

Department of Control and Automation Engineering

Control and Automation Engineering Programme

ISTANBUL TECHNICAL UNIVERSITY ���� GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

Ph.D. THESIS

JUNE 2012

ENHANCED HYBRID BIG BANG-BIG CRUNCH OPTIMIZATION
ALGORITHMS AND APPLICATIONS ON SINGLE AND MULTI-OBJECTIVE

AIRPORT GATE ASSIGNMENT PROBLEM

Hakkı Murat GENÇ

JUNE 2012

ISTANBUL TECHNICAL UNIVERSITY ���� GRADUATE SCHOOL OF SCIENCE
ENGINEERING AND TECHNOLOGY

ENHANCED HYBRID BIG BANG-BIG CRUNCH OPTIMIZATION
ALGORITHMS AND APPLICATIONS ON SINGLE AND MULTI-OBJECTIVE

AIRPORT GATE ASSIGNMENT PROBLEM

Ph.D. THESIS

Hakkı Murat GENÇ
504062101

Department of Control and Automation Engineering

Control and Automation Engineering Programme

Thesis Advisor: Prof. Dr. Đbrahim EKSĐN
 Assist. Prof. Dr. Osman Kaan Erol

HAZĐRAN 2012

ĐSTANBUL TEKNĐK ÜNĐVERSĐTESĐ ���� FEN BĐLĐMLERĐ ENSTĐTÜSÜ

GELĐŞTĐRĐLMĐŞ MELEZ BÜYÜK PATLAMA-BÜYÜK ÇÖKÜŞ
OPTĐMĐZASYON ALGORĐTMALARI VE TEK VE ÇOK AMAÇLI

HAVAALANI KAPI ATAMA PROBLEMĐ UYGULAMALARI

DOKTORA TEZĐ

Hakkı Murat GENÇ
504062101

Kontrol ve Otomasyon Mühendisliği Anabilim Dalı

Kontrol ve Otomasyon Mühendisliği Programı

Tez Danışmanı: Prof. Dr. Đbrahim EKSĐN
 Yrd. Doç. Dr. Osman Kaan Erol

v

Thesis Advisor : Prof. Dr. Đbrahim EKSĐN
 Đstanbul Technical University

Co-advisor : Assist. Prof. Dr. Osman Kaan EROL
 Đstanbul Technical University

Jury Members : Prof. Dr. Müjde GÜZELKAYA
Đstanbul Technical University

Assist. Prof. Dr. Taner ARSAN
Kadir Has University

Assist. Prof. Dr. Ahmet ONAT
Sabancı University

 Prof. Dr. Serhat Şeker
 Đstanbul Technical University

 Prof. Dr. A. Coşkun Sönmez
 Yıldız Teknical University

Hakkı Murat Genç, a Ph.D. student of ITU Graduate School of Science
Engineering and Technology, student ID 504062101, successfully defended the
thesis entitled “ENHANCED HYBRID BIG BANG-BIG CRUNCH
OPTIMIZATION ALGORITHMS AND APPLICATIONS ON SINGLE AND
MULTI-OBJECTIVE AIRPORT GATE ASSIGNMENT PROBLEM”, which
he prepared after fulfilling the requirements specified in the associated legislations,
before the jury whose signatures are below.

Date of Submission : 17 February 2012
Date of Defense : 07 June 2012

vi

vii

To my spouse and child,

viii

ix

FOREWORD

I would like to sincerely acknowledge my advisor Prof.Dr.Đbrahim Eksin for his
friendly and wise inspiration. He was the local search effect in this study. My co-
advisor, Assist.Prof.Dr.Osman Kaan Erol was equally friendly and contributive with
his brilliant ideas. He was certainly the global search effect in the thesis scope.
I also wish to thank Prof.Dr.Müjde Güzelkaya, Assist.Prof.Dr.Taner Arsan and
Assist.Prof.Dr.Ahmet Onat for the inspiring discussions.
Lastly, I have a heart full of thanks for my beloved wife, Nevra, for tolerating the
times I stole from us for my education and being the biggest motivation in my life.

June 2012

Hakkı Murat Genç

x

xi

TABLE OF CONTENTS

Page

FOREWORD .. ix

TABLE OF CONTENTS .. xi
ABBREVIATIONS ... xv

LIST OF TABLES ... xvii
LIST OF FIGURES ...xix

SUMMARY ..xxi
ÖZET... xxiii
1. INTRODUCTION ... 27

1.1 What is an Evolutionary Algorithm? ..27

1.2 A Brief History on Evoltionary Algorithms ...28

1.3 Airport Gate Assignment Problem ...29

1.4 Purpose of Thesis ..29

1.5 A Brief Summary of Chapters ...29

2. BIG BANG-BIG CRUNCH ALGORITHM WITHIN EVOLUTIONARY
COMPUTATION METHODS ... 31

2.1 Components of the Evolutionary Algorithms ...31

2.1.1 Representation .. 31

2.1.2 Objective function .. 31

2.1.3 Population .. 32

2.1.4 Parent selection .. 32

2.1.5 Variation operators ... 32

2.1.6 Survivor selection ... 33

2.2 Algorithms Reported in the Literature..33

2.2.1 Genetic algorithms.. 33

2.2.1.1 Representation in GA ...33

2.2.1.2 Population in GA ...34

2.2.1.3 Parent selection in GA ...34

2.2.1.4 Variation operators in GA ..35

2.2.1.5 Recombination operators ...35

2.2.1.6 Mutation operators ...38

2.2.1.7 Survivor selection in GA ..39

2.2.2 Evolution strategies .. 40

2.2.2.1 Representation in ES ..40

2.2.2.2 Population in ES ..41

2.2.2.3 Parent selection in ES ..41

2.2.2.4 Variation operators in ES ...41

2.2.2.5 Recombination operators ...41

2.2.2.6 Survivor selection in ES ...46

2.2.2.7 Self adaptation in ES ..46

2.2.3 Big Bang – Big Crunch optimization algorithm 47

xii

2.2.4 Relations and differences with the previously reported literature 49

2.2.4.1 Similar genetic algorithm approaches .. 50

2.2.4.2 Similar evolutionary strategies approaches 50

3. BIG BANG – BIG CRUNCH OPTIMIZATION WITH LOCAL
DIRECTIONAL MOVES .. 53

3.1 Local Search in Evolutionary Computation ... 53

3.2 Inspection of the Effect of Nelder-Mead Crunching 55

3.2.1 Big bang-big crunch algorithm with Nelder-Mead crunching 55

3.2.2 Simulation results for Nelder Mead crunching .. 58

3.3 Inspection of the Effect of Improvement Vectors... 61

3.3.1 Big Bang-Big Crunch algorithm with improvement vectors.................... 61

3.3.1.1 Vector formation with single step regression 62

3.3.1.2 Vector formation with double step regression 64

3.3.1.3 Dichotomous search on local direction vector 65

3.3.2 Simulation results for improvement vector generation 66

3.4 BB – BC with Local Directional Moves (BBBC – LS) 75

3.4.1 Algorithm formulation ... 75

3.4.2 Simulation results for BBBC-LS .. 77

3.5 Conclusion .. 82

4. SINGLE LEAP-BIG BANG BIG CRUNCH OPTIMIZATION APPROACH
TO SINGLE OBJECTIVE AIRPORT GATE ASSIGNMENT PROBLEM 85

4.1 Introduction .. 85

4.2 Problem Formulation .. 87

4.3 Heuristic and Optimization Based Solution Approaches 89

4.3.1 Heuristic approaches .. 90

4.3.1.1 A previously reported heuristic: Greedy algorithm for minimizing the
number of flights assigned to the apron .. 90

4.3.1.2 A new heuristic approach: Ground time duration maximization
algorithm (GTMA) .. 91

4.3.2 Single Leap-Big Bang Big Crunch algorithm (SL- BBBC) 92

4.4 Simulation Results .. 95

4.4.1 Simulation results with artificially generated dataset 95

4.4.2 Simulation results with actual field data ... 100

4.5 Application at Atatürk Airport of Đstanbul ... 102

4.6 Conclusion .. 107

5. INTRODUCTION TO MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHMS .. 109

5.1 Multi-Objective Problem (MOP) Definitions and Basic Concepts 109

5.2 Classification of MOP Solution Techniques .. 110

5.3 Basic Concepts on Multi-Objective Evolutionary Algorithms (MOEAs) 111

5.4 Pareto Based MOEA Concepts .. 112

5.4.1 Dominance-based ranking or fitness assignment 113

5.4.2 Diversity preservation .. 114

5.5 MOEA Population Structure ... 117

5.6 Baseline Algorithms .. 118

5.6.1 Nondominated sorting genetic algorithm-II .. 118

5.6.2 Pareto archived evolution strategy .. 120

5.6.3 Strength pareto evolutionary algorithm-II ... 122

5.7 MOEA Testing .. 124

5.7.1 Basic test suites for multi-objective evolutionary algorithms 125

xiii

5.8 Metrics of Performance ... 126

6. ENHANCED ORDER BASED SINGLE LEAP-BIG BANG BIG CRUNCH
OPTIMIZATION APPROACH TO MULTI-OBJECTIVE AIRPORT GATE
ASSIGNMENT PROBLEM ... 131

6.1 Introduction ... 131

6.2 Problem Formulation ... 132

6.3 Multi-Objective Gate Assignment Problem Solution Techniques 134

6.3.1 Enhanced order based SL-BBBC algorithm (eSL-BBBC): 137

6.3.1.1 Creating the initial population .. 138

6.3.1.2 Neighbor generation .. 139

6.3.1.3 Assignment of planes ... 139

6.3.1.4 Acceptance of the neighbors .. 140

6.3.1.5 Archive postprocessing .. 142

6.3.1.6 Stopping criterion .. 143

6.4 Simulation Results ... 144

6.4.1 Problem instance generation ... 144

6.4.1.1 Flight generation .. 144

6.4.1.2 Airport topology and walking distances ... 144

6.4.1.3 Passenger flow model .. 146

6.4.1.4 Preference model ... 148

6.4.2 Experiments on artificial data ... 148

6.4.3 Experiments on actual field data ... 151

6.5 Conclusions ... 152

7. CONCLUSIONS AND RECOMMENDATIONS .. 155

REFERENCES ... 157

CURRICULUM VITAE ... 167

xiv

xv

ABBREVIATIONS

BB-BC : Big Bang-Big Crunch
BBBC-LS : Big Bang-Big Crunch Algorithm with Local Directional Moves
CEC : Congress on Evolutionary Computation
CMA-ES : Covariance Matrix Adaptation Evolution Strategy
CPU : Central Processing Unit
DM : Decision Making / Maker
DTLZ : Deb-Thiele-Laumanns-Zitzler
EA : Evolutionary Algorithms
ELECTRE : Elimination and Choice Translating Algorithm
ES : Evolutionary Strategies
eSL-BBBC : Enhanced Order Based Single Leap-Big Bang Big Crunch Algorithm
FE : Function Evaluation
FIFO : First In First Out
FPS : Fitness Proportional Selection
GA : Genetic Algorithm
GAP : Gate Assignment Problem
GTMA : Ground Time Duration Maximization Algorithm
HR : Hyper-Volume Ratio
IEEE : The Institute of Electrical and Electronics Engineers
IV : Improvement Vector
LIP : Local Improvement Process
LLS : Local Improvement Process Oriented Local Search
LS : Local Search
MA : Memetic Algorithm
MAC : Multi-parent Arithmetic Crossover
MO : Multi-Objective
MOGA : Multi-Objective Genetic Algorithm
MOGAP : Multi-Objective Gate Assignment Problem
MOEA : Multi-Objective Evolutionary Algorithm
MOP : Multi-Objective Optimization Problem
NPGA : Niched-Pareto Genetic Algorithm
NSGA : Nondominated Sorting Genetic Algorithm
NM : Nelder-Mead
NP-hard : Non-Deterministic Polynomial-Time Hard
ONVG : Overall Non-Dominated Vector Generation
PAES : Pareto Archived Evolution Strategy
P : Pareto Optimal Set
PF : Pareto Front
PMX : Partially Mapped Crossover
PROMETHEE: Preference Ranking Organization Method for Enrichment

Evaluations
PSA : Pareto Simulated Annealing

xvi

PSO : Particle Swarm Optimization
RMS : Resource Management System
RS : Ranking Selection
RWS : Roulette Wheel Selection
SOGAP : Single Objective Gate Assignment Problem
Spc : Spacing
SPEA : Strength Pareto Evolutionary Algorithm
SUS : Stochastic Universal Sampling
SL-BBBC : Single Leap Big Bang-Big Crunch
XLS : Crossover-Based Local Search
ZDT : Zitzler-Deb-Thiele

xvii

LIST OF TABLES

Page

Table 1.1 : Evolutionary computing metaphor ..27

Table 2.1 : Average costs for multimodal test functions ...52

Table 3.1 : Ackley test function results ...59

Table 3.2 : Rastrigin test function results ..60

Table 3.3 : Rosenbrock test function results ...60

Table 3.4 : Ackley test function results for the second termination criterion61

Table 3.5 : Ackley test function ..68

Table 3.6 : Ellipsoid test function ...69

Table 3.7 : Rastrigin test function ...70

Table 3.8 : Rosenbrock test function ..71

Table 3.9 : Sphere test function ..72

Table 3.10: Step test function ...73

Table 3.11: Average costs for all functions ...74

Table 3.12: Definition of algorithm parameters ..77

Table 3.13: Summary of the benchmark functions ..79

Table 3.14: Average performance scores ..80

Table 3.15: Order of algorithms (1: Best, 2: Second, 3: Third, 4: Worst)81

Table 3.16: Summary of algorithm comparison ..81

Table 3.17: Complexity Analysis ...82

Table 4.1 : Mean cost values for synthetic dataset ..98

Table 4.2 : Mean cost values for 31 days .. 101

Table 4.3 : Mean cost values for the data collected from resource management
system of Atatürk Airport for month February 2010............................ 106

Table 5.1 : Pseudocode for NSGA-II .. 120

Table 5.2 : Pseudocode for (1+1) PAES ... 121

Table 5.3 : Pseudocode for archiving test in PAES ... 122

Table 5.4 : Pseudocode for archiving test in SPEA-II ... 124

Table 6.1 : Archive postprocessing algorithm ... 142

Table 6.2 : MOGAP solution .. 143

Table 6.3 : Parameters of the artificial data sets .. 149

Table 6.4 : Performance metrics for moderate demand data set............................. 150

Table 6.5 : Performance metrics for high demand data set 150

Table 6.6 : Performance metric for actual field data. .. 151

xviii

xix

LIST OF FIGURES

Page

Figure 2.1 : One point crossover for binary representations.36

Figure 2.2 : Two point crossover for binary representations.36

Figure 2.3 : N-point crossover (N = 3) for binary representations.36

Figure 2.4 : Uniform crossover for binary representations.36

Figure 2.5 : Simple arithmetic recombination for real valued vectors.37

Figure 2.6 : Single arithmetic recombination for real valued vectors.37

Figure 2.7 : Whole arithmetic recombination for real valued vectors.38

Figure 2.8 : Bitwise mutation for binary representations...38

Figure 2.9 : Swap mutation for permutation representations.39

Figure 2.10 : Insert mutation for permutation representations.39

Figure 2.11 : Scramble mutation for permutation representations.39

Figure 2.12 : Inversion mutation for permutation representations.39

Figure 2.13 : Discrete recombination in evolutionary strategies.41

Figure 2.14 : Intermediate recombination in evolutionary strategies42

Figure 2.15 : Representation of uncorrelated mutation with single step size44

Figure 2.16 : Representation of uncorrelated mutation with 2-step sizes45

Figure 2.17 : Representation of correlated mutation with 2-step sizes.45

Figure 2.18 : (µ/µ, λ) recombination in general scheme. ...51
Figure 3.1 : Reflection to point Xr. ...56

Figure 3.2 : Extension to point Xe from Xr. ..56

Figure 3.3 : Contraction points Xc. (a) Outside contraction, (b) Inside contraction. .57

Figure 3.4 : Shrinking towards Xl. Point Xs and point Xh comes closer to Xl.............57

Figure 3.5 : Convergence graphs for BB–BC algorithms using best point as the
centre of mass (solid line) and the NM method (dashed line).58

Figure 3.6 : Generic algorithm flowchart. ...63

Figure 3.7 : Local search phase for single step regression in BB-BC algorithm.64

Figure 3.8 : Illustration of direction vector formation for local improvement with
single step regression in BB-BC Algorithm…………………………..64

Figure 3.9 : Illustration of direction vector formation for local improvement with
double step regression in BB-BC Algorithm.65

Figure 3.10 : Flowchart for the dichotomous local search algorithm………………66
Figure 3.11 :The hybrid BB-BC Algorithm versus the original BB-BC Algorithm. 67

Figure 3.12 : Improvement of the Ackley cost value ..68

Figure 3.13 : Improvement of the Ellipsoid cost value ..69

Figure 3.14 : Improvement of the Rastrigin cost value ...70

Figure 3.15 : Improvement of the Rosenbrock cost value71

Figure 3.16 : Improvement of the Sphere cost value ...72

Figure 3.17 : Improvement of the Rastrigin cost value ...73

Figure 3.18 : The improvements of the cost values for all functions for large search
space through evaluations. ..74

xx

Figure 3.19 : Benchmark test functions from CEC’05 competition. 78

Figure 4.1 : A sample gate allocation. .. 89

Figure 4.2 : A sample gate allocation – condensed view. 89

Figure 4.3 : Failure of greedy method. ... 91

Figure 4.4 : Illustration of failure of GTMA... 91

Figure 4.5 : Algorithm flow. .. 93

Figure 4.6 : Reordering of the flights: Type-a reordering. 94

Figure 4.7 : Reordering of the flights: Type-b reordering. 95

Figure 4.8 : Reordering of the flights: Type-c reordering. 95

Figure 4.9 : Graphical user interface for problem instance generation. 96

Figure 4.10 : Comparison of the three algorithms for moderate data set. 99

Figure 4.11 : Comparison of the three algorithms for high gate demand distributed
uniformly data set .. 99

Figure 4.12 : Comparison of the three algorithms for high gate demand with demand
peaks data set ... 100

Figure 4.13 : Comparison of GTMA and SL-BBBC in a real world data set. 102

Figure 4.14 : The architecture for the resource management system. 103

Figure 4.15 : An example gate allocation screen when flight information window is
open. .. 103

Figure 4.16 : An example gate allocation screen when manual edit window is open.
 .. 104

Figure 4.17 : Operator display for gate allocating .. 104

Figure 4.18 : Comparison of the algorithms running on Atatürk Airport 107
Figure 5.1 : Mapping between genotype and phenotype space. 110

Figure 5.2 : Dominance rank.. 113

Figure 5.3 : Dominance count. ... 114

Figure 5.4 : An illustration of fitness sharing. .. 115

Figure 5.5 : Another implementation of fitness sharing: Niching by gridding 116

Figure 5.6 : A relaxed dominance form .. 117

Figure 5.7 : Crowding distances.. ... 119

Figure 5.8 : Adaptive Gridding algorithm. ... 121

Figure 5.9 : Strength assignments of SPEA and SPEA-II 123

Figure 5.10 : Illustration of the archive truncation method used in SPEA2. 124

Figure 5.11 : 2D illustration of two fictitious pareto front representations to be
compared. .. 128

Figure 6.1 : Main loop of the MOGAP algorithm... 138

Figure 6.2 : Interchanging the order of N = 2 random flight pairs with random
distances away from random centers in the list. 139

Figure 6.3 : Algorithm progress ... 141

Figure 6.4 : The effect of archive postprocessing: (a) Pareto front shift, (b) Repairing
gaps, (c) Homogenizing the distribution.. ... 142

Figure 6.5 : The layout of a representative airport. ... 145

Figure 6.6 : The complete picture for the 30 independent pareto front representations
 .. 152

xxi

ENHANCED HYBRID BIG BANG-BIG CRUNCH OPTIMIZATION
ALGORITHMS AND APPLICATIONS ON SINGLE AND MULTI-

OBJECTIVE AIRPORT GATE ASSIGNMENT PROBLEM

SUMMARY

Big Bang – Big Crunch (BB – BC) algorithm is a global optimization method relying
on heuristics from the nature, particularly, the theory of Big Bang and Big Crunch.
The algorithm generates new candidate solutions randomly in Big Bang phase and
those solution candidates are latter used to obtain a single representative point
through a contraction approach in the Big Crunch phase. One of the main
contributions of this work is the local search hybridized version of the BB-BC,
namely Big Bang-Big Crunch Algorithm with Local Directional Moves (BBBC-LS).
The local search algorithm generates a direction vector by using the current
representative point and the previous representative points of the generations and
checks for improvement in that direction. If an improvement is achieved, the new
centre is forced to switch to that point. That is to say, the centre point of the
explosion of next big bang phase is changed. The step size of the local search is set
and adjusted according to the distance between these consecutive representative
points. The exploitation or intensification capability of the algorithm is enhanced
with local search; and thus, the proposed hybridization operation produces much
more accurate results than the original BB – BC algorithm. In fact, it also provides
promising results when compared to the state-of-the-art optimization methods.
Moreover, the newly proposed algorithm is shown to be much more effective in
terms of complexity.

Airline industry has been using operation research techniques for more than fifty
years. In the last three decades, rapid developments in the computational powers of
the processors paved the way for utilizing highly complex planning and scheduling
strategies. Both the airlines and airport operators make use of problem tailored
algorithms to maximize their revenues. One of the most important limitations in the
resources of an airport is in the allocation of gates to the planes; and consequently,
gate assignment plays a major role in the revenue obtained from ground operations.

Gate Assignment Problem (GAP) is well studied in the literature and consequently,
there are many proposed problem formulations and solution techniques. Though the
basic constraints and objectives are easily perceived, the problem has many
interactions with other resources such as the number of gates, airport topology, flight
schedules, distances to baggage claim areas, etc. Therefore, GAPs are even more
complicated than most other traditional scheduling problems. Moreover, as the air
traffic becomes more demanding, the grandeur of the solution space gets even larger;
in return, this makes traditional binary integer techniques practically inapplicable. In
those cases, nature inspired computing techniques became a good alternative for
GAPs.

xxii

One other main contribution of the study is the GAP solution techniques proposed
for both single and multi-objective gate assignment problems. The solution
approaches combine the benefits of heuristic approaches that provide a fast initiating
solution to the problem and later conduct stochastic searches in order to ameliorate
the previously obtained result via heuristic approaches. The solution techniques are
Single Leap-Big Bang Big Crunch (SL-BBBC) algorithm for single objective
problems and enhanced Order Based Single Leap-Big Bang Big Crunch (eSL-
BBBC) algorithm for multi-objective problems. The algorithms are experimented on
various artificial and actual field data to illustrate performance.

The main contributions of the study can be listed as follows:

a. Proposing Big Bang-Big Crunch with Local Directional Moves (BBBC-
LS) algorithm that possesses improvements over algorithmic capability of the
classical Big Bang-Big Crunch (BB-BC) optimization method. The
effectiveness of the hybridized algorithm has been illustrated on various test
beds.

b. Investigating Airport Gate Assignment Problem (AGAP) and proposing
practically applicable problem formulations.

c. Introducing Single Leap-Big Bang Big Crunch (SL-BBBC) algorithm for
the solution of single objective AGAP.

d. Proposing a systematic method for parameter-controlled quasi-realistic
airport data generation for quasi-real simulations.

e. Discussing previous work on multi-objective airport gate assignment
problem and proposing a state-of-the-art solution strategy named as enhanced
Order Based Single Leap-Big Bang Big Crunch (eSL-BBBC) method.

.

xxiii

GELĐŞTĐRĐLMĐŞ MELEZ BÜYÜK PATLAMA-BÜYÜK ÇÖKÜŞ
OPTĐMĐZASYON ALGORĐTMALARI VE TEK VE ÇOK AMAÇLI

HAVAALANI KAPI ATAMA PROBLEMĐ UYGULAMALARI

ÖZET

Büyük Patlama-Büyük Çöküş eniyileme algoritması, evrenin oluşumunu açıklayan
en önemli teorilerden Büyük Patlama ve Büyük Çöküş teorilerine dayanan bir global
eniyileme yöntemidir. Büyük Patlama-Büyük Çöküş algoritması ile çözüm
adaylarından oluşan bir toplulukta, nesiller (iterasyonlar) boyunca değişime uğrayan
bireylerin problemin çözümüne yakınsaması sağlanır. Bireylerin değişime uğraması,
genetik algoritmalardaki mutasyon operatörünün işlevine yakın bir şekilde büyük
patlama ve büyük çöküş fazları ile sağlanır. Büyük patlama, belli bir nokta etrafında
standart sapması kontrol edilen bir normal dağılım vektörünün parametre uzayında
bireylere eklenmesi işlemidir. Büyük çöküş operatörü ise arama uzayına dağılmış
bireylerin ortak olarak belirlediği bir çökme noktasının ilgili iterasyonun sonucunda
elde edilen en iyi nokta, yani ilgili iterasyonunun çözümü olarak hesaplanması
işlemidir. En basit haliyle büyük çöküş operatörü arama uzayında en iyi amaç değere
sahip bireyin yeri olarak belirlenebilir. Bununla birlikte en verimli yöntem her
bireyin çökme noktasına katkıda bulunduğu ağırlıklı ortalama yöntemidir. Buna gore
her birey amaç değerinin büyüklüğüne / küçüklüğüne göre ağırlıklandırılarak
ortalama alınır ve ilgili iterasyonun çözümü olarak sunulur.

Bu çalışmanın en önemli katkılarından birisi de Yerel Yönsel Đlerlemeli Büyük
Patlama Büyük Çöküş isimli yöntemin geliştirilmiş olmasıdır. Yerel arama
yöntemlerinin evrimsel aramalar içinde kullanılması ve melez yapılar oluşturularak
her iki yaklaşımın güçlü yönlerinin uygun şekilde değişmeli olarak kullanılması
literatürde sıkça rastlanan bir durumdur. Yerel Yönsel Đlerlemeli Büyük Patlama
Büyük Çöküş eniyileme algoritmasında yerel arama algoritması güncel nesillerinin
çözümü (jenerasyon merkezi, bir sonraki patlama merkezi) ile önceki nesillerin
çözümü arasında oluşturulan yönde özelleşmiş arama yapmaktan sorumludur. Bu
arama için, basit yerel arama yöntemlerinden bölerek arama ya da ikircilli arama
kullanılır. Üretilecek arama vektörü ya da arama alanı sadece bir önceki ya da bir ve
iki önceki nesil çözümleri kullanılarak belirlenir. Yerel arama adımları ile bir
iyileşme sağlanırsa nesilin çözüm değeri; başka bir ifadeyle bir sonraki Büyük
Patlama’nın merkezi bu noktaya taşınır. Yerel arama yöntemi, iterasyonlar arası elde
edilen çözümlerin birbirlerine uzaklığına dayalı olarak arama alanının büyüklüğünü
değiştireceğinden, kendi kendini uyarlayabilir yapıdadır. Böylece ilk iterasyonlarda
büyük bir alanda daha az yoğun bir arama icra edilirken; algoritmanın son
iterasyonlarının arasındaki yerel aramalar çözüm üzerinde ince ayar yapmaktadır.
Yerel arama işlevi, iterasyonlar arasına, Büyük Patlama-Büyük Çöküş algoritmasının
adımlarına müdahale etmeden eklenmiştir.

Yerel Yönsel Đlerlemeli Büyük Patlama-Büyük Çöküş yönteminin bir diğer özelliği
Büyük Çöküş operatörü olarak Nelder-Mead eniyileme yöntemini kullanabilmesidir.

xxiv

Literatürde sıklıkla kullanılmış olan bu yöntem, Büyük Çöküş operatörü olarak en
iyiyi seçme ve ağırlıklı ortalandırma yöntemlerine bir alternatif olmaktadır. Hangi
Büyük Çöküş operatörünün kullanılacağı algoritma koşumu esnasında önceden
belirlenen parametre ile kontrol edilerek değiştirilebilmektedir. Bu sayede, arama
başlangıcındaki topoloji bilgisinin az olduğu iterasyonlarda diğer Büyük Çöküş
operatörleri ile daha hızlı yakınsama sağlanıp, arama olgunlaştıktan sonra Nelder-
Mead çokgenleri ile çözüm doğruluğu arttırılabilmektedir.

Yerel Yönsel Đlerlemeli Büyük Patlama-Büyük Çöküş eniyileme algoritması ile elde
edilen sonuçların Büyük Patlama-Büyük Çöküş eniyileme algoritması ile elde edilen
sonuçlara göre oldukça iyileştiği; buna karşın algoritmanın harcadığı süre ve
karmaşıklığının ihmal edilebilir oranda arttığı benzetim sonuçları ile gösterilmiştir.
Dünya çapında yaygın kabul görmüş eniyileme yöntemleri (Genetik Algoritmalar,
Evrimsel Stratejiler, Parçacık Sürü Optimizasyonu) ile karşılaştırıldığında, önerilen
yöntemin doğruluk ve hız açısından üstün sonuçlar verebildiği; karmaşıklık
metriklerinde ise çok daha üstün olduğu gösterilmiştir.

