,00	80592,60	509,79
5359,34	18,00	96468,12	610,21
5345,84	21,00	112262,64	710,12
5345,84	27,00	144337,67	913,01
4224,21	30,00	126726,35	801,61
	$\begin{array}{r} w_i(kN) \\ 5468,54 \\ 5468,54 \\ 5420,69 \\ 5372,84 \\ 5372,84 \\ 5372,84 \\ 5359,34 \\ 5345,84 \\ 5345,84 \\ 4224,21 \\ \end{array}$	$\begin{array}{ c c c c c c c c } \hline & w_i(kN) & H_i(m) \\ \hline & 5468,54 & 3,00 \\ 5468,54 & 6,00 \\ 5420,69 & 9,00 \\ 5372,84 & 12,00 \\ 5372,84 & 15,00 \\ 5372,84 & 15,00 \\ 5359,34 & 18,00 \\ 5345,84 & 21,00 \\ 5345,84 & 27,00 \\ 4224,21 & 30,00 \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Çizelge 4.201 : Sistem 5 için bulunan bodrum kat kesme kuvveti.

Wbk(kN)	Fbk(kN)
6965,92	1857,58

Çizelge 4.202 : Sistem 5 taban kesme kuvveti ve perde kesme kuvveti oranları.

Deprem yönü	Vt(kN)	Vp(kN)	αs
EX	5463,39	4901,04	0,90
EX(+0,05)	5463,51	4919,17	0,90
EX(-0,05)	5463,51	4883,13	0,89
EY	4903,47	4284,99	0,87
EY(+0,05)	4903,47	4285,01	0,87
EY(-0,05)	4903,47	4284,99	0,87

Yapı davranış katsayısı tekrar seçilerek hesaplar tekrarlanmıştır.

Çizelge 4.203 : Sistem 5 için yeniden düzenlenmiş yapı davranış katsayıları ile ön çözüm sonuçları.

Periyod(X) (sn)	Periyod(Y) (sn)	Yapı ağırlığı (kN)	Spektrum katsayısı S(T)x	Spektrum katsayısı S(T)y	Ra(T _x)	Ra(T _y)	Spektral ivme katsayısı A(TX)	Spektral ivme katsayısı A(Ty)
0,52279	0,59846	47378,68	2,02	1,81	6,41	6,5	0,81	0,72

Çizelge 4.204 : Sistem 5 için yeniden hesaplanmış taban ve tepe kuvvetleri.

Taban kesi	me kuvveti	Tepe kuvveti		
$V_{t(X)}(kN)$	$V_{t(y)}(kN)$	$\Delta F_N(X)(kN)$	$\Delta F_{\rm N}({\rm Y})({\rm kN})$	
5966,38	5280,68	402,73	356,45	

Taban ve tepe kesme kuvvetlerinin bulunmasının ardından katlara gelen deprem kuvvetleri bulunmuştur.

Çizelge 4.205 : Sistem 5 için yeniden hesaplanmış X yönü kat kesme kuvvetleri.

Kat No	w _i (kN)	$H_i(m)$	wixHi(Knm)	Fi(kN)
Z	5468,54	3,00	16405,62	126,27
1	5468,54	6,00	32811,24	252,54
2	5420,69	9,00	48786,21	375,49
3	5372,84	12,00	64474,08	496,24
4	5372,84	15,00	80592,60	620,29
5	5359,34	18,00	96468,12	742,48
6	5345,84	21,00	112262,64	864,05
7	5345,84	27,00	144337,67	1110,92
8	4224,21	30,00	126726,35	975,37

Kat No	w _i (kN)	H _i (m)	wixHi(Knm)	Fi(kN)
Ζ	5468,54	3,00	16405,62	111,76
1	5468,54	6,00	32811,24	223,51
2	5420,69	9,00	48786,21	332,34
3	5372,84	12,00	64474,08	439,20
4	5372,84	15,00	80592,60	549,01
5	5359,34	18,00	96468,12	657,15
6	5345,84	21,00	112262,64	764,75
7	5345,84	27,00	144337,67	983,24
8	4224,21	30,00	126726,35	863,27

Çizelge 4.206 : Sistem 5 için yeniden hesaplanmış Y yönü kat kesme kuvvetleri.

Son şekli ile eşdeğer deprem yükü kuvvetlerine ulaşılmıştır.

4.3.5.2 Mod birleştirme hesabı

SAP2000'e girilen spektrum grafiğinde deprem yükü azaltma katsayısı spektral ivme grafiğinde yerine konarak grafik çarpan değeri S(T)/R olarak elde edilmiştir, oluşturulan yükleme için çarpan olarak da A₀.I.g için 3,924 girilmiştir. Başlangıç olarak yapı davranış katsayısı 7 alınmış olup, ikinci aşamada taban kesme kuvvetinin perde taban kesme kuvvetine oranına bakılarak düzeltilen davranış katsayısı ile deprem yükü azaltma katsayısı düzenlenerek son şekli ile spektrum fonksiyonu elde edilmiştir.

Т	S(T)	S(T)/R	R
0,00	1,00	0,67	1,50
0,05	1,50	0,45	3,33
0,10	2,00	0,39	5,17
0,15	2,50	0,36	7,00
0,20	2,50	0,36	7,00
0,30	2,50	0,36	7,00
0,40	2,50	0,36	7,00
0,45	2,28	0,33	7,00
0,50	2,09	0,30	7,00
0,55	1,94	0,28	7,00
0,75	1,51	0,22	7,00
1,00	1,20	0,17	7,00
1,25	1,00	0,14	7,00
1,50	0,87	0,12	7,00
1,75	0,77	0,11	7,00
2,00	0,69	0,10	7,00
2,25	0.63	0,09	7,00

Çizelge 4.207: Ön spektrum çözümü için X ve Y yönü için tanıtılan spektrum grafiği.

Çizelge 4.208 : Sistem 5 için spektrum çözümlemesi sonucunda çıkan yapı davranış katsayıları.

Х	Y
6,39	6,48

Bulunan yeni davranış katsayılar ile spektrum grafikleri x ve y yönleri için yeniden türetilmiştir.

		X yönü		Y yönü			
Т	S(T)	S(T)/R	R	S(T)	S(T)/Ra	Ra	
0,00	1,00	0,67	1,50	1,00	0,67	1,50	
0,05	1,50	0,48	3,13	1,50	0,47	3,16	
0,10	2,00	0,42	4,76	2,00	0,41	4,82	
0,15	2,50	0,39	6,39	2,50	0,39	6,48	
0,20	2,50	0,39	6,39	2,50	0,39	6,48	
0,30	2,50	0,39	6,39	2,50	0,39	6,48	
0,40	2,50	0,39	6,39	2,50	0,39	6,48	
0,45	2,28	0,36	6,39	2,28	0,35	6,48	
0,50	2,09	0,33	6,39	2,09	0,32	6,48	
0,55	1,94	0,30	6,39	1,94	0,30	6,48	
0,75	1,51	0,24	6,39	1,51	0,23	6,48	
1,00	1,20	0,19	6,39	1,20	0,19	6,48	
1,25	1,00	0,16	6,39	1,00	0,16	6,48	
1,50	0,87	0,14	6,39	0,87	0,13	6,48	
1,75	0,77	0,12	6,39	0,77	0,12	6,48	
2,00	0,69	0,11	6,39	0,69	0,11	6,48	
2,25	0,63	0,10	6,39	0,63	0,10	6,48	

Çizelge 4.209 : Sistem 5 için X ve Y yönlerinde son şekli ile spektrum grafikleri.

Mod birleştirme çözümlemesi sonucu bulunan taban kesme kuvvetleri eşdeğer deprem yükü hesabı bulunan taban kesme kuvvetleriyle karşılaştırılıp gerekli büyütmeler yapılmıştır.

Çizelge 4.210 : Sistem 5 mod birleştirme ve eşdeğer deprem hesabı taban kesme kuvvetleri.

Deprem yönü	V _{tB} (kN)	V _t (kN)	β	βV_t	$\beta V_{t}\!/V_{tB}$
Х	4516,37	7328,96	0,90	6596,06	1,46
у	3576,70	7138,26	0,90	6424,43	1,80

Karşılaştırılan yöntemler arasından eşdeğer deprem kuvveti yöntemi düzensizlik kontrolleri ve kesit hesaplarında dikkate alınmıştır.

4.3.5.3 A1 burulma düzensizliği kontrolü

Bulunan çerçeve yer ve şekil değiştirme sonuçları kayıt altına alınarak A1 burulma düzensizliği kontrolleri ±0.05 ek dış merkezlik etkisi de dikkate alınarak aşağıda detaylandırılmıştır.

Kat	d _{i-max} (m)	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0172	0,0144	0,0015	0,0012	0,0013	1,10	YOK
7	0,0158	0,0132	0,0017	0,0014	0,0015	1,11	YOK
6	0,0141	0,0119	0,0019	0,0016	0,0018	1,10	YOK
5	0,0121	0,0103	0,0021	0,0018	0,0019	1,08	YOK
4	0,0100	0,0085	0,0022	0,0019	0,0021	1,07	YOK
3	0,0078	0,0066	0,0022	0,0020	0,0021	1,07	YOK
2	0,0056	0,0047	0,0021	0,0019	0,0020	1,06	YOK
1	0,0035	0,0028	0,0019	0,0016	0,0018	1,09	YOK
Ζ	0,0016	0,0012	0,0016	0,0012	0,0014	1,13	YOK

Çizelge 4.211 : Sistem 5, X yönü için A1 burulma düzensizliği.

Çizelge 4.212 : Sistem 5, X(+0,05) yönü için A1 burulma düzensizliği.

Kat	$d_{i-max}(m)$	$d_{i-min}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ýbi>1,2
8	0,0174	0,0141	0,0015	0,0012	0,0013	1,10	YOK
7	0,0160	0,0129	0,0017	0,0014	0,0015	1,10	YOK
6	0,0143	0,0115	0,0019	0,0016	0,0017	1,11	YOK
5	0,0124	0,0100	0,0022	0,0017	0,0019	1,12	YOK
4	0,0102	0,0083	0,0023	0,0018	0,0021	1,13	YOK
3	0,0079	0,0065	0,0024	0,0018	0,0021	1,13	YOK
2	0,0056	0,0047	0,0022	0,0017	0,0020	1,12	YOK
1	0,0033	0,0029	0,0019	0,0016	0,0017	1,09	YOK
Ζ	0,0014	0,0013	0,0014	0,0013	0,0014	1,03	YOK

Çizelge 4.213 : Sistem 5, X(-0,05) yönü için A1 burulma düzensizliği.