Havaalanlarında ve havayolu işletmelerinde eniyileme yöntemlerinin birçok kullanım
alanı vardır. Son otuz yılda bilgisayar işlemcilerinin güçlerindeki hızlı artış, çok
karmaşık planlama ve çizelgeleme yöntemlerinin gerçekleştirilebilmesine olanak
sağlamıştır. Her havayolu şirketleri hem de havaalanı işletme şirketleri bu alanda
yatırımlar yaparak kazançlarını artırma yoluna gitmişlerdir. Havaalanlarındaki en
önemli kısıtlı kaynaklardan biri de uçakların yanaştığı kapılardır. Dolayısıyla
kapıların artan hava trafiğine en verimli şekilde hizmet etmesi gerekmektedir.

Havaalanı kapı atama problemi literatürde ve pratik uygulamalarda özellikle son on
yılda çokça çalışılmış ve birçok matematiksel problem tanımı ve çözüm tekniği
önerilmiştir. Temel kısıtlar ve amaç fonksiyonları kolayca anlaşılabilir olmasına
rağmen hava alanı kapı atama problemi, kapı sayısı, havaalanı topolojisi, uçuş
planları, havaalanı içindeki yürüme mesafeleri gibi dış etkenlere bağımlılığı
dolayısıyla karmaşık bir problemdir ve NP-zor olarak sınıflandırılır. Son yıllarda
hızla artan havaalanı trafiği, problemin bir tamsayı problemi olarak klasik
yöntemlerle çözülebilmesini zorlaştırmıştır. Bu nedenle evrimsel arama
yöntemlerinin kapı atama problemine uygulanması yeni ortaya çıkan ve pratikte
kullanım alanı bulan bir konudur.

Bu çalışmanın bir diğer ana katkısı, havaalanı kapı atama problemine yeni bir
matematiksel problem tanımı getirmek, bu tanım çerçevesindeki tek ve çok amaç
fonksiyonuna sahip problemleri çözebilmek için evrimsel hesaplamaya dayalı
yöntemler önermektir. Önerilen çözüm yöntemleri, deterministik sezgisel
yaklaşımlar sayesinde ilk çözümü hızlı bir şekilde oluşturduktan sonra stokastik
evrimsel yöntemlerle bu çözümü iyileştirmeyi amaçlar.

Tek amaç fonksiyonu ile tanımlanan kapı atama probleminde amaç, kapılarda
uçakların kalış süresini en çoklamaktır. Bir diğer ifade ile amaç, aprona çekilmek
zorunda kalınan uçakların havaalanında kalacağı toplam sürenin en azlanmasıdır. Bu
amaç fonksiyonunun en azlanması için öncelikle uçakları kalış sürelerinin çokluğuna
göre sıralayan sezgisel yaklaşımla uçakların sıralanması sağlanır. Bu sıralama,
iterasyonlar boyunca değiştirilip uçak yerleşimleri kontrol edilerek çözüme ulaşılır.
Uçakların yerleştirilmesi işlemini sıralama kavramı ile ilişkilendiren bu yöntemin
etkinliği üretilen yapay veri kümelerinde, Đstanbul Atatürk Havaalanından elde edilen
veriler üzerinde gösterilmiştir. Ayrıca geliştirilen algoritma TAV Bilişim A.Ş.

xxv

firmasının havaalanı kaynak planlama sistemi içerisinde gerçeklenmiş ve ticari bir
ürün olarak çeşitli havaalanlarında kullanımı sağlanmıştır.

Çok amaçlı havaalanı kapı atama probleminde amaçlar; kapıların doluluğunu en
çoklamak, yolcu yürüme mesafelerinin toplamını en aza indirmek ve çeşitli
kriterlerin birleşimi olan önceliklerin karşılanmasını en çoklamak olarak
tanımlanmıştır. Bu amaç fonksiyonları yer yer birbirleriyle çeliştiğinden tümünü
birden eniyileyen bir çözüm bulmak her zaman mümkün değildir. Bu nedenle çözüm,
en az bir amaç fonksiyonu açısından diğerlerinden iyi olan bireylerden oluşan
kümedir. Pareto optimum kümesi olarak adlandırılan bu kümenin, çok amaçlı hava
alanı kapı atama problemi için, Genişletilmiş Uçak Sıralaması Tabanlı Tek Atlamalı
Büyük Patlama-Büyük Çöküş Yöntemi ile daha önce literatürde önerilen yönteme
göre daha iyi şekilde oluşturulduğu çeşitli metrikler baz alınarak gösterilmiştir.

Havaalanı kapı atama algoritmalarının testlerinde veri kümesinin gerçeğe yakınlığı,
havaalanlarında kullanılabilir algoritmalar üretebilmek için çok önemlidir. Uçakların
ortalama kalış süreleri, kalış sürelerinin standart sapması, yürüme mesafeleri, yolcu
sayıları ve öncelikleri belirleyen modellerin dikkatle oluşturulması gerekir. Bu
çalışmada, havaalanı kapı atama algoritmalarının testleri için parametrik olarak
kontrol edilebilen gerçekçi bir veri üreteci tasarlanmıştır. Bu veri üreteci ile elde
edilen algoritma sonuçları, Đstanbul Atatürk Havaalnından elde edilen verilerle
yapılan deney sonuçları ile yüksek benzerlik göstermiştir.

Tez çalışmasının içeriği aşağıdaki gibi maddelenebilir:

a. Sürekli eniyileme problemlerinin çözümüne yönelik Yerel Yönsel Đlerlemeli
Büyük Patlama-Büyük Çöküş algoritması önerilmiştir. Algoritmanın
doğruluk, hız ve karmaşıklık analizi hem Büyük Patlama-Büyük Çöküş
yöntemi hem de literatürde en çok kabul görmüş yöntemlerle karşılaştırmalı
olarak verilmiştir.

b. Havaalanı kapı atama problemi için sahada gerçeklenebilir problem
tanımlamaları önerilmiştir.

c. Tek amaç fonksiyonuna sahip havaalanı kapı atama problemi için Tek
Atlamalı Büyük Patlama-Büyük Çöküş yöntemi önerilmiş ve algoritma
etkinliği çeşitli test kümelerinde gösterilmiştir. Önerilen yöntemin farklı amaç
fonksiyonları üzerinde kullanılabilirliği tartışılmıştır.

d. Uçuş planlaması ve havaalanı yolcu trafiği için parametrik yönetilebilen
gerçeğe yakın bir test verisi üreteci sunulmuştur. Geliştirilen algoritmaların
benzetimlerinde, yapay üretilen bu verilerin sahadan toplanan verilerle
uyumluluğu ortaya konmuştur.

e. Çok amaçlı kapı atama problemine ilişkin geçmişte raporlanan çalışma
detayları ile incelenmiş, çalışmanın zayıflıkları ortaya konarak daha etkili bir
yöntem olan Genişletilmiş Uçak Sıralaması Tabanlı Tek Atlamalı Büyük
Patlama-Büyük Çöküş Yöntemi önerilmiştir. Önerilen yöntem, çeşitli yapay
test kümeleri üzerinde ve Đstanbul Atatürk Havaalanı’ndan elde edilen gerçek
saha verileri üzerinde test edilerek etkinliği incelenmiştir.

xxvi

27

1. INTRODUCTION

1.1 What is an Evolutionary Algorithm?

Every real-world problem from economic to scientific and engineering fields is

ultimately confronted with a common task, optimization. An optimization problem

can be defined by specifying the set of all feasible candidates and a measure for

evaluating their worth (Ahn, 2006).

As the result of intense research over the years, there are many optimization

algorithms reported. One of the main classes of optimization algorithms is the

evolutionary algorithms.

Evolutionary algorithms are the umbrella term for many stochastically developed

population based search techniques that are inspired from the natural evolution

process. The analogy in between the natural evolution process and the optimization

problem is given in Table 1.1.

Table 1.1: Evolutionary computing metaphor.

Natural Evolution Optimization
Problem Solving

Environment Problem

Individual Candidate Solution

Fitness Quality

Frequently, Evolutionary Computation, Evolutionary Optimization, Evolutionary and

Programming terms are interchangeably used. The slight differences of these terms

are ignored in this thesis.

Evolutionary computing techniques are based on Mendelian Genetics and Darwinian

Theory of Evolution. They, somehow imitate the nature to find out what is best for

some specific problem. In today’s world, they have been successfully applied to

28

many areas such as scheduling applications, system design, learning and prediction

applications, automated program development, multi-criteria decision-making,

evolvable hardware design, etc.

There are many variants of the evolutionary algorithms. Nevertheless, the common

underlying idea behind all these techniques is the same: given a population of

individuals, the environmental pressure causes natural selection that is survival of the

fittest, which causes a rise of the fitness of the population. Given a quality function to

be maximized, a set of candidate solutions can be created randomly, then these

solutions can be scored by applying the quality function as an abstract fitness

measure. Based on this fitness scores, some of the better candidates are chosen to

seed the next generation by applying recombination and/or mutation (Eiben and

Smith, 2003).

1.2 A Brief History on Evoltionary Algorithms

History of the evolutionary computation gets back to Turing when he first proposed

genetical or evolutionary search concepts in 1948. Then in 1962, Bremermann

executed a computer program on optimization through evolution and recombination

(Fogel, 1998). After the 60s, when the evolutionary computation concepts

accelerated to grow, three main branches emerged including Evolutionary

Programming (Fogel et al, 1965; Fogel et al, 1966), Genetic Algorithm (De Jong,

1975; Holland, 1973; Holland, 1975) and Evolutionary Strategies (Rechenberg,

1973; Schwefel, 1995). Up to the 90s, these works are interpreted as separate fields

of research, but now, as stated in the previous chapter they are classified under the

term “evolutionary computation”. In 90s, also a fourth branch following the same

concepts with a different approach emerged and became the final main branch of

evolutionary computation: genetic programming (Banzhaf et al, 1998; Koza, 1992;

Koza 1994).

For more detailed literature survey, one can investigate Fogel (1998) and De Jong

(2006).

29

1.3 Airport Gate Assignment Problem

The air transportation becomes more and more widespread during the past fifteen

years. As well as the opportunity of travelling long distances in reasonable short time

duration, the moderate prices due to competition of the companies made several

travelers to choose airline industry. These facts tremendously increased the traffic in

the airports compared to mid-1990s. Assigning arriving flights to airport gates is an

important issue in daily operations of an airline. It has a major impact on maintaining

the efficiency of flight schedules, passenger satisfaction and the revenue obtained.

Gate assignment problem is a quadratic assignment problem and the solution

algorithm should handle large search spaces. Therefore, the evolutionary

optimization algorithms can be good solution alternatives.

1.4 Purpose of Thesis

This thesis has the following purposes,

I. To propose improvements on algorithm capability of the Big Bang-Big

Crunch (BB-BC) optimization algorithm in numeric problem domains and

illustrate the improvements on various test beds.

II. To investigate airport gate assignment problem (AGAP) and propose

practically applicable problem formulations.

III. To propose an evolutionary method on the solution of AGAP

IV. To generate quasi-realistic airport data for real-like simulations

V. To discuss previous work on multi-objective gate assignment problem

(MOGAP) and propose a state-of-the-art solution strategy remedying the

weaknesses.

1.5 A Brief Summary of Chapters

Chapter 2 discusses the Big Bang-Big Crunch (BB-BC) algorithm within the

evolutionary computation methods. In this context, the chapter briefly reviews the

Genetic Algorithms (GA), Evolutionary Strategies (ES) and Big Bang-Big Crunch

(BB-BC) algorithm. In the final subchapter, relations and differences of BB-BC with

the previously reported literature is investigated.

30

In chapter 3, a new method based on BB-BC is introduced: Big Bang-Big Crunch

Algorithm with Local Directional Moves (BBBC-LS). The method is shown to be

good alternative for the well-accepted methods as Genetic Algorithms, Evolutionary

Strategies and Particle Swarm Optimization.

Chapter 4 introduces the total time slot maximization formulation for the AGAP. The

problem is solved by the Single Leap-Big Bang Big Crunch (SL-BBBC), which is

one of the main contributions of the study. In this chapter, the practical application of

the problem is given.

Chapter 5 briefly reviews the basics of multi-objective optimization. Performance

metrics used in this work are also given.

Chapter 6 introduces the Enhanced Order Based Single Leap-Big Bang Big Crunch

(eSL-BBBC) optimization algorithm on the solution of multi-objective gate

assignment problems (MOGAPs). In this chapter, a test data generator for quasi-

realistic airport flight data and airport pedestrian traffic data is introduced.

Finally, chapter 7 gives some conclusions and further recommendations.

31

2. BIG BANG-BIG CRUNCH ALGORITHM WITHIN EVOLUTIONARY

COMPUTATION METHODS

2.1 Components of the Evolutionary Algorithms

All the evolutionary algorithms have a number of components in common. These can

be listed in a generic manner as,

I. Representation

II. Objective Function

III. Population

IV. Parent Selection

V. Variation Operators

VI. Survivor Selection

Here only the basic aspects for the terms are given.

2.1.1 Representation

The initial step of constructing the evolutionary algorithm is defining the mapping

between the original problem space (phenotypes) and the problem solving space

(genotypes). With respect to the nature of the problem, the parameters to be tuned are

encoded in the genotype. The variation operators also act on genotype. Then, the

results are mapped into their corresponding phenotypes for fitness evaluation.

Representation of the solutions includes the selection of the genotypic expression

(like binary coding, integer or floating representations and permutation

representations) and encoding them into phenotypes.

2.1.2 Objective function

Objective function (also named as fitness function or cost function) is the component

that defines the problem. The evolution trend is through to the global minimum (or

maximum) of the objective function. It determines how well the particular candidate

32

solution is by assigning it a score value. These scores are used for mating pool

selection in the next phase.

2.1.3 Population

The population includes the full set of candidate solutions at each generation.

Working with population of solutions provides an environment to simulate natural

survival of the fittest process.

The diversity of a population is a measure of the number of different solutions

present. No single measure for diversity exists. Typically, people might refer to the

number of different fitness values present, the number of different phenotypes

present, or the number of different genotypes. Other statistical measures such as

entropy are also used. Note that only one fitness value does not necessarily imply

only one phenotype is present, and in turn, only one phenotype does not necessarily

imply only one genotype. The reverse is, however, not true: one genotype implies

only one phenotype and fitness value (Eiben and Smith, 2003).

2.1.4 Parent selection

Parent selection (mating selection) is the process of selecting the parents for the next

generation. The parents are selected with respect to the fitness scores assigned. Then

they undergo some changes by the variation operators to produce children.

2.1.5 Variation operators

Variation operators produce new individuals from the mating pool parents.

Designing a variation operator is the key point on designing an evolutionary

algorithm. Variation operators can work on single parent (asexual reproduction) or

two parents (sexual production). There are also multi-parent variation operators

reported in the literature.

Most commonly accepted name for asexual reproduction operators is mutation. It

causes a random, unbiased change in the genotype of the parent individual. On the

other hand, binary variation operators are generally referred as recombination or

crossover operators. These operators work on two parent genotypes to produce one

child or two children.

33

2.1.6 Survivor selection

Survivor selection (often referred to as replacement or environment selection) is the

process of selecting the individuals for the next generation. In most widespread

approaches for survivor selection, either the children will all survive or some “fit”

parents will still be in the population of the next generation.

As opposed to parent selection, which is typically stochastic, survivor selection is

often deterministic, for instance, ranking the unified multiset of parents and offspring

and selecting the top segment (fitness biased), or selecting only from the offspring

(age biased) (Eiben and Smith, 2003).

2.2 Algorithms Reported in the Literature

There are many evolutionary computation algorithm variants reported on the

literature. In this thesis, a comprehensive introduction for Genetic algorithms,

Evolution Strategies and Big Bang-Big Crunch Method is given. Genetic algorithms

have been accepted in a wide sense and the most known variant for EAs. On the

other hand, Evolution Strategies have many similar aspects with the Big Bang-Big

Crunch Algorithm that is in the focus of the dissertation.

2.2.1 Genetic algorithms

Genetic algorithms (GAs) are the most known evolutionary algorithm variants. There

is no single formulation for the genetic algorithm development; instead, it is tailored

for the specific problem.

2.2.1.1 Representation in GA

There are four basic representations for the individuals for GAs:

I. Binary representation,

II. Integer representation,

III. Real valued or floating-point representation and

IV. Permutation representations.

Unfortunately, the designer can select the best representation for a specific problem

only by experience; there is no systematic way. The selection of the representation

34

directly effects the variation operators used and, of course, the encoding of the

genotype into phenotype. The encoding should map all possible genotype

combinations to valid phenotypes.

2.2.1.2 Population in GA

Generally, the population is initialized randomly. The population of each generation

should be diverse enough to yield new populations through variation operators. In the

most common sense, one can classify the population models into two classes: steady

state and generational. The more frequently used model is generational population

model and in that one all the members of the population are replaced by the children

formed after processing of the variation operators. In widely accepted notation, µ

designates the number of parents selected for the mating pool and λ designates the

number of children (offspring) created. Then, in generational models λ = µ. On the

other hand in steady state population models not all of the individuals are replaced,

instead, some of the offspring are selected (generally λ <µ) and injected in the next

generation. Parent replacement is done based on ages or fitness scores of the

members.

Selecting the size of the population is quite a fuzzy concept and generally depends on

experience or trial and errors. For detailed investigation, one can investigate

Goldberg et al. (1992).

2.2.1.3 Parent selection in GA

Parent selection for mating pool is performed in the favor of better members in all

parent selection algorithms. However, this bias should not prevent the population to

preserve its diversity. There are three commonly accepted modes for the parent

selection,

I. Fitness Proportional Selection,

II. Ranking Selection and

III. Tournament Selection.

Fitness Proportional Selection (FPS) (Holland, 1975) assigns probabilities for each

individual with respect to their absolute fitness.

35

In Ranking Selection (RS) (Baker, 1987), the individuals are sorted with respect to

fitness scores and the probabilities are assigned respecting this order.

FPS and RS techniques are stochastic methods assigning a probability value for each

individual. Mapping these probabilities to actual selection counts is the next step.

There are two prominent algorithms: Roulette Wheel Selection (RWS) and

Stochastic Universal Sampling (SUS) (Baker, 1987).

If the population size is considerably large, calculating all the fitness scores and

sorting them can be very expensive. Instead, the members can be raced in subsets

and the winner goes to the mating pool. This method is named as tournament

selection since a tournament is organized among a subset of individuals and the

winner is prized.

2.2.1.4 Variation operators in GA

In this subchapter, unary (mutation) and binary (crossover, recombination) variation

operators are discussed. The algorithms for the variation operators are heavily

dependent on representations of the individuals in the population.

2.2.1.5 Recombination operators

In common approach, binary variation operators produce two children from two

parents. One other important aspect for the crossover operators is to ability to inherit

common genes to the offspring (Radcliffe, 1991). The whole set of operators listed

here have this property accept for partially mapped crossover for permutation

representations.

For binary representations, the basic methods of recombination are,

I. one point crossover (Holland, 1975; De Jong, 1975), (Figure 2.1)

II. two point crossover, (Figure 2.2)

III. N-point crossover (Figure 2.3) and

IV. uniform crossover. (Figure 2.4)

The first three crossover types have tendency to take neighboring genes together, a

phenomena named positional bias (Eshelnian et al 1989; Spears and De Jong, 1991).

On the other hand, uniform crossover has the distributional bias since it is expected

to transmit equal number of genes from both parents from random positions.

36

Figure 2.1 : One point crossover for binary representations.

Figure 2.2 : Two point crossover for binary representations.

Figure 2.3 : N-point crossover (N = 3) for binary representations.

Figure 2.4 : Uniform crossover for binary representations. Eight random numbers
are drawn for each gene and the 2nd, 4th and the 7th numbers are above 0.5.

For integer and floating point representations the same set of operators with that of

binary representations are used. For floating point representations, also arithmetic

recombination operators can be defined. Simple arithmetic recombination proposes

to choose a crossover point P. Then take first P genes from parent one, and then the

other genes are weighted average of the two parents. In the second child, first P

genes are taken from the second parent and the remaining genes are again a weighted

mean of the parents (Figure 2.5). The mathematical model for simple arithmetic

recombination is (2.1),

37

:

:

:

:

1 2 n n+1 l

1 2 n n+1 l

1 2 n n+1 n+1 l l

1 2 n n+1 n+1 l l

Parent - 1 a ,a ,...a ,a ,.....a

Parent - 2 b ,b ,...b ,b ,.....b

Offspring - 1 < a ,a ,...a , b +(1-)a ,..... b +(1-)a >

Offspring - 2 < b ,b ,...b , a +(1-)b ,..... a +(1-)b >

α α α α

α α α α

< >

< >

(2.1)

Figure 2.5 : Simple arithmetic recombination for real valued vectors. (P = 4, α =
0.5).

Single arithmetic recombination and whole arithmetic recombination can be

illustrated in Figure 2.6 and Figure 2.7 and in (2.2).

:

:

SingleArithmeticRecombination:

:

:

Wh

1 2 n n+1 l

1 2 n n+1 l

1 2 n n+1 n+1 l

1 2 n n+1 n+1 l

Parent -1 a ,a ,...a ,a ,.....a

Parent - 2 b ,b ,...b ,b ,.....b

Offspring -1 < a ,a ,...a , b +(1-)a ,.....a >

Offspring - 2 < b ,b ,...b , a +(1-)b ,.....b >

α α

α α

< >

< >

1 1 2 2

1 1 2 2

oleArithmeticRecombination:

:

:

n+1

n n n+1 l l

n

Offspring -1 < b +(1-)a , b +(1-)a ,... b +

(1-)a , b +(1-)a ,..... b +(1-)a >

Offspring - 2 < a +(1-)b , a +(1-)b ,... a +

(1-)

α α α α α

α α α α α

α α α α α

α
n n+1 n+1 l l

b , a +(1-)b ,..... a +(1-)b >α α α α
 (2.2)

Figure 2.6 : Single arithmetic recombination for real valued vectors. (n = 7, α =
0.25).

38

Figure 2.7 : Whole arithmetic recombination for real valued vectors. (α = 0.5).

Crossover operator design is hard for permutation problems since a simple

exchanging operation arouses multiple copies of parameters in the chromosomes.

Partially Mapped Crossover (Goldberg and Lingle, 1985) was proposed for

adjacency-based problems and the algorithm run can be investigated from Whitley

(2000). Edge crossover, order crossover (Davis, 1991) and cycle crossover (Oliver et

al, 1987) are other well-applied permutation crossovers designed for order-based

representations.

2.2.1.6 Mutation operators

For binary representations, mutation is performed on every bit with a small

probability (Figure 2.8). Selection of the probability depends on the problem but in

common sense, the expected value of the mutant bit number is 1. Then the

probability of mutation is selected to be 1 / (length of the chromosome).

Figure 2.8 : Bitwise mutation for binary representations.

In integer representation, in connection with the binary mutation, random resetting

draws a random number from the permissible set of integers. Random resetting is

suitable for cardinal attributes. For ordinal attributes, creep mutation can be used in

which a small value is added to ach gene. The value added is drawn from a normal

distribution with mean zero and a small variance.

Uniform mutation for floating point representations replaces a certain parameter

value by a randomly drawn new one in the permissible interval. This mutation is

analogous of the bit flipping of binary representations and random resetting of the

integer representations. For floating point representations, the analogous of the creep

mutation is the non-uniform mutation (with a fixed distribution such as Gaussian or

Cauchy distribution) (Michalewicz, 1992).

39

Mutation operators designed for the permutation representations differ from the

others since they cannot work on each gene separately. In swap mutation, the

randomly selected two genes are swapped (Figure 2.9). In insert mutation, a

randomly selected gene is transported to another randomly selected one moving the

others (Figure 2.10). In the scramble mutation, between the randomly selected two

genes, all the genes are reordered (Figure 2.11), and as a specific case, inversion

mutation proposes to inversely reordering this subset (Figure 2.12).

Figure 2.9 : Swap mutation for permutation representations.

Figure 2.10 : Insert mutation for permutation representations.

Figure 2.11 : Scramble mutation for permutation representations.

Figure 2.12 : Inversion mutation for permutation representations.

2.2.1.7 Survivor selection in GA

Survivor selection or replacement concept is quite connected with the population

model. If a steady population model is selected, generally the number of offspring is

less than the population size. There are age based and fitness based methods for

selecting which offspring and current members will survive to the next generation. In

age based methods, a FIFO model or a stochastic selection where the probability of

selection decreases with increasing age can be implemented. The replaced portion of

the population is referred as generational gap.

One another important point to note is the elitism strategy. Not to lose the current

best members by age based or stochastical fitness based replacement strategies, best

40

n members of the population can be protected from elimination. Number n is

commonly selected as one or two.

2.2.2 Evolution strategies

The main distinction of the Evolution Strategies (ES) from Genetic Algorithms is the

inherited self-adaptation concept. In the broadest sense, self-adaptation is the

dynamic altering of the algorithm run parameters throughout iterations. This feature

is generally provided by including the parameters governing the algorithm run into

the chromosome structure and therefore allowing them to co-evolve with the

solutions. The famous rule of 1/5 success rule (Rechenberg, 1973) is one of the most

known and used adaptation rule for controlling mutation step size. This rule states

that if the ratio of the successful mutations (that is mutations yielding a fitter

member) to all mutations should be 1/5. Therefore, if it is above this threshold, the

mutation step size is increased; else it should be decreased. This check is performed

at some specific period of iterations. Note that this adaptation process do not

interacts with the chromosome representation and actually not a state-of-the-art

technique.

2.2.2.1 Representation in ES

Evolution strategies are used in continuous optimization problems, hence real valued

representation is used. Genotype and phenotype are usually the same; therefore, there

is no need for a special encoding scheme. What is new for ES is the inclusion of

control parameters (= strategy parameters) in the chromosome structure. The strategy

parameters are, for the common sense, divided into two sets. One set is the

parameters for mutation step size control (σ), the other set is the parameters for

controlling the dependencies of the step sizes of the different parameters (covariance

of σ set, Cσ). σ set must have at least one member valid for all elements of the

chromosome for self adaptation implementation. Generally, σ set has either 1 or N

elements, N being the dimension of the problem. Cσ set is not always used, but is

needed for non-symmetrical mutation effects that will be later. Cσ set has different

number of elements.

The chromosome structure is -in the most generic manner-,

41

1 2 31 2 3 ,

, , ,,,
CN 1 2 N

step size parametersoptimisation parameters covariance parameters

g g g ... g , ,... ,C ,C ,C ... Cσ σ σ σσ σ σ< >
1442443144424443 144424443

where C is the number of elements in set Cσ.

2.2.2.2 Population in ES

As in the case for GA, the population is randomly initialized generally. Both steady

state and generational population models can be used, but generational population

models are more common.

2.2.2.3 Parent selection in ES

There is not an actual selection routine for the parents as in GA. Because all the

members are treated as parents, and whenever a parent is needed, it is drawn

randomly (with uniform random distribution). That is to say, fitness scores (or

rankings) are of no importance.

2.2.2.4 Variation operators in ES

2.2.2.5 Recombination operators

Basic recombination scheme for ES yields one offspring from two parents. In

discrete recombination, the allele of a specific element in the offspring is directly

copied from the same location of the randomly selected parent (Figure 2.13). In

intermediate recombination, the values of each location are averaged from the

parents (Figure 2.14). These basic recombination schemes utilizing two parents are

called local recombination.

Figure 2.13 : Discrete recombination in evolutionary strategies.

42

Figure 2.14 : Intermediate recombination in evolutionary strategies. (The scheme is
the same with whole arithmetic recombination with α = 0.5 for real valued vectors in

genetic algorithms.)

Extension to m-parents, where m ≤ µ (population size): the recombination operators

describe above can be analogously applied for multi-parents. This is called global

recombination for ES. Though this process does not match any real world process, in

application it usually works better. There are many studies utilizing global

recombination schemes as Beyer (1995), Schwefel and Rudolph (1995), Eiben and

Back (1997), Back and Eiben (1999), Gruenz and Beyer (1999), Matsumura et al.

(2001 and 2002).

In the literature, there are many reported recombination operator variants. One

emerging idea is to use different recombination schemes for the optimization

parameters and the strategy parameters. In fact, discrete recombination for the

optimization parameters part is recommended to preserve diversity in the population.

On the other hand, intermediate recombination has a more conservative tendency and

provides more cautious adaptation of strategy parameters (Eiben and Smith, 2003).

A mutation operator adds a random number drawn from a normal (Gaussian)

distribution to each allele. One-dimensional Gaussian distribution is (2.3),

2

2

()

2
1

(, ,)
2

x

N x e

ξ

σξ σ
πσ

− −

=

(2.3)

Then, the new element can be obtained by (2.4),

 1 (0,)
i i

x x N σ+ = + (2.4)

Remember that the step sizes will also undergo mutation then final equation can be

re-written as (2.5),

1 1(0,)i i ix x N σ+ += + (2.5)

43

where σi+1 is the mutation step size after self mutation. That is to say, the mutation

step size should be mutated first, and then it must be used to mutate optimization

parameters. Therefore, the chromosome is effectively evaluated twice: In survivor

selection, if this member is worth surviving in the next generation, then the mutation

step sizes are somehow validated to yield fit members.