Kat	$d_{i-max}(m)$	$d_{i\text{-min}}(m)$	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0203	0,0114	0,0017	0,0009	0,0013	1,31	VAR
7	0,0186	0,0105	0,0020	0,0011	0,0015	1,31	VAR
6	0,0166	0,0094	0,0023	0,0012	0,0018	1,30	VAR
5	0,0143	0,0082	0,0025	0,0014	0,0019	1,28	VAR
4	0,0118	0,0068	0,0026	0,0015	0,0021	1,27	VAR
3	0,0092	0,0053	0,0027	0,0015	0,0021	1,26	VAR
2	0,0065	0,0038	0,0025	0,0015	0,0020	1,25	VAR
1	0,0040	0,0023	0,0022	0,0013	0,0018	1,27	VAR
Ζ	0,0018	0,0010	0,0018	0,0010	0,0014	1,29	VAR
Kat	d _{i-max} (m)	d _{i-min} (m)	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
-----	------------------------	------------------------	-----------------	-----------------	-----------------	------	------------------------
8	0,0192	0,0192	0,0020	0,0020	0,0020	1,00	YOK
7	0,0172	0,0172	0,0022	0,0022	0,0022	1,00	YOK
6	0,0151	0,0151	0,0023	0,0023	0,0023	1,00	YOK
5	0,0128	0,0128	0,0024	0,0024	0,0024	1,00	YOK
4	0,0104	0,0104	0,0024	0,0024	0,0024	1,00	YOK
3	0,0079	0,0079	0,0024	0,0024	0,0024	1,00	YOK
2	0,0055	0,0055	0,0022	0,0022	0,0022	1,00	YOK
1	0,0034	0,0034	0,0018	0,0018	0,0018	1,00	YOK
Ζ	0,0015	0,0015	0,0015	0,0015	0,0015	1,00	YOK

Çizelge 4.214 : Sistem 5, Y yönü için A1 burulma düzensizliği.

Çizelge 4.215 : Sistem 5, Y(+0,05) yönü için A1 burulma düzensizliği.

Kat $d_{i-max}(m)$		$d \cdot \cdot (m)$	Amax(m) = Amin(m) = Aort(r)		Aort(m)	n) ńbi	Düzensizlik
Kat	\mathbf{u}_{1} -max(III)	$\mathbf{u}_{1-\min}(111)$		Δiiiii(iii)		$ \begin{array}{c c} & \hat{\eta}bi & D \ddot{u}zensizlik \\ & \hat{\eta}bi > 1,2 \\ \hline 1,29 & VAR \\ 1,31 & VAR \\ 1,33 & VAR \\ 1,34 & VAR \\ 1,36 & VAR \\ 1,37 & VAR \\ 1,36 & VAR \\ 1,37 & VAR \\ 1,37 & VAR \\ 1,37 & VAR \\ 1,37 & VAR \\ 1,21 & VAR \\$	ήbi>1,2
8	0,0257	0,0127	0,0026	0,0014	0,0020	1,29	VAR
7	0,0232	0,0113	0,0028	0,0015	0,0022	1,31	VAR
6	0,0203	0,0098	0,0031	0,0015	0,0023	1,33	VAR
5	0,0173	0,0083	0,0032	0,0016	0,0024	1,34	VAR
4	0,0141	0,0067	0,0033	0,0016	0,0024	1,36	VAR
3	0,0107	0,0051	0,0033	0,0015	0,0024	1,37	VAR
2	0,0075	0,0036	0,0030	0,0014	0,0022	1,36	VAR
1	0,0045	0,0022	0,0025	0,0012	0,0018	1,37	VAR
Ζ	0,0020	0,0011	0,0020	0,0011	0,0015	1,31	VAR

Çizelge 4.216 : Sistem 5, Y(-0,05) yönü için A1 burulma düzensizliği.

Kat	d _{i-max} (m)	d _{i-min} (m)	$\Delta max(m)$	$\Delta min(m)$	$\Delta ort(m)$	ήbi	Düzensizlik ήbi>1,2
8	0,0257	0,0127	0,0026	0,0014	0,0020	1,29	VAR
7	0,0232	0,0113	0,0028	0,0015	0,0022	1,31	VAR
6	0,0203	0,0098	0,0031	0,0015	0,0023	1,33	VAR
5	0,0173	0,0083	0,0032	0,0016	0,0024	1,34	VAR
4	0,0141	0,0067	0,0033	0,0016	0,0024	1,36	VAR
3	0,0107	0,0051	0,0033	0,0015	0,0024	1,37	VAR
2	0,0075	0,0036	0,0030	0,0014	0,0022	1,36	VAR
1	0,0045	0,0022	0,0025	0,0012	0,0018	1,37	VAR
Ζ	0,0020	0,0011	0,0020	0,0011	0,0015	1,31	VAR

Hesaplanan göreli yer değiştirmelere baktığımızda 5 nolu sistemim A1 burulma düzensizliğine sahip olduğu görülmüştür. Bunun için dış merkezlik değeri revize edilecektir.

Çizelge 4.217 : Sistem 5 için yeni dış merkezlik değerleri.

Di Dış merkezlik b	öüyütme katsayısı	Yeni dış merkezlik değeri		
X yönü	Y yönü	X yönü	Y yönü	
1,19	1,3	0,06	0,065	

Burada Sistem 5 için yeni ek dış merkezlik değerleri yeniden hesaplanmıştır ve sistem 1 için hesabın bundan sonraki evrelerinde X yönü için ± 0.06 , Y yönü için ise ± 0.065 ek dış merkezlik değerleri esas alınmıştır.

4.3.5.4 A2 Döşeme düzensizlikleri kontrolü

Sistemde sadece asansörler için bulunan 2 tane ufak döşeme yırtığı vardır, yapının kullanımı için birkaç ufak mekanik ve elektrik şaftı açılması olası olmakla beraber sonuçta kat döşemelerinde ani rijitlik değişimine neden olacak bir düzensizlik bulunmamaktadır.

Kat	Kat Alanı (m^2)	Boşluk Alanı(m ²)	Oran	Düzensizlik Ab/A >1/3
8	383,2	15,4	0,04	YOK
7	383,2	15,4	0,04	YOK
6	383,2	15,4	0,04	YOK
5	383,2	15,4	0,04	YOK
4	383,2	15,4	0,04	YOK
3	383,2	15,4	0,04	YOK
2	383,2	15,4	0,04	YOK
1	383,2	15,4	0,04	YOK
Ζ	383,2	15,4	0,04	YOK

Çizelge 4.218 : Sistem 5 A2 döşeme düzensizliği kontrolleri.

4.3.5.5 A3 Planda çıkıntılar bulunması durumu

Yapı dikdörtgen olup planda çıkıntılar içermemektedir, dolayısıyla Sistem 5, A3 düzensizliğine sahip değildir.

4.3.5.6 B1 komşu katlar arası dayanım düzensizliği

Yapıda teşkil edilen düşey taşıyıcı elemanlar ve mimari duvarlar dikkate alınarak yapılan B1 zayıf kat hesapları aşağıda detaylandırılmıştır.

Kat	Kolon Alanı(m ²)	Perde Alanı(m ²)	Duvar Alanı(m ²)	Etkili Toplam Alan(m ²)	ήci	Düzensizlik ńci <0,8
8	2,10	6,60	10,80	11,94		YOK
7	2,10	6,60	10,80	11,94	1,00	YOK
6	2,10	6,60	10,80	11,94	1,00	YOK
5	2,55	6,60	10,80	12,39	1,04	YOK
4	2,55	6,60	10,80	12,39	1,00	YOK
3	2,55	6,60	10,80	12,39	1,00	YOK
2	4,15	6,60	10,80	13,99	1,13	YOK
1	4,15	6,60	10,80	13,99	1,00	YOK
Ζ	4,15	6,60	10,80	13,99	1,00	YOK

Cizelge 4.219 : Sistem 5 X yönü için B1 zayıf kat düzensizliği hesap detayları.

Kat	Kolon Alanı(m ²)	Perde Alanı(m ²)	Duvar Alanı(m ²)	Etkili Toplam Alan(m ²)	ήci	Düzensizlik ýci <0,8
8	2,10	6,93	8,20	11,49		YOK
7	2,10	6,93	8,20	11,49	1,00	YOK
6	2,10	6,93	8,20	11,49	1,00	YOK
5	2,55	6,93	8,20	11,94	1,04	YOK
4	2,55	6,93	8,20	11,94	1,00	YOK
3	2,55	6,93	8,20	11,94	1,00	YOK
2	4,15	6,93	8,20	13,54	1,13	YOK
1	4,15	6,93	8,20	13,54	1,00	YOK
Ζ	4,15	6,93	8,20	13,54	1,00	YOK

Çizelge 4.220 : Sistem 5 Y yönü için B1 zayıf kat düzensizliği hesap detayları.

Hesap detaylarında görüldüğü üzere Sistem 5, B1 zayıf kat düzensizliğine sahip değildir.

4.3.5.7 B2 Komşu katlar arası rijitlik düzensizliği

Sistem 5 için her iki deprem yönü için ek dış merkezliklerde dikkate alınarak kat ötelemeleri kontrol edilmiş ve yapıda B2 yumuşak kat düzensizliği olup olmadığı araştırılmıştır.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ńki > 2
8	0,00133	3,00	0,00044	-	0,87	YOK
7	0,00154	3,00	0,00051	1,15	0,88	YOK
6	0,00175	3,00	0,00058	1,14	0,91	YOK
5	0,00193	3,00	0,00064	1,10	0,94	YOK
4	0,00206	3,00	0,00069	1,07	0,98	YOK
3	0,00210	3,00	0,00070	1,02	1,05	YOK
2	0,00199	3,00	0,00066	0,95	1,14	YOK
1	0,00175	3,00	0,00058	0,88	1,27	YOK
Ζ	0,00138	3,00	0,00046	0,79	-	YOK

Çizelge 4.221 : Sistem 5, X yönünde yumuşak kat düzensizliği.

Çizelge 4.222 : Sistem 5, X(+0,06) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00133	3,00	0,00044	-	0,87	YOK
7	0,00153	3,00	0,00051	1,15	0,88	YOK
6	0,00175	3,00	0,00058	1,14	0,91	YOK
5	0,00193	3,00	0,00064	1,10	0,94	YOK
4	0,00206	3,00	0,00069	1,07	0,98	YOK
3	0,00209	3,00	0,00070	1,02	1,05	YOK
2	0,00199	3,00	0,00066	0,95	1,14	YOK
1	0,00175	3,00	0,00058	0,88	1,28	YOK
Ζ	0,00137	3,00	0,00046	0,78	-	YOK

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00133	3,00	0,00044	-	0,86	YOK
7	0,00154	3,00	0,00051	1,16	0,88	YOK
6	0,00176	3,00	0,00059	1,14	0,91	YOK
5	0,00194	3,00	0,00065	1,10	0,94	YOK
4	0,00206	3,00	0,00069	1,07	0,98	YOK
3	0,00210	3,00	0,00070	1,02	1,05	YOK
2	0,00199	3,00	0,00066	0,95	1,13	YOK
1	0,00176	3,00	0,00059	0,88	1,26	YOK
Ζ	0,00139	3,00	0,00046	0,79	-	YOK

Çizelge 4.223 : Sistem 5, X(-0,06) yönünde yumuşak kat düzensizliği.