Selection of the strategy parameters and controlling their evolution through mutation

operators generally depends on design experience. The categories for the mutation

process can be divided into 3 basic branches,

I. uncorrelated mutation with single step size,

II. uncorrelated mutation with n step sizes and

III. correlated mutations with n step sizes.

uncorrelated mutation with single step size :

{1 2 3 ,

, , ,, N

step size parameteroptimisation parameters

g g g ... g σ< >
144424443

uncorrelated mutation with n step sizes:

1 2 3 ,

, , ,,,N 1 2 N

step size parametersoptimisation parameters

g g g ... g , ,...σ σ σ< >
1442443144424443

correlated mutations with n step sizes:

1 2 31 2 3 ,

, , ,,,
CN 1 2 N

step size parametersoptimisation parameters covariance parameters

g g g ... g , ,... ,C ,C ,C ... Cσ σ σ σσ σ σ< >
1442443144424443 144424443

In single step size case, σ is mutated at each iteration by multiplying by a term eΓ

where Г is a random number drawn from a normal distribution τ. τ is generally

inversely proportional to the square root of the problem dimension and is analogous

to the learning rate of neural networks. Then the mutation rules can be written in the

correct order as in (2.6),

1

1 1

.

(0,)
i i

i i i

e

x x N

σ σ

σ

Γ

+

+ +

=

= +

(2.6)

44

Note that by using Gaussian distribution with zero mean, mutation is not biased to

either side and the probability of smaller modifications is more than that of larger

ones. Single step size uncorrelated mutation is illustrated in Figure 2.15.

Figure 2.15 : Representation of uncorrelated mutation with single step size for a two
dimensional problem. The black dot represents a candidate solution (member) and

the circle around is the possible positions after mutation. Circle radius is related with
σ. Note that the probability of moving in x1 axis is the same as moving in x2 axis.

If n-step sizes have been used, then the mutation effect on each dimension varies

(Figure 2.16). In some problems that have different slopes in different dimensions,

using multiple step sizes can be operational. The mutation process is as in (2.7),

()

1

1 1

()

() () ()

.

(0,)

j

i

i i i

j

i

j j j

e

x x N

σ σ

σ

+

+ +

Γ=

= +

(2.7)

Uncorrelated mutations are orthogonal in nature and so they are aligned with the

axes. Correlation between dimensions defines rotation effect on the mutation (Figure

2.17). Correlated mutation is in (2.8),

()

1

1

1 1

()

() ()

() () ()

.

. (0,1)

(0,)

j

i

i i

i i i

j

i

j j

j j j

e

N

x x N

σ σ

α α λ

σ

+

+

+ +

Γ=

= +

= +

(2.8)

45

 Figure 2.16 : Representation of uncorrelated mutation with 2-step sizes for a two
dimensional problem. The black dot represents a candidate solution (member) and
the ellipse around is the possible positions after mutation. Minor axis of ellipse is

aligned with x1, major axis is aligned with x2. These axes lengths are related with σ1
and σ2. Note that the probability of moving in x1 axis is not the same as moving in x2

axis.

Figure 2.17 : Representation of correlated mutation with 2-step sizes for a two

dimensional problem. The black dot represents a candidate solution (member) and
the ellipse around is the possible positions after mutation. Neither of the axes is

aligned with coordinates. Axes lengths are related with σ1 and σ2 and the rotation of
the ellipse is related with α. Note that the probability of moving in x1 axis is not the

same as moving in x2 axis, but they are correlated.

Correlated mutations have the most parameters; however, effectively using these

parameters is another matter of cost. Common approach is to start with uncorrelated

46

mutation with n-step sizes and then try moving to a simpler model if good results are

obtained, or try moving to a correlation imposed one if results are not good enough.

In all mutation types, to avoid negligibly small standard deviations, a limiting value

can be applied as in (2.9),

1 0 1 0i iσ ε σ ε+ +≤ ⇒ = (2.9)

where 0ε is some user defined constant.

2.2.2.6 Survivor selection in ES

µ members for the next generation can be selected from the members of current

generation plus the offspring population ((µ + λ) selection) or if λ ≥ µ, they can be

selected by only considering the offspring population (((µ, λ) selection). Defining in

terms of population concepts, (µ + λ) selection causes a steady population model

whereas (µ, λ) selection causes a generational population model.

Generally (µ, λ) selection is preferred in modern variants of the ES. In (µ, λ)

selection, dynamically changing fitness surfaces can be traced better, and it provides

more efficient evolution of strategy parameters. λ is selected to be at around 5 to 10

times of µ, therefore a great selection pressure is imposed in ES.

2.2.2.7 Self adaptation in ES

Self-adaptation of strategy parameters is the most critical aspect in ES. It has been

firstly proposed as an ES issue and has been investigated for certain effects in ES

algorithms. Now, its usage is widespread in EA society. Its benefits have been shown

not only for real valued representations but also for binary and integer

representations (Back, 2000). Theoretical (Beyer, 2001) and experimental results on

self-adaptation clearly states that the standard deviation of the random number added

at each iteration must decrease. By intuition, at the very first steps of the search, the

algorithm is not intensified (focused on a specific point) but can even check the

furthest places in the search space with higher probability. Then, as the iterations

elapse, the search is focused on the specific regions of suspect by decreasing the

probability of checking further points.

47

Academic studies up to now define the necessary conditions for self-adaptation as

the following (Eiben and Smith, 2003),

1. µ > 1 so that different strategies are present

2. Generation of an offspring surplus: λ > µ

3. A not too strong selective pressure (heuristic: λ / µ ≈ 7)

4. (µ, λ)-selection (to guarantee extinction of misadapted individuals

5. Recombination also on strategy parameters.

2.2.3 Big Bang – Big Crunch optimization algorithm

Big Bang-Big Crunch (BB-BC) optimization algorithm is a global optimization

method inspired by two of the main theories on the formation of the universe, namely

Big Bang and Big Crunch theories. It was proposed by Erol and Eksin, (2006).

BB-BC optimization method is a population based evolutionary algorithm. By the

very first big bang, the individuals of the population are dispersed throughout to the

search space in a random uniform manner. That is to say, big bang phase of the first

iteration is randomly initializing the population members. This is done by adjusting

the random number generators to cover only the search space of interest. Then in the

following big crunch phase, a representative point (or representative member) is

generated by using information from all of the members of the population.

Representative point of the iteration is named as the centre of mass. Big crunch phase

can be represented as multi input single output function and the formulation of the

crunching process for a minimization problem can be simply given as in (2.10),

1

1

1

1

N
i

i
ic

N

i
i

x
f

x

f

→

→
=

=

=
∑

∑

(2.10)

where, cx is the centre of mass (representative point), ix
→

 is the position vector for

the ith individual, i
f stands for the fitness value of the ith individual and N is the

population size. Therefore, crunching operation is equivalent to taking weighted

48

average of the individual positions with respect to inverse of the fitness scores

assigned.

Big Bang and Big Crunch phases are performed at each iteration of the search. In the

second and the following iterations, new generation of population is created by using

the weighted sum obtained in the previous big crunch phase. New members are

calculated around the centre of mass by adding or subtracting a random number

drawn from a Gaussian distribution whose value decreases as the iterations elapse.

More precisely, the probability of having large random numbers is decreased by

modifying the standard deviation of the Gaussian distribution and as a result, the

probability of reaching the further corners of the search space is much more in

comparison to that at the final iterations. The size of this added (or subtracted) value

is analogous to the explosion strength of a physical explosion process. This dynamic

behavior provides more diversification when there is little knowledge in the first few

iterations and then causes intensified search around the suspected global minimum at

the final iterations. Note that, even in the final iteration of the search, there is a

certain (and probably very limited) probability for reaching far corners of the search

space.

Each member of the new generation (=population of the next iteration) can be

derived by (2.11),

/new c
x x lr k= + (2.11)

where l is the upper limit of the parameter, r is a normal random number and k is the

iteration step. Then, the new point newx is upper and lower bounded to fit into the

search space.

As is the case for all evolutionary iterative algorithms, the algorithm runs until a

predefined stopping criterion has been met. Among the commonly used stopping

criteria are,

I. maximum number of iterations,

II. maximum number of fitness evaluations,

III. maximum allowed run time,

IV. minimum convergence goal for the fitness values,

49

V. minimum convergence goal for the population member positions.

The stopping criteria can be selected problem specifically. Basic BB-BC algorithm

can be utilized to stop once a predetermined number of iterations elapsed.

The algorithm steps can be summarized as follows,

STEP 1: Form the initial population of N members distributed uniformly in the

search space.

STEP 2: Assign a fitness value for all the members.

STEP 3: Calculate the representative point by using (2.10).

STEP 4: Calculate the new members of the next generation by adding or subtracting

a random number drawn from a Gaussian distribution whose value decreases as the

iterations elapse.

STEP 5: Check for the stopping criterion: if it has been met, stop; else go back to

step 2.

In the originating paper for the BB-BC optimization algorithm (Erol and Eksin,

2006), simulation results on benchmark test functions are reported. The tests are

carried for same iteration number, same fitness evaluation number and same run

time. The algorithm had been proven to possess the quick convergence capability

even in the long, narrow parabolic shaped flat valleys or in the existence of several

local minima. Though it is a new algorithm, it has been applied to many areas

including target motion analysis problem (Genç & Hocaoğlu, 2008), fuzzy model

inversion (Kumbasar et al, 2008; Kumbasar et al, 2008), design of space trusses

(Camp, 2007), size reduction of space trusses (Kaveh and Talatahari), airport gate

assignment problem (Genç et al, 2009), non-linear controller design (Dogan &

Istefanopulos, 2007) and genetic programming classifier design (Akyol et al, 2007).

2.2.4 Relations and differences with the previously reported literature

There are tremendous amount of work carried out in the evolutionary computing

society. Many components of the different algorithms have certain relationships with

the others. This section is dedicated to report similar routines with the BB-BC

algorithm or with a certain part of the BB-BC algorithm.

50

2.2.4.1 Similar genetic algorithm approaches

Creep mutation for integer representations and non-uniform mutation for floating

point representations: In both mutation routines, a randomly drawn number from a

specific distribution (mostly Gaussian distribution) is added or subtracted from the

genes. These mutations require different parameters for controlling the distribution

and hence the size of the steps that mutation takes in the search space. This aspect of

the mutation operators has great similarities with the banging phase of the BB-BC

where randomly drawn numbers are added or subtracted from the center of mass.

Moreover, the sizes of the perturbations (size of the added or subtracted numbers,

explosion strength in BB-BC terminology) are controlled with a single parameter in

original BB-BC that decreases as the iterations elapse. Similar approaches are

reported in the literature for the creep mutation and the non-uniform mutation (Zhao

and Gao, 2004; Clemente et al, 2003, Neubauer, 1997).

Multi-parent arithmetic crossover (MAC): It is a multiparent arithmetic crossover for

real valued (floating point) representations proposed by Mendoza et al. (2001). MAC

is the generalized form of arithmetic recombination designed for P-parents. The

crunching phase of the BB-BC algorithm is a specific version for this crossover

working with N-parents (where N is the number of individuals in the population) and

yielding only single offspring (that is named as the centre of mass in BB-BC

optimization method).

2.2.4.2 Similar evolutionary strategies approaches

Uncorrelated mutation with single step size: Concept of self-evolution of the strategy

parameters of ES is actually not implemented in BB-BC algorithm. Yet, there is a

single strategy parameter controlling the magnitude of the random number (~step

size) generated. This number is used for every dimensions of the search space. In that

manner, there is single step size in BB-BC.

Global recombination for ES: Intermediate recombination scheme can be expanded

to more than two parents or more than two donors. Specifically, Beyer (1995)

proposed to use all the members of the population to generate a centre of mass. This

centre of mass is then used to produce λ offspring by mutating the individual with

mutation vector Z of length λ. This ES variant is named as (µ/p, λ), meaning that, µ

parents (whole population) generate λ offspring through recombination and mutation

51

at each generations. λ ≥ µ; so that best µ offspring is selected deterministically for the

next generation. p is the number of donors (number of parents to form one new

offspring) and in Beyer’s formulation p = µ (Figure 2.18). Beyer proposed to use

mutation vector Z as generated by independent and identically distributed normal

random numbers with zero mean and standard deviation, σi, for each component

(Beyer, 1995). BB-BC is a reformulation of this multi parent ES variant that can be

symbolized as (µ/µ, µ) and single σ.

Figure 2.18 : (µ/µ, λ) recombination in general scheme.

Beyer notes that this centre of mass operation enforces an extreme reduction of

diversity, which could be expected to have a negative effect on convergence,

reliability or the self-adaptation capability of the algorithm. Many other researchers

utilizing global intermediate recombination have obtained similar facts as a result of

their research work (Back and Eiben, (1999), Gruenz and Beyer (1999), Matsumura

et al. (2001 and 2002)).

BB-BC optimization originates from the Big Bang Theory; but ends up with nearly

the same algorithm routine with global intermediate recombination in ES. The

mutation routine for BB-BS is nonlinearly decreasing explosion strength that is

correlated with the standard deviation (or single mutation step size).

Crunching phase of BB-BC can select the fittest member of the population as the

representative point. This approach is another ES variant.

The performance comparison between the two BB-BC crunching phase variants

(selecting the fittest or weighted averaging by (2.10)) in unimodal / multimodal

problems reveals that there are no considerable accuracy difference between the two,

but fittest selection is faster (Table 2.1).

52

Table 2.1 : Average costs for multimodal test functions, n = 20, 1000 evaluations,
search space: [-10, 10] for both parameters. (Average of 1000 runs).

FUNCTION Explosion
Centre: Fittest
Member

Explosion
Centre:
Weighted
Average

Explosion
Centre: Average

Ackley 0.61925 0.62079 0.91577

Griewank 0.01483 0.01278 0.00889

Rastrigin 1.32720 1.29570 1.70310

Rosenbrock 0.37051 0.33529 0.31980

Schwefel 0.00194 0.00188 0.00335

Beyer, in 2001 (Beyer, 2001) also proposed the weighted average recombination for

global intermediate recombination. In the most general manner, the recombination

output at each generation (=centre of mass) is the weighted average of samples in the

parent population, (2.12),

1
j j

j

c w x
µ→

=

=∑

(2.12)

where c
→

is the d-dimensional centre of mass vector; wj’s are weighting coefficients

such that all wj’s sum up to 1. Based on such intermediate recombination scheme

different ways of determining the weights have been proposed (Salomon, 1998;

Arnold, 2004; Arnold and MacDonald, 2006; Hansen and Ostermeier, 2001). For

example, if all wj’s are selected to be 1 / µ, then the centre is simple the average of all

members; if they are fitness related (2.13),

1

/j j j

j

w f f
µ

=

= ∑

(2.13)

then the centre is the mean of all individuals weighted with respect to fitness scores

as in BB-BC. Using weighted mean as recombination centre is used in one of the

most commonly used variant of ES, namely CMA-ES (Covariance Matrix

Adaptation Evolution Strategy) algorithm introduced by Hansen (Hansen and

Ostermeier, 2001; Hansen et al, 2003).

53

3. BIG BANG – BIG CRUNCH OPTIMIZATION WITH LOCAL

DIRECTIONAL MOVES

3.1 Local Search in Evolutionary Computation

Memetic algorithms (MA) represent one of the recent growing areas of research in

evolutionary computation. The term Memetic Algorithms has first appeared in the

computing literature in 1989 (Moscato, 1989). The rationale behind MAs is to

provide an effective and efficient global optimization method by compensating for

deficiency of evolutionary algorithms (EA) in local exploitation and inadequacy of

local search (LS) in global exploration (Noman and Iba, 2008). The term MA is now

widely used for any population–based approach with separate local improvement

procedures.

Real coded memetic algorithms are classified into two main classes depending on the

type of LS employed (Lozano et al, 2004):

1) Local improvement process (LIP) oriented LS (LLS): This category refines the

solutions of each generation by applying efficient LIPs, like gradient descent. LIPs

can be applied to every member of the population or with some specific probability

and with various replacement strategies.

2) Crossover-based LS (XLS): This group employs crossover operators for local

refinement. A crossover operator is a recombination operator that produces offspring

around the parents. For this reason, it may be considered as a move operator in an LS

strategy (Lozano et al, 2004).

Adaptation of parameters has become a very promising research field in MAs. Ong

and Keane (2004) proposed meta-Lamarckian learning in MAs that adaptively

chooses among multiple memes during a MA search. They proposed two adaptive

strategies in their work and empirical studies showed their superiority over other

traditional MAs. A taxonomy and comparative study on adaptive choice of memes in

MAs is presented in Ong et al. (2006). In order to balance between local and genetic

search, Bambha et al. (2004) proposed simulated heating that systematically

54

integrates parameterized LS (both statically and dynamically) into EAs. Ahn et al.

(2010) also applied adaptive local search routine to multi-objective evolutionary

optimization problems. The common aspect for all the memetic methods proposed so

far is that they needed mechanisms that have to,

I. decide the step length (and adaptation of step length) of the local search,

II. draw a balance between exploration and exploitation; that is, local search and

global search.

A comprehensive review on hybrid genetic algorithms can be found in El-Mihoub et

al. (2004).

In this chapter, a new memetic algorithm is introduced in which a local search is

imposed between the phases of the BB – BC optimization method and the crunching

phase is improved by the addition of Nelder-Mead method to calculate fittest point of

the iteration. The local search algorithm generates a direction vector by using the

current fittest point and the previous fittest points of the generations and checks for

improvement in this direction. If an improvement is achieved, the new centre is

forced to switch to that point. That is to say, the centre point of the explosion of next

big bang phase is changed. Note that, by using the distance between these

consecutive representative points, the step size of the local search is set and adjusted

accordingly. Local search enhances the exploitation or intensification capability of

the algorithm; and thus, the proposed hybridization operation produces much more

accurate results than the original BB – BC algorithm. In fact, it also provides

promising results when compared to the state-of-the-art optimization methods.

Moreover, the newly proposed algorithm is shown to be much more effective in

terms of complexity.

The rest of the chapter is divided into four subsections. Effect of Nelder - Mead

crunching and local directional moves are given first; then the newly proposed

hybrid method is given as an complete algorithm. The simulation results on various

test functions are presented to illustrate the effectiveness of the new hybrid

algorithm. Possible further developments and conclusions are finally elaborated and

discussed in the last subsection.

55

3.2 Inspection of the Effect of Nelder-Mead Crunching

3.2.1 Big bang-big crunch algorithm with Nelder-Mead crunching

For unimodal problems, the crunching phase of the original BB-BC optimization

algorithm can be improved to end up with a better center of mass. The original BB-

BC method either uses a weighted sum for the population members or it simply takes

the fittest member as the representative point. Instead, a more complex local search

routine, namely Nelder and Mead method can be used (Genç, 2010; Genç et al,

2010a). Nelder and Mead method (Nelder and Mead, 1965) is a simplex method for

finding a local minimum (maximum) of a function of several variables. For two

variables, this simplex becomes a triangle, and the method is a pattern search that

compares function values at the three vertices of a triangle (Mathews and Fink,

2004).

In the proposed method, crunching is performed as the result of Nelder Mead

Method. The worst vertex, where objective value is largest, is rejected and replaced

with a new vertex. A new triangle is formed and the search is continued. The process

generates a sequence of triangles (which are not necessarily regular), for which the

function values at the vertices get smaller. The size of the triangles is reduced and the

coordinates of the minimum point are found (Mathews and Fink, 2004). That is to

say, Nelder and Mead method is used as a centre of mass operator of the original BB-

BC algorithm.

At each iteration, after big bang phase, three vertices are chosen to form the simplex:

the fittest member (B), the second fittest member (G) and the worst member (W). The

hard constraint on algorithm construction is that the population size must be greater

than or equal to three (and greater than or equal to n + 1 for n-dimensional

problems). Then the Nelder and Mead algorithm steps for a two-dimensional

minimization problem can be given as the following (Mathews and Fink, 2004) and

the basic moves of the algorithm; reflection, contraction, expansion and shrinking are

illustrated in the Figure 3.1-Figure 3.4.

STEP 1: Construct the initial triangle with vertices Xl, Xs and Xh.

STEP 2: Calculate centroid C for reflection

C= (Xl + Xs) / 2 (3.1)

STEP 3: Calculate reflection point Xr for getting away from Xh and compare f(Xr)
and f(Xs)

Xr = C + (C - Xh) (3.2)

Figure 3.1 : Reflection to point Xr.

a. If f(Xl) < f(Xr) < f(Xs), then replace Xh with Xr (reflection move)

b. If f(Xr) ≤ f(Xl) < f(Xs), then compute expansion point Xe , (3.3)

 Xe = Xr + (Xr - Xh) (3.3)

If f(Xe) < f(Xr), replace Xh with Xe (expansion move) otherwise
perform reflection move.

Figure 3.2 : Extension to point Xe from Xr.

c. If f(Xh) > f(Xr) ≥ f(Xs),replace Xh with Xr and compute contraction point
Xc ,(3.4),

Xc = (Xh + C) / 2 (3.4)

i. If f (Xc) < f(Xh), replace Xh with Xc

ii. If f (Xc) ≥ f(Xh), compute shrinking points and replace these
points with Xh, Xs

 (a)

 (b)

Figure 3.3 : Contraction points Xc. (a) Outside contraction, (b) Inside contraction.

Figure 3.4 : Shrinking towards Xl. Point Xs and point Xh comes closer to Xl..

STEP 4: Check the termination criterion (3.5)

 |Xl – Xh| < tolerance (3.5)

If the termination criterion is satisfied, then the local search step terminates resulting

point Xl as the centre of mass for the current iteration. If not, go back to step 2.

The tolerance value used in step 4 of Nelder Mead algorithm flow is dynamically

updated with respect to iteration count. As the iteration number for the overall

algorithm increases, tolerance value for the corresponding Nelder-Mead run is

decreased. Therefore, initial iterations have less intensive crunching search phases.

Parameters affecting the explosion strength also control of the tolerance; that is no

new parameters are introduced over the original BB-BC method.

Test for convergence (or termination) can be carried on numerous ways. Tests based

on

58

I. the standard deviations of the three points,

II. the closeness of fitness values,

III. the improvement gained,

IV. the limitation of fitness evaluations,

V. the limitation of iterations or

VI. any combination of all these

can be used. The aim of this hybridization scheme is to fasten the search by checking

some local points in the crunching phase of the main global search algorithm so as to

maximize improvement probability. The neighboring points check procedure should

be carried in a guided manner (provided by using Nelder and Mead optimizer) and

for limited points.

NM crunching is a new approach in order to improve exploitation capability near a

local minimum. If NM crunching is used at the initial iterations of the search then

excessive function evaluations has to be performed since there is not enough

knowledge on the function topology or coverage. Then, it is better not use NM

crunching at the early iterations of the search algorithm; instead, this crunching

method should be switched when the search has evolved and ripen. The effect of NM

crunching after the initial iterations is illustrated in the convergence graph in Figure

3.5 for a multi–modal function.

Figure 3.5 : Convergence graphs for BB–BC algorithms using best point as the
centre of mass (solid line) and the NM method (dashed line).

3.2.2 Simulation results for Nelder Mead crunching

The results of the addition of Nelder-Mead crunching are compared with results of

the original BB-BC optimization algorithm on the Ackley, Rastrigin, Rosenbrock test

functions. The stopping criterion is defined as the maximum number of fitness

59

evaluations for both algorithms. If one would have chosen the stopping criteria as

number of iterations then the hybrid algorithm would have been advantageous

compared to the pure BB-BC algorithm since the new hybrid algorithm searches for

extra points around fittest individual in crunching phase; and therefore, the

comparison would not have been fair. Utilizing the local search step instead of using

weighted average method (or directly selecting the fittest member as the

representative point) makes the algorithm slower but in most of the practical

problems, main process time is spent in the cost function evaluation. Therefore,

fitness evaluation time makes the other steps negligible. (In basic benchmark

functions used, that is not the case though.) The time spent for both original and

hybrid BB-BC Algorithms are reported in the Table 3.1-Table 3.4.

The results logged in this chapter are obtained from 10000 random run for each test.

This number is more than enough for reliable statistical analyses. Table 3.1-Table

3.3 report the results with respect to the objective functions. The simulations are

carried for different population sizes, different number of evaluations before

termination and for different sizes of total search spaces. Here, the reported results

are for 20 individuals allowed for 1000 objective evaluations. The search space is [-

10, 10] for both parameters. The tremendous improvement can be easily observed

from both the average and median values for the total runs. Standard deviations of

the results are also smaller for the newly proposed method, which makes it more

consistent.

Table 3.1 : Ackley test function results.

ACKLEY BB-BC BB-BC with
Nelder-Mead

Average Cost

0.625 0.022

Median Cost

0.529 0.023

Std. Dev. Of Cost 0.430 0.005

Average Time
Elapsed (s)

0.004 0.081

60

Table 3.2 : Rastrigin test function results.

RASTRIGIN BB-BC BB-BC with
Nelder-Mead

Average Cost

1.314 0.415

Median Cost

1.263 0.010

Std. Dev. Of Cost 0.711 0.561

Average Time
Elapsed (s)

0.003 0.069

Table 3.3 : Rosenbrock test function results.

ROSENBROCK BB-BC BB-BC with
Nelder-Mead

Average Cost

0.386 0.004

Median Cost

0.135 0.003

Std. Dev. Of Cost 0.918 0.002

Average Time
Elapsed (s)

0.002 0.067

In Table 3.1-Table 3.3, there is great amount of difference on average time elapsed

values. For this reason, another test is designed: the algorithm is terminated when the

fittest member of the iteration comes to 0.1 vicinity of the global minimum (Global

minimum value is known at the beginning for these benchmark functions). The

results of the tests are given for only the Ackley function in Table 3.4. The other

functions behave the same. In Table 3.4, the original algorithm needs %50 more

time to process in order to achieve similar accuracy with the newly proposed hybrid

algorithm. The difference between the evaluation numbers is also notable.

61

Table 3.4 : Ackley test function results for the second termination criterion (average
and median errors < 0.1).

ACKLEY BB-BC BB-BC with
Nelder-Mead

Average Cost 0.062 0.063

Median Cost

0.065 0.063

of av. fitness
evaluations

2663.7 120.1

of iterations
carried (average)

133.18 2.878

Average Time
Elapsed (s)

0.012 0.008

3.3 Inspection of the Effect of Improvement Vectors

3.3.1 Big Bang-Big Crunch algorithm with improvement vectors

Bang Big-Big Crunch optimization method can be further improved by using local

search routines in conjunction with the original phases of the algorithm. Utilizing

local search in between the algorithm iterations is a simple yet effective way of

achieving this (Genç et al, 2010b). As local search module, a direction is generated

by using the current and the previous representative members of the population and

this search line is further investigated in the aim of obtaining a better representative

point. If the search terminates without improving the current best solution at hand,

the algorithm run simply continues with the next iteration of the BB-BC algorithm;

else, the obtained new point on the search space replaces the representative point.

The global search part of the algorithm, that is the BB-BC algorithm reviewed in the

previous chapter, has been preserved and applied with no modification within itself

or its parameters: Between the iterations of BB-BC, local search step is injected.

The steps of the algorithm are,

STEP 1: Form the initial population of N members distributed uniformly in the

search space.

STEP 2: Perform the crunching phase of the BB-BC algorithm. This point becomes

the first best point found in the iteration. Store this point.

62

STEP 3: Perform once more the consecutive banging and then crunching phases of

the BB-BC algorithm.

STEP 4: If the best point obtained in step (3) is better than the last stored point then

this means an improvement then store that point. Next, generate a direction vector

using one or two previous best candidate solution points so far attained, make

exploratory moves in that direction, and assign a new virtual centre of mass on that

direction if a better point has been obtained than the previous fittest point. If the best

or the fittest point remains the same after the local search phase then go straight to

step (5).

STEP 5: Check the stopping criteria. If it is met stop; else go back to step (3).

The proposed idea with this hybridization scheme is to fasten the search for global

minimum. Once a search direction is obtained, a few points on this line are checked

to look for any better points. The search is not intensive, so finding the exact local

minimum is not the ultimate goal. Instead, a better starting point for the next iteration

(or a better representative point for the current iteration) is tried to be obtained. Thus,

the next explosion centre of the bang phase is not guaranteed to be a local minimum.

Moreover, the big bang phase of the BB-BC algorithm is still global in nature and

these two factors avoid search stagnation. Note that, local search is performed not

randomly, but along an improving line by using commonly accepted contraction and

expansion moves or dichotomous search. Otherwise, checking random neighbors or

complete set of neighbors can cause unacceptable processing time or even search

stagnation. Figure 3.6 gives the flowchart for the algorithm in a generic manner.

Three different approaches for the local search part of the algorithm are reported in

the following subchapters.