Çizelge 4.224 : Sistem 5, Y yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00200	3,00	0,00067	-	0,93	YOK
7	0,00215	3,00	0,00072	1,08	0,94	YOK
6	0,00230	3,00	0,00077	1,07	0,96	YOK
5	0,00240	3,00	0,00080	1,04	0,98	YOK
4	0,00244	3,00	0,00081	1,02	1,02	YOK
3	0,00239	3,00	0,00080	0,98	1,09	YOK
2	0,00218	3,00	0,00073	0,91	1,19	YOK
1	0,00184	3,00	0,00061	0,84	1,21	YOK
Ζ	0,00152	3,00	0,00051	0,83	-	YOK

Çizelge 4.225 : Sistem 5 Y(+0.065) yönünde yumuşak kat düzensizliği.

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00200	3,00	0,00067	-	0,93	YOK
7	0,00215	3,00	0,00072	1,08	0,94	YOK
6	0,00230	3,00	0,00077	1,07	0,96	YOK
5	0,00240	3,00	0,00080	1,04	0,98	YOK
4	0,00244	3,00	0,00081	1,02	1,02	YOK
3	0,00239	3,00	0,00080	0,98	1,09	YOK
2	0,00218	3,00	0,00073	0,91	1,19	YOK
1	0,00184	3,00	0,00061	0,84	1,21	YOK
Ζ	0,00152	3,00	0,00051	0,83	-	YOK

Kat	$\Delta ort(m)$	hi(m)	∆ort/hi	ήki(i/i+1)	ήki(i/i-1)	Düzensizlik ήki > 2
8	0,00200	3,00	0,00067	-	0,93	YOK
7	0,00215	3,00	0,00072	1,08	0,94	YOK
6	0,00230	3,00	0,00077	1,07	0,96	YOK
5	0,00240	3,00	0,00080	1,04	0,98	YOK
4	0,00244	3,00	0,00081	1,02	1,02	YOK
3	0,00239	3,00	0,00080	0,98	1,09	YOK
2	0,00218	3,00	0,00073	0,91	1,19	YOK
1	0,00184	3,00	0,00061	0,84	1,21	YOK
Ζ	0,00152	3,00	0,00051	0,83	-	YOK

Çizelge 4.226 : Sistem 5, Y(-0.065) yönünde yumuşak kat düzensizliği.

Hesap detaylarında görüldüğü üzere Sistem 5, B2 yumuşak kat düzensizliğine sahip değildir.

4.3.5.8 Göreli kat ötelemeleri ve ikinci mertebe etkileri kontrolü

Çözümleme sonucu bulanan yer değiştirmelerle yapılan göreli kat ötelemelerinin ve ikinci mertebe etkilerinin sınırlandırılması kontrolleri aşağıda detaylandırılmıştır.

Kat	d _{i-max} (m)	hi(m)	$\Delta max(m)$	δimax	δi/hi	Koşul < 0,02
8	0,02035	3,00	0,00174	0,01117	0,00372	TAMAM
7	0,01860	3,00	0,00202	0,01297	0,00432	TAMAM
6	0,01658	3,00	0,00229	0,01470	0,00490	TAMAM
5	0,01429	3,00	0,00248	0,01588	0,00529	TAMAM
4	0,01181	3,00	0,00262	0,01679	0,00560	TAMAM
3	0,00919	3,00	0,00266	0,01704	0,00568	TAMAM
2	0,00653	3,00	0,00249	0,01599	0,00533	TAMAM
1	0,00404	3,00	0,00224	0,01436	0,00479	TAMAM
Ζ	0,00179	3,00	0,00179	0,01150	0,00383	TAMAM

Çizelge 4.227 : Sistem 5, X yönü göreli kat ötelemeleri.

Kat	$d_{i-max}(m)$	hi(m)	$\Delta max(m)$	δimax	δi/hi	Koşul < 0,02
8	0,02573	3,00	0,00257	0,01676	0,00559	TAMAM
7	0,02316	3,00	0,00282	0,01836	0,00612	TAMAM
6	0,02034	3,00	0,00306	0,01994	0,00665	TAMAM
5	0,01727	3,00	0,00322	0,02096	0,00699	TAMAM
4	0,01405	3,00	0,00331	0,02155	0,00718	TAMAM
3	0,01074	3,00	0,00326	0,02122	0,00707	TAMAM
2	0,00748	3,00	0,00297	0,01932	0,00644	TAMAM
1	0,00452	3,00	0,00252	0,01642	0,00547	TAMAM
Ζ	0,00199	3,00	0,00199	0,01297	0,00432	TAMAM

Çizelge 4.228 : Sistem 5, Y yönü göreli kat ötelemeleri.

Sistem 5 için her iki deprem yönü doğrultusunda da etkin göreli kat ötelemeleri maksimum sınırların altındadır.

Çizelge 4.229 : Sistem 5, X yönü için 2. Mertebe etkileri.

Kat	$\Delta ort(m)$	w _j (kN)	(∆i) _{ort} xwj	V _i (kN)	Hi(m)	Vihi	θi	Koşul < 0,12
8	0,00133	4224,21	5,62031	1378,10	3,00	4134,31	0,00136	TAMAM
7	0,00154	5345,84	8,21121	1110,92	3,00	3332,76	0,00246	TAMAM
6	0,00175	5345,84	9,36591	864,05	3,00	2592,15	0,00361	TAMAM
5	0,00193	5359,34	10,34889	742,48	3,00	2227,45	0,00465	TAMAM
4	0,00206	5372,84	11,06536	620,29	3,00	1860,88	0,00595	TAMAM
3	0,00210	5372,84	11,27490	496,24	3,00	1488,71	0,00757	TAMAM
2	0,00199	5420,69	10,79259	375,49	3,00	1126,47	0,00958	TAMAM
1	0,00175	5468,54	9,58908	252,54	3,00	757,61	0,01266	TAMAM
Ζ	0,00138	5468,54	7,54932	126,27	3,00	378,81	0,01993	TAMAM

Çizelge 4.230 : Sistem 5, Y yönü için 2. Mertebe etkileri.

Kat	$\Delta ort(m)$	w _j (kN)	(Δi) _{ort} xwj	V _i (kN)	Hi(m)	Vihi	θi	Koşul < 0,12
8	0,00200	4224,21	8,45264	1219,72	3,00	3659,16	0,00231	TAMAM
7	0,00215	5345,84	11,51494	983,24	3,00	2949,73	0,00390	TAMAM
6	0,00230	5345,84	12,30612	764,75	3,00	2294,24	0,00536	TAMAM
5	0,00240	5359,34	12,86242	657,15	3,00	1971,45	0,00652	TAMAM
4	0,00244	5372,84	13,11510	549,01	3,00	1647,02	0,00796	TAMAM
3	0,00239	5372,84	12,81960	439,20	3,00	1317,61	0,00973	TAMAM
2	0,00218	5420,69	11,82252	332,34	3,00	997,01	0,01186	TAMAM
1	0,00184	5468,54	10,06211	223,51	3,00	670,54	0,01501	TAMAM
Ζ	0,00152	5468,54	8,33405	111,76	3,00	335,27	0,02486	TAMAM

4.3.5.9 Sistem 5 birinci kat kiriş kesit hesapları

Burada Sistem 5 birinci kat boyuna donatı hesabında Sistem 1 'de uygulanan metodlar aynen tekrarlanmıştır. Çerçeve oluşturan donatı devamlılığı olan, ek donatıların berber kullanıldığı kirişler ve tek başına çalışan kirişlerin donatı seçimleri aşağıda ayrı ayrı detaylandırılmıştır

Kiriş no	Donatı lifi	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı	Kiriş no	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı	Kiriş no	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı
V101	Üst donatı	2Ø14	3Ø14	2Ø14	K102	-	3Ø14	-	K103	3Ø12	3Ø14	3Ø12
K 101	Alt donatı	-	3Ø14	-		-	3Ø14	-		-	3Ø14	-
V104	Üst donatı	1Ø16	3Ø14	2Ø16	K105	1Ø14	3Ø14	-	K106	5Ø12	3Ø14	5Ø12
K104	Alt donatı	1Ø16	3Ø14	1Ø14		1Ø12	3Ø14	-		2Ø16	3Ø14	2Ø16
V107	Üst donatı	1Ø12	3Ø14	-	K108	5Ø12	3Ø14	5Ø12	K109	5Ø16	5Ø16	5Ø16
K107	Alt donatı	-	3Ø14	-		5Ø12	3Ø14	5Ø12		5Ø16	5Ø16	5Ø16
V110	Üst donatı	2Ø14	3Ø14	3Ø12	K111	-	3Ø14	2Ø16				
K110	Alt donatı	-	3Ø14	-		1Ø16	3Ø14	1Ø12				
V114	Üst donatı	2Ø16	3Ø14	3Ø14	K115	-	3Ø14	-	K116	2Ø16	3Ø14	2Ø16
K 114	Alt donatı	-	3Ø14	-		1Ø12	3Ø14	-		-	3Ø14	-
V117	Üst donatı	2Ø14	3Ø14	-	K118	2Ø16	1Ø14 ek	2Ø16	K119	2Ø12	5Ø14	2Ø12
K11/	Alt donatı	-	3Ø14	-		2Ø14	1Ø14 ek	-		2Ø12	5Ø14	1Ø12
V120	Üst donatı	2Ø16	4Ø14	2Ø14	K121	2Ø12	3Ø14	2Ø14	K122	2Ø16	3Ø14	1Ø12
К120	Alt donati	1Ø12	4Ø14	3Ø12		-	3Ø14	3Ø12		3Ø12	3Ø14	-

Çizelge 4.231 : Sistem 5 birinci kat çerçeve oluşturan kirişler için seçilen boyuna donatılar.

Çizelge 4.232 : Sistem 5 birinci kat balkon ve perde bağ kirişleri boyuna donatıları.