3.3.1.1 Vector formation with single step regression

In single step regression, the direction vector (also named as improvement vector) is

the difference vector of the fittest point of current iteration and the previous best

(fittest, representative) points stored after the last two consecutive crunching phases

of the BB-BC algorithm, (3.6),

1 () (1)IV P n P n= − − (3.6)

63

where IV1 stands for the improvement vector of single step regression BB-BC, P(n)

is the current best or fittest point and P(n-1) is the last stored best or fittest point.

Figure 3.6 : Generic algorithm flowchart.

In this version of local search methodology, the memory usage is just for single step;

and therefore, there is no information usage from the representative points belonging

to the previous iterations. In the search methodology, the magnitude of the direction

vector is halved after each unsuccessful expansion step. User should determine the

number of halving operations. If all the expansion trials turn out to be a failure, only

one contraction operation is allowed. None of these predetermined parameters within

these local move operations are hard constraints for algorithm and they can be

relaxed when needed with respect to the problem geometry. The flowchart of the

local search part is given in Figure 3.7 and the search steps on the direction line are

illustrated in Figure 3.8.

64

Figure 3.7 : Local search phase for single step regression in BB-BC algorithm.

Figure 3.8 : Illustration of direction vector formation for local improvement with
single step regression in BB-BC Algorithm.

3.3.1.2 Vector formation with double step regression

In double step regression, the direction vector is the weighted mean of IV1 and IV2

where IV2 is defined similar to IV1, (3.7),

65

2 () (2)IV P n P n= − − (3.7)

 1 2(1)
h

IV IV IVα α= + −

where α is a number in the interval [0, 1]. Note that if α = 1, double step regression

procedure reduces to single step regression. There is information usage from both the

(n-1)
th and (n-2)

th representative points; thus, this provides to form non-regular

simplex for local minimum search.

The bounds for the search direction are illustrated in Figure 3.9. In the figure, a

possible direction vector is given for the case α = 0.5.

Figure 3.9 : Illustration of direction vector formation for local improvement with
double step regression in BB-BC Algorithm.

3.3.1.3 Dichotomous search on local direction vector

Instead of checking extraction and contraction points, dichotomous search technique

can be utilized on the generated search line. The flowchart for dichotomous search

on local direction vector for one step regression in BB-BC Algorithm is illustrated in

Figure 3.10.

Figure 3.11 serves as an illustration example of the representative point evolutions in

applying both the original BB-BC Algorithm and the hybrid BB-BC Algorithm. In

this example, the original BB-BC Algorithm and the hybrid BB-BC Algorithm has

been run on the same objective function (Rosenbrock objective function: minimum at

(x=1,y=1), minimum cost = 0) with same parameters and same random number

generator seeds and it starts from the same point (x1= 2.4721, y1=6.3589). In the

66

following iterations the fittest point moved to another location where is shown as p in

Figure 3.11. While the original BB-BC Algorithm performs the next explosion

centering this point, the proposed hybrid algorithm replaces point p with p’. The

same procedure follows for the whole run and the resulting trajectories are given in

Figure 3.11. The hybrid BB-BC Algorithm clearly ends up in a closer point to the

global minimum at (1, 1) with a smoother trajectory. Note also that this simple

example is given for the direction vector formation with single step regression case.

Figure 3.10 : Flowchart for the dichotomous local search algorithm.

3.3.2 Simulation results for improvement vector generation

The results of the hybrid method are compared with results of the original BB-BC

optimization algorithm on the objective test functions; namely, rosenbrock, rastrigin,

ackley, sphere, step and ellipsoid functions. All these test functions are chosen to be

same with the original paper presenting the BB-BC Algorithm (Erol & Eksin, 2006).

The stopping criterion is defined as the maximum number of fitness evaluations for

67

both algorithms. The time spent for both original and hybrid BB-BC Algorithms are

almost the same; and therefore, this criteria is not taken into consideration for

comparison purposes.

Figure 3.11 : The hybrid BB-BC Algorithm versus the original BB-BC Algorithm -
Upper left hand side: movement of the original BB-BC, Upper right side: movement

of the proposed hybrid algorithm, Lower left hand side: zoomed movement of the
original BB-BC, Lower right hand side: zoomed movement of the proposed hybrid

algorithm.

The results logged in this chapter are obtained from 10000 random run for each test.

The following tables arranged with respect to the objective functions. For ellipsoid,

step and sphere functions, the space topology is easier in comparison and the number

of function evaluations (stopping criteria) is chosen to be half of the Ackley,

Rastrigin or Rosenbrock counterpart.

 Table 3.5-Table 3.10 reports the cases for small search space and 20 individuals per

population. Figure 3.12-Figure 3.17 shows the average best fitness of whole runs

with respect to the iteration number, respectively. On the other hand, Table 3.11 and

-2 -1 0 1 2
0

1

2

3

4

5

6

7

x

y
BB-BC

0.75 0.8 0.85 0.9 0.95 1 1.05
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

x

y

-2 -1 0 1 2
0

1

2

3

4

5

6

7

x

y

BB-BC with Local Search

0.75 0.8 0.85 0.9 0.95 1 1.05
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

x

y

p p

p'

68

Figure 3.18 illustrate a condensed view for large search space and 30 individuals per

population.

Table 3.5 : Ackley test function, n = 20, 500 evaluations, search space: [-10, 10].

ACKLEY BB-BC Single Step
Regression

Double Step
Regression

Dichotomous
Search
(OneStep)

Average Cost
[improvement%]

0.65 0.49[25%] 0.51[22%] 0. 47[28%]

Median Cost
[improvement%]

0.53 0.40[25%] 0.40[25%] 0.39[27%]

Std. Dev. Of Cost 0.43 0.36 0.37 0.33

Figure 3.12 : Improvement of the Ackley cost value with respect to increasing
evaluation number.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7
Average Objective Values vs. Number of Evaluations for the Ackley Function

Iteration number

A
v
e
ra

g
e
 C

o
s
t

BB-BC

Single Step Regression BB-BC

Double Step Regression BB-BC

Dichotomous Search

69

Table 3.6 : Ellipsoid test function, n = 20, 500 evaluations, search space: [-10, 10].

ELLIPSOID BB-BC Single Step
Regression

Double Step
Regression

Dichotomous
Search
(OneStep)

Average Cost
[improvement%]

0.11 0.07[36%] 0.07[36%] 0.06[45%]

Median Cost
[improvement%]

0.07 0.04[43%] 0.03[57%] 0.02[71%]

Std. Dev. Of Cost 0.10 0.08 0.09 0.07

Figure 3.13 : Improvement of the Ellipsoid cost value with respect to increasing
evaluation number.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9
Average Objective Values vs. Number of Evaluations for the Ellipsoid Function

Iteration number

A
v
e
ra

g
e
 C

o
s
t

BB-BC

Single Step Regression BB-BC

Double Step Regression BB-BC

Dichotomous Search

70

Table 3.7 : Rastrigin test function, n = 20, 500 evaluations, search space: [-10, 10].

RASTRIGIN BB-BC Single Step
Regression

Double Step
Regression

Dichotomous
Search
(OneStep)

Average Cost
[improvement%]

1.35 1.15[15%] 1.11[18%] 1.18[13%]

Median Cost
[improvement%]

1.26 1.11[12%] 1.09[13%] 1.15[9%]

Std. Dev. Of Cost 0.71 0.69 0.70 0.69

Figure 3.14 : Improvement of the Rastrigin cost value with respect to increasing
evaluation number.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25
Average Objective Values vs. Number of Evaluations for the Rastrigin Function

Iteration number

A
v
e
ra

g
e
 C

o
s
t

BB-BC

Single Step Regression BB-BC

Double Step Regression BB-BC

Dichotomous Search

71

Table 3.8 : Rosenbrock test function, n = 20, 500 evaluations, search space:[-10, 10].

ROSENBROCK BB-BC Single Step
Regression

Double Step
Regression

Dichotomous
Search
(OneStep)

Average Cost
[improvement%]

0.40 0.31[23%] 0.30[25%] 0.29[28%]

Median Cost
[improvement%]

0.13 0.08[%38] 0.08[38%] 0.08[38%]

Std. Dev. Of Cost 0.95 0.78 0.81 0.79

Figure 3.15: Improvement of the Rosenbrock cost value with respect to increasing
evaluation number.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500
Average Objective Values vs. Number of Evaluations for the Rosenbrock Function

Iteration number

A
v
e
ra

g
e
 C

o
s
t

BB-BC

Single Step Regression BB-BC

Double Step Regression BB-BC

Dichotomous Search

72

Table 3.9 : Sphere test function, n = 20, 500 evaluations, search space: [-10, 10].

SPHERE BB-BC Single Step
Regression

Double Step
Regression

Dichotomous
Search
(OneStep)

Average Cost
[improvement%]

0.08 0.05[38%] 0.05[38%] 0.04[50%]

Median Cost
[improvement%]

0.05 0.03[40%] 0.03[50%] 0.02[60%]

Std. Dev. Of Cost 0.07 0.05 0.06 0.05

Figure 3.16 : Improvement of the Sphere cost value with respect to increasing
evaluation number.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7
Average Objective Values vs. Number of Evaluations for the Sphere Function

Iteration number

A
v
e
ra

g
e
 C

o
s
t

BB-BC

Single Step Regression BB-BC

Double Step Regression BB-BC

Dichotomous Search

73

Table 3.10 : Step test function, n = 20, 500 evaluations, search space: [-10, 10].

STEP BB-BC Single Step
Regression

Double Step
Regression

Dichotomous
Search
(OneStep)

Average Cost
[improvement%]

0.08 0.05[38%] 0.05[38%] 0.04[50%]

Median Cost
[improvement%]

0.05 0.03[40%] 0.03[40%] 0.02[60%]

Std. Dev. Of Cost 0.07 0.05 0.06 0.05

Figure 3.17 : Improvement of the Rastrigin cost value with respect to increasing
evaluation number.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7
Average Objective Values vs. Number of Evaluations for the Step Function

Iteration number

A
v
e
ra

g
e
 C

o
s
t

BB-BC

Single Step Regression BB-BC

Double Step Regression BB-BC

Dichotomous Search

74

Table 3.11 : Average costs for all functions, n = 30, 3000 / 1500 evaluations, search
space: [-50, 50].

Function BB-BC
Average
Cost

Single Step
Regression
Average Cost
[improvement%]

Double Step
Regression
Average Cost
[improvement%]

Dichotomous
Search Average
Cost
[improvement%]

Ackley 1.14 0.87[24%] 0.81[29%] 0.75[34%]

Ellipsoid 0.33 0.19[42%] 0.18[45%] 0.16[52%]

Rastrigin 1.96 1.63[17%] 1.53[22%] 1.65[16%]

Rosenbrock 3.59 3.04[15%] 3.20[11%] 2.96[18%]

Sphere 0.23 0.13[43%] 0.12[48%] 0.11[52%]

Step 0.24 0.13[46%] 0.12[50%] 0.11[54%]

Figure 3.18 : The improvements of the cost values for all functions for large search
space through evaluations.

One can easily conclude that a slight improvement in the local search step can cause

further improvement on total search performance by checking the second and last

0 200 400 600 800 1000
0

5

10

15
Ackley

0 100 200 300 400 500
0

50

100

150
Ellipsoid

0 200 400 600 800 1000
0

50

100

150
Rastrigin

0 200 400 600 800 1000
0

1

2

3
x 10

4 Rosenbrock

0 100 200 300 400 500
0

50

100

150
Sphere

0 100 200 300 400 500
0

50

100

150
Step

BB-BC

Single Step Regression BB-BC

Double Step Regression BB-BC

Dichotomous Search

Average
Cost

Iteration Number

75

columns of the tables. Main purpose is not to intensify on the local search step but

the idea of amalgamating local and global search procedures. Better results could

have been obtained by fine-tuning the parameters of the local search algorithm but

generality of the hybrid algorithm would have been sacrificed.

The simulation results clearly illustrate the improvement on the algorithm

performance. Though the new hybrid method is not faster or slower than the original

BB-BC in time-wise, the accuracy achieved within the same number of fitness

function evaluations is quite considerable and makes the routine worthy.

3.4 BB – BC with Local Directional Moves (BBBC – LS)

3.4.1 Algorithm formulation

BBBC-LS has the same general algorithm run as in Figure 3.6. However, the

algorithm defines new parameters to control crunching function and allowed number

of function evaluations at the crunching phase.

The steps of the algorithm can be summarized as follows:

STEP 1: Form an initial generation of N individuals in a random manner.

STEP 2: Perform the crunching phase of the BB – BC algorithm. The centre of

mass is selected as the fittest individual. This point becomes the first best point

found in the iteration. Store this point.

STEP 3: Perform once more the consecutive banging and then crunching phases

of the BB – BC algorithm. Crunching phase is switched to NM crunching after

Tfe portion of function evaluations completed.

STEP 4: If the best point obtained in step 3 is better than the last stored point then

this means an improvement then store that point. Next, generate a direction

vector using one or two previous best candidate solution points so far attained

and make nh exploratory moves in that direction and assign a new virtual centre

of mass on that direction if a better point has been obtained than the previous

76

fittest points. If the best (fittest) point remains the same after the local search

phase then go straight to step 5.

STEP 5: Check the stopping criteria. If it is met stop; else go back to step 3.

Definition, abbreviation and value intervals for the algorithm specific parameters are

listed in Table 3.12.

The proposed idea on this study is to speed up the search by checking some local

points after the crunching phase of the main global search algorithm so as to

maximize improvement probability. The neighboring points check procedure should

be carried in the guided and limited direction(s). Otherwise, checking random

neighbors or complete set of neighbors can cause unacceptable processing time or

even search stagnation. In this study, the proposed local search moves of the

hybridization procedure are based on defining a possible improving direction to

check neighboring points. Between iterations, the movement of the best point forms

a basis for linear search direction definition. Search directions are generated by

utilizing auto regression on the locations of the representative points of consecutive

crunch phases. The local search operation can be performed for a few predetermined

numbers of steps on these directions so abstaining from sticking into a local optimum

point. Any local search method can be utilized in these generated directions; here,

expansion and contraction moves of basic simplex search method and dichotomous

search algorithms are exploited for the local search phase of hybridized optimization

method.

77

Table 3.12 : Definition of algorithm parameters.

Abb. Definition Value Interval Data
Type

N population size 1N D≥ + , if NM

crunching is used

integer

nmb allowed function evaluation budget for the

NM crunching phase (if used)

nmb < total function

evaluation budget (FE)

integer

nmt NM crunching tolerance error (if used),

(algorithm ends either nmb or nmt fulfilled)

0 < nmt < ∞ double

nh number of expansion/contraction steps

performed between each iteration

0 < nh < total function

evaluation budget (FE)

integer

Tfe Normalized crunching phase switching

parameter: After Tfe proportion of total FE

carried switch to NM crunching

0 ≤ Tfe ≤1 double

sm explosion strength adjusting parameter,

determines mean step size of banging phase

1 ≤ sm ≤ ∞ double

3.4.2 Simulation results for BBBC-LS

To evaluate the performance of the newly proposed hybrid method (BBBC–LS), the

algorithm is applied to four test functions with distinct characteristics, selected from

the benchmark test bed proposed for the CEC’05 Special Session on Real–Parameter

Optimization (Suganthan et al, 2005). Three-dimensional mappings for two

dimensional search spaces of the selected benchmark functions are given in Figure

3.18. In the simulations, 10 dimensional versions of these functions are used.

Mathematical expressions, search range, global minimum function values and basic

properties for the benchmark functions are given in Table 3.13.

78

Figure 3.19 : Benchmark test functions from CEC’05 competition. (a) Shifted
Sphere, (b) Shifted Rotated Griewank, (c) Shifted Rotated Rastrigin, (d) Shifted

Rotated Weierstrass.

To verify the effectiveness of the proposed approach, three well known optimization

routines are utilized on the same test functions: Genetic Algorithm (GA) is probably

the most commonly accepted umbrella term covering many variants. Covariance

Matrix Adaptation Evolutionary Strategies (CMA–ES) and Particle Swarm

Optimization (PSO) have also been successfully applied in many research and

application areas over the past few decades. For comparison purposes, GA is used as

implemented in the Global Optimization Toolbox of Matlab R2010a; CMA–ES is

used as detailed in (Hansen et al, 2003; Hansen, 2006; Hansen et al, 2009) and code

is used as the January, 2011 version in Hansen’s web page (Url-1); and PSO Toolbox

(Url-2) is used for particle swarm evaluations.

79

Table 3.13 : Summary of the benchmark functions (D = 10).

Function Minimum Search Range Properties
Shifted Sphere:

2
1

1

1 2 Dz=x-o, x=[x ,x ,....x]

D

sphere i

i

F z bias
=

= +∑

1bias =–450 Dx [-100, 100]∈

–Unimodal

–Shifted

–Separable

–Scalable

Shifted Rotated Griewank:
2

2
1 1

1 2 D

cos() 1
4000

z=(x-o)*M, x=[x ,x ,....x],

M = M'(1+0.3|N(0, 1)|)

M': Linear Transformation Matrix with

 condition number 3

DD
i i

griewank

i i

z z
F bias

i= =

= − + +∑ ∏

2bias =–180 Dx [-500, 0]∈ –Multi–modal

–Rotated

–Shifted

–Non–Separable

–Scalable

Shifted Rotated Rastrigin:

2
3

1

1 2 D

(10cos(2) 10)

z=(x-o)*M, x=[x ,x ,....x],

M: Linear Transformation Matrix with

 condition number 2

D

rastrigin i i

i

F z z biasπ
=

= − + +∑

3bias =–330 Dx [-5, 5]∈ –Multi–modal

–Rotated

–Shifted

–Non–Separable

–Scalable

–Huge Number of
Local Optima

Shifted Rotated Weierstrass:
max

max

1 0

4
0

max

1 2 D

([cos(2 (0.5))])

 [cos(2 0.5)]

a=0.5, b=3, k =20,

z=(x-o)*M, x=[x ,x ,....x],

M: Linear Transformation Matrix with

 condition

kD
k k

weierstrass i

i k

k
k k

k

F a b z

D a b bias

π

π

= =

=

= + −

+

∑ ∑

∑

 number 5

4bias =90 Dx [-0.5, 0.5]∈ –Multi–modal

–Rotated

–Shifted

–Non–Separable

–Scalable

–Continuous

–Differentiable
only on a set of
points

Table 3.14 reports the benchmark function scores for all algorithms at the end of 500

/ 1000 / 2000 function evaluations (FE) for 1000 independent runs. In these

simulations, BBBC–LS algorithm uses the following parameters: N = 15, nh = 2, Tfe

= 0.6, sm = 10, nmt = 0.1 / (1 + k / sm) where k is the iteration number. As local

80

directional move, dichotomous search is used. Stopping criterion for the NM

crunching phase is chosen to be termination tolerance, therefore NM crunching

budget (nmb) parameter set to infinity. The other algorithms are optimized only for

population size; all the remaining algorithm specific parameters are either left as

default / suggested parameters or self tuned by the algorithm itself.

Table 3.14 : Average performance scores.

Sphere FE: 500 FE: 1000 FE: 2000
GA –433,502 –445,616 –448,277
CMA–ES –449,688 –449,997 –450.000
PSO –422,404 –441,127 –449,009
BBBC–LS –448,667 –449,838 –449,979

Rastrigin FE: 500 FE: 1000 FE: 2000
GA –231,448 –273,896 –276,315
CMA–ES –246,733 –274,883 –309,702
PSO –230,444 –262,460 –287,820
BBBC–LS –299,244 –309,962 –310,070
Griewank FE: 500 FE: 1000 FE: 2000

GA –53,481 –99,3917 –116,699

CMA–ES –169,161 –169,982 –170,983

PSO –167,573 –173,789 –179,555

BBBC–LS –174,719 –177,160 –178,314

Weierstrass FE: 500 FE: 1000 FE: 2000

GA 101,271 99,491 99,510

CMA–ES 101,640 97,047 94,414

PSO 100,386 98,850 98,866

BBBC–LS 98,316 97,020 95,223

Table 3.15 and Table 3.16 serve for summarizing the performances of the

algorithms: In Table 3.15, every entry gives the order for the corresponding

algorithm at the end of corresponding FE budget. Table 3.16 reports the number of

being the best method on 4 test functions and 3 different FE levels (summing up 12

cases) and assigns an overall rating considering the mean place.

The power of BBBC–LS lies not only in its capability for quick convergence but also

in its low level of complexity. There are a few number of parameters to be tuned: the

user should select the population size (N), number of expansion/contraction steps

(nh), NM crunching budget (nmb), NM crunching tolerance (nmt), crunching phase

switching parameter (Tfe) and the explosion strength adjusting parameter (sm).

However, GA, CMA–ES and PSO have many parameters to be selected by the

81

designer, though many variants of these methods generally offer self selection /

adaptation of these parameters settings.

Table 3.15 : Order of algorithms (1: Best, 2: Second, 3: Third, 4: Worst).

Sphere FE: 500 FE:
1000

FE:
2000

Griewank FE:
500

FE:
1000

FE:
2000

GA 3 3 4 GA 4 4 4
CMA–ES 1 1 1 CMA–ES 2 3 3
PSO 4 4 3 PSO 3 2 1
BBBC–
LS 2 2 2

BBBC–LS
1 1 2

Rastrigin FE: 500 FE:
1000

FE:
2000

Weierstrass FE:
500

FE:
1000

FE:
2000

GA 3 3 4 GA 3 4 4
CMA–ES 2 2 2 CMA–ES 4 2 1
PSO 4 4 3 PSO 2 3 3
BBBC–
LS 1 1 1

BBBC–LS
1 1 2

Table 3.16 : Summary of algorithm comparison.

Algorithm # of first
rankings

Average
ranking

Overall
rank

GA 0 3.5833 4
CMA–ES 4 2 2
PSO 1 3 3
BBBC–LS 7 1.4167 1

There are many metrics on algorithm complexity but neither of them is universally

accepted. In CEC’05, running time difference between 200000 function evaluations

(T1) and the complete computing time for the algorithm with 200000 function

evaluations (T2) have been normalized with a run time of reference mathematical

function (T0) on a dedicated computer. This can be formulated as in (3.8),

2 1

0

T T
Complexity

T

< > −
= (3.8)

where < . > symbol stands for averaging function over multiple runs. The details

for the complexity analysis can be further investigated on Suganthan et al. (2005).

The results for complexity analysis can be found in Table 3.17. The test function

used for complexity analysis is randomly chosen to be as the shifted rotated

Weierstrass function.

82

Table 3.17 : Complexity Analysis.

Algorithm CEC–2005

Complexity

Run Time (s) Number of

Parameters to

Adjust

GA 27.9551 189.6874 13

CMA–ES 44.9625 294.4760 24

PSO 25.1343 172.3075 14

BBBC–LS 12.8308 96.5014 6

3.5 Conclusion

A simple but effective hybridization procedure for the Big Bang–Big Crunch

optimization algorithm is presented in this chapter. The method generates a direction

vector from the past positions of the best individuals found so far and investigates on

this line with extraction or contraction moves. This local search phase is modular and

works without interception to the original BB – BC algorithm. Moreover, the

crunching phase of the algorithm is expanded to include a simplex based approach;

namely, the Nelder– Mead optimization method.

The crunching phase using the Nelder – Mead optimization method improves the

exploitation capability of the BB–BC algorithm so, it is more appropriate to use it

towards the final steps of the search. Therefore, the proposed method introduces a

switching parameter (Tfe) for crunching phase selection. Then, at the early iterations,

weighted mean of the candidate member solutions or the best solution member is

selected as the centre of mass; whereas, after the switching condition is fulfilled, NM

crunching is used for more exploitive search. The switching threshold parameter is

assigned at the beginning and kept constant throughout the search, but it is a

promising idea to adapt this parameter in a dynamical manner. This adaptation could

be performed based on a feedback controller observing the population diversity and

history of the population diversity.

The simulation results on various test functions clearly illustrate the superiority of

adding local directional moves over the original BB – BC algorithm. The accuracy

achieved by the newly proposed method within the same number of fitness function

evaluations is quite considerable and makes this routine worthy. Moreover, as a

83

compact new algorithm, BBBC–LS turns out to be a good alternative to the widely

accepted state–of–the–art evolutionary optimization algorithms. Its accuracy is better

or at least comparable for the tested benchmark functions and the complexity and

running time are far better than GA, CMA–ES and PSO.

84

85

4. SINGLE LEAP-BIG BANG BIG CRUNCH OPTIMIZATION APPROACH

TO SINGLE OBJECTIVE AIRPORT GATE ASSIGNMENT PROBLEM

4.1 Introduction

The air transportation becomes more and more widespread during the past fifteen

years. As well as the opportunity of travelling long distances in reasonable short time

duration, the moderate prices due to competition of the companies made several

travelers to choose airline industry. These facts tremendously increased the traffic in

the airports compared to mid-1990s. In addition, the hub-and-spoke system has

resulted in a large volume of baggage and passengers transferring between flights

(Bazargan, 2004). Assigning arriving flights to airport gates is therefore an important

issue in daily operations of an airline. It has a major impact on maintaining the

efficiency of flight schedules, passenger satisfaction and the revenue obtained.

The problem of finding a suitable gate assignment is generally handled in three

levels. In the first level, the ground controllers use the flight schedule to examine the

capacity of the gates to accommodate these flights. The second level involves the

development of daily plans before the actual day of operation. In the third level,

because of the unexpected situations such as delays, bad weather, mechanical failure

and maintenance requirements, these daily plans are updated and revised on the same

hour/day of the operation (Bolat, 2000). In this chapter, the second and the third

levels of operation are considered.

Possible objective functions can be defined in terms of the staying time of the planes

in the gates, number of passengers in aircrafts, the total walking distances belonging

to the passengers of all scheduled flights within a specified and closed time interval.

Therefore, the problem formulation can vary quite a lot due to this large span of

objectives. Moreover, basic gate assignment problem is NP-hard (non-deterministic

polynomial-time hard) (Obata, 1979) quadratic assignment problem. Because of

these, there are various approaches to this problem in the literature with respect to

requirements imposed. The solution approaches have two heavily interacting main

branches: rule based expert systems and mathematical models. In the implementation

86

given in this chapter, the GAP objective is to maximize total gate time as an integer

programming mathematical formulation that uses multiple time slots and the basic

constraint that allows one flight at one gate at one time. No rule-based expert system

is utilized algorithm; but in the system developed for Atatürk Airport, the constraints

are processed by user-defined rules.

Teodorovic & Guberinic (1984) and Teodorovic & Stojkovic (1990) focus on total

passenger delay and the number of flights cancellations in the case of irregularity of

flights. Among other possible criteria, passenger walking distances (Hu & Paulo,

2007; Ding et al, 2004; Ding et al, 2004; Ding et al, 2005; Haghani & Chen., 1998;

Babic et al, 1984; Wirasinghe & Bandara, 1990; Bandara & Wirasinghe, 1992);

baggage transfer distances (Hu & Paulo, 2007; Haghani & Chen., 1998) are also

considered. Chang (1994) considers the distance covered by passengers in carrying

their baggage as an objective in addition to passenger walking distance. Even any

objective criterion has factions in implementation: for example, passenger walking

distance can be handled as,

I. minimize the sum of total distance that all passengers walk,

II. minimize the distance after baggage claim area,

III. minimize connection flight travelling distance,

IV. minimize the maximum distance that a passenger need to walk

V. minimize the number of passengers that need to walk more than x units.

The list can be further extended. Unfortunately, assignment objectives depending on

passenger walking distance are quite fragile (Dorndorf et al, 2007).

Genetic Algorithms (GAs) are the most known and widespread used global

optimization methods. Since GAs use random number generators and they exhibit an

ability to avoidance to get trapped to local optima they are considered to be

successful search procedures when the objective function is nonlinear, non-derivative

and discontinuous. Some researchers proposed GA based methods for the gate

assignment problem (Gu & Chung, 1999; Hu & Paulo, 2007; Bolat, 2001). All the

approaches utilizing population based routines, including GA based approaches, use

global optimization methods to top down solve the problem or to improve the result

of some heuristics. However, forming a complete solution candidate or altering the

list once all the flights are assigned can be quite tardy for GA or similar GA like

87

stochastic methods since they oblige to check all constraints to build up a valid

solution. Therefore, using stochastic methods to ameliorate assignment after all the

list has been built up is not a good solution alternative for GAP in practical

applications.

For the Đstanbul Atatürk Airport’s operator, criterion of highest priority is to increase

the revenue obtained from the gate allocation operation. The most important

parameter in the revenues is therefore the allocated gates, which are available in a

limited number. The more efficiently the gates are assigned to the aircrafts, the lesser

idle time is left between two successive flights and this means that more passengers

use the gates. Hence, the revenue and passenger satisfaction are both increased.

Flight gates are the major items addressed in the GAP. At Đstanbul Atatürk Airport,

as well as the most of the airports throughout the world, the revenues are majorly

dependent upon assignment of an airplane to a gate or not. This leads to a cost

function which changes greatly if an airplane is assigned to a gate or not. This gives

rise to a discontinuous objective function or more generally, a cost or fitness function

where inter-gate aircraft switches do not have a great influence on it.

Next section gives the mathematical description of the problem. The details of the

proposed method are presented in section 3, the simulation results are given in

section 4. The developed system for the Đstanbul Atatürk Airport this airport is given

in section 5. The concluding remarks of the chapter are finally given in section 6.