Kiriş no	Donatı lifi	Seçilen ek sol mesnet donatısı	Seçilen açıklık donatısı	Seçilen ek sağ mesnet donatısı
K112	Üst donatı	1Ø18	3Ø14	1Ø18
K 112	Alt donatı	1Ø14	3Ø14	1Ø14
W112	Üst donatı	1Ø16	3Ø14	1Ø16
K113	Alt donati	1Ø12	3Ø14	1Ø12
K102	Üst donatı	-	3Ø14	-
K125	Alt donati	-	3Ø14	-
K104	Üst donatı	-	3Ø14	-
K124	Alt donatı	-	3Ø14	-
W105	Üst donatı	-	3Ø14	-
K125	Alt donatı	-	3Ø14	-
W100	Üst donatı	1Ø14	3Ø14	-
K126	Alt donati	-	3Ø14	-

Birinci kat kirişleri etriye hesabında süneklik düzeyi yüksek kiriş kabulü gereği donatı seçiminde baz alınacak V_e kesme kuvveti hesabı yapılmıştır. Bunun için + ve – deprem yönlerinde kiriş uç taşıma gücü momentleri ve pekleşme göz önüne alınarak moment kapasiteleri hesaplanmış, her iki uç için bulunan pekleşmeli moment kapasiteleri toplanıp kiriş temiz açıklığına bölünerek uç kesme kuvvetlerine ulaşıldıktan sonra, dizayn kombinasyonlarından hesaplanan dizayn kesme kuvveti Vd ile toplanarak Ve elde edilmiştir. Bu aşamada deprem yükü azaltma katsayısı R=2 alınarak yapılan yeni deprem hesabından gelen uç kesme dizayn değeri V_e

karşılaştırılıp küçük olan değer kesit hesabı için seçilmiştir. Bulunan Ve kesme kuvveti R=2 için yenilenen çözümleme kesme değeriyle karşılaştırılarak, dizayn kesme kuvveti olarak tayin edilmiştir. Burada V_{cr} beton kapasitesi kirişler için çıkarıldıktan sonra çeliğin karşılaması gereken V_w çelik dizayn kuvvetine ulaşılmıştır. Bulunan tasarım kesme kuvvetleri için seçilmiş etriyeler aralıkları Çizelge 4.233'da gösterilmiştir.

Kiriş no	Vei(kN)	Vej(kN)	Vi(R=2) (kN)	Vj(R=2) (kN)	Vwi(kN)	Vwj(kN)	i ucu sıklaştırma bölgesi etriye aralığı (cm)	Kiriş ortası için seçilen etriye aralığı(cm)	i ucu sıklaştırma bölgesi etriye aralığı (cm)
K101	158,83	153,48	199,44	187,24	49,63	44,28	11	27	11
K102	134,86	159,16	184,16	201,29	134,86	159,16	11	27	11
K103	141,72	142,21	137,56	137,56	28,36	28,36	11	30	11
K104	94,78	116,85	315,31	372,91	94,78	116,85	11	30	11
K105	156,51	171,25	202,00	47,31	156,51	171,25	11	25	11
K106	323,56	312,73	312,74	109,65	312,74	109,65	10	13	10
K107	144,07	126,73	153,25	98,43	34,87	-10,77	11	30	11
K108	589,49	607,81	724,45	840,00	589,49	607,81	5	7	5
K109	450,66	574,81	953,70	203,89	450,66	203,89	7	7	11
K110	162,76	153,18	204,45	188,05	53,56	43,98	11	26	11
K111	148,03	173,86	239,55	220,85	148,03	173,86	11	25	11
K112	142,41	142,32	120,16	120,16	120,16	120,16	11	30	11
K113	134,39	107,12	88,89	88,89	88,89	88,89	11	30	11
K114	140,08	139,16	158,87	161,24	30,88	29,96	11	30	11
K115	271,74	311,47	331,29	349,79	271,74	311,47	11	14	10
K116	133,70	141,59	158,03	173,87	24,50	32,39	11	30	11
K117	148,91	158,87	66,12	171,00	-43,08	61,80	11	27	11
K118	263,47	341,66	326,26	302,74	263,47	302,74	11	13	11
K119	243,73	280,77	432,62	472,37	243,73	280,77	11	15	11
K120	234,99	187,56	411,22	391,49	234,99	187,56	11	18	11
K121	267,71	216,35	311,68	374,49	267,71	216,35	11	16	11
K122	141,99	147,43	238,93	34,84	141,99	147,43	11	29	11
K123	-	-	27,24	40,89	27,24	40,89	11	29	11
K124	-	-	30,30	46,87	30,30	46,87	11	14	11
K125	-	-	29,41	21,64	29,41	21,64	11	30	11
K126	111,39	85,51	64,73	56,68	64,73	56,68	11	30	11

Çizelge 4.233 : Sistem 5, birinci kat tasarım kesme kuvvetleri ve bulunan etriye aralıkları.

4.3.5.10 Sistem 5 birinci kat kolon kesit hesapları

Sistem 5 için SAP2000 programında TS500-2000 yönetmeliğine göre kesit hesabı yapılarak her kolon için kapasite kullanım oranının en yüksek olmasını sağlayan

kombinasyonlar seçilmiştir. Seçilen kombinasyonlar altında bulunan moment normal kuvvet değerlerinde TS500 minimum dış merkezlik tahkiki yapılarak gerekli kombinasyonların momentleri büyütülerek dizayn kuvvetlerine ulaşılmıştır. Bu aşamada abaklar yardımıyla kolon boyuna donatıları seçilmiştir.

Kolon Adı	My(knm)	Mx(knm)	P(kN)	Köşe donatılar	Orta donatılar
S1	92,29	58,25	2097,05	3Ø16	1Ø16
S2	62,46	98,99	2191,51	3Ø18	1Ø14
S3	54,62	191,62	784,7	3Ø14	1Ø14
S 6	84,68	53,82	1453,22	3Ø14	1Ø14
S9	104,01	64,06	2247,86	3Ø16	1Ø16
S10	72,39	89,12	2540,032	3Ø18	1Ø14
S11	56,84	78,94	2131,49	3Ø16	1Ø16

Çizelge 4.234 : 1. kat kolonları arttırılmış dizayn kuvvetleri ve boyuna donatıları.

Kesme donatısı hesapları;

Birinci kat kolanlarında süneklik düzeyi yüksek kolon kabulüne göre Ve kesme kuvveti hesaplanıp deprem yükü azaltma katsayısı R=2 alınarak yapılan çözümleme sonucu bulunan kesme kuvvetiyle karşılaştırılarak küçük olan değer, dizayn kesme kuvveti olarak seçilmiştir. Kolon sarılma bölgesi etriye donatısı için s=10 cm kabulü ile Denklem ((3.40)(3.41)) kullanılarak gerekli donatı alanı hesap edilerek kolon kesme kapasitesi hesaplanmış kapasitenin kesme kuvvetlerinden büyük olduğu gösterilmiştir(Çizelge 4.235).

Çizelge 4.235 : Kolon dizayn kesme kuvvetleri ve kesme kapasiteleri.

Kalan adı	Vov(kN)	Vov(kN)	Vx(R=2)	Vy(R=2)	Asx	Asy	Vwx	Vwy	Vy dovonim(kN)	Vy dovonim(kN)
Kololi adi	VCX(KIN)	Vey(KIN)	(kN)	(kN)	(cm^2)	(cm^2)	(kN)	(kN)	v x uayannin(KIN)	v y dayamm(KN)
S1	86,79	111,50	161,12	95,92	200	350	594,19	555,43	776,19	737,43
S2	167,51	147,68	243,22	249,42	400	250	710,01	781,65	929,39	1001,02
S3	63,61	154,90	104,65	173,66	300	200	483,09	509,30	639,09	665,30
S 6	75,47	147,71	159,12	210,71	300	200	483,09	509,30	639,09	665,30
S9	83,64	115,88	151,59	104,92	250	350	729,54	624,86	934,29	829,61
S10	139,79	126,61	214,40	130,01	400	250	706,45	833,76	940,45	1067,76
S11	148,04	99,16	164,97	236,58	400	200	631,12	636,63	826,12	831,63

4.3.5.11 Sistem 5 birinci kat perde kesit hesapları

Sistem 5 birinci kat perde kesit hesapları SAP 2000'de bulunan depremli kombinasyonların P- M_x - M_y değerleri için CSI Column programında perdeler teker teker tasarlanarak boyuna donatı hesabı yapılmıştır. Hcr minimum değeri 4.5 m bulunmuştur bu değer 1. katın tamamını içine alacak şekilde kritik perde yüksekliği değeri 6 m. seçilmiştir. Bu durumda hesap için seçilen 1. kat Hcr bölgesinde kaldığından DBHBHY şartı gereği tasarım eğilme momentleri perde taban kesiti

değerleri olarak alınmıştır. Bu durumda Sistem 5 için yapının 1 bodrum katı olduğu düşünülürse zemin kat taban kesiti kesit zoru değerleri 1. kat perde tasarım değerleri olarak alınmıştır.

Perde no	Gövde içn seçilen donatı	Gövde içn seçilen donatı	1. uç bölgesi seçilen donatı	2. uç bölgesi seçilen donatı	Toplam donatı
Merdiven perdesi	20Ø14/23	20Ø14/24	16Ø14	14Ø14	152Ø14
Asansör perdesi	10Ø14/23	10Ø14/23	6Ø14	6Ø14	86Ø14
P5	14Ø14	-	12Ø14	12Ø14	38Ø14
P6	14Ø14	-	12Ø14	12Ø14	38Ø14
P7	14Ø14	-	12Ø14	12Ø14	38Ø14
P8	14Ø14	-	12Ø14	12Ø14	38Ø14

Cizelge 4.236 : Birinci kat perdeleri için seçilen boyuna donatılar.

Perde enine donatı hesapları için ise dizayn kombinasyonu altında CSI Column programı yardımıyla perdelerin moment ve pekleşmeli moment kapasiteleri bulunarak süneklik düzeyi yüksek perde kesme kuvveti koşullarınca pekleşmeli moment kapasitesi dizayn momentine bölünerek ve dinamik büyütme katsayısı da hesaba katılarak kombinasyonlar sonucu bulunan maksimum kesme kuvveti V_d büyütülerek dizayn kesme kuvveti Ve hesaplanmıştır. Burada kolon etriye alanı hesabında gösterilen Denklem(3.40)(3.41) ile başlık bölgesi etriye alanları s=10 cm için hesaplanarak enine donatı seçimi yapılmıştır.

Perde No	Başlık bölgesi etriye donatı alanı x	Başlık bölgesi etriye donatısı alanı y	Seçilen etriye alanı
Merdiven perdesi	307,14	92,86	1 adet Ø12 sargı ve 1 adet Ø12 çiroz(339)
Asansör perdesi	200,00	92,86	1 tam Ø12 sargı(226)
P5	200,00	92,86	1 tam Ø12 sargı(226)
P6	200,00	92,86	1 tam Ø12 sargı(226)
P7	200,00	92,86	1 tam Ø12 sargı(226)
P8	200,00	92,86	1 tam \emptyset 12 sargi(226)

Çizelge 4.237 : Perde başlık bölgeleri için gerekli donatı alanları.

Bulunan kesme kuvvetleri karşılaştırılıp küçük değer dizayn kesme kuvveti olarak seçilirken perde betonarme kesitinin taşıyabileceği maksimum kesme kuvveti de hesaplanarak betonarme kesitin yeterliliği tahkik edilmiştir.

Perde No	V(ex) (kN)	V(ey) (kN)	V(R=2)x(kN)	V(R=2)y(kN)	V(x) dizayn(kN)	V(y) dizayn(kN)	Vmax x(kN)	Vmax y(kN)
Merdiven perdesi	4560	3405	4916	5554	4560	3405	4356	10824
Asansör perdesi	1849	1434	2071	1526	1849	1434	5280	2772
P5	-	1501	-	1489	-	1489	-	3828
P6	1532	-	2082	-	1532	-	3828	-
P7	2000	-	1719	-	1719	-	3828	-
P8	-	1247	-	1476	-	1247	-	3828

Çizelge 4.238 : Perde betonarme kesit kesme kapasiteleri ve dizayn kesme kuvvetleri.

Seçilen dizayn kesme kuvveti için Ø12/25 etriye seçilerek perde kapasiteleri Denklem (3.45) yardımıyla hesaplanarak seçilen etriye aralığı tahkik edilmiştir.

Perde No	Ø12/25 enine p(x)	Ø12/25 enine p(y)	Ax(m2)	Ay(m2)	Perde kesme kapasitesi x	Perde kesme kapasitesi y
Merdiven perdesi	0,0030	0,0030	0,990	0,246	1893,24	4704,42
Asansör perdesi	0,0030	0,0030	0,120	0,120	2294,84	2294,84
P5	-	0,0030	-	0,870	-	1663,76
P6	0,0030	-	0,870	-	1663,76	-
P7	0,0030	-	0,870	-	1663,76	-
P8	-	0,0030	-	0,870	-	1663,76

Çizelge 4.239 : Seçilen etriye aralığı için perde kesme kapasiteleri.

4.3.5.12 Kolonların kirişlerden daha güçlü olması koşulu

Aynı düğüm noktasına birleşen kolonların taşıma gücü momentleri toplamı aynı noktaya birleşen kirişlerin taşıma gücü momentleri toplamından %20 daha büyük olması şartı her iki deprem doğrultusunda + ve – yönlü depremler için 1.kat kolonları üst düğüm noktası için araştırılmış olup kolonların güçlü olması koşulunun sağlandığı tespit edilmiştir.

Çizelge 4.240 : Kolon ve kirişlerin moment kapasitesi oranları.

Deprem yönü ve	Düğüm noktası kolon/kiriş kapasite oranları							
doğrultusu	S01	S02	S03	S06	S09	S10	S11	
X+	13,40	2,50	4,74	3,09	14,05	3,89	2,83	
Х-	8,79	3,08	4,59	4,23	8,92	3,95	2,70	
Y+	2,56	5,38	3,09	2,56	4,07	7,90	8,27	
Y-	3,49	3,09	2,58	2,79	3,00	7,75	7,80	

4.3.5.13 Kolon-kiriş birleşim bölgesi kesme güvenliği kontrolleri

Süneklik düzeyi yüksek çerçeve sistemler için öngörülen birleşim bölgesi kesme kontrolleri için her iki deprem doğrultusunda + ve – yönlü depremler için 1.kat kolonları üst düğüm noktaları kesme kuvvetleri ve düğüm noktası kapasiteleri hesaplanarak düğüm noktası kesme kapasitelerinin yeterli olduğu gösterilmiştir.

Kolon no	Bağlantı tipi	Vex+(kN)	Vex-(kN)	Vey+(kN)	Vey-(kN)	Vdayanımx(kN)	Vdayanımy(kN)
S01	kuşatılmamış	241,74	327,10	661,90	675,58	1890	1080
S02	kuşatılmış	671,59	732,69	924,75	901,78	1620	4050
S03	kuşatılmamış	238,48	254,18	660,73	608,69	2160	1620
S06	kuşatılmamış	309,53	292,49	710,92	743,34	2160	1620
S09	kuşatılmamış	231,61	326,34	681,71	654,42	1890	1215
S10	kuşatılmış	559,02	619,47	606,03	563,85	1620	4320
S11	kuşatılmamış	642,40	595,34	694,66	676,34	1080	2700

Çizelge 4.241 : Kolon-kiriş düğüm noktası kesme kuvvetleri ve dayanım değerleri.

4.3.5.14 Sistem 5 beton ve donatı metrajı

Hesaplanan birinci kat kolon, kiriş ve perdelerinde kullanılacak donatılar ve katın bütün elemanlarının toplam beton hacmi hesaplanmıştır. Sonuçlar Çizelge 4.242'de verilmiştir.

Yapı elemanı	Donatı Miktarı(Ton)	Beton Miktarı (m ³)
Kiriş	3,50	
Kolon	1,98	
Perde	6,34	
Toplam	11,82	142,40

Çizelge 4.242 : Birinci kat donatı ve beton metrajı.

5. HESAP SONUÇLARININ KARŞILAŞTIRILMASI

Bu bölümde sistemlerin girdi ve sonuçlarının birbirleriyle karşılaştırılması yapılmıştır.

5.1 Sistemlerin Geometrik Teşkili Bakımından Karşılaştırılması

Taşıyıcı sistemler oluşturulurken yapının özellikle düşey taşıyıcılarında yapılan değişimlerle sistem çeşitliği sağlanmıştır. Bu bağlamda oluşan sistemlerin basit geometrik özelliklerinin karşılaştırılması Çizelge 5.1'de gösterilmiştir.

Çizelge 5.1 : Sistemlerin geometrik özelliklerinin karşılaştırılması.

Sistem no	Yapı Ağırlığı(kN)	Toplam düşey taşıyıcı alanı(m ²)	Toplam perde alanı(m ²)
Sistem 1	45189,13	12,71	6,57
Sistem 2	46351,45	17,55	11,97
Sistem 3	46336,15	17,61	12,63
Sistem 4	46535,22	17,04	12,06
Sistem 5	47378,68	17,68	13,53

Çizelge 5.1'de görüldüğü üzere sistem ağırlıkları birbirlerine yakın olmakla beraber en az düşey taşıyıcı alanına sahip olan Sistem 1'in en hafif sistem olduğu görülmektedir. Sistem 2,3ve 4 ise toplam düşey taşıyıcı alanları ve yapı ağırlıkları bakımından oldukça özdeş oldukları görülmektedir. Sistem 5' in en fazla düşey taşıyıcı alanına sahip olduğu ve perde oranının toplam düşey taşıyıcılara oranı en büyük sistem olduğu görülmektedir.

5.2 Sistemlerin Periyotlarının Karşılaştırılması

Sistemlerin farklı ağırlıklara ve rijitliklere sahip olduğunu düşünürsek, yapı modal analiz sonucu bulunan periyotlarda farklılıklar olacağı sistemlerin düşey taşıyıcı elemanlarının çeşitlendirilmesiyle oluşturulan bu sistemlerin hesabında ortaya çıkacak ilk farklılığın yapı periyotları olacağı açıktır. Düşey taşıyıcı alanı artan dolayısıyla da ötelenme rijitliği artacak sistemlerin periyotları düşeceğinden zemin ikinci karakteristik periyodundan büyük periyotlar için spektral ivme katsayısının artacağı dolayısıyla sisteme etkiyecek taban kesme kuvvetinin de artacağı beklenmelidir. Bu beklentiler doğrultusunda sistemlerin periyotları Çizelge 5.2'de gösterilmiştir.

Çizelge 5.2 : Sistemlerin periyotlarının karşılaştırılması.

Sistem no	$T_{1x}(sn)$	$T_{1y}(sn)$
Sistem 1	0,69028	0,77108
Sistem 2	0,62086	0,68024
Sistem 3	0,58429	0,64568
Sistem 4	0,65094	0,70408
Sistem 5	0,52279	0,59846

Çizelge 5.2'de görüldüğü üzere düşey taşıyıcı ve perde elemanları fazla olan sistemlerin periyotlarının, görece daha az perde alanına sahip sistemlerden daha düşük periyotlara sahip oldukları görülmüştür. Periyotların bu şekilde ortaya çıkması, sonucuna bu taşıyıcı sistem grupları için perde geometrisinden daha çok perde alanının sistemlerin periyotlarında daha etkin olduğu kanısına varılabilir.

5.3 Taban Kesme Kuvvetlerinin Karşılaştırılması

5.3.1 Eşdeğer deprem kuvveti taban kesme kuvvetleri

Çizelge 5.2'de gösterilen periyot değerleri ışığında perde alanı fazla olan sistemlerin spektral ivme katsayılarının daha büyük olacağı spektrum ivmesi grafiğini dikkate alırsak beklenen bir sonuçtur. Taban kesme kuvvetindeki bir diğer etken olan yapı ağırlığının da taban kesme kuvvetiyle doğru orantılı olduğu dikkate alınırsa çeşitlendirilen bu sistemler arasında ağırlığı ve rijitliği görece fazla olan sistemlerin daha büyük deprem kuvvetleriyle karşılaşacağı beklenmektedir. Sistemlerin taban kesme kuvvetleri

Şekil 5.1'de görüldüğü üzere beklentileri karşılar bir şekilde rijitliği ve kütlesi artan sistemlerin eşdeğer deprem kuvveti metodu için hesaplanan taban kesme kuvvetleri de artma eğilimindedir.

Sisteme etkiyen taban kesme kuvvetlerinin sistem ağırlıklarına oranı incelenirse(Şekil 5.2), sistemdeki düşey taşıyıcı alanı arttıkça, eşdeğer taban kesme metoduyla bulunan taban kesme kuvvetinin yapı ağırlığına oranının arttığı sonucu ortaya çıkar. Bu sonuç, zemin karakteristik periyotlarının ikisinden de büyük hakim periyotlu yapıların periyotlarının arttıkça eşdeğer deprem yükü kesme kuvvetinin azaldığını göstermektedir. Spektrum grafiğinde periyodun attıkça spektrum katsayısı değerinin düştüğünü hesaba katarsak sistemlerin taban kesme kuvveti değerleri tutarlı gözükmektedir.