4.2 Problem Formulation

The objective is to maximize gate duration, which is total time of the gates allocated

for all flights of a day. The basic constraint of the GAP imposed in the formulation

can be stated as follows: one gate can only accommodate a single aircraft at a time

and that therefore two flights must not be assigned to the same gate if their staying

times overlap in time (Dorndorf et al, 2007). To measure density of the gates, the

whole day is sampled for n minutes, where n can be chosen as 5 or 10 in a practical

application. Note that selection of the length of a time slot directly effects the

algorithm run time. In literature, selected time slots are in between five minutes and

one hour duration (Bolat, 1999; Bolat 2001; Haghani & Chen., 1998). This time

interval corresponding to n minutes is called a time slot and the density is measured

by counting allocated timeslots.

88

The parameters related to gate assignment problem are defined as follows:

N: number of aircrafts,

Ng: number of gates,

Noa: number of open air parking places

Ns: number of stands where Ns = Ng + Noa

Nt: number of time slots in a day (depends on time slot length n, Nt = 24*60/n)

TA(i): arrival time of flight i,

TD(i): departure time of flight i,

Mu: (NxNt) matrix of aircrafts (scheduling) where,

Mu(i,j) = 1, if the aircraft i is at the airport in time slot j according to TA(i) and

TD(i),

 Mu(i,j) = 0, if otherwise.

Mc: (NsxNt) matrix of assignments (gate assignments) where,

Mc(i,j) = U, (U=1,...,N), if the gate i is assigned at time slot j to the Uth flight,

Mc(i,j) = 0, if otherwise.

The function to be maximized can be formulated as in (4.1),

1 1

((,))
tNNg

fitness c

k l

F any M k l
= =

=∑∑ (4.1)

where,

any(Mc(k,l)) = 1, if Mc(k,l) ≠ 0;

any(Mc(k,l)) = 0 , if otherwise.

Figure 4.1 illustrates an assignment list for the planes. The vertical axis represents the

gates available and the horizontal axis is the time. The list is given for a whole day.

The planes, depicted as horizontal bars, are shown to occupy the corresponding gates

for certain sojourn.

89

Figure 4.1 : A sample gate allocation.

Figure 4.2 illustrates certain focused area of Figure xxx; that is, the assigned planes

to the first 5 gates for the time interval of 8am to 10am. In this specific interval, first

gate has no assigned planes; whereas, second gate resides the plane 01 for one time

slot and the plane 18 for three time slots. Time axis is displayed in discrete version

where each day has been divided into (24*60/n) timeslots.

Figure 4.2 : A sample gate allocation – condensed view.

4.3 Heuristic and Optimization Based Solution Approaches

In this section, firstly a greedy method from the literature will be introduced.

Secondly, a new heuristic method that has been named as ground time duration

maximization algorithm (GTMA) will be discussed. Finally, one of the main

contributions of this thesis work, implementation of the Single Leap-Big BangBig

Crunch (SL-BBBC) method will be given.

90

The design of an efficient heuristic becomes a paramount importance and constitutes

the key focus of this important application (Xu & Bailey, 2001). Deterministic

solutions provide a good initial starting point for the stochastic algorithm. Starting

with the best heuristic solution, the stochastic approaches can improve the solution

by modifying the assignment list that is given in Figure 4.1. On contrary to all the

previous work so far done in this area, the newly proposed method does not work on

the final assignment list, but on the plane ordering process. Plane ordering process

can be defined as assigning priority for all the planes with respect to a chosen

criterion. Once all the planes are ordered, they are tried to be allocated starting from

the one having highest priority. By doing so, all the constraint satisfaction checks

needed after a modification on the assignment list can be omitted. Besides this, new

approach can be used with any heuristic that constitutes a basis for ordering – or

priority assignment – for the flights and with the allocation module in any airport

having different constraints.

4.3.1 Heuristic approaches

4.3.1.1 A previously reported heuristic: Greedy algorithm for minimizing the

number of flights assigned to the apron

In their previous works, Ding et al. (2004a, 2004b, 2005) proposed a greedy

algorithm to minimize the number of the ungated flights. The flights are ordered with

respect to departure times and assigned to the gates one by one respecting this order.

If there are no gates available, then that flight is assigned to the apron. The algorithm

steps are summarized for quick referencing as below:

STEP 1: Sort the flights according to the departure time TD(i).

STEP 2: Set gk = -1 for all gates where gk (1<k< Ng) represents the earliest available

time in

gate-k (that is the departure time of the last assigned plane to gate-k).

STEP 3: For each flight i find gate-k such that gk< TA(i) and gk is maximized

(i) if such k exists, assign flight i to gate-k, update gk = TD(i).

(ii) else assign flight i to the apron.

STEP 4: Output the result.

91

The algorithm is proven optimum for minimizing the number of flights assigned to

the apron but it has a weakness in maximizing the total gate time if the early

departing flight is a short staying one as illustrated in Figure 4.3.

Figure 4.3 : Failure of greedy method.

4.3.1.2 A new heuristic approach: Ground time duration maximization

algorithm (GTMA)

GTMA is designed with the objective to maximize the total gate duration. The

underlying idea is to sort planes with respect to their staying durations and then

allocating them one by one. That is to say, the longest staying plane is assigned with

the highest priority:

STEP 1: Pick the flight with longest time interval between its arrival and departure,

STEP 2: Start from gate #1,

STEP 3: Assign the flight to the gate if possible; else, select the next gate and repeat

the procedure until finding a vacant gate.

STEP 4: Remove the flight from the list once it is assigned.

STEP 5: Go to step #1 until all the flights have been assigned.

This heuristic method generates an order for the allocation process as the greedy

method. The long staying flights are assigned in the first place and the flight with

smaller gate durations can be inserted in between these larger gate durations.

However, this method may not be optimal for certain cases with respect to gate time

maximization criterion as illustrated in Figure 4.4.

92

Figure 4.4 : Illustration of failure of GTMA.

4.3.2 Single Leap-Big Bang Big Crunch algorithm (SL- BBBC)

All the studies in GAP that are based on evolutionary algorithms focus on modifying

the final assignment list given in Figure 4.1 in different ways. This makes the

running procedure highly nonlinear and that causes very long run time for the

algorithm. This is unfavorable or unacceptable in most cases because frequently

occurring delays in the flights pin down a quick reconfiguration of the gate

assignment list.

Single Leap-Big Bang Big Crunch (SL-BBBC) algorithm makes its progress on an

individual which is initially assigned by the deterministic solution developed by any

heuristic plane ordering algorithm. SL-BBBC algorithm is used after the heuristic

GTMA since it provides much better results compared to greedy heuristic method

reported in Section 4.3.1.1. In Single Leap-Big Bang Big Crunch (SL-BBBC)

algorithm, there is no population of solutions, so no information exchange between

solution candidates will take place. For this reason, the BBBC algorithm has been

renamed as ―Single Leap-Big Bang Big Crunch. The unique solution at hand is

modified at each iteration step and if a better solution is attained, then the next

iteration works on newly generated solution. In summary, aforementioned GTMA

algorithm is used to find deterministic solution and then the solutions are further

improved by using SL-BBBC, that is to say, the deterministic algorithms serve initial

point for the evolutionary algorithm.

Key point is that the SL-BBBC algorithm works on the assignment order of planes

instead of the final assignment list itself. Once the initial assignment list and the

93

order of plane assignment have been obtained, SL-BBBC algorithm is conducted on

the assignment order for further improvement.

The flight list is input for the plane-ordering module, which is followed by the

allocation module. The final output is the assignment list (Figure 4.).

Figure 4.5 : Algorithm flow.

94

The new assignment methodology can be summarized as follows:

STEP 1: Apply GTMA and find an assignment list.

STEP 2: Log the order in which the planes are assigned.

STEP 3: Apply SL-BBBC to find better assignment list.

SL-BBBC algorithm can be implemented in three possible formulations.

a. Interchanging the order of only two flights with random distances away

from a random center in the ordering list: In Figure 4.6, the center is

chosen to be the position of Flight #3 and the distance is chosen to be two

units. Then Flight #1 and Flight #5 interchange the positions. Note that

the distance here is related with the explosion strength and center is

related with the center of mass in the original BB-BC algorithm (Erol &

Eksin, 2006).

Original Order

Result of one

 BBBC iteration

Flight #1

RE - ORDERING

Flight #5

Flight #2 Flight #2

Flight #3 Flight #3

Flight #4 Flight #4

Flight #5 Flight #1

Flight #6 Flight #6

Flight #7 Flight #7

Figure 4.6 : Reordering of the flights: Type-a reordering.

b. Randomly permuting the flights in between randomly selected two points.

In Figure 4., all the flights between Flight #2 and Flight #6 are

reordered. Number of flights to be rearranged is correlated with the

explosion strength.

c. Interchanging the order of N random flights pairs with random distances

away from random centers in the list. This is a generalized version for

case (a). Here, both the number of changes and the distances in between

are related with the explosion strength that is getting smaller as the

number of iterations increase (Figure 4.).

95

Original Order

Result of one

 BBBC iteration

Flight #1

RE - ORDERING

Flight #1

Flight #2 Flight #4

Flight #3 Flight #3

Flight #4 Flight #6

Flight #5 Flight #2

Flight #6 Flight #5

Flight #7 Flight #7

 Figure 4.7 : Reordering of the flights: Type-b reordering.

Original Order

Result of one

 BBBC iteration

Flight #1

RE - ORDERING

Flight #5

Flight #2 Flight #2

Flight #3 Flight #4

Flight #4 Flight #3

Flight #5 Flight #1

Flight #6 Flight #6

Flight #7 Flight #7

Figure 4.8 : Reordering of the flights: Type-c reordering.

4.4 Simulation Results

4.4.1 Simulation results with artificially generated dataset

 In this section, the performance results are provided to demonstrate the effect of SL-

BBBC method over test data sets. Dedicated test data generator has been developed

that considers the following parameters as inputs:

I. the proportion in between total time slot demand and total available discrete

time slots, d

II. prime time traffic factors, p1 and p2;

III. mean staying time for a plane, m;

IV. standard deviation for staying times of all arranged flights, σ.

96

The user of this test data generator can define at most two prime time (high gate

demand time interval during a day). When a flight is generated by the adjusted

parameters, it will be assigned to each prime time with a probability equal to the

chosen factor of the corresponding prime time. Even if it is not assigned to prime

time by this step, the flight can still be assigned to that region by coincidence. The

test data generator makes up the whole flight list accordingly. The mean, standard

deviation and prime time factors are directly used in daily flight list generation.

However, the ratio of demanded slot/available slot (= demanded gate duration /

available gate time) is used to find the necessary plane number and then this value is

assigned with some uniform random number in the vicinity of 10%. This simple

manipulation is done just for the diversity of the plane numbers for batch data file

generation. Figure 4. shows the graphical user interface for the test data generation

software. For a sample (not optimized) view for the selected parameters, one may use

“Sample allocation” button. Then, “Generate” button produces data files derived by

the selected parameters at the instant. The passenger flow generator, walking

distance parameters and preference value generator models are used in chapter 6.

Figure 4.9 : Graphical user interface for problem instance generation.

Data generation steps for a single day is as follows,

97

STEP 1: Find total gate duration demanded, Tt, in terms of discretized time

slot number, (4.2)

 Tt = d * Ng*Nt (4.2)

where Ng is the number of gates and Nt is the number of time slots in a whole day.

STEP 2: Find number of planes, N, to be generated, (4.3),

N=round(Tt /m+10*rand) (4.3)

where rand is a uniform random number in the interval [-1, 1]. round function

produces the nearest integer as the number of planes should be an integer value.

STEP 3: For all N planes, pick up an integer gate duration value from normal

distribution with mean m and standard deviation σ that are defined by the user.

STEP 4: For all N planes, assign the plane to the corresponding prime time

region with a probability chosen by the user.

STEP 5: For the planes not allocated to the prime time regions, randomly

assign arrival indexes that are convenient with the gate time determined in step 3.

The number of files to be produced can also be changed. “Number of Gates”

parameter is arranged to depict preferable first Ng gates. In this specific example, the

parameters are selected as follows:

Ng = 15, Noa = 25 and Ns = 40.

Three different files representing three different characteristics for a flight schedule

are generated:

1) Moderate data set: This data set structure is close to data set structures

observed in Turkey Airports. There is a relatively high demand for certain

time slots during the morning and evening. Average gate time is close to an

hour and median value is nearly half an hour. Demanded gate time does not

exceed available gates. That is to say, the ratio of demanded time slot /

available time slot is less than one. However, there occur un-gated flights due

to lack of perfect fitting of gate durations.

2) High gate demand distributed uniformly: There are considerably larger

demand for the same number of gates with data set-1. The ratio of demanded

time slot / available time slot is slightly larger than one and this causes

98

irrepressible ungated flights. There are no intended peaks on the gate

demands throughout the day.

3) High gate demand with demand peaks: Demanded gate duration / available

gate time is same with data set-2. In this data set, the mean staying time for

the flights are quite decreased (represents the flight schedule for an airport

having very crowded traffic and many connection flights) and two regions of

demand peak are defined, one of them hosting the 35% of the total flights.

Every experiment is carried for 100 times. The results are analyzed to yield mean,

median, standard deviation, maximum and maximum of deviations and some of these

are reported whenever appropriate.

Each stand at the airport has full vacancy at start. The whole day is divided into 5

minutes time intervals summing up 24 * 60 / 5 = 288 time slots. When scoring an

assignment list, first Ng = 15 stands are concerned. Each assigned time slot at the first

Ng stands equally contributes to the scoring. For example, a plane arriving at

08:00am and departing at 11:00am stays for 36 time slots and if the plane can be

assigned to one of the score contributing stands, the overall score for the assignment

list will increase by 36.

Table 4.1 reports the average results over 30-days. Note that the SL-BBBC

algorithm is only allowed to run for 2500 fitness evaluations taking less than 1

minute in Intel Core 2 Duo Processor. Though three different approaches for SL-

BBBC implementation have been tried through simulations, only the last one coded

as SL-BBBC version-c is reported since it yielded the most successful results. Figure

4., Figure 4. and Figure 4. show the cost scores of the three algorithms with respect

to days.

Table 4.1 : Mean cost values for synthetic dataset (each consists of 30 days data).

Method Moderate
data set

High gate
demand
distributed
uniformly

High gate
demand having
demand peaks

Greedy Method 2847.23 3004.50 2913.77

GTMA 3440.33 3715.56 3285.63

SL-BBBC 3483.67 3760.08 3308.20

99

Figure 4.10 : Comparison of the three algorithms for moderate data set.

 -

Figure 4.11 : Comparison of the three algorithms for high gate demand distributed
uniformly data set.

100

Figure 4.12 : Comparison of the three algorithms for high gate demand with demand
peaks data set.

4.4.2 Simulation results with actual field data

In this part, the experiments are performed on the data collected from the Atatürk

Airport in Đstanbul. Data collected are for 31 days of month January 2009 and

represent an average of 300 planes per day. The problem at hand is, again, squeezing

maximum planes to the gates.

All the testing procedure and analyzing parameters are the same with tests performed

in section 4.4.1.

Table 4.2 reports the cost values of random ordering, in which the planes are ordered

randomly (average on 100 random ordering for each day results are averaged over

whole days); greedy method, GTMA, Random re-ordering over GTMA, where

heuristic method‘s outputs are randomly interchanged for the same iteration number

as SL-BBBC; and finally SL-BBBC method.

Greedy method performs even worse than random ordering average in this data set.

Besides, even if one starts from a good initial point then it is observed that

interchanging the plane orders in a totally random manner makes not much

difference in performance; whereas, being a systematic method, applying SL-BBBC

101

algorithm with good initial conditions is still able to create respectful difference in

performance. Note that the average cost score of random ordered allocations is

somewhere near 2866 and GTMA heuristic improves this score by 16 percent. The

stochastic neighborhood search method further improves the results by 9.6 percent of

the previous improvement. That is to say, SL-BBBC algorithm starts from a quite

acceptable solution and further improves the solution; on the other hand, if it had

been started from a random solution candidate (that is a random ordering of the

planes) the improvement would have been much more in the expense of process

time. The algorithm is optimized both in terms of objective function value and

process time by using an initial solution generated by a deterministic heuristic

method.

Table 4.2 : Mean cost values for 31 days.

Method Real world data
set

Random ordering 2866.71

Greedy method 2761.52

GTMA 3327.39

Random re-ordering 3333.00

SL-BBBC 3371.53

The annual profit (company confidential) obtained by this final improvement

justifies the importance of the new algorithm. Figure 4. clearly shows the

improvement gained in using the SL-BBBC method in daily basis.

Since the total run time for the SL-BBBC algorithm is less than one minute it allows

quick restructuring of the assignment table. That is one of the most powerful aspects

of the algorithm for the practical applications. The method is compatible with any

cost function evaluation but the algorithm speed heavily depends on cost function

process time. Moreover, if the algorithm were allowed to evaluate more candidate

fitness values, the objective function value scores could have been further improved.

102

Figure 4.13 : Comparison of GTMA and SL-BBBC in a real world data set.

4.5 Application at Atatürk Airport of Đstanbul

The proposed algorithm is used on a real world application to work both as an off-

line and on-line gate allocation module in one of the most frequented airports of

Europe, Đstanbul Atatürk Airport. The software developed is a resource management

system having the architecture given in Figure 4.13. The gate assignment automation

is implemented on ROTA Engine Server. The detailed explanations for the other

components are beyond the scope of this work and deliberately omitted here.

The Resource Management System (RMS) can be used as a web-based or desktop

application. Thus, a variety of users with different devices throughout the airport can

utilize the system in a collaborative manner. The user interface, Dashboard includes

touch screen capability to maximize usability and control. Dashboard is designed

mainly for maximizing monitoring capabilities according to the needs of control

centre staff. Figure 4., Figure 4. and Figure 4. gives some example screenshots

from the Dashboard.

103

Figure 4.14 : The architecture for the resource management system.

Figure 4.15 : An example gate allocation screen when flight information window is
open.

104

Figure 4.16 : An example gate allocation screen when manual edit window is open.

Figure 4.17 : Operator display for gate allocating (taken from Atatürk Airport with
courtesy of TAV Bilişim A.S.)

The operator can display the statistics of assignment as well as the basic information

about a particular flight. The flight list and the assignment list; the inputs and outputs

of the system are displayed concurrently.

The core module of RMS is the Rule & Optimization Engine. The rule engine

enables authorized personnel to model the constraints and relationships both for

105

resources and tasks through all their possible attributes according to market

considerations and airline/agent preferences. These task-oriented rules can be based

on the following groups and extended according to other classes and attributes:

I. Airport-based

II. Terminal-based

III. Airline-based

IV. Based on Registration Number

V. Other (i.e. recurring assignment rules, etc.)

Predictably, because planning staff will utilize so many of the above constraints, it is

inevitable that some of them will overlap. Although, in some cases, this can be a

preferred result in terms of operational workload, some unexpected and undesired

results may occur under normal circumstances. The rule engine module resolves this

issue with a scoring mechanism and the overlapped constraints can be managed

using this functionality. In addition to scoring and constraints, there is another

functional parameter that can be accessed in modeling constraints called Soft

Constraints (Preferences). These constraints refer to the rules, which can be violated

by the Optimization Engine under some circumstances in order to meet functional

objectives. At any given time during an operation (and in planning), if there is a

shortage of resources, the system proactively generates automatic conflict messages

with pre-defined solutions. It would be appropriate to point out at this stage that the

SL-BBBC optimization algorithm operates independently from constraint generation.

Optimization Engine sub-module provides optimization of daily tasks based on pre-

defined flight lists. The main idea in developing the optimization engine is to serve

the priorities set by airport operators according to their management policies and

preferences. Some of the common objective functions are given below:

I. Revenue maximization through the optimization of gate and stand

assignments.

II. Maximizing the utilization of gate capacity.

III. Maximizing airport capacity.

IV. Enhancing overall service quality (punctual departures, cost competitiveness

and reliability).

106

V. Minimizing the walking distance for departing and arriving passengers to

provide smooth passenger flow.

These objectives can be evaluated together according to their priority levels simply

by defining the cost function as a weighted sum of the all listed above. It will again

be appropriate to underline that SL-BBBC algorithm used here does not need to

know this fitness function but just needs the score to proceed.

The performance results for the resource management system are given in Table 4.3

and Figure 4.. In Table 4.3, the data collected for the month February of 2010 (28

days) are used and the scores are reported as the average for the month. The GTMA

heuristic improves the cost by 12.49% with respect to manual (random) allocations

and applying SL-BBBC algorithm for 100 iterations (= 100 “leaps”) improves the

results by 22.68% of the previous improvement. For 1000 iterations, this

improvement value is 34.59%. Fig.xxx gives the results in daily basis. The results for

SL-BBBC algorithm for 100 iterations are omitted in order to decrease figure

complexity.

Table 4.3 : Mean cost values for the data collected from resource management
system of Atatürk Airport for month February 2010.

Method Cost Score
Manual allocations 2866.71

GTMA 3327.39

SL-BBBC (100 evaluations) 3333.00

SL-BBBC (1000 evaluations) 3371.53

107

Figure 4.18 : Comparison of the algorithms running on Atatürk Airport. Data are the
28 days of February 2010.

4.6 Conclusion

In this chapter, the airport gate assignment problem is considered as to maximize the

total gate duration of the flights assigned to the gates. Then, the airport gate

assignment problem turns out to be maximizing the total sojourn in the first Ng gates.

A new stochastic approach has been introduced to the problem utilizing a problem

specific modification of Big Bang-Big Crunch optimization algorithm, namely

Single Leap-Big Bang Big Crunch (SL-BBBC). The key feature of this problem

specific evolutionary optimization algorithm, that is also the one of the main

contributions of this Chapter, is to interchange the queue order of the planes

(=flights) to be assigned rather than interchanging the positions of the N planes that

are already assigned. Therefore, the algorithm steps do not interact with the

assignment strategy and they just exchange the order of plane handling by the

determined strategy. This modularity of SL-BBBC makes it compatible with any

assignment logic. This hybridized approach is shown on a simple yet effective

heuristic algorithm, which is abbreviated as GTMA. Starting from a good initial

108

solution obtained by this heuristic and then using the newly proposed stochastic

method is rather effective in terms of process time and the method proposed can be

used in all practical applications.

The results obtained through simulation examples and experiments with real world

data show the effectiveness of the allocation strategy. The modularity of the plane

ordering logic provides great flexibility to work with any constraint-processing

engine. Moreover, this new algorithm does not require any objective score

calculation and does not have to know details on constraints or cost calculation.

These facts are tried to be illustrated at the final section dedicated to the application

study done on the biggest airport of Turkey.

109

5. INTRODUCTION TO MULTI-OBJECTIVE EVOLUTIONARY

ALGORITHMS

5.1 Multi-Objective Problem (MOP) Definitions and Basic Concepts

The multi-objective optimization problem (MOP) is defined by Osyczka (1985) as

follows:

a vector of decision variables which satisfies constraints and optimizes a

vector function whose elements represent the objective functions. These

functions form a mathematical description of performance criteria, which are

usually in conflict with each other. Hence, the term “optimize” means finding

such a solution which would give the values of all the objective functions

acceptable to the decision maker.

A general MOP is formally defined as minimizing (or maximizing) (5.1)

1() ((),....., ())
k

F x f x f x= (5.1)

subject to

() 0, {1,..., } and () 0, {1,...., }i jg x i m h x j p≤ = = =

where ()
i

f x is the objective function, m is the number of inequality constraints and p

is the number of equality constraints. An MOP solution minimizes (or maximizes)

the components of a vector x = (x1,…, xn).

Pareto Optimality: For a given MOP, pareto optimal set (P*) is defined as,

* ' ': { | s.t. () ()}P x x F x F x= ∈Ω ¬∃ ∈Ω p

The solutions in the Pareto optimal set are defined as non-inferior, admissible or

efficient solutions. Corresponding genotypes are the nondominated vectors.

Pareto Front: For a given MOP and Pareto optimal set (P*), the pareto front (PF
*) is

defined as,

110

* *: { () | }PF u F x x P= = ∈

Pareto Optimal Set is defined on genotype space whereas the Pareto front is the

mapping on the phenotype space (Figure 5.1).

Figure 5.1 : Mapping between genotype and phenotype space.

Decision Making: Pareto optimal solutions are those which when evaluated, produce

vectors whose performance in one dimension cannot be improved without adversely

affecting another. The global minimum or the single solution for a multi-objective

problem can be obtained by selecting the best compromise solution in the Pareto

optimal set. Selecting this single solution is the process of decision-making.

5.2 Classification of MOP Solution Techniques

A commonly accepted classification is based on the interaction between optimization

and decision tradeoffs:

 A priori preference articulation (make decisions before search): this group of

techniques includes those approaches that assume either a certain desired achievable

goal or a certain pre-ordering of the objectives can be performed by the decision

maker (DM) prior to the search. The most common methods reported in the literature

are listed as follows:

I. Global Criterion Method

II. Goal Programming

III. Goal Attainment Method

IV. Lexicographic Method

V. Min-Max Optimization

Ω = {� ∈ ℝn} Λ = �y ∈ ℝk �

111

VI. Multi-attribute Utility Theory

VII. Surrogate Worth Trade-Off

VIII. ELECTRE- I

IX. ELECTRE-II

X. PROMETHEE

 A posteriori preference articulation (search before making decisions): These

techniques do not require prior preference information from the DM. These

techniques do not require prior preference information from the DM. Some of the

techniques included in this category are among the oldest multi-objective

optimization approaches proposed:

I. Linear Combination of Weights,

II. є-Constraint Method.

 Progressive Preference Articulation (integrate search and decision making):

These techniques operate in 3 steps (Cohon and Marks, 1975):

STEP 1: find a nondominated solution,

STEP 2: get the reaction of the DM regarding this nondominated solution,

and modify the preferences of the objectives accordingly

 STEP 3: repeat the two previous steps until the DM is satisfied or no further

improvement is possible.

General progressive preference articulation methods are,

I. Probabilistic Trade-Off Development Method,

II. STEP Method and

III. Sequential Multi-objective Problem Solving Method.

5.3 Basic Concepts on Multi-Objective Evolutionary Algorithms (MOEAs)

In many occasions, the problem domain is either too complex to be mathematically

formulate or finding pareto optimal set through classical methods can be

tremendously difficult. These types of problems can be effectively handled utilizing

evolutionary routines. The basic algorithm design concept is to use Pareto-based

112

fitness assignment to identify nondominated vectors from a MOEA’s current

population. A generic MOEA steps can be summarized as follows (Coello Coello et

al, 2007):

STEP 0: Define the MOP:

• determine the mathematical form of objective vector

• determine chromosome representation

• define constraints (dynamic, static, linear, nonlinear, etc.)

• integrate the model into a specific MOEA algorithmic search process.

STEP 1: The MOEA generates PFknown (hard part):

Determine the nondominated sets, generation to generation, via populations.

Converge “close” to the true computational Pareto front, PFtrue.

STEP 2: The MOEA attempts to generate a uniform distribution across the known

Pareto front, PFknown, at the end of each generation.

STEP 3: Select several of the optimal points on the pareto front, PFknown, for decision

maker (DM) consideration.

STEP 4: Determine the associated pareto optimal set, Pknown; implement decision

variable values (i.e., approximation of the Pareto optimal set) as selected by the DM.

STEP 5: Visualize algorithm processing and results as appropriate for improving

MOEA performance (i.e., efficiency and effectiveness).

Through these steps, a MOEA serves for the following goals:

I. to preserve nondominated points (elitism vs. non-elitism) with PFcurrent →

PFknown

II. to progress or guide PFknown towards PFtrue

III. to generate and maintain diversity of points on the PF, (PFknown (phenotype)

and/or Pareto optimal solutions Pknown)

IV. Provide the decision maker (DM) with a limited number of PFknown points.

5.4 Pareto Based MOEA Concepts

A solution strategy for a multi-objective problem introduces three main issues (over

its single objective counterpart). To extract a population of nondominated solutions,

113

dominance based ranking, diversity preservation and secondary population

management concepts are vital.

5.4.1 Dominance-based ranking or fitness assignment

Dominance operator is binary and has two possible results: either one operand

dominates or they do not dominate each other. Besides, dominance operator is

transitive, that is, propositions “A dominates B” and “B dominates C” requires “A

dominates C”.

Regarding the selection and generation of the PF, an ordering method is needed

based on dominance concept. There are three commonly accepted methods on

dominance-based ranking:

I. dominance rank: How many individuals is an individual dominated by (plus

1)? (See Figure 5.2)

II. dominance count: How many individuals does an individual dominate?

(Figure 5.3)

III. dominance depth: At which front is an individual located? Sort.

Given a particular problem domain, selecting any of the dominance based ranking

method, varies the performance (efficiency and effectiveness) considerably.

Figure 5.2 : Dominance rank.

114

Figure 5.3 : Dominance count.