5.3.2 Mod birleştirme yöntemi taban kesme kuvvetleri

Mod birleştirme yöntemi için eşdeğer deprem kuvveti taban kesme kuvvetindeki sonuçlara benzer sonuçlar beklenmektedir. Mod birleştirme ve eşdeğer deprem yükü hesap yöntemleri taban kesme kuvvetleri incelendiğinde bütün mod şekillerinin katkılarının birleştirilmesiyle hesaplanan mod birleştirme yönteminde perde geometrisinin, eşdeğer deprem kuvveti yöntemine göre daha etkin bir biçimde sonuçta etkili olduğu sonucuna varılabilir.

Şekil 5.3 : Sistemlerin mod birleştirme yöntemi taban kesme kuvveti değerleri.

Şekil 5.3' de mod birleştirme yönteminde bulunan taban kesme kuvvetleri gösterilmiştir. Burada göze çarpan yegane durum Y yönünde taban kesme kuvvetlerinin birbirine oldukça yakın olduğudur. Perde alanı ve sistem kütlesiyle mod birleştirme hesabında bulunan taban kesme kuvveti bağlantılı olsa da sistemdeki perde geometrileri ve konumlarının eşdeğer deprem kuvveti hesabına göre mod birleştirme yönteminde daha etkin oldukları sonucuna varılabilir. Öyle ki Sistem 3 ve Sistem 2, Y deprem yönünde kendisinden daha fazla düşey taşıyıcıya sahip ve daha ağır Sistem 5 ten ise daha büyük kesme kuvvetine maruz kalmışlardır.

Mod birleştirme yöntemi için hesaplanan taban kesme kuvveti ve yapı ağırlığı oranları incelendiğinde(Şekil 5.4), iki yöntemin arasındaki farklılık daha açık şekilde görülmektedir. Deprem kuvveti hesaplanırken sadece hakim periyotlar yerine mod şekillerini hesaba katarak çözüm yapmanın perde geometrisinin önemini deprem kuvvetleri hesaplanırken arttırdığı sonucu çıkarılabilir.

5.4 Sistemlerin Perde Kesme Kuvvetlerinin Taban Kesme Kuvvetlerine Oranı

Taşıyıcı sistemdeki perde alanının toplam düşey taşıyıcı eleman alanlarına oranı arttıkça sistemdeki perdelerin taban kesme kuvvetlerinin yapı toplam taban kesme kuvvetlerine oranının artacağı öngörülebilir. Çizelge 5.3'de görüldüğü üzere perde oranı arttıkça perdelerin aldığı kesme kuvveti de aynı oranda artmaktadır.

Sistem no	V _{tx} /V _{perde,x}	V _{ty} /V _{perde,y}
Sistem 1	0,71	0,74
Sistem 2	0,81	0,84
Sistem 3	0,85	0,87
Sistem 4	0,83	0,84
Sistem 5	0,90	0,87

Çizelge 5.3 : Sistem perde taban kesme kuvvetlerinin toplam taban kesme kuvvetlerine oranı.

5.5 Sistemlerin Kat Yer Değiştirme ve Göreli Kat Ötelemelerinin Karşılaştırılması

Eşdeğer deprem yükü yöntemiyle bulunan arttırılmış kat kuvvetleri altında sistemlerin X ve Y doğrultularındaki deprem kuvvetleri için yer değiştirmeleri Şekil 5.5 ve Şekil 5.6'da gösterilmiştir.

Şekil 5.5 : X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirrneleri.

Şekil 5.5'i incelediğimizde rijitliği daha az olan Sistem 1'in kat yer değiştirmelerinin maksimuma ulaştığı 8. katta 2.7 cm mertebelerinde olduğu gözlemlenmiştir. Sistem 2 ve Sistem 4, 8. katta 2.2 ve 2.3 cm mertebelerinde kat yer değiştirmesi yapmış olmakla beraber Sistem 3 ve 5 için bu değerler 2 cm mertebesindedir. Buna göre yapılan perde eklemeleri X yönlü depremde kat maksimum yer değiştirmelerinin %25 ile %15 mertebelerinde düşmesine neden olmuştur.

Şekil 5.6 : Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum kat yer değiştirmeleri.

Şekil 5.6' yı incelediğimizde rijitliği daha az olan Sistem 1'in kat yer değiştirmelerinin maksimuma ulaştığı 8. katta 3.15 cm mertebelerinde olduğu gözlenmiştir. Perde eklenmiş diğer sistemlerde ise bu değerin 2.45 - 2.8 cm mertebeleri arasında olduğu görülmüştür. Buna göre yapılan perde eklemeleri Y yönlü depremde kat maksimum yer değiştirmelerinin %22 ile %11 mertebelerinde düşmesine neden olmuştur.

Genel olarak Şekil 5.5 ve Şekil 5.6' yı incelediğimizde düşey taşıyıcı eleman alanı fazla olan sistemlerin artan ötelenme rijitlikleri doğrultusunda artan taban kesme kuvvetlerine rağmen daha az yanal ötelenme yaptıklarını görmekteyiz. Özelde ise Sistem 3'ün en büyük düşey taşıyıcı alanına sahip olmasa da ortalamada en düşük kat yer değiştirme değerlerine sahip olduğu görülmüştür.

Şekil 5.7 : X doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri.

Şekil 5.7'yi incelediğimizde en büyük göreli kat yer değiştirmelerinin bütün sistemler için 3. ve 4. katlarda olduğu görülmektedir. Sistem 1, kat göreli maksimum kat ötelemesi 0,34 cm mertebelerindedir, bununla beraber ek perde teşkil edilen sistemlerin göreli maksimum kat ötelenmeleri ise 0, 26-0,30 cm aralığındadır. Buna göre yapılan perde eklemeleri X yönlü depremde kat göreli maksimum yer değiştirmelerinin %24 ile %12 mertebelerinde düşmesine neden olmuştur.

Şekil 5.8 : Y doğrultusundaki deprem için taşıyıcı sistemlerde oluşan maksimum göreli kat yer değiştirmeleri.

Şekil 5.8'i incelediğimizde en büyük göreli kat yer değiştirmelerinin bütün sistemler için 4. ve 5. katlarda olduğu görülmektedir. Sistem 1, kat göreli maksimum kat ötelemesi 0,4 cm mertebelerindedir, bununla beraber ek perde teşkil edilen sistemlerin göreli maksimum kat ötelenmeleri ise 0,36-0,31 cm aralığındadır. Buna göre yapılan perde eklemeleri Y yönlü depremde kat göreli maksimum yer değiştirmelerinin %22 ile %10 mertebelerinde düşmesine neden olmuştur.

Şekil 5.7 ve Şekil 5.8 incelendiğinde göreli kat yer değiştirmelerinin her iki deprem doğrultusu için de orta katlarda arttığı görülmektedir. Burada en dikkate değer sonuç Sistem 3'ün düşey taşıyıcı alanının Sistem 5'ten belirgin bir şekilde az olmasına rağmen Sistem 5 ile neredeyse aynı yer değiştirme performansı gösterdiğidir. Yine aynı şekilde Sistem 2 ve Sistem 4 ün perde alanlarının Sistem 3'le neredeyse aynı olmalarına rağmen belirgin şekilde daha çok kat ötelemesi yaptıkları görülmektedir. Düşey taşıyıcı alanları neredeyse aynı bu sistemlerin bu yer değiştirme çeşitliliğini yapmalarının nedeni kütlelerinin de birbirine çok yakın olduğunu düşünürsek elbette perdelerin konum ve geometrilerindeki farklılığın sistemlerin rijitlik matrislerinde yarattığı farklılıktır.

5.6 Sistemlerin İkinci Mertebe Etkilerinin Karşılaştırılması

Sistemlerin ikinci mertebe etkileri bakımından karşılaştırılmasında daha rijit olan sistemlerin daha küçük ikinci mertebe etkileri altında kalacağı öngörülebilir. Her iki deprem doğrultusu için ikinci mertebe etkileri Şekil 5.9 ve Şekil 5.10'da gösterilmiştir. Buna göre Sistem 5'in ikinci mertebe etkileri bakımından en olumlu sonuçları verdiği görülmektedir. Sistem 3 her ne kadar Sistem 5 ile benzer kat ötelemeleri yapsa da bu öteleme değerlerini Sistem 5'e göre görece daha düşük yatay kuvvetler altında yaptığı için ikinci mertebe indeksi olarak Sistem 5'e göre daha olumsuz değerlere sahip olduğu sonucu çıkarılabilir.

Şekil 5.9 : X doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe etkileri.

Şekil 5.9'u incelediğimizde Sistem 1 için ikinci mertebe indeksi değerinin 0,03 mertebesinde olduğu görülmekle beraber ek perdelerle rijitleştirilen diğer sistemlerde bu değerin 0,020-0,025 aralığında olduğu görülmektedir. Buna göre ikinci mertebe indeksinde %33-%17 mertebelerinde iyileşme olduğu gözlenmiştir.

Şekil 5.10 : Y doğrultusundaki deprem için taşıyıcı sistemlerdeki ikinci mertebe etkileri.

Şekil 5.10'u incelediğimizde Sistem 1 için ikinci mertebe indeksi değerinin 0,036 mertebesinde olduğu görülmekle beraber ek perdelerle rijitleştirilen diğer sistemlerde

bu değerin 0,025-0,030 aralığında olduğu görülmektedir. Buna göre ikinci mertebe indeksinde %31-%17 mertebelerinde iyileşme olduğu gözlenmiştir.

5.7 Sistemlerin A1 Burulma düzensizliği Bakımından Karşılaştırılması

Her sistem için yapılan burulma düzensizliği kontrollerinden çıkan burulma düzensizliği katsayısı değerleri her iki deprem doğrultusu için Şekil 5.11 ve Şekil 5.12'de gösterilmiştir.

Şekil 5.11 : X doğrultusundaki deprem için taşıyıcı sistemlerdeki A1 burulma düzensizliği.

Şekil 5.11'i incelediğimizde X doğrultusundaki depremde burulma düzensizliği katsayısı Sistem 1 ve 5 için 1.3 mertebelerindedir, yani DBHBHY şartlarına göre A1 burulma düzensizliğine sahiptir. Diğer sistemler için ise burulma düzensizliği kat sayısı 1.10-1.15 mertebelerindedir. Bu değerler DBHBHY A1 burulma düzensizliği şartı olan 1.2'nin altındadır.

Şekil 5.12 : Y doğrultusundaki deprem için taşıyıcı sistemlerdeki A1 burulma düzensizliği.