5.4.2 Diversity preservation

Another important issue in designing a MOEA is diversity preservation. Finding

nondominated members is expensive in terms of calculation, so it is important to

select appropriate members to the mating pool as much as possible. To achieve this,

diversity in the population should be preserved and all the search space must be

scanned with nearly equal probability. At the end of the day, the ultimate goal is to

provide a diverse set of PFknown or Pknown points (having a uniform distribution across

the known PF) to the DM. The diversity preservation methods can be investigated in

five categories:

1) Weight Vector Approach: A vector set in fitness/objective space is used to

attempt to diversify points of the Pareto front surface. By changing the

weights, different directions are defined, in order to bias the search, and to

move solutions away from its neighbors.

2) Fitness Sharing/Niching Approach: In most general case of fitness sharing all

the members within a certain radius σshare is penalized. This radius is

frequently called as niche radius. The definition of the niche radius is critical

for algorithm success.

115

In order to apply a fitness sharing function, it is necessary to measure

distances. Such distances can be measured in genotype or phenotype space.

Illustrations for the fitness sharing approach is given in Figure 5.4 and

Figure 5.5.

Other most common fitness sharing approaches are as follows:

� Kernel approach: The density estimator is based on the sum of

distance (vector) measured either in genotypic or in phenotypic space.

� Nearest neighbor approach: The density estimator is based on the

volume of the hyper-rectangle defined by the nearest neighbors.

� Histogram approach: The density estimator is based on the number of

solutions that lie within the same hyper-box.

Figure 5.4 : An illustration of fitness sharing.

116

Figure 5.5 : Another implementation of fitness sharing: Niching by gridding (The
figure is taken from Coello coello et al. (2007)).

3) Crowding/Clustering: The main idea is selecting the surviving solutions

according to region crowdedness metric measured in objective function

space. The approach is similar with fitness sharing but more efficient in terms

of computation complexity. In clustering, many points can be induced to one

representative point. Both approaches provide the elimination of excessive

members before dominance degrees are calculated.

4) Restricted Mating: In this case, diversity is preserved through the avoidance

of certain recombinations. A parameter (σmate) is defined for the minimum

distance that must separate two individuals so that they can mate.

5) Relaxed Dominance: Key point in relaxed domination forms is to use a

certain solution x even though it is worse than some solution y in regards to a

particular objective (value comparison in objective function space). This

relaxation may be compensated by an improvement in other objectives. As an

example in Figure 5.6, if there are more than one nondominated point (since

there are two dimensions, every point can be better in only one dimension in

comparison to the other point) in the same grid, the one improving the most

can be taken as nondominated pruning the others. So, in this minimization

117

problem point 3 is selected over 4 in the nondominated set. Note that 2 is

dominated by 1 and 6 is dominated by 5 and they are out of the scope of

relaxed dominance definition.

Figure 5.6 : A relaxed dominance form.

5.5 MOEA Population Structure

In parameter space, two population structures exist:

1) Pknown: obtained nondominated solutions, updated periodically. (also called

archival, external, secondary population) . It can be perceived as the multi-

objective counterpart of the elitism concept.

2) Pcurrent: main population evolving. Periodically some members or offspring

can promote to the archival population. (Main evolution population is also

called as primary or generational population)

There are continuing discussions on the management of the secondary population.

The main question is “Actively involve Pknown in evolution process or not?” The

addressed issues are:

I. Continuous addition and culling (choosing the addition and culling criteria)

II. Update period selection

III. Clustering or culling in case of size overflow

IV. Homogenizing population distribution or remedy holes in the distribution

� 2� 3� 4� 5�

 5�
 4�
 3�
 2�

�

118

5.6 Baseline Algorithms

There are many evolutionary multi-objective optimization algorithms reported in the

literature. Some of the most used versions include:

I. Multi-Objective Genetic Algorithm (MOGA)

II. Multi-Objective Genetic Algorithm-II (MOGA-II)

III. Nondominated Sorting Genetic Algorithm (NSGA)

IV. Nondominated Sorting Genetic Algorithm-II (NSGA-II)

V. Niched-Pareto Genetic Algorithm (NPGA)

VI. Niched-Pareto Genetic Algorithm-II (NPGA-II)

VII. Pareto Archived Evolution Strategy (PAES)

VIII. Strength Pareto Evolutionary Algorithm (SPEA)

IX. Strength Pareto Evolutionary Algorithm-II (SPEA-II)

In this chapter, only NSGA-II, PAES and SPEA-II are briefly reviewed since they

are used in the most common sense.

5.6.1 Nondominated sorting genetic algorithm-II

 There were three main disadvantages of MOEAs up to 2000s (Deb et al, 2000,

2002):

I. O(MN
3
) computational complexity (where M is the number of objectives and

N is the population size)

II. Non-elitism

III. Need for specifying a sharing parameter.

NSGA-II is proposed to overcome all these disadvantages (Deb et al, 2000). To

improve worst case computational complexity, “Fast Non-Dominated Sorting

Approach” is implemented:

STEP 1: Calculate (for each individual)

I. Number of solutions that dominate p

II. Set Sp of solutions that the solution p dominates

STEP 2: Take members having domination count 0 to the first front. Then visit its set

and decrease the dominance count of the members by one. If any set becomes 0; they

119

constitute the second front. The process terminates once all fronts are identified.

(dominance depth)

For each solution in the second or higher level of nondomination, the domination

count can be at most (N – 1). Thus, each solution p will be visited at most (N – 1)

times before its domination count becomes zero. At this point, the solution is

assigned a nondomination level and will never be visited again. Since there are at

most (N – 1) such solutions, the total complexity is O(N
2
). Thus, the overall

complexity of the procedure is O(MN
2
).

The performance of the sharing function method in maintaining a spread of solutions

depends largely on the chosen σshare value. Since each solution must be compared

with all other solutions in the population, the overall complexity of the sharing

function approach is O(N
2
). However, NSGA-II algorithm introduces fast crowding

distance estimation procedure. This procedure can be summarized as follows:

STEP 1: Sort population according to each objective.

STEP 2: Boundary solutions are assigned an infinite distance value.

STEP 3: For other solutions assign a distance value equal to the absolute normalized

difference in the function values of two adjacent solutions.

STEP 4: Perform this calculation for all objectives.

STEP 5: The overall crowding-distance value is calculated as the sum of individual

distance values corresponding to each objective (objectives are normalized) (Figure

5.7).

Figure 5.7 : Crowding distances.

120

Sorting algorithm governs the complexity of this procedure. Since M independent

sortings of at most N solutions (when all population members are in one front) are

involved, the above algorithm has O(MNlogN) computational complexity.

I. In NSGA-II, a simple crowded comparison operator is used to ensure uniform

spread over the pareto front by guiding selection process. Every member has

two attributes: Nondomination rank (irank)

II. Crowding distance (idistance , Average length of the sides of the cuboid along

the objectives in Figure 5.7).

Then the crowding comparison operator is i ‹ j if irank < jrank || (irank = jrank &&

idistance > jdistance), where ‹ is the crowded-comparison operator.

The pseudocode for NSGA-II algorithm is given in Table 5.1.

Table 5.1 : Pseudocode for NSGA-II.

5.6.2 Pareto archived evolution strategy

PAES algorithm (Knowles and Corne, 2000) is the multi-objective version of the

evolution strategies. It introduces a recursive crowding procedure named as adaptive

gridding. Each solution is placed in a certain grid location based on the values of its

objectives (which are used as its coordinates or geographical location). A map of

such grid is maintained, indicating the number of solutions that reside in each grid

Initialize Population P
Evaluate Objective Values
Assign Rank (level) Based on Pareto dominance - sort
Generate Child Population of size N

Binary Tournament Selection
Recombination and Mutation

for i = 1 to g do
for each Parent and Child in Population do (combined population~elitism)

Assign Rank (level) based on Pareto - sort
Generate sets of nondominated vectors along PFknown
Loop (inside) by adding solutions to next generation starting from the first
front until N individuals found
Determine crowding distance between points on each front

Select points (elitist) on the lower front (with lower rank) and are outside a
crowding distance
Create next generation

Binary Tournament Selection
Recombination and Mutation

location. Since the procedure is adaptive, no extra parameters are required (except

for the number of divisions of the objective space). Furthermore, the procedure has a

lower computational complexity than traditional niching methods (Figure 5.8).

Figure 5.8 : Adaptive Gridding algorithm (The figure is taken from Coello coello et
al. (2007)).

Pseudo code for single individual case is given in Table 5.2. A historical archive

(~secondary population) is used as a reference set against which each mutated

individual is being compared. The pseudo code for archiving test is given in

Table 5.3.

Table 5.2 : Pseudocode for (1+1) PAES

repeat
Initialize Single Population parent, C, and add to archive, A
Mutate C to produce child M and evaluate fitness
if C dominates M

discard M
else if M dominates C

replace C with M, and add M to archive
else if M is dominated by any member in the archive

discard M
else

apply test (C, M, A) to determine which becomes the new current solution
and whether to add M to A

122

Table 5.3 : Pseudocode for archiving test in PAES

5.6.3 Strength pareto evolutionary algorithm-II

The key idea of the strength pareto evolutionary algorithm is to assign degrees to

dominating members in terms of strength measures. SPEA-II (Zitzler et al, 2001)

takes forward to this approach and introduces a fine-grained fitness assignment

strategy, a new density estimation technique and enhanced archive truncation

method. The archive size is fixed, i.e., whenever the number of nondominated

individuals is less than the predefined archive size, the archive is filled up by

dominated individuals (with SPEA, the archive size may vary over time). In addition,

the clustering technique, which is invoked when the nondominated front exceeds the

archive limit, has been replaced by an alternative truncation method which has

similar features but does not loose boundary points. Only members of the archive

participate in the mating selection process.

Individuals that are dominated by the same archive members have identical fitness

values. When the archive contains only a single individual, all population members

have the same rank independent of whether they dominate each other or not.

If the archive is not full
Add M to the archive
if M is in a less crowded region of the archive than C

Accept M as the new current solution
else

Maintain C as the current solution
else

if M is a less crowded region of the archive than X, for some member X in the
archive

Add M to the archive and remove a member of the archive from the most
crowded region

If M is in a less crowded region of the archive than C
 Accept M as the new current solution

else
Maintain C as the current solution

else
if(M is in a less crowded region of the archive than C

Accept M as the new current solution
else

Maintain C as the current solution

123

Therefore, the selection pressure is decreased substantially and in this particular case,

SPEA behaves like a random search algorithm. In SPEA-II, members are penalized

with respect to domination depth (Figure 5.9).

Figure 5.9 : Strength assignments of SPEA and SPEA-II.

Although the raw fitness assignment provides a sort of niching mechanism based on

the concept of pareto dominance, it may fail when most individuals do not dominate

each other. Therefore, additional density information is incorporated to discriminate

between individuals having identical raw fitness values (5.2).

�(�) = �(�) + �(�) (5.2)

where F(i) is the fitness for ith member; R(i) is the dominance based ranking value

and finally D(i) is the density measure for the ith member.

Although the clustering technique used in SPEA is able to reduce the nondominated

set without destroying its characteristics, it may lose outer solutions. However, these

solutions should be kept in the archive in order to obtain a good spread of

nondominated solutions. Therefore, a simple archive truncation method is adopted

(Figure 5.10).

Figure 5.10 : Illustration of the archive truncation method used in SPEA2. On the
right, a nondominated set is shown. On the left, it is depicted which solutions are

removed in which order by the truncate operator.

Pseudo code for SPEA-II algorithm is given in Table 5.4.

Table 5.4 : Pseudocode for archiving test in SPEA-II

5.7 MOEA Testing

The main goal of testing is usually to compare MOEA effectiveness over various

chosen MOPs by measuring solution quality. The test functions used and the metrics

differ quite a lot in comparison with the single objective counterpart. Every

algorithm can maintain a group of nondominated individuals at the end of the run.

Sometimes the result from one algorithm fully dominates the other, which is the

simplest condition. However, generally, some results from one algorithm dominate

some from another algorithm, and vice versa. Another reason for the special

consideration on the performance evaluation is that one is interested in not only the

convergence to PFtrue but also the distribution of the individuals along PFtrue.

Initialize Population P
Create empty external set E
for i=1 to g do

Compute fitness of each individual in P and E
Copy all individual evaluating to nondominated vectors P and E to E
Use the truncation operator to remove elements from E when the capacity of the
file has been extended
If the capacity of E has not been exceeded then use dominated individuals in P to

fill E
Perform binary tournament selection with replacement to fill the mating pool
Apply crossover and mutation to the mating pool

125

Adequately evaluating convergence and distribution is still an open problem in the

field of MOEAs (Yu and Mitsuo, 2010).

Using a test suite of any kind can be useful from a pedagogical perspective in

comparing MOEAs, but in general, may be of little importance when solving real-

world problems. Supporting this judgment, the no free lunch theorem (NFL) states

“if problem domain knowledge is not incorporated into the algorithm domain, no

formal assurances of an algorithm’s general robust effectiveness exist.” Still, a

commonly accepted method is to use test functions first, then performing problem

specific modifications. These test functions must have the following properties

(Husband et al, 2006):

I. The Pareto solution set should not reside at the edge of the feasible domain.

II. The Pareto solution set should not reside in the center of the domain.

III. Benchmark MOPs should have a scalable number of variables so that the

designer and the analyzer can generate arbitrary dimensional MOPs.

IV. Benchmark MOPs should have a scalable number of objectives.

V. The variables of benchmark MOPs should have definition domains of

different magnitudes. This characteristic tests the ability to change mutation

strengths with different variables or the normalization ability of the

algorithm.

VI. The magnitudes of different objectives in PFactual should be different.

VII. The PFactual of the problem can be expressed in explicit expression.

5.7.1 Basic test suites for multi-objective evolutionary algorithms

Most commonly used test suites in the literature are given here for complete

referencing.

1. Van Veldhuizen summarized the multi-objective test problems before 1999 and

selected seven of them as the benchmark (Van Veldhuizen, 1999).

2. ZDT: In 1999, Deb suggested a way to construct multi-objective test problems

systematically (Deb, 1999). In Deb’s method, there is a function h to control the

shape of PFtrue, a function g to test the MOEAs’ ability to converge to PFtrue, and a

function f1 to test the MOEAs’ ability to distribute the individuals along PFtrue. In

126

2000, Zitzler et al. used Deb’s method to generate six benchmark MOPs (Zitzler et

al, 2000).

3. DTLZ: In 2001, Deb et al. developed ZDT to nine scalable benchmark problems

(Deb et al, 2001).

4. OKA: In 2004, Okabe et al. suggested another way to generate benchmark MOPs

with an arbitrary Pareto optimal set shape and PFtrue shape (Okabe et al, 2004). Apart

from two examples to illustrate the effectiveness of the method, Okabe et al. also

introduced a way to measure the convergence difficulty in OKA.

5. WFG: In 2005 and 2006, Husband et al. suggested a new scalable benchmark

MOP suite with nine problems that contain and consider the characteristics and

features discussed above (Husband et al, 2005, 2006).

6. In 2006, Iorio and Li pointed out that rotation might introduce difficulties for

MOEAs and suggested four rotated benchmark MOP examples (Iorio and Li, 2006).

7. In 2006, Deb et al. addressed the importance of parameter dependencies for

designing MOP benchmark problems and developed their ZDT and DTLZ through

variable linkage (Deb et al, 2006)

8. In 2007 and 2009, the IEEE Congress on Evolutionary Computation held special

sessions on multi-objective optimization and multi-objective optimization with

constraints, respectively. The technical reports illustrate the corresponding

benchmark problems (Huang et al, 2007, Zhang et al, 2008).

9. In 2009, Li and Zhang provided a new way of generating MOP benchmark

problems with arbitrary prescribed PFtrue shapes and gave nine examples (Li and

Zhang, 2009).

5.8 Metrics of Performance

Comparing different optimization techniques experimentally always involves the

notion of performance (Yu and Mitsuo, 2010). Performance is not only correlated

with the convergence of the population; but also homogeneous distribution over the

pareto front and the coverage:

1) Convergence: The distance of the resulting nondominated set to the Pareto-

optimal front should be minimized.

127

2) Distribution: A good (~uniform) distribution of the solutions found is

desirable (needs a distance metric).

3) Coverage: extent of the obtained nondominated front should be maximized.

The performance indices can be grouped in 7 main categories:

I. Cardinality-based Performance Indices: If PFtrue is known, the performance

of the algorithm can be found by comparing the members in PFknown

II. Volume-based Performance Indices: The size of the space dominated by the

final pareto set is used.

III. Distance-based Performance Indices: If PFtrue is known, the distance of the

members in the found pareto set to the members in PFtrue is used.

IV. Attainment Surface-based Performance Indices

V. Distribution Performance Indices: The homogeneity of the solution set is

considered.

VI. Spread Performance Indices: the spread (extent) of the pareto front is used.

VII. Distribution and Spread Performance Indices: Both the spread and the

distribution is considered.

In this thesis, for evaluating the performance of the MOEAs in chapter 6, following

performance metrics will be used.

Two set coverage, CS(S1, S2) (Zitzler, 1999): is a binary metric that assigns

dominance degrees to two sets of data. CS(S1, S2) is defined as the percent of the

individuals in the second set, S2 who are weakly dominated by first set, S1, (5.3).

That is, the larger CS(S1, S2) is, the better S1 outperforms S2.

��(��, ��) = |!"#$%#&∃"($%(:"(≼"#||%#| (5.3)

Hyper-volume (HV) (Zitzler et al, 2003): is the size of the space dominated by a

pareto front of solutions. In calculating HV, one needs to decide a reference point to

compute dominated space size. This point is illustrated as RP point in Figure 5.11.

Coverage Difference, D(S1, S2) (Zitzler, 1999): is a binary implementation for

hypervolume metric that emphasizes on the dominating areas of both sets. In Figure

5.11, areas corresponding to D(S1, S2) and D(S2,S1) are illustrated.

128

�(��, ��) = +,(�� + ��) − +,(��) (5.4)

�(��, ��) = +,(�� + ��) − +,(��) (5.5)

Figure 5.11 : 2D illustration of two fictitious pareto front representations to be

compared.

Hyper-volume Ratio, HR(S1, S2) (Van Veldhuizen, 1999): is another binary

implementation for hypervolume metric that gives the proportion of domination area

hypervolumes of the two pareto fronts, (5.6),

+�(��, ��) = ./(%()./(%#) (5.6)

Spacing (Spc) (Coello Coello, 2007; , Schott, 1995): is a measure of homogeneity

of the pareto front. Spacing numerically describes the spread of the vectors in the non

dominated set.

�01 ≜ 3 �|%|4� ∑ 67̅ − 79:�|%|9;� (5.7)

where 79 = min>(?��9(@) − ��>(@)? + ?�A9(@) − �A>(@)?) , i, j = 1, …|S| , 7̅ is the mean

of all 79 and �B9 stands for the objective value corresponding to the kth function for

the ith individual in the archive.

129

Overall Non-dominated Vector Generation (ONVG) (Van Veldhuizen, 1999;

Van Veldhuizen and Lamont, 1999): measures the total number of non-dominated

vectors found during algorithm execution, (5.8),

ONVG = |S| (5.8)

 CD∗ Spread (CD∗) (Zitzler, 1999): is a unary spread metric that is used to evaluate the

ability of the algorithm in extreme conditions. The algorithm sums up the squares of

the largest distances in different objectives (Fig. 9),

FA∗(�) = √(∑ max{‖K9 − L9‖ |M, N ��}O 9;�) (5.9)

where || . || stands for a way of measuring distance. In this study, FA∗ Spread distances

are evaluated in Euclidean norm.

130

131

6. ENHANCED ORDER BASED SINGLE LEAP-BIG BANG BIG CRUNCH

OPTIMIZATION APPROACH TO MULTI-OBJECTIVE AIRPORT GATE

ASSIGNMENT PROBLEM

6.1 Introduction

Gate assignment problem (GAP) is well studied in the literature and consequently,

there are many proposed problem formulations and solution techniques. Though the

basic constraints and objectives are easily perceived, the problem has many

interactions with other resources such as the number of gates, airport topology, flight

schedules, distances to baggage claim areas, etc. Therefore, GAPs are even more

complicated than most other traditional scheduling problems (Dorndorf et al, 2007).

Moreover, as the air traffic becomes more demanding, the grandeur of the solution

space gets even larger; in return, this makes traditional binary integer techniques

practically inapplicable. In those cases, nature inspired computing techniques

became a good alternative for GAPs.

A practical formulation for the GAP could have multiple objectives and a

corresponding solution technique should handle possible large solution spaces. For

instance, a central European airport hosts up to a thousand flights over approximately

a hundred gates summing up to nearly 1000100 possible solution candidates. There

are many multi-objective formulations reported in literature (Teodorovic &

Guberinic, 1984; Teodorovic & Stojkovic, 1990; Ding et al, 2004; Ding et al, 2004;

Ding et al, 2005; Hu & Paulo, 2007; Chang, 1994; Dorndorf, 2002; Yan & Huo,

2001; Zhu et al, 2003; Wei & Liu, 2007); however, most of the proposed

formulations either fuse the preferences into a single objective function and omit

compromise solutions or use classical integer programming techniques in relatively

small problem instances. Drexl and Nikulin (2008) propose a multi-objective

problem formulation with three objectives and use pareto simulated annealing

method to obtain a pareto front of solutions. This is the first study using a multi-

objective evolutionary approach capable of handling a very large scale problem. The

objectives are to minimize the number of ungated flights and the total passenger

132

walking distances as well as to maximize the total gate assignment preferences. In

that study, a lexicographic approach has been used to minimize first the ungated

flights with an optimal greedy method (Xu and Bailey, 2001). Next, the problem

solving has been carried out over the remaining two objectives, starting from the

assignment list obtained after the application of the greedy method.

In this chapter, problem of maximizing gate duration in chapter 4 is expanded to

include passenger walking distances and gate preferences. The solution technique

using plane ordering method has been enhanced to generate compromise solutions of

the pareto front. Besides, a real problem instance generation method is developed

and used for the experiments. The algorithm is also verified on data collected from

the Atatürk Airport of Đstanbul.

The chapter is organized as follows: The GAP mathematical model is given in the

next section. The details of the new method are presented in section 3 which also

includes a brief overview of the previously developed multi-objective gate

assignment methods reported in the literature. The simulation results based on

artificial and real data set are then given in section 4. Finally, the concluding remarks

and discussions are done in section 5.

6.2 Problem Formulation

The problem of airport gate assignment is formulated as a multi-objective

optimization problem. The objectives introduced include the maximization of gating

duration, minimizing the total walking distance and maximizing the gate preferences.

The parameters are defined as follows:

F : set of flights arriving at and/or departing from the airport

G : set of available gates at the airport

PQ : total number of flights, i.e. PQ = |F|
PS : total number of gates, i.e. PS = |T|
PU: number of time slots in a day (depends on time slot length n)

VW(9) : arrival time of flight i

VX(9) : departure time of flight i

133

YB ,Z : walking distance for passengers from gate k to gate l

[9 ,> :number of passengers transferring from flight i to flight j

0[9 : preference value for flight i

0\9 ,B : normalized preference value of assigning flight i to gate k

F] : (PS@ PU) matrix of assignments (gate assignments)

where, F](�, ^) = _, (U=1,........,PQ), if the gate i is assigned at time slot j to the _U`

flight, F](�, ^) = 0, if otherwise.

In addition, two dummy gates are introduced as in Drexl and Nikulin (2008). Gate PS+1 represents the apron and the gate PS+2 represents the entrance / exit of the

airport. The variable @9 ,B = 1 denotes that flight i is assigned to gate k, such that 1 ≤ d ≤ PS + 1, and @9,B = 0 otherwise. Then, the objective functions can be

defined (all in minimizing form) as follows:

O1: Gate duration maximization (negative function is minimized) min �� = − ∑ ∑ efg(F](d, h))ijZ;�ikB;� , (6.1)

 efg(F](d, h) = 1 �[F](d, h) ≠ 0)

 efg(F](d, h) = 0 �[mNℎopY�Mo.

O2: Walking distance minimization r�f�� = ∑ ∑ ∑ ∑ [9,>iks�Z;�iks�B;�it>;�it9;� YB,Z@9,B@>,Z + ∑ ∑ [iks�,9Yiks�,B@9,B +iks�B;�it9;�∑ ∑ [9,iks�YB,iks�@9,Biks�B;�it9;� (6.2)

O3: Preference maximization (negative function is minimized) min �A = − ∑ ∑ 0[9 0\9 ,B @9 ,B iks�B;�it9;� (6.3)

Objective function given in (6.1) is to maximize gate duration, which is total

occupation time of the gates allocated for all flights within a day. This objective

function is already studied in Chapter 4. Gate duration maximization is first studied

in Genç et al. (2011, 2012) and reported to be the most important criterion since it is

134

highly correlated with the revenue obtained. The second objective represents the total

passenger walking distance minimization and it is another most commonly used

objective function. The third objective represents the total flight to gate assignment

preference. Preference is a general term mathematically covering airline dependent

priorities.

An operation day is quantized with n minute long time intervals in order to measure

the occupation density of the gates (see Chapter 4).

The formal definitions for the constraints introduced in Chapter 4 are given next:

1) One gate can only accommodate a single aircraft at a time; and therefore, two

flights must not be assigned to the same gate if their staying times overlap in time

(Dorndorf et al, 2007). This can be expressed as (6.4)

 @9 ,B @>,B 6VX(>) − VW(9):6VX(9) − VW(>): ≤ 0 1 ≤ �, ^ ≤ PQ, d ≠ PS + 1 (6.4)

2) Every flight must be assigned to only one gate (or apron) (6.5)

∑ @9,B = 1, 1 ≤ � ≤ PQiks�B;� (6.5)

The constraint given in (2.5) is not valid for assignment problems that allow the

movement of planes between gates during their stay at the airport. This is not

permitted in the formulation of this problem.

6.3 Multi-Objective Gate Assignment Problem Solution Techniques

Drexl and Nikulin (2008) used the well-studied three objectives; namely, minimizing

the number of planes assigned to apron area, minimizing total walking distances and

maximizing preferences formulated in their GAP. Passenger walking distance

minimization and preference maximization are given in (6.2) and (6.3), respectively.

The objective of minimizing the number of planes allocated to apron is formulated as

in (6.6),

min �� = ∑ @9,iSs�itB;� , (6.6)

An implementation of the Pareto Simulated Approach (PSA), which is the multi-

objective adaptation of the simulated annealing algorithm, is used to solve their

135

MOGAP in Drexl and Nikulin (2008). In that study, the designer has to define many

parameters such as the search space, neighbor generation method, neighbor

acceptance criterion, cooling function and the stopping temperature. The main

distinction with the single objective case is the design of the acceptance rule. The

idea in PSA acceptance probability is a local aggregation of all objectives with the

weighted Tchebycheff function, (6.7) or weighted linear function with reference to

the current solution (6.8)

u�(@, @v, w, V9) = min {1, exp (− maxz;�,….| }~��~6��:4�~(�)���)} (6.7)

u�(@, @v, w, V9) = min {1, exp (− ∑ }~��~6��:4�~(�)���OB;�)} (6.8)

where δ is the number of objective functions and Ti is the temperature value

associated with ith iteration. λ is the weighting coefficient that changes at each

iteration in order to increase the probability of moving current solution away from its

closest neighbor.

In Drexl and Nikulin (2008) the objective of minimizing the number of planes

allocated to apron lexicographically dominates the other objectives. Hence, that

objective is firstly tried to be minimized then PSA is applied to the remaining two

objectives. The initial gate assignment solution, which is the solution for minimum

planes assigned to the apron as given in (6.6), is obtained using the optimal greedy

allocation method (Ding et al, 2005). Then, Na distinct agents are generated by

applying apron moves (Ding et al, 2005) to the greedy solution Na times to the initial

population. In the following iterations, the algorithm searches for neighbors by using

simple moves on the assignment list. This neighboring search approach consists of

three moves (Ding et al, 2005):

The Insert Move: Move a single flight to a gate other than the one it has been

currently assigned.

The Interval Exchange Move: Exchange two flight intervals in the current

assignment. A flight interval consists of one or more consecutive flights in one gate.

The Apron Exchange Move: Exchange one flight which has been assigned to the

apron with a flight that has been currently assigned to a gate.

136

The types of neighboring moves can be further studied from the single objective

GAP application in (Ding et al, 2005; Xu and Bailey, 2001). The acceptance criterion

is given in (6.9)

 u(@, @v, w, V�) = min × {1, exp (−e × maxB;�,A }~�Q�~6��:4Q�~(�)��×�9)} (6.9)

where [�B is the normalized function value and a = b = 1. The initial temperature is

selected as in (6.10)

 V� = 2 ∗ PQ (6.10)

and the cooling schedule is expressed as in (6.11), V9 = 0.9989 ∗ V� (6.11)

where i stands for the iteration number. Algorithm continues until the temperature

decreases below 10-4.

To the best of our knowledge, this work is unique in comprising the following

properties:

I. There are multiple objectives.

II. The algorithm is solved with multi-objective techniques to obtain a pareto

front in objective space.

III. Multi-objective optimization algorithm is a (evolutionary) nature inspired

computation technique.