Şekil 5.12'yi incelediğimizde Y doğrultusundaki depremde burulma düzensizliği katsayısı Sistem 1 ve 5 için 1.25-1,40 mertebelerindedir, yani DBHBHY şartlarına göre A1 burulma düzensizliğine sahiptir. Diğer sistemler için ise burulma düzensizliği kat sayısı 1.15-1.20 mertebelerindedir. Bu değerler DBHBHY A1 burulma düzensizliği şartı olan 1.2'nin altındadır.

Genel olarak Şekil 5.11ve Şekil 5.12incelendiğinde, sistemdeki perde geometrisinin A1 burulma düzensizliğine etkisi yapı ağırlığı ve perde alanına oranla daha fazla olduğu görülmektedir. Sistem 1'in genel olarak diğer sistemlere oranla daha kötü burulma değerlerine sahip olduğu görülmekle beraber Sistem 5 en fazla perde alanına sahip olmasına rağmen A1 burulma düzensizliği katsayısı en büyük sistem olmuştur. Sistem 2,3 ve 4'ün A1 performansının köşelerde teşkil edilen L perdeler yüzünden diğer iki sistemden daha elverişli olduğu açıktır. Sistem 5'te planda ağırlık merkezine yakın teşkil edilmiş perdelerin A1 burulma düzensizliği bakımından istenilen verimde olmadığı gözlemlenmiştir. Burada köşelerde teşkil edilecek L perdelerin yapı burulmasını önlemede etkin rol oynadıkları görülmektedir.

5.8 Sistemlerin Donatı ve Beton Metrajlarının Karşılaştırılması

Her sistemde 1. kat kolon, kiriş ve perde kesit hesapları göz önüne alınarak hesaplanan donatı metrajları yanı sıra, bütün sistemlerin 1. kat toplam beton metrajları Şekil 5.13 ve Şekil 5.14'te gösterilmiştir.

Şekil 5.13 : Sistemler için beton metrajları.

Şekil 5.14 : Sistemler için çelik metrajları.

Şekil 5.13 ve Şekil 5.14 incelendiğinde perde teşkili daha az olan Sistem 1 en az donatı ve beton metrajına sahip olan sistem olarak gözlemlenmektedir. Toplam düşey

taşıyıcı alanı en fazla olan Sistem 5 ise beton metrajı en fazla sistem olan sistem olduğu açıktır. Sistem 4'ün ise en fazla donatı metrajına sahip olan sistem olduğu görülmektedir.

5.9 Sistemlerdeki Merdiven ve Asansör Perdelerinin Birbirleriyle Karşılaştırılması

Bu bölümde bütün sistemlerde ortak olarak teşkil edilmiş olan asansör ve merdiven perdelerindeki etkilerin yeni perdeler eklenmesiyle nasıl değişiklikler gösterdiği incelenmiştir.

5.9.1 Sistemlerdeki merdiven perdelerinin karşılaştırılması

5

Çizelge 5.4'te gösterilen P-M-M değerlerinin hepsi Y yönlü depremde oluşturulan kombinasyonlardan gelmiştir. Bu durum merdiven perdesinin rijitliğinin Y yönünde çok büyük olduğunu dikkate alırsak beklenen bir durumdur. Y yönlü depremde merdiven perdesinde rijitliği oranında büyük atalet kuvvetleri oluşturmuş olup kapasite kullanım oranı en yüksek kombinasyonlar Y yönlü depremin içinde bulunduğu kombinasyonlar olmuştur. Çizelge 5.4'ü incelediğimizde dizayn kuvvetlerinde Sistem 1'den Sistem 5'e azalan bir bir şekilde Mx momenti ve P normal kuvvetinin değişimi gözlemlenmektedir.

Sistem No	P(kN)	Mx(kNm)	My(kNm)
1	6381	-21164	-3
2	6274	-17946	-8
3	5527	-17733	9
4	4910	-17256	-1

3527

-16932

-1

Çizelge 5.4 : Sistemlerdeki merdiven perdelerinin tasarımda kullanılan P-M-M değerleri.

Şekil 5.15'te ise merdiven perdesi tasarımı için, oluşturulan kombinasyonlardan gelen en büyük kesme kuvveti değerleri gösterilmiştir. Burada gözlemlenen ise Sistem 1 ve Sistem 5' in en yüksek kesme kuvveti değerlerine sahip olmalarıdır. Sistem 1 için bu beklenen bir durum olsa da Sistem 5'in en fazla perde teşkil edilmiş sistem olduğu düşünüldüğünde bu durumun kütle merkezine yakın teşkil edilen perdelerin kütle merkezine uzak olan perdelerden daha farklı davranış gösterdiğine işaret eder. Sistem 2, 3 ve 4'te merdiven perdesine gelen kesme kuvvetleri belirgin

bir şekilde düşmüşken Sistem 5'te neredeyse fark yok gibidir. Yani toplam düşey taşıyıcı en fazla olan Sistem 5 diğer teşkil edilen sistemlerin aksine teşkil edilmiş büyük merdiven perdesi hala görece büyük kesme kuvvetlerinin etkisindedir.

Şekil 5.15 : Sistemlerde merdiven perdesi için kombinasyonlardan gelen kesme kuvvetleri.

Şekil 5.16 : Sistemlerde merdiven perdesi için hesap edilen Ve tasarım kesme kuvvetleri.

Şekil 5.16'da ise süneklik düzeyi yüksek tasarım şartı gereği bulunan Ve dizayn kesme kuvvetleri gösterilmiştir. Burada Sistem 2, 3 ve 4 için kesme kuvvetleri

Sistem 1'e göre küçülmekle beraber Sistem 5 için farklı bir durum söz konusudur. Sistem 1'e göre neredeyse azalmamış Vd kesme kuvveti minimum donatıyla donatılmış halde dizayn moment kuvveti ile kapasitesi arasındaki büyük fark yüzünden özellikle X doğrultusunda çok fazla büyüyerek Sistem 1'den daha büyük bir Ve kesme kuvveti değerine ulaşmıştır.

Merdiven perdesiyle ilgili olarak sistemlerde genel durumu incelediğimizde Sistem 2, 3 ve 4 için gelen çerçeve sonuçlarında ve hesaplanan kesme kuvvetlerinde azalma görülürken, Sistem 5 için ise durum bundan farklı olarak gelişmiştir. Özellikle tasarımda kullanılacak Vd ve Ve kesme kuvveti bakımından teşkil edilen ek perdelerin yük paylaşımının Sistem 5'in diğer ek perdeli sistemlerden farklı olduğu gözlemlenmiştir.

5.9.2 Sistemlerdeki asansör perdelerinin karşılaştırılması

Çizelge 5.5'te tasarımda kullanılan en büyük kapasite kullanım oranına sahip P-M-M değerleridir.

Sistem No	P(kN)	Mx(kNm)	My(kNm)
1	478	-313	-3352
2	625	-94	-2846
3	763	-34	-3054
4	613	113	-3254
5	192	-3358	72

Çizelge 5.5 : Sistemlerdeki asansör perdelerinin tasarımında kullanılan P-M-M değerleri.

Şekil 5.17'te ise asansör perdesi tasarımı için, oluşturulan kombinasyonlardan gelen en büyük kesme kuvveti değerleri gösterilmiştir. Burada gözlemlenen durum en az düşey taşıyıcı eleman alanına sahip olan Sistem 1'in en yüksek kesme kuvvetlerini almasıdır.

Şekil 5.17 : Sistemlerde asansör perdesi için kombinasyonlardan gelen kesme kuvvetleri.

Şekil 5.18 : Sistemlerde asansör perdesi için hesap edilen Ve tasarım kesme kuvvetleri.

Şekil 5.18'de ise süneklik düzeyi yüksek tasarım şartı gereği bulunan Ve dizayn kesme kuvvetleri gösterilmiştir. Burada Sistem 5 ve 3'ün X doğrultusunda en büyük Ve kesme kuvvetlerine sahip oldukları görülmektedir.

Genel olarak asansör ve merdiven perdelerinin durumu incelendiğinde en dikkat çekici gözlem; Vd kuvveti görece düşük olmasına rağmen süneklik düzeyi yüksek tasarım şartının perdeler için bazen öngörülemeyen kesme kuvveti büyütmelerine neden olduğudur. Çerçeve sonuçlarında deprem kuvvetleri nedeniyle oluşan atalet kuvvetleri düşse de süneklik düzeyi yüksek tasarım şartına göre pekleşmeli moment kapasitesi (M_p)_T/ Dizayn Momenti (M_d)_T oranı arttığı ölçüde Vd kesme kuvvetinin büyütülmesi gerektiğinden; ek olarak teşkil edilen perdelerin bazen süneklik düzeyi yüksek tasarım ilkesi gereği hesaplanan Ve tasarım kesme kuvveti üzerinde istenilen iyileşmeyi sağlayamadığı görülmektedir. Buradan da çıkaracağımız sonuç özellikle perde tasarımında etkin rol oynayan Ve tasarım kesme kuvvetinin hesabında sistemlerdeki perde alanından çok perde geometrisinin daha etkin olduğudur.

6. SONUÇLAR

Bu tez çalışmasında, birinci derece deprem bölgesinde konumlanmış, 10 katlı bir betonarme yapı için önerilen 5 farklı perde geometrisine sahip olan 5 farklı perdeli ve çerçeveli sistemin dolayısıyla 5 farklı yapının TS498, TS500 ve DBHBHY Türk Yönetmeliklerine göre çözümleme ve tasarımları yapılmıştır. Sistemdeki bütün taşıyıcı elemanların süneklik düzeyi yüksek olarak seçilmiş ve hesaplar bu kabule göre yapılmıştır. Taşıyıcı sistemlerin ön boyutlamasının ardından, çözümleme safhasında deprem hesabı için bütün sistemlerde eş değer deprem kuvveti yöntemi ve mod birleştirme metodu kullanılmıştır. Çözümlemenin bu aşamasında her iki metotla hesaplanan deprem kuvvetlerinden oluşan taban kesme kuvvetleri perde tabanlarındaki oluşan kesme kuvvetlerine oranlanarak seçilen yapı davranış katsayısının gereği olan büyütmeler yapılmıştır, ayrıca mod birleştirme yöntemi için bulunan taban kesme kuvveti eş değer deprem kuvveti metoduyla bulunan taban kesme kuvvetiyle karşılaştırılarak gerekli büyütmeler yapılmıştır. Son şekliyle her iki yöntem için hesap tamamlandıktan sonra hesapların devamında kullanılmak üzere eşdeğer deprem metodu seçilmiştir. Deprem yükleri ve düşey yüklerin tamamının ortaya çıkmasının ardından her sistemin düzensizlik kontrolleri yapılmıs olup A1 burulma düzensizliğine sahip olan sistemlerin \pm %5 dış merkezleri gerekli görülen mertebelerde arttırılarak çözümleme yenilenmiştir. Düzensizlik kontrollerinin ardından her sistem için etkin göreli kat ötelemesi ve ikinci mertebe etkisi kontrolleri yapılmıştır.