However, there are some shortcomings in the solution approach given in Drexl and
Nikulin (2008) such as

o Acceptance criterion is formulated assuming all the objectives have to be

minimized by taking the inverse or the negative of the third objective function

(that is originally a maximizing one).

o The exponential term approaches to zero since the starting temperature is in

the orders of hundreds to thousands and constant b is equal to one. As final

iterations are reached the candidate acquires a high probability of selection.

o In under-constrained situations, where there is no need to assign any plane to

the apron, the method is unable to generate a solution.

137

o The algorithm focuses on modifying the final assignment list by neighboring

search moves. In practical situations, the running procedure can be

cumbersome due to the constraints, which in turn, leads to very long

computational run times. In most cases, this is neither favorable nor

acceptable since frequently occurring flight delays pin down a quick

reconfiguration of the gate assignment list.

o Though the problem is formulated in three-dimensional objective space,

highly dominant objective of minimizing the number of planes allocated to

apron is optimized first, then the problem is solved for a two-dimensional

pareto front. There is no concern or information on the objective score

corresponding to the number of planes assigned to the apron for the pareto

optimal members.

6.3.1 Enhanced order based SL-BBBC algorithm (eSL-BBBC):

In their recent work, Genç et al. (2011, 2012) defined an objective function to

maximize gate time duration which is the total time of the gates allocated for all

flights of a day. This objective function is given in (6.1). The proposed solution

strategy, SL-BBBC algorithm is reviewed in Chapter 4.

One of the main contributions of this paper is the Enhanced Order Based Single

Leap-Big Bang Big Crunch algorithm (eSL- BBCC) algorithm for the solution of the

MOGAP proposed in (6.1)-(6.3). The algorithm has its origins from the

aforementioned single objective counterpart. It starts with generating handling order

of planes by GTMA heuristic. However, in the assignment phase, objective

preferences are considered; that is, the assignments are done according to

minimization of walking distances or maximization of preferences. Gate duration

maximization is inherently included by these two functions since all the gates equally

contribute to the objective score. The non-dominated members obtained through the

algorithm are stored in the archive population. The multi-objective version of the

above algorithm can be briefly summarized as follows and it is illustrated in Figure

6.6:

STEP 1: Apply Ground Time Maximization Algorithm (GTMA) and find an

assignment list.

STEP 2: Store the objective function values in a vector form.

138

STEP 3: Log the order in which the planes are assigned.

STEP 4: Apply Enhanced Order Based Single Leap-Big Bang Big Crunch Algorithm

(eSL-BBBC) to change handling order, at the same time, find the pareto optimal

solution candidates by using dominance evaluation.

Figure 6.1 : Main loop of the MOGAP algorithm.

6.3.1.1 Creating the initial population

GTMA creates a single order for the plane handling process. Then, the initial

population of solutions is generated from this order by swapping the plane positions

139

randomly. Hence, unlike the case in Genç et al. (2012), the algorithm can progress by

relying on more than one solution candidate. However, the solution candidates do not

interact with each other in the primary population.

6.3.1.2 Neighbor generation

The solution candidates (the individuals of the population) are considered to be plane

orders. To generate neighbors, a modification is done on the plane orders by the

utilization of SL-BBBC. The big bang phase of the SL-BBBC algorithm is

implemented as in Genç et al. (2012). The effect of big bang resembles the N-swap

mutation operator where the number of swappings, and the distance of the swapping

members are controlled by the explosion strength of “big bang” phase (Figure 6.2).

Figure 6.2 : Interchanging the order of N = 2 random flight pairs with random
distances away from random centers in the list. The first bang centers the 4th flight

and explosion strength is 3 units, whereas the second flight centers the 5th flight and
explosion strength is 2 units.

6.3.1.3 Assignment of planes

The plane ordering process constitutes a basis for the allocation of the flights with

long staying times in the first place. In the proposed algorithm, planes are assigned

with respect to the order logged in the solution candidate as well as their specific

140

objective function preferences. For instance, each plane is assigned to the nearest

available gate for transferring and embarking / disembarking passengers for

passenger walking minimization and the plane is assigned to the gate having the most

preference value for the flight for preference maximization. Besides, each plane is

assigned according to one objective function that is selected randomly between the

two. Then, in most general sense, the algorithm creates (δ + β) offspring for any

solution candidate, where δ is the number of objective functions and β is the number

of objective function combinations. In this study δ and β are chosen to be equal to 2

and 1, respectively. Details of the algorithm tailored for the MOGAP are given in

Figure 6.3.

6.3.1.4 Acceptance of the neighbors

The (δ + β) offspring dominance status defines the acceptance probability of their

parent order. Each new created child is compared with the previously generated child

using the same objective function preference. They can be in one of the three states

cited below with respect to other in terms of dominance relation (Figure 6.3):

1. child generated at iteration k dominates the one created at iteration k+1:

 Childk ≼ Childk+1,

then gets the score of µj1

2. child generated at iteration k is dominated by the one created at iteration k+1:

Childk+1 ≼ Childk,

then gets the score of µj2

3. they are both non-dominated with respect to each other, that gets the score of

µj3

Here, µji is the normalized acceptance score assigned in conjunction with the child’s

dominance relation. Note that j є Z, 1 ≤ j ≤ δ + β and µj2 ≥ µj3 ≥ µj1. Then the

acceptance probability for an assignment order representation becomes, (6.12),

u(@v) = ∑ ∑ g9| s �>;� �>9A9;� (6.12)

141

Figure 6.3 : Algorithm progress: Each solution representation is decoded into three
objective space vectors. Child1,k is created favoring minimum walking distance;

Child2,k is created favoring flight to gate preferences. Child3,k is created by randomly
favoring the two objective functions. Acceptance of the plane order in generation k+1

depends on the dominance levels of (Child1,k+1 to Child1,k), (Child2,k+1 to Child2,k)
and (Child3,k+1 to Child3,k).

where yi is the binary decision variable set to 1 if ith dominance relation holds;

otherwise, it is reset to 0.

Since the dominance relations are mutually exclusive, the following relation should

hold

∑ g9 = 1A9;� (6.13)

In this formulation, there is no explicit term that gradually decreases the probability

of acceptance as in (6.9). However, the probability of finding a dominating (or non-

dominated) individual decreases as the iterations elapse; therefore, the acceptance

probability inherently decreases.

6.3.1.5 Archive postprocessing

All the visited members are candidate for archive collection. The algorithm run ends

up with a bunch of members that are nondominated and these members represent the

pareto front. These pareto front members may be not homogenously scattered and /

or not adequately informative. Finally, during archive postprocessing, the possible

gaps among pareto front members are tried to be filled by homogenously scattered

new members and pareto front itself is tried to be shifted into a better position hence

optimizing the total related cost values (Figure 6.4).

Figure 6.4 : The effect of archive postprocessing: (a) Pareto front shift, (b) Repairing
gaps, (c) Homogenezing the distribution.

Archive postprocessing algorithm is given in Table 6.1.

Table 6.1: Archive Postprocessing Algorithm.

for i = 1 : Sarc do

 Copy archive to archive mating list

 while archive mating list is not empty

Select two random individuals to mate

Discard these individuals from the archive mating list

 Apply PMX

 Store the offspring in offspring population

end
Add offspring population to the archive

Eliminate the dominated members in archive

end

a b

c

143

6.3.1.6 Stopping criterion

The stopping criterion of the algorithm can be chosen as the maximum number of

iterations or function evaluations, a convergence measure for the population or any

combination of the above-mentioned criteria. In this study, function evaluation

number is used as the stopping criterion of the algorithm for fair comparison in

experiments.

The complete algorithm steps can be given as in Table 6.2.

Table 6.2 : MOGAP solution.

Acceptance criterion for the neighbors is designed to be quite simple and self-

adjusting the selective pressure parameter. Initial population is generated

independent of the planes assigned to apron or gate. The neighbors are generated

using plane assignment orders, not the final assignment list. Finally, although it is

also highly related to the remaining two objective functions, the first objective

function is optimized within the problem. Therefore, the problems existing in PSA

based MOGAP solution reported in Drexl and Nikulin (2008) are eliminated or cured

in the approach to the problem and in the algorithm presented in this chapter.

Apply GTMA given in Algorithm 1

Calculate the initial cost vector and then apply the following loops

for i = 1 : number of iterations (Ni)

for k = 1 : number of individuals in the population (Np)

i. Apply a big bang step to get a new order of planes

ii. Assign the planes for minimum walking distance and obtain child1,k

iii. Assign the planes for maximum preference and obtain child2,k

iv. Assign the planes for maximum preference or minimum walking

distance that is selected randomly and obtain child3,k

v. Calculate cost vector for all children and check whether they will be

added to archive or not.

vi. Calculate the acceptance probability u(@v) of the new solution using

Eq. (3.7).

vii. Accept the new plane order with probability equals to u(@v)

end

end
Perform archive postprocessing given in Algorithm 2.

144

6.4 Simulation Results

In order to make realistic and credible simulations on the newly developed algorithm,

the problem instance must be designed veraciously. For this purpose, a generator

engine is designed to provide a quasi-realistic airport plane and pedestrian traffic

data, which is the second main contribution of this Chapter. In the succeeding

subchapter, this engine including airport flight generation (detailed in chapter 4),

airport walking distance, passenger flow and preference assignments modules will be

discussed in detail. Then, the MOGAP formulated in Eq. (2.1-2.3) will be solved for

both the artificial data formed by the above problem instance generator, and real

flight data obtained from Đstanbul Atatürk Airport.

6.4.1 Problem instance generation

Problem instance consists of a complete flight schedule with arrival and departure

times of every single flight, airport walking distances, number of passenger transfers

between the flights and the preferences of flight to gate assignments.

6.4.1.1 Flight generation

Flight generation is the same as given in Chapter 4.

6.4.1.2 Airport topology and walking distances

Airport topology and walking distance model is the generalized version of airport

gate and walking distances model given in Drexl and Nikulin (2008). The layout of a

representative airport consists of two parallel terminals and symmetrically located Ng

gates. Since there are have two parallel terminals, each terminal has (Ng / 2) gates

(Figure 6.5a). If the number of gates is odd, remaining gate is located in between

gates (Ng – 1) / 2 and (Ng – 1) and between the two terminals (Figure 6.5b). There

are two more dummy gates: one to represent all the parking places of the apron, gate

Ng+1, and one to represent airport entrance / exit (assumed to be the same place),

gate Ng + 2.

145

Figure 6.5 : The layout of a representative airport.

Distance between gates is measured according to the Manhattan metric, and then

passengers are allowed to move only horizontally and vertically. The distance matrix

W for Ng gates is defined as (6.14),

w�,� = � 0 if i = j g���� ∗ |i − j| if condition I appliesg���� ∗ �max(i, j) − � − min (i. j)� + t���� if condition II applies¡ (6.14)

I: ¢i < PS2 + 1¤ ∧ ¢j ≤ PS2 ¤ ∨ ¢i > PS2 ¤ ∧ ¢j ≥ PS2 + 1¤

II: ¢i < PS2 + 1¤ ∧ ¢j ≥ PS2 + 1¤ ∨ ¢i > Nª2 ¤ ∧ (j ≤ PS2)

where N«9"U is the distance between two terminals, \«9"U is the distance between two

neighboring gates belonging to the same terminal. Additionally, the walking

146

distances between the gates and the airport entrance / exit are assumed to be

symmetric as given in (6.15)

 Yiks�,9=Y9,iks� = � + u¬/¬ � = 1, … … … . , ik� (6.15)

where u¬/¬ is the extra walking distance added for entrance / exit gate. The walking

distances between the apron and the airport gates are as follows:

 Yiks�,9 = Y9,iks� = � + u® � = 1, … … … . , ik� (6.16)

That is, an assignment to the apron is penalized with an extra penalty, u®. Moreover,

if passengers are walking from a plane assigned to the apron to another one that is

also in the apron, then a walking distance, u®,®, is added which is missing in Drexl

and Nikulin (2008).

6.4.1.3 Passenger flow model

Passenger flow model given in Drexl and Nikulin (2008) has many deficiencies that

can be summarized as follows:

o A plane can host up to half a thousand passengers in the model and the

number of passengers rises as the number of planes or time horizon increases.

In general, airplanes carry between 100 to 300 passengers and a maximum of

about 800 (Url-3).

o The number of boarding passengers is not equal to the number of passengers

deplaning.

o All the planes are assumed to have the same passenger capacity; there are not

any fluctuations in passenger numbers due to physical conditions.

o All the planes have similar gating durations. No turnaround time impact is

allowed.

o Deplaning passengers can be transferred to any flight departing after a while

from their arrival to the airport. However, in practice, the passengers may

transfer to only a small portion of the available flights.

o In real life, transfer passengers are mostly booked to the soonest departing

flight and the probability of transfer decreases as time elapses. Even if there

is a connected flight long after arriving at the airport, this should not increase

walking distance penalty. This is not the case in the reported model.

147

In this chapter, a high fidelity passenger flow model is proposed. Details of the

model parameters and remedy options for the previously reported literature are given

in subsequent sections.

Number of Passengers: Scheduled plane gate duration depends on the turnaround

time of the planes. A major component of turnaround time is the passenger boarding

time (Horstmeier and Haan, (2001) provide detailed analyses of all the components

in an aircraft turn-around time) and boarding time is directly related to the number of

passengers. Then, in a realistic model, as the number of passengers increase, gating

durations get longer. The flow model proposed in this work has passenger counts

distributed uniformly in the interval [c – γ, c + γ], where c is the mean passenger

count for the scheduled flight and γ is a normalized constant introducing randomness.

Mean passenger count for flight i is obtained by multiplying scheduled staying time

with the average passenger count for an hour of turnaround, (6.17),

19 = (VX(9) − VW(9)) (60 f⁄) ∗ ±⁄ (6.17)

 where ci is the mean passenger count of flight i, and τ is the average passenger count

for a plane. ± is typically in between 150 and 250 (Bazargan, 2004; Url-3)

Consistency of the passenger flow model: After the arrival of an airplane at an

airport, all the passengers are either transferred to another plane or disembarked

through the exit gate. Similarly, before departure, all the passengers are either

transferred from another flight or embarked. Hence, the number of boarding

passengers must be equal to the number of passengers deplaning.

Transferring passenger behaviors: Airliners utilize hub and spoke systems to

provide connections between city pairs in their network. Then, the probability of

connections increases; however, the passengers are not transferred to all the flights

homogenously but to only a small subset (percent of transferred flights, Ftp) of them.

The number of passengers disembarking after deplaning is generally more than

transferring passengers to a specific flight. Percent of transferring passengers (Ptp) is

defined typically in between 30% - 80%. These passengers are transferred to flights

and remaining passengers are assumed to be disembarked.

Departure of the plane j must be at least Bmin time slots later than arrival of the plane

i in order to be able to transfer passengers from flight i to flight j, (6.18)

VX(^) ≥ VW(�) + ²³9´ (6.18)

148

As the time interval between flights increases, the probability of transfers decreases

proportionally with (VX(^) − VW(�)). Moreover, if the following condition holds

VX(^) ≥ VW(�) + ²³®� (6.19)

where Bmax >> Bmin, then the walking distance penalty will no longer be important as

the time interval between two flights is too long that passengers will probably walk

not only between the gates but also inside or outside the airport.

6.4.1.4 Preference model

Flight to gate assignment preferences depends on many physical, economical and

even political constraints. Instead of separately modeling all, the preference of a

specific flight and assigning a flight to a specific gate is considered.

Flights with more passengers and high security flights have higher preference values.

Since both of these categories need more turnaround times (Horstmeier and Haan,

2001), preference value of each flight can be modeled directly related to the gate

duration (Note that, in Drexl and Nikulin (2008), flight preferences are generated

randomly). The vector of preferences V = <vi> is generated from normal distribution

having mean µp and standard deviation σp. µp is calculated by normalizing each

scheduled gate duration with the maximum gate duration of the day. The preference

value µ9,B of assigning flight i to gate k is randomly generated within the interval

(0,1). Then, the overall preference of assigning flight i to gate k becomes vi * uik.

6.4.2 Experiments on artificial data

Multi-objective gate assignment algorithms are compared by using artificial data of

the test data generator given in the preceding chapter. In the experiments, Moderate

dataset and high gate demand distributed uniformly data sets that are introduced in

Chapter 4 have been used with slight modifications and additions. The parameters

used to generate these sets of data are given in Table 6.3. In generating a dataset, a

reasonable set of values have been chosen; there is no effort in finding the algorithm

performances in the whole range of parameters. This task is left as a future work.

149

Table 6.3 : Parameters of the artificial data sets.

Parameter
Moderate
Demand

High
Demand

Parameter
Moderate
Demand

High
Demand PS 15 20 \«9"U 1 1 f 1 1 u¬/¬ 2 2 PU 265 265 u® 5 2 7 0.7 0.94 u®,® 5 5 0� 0.1 0.0 ± 150 200 0� 0.1 0.0 �U¶ 0.25 0.2 �QS 30 50 uU¶ 0.6 0.75 ·QS 20 40 ²³9´ 20 30 N«9"U 2 2 ²³®� 100 120

Every experiment is carried independently for 30 times to produce reliable statistics

since the running algorithms have stochastic nature. 30 runs are assumed to be

enough to obtain credible results in the literature (Huang et al, 2007; Zhang et al,

2009; Deb et al, 2002). For a fair comparison, remaining test parameters are selected

similarly as given in Drexl and Nikulin (2008):

� Both algorithms are allowed to perform same number of function evaluations.

Number of function evaluations (Nfe) is selected to be 7248 where the

temperature decreases below 10-4.

� Time horizon for the flight data is 4 hours and 30 minutes and the length of

one time slot, n, is equal to be 1 minute.

� Only the second and third objective functions are considered. In both works,

the first objective function is strongly correlated with the other two. Hence it

is rational to compare pareto fronts in 2-dimension. Nevertheless, the results

of the first objective functions will also be reported.

� PSA based MOGAP have identical parameter settings as suggested in the

original study.

No single metric can entirely capture total algorithm performance (Coello Coello et

al, 2007). Performance metrics can be classified in two groups as convergence

metrics and distribution (and spread) metrics (Yu and Gen, 2010). In this study, four

convergence metrics and three distribution metrics are used. Algorithm performances

with respect to the selected metrics are reported in Table 6.4 and Table 6.5 for the

moderate and high demand data sets, respectively. In the tables, seven different

150

datasets representing the days of the week are used and daily average values for the

performance metrics are given. The last column of the specific algorithm reports the

average of the weekly scores.

The performance metrics are summarized in Chapter 5.8.

Table 6.4 : Performance metrics for moderate demand data set (For binary metrics
CS, D and HR, S1 is the pareto optimal set of the related algorithm).

Table 6.5 : Performance metrics for high demand data set (For binary metrics CS, D
and HR, S1 is the pareto optimal set of the related algorithm).

The pareto front members of both algorithms are normalized with the initial cost

score obtained after the GTMA heuristics; and then, the performance metrics are

calculated. All the metrics are designed to favor bigger values. Hence, the newly

Performanc
e Measure

PSA based MOGAP eSL-BBBC based MOGAP

Day

1

Day

2

Day

3

Day

4

Day

5

Day

6

Day

7 Av

Day

1

Day

2

Day

3

Day

4

Day

5

Day

6

Day

7 Av

CS(S1, S2) 2,90 4,57 2,10 3,97 5,30 0,87 2,47 3,17 12,60 8,83 11,83 11,33 10,27 9,13 13,37 11,05

D(S1, S2) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,01 0,02 0,01 0,02 0,01 0,02 0,01

HV 0,05 0,05 0,07 0,07 0,09 0,04 0,07 0,06 0,10 0,09 0,10 0,11 0,13 0,09 0,09 0,10

HR(S1, S2) 0,02 0,02 0,02 0,02 0,01 0,01 0,02 0,02 61,21 61,59 58,12 65,52 60,39 68,53 51,79 61,02

Spc 0,03 0,03 0,06 0,05 0,06 0,02 0,04 0,04 0,05 0,05 0,06 0,06 0,05 0,06 0,08 0,06

ONVG
14,0

7 11,43 13,20 12,40 12,53 9,93 14,40 12,57 20,33 15,83 18,27 18,30 24,90 15,20 13,23 18,01 FA∗ 0,60 0,58 0,72 0,71 0,74 0,46 0,69 0,64 1,05 1,02 1,07 1,15 1,17 1,00 0,99 1,07

Performanc
e Measure

PSA based MOGAP eSL-BBBC based MOGAP

Day

1

Day

2

Day

3

Day

4

Day

5

Day

6

Day

7 Av

Day

1

Day

2

Day

3

Day

4

Day

5

Day

6

Day

7 Av

CS(S1, S2) 2,70 3,07 1,77 3,53 4,57 3,27 1,93 2,98 10,00 10,20 9,77 11,33 12,03 9,17 10,33 10,40

D(S1, S2) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,03 0,02 0,02 0,03 0,02 0,02 0,02

HV 0,06 0,08 0,05 0,06 0,10 0,06 0,06 0,07 0,11 0,17 0,11 0,12 0,14 0,11 0,11 0,12

HR(S1, S2) 0,02 0,01 0,01 0,01 0,02 0,02 0,02 0,02 59,93 78,36 74,33 63,12 49,65 58,39 67,30 64,44

Spc 0,02 0,04 0,02 0,03 0,05 0,04 0,03 0,03 0,06 0,05 0,06 0,06 0,05 0,07 0,07 0,06

ONVG 11,7

3 11,90 10,10 12,47 13,73 11,40 11,97 11,90 17,50 26,07 23,30 19,70 21,67 16,10 17,57 20,27 FA∗ 0,54 0,63 0,48 0,61 0,79 0,57 0,56 0,60 1,08 1,29 1,12 1,14 1,15 1,05 1,08 1,13

151

proposed method clearly outperforms the PSA based MOGAP approach reported in

Drexl and Nikulin (2008). Although it is not included in the tables, the first objective

function is ameliorated at around ten percent in the proposed method; whereas, the

objective score for minimizing the number of planes assigned to apron get worse in

PSA based MOGAP.

6.4.3 Experiments on actual field data

In this part, the experiments are performed on a daily flight schedule data obtained

from the operator of the Đstanbul Atatürk Airport. There are 359 flights to be

assigned to the gates and this corresponds to a demanded time slots / available time

slot ratio of 0.71. The performance results for the actual field data are reported in

Table 6.6 for the same testing parameters and performance metrics reported in

Chapter 6.4.2.

Table 6.6 : Performance metric for actual field data. (For binary metrics CS, D and
HR, S1 is the pareto optimal set of the related algorithm).

Performance
Measure

PSA based

MOGAP

eSL-BBBC based

MOGAP

CS(S1, S2) 0,00000 12,66667

D(S1, S2) 0,00014 0,08091

HV 0,10161 0,17213

HR(S1, S2) 0,01969 53,42133

Spc 0,04553 0,04091

ONVG 12,66667 34,13333 FA∗ 0,63584 1,12716

Figure 6.6 provides an illustration of an experiment on actual field data. In Figure

6.6, the pareto fronts of 30 independent algorithm runs for both algorithms are given

on the same graph.

152

Figure 6.6 : The complete picture for the 30 independent pareto front
representations: points with red dots designate the results of PSA method and blue

and green crosses show the results of eSL-BBBC method before and after the archive
post processing phase, respectively.

6.5 Conclusions

In this chapter, a multi-objective gate assignment problem with the objectives of

maximizing gate allocation, minimizing passenger walking distances and

maximizing flight to gate preferences is defined and solved.

As the major contributions, a multi-objective nature inspired solution technique;

namely, enhanced order based Single Leap-Big Bang Big Crunch (eSL-BBBC)

optimization algorithm that possesses the main properties stated below is proposed:

• The result of the algorithm is a set of non-dominated members; this is to say,

there are no a priori articulation of the preferences and the algorithm yields a

representative set of compromise solutions.

• The optimization method used here is a global evolutionary algorithm.

• The proposed methodology and the generated algorithm have the capacity of

handling large data sets, which occur more frequently in real life applications.

-55 -50 -45 -40 -35 -30 -25

1.2

1.3

1.4

1.5

1.6

1.7

x 10
5

Objective-3

O
b

je
c

ti
v

e
 -

 2

153

• The proposed algorithm uses a plane ordering logic to handle flights and

introduces a preference based assignment strategy to assign the flight to a

specific gate.

The other main contribution of the study is the implementation of a test data

generator for the airport gate assignment problem. The test data generator has the

modules for flight data generation, walking distance generation, passenger transfer

model generation and flight to gate preference generation.

In order to verify the performance of the algorithm, a set of different metrics has

been defined. The two methods are then tested on the sets of artificially generated

data as well as actual field data obtained from the Đstanbul Atatürk Airport based on

these metrics. As it is detailed in the final section, the results obtained through

simulations clearly show the effectiveness and the superiority of the newly proposed

enhanced order based Single Leap-Big Bang Big Crunch (eSL-BB BC) optimization

allocation strategy when compared to the PSA based method.

154

155

7. CONCLUSIONS AND RECOMMENDATIONS

In this thesis work, a comprehensive study on the extensions and enhancements of

the Big Bang-Big Crunch algorithm is given. Then, an increasingly important topic

on operations research society, airport gate assignment problem is studied both as a

single objective and as a multi-objective problem and it has been tried to be solved

using BB-BC based algorithms.

Big Bang-Big Crunch with Local Directional Moves (BBBC-LS) algorithm

generates a direction vector from the past positions of the best individuals found so

far and investigates on this line with extraction or contraction moves. In addition,

well-practiced Nelder-Mead method is presented as a crunching function option. The

switching of the crunching function is controlled by a newly introduced switching

parameter. The switching threshold parameter is assigned at the beginning of the

algorithm and it is kept constant throughout the search. However, it is a promising

idea to adapt this parameter in a dynamical manner. One decent idea is to use a

feedback controller observing the population diversity and history of the population

diversity.

BBBC-LS algorithm is shown to be accurate, effective and fast in the experiments

done. Moreover, it is easy to tune the existing parameters within the algorithm.

The second main contribution of this thesis is the new approach proposed for gate

assignment operations in the airports. To the best of my knowledge, this thesis work

is the first attempt to propose the following:

I. The binary problem formulation of maximizing total time slots,

II. Plane order based solution approach for single objective gate assignment

problem (SOGAP) : Single Leap -Big Bang Big Crunch (SL-BBBC)

Optimization Algorithm,

III. Plane order based solution approach for multi-objective gate assignment

problem (MOGAP) : Enhanced Order Based Single Leap-Big Bang Big

Crunch (eSL-BBBC) Optimization Algorithm,

156

IV. Test data generator engine to provide a quasi-realistic airport plane and

pedestrian traffic data.

Airport gate assignment problem is one of the most important issues in operation

research as well as in airline industry. Consequently, there is a good opportunity of

practically applying academic findings. Using the results of this thesis work,

specifically the SL-BBBC algorithm, a resource management system has been

constructed in the Atatürk Airport of Đstanbul. Performance results collected on the

field (Atatürk Airport, Đstanbul) are highly correlated with the results on artificially

generated test data.

The eSL-BBBC method developed in this work is illustrated to produce a good

representation of the pareto optimal set. The next goal is to implement the multi-

objective version of the algorithm in the resource management system and visually

assisting the operator in his/her decisions.

157

REFERENCES

Akyol A., Yaslan Y. and Erol O. K. (2007). A Genetic Programming Classifier
Design Approach for Cell Images. Proceedings of the 9th European

Conference on Symbolic and Quantitative Approaches to Reasoning

with Uncertainty, ECSQARU, (Lecture Notes In Artificial
Intelligence, Vol. 4724) 878-888.

Ahn C. W. (2006). Advances in Evolutionary Algorithms, Springer-Verlag Berlin
Heidelberg.

Ahn C. W., Kim E., Kim H. T., Lim D. H. and An J. (2010). A Hybrid
Multiobjective Evolutionary Algorithm: Striking Balance with Local
Search, Mathematical and Computer Modelling, vol 52, pp. 2048-
2059.

Arnold D. V. (2004). An analysis of evolutionary gradient search. IEEE Congress

on Evolutionary Computation, 1:47–54, June.

Arnold D. V. and MacDonald D. (2006). Weighted multirecombination evolution
strategies on the parabolic ridge. IEEE Congress on Evolutionary

Computation, pages 104–111.

Babic, O., Teodorovic, D. and Tosic, V. (1984). Aircraft stand assignment to
minimize walking. Journal of Transportation Engineering, 110(1),
pp. 55-66.

Back T. and Eiben A.E. (1999). Generalizations of intermediate recombination in
evolution strategies. Proc. of Congress on Evolutionary Computation

(CEC’99) pp. 1566–1573.

Back T. (2000). Self-adaptation. Chapter 21 of Evolutionary Computation 2:
Advanced Algorithms and Operators. pp. 188-211, Institute of Physics
Publishing, Bristol.

Baker J.E. (1987) Reducing bias and inefficiency in the selection algorithm.
Proceedings of the 2nd International Conference on Genetic

Algorithms and Their Applications. Lawrence Erlbaum, Hillsdale,
New Jersey, pp. 14-21.

Bambha N. K., Bhattacharyya S. S., Teich J., and Zitzler E. (2004). Systematic
integration of parameterized local search into evolutionary algorithms,
IEEE Trans. Evol. Comput., vol. 8(2), pp. 137–155.

Banzhaf W., Nordin P., Keller R.E. and Francone F.D. (1998). Genetic

Programming: An Introduction. Morgan Kaufmann, San Francisco,
1998.

Bandara S. and Wirasinghe S. (1992). Walking distance minimization for airport
terminal configurations. Transportation Research, 26A, pp. 59–74.

158

Bazargan M. (2004) Airline Operations and Scheduling. Ashgate Publishing
Limited, England.

Beyer H.-G. (1995). Toward a theory of evolution strategies: On the benefits of sex
— the (µ/ µ, λ)-theory. Evolutionary Computation, 3(1):81–111.

Beyer H.-G. (2001). The Theory of Evolution Strategies. Springer, Berlin,
Heidelberg, New York.

Bolat A. (1999). Assigning arriving flights at an airport to the available gates.
Journal of the Operational Research Society, 50, pp. 23–34.

Bolat A. (2000). Procedures for providing robust gate assignments at airport
terminals. European Journal of the Operational Research, 50, pp.
23–34.

Bolat A. (2001). Models and a genetic algorithm for static aircraftgate assignment
problem. Journal of the Operational Research Society, 52, pp. 1107–
1120.

Camp C.V. (2007). Design of space trusses using big bang-big crunch optimization.
Journal of Structural Engineering, 133 (7), 999-1008.

Chang C. (1994). Flight sequencing and gate assignment in airport hubs. PhD
thesis. University of Maryland at College Park.

Clemente R. M., Puntonet C.G. and Rojas F. (2003). Post-nonlinear blind source
separation using methaheuristics, Electronics Letters, 27th November
Vol. 39 No. 24.

Coello Coello C. A., Lamont G.B. and Van Veldhuizen D. A. (2007).
Evolutionary Algorithms for Solving Multi-Objective Problems,
Springer.

Cohon J. L. and Marks D. H. (1975). A Review and Evaluation of Multiobjective

Programming Techniques.

Davis L. (1991). (Editor) Handbook of Genetic Algorithms. Van Nostrand Reinhold.

De Jong K.A. (1975). An Analysis of the Behaviour of a Class of Genetic Adaptive

Systems. PhD thesis, University of Michigan.

De Jong K.A. (2006). Evolutionary Computation: A Unified Approach. MIT Press,
Cambridge, Massachusetts.

Deb K. (1999). Multi-objective genetic algorithms: Problem difficulties and
construction of test problems. Evol Comput 7, pp. 205–230.

Deb K., Agrawal S., Pratab A. and Meyarivan T. (2000). A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multi-Objective
Optimization: NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph, X.

Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Proceedings

of the Parallel Problem Solving from Nature VI Conference, pages
849–858, Paris, France. Springer. Lecture Notes in Computer Science
No. 1917.

Deb K., Pratab A., Agrawal S. and Meyarivan T. (2002). A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on

Evolutionary Computation, 6(2):182–197, April.

159

Deb K., Sinha A., Kukkonen S. (2006). Multi-objective test problems, linkages,
and evolutionary methodologies. In: Proceedings of the 8th ACM

annual conference on genetic and evolutionary computation, pp
1141–1148.

Deb K., Thiele L., Laumanns M. et al. (2001). Scalable test problems for

evolutionary multiobjective optimization. Tech. rep. 2001001, Kanpur
Genetic Algorithms Laboratory. Indian Institute of Technology.

Ding, H., Lim, A., Rodrigues, B. and Zhu, Y. (2004). Aircraft and gate scheduling
optimization at airports. Proceedings of the 37th Hawaii IEEE Int.

Conf. on System Sciences, 0-7695-2056-1/04, pp. 1-8.

Ding, H., Lim, A., Rodrigues, B. and Zhu, Y. (2004). New Heuristics for over-
constrained Flight to Gate Assignments. Journal of the Operational

Research Society, 55, pp. 760 – 768.

Ding, H., Lim, A., Rodrigues, B. and Zhu, Y. (2005). The over-constrained airport
gate assignment problem. Computers and Operations Research, 32,
pp. 1867 – 1880.

Dogan M. and Istefanopulos Y. (2007). Optimal nonlinear controller design for
flexible robot manipulators with adaptive internal model. IET Control

Theory and Applications, 1 (3), 770-778.

Dorndorf, U. (2002). Project scheduling with time windows: from theory to

applications. Physica-Verlag Heidelberg.

Dorndorf, U., Drexl, A., Nikulin Y. and Pesch E. (2007). Flight Gate Scheduling:
State-of-the-art and Recent Developments. The International Journal

Of Management Science, 35, pp. 326 – 334.

Drexl, A. and Nikulin, Y. (2008). Multicriteria airport gate assignment and Pareto
simulated annealing. IIE Transactions 40, 385–397.

Eiben A.E. and Back T. (1997). Empirical investigation of multiparent
recombination operators in evolution strategies, Evolutionary

Computation, 5(3):347–365, 1997.

Eiben A.E. and Smith J.E. (2003). Introduction to Evolutionary Computing.
Springer-Verlag, Berlin, Heidelberg, New York.

El-Mihoub T. A., Hopgood A. A., Nolle L. and Battersby A. (2004). “Hybrid
Genetic Algorithms: A Review”, Electronic Letters, vol 13.

Erol, O.K. and Eksin, I. (2006). A new optimization method: Big Bang-Big
Crunch. Advances in Engineering Software, Elsevier, vol. 37, pp. 106-
111.

Eshelnian L.J., Caruana R.A. and Schaffer J.D. (1989). Biases in the crossover
landscape. Proceedings of the 3rd International Conference on

Genetic Algorithms. Morgan Kaufmann, San Francisco, pp. 10-19.

Fogel L.J., Owens A.J. and Walsh M.J. (1965). Artificial intelligence through a
simulation of evolution. In: A. Callahan, M. Maxfield, L.J. Fogel,

Eds., Biophysics and Cybernetic Systems. Spartan, Washington DC,
pp. 131-156.

160

Fogel L.J., Owens A.J. and Walsh M.J., (1966). Artificial Intelligence through

Simulated Evolution. Wiley, Chichester, UK.

Fogel D.B. (1998). Ed. Evolutionary Computation: the Fossil Record. IEEE Press,
Piscataway, NJ.

Genç H. M. (2010). A New Solution Approach for the Bearing Only Target
Tracking Problem, IEEE 4th International Workshop on Soft

Computing Applications (SOFA’10), 15 – 17 July, Arad, Romania.

Genç H.M., Eksin Đ., Erol O.K. (2010a). Big Bang-Big Crunch Algorithm with
Modifications on the Crunching Phase, International Symposium on

INnovations in Intelligent SysTems and Applications, Inista’10,

Kayseri, Turkey.

Genç H.M., Eksin Đ., Erol O.K.. (2010b). Big Bang - Big Crunch Optimization
Algorithm Hybridized With Local Directional Moves and Application
to Target Motion Analysis Problem, IEEE International Conference

on Systems, Man, and Cybernetics (SMC 2010), 10-13 October,
Đstanbul, Turkey.

Genç H.M. and Hocaoglu A.K. (2008). Bearing-only target tracking based on Big
Bang - Big Crunch algorithm. The 3rd Int. Multi-Conference on

Computing in the Global Information Technology, (ICCGI 2008),
229-233.

Genç H.M., Erol O.K. and Eksin Đ. (2009). An Application and Solution to Gate
Assignment Problem for Atatürk Airport. DECOMM 2009.

Genç, H.M., Erol O.K. and Eksin, Đ. (2011). A Stochastic Meta-Heuristic
Approach for the Gate Assignment Problem. In: Proceedings of the

Evolutionary And Deterministic Methods For Design, Optimization

And Control (EUROGEN) Conference, pp. 486-492.

Genç, H.M., Erol O.K., Eksin, Đ., Berber M. F. and Güleryüz B. O. (2012). A
Stochastic Neighborhood Search Approach for Airport Gate
Assignment Problem. Expert Systems with Aplications 39(1), pp. 316-
327.

Goldberg D.E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley.

Goldberg D.E. and Lingle R. (1985). Alleles, loci, and the traveling salesman
problem. Proceedings of the 1st International Conference on Genetic
Algorithms and Their Applications. Lawrence Erlbaum, Hillsdale,
New Jersey, pp. 154-159.

Goldberg, D. E., Deb, K., and Clark, J. H. (1992). "Genetic Algorithms, Noise,
and the Sizing of Populations," Complex Systems, Vol. 6, Complex
Systems Pub., Inc., , pp. 333-362.

Gruenz L. and Beyer H.-G. (1999). Some observations on the interaction of
recombination and self-adaptation in evolution strategies. Proc. of

Congress on Evolutionary Computation (CEC’99) pp. 639–645.

Gu, Y. and Chung, C.A. (1999). Genetic algorithm approach to aircraft gate
reassignment problem. Journal of Transportation Engineering,
125(5), pp. 384-389.

161

Hansen N. and Ostermeier A. (2001). Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 9(2):159–195.

Hansen N., Muller S.D., and Koumoutsakos P. (2003). Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES). Evolutionary Computation, 11(1):1–18.

Holland J.H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM

Journal of Computing, 2, pp.88-105.

Holland J.H. (1975). (used edition: 1992) Adaption in Natural and Artificial
Systems. MIT Press, Cambridge, MA, The University of Michigan
Press, Ann Arbor.

Haghani, A. and Chen, M.C. (1998). Optimizing gate assignments at airport
terminals. Transportation Research, 32(6), pp. 437-454.

Hansen N., Müller S.D. and Koumoutsakos P. (2003). Reducing the Time
Complexity of the Derandomized Evolution Strategy with Covariance
Matrix Adaptation (CMA–ES), Evolutionary Computation, vol. 11(1),
pp. 1–18.

Hansen N. (2006). The CMA Evolution Strategy: A Comparing Review, In J.A.

Lozano, P. Larrañga, I. Inza and E. Bengoetxea (eds.). Towards a new

evolutionary computation. Advances in estimation of distribution

algorithms, pp. 75–102.

Hansen N., Niederberger A.S.P., Guzzella L. and Koumoutsakos P. (2009). A
Method for Handling Uncertainty in Evolutionary Optimization with
an Application to Feedback Control of Combustion, IEEE

Transactions on Evolutionary Computation, vol. 13(1), pp. 180–197.

Horstmeier, T. and Haan, F. (2001). Influence of ground handling on turn round
time of new large aircraft. Aircraft Engineering and Aerospace

Technology, 73(3), pp. 266-271.

Hu, X. B. and Paulo, E. D. (2007). An efficient genetic algorithm with uniform
crossover for the multi-objective airport gate assignment problem.
IEEE Congress on Evolutionary Computation, 1-4244-1340-0/07, pp.
55-62.

Huang V.L., Qin A.K. and Deb K. et al. (2007). Problem definitions for

performance assessment on multi-objective optimization algorithms.
Tech. rep., Nanyang Technological University, Indian Institute of
Technology, Swiss Federal Institute of Technology, University
Dortmund, The University of Western Australia, Singapore.

Husband S., Barone L., While L. et al. (2005). A scalable multi-objective test
problem toolkit. In: Coello Coello CA, Aguirre AH, Zitzler E (eds)

Evolutionary multi-criterion optimization. Springer, Berlin Heidelberg
New York, pp 280–295.

Husband S., Hingston P., Barone L. et al. (2006). A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans Evol

Comput 10(5), pp. 477–506.

162

Iorio A.W. and Li X. (2006). Rotated test problems for assessing the performance of
multi-objective optimization algorithms. In: Proceedings of the ACM

annual conference on genetic and evolutionary computation, pp 683–
690.

Kaveh A. and Talatahari S. (2009). Size optimization of space trusses using Big
Bang–Big Crunch algorithm. Computers and Structures, 87 (17-18),
1129-1140.

Knowles J. D. and Corne D. W. (2000). Approximating the Nondominated Front
Using the Pareto Archived Evolution Strategy. Evolutionary

Computation, 8(2):149–172.

Koza J.R. (1992). Genetic Programming. MIT Press, Cambridge, MA.

Koza J.R. (1994). Genetic Programming II. MIT Press, Cambridge, MA.

Kumbasar T., Yesil E., Eksin I. and Guzelkaya M. (2008). Inverse fuzzy model
control with online adaptation via big bang-big crunch optimization.
3rd International Symposium on Communications, Control, and

Signal Processing, ISCCSP 2008, 697-702.

Kumbasar T., Eksin I., Guzelkaya M. and Yesil E. (2008). Big bang big crunch
optimization method based fuzzy model inversion, Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) 5317 LNAI, 732-
740.

Li H. and Zhang Q. (2009). Multiobjective optimization problems with complicated
pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2),
pp. 284–302.

Lozano M., Herrera F., Krasnogor N. and Molina D. (2004). “Real-coded
memetic algorithms with crossover hill-climbing,” Evoutionary.

Computation, vol. 12(3), pp. 273–302.

Mathews J. H. and Fink K.D. (2004). Numerical Methods Using Matlab. Prentice-
Hall Inc., Upper Saddle River, New Jersey, USA.

Matsumura Y., Ohkura K., and Ueda K. (2001). Evolution Strategies with Multi-
Parent Recombination, Joho Shori Gakkai Shinpojiumu Ronbunshu,
vol 2001/12, pp. 107-114.

Matsumura Y., Ohkura K., and Ueda K. (2002). Advantages of Global Discrete
Recombination in (µ/µ, λ) Evolution Strategies, Proceedings of the

2002 World on Congress on Computational Intelligence (WCCI),
Honolulu, HI, USA, 12-17 May, ISBN: 0-7803-7282-4.

Mendoza N., Chen Y.-W., Nakao Z., and Adachi T. (2001). "A hybrid
optimization method using real-coded multi-parent EA, simplex and
simulated annealing with application in the resolution of overlapped
signals", Appl. Soft Comput., vol. 1, pp. 225 – 235.

Michalewicz, Z. (1992). Genetic Algorithms + Data Structure = Evolution

Programs, Springer-Verlag, New York.

163

Moscato, P. (1989). On Evolution, Search, Optimization, Genetic Algorithms and

Martial Arts: Towards Memetic Algorithms. Caltech Concurrent
Computation Program (report 826).

Nelder J. A. and Mead R. (1965). A simplex method for function minimization.
Computer Journal, vol 7, pp 308–313.

Neubauer A. (1997). Adaptive non-uniform mutation for genetic algorithms.
Adaptive non-uniform mutation for genetic algorithms. Proceedings

of the International Conference on Computational Intelligence and

Lecture Notes in Computer Science, Dortmund, Germany. 28.-30.
April. Springer-Verlag, Berlin.

Noman N. and Iba H. (2008). Accelerating Differential Evolution Using an
Adaptive Local Search, IEEE Trans. On Evolutionary Computation,
vol.12(1), pp.107-125.

Obata, T. (1979). The quadratic assignment problem: Evaluation of exact and

heuristic algorithms. Tech. Report TRS-7901. Rensselaer Polytechnic
Institute, Troy, New York.

Okabe T., Jin Y., Olhofer M. et al. (2004). On test functions for evolutionary
multi-objective optimization. In: Proceedings of the international

conference on parallel problem solving from nature, pp 792–802.

Oliver I.M., Smith D.J. and Holland J. (1987). A study of permutation crossover
operators on the travelling salesman problem. Proceedings of the 2

nd

International Conference on Genetic Algorithms and Their

Applications. Lawrence Erlbaum, Hillsdale, New Jersey. pp. 224-230.

Ong Y.-S. and Keane A. J. (2004). Meta-Lamarckian learning in memetic
algorithms, IEEE Trans. Evol. Comput., vol. 8(2), pp. 99–110.

Ong Y.-S., Lim M.-H., Zhu N., and Wong K.-W. (2006). Classification of adaptive
memetic algorithms: A comparative study, IEEE Trans. Syst., Man,

Cybern.—Part B, vol. 36(1), pp. 141–152.

Osyczka A. (1985). Multicriteria optimization for engineering design. In J. S. Gero,

editor, Design Optimization, pp. 193–227. Academic Press.

Radcliffe N. (1991). Forma analysis and random respectful recombination.
Proceedings of the 4

th
 International Conference on Genetic

Algorithms. Morgan Kaufmaim, San Francisco, pp. 222-229.

Rechenberg I. (1973). Evolutionstrategie: Optimierung Technisher Systeme nach

Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag,
Stuttgart.

Salomon. R. (1998). Evolutionary algorithms and gradient search: similarities and
differences. IEEE Trans. Evolutionary Computation, 2(2): 45–55.

Schott, J.R. (1995). Fault tolerant design using single and multicriteria genetic

algorithm optimization. Master’s thesis, Department of Aeronautics
and Astronautics, Massachusetts Institute of Technology.

Schwefel H.-P. (1995). Evolution and Optimum Seeking. Wiley, New York.

164

Schwefel H.-P. and Rudolph G. (1995). Contemporary evolution strategies. In F.

Mor´an, A. Moreno, J. J. Merelo, and P. Chac´on, editors, Advances

in Artificial Life. Third International Conference on Artificial Life,

volume 929 of Lecture Notes in Artificial Intelligence, pages 893–
907. Springer, Berlin.

Spears W.M. and De Jong K.A. (1991). An analysis of multi point crossover.

Foundations of Genetic Algorithms. Morgan Kaufmann, San
Francisco, pp. 301-315.

Suganthan P.N., Hansen N., Liang J.J., Deb K., Chen Y.P., Auger A. and Tiwari
S. (2005). Problem definitions and evaluation criteria for the CEC

2005 Special Session on Real Parameter Optimization, Tech. Report,
Nanyang Technological University.

Teodorovic D. and Guberinic S. (1984). Optimal dispatching strategy on an airline
network after a schedule perturbation. European Journal of

Operations Research, 15 pp. 178-182.

Teodorovic D. and Stojkovic G. (1990). Model for operational daily airline
scheduling. Transportation Planning and Technology, 14, pp.(273–
285)

Wei, D. and Liu, C. (2007). Optimizing gate assignment at airport based on genetic-
Tabu algorithm. Proceedings of the IEEE Int. conf. on Automation

and Logistics. Jinan, China, pp. 1135-1140.

Whitley D. (2000). Permutations. Book chapter in Evolutionary Computation 1:
Basic Algorithms and Operators. Institute of Physics Publishing,
Bristol., Chap. 33.3, pp. 274-284.

Wirasinghe S. and Bandara S. (1990). Airport gate position estimation for
minimum total costs—approximate closed form solution.
Transportation Research, 24B, pp. 287–297.

Xu, J. and Bailey, G. (2001). The airport assignment problem: Mathematical model
and a Tabu search algorithm. Proceedings of the 34th Hawaii IEEE

Int. Conf. on System Sciences. 0-7695-0981-9/01, pp. 1-10.

Van Veldhuizen D.A. (1999). Multiobjective evolutionary algorithms:

classifications, analyses, and new Innovations. Ph.D. thesis, Graduate
School of Engineering. Air Force Institute of Technology, Wright-
Patterson AFB.

Van Veldhuizen, D.A. and Lamont, G.B. (1999). Multiobjective evolutionary
algorithm test suites. In J. Carroll, H. Haddad, D. Oppenheim, B.

Bryant, and G. B. Lamont, editors, Proceedings of the 1999 ACM

Symposium on Applied Computing, pp. 351–357.

Yan S. and Huo C. (2001). Optimization of multiple objective gate assignments.
Transportation Research 35A, 413–32.

Yu, X. and Gen M. (2010). Introduction to Evolutionary Algorithms, Springer-
Verlag London.

165

Zhang Q., Zhou A., Zhaoy S. et al. (2008). Multiobjective optimization test

instances for the cec 2009 special session and competition. Tech. rep.
CES-487, University of Essex, Nanyang Technological University,
Clemson University, Singapore.

Zhao, X. and Gao X. (2004). Evolutionary Programming Based on Non-Uniform

Mutation, MM Research Preprints, pp. 352-374 MMRC, AMSS,
Academia Sinica No. 23.

Zhu, Y., Lim, A. and Rodrigues B. (2003). Aircraft and Gate Scheduling with Time
Windows. Proceedings of the 15th IEEE International Conference on

Tools with Artificial Intelligence (ICTAI’03), 3-5 November,
Sacramento, California, USA.

Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: methods

and applications. Ph.D. thesis, Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland.

Zitzler E., Deb K. and Thiele L. (2000). Comparison of multiobjective evolutionary
algorithms: empirical results. Evol Comput 8(2):pp. 173–195.

Zitzler E., Laumanns M., and Thiele L. (2001). SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. In K. Giannakoglou, D. Tsahalis, J.

Periaux, P. Papailou, and T. Fogarty, editors, EUROGEN 2001.

Evolutionary Methods for Design, Optimization and Control with

Applications to Industrial Problems, pages 95–100, Athens, Greece.

Url-1 <http://www.lri.fr/~hansen/> date retrieved 20.03.2011

Url-2<http://www.georgeevers.org/pso_research_toolbox.htm> date retrieved
15.05.2011

Url-3<http://thetravelinsider.info/airplanetypes.htm> date retrieved 20.01.2012

166

167

CURRICULUM VITAE

Name Surname: Hakkı Murat Genç

Place and Date of Birth: Samsun, TURKEY 05.06.1980

Address: TÜBĐTAK BĐLGEM BTE

E-Mail: hmuratgenc@gmail.com

B.Sc.: Middle East Technical University, Electrics and Electronics Engineering

M.Sc.: Đstanbul Technical University, Control and Automation Engineering

Professional Experience and Rewards:

Work Experience:

2003 – 2010: Marmara Research Center, Senior Reseracher

2010 – present: Center of Research For Advanced Technologies Of Informatics
And Information Security, Chief Researcher

Rewards:

1999: METU High Honour List

2002: METU High Honour List

2008: TUBITAK Scientific Publications Incentive Award

List of Publications and Patents:

Genç H. M., Eksin Đ., Güzelkaya, M., Yeşil E. ”A Rule-base Modification for Time
Delay Systems”. ASC 2006, The 10th IASTED International Conference on
Artificial Intelligence and Soft Computing, 28-30 August 2006, Palma de Mallorca,
Spain.
Genç H. M., Cataltepe Z., Pearson T., "A New PCA/ICA Based Feature Selection
Method/Yeni Bir Temel/Bağımsız Bileşen Analizi(TBA/BBA) Tabanlı Öznitelik
Seçme Yöntemi", IEEE Sinyal Đşleme Uygulamaları Konferansı (SĐU 2007), 11 – 13
June, Eskisehir, Turkey.
Cataltepe Z., Genç H. M., Pearson T., "A PCA/ICA Based Feature Selection Method
and its Application for Corn Fungi Detection", Eusipco (European Signal Processing
Conference) 2007, 3-7 September, Poznan, Poland.

168

Şenyürek L.H., Köksal S., Genç H.M., Aldoğan D., Haklıdır M., "Implementation of
Fuzzy Control for Surface Platforms in a Computer Generated Forces Toolkit",
International Conference on Computational Intelligence for Modelling, Control and
Automation (CIMCA08), 10-12 December, Vienna, Austria.
Genç H. M., Hocaoğlu A.K., ” Bearing-Only Target Tracking Based On Big Bang –
Big Crunch Algorithm”, The Third International Multi-Conference on Computing in
the Global Information Technology, 27 July – 01 August 2008, Athens, Greece.
Genç H. M., Yesil E., Eksin I., Guzelkaya M., Tekin Ö. A., ”A Rule Base
Modification Scheme in Fuzzy Logic Controllers for Time-Delay Systems”, Expert
Systems with Applications, Elsevier, S0957-4174(08)00761-6, 2009 (SCI - A).
Genç H.M., Okutan C., “Modeling, Control and Simulation of a tactical navigation
guidance integrated Autonomous Underwater Vehicle (AUV)”, Underwater Defence
Technology Conference (UDT’09), 9-11 June, Cannes, France.
Genç, H. M., Erol O. K., Eksin Đ., “An Application and Solution to Gate
Assignment Problem for Atatürk Airport”, DECOMM 2009, 26-29 September,
Ohrid, Macedonia.
Baştürk T., Genç H.M., Ergüner F., Okutan C., Özkan Ü., “Life Cycle of Weapon
Control Systems for Wire Guided Torpedoes”, 2010 Spring Simulation
Interoperability Workshop International European Multi Conference, 12-16 April,
Orlando, Florida, USA.
Okutan C., Genç H.M., “Comparison of Torpedo Guidance Schemes and
Modifications on the Trajectory Plan in the Existence of Obstacles/Allied Forces”,
Defence Technology Conference (UDT’10), 8 – 10 June, Hamburg, Germany.
Genç H.M., Eksin I., Erol O.K., “Big Bang-Big Crunch Algorithm with
Modifications on the Crunching Phase”, International Symposium on INnovations in
Intelligent SysTems and Applications, Inista’10, 21 – 24 June, Kayseri, Turkey.
Okutan C., Ergüner F., Baştürk T., Genç H.M., ”Algoritmadan Uygulamaya Modern
Atış Kontrol Yzılımı”, Savunma Teknolojileri Konferansı (SAVTEK 2010), 23 – 25
June, ODTÜ, Ankara.
Genç H. M., “A New Solution Approach for the Airport Gate Assignment Problem
for Handling of Uneven Gate Demands”, 12th World Congress on Transportation
Research (WCTR 2010), 11-15 July, Lisbon, Portugal.
Genç H. M., “A New Solution Approach for the Bearing Only Target Tracking
Problem”, IEEE 4th International Workshop on Soft Computing Applications
(SOFA’10), 15 – 17 July, Arad, Romania.
Genç H.M., Eksin I., Erol O.K.. “Big Bang - Big Crunch Optimization Algorithm
Hybridized With Local Directional Moves and Application to Target Motion
Analysis Problem”, IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2010), 10-13 October, Đstanbul, Turkey.
Aruk F., Güven A.F., Genç H.M., Okutan C. C., ”Modelling of an Airborne Torpedo
Attack and Implementation on a Simulation Environment”, Journal of Defense
Modeling and Simulation: Applications, Methodology and Technology, published
online before print 15, June 2011, DOI: 10.1177/1548512911411331.
Genç, H. M., Okutan C. C., ”Torpido Güdüm Metodlarının Karşılaştırılması ve
Durağan / Hareketli Engellere karşı Yörünge Planında Değişiklikler”, 4. Ulusal
Savunma Uygulamaları Modelleme ve Simülasyon Konferansı (USMOS 2011), 14-
15 June, Ankara, Turkey.
Genç, H. M., Erol O. K., Eksin Đ., ”A Stochastic Metaheuristic Approach for the
Gate Assignment Problem”, International Conference on Evolutionaryand

169

Deterministic Methods for Design, Optimization and Control with Applications to
Industrial and Societal Problems (EUROGEN 2011), 14-16 September, Capua, Italy.
Genç H.M., Eksin I., Erol O.K., “Big Bang - Big Crunch Optimization Algorithm
with Local Directional Moves”, Turkish Journal of Electrical Engineering and
Computer Sciences (accepted manuscript).
Genç, H. M., Erol O. K., Eksin Đ. Berber M.F. and Güleryüz B.O., “A Stochastic
Neighbourhood Search Approach for Airport Gate Assignment Problem”, Expert
Systems with Applications, Elsevier, vol 39, pp316 – 327, DOI:
10.1016/j.eswa.2011.07.021. (SCI - A).

PUBLICATIONS/PRESENTATIONS ON THE THESIS

� Genç H. M., Hocaoğlu A.K., 2008: Bearing-Only Target Tracking Based On Big
Bang – Big Crunch Algorithm, The Third International Multi-Conference on

Computing in the Global Information Technology, 27 July – 01 August, Athens,
Greece.

� Genç, H. M., Erol O. K. and Eksin Đ., 2009: An Application and Solution to Gate
Assignment Problem for Atatürk Airport, DECOMM 2009, 26-29 September, Ohrid,
Macedonia.

� Genç, H. M., 2010: A New Solution Approach for the Bearing Only Target
Tracking Problem, IEEE 4th International Workshop on Soft Computing
Applications (SOFA’10), 15 – 17 July, Arad, Romania.

� Genç H.M., Eksin I., Erol O.K., 2010: Big Bang - Big Crunch Optimization
Algorithm Hybridized With Local Directional Moves and Application to Target
Motion Analysis Problem, IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2010), 10-13 October, Đstanbul, Turkey.

� Genç, H. M., Erol O. K. and Eksin Đ., 2011: A Stochastic Metaheuristic Approach
for the Gate Assignment Problem”, International Conference on Evolutionaryand

Deterministic Methods for Design, Optimization and Control with Applications to

Industrial and Societal Problems (EUROGEN 2011), 14-16 September, Capua, Italy.

� Genç, H. M., Erol O. K., Eksin Đ., Berber M.F. and Güleryüz B.O., 2012: A
Stochastic Neighbourhood Search Approach for Airport Gate Assignment Problem.
Expert Systems with Applications, Elsevier, vol 39, pp.316 – 327, DOI:
10.1016/j.eswa.2011.07.021.

170