Bu hesaplarla sona eren çözümleme aşamasının ardından 1. kat kolon, kiriş ve perdelerinin süneklik düzeyi yüksek eleman kabulüne göre eğilme, normal ve kesme etkileri için betonarme kesit hesapları yapılmıştır. Kesit hesaplarında donatı ve kesit boyut hesapları yapılan 1. kat kiriş ve kolonlarındaki düğüm noktalarında güçlü kolon zayıf kiriş şartı tahkik edilmiştir. Kesit hesaplarında son olarak yine 1. kat tavan kolon-kiriş düğüm noktalarında kuşatılmış ve kuşatılmamış kolonlar için bütün düğüm noktalarında kesme kuvveti tahkikleri yapılarak sistemlerde gerekli düğüm noktası kesme dayanımının olduğu gösterilmiştir. Kesit hesaplarının ardından

175

hesaplanan 1. katta kesit hesapları yapılan kolon, kiriş ve perdelerin donatı metrajları ve 1. kat bütün beton metrajı çıkarılarak hesaplar sonlandırılmıştır.

Hesapların sonuçlandırılmasının ardından sistemler için ortaya çıkan girdi ve çıktılar karşılaştırılarak gözlemlerde bulunulmuştur.

Sistemler arasında en az düşey taşıyıcı alanına sahip olan Sistem 1 daha az rijit ve daha hafif bir sistem olmasından dolayı diğer sistemlere göre daha küçük deprem kuvvetleri altındadır. Sistemlerde oluşan eşdeğer deprem kuvveti taban kesme kuvvetleri ağırlık ve düşey taşıyıcı oranıyla bağlantılı olarak ortaya çıkmıştır. Burada oluşturulan perde geometrisi çeşitliliğinin belirgin bir etkisi gözlemlenememiştir. Eşdeğer deprem kuvveti metodu ile hesaplanan taban kesme kuvvetlerinin ağırlığa oranlarına bakıldığında sistemlerin yine düşey taşıyıcı alanları sırasına göre sıralandıkları görülmektedir.

Mod birleştirme yönteminde ise teşkil edilen perde geometrisinin taban kesme kuvvetlerine olan etkisinin eşdeğer deprem kuvvetine oranla daha belirgin olarak etki ettiği görülmüştür. Sistem 5 en ağır ve en fazla düşey taşıyıcı sistem alanına sahip sistem olmasına rağmen Y doğrultusunda mod birleştirme metoduyla bulunan taban kesme kuvveti en yüksek olan sistem değildir. Bu durum mod birleştirme metoduyla bulunan taban kesme kuvvetinin yapı ağırlığına oranlarına bakıldığında daha açık bir şekilde görülür. Sistem 5, X yönü için en büyük kuvvet/ağırlık oranına sahipken, Y yönünde Sistem 1 'in ardından en düşük değere sahiptir.

Eşdeğer deprem kuvvetine göre hesaplanan kat maksimum yer değiştirmelerinde ise en üst kat yer değiştirmelerine bakıldığında perde alanlarıyla doğru orantılı bir tablo önümüze çıkmıştır. Yine kat göreli yer değiştirmeleri açısından da durum benzerdir orta katlarda oluşan en büyük göreli yer değiştirmeleri perde alanlarıyla doğru orantılı ve sırayla oluştuğu görülmüştür.

A1 burulma düzensizliklerine bakıldığında ise perde geometrisinin, maksimum kat ötelemesi veya göreli kat yer değiştirme değerlerine göre daha etkin olduğu gözlemlenmiştir. Benzer yer değiştirme davranışı gösteren ve kat ötelenmeleri arasında ciddi farklar olmayan bu sistemlerin burulma davranışı olarak farklı karakterde oldukları görülmüştür. Köşe L perdesi teşkil edilmeyen Sistem 1 ve Sistem 5' in en yüksek periyotlu mod şekilleri, burulma mod şekilleridir, yani ötelemenin yanında Z ekseni etrafında burulur vaziyettedir. Sistem 1 ve Sistem 5, A1 burulma düzensizliği katsayıları 1,2 burulma sınır değerinden yüksektir, yani DBHBHY'ye göre A1 burulma düzensizliğine sahiptirler, Sistem 5'in daha fazla perde alanına sahip olmasına rağmen A1 burulma düzensizliği katsayısının Sistem 1'den daha büyük olduğu görülmüştür. Oldukça düzenli çerçevelere sahip, düşey taşıyıcı alanı oturum alanına oranına göre az olmayan bu sistemlerin burulma düzensizliğine sahip olmaları perde teşkilindeki geometri faktörünün yapının burulma davranışına önemli bir biçimde etkidiği sonucuna varılmıştır. Sistem 5'in tamamen simetrik olduğu Y yönlü deprem doğrultusunda dahi A1 burulma düzensizliğine sahip olduğu görülmüştür. Bunun ışığında taşıyıcı sistemi tamamen simetrik olan düzenli akslarda çerçevelere sahip sistemlerin dahi perde geometrisine bağlı olarak burulma tehlikesi altında olduğu görülmektedir. Sistemin ağırlık merkezinden uzakta teşkil edilen perdelerin daha büyük kesme kuvvetleri alması pahasına yapıya daha fazla burulma rijitliği kattıkları sonucuna, bu gözlemler ışığında varılabilir.

Sistemlerin hepsinde var olan merdiven ve asansör perdeleri tasarımlarında P-M-M iterasyonları açısından iyileştirici sonuçlar görülse de azalan deprem kesme kuvvetlerine rağmen süneklik düzeyi yüksek perde şartı için hesaplanan Ve kesme kuvvetlerinin her zaman düşmediği görülmüştür. Bu durum özellikle minimum donatı şartı ile donatılmış perdelerde tasarım momenti düşmesine rağmen, donatısı azaltılamayacağı için aynı eksenel normal kuvvet değerinde moment kapasitesinin aynı kalması nedeniyle, Ve kesme kuvvetinin teşkil edilen ekstra perdelere rağmen istendiği kadar azalmamasına hatta perde geometrisine göre bazen artmasına neden olduğu görülmüştür. Bu durum teşkil edilen ek perdelerin sistemde var olan perdelerin etkisinde güçlü yönlerindeki momentleriyle yine güçlü yönlerinde oluşan atalet kesme kuvvetlerinin değişimlerinin aynı orantıda olmamasından ileri gelmektedir. Söz gelimi perdeye gelen moment değeri kesme kuvvetine oranla daha büyük oranda azaldığında süneklik düzeyi yüksek olarak dizayn edilecek perdede dizayn kesme kuvveti Ve'nin artması durumu oluşmaktadır, hatta iterasyon diyagramında orijinden iterasyon yüzeyine çekilen doğrunun eğiminin değişmesi nedeniyle kapasitede artma olması da teorik olarak olasıdır. Bu durum Ve dizayn kuvveti için ekstra büyümeye neden olacaktır. Bu bulgular ışığında eklenen her perdenin yapı ağırlığını arttırdığı ve artan rijitlik sebebiyle periyodundaki düşme nedeniyle taban kesme kuvvetini de arttıracağı gerçeği de göz önüne alınırsa teşkil edilen perdelerin konum ve şekillerinin sistemin diğer taşıyıcı elemanlarının yanında birbirlerini de iyi veya kötü yönde etkileyebileceği çıkarımı yapılabilir.

Sistemler için limit analizi veya doğrusal olmayan analiz yapılmadığı için sismik performans parametresinin değerlendirilmediği unutulmamalıdır.

Tüm bu ifadeler doğrultusunda artan perde alanının yanı sıra perde konumlandırmasının da yapı davranışı ve tasarımında etkin rol oynadığı görülmüş, hatta seçilen deprem kuvveti hesap metoduna göre büyük miktarda olmasa da sonuçta çeşitlilikler yarattığı gözlenmiştir.

KAYNAKLAR

- Aydınoğlu, N. ve Celep, Z ve Özer, E. ve Sucuoğlu, H ; (2008). Deprem bölgelerinde yapılacak binalar hakkında yönetmelik açıklamalar ve örnekler el kitabı, *Bayındırlık ve İskân Bakanlığı*, Ankara
- Celep, Z. ve Kumbasar N. (2004). Deprem mühendsiliğine giriş, *Beta Dağıtım*, İstanbul.
- Doğangün, A. (2009). Betonarme yapıların hesap ve tasarımı. Birsen Yayınevi, İstanbul.
- Ersoy, U. ve Özcebe G. (2001). Betonarme temel ilkeler TS500-2000 ve Türk deprem yönetmeliğinegore hesap, *Evrim Yayınevi*, İstanbul.
- **Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik** (DBYBHY)(2007).*Bayındırlık ve İskan Bakanlığı,* Ankara.
- **TS 498**(1997). Yapı elemanlarının boyutlandırılmasında alınacak yüklerin hesap değerleri, *Türk Standartları Enstitüsü*, Ankara.
- Betonarme Tablo ve Abaklar (2011). İTÜ İnşaat Fakültesi Betonarme Yapılar Çalışma Grubu, İstanbul.
- Bal, İ. E. ve Özdemir, Z. (2006). Çevre çerçeve kirişi süreksizliğinin yapı deprem davranışı üzerindeki etkileri, *İMO İstanbul Bülten, Sayı:86, 2006*.
- **TS 500**(2000). Betonarme yapıların tasarım ve yapım kuralları, *Türk Standartları Enstitüsü,* Ankara.
- Gülay, G.(2010). Betonarme binaların deprem güvenliğini etkileyen parametreler, *TMMOB İnşaat Mühendisleri Odası*, İstanbul.
- Altan, M. ve Aka, I. (1992). Betonarme taşıyıcı sistemler, *İ.T.Ü*. İstanbul.
- Gülay, G.(2010). Betonarme binaların deprem güvenliğini etkileyen parametreler, *TMMOB İnşaat Mühendisleri Odası*, İstanbul.
- SAP2000, (2009). User's Guide, Computers and Structures, Inc., California, USA.
- Edward, L.Wilson (2002). Three-Dimensional static and dynamic analysis of structures, *Computers and Structures, Inc.*, California, USA.
ÖZGEÇMİŞ

Ad Soyad: Sinan ERKEN

Doğum Yeri ve Tarihi: 24.02.1984 Ankara

E-Posta: erken_sinan@hotmail.com

Lisans: Yıldız Teknik Üniversitesi