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ENHANCED HYBRID BIG BANG-BIG CRUNCH OPTIMIZATION 
ALGORITHMS AND APPLICATIONS ON SINGLE AND MULTI-

OBJECTIVE AIRPORT GATE ASSIGNMENT PROBLEM 

SUMMARY 

Big Bang – Big Crunch (BB – BC) algorithm is a global optimization method relying 
on heuristics from the nature, particularly, the theory of Big Bang and Big Crunch. 
The algorithm generates new candidate solutions randomly in Big Bang phase and 
those solution candidates are latter used to obtain a single representative point 
through a contraction approach in the Big Crunch phase. One of the main 
contributions of this work is the local search hybridized version of the BB-BC, 
namely Big Bang-Big Crunch Algorithm with Local Directional Moves (BBBC-LS). 
The local search algorithm generates a direction vector by using the current 
representative point and the previous representative points of the generations and 
checks for improvement in that direction. If an improvement is achieved, the new 
centre is forced to switch to that point. That is to say, the centre point of the 
explosion of next big bang phase is changed. The step size of the local search is set 
and adjusted according to the distance between these consecutive representative 
points. The exploitation or intensification capability of the algorithm is enhanced 
with local search; and thus, the proposed hybridization operation produces much 
more accurate results than the original BB – BC algorithm. In fact, it also provides 
promising results when compared to the state-of-the-art optimization methods. 
Moreover, the newly proposed algorithm is shown to be much more effective in 
terms of complexity.  

Airline industry has been using operation research techniques for more than fifty 
years. In the last three decades, rapid developments in the computational powers of 
the processors paved the way for utilizing highly complex planning and scheduling 
strategies. Both the airlines and airport operators make use of problem tailored 
algorithms to maximize their revenues. One of the most important limitations in the 
resources of an airport is in the allocation of gates to the planes; and consequently, 
gate assignment plays a major role in the revenue obtained from ground operations.  

Gate Assignment Problem (GAP) is well studied in the literature and consequently, 
there are many proposed problem formulations and solution techniques. Though the 
basic constraints and objectives are easily perceived, the problem has many 
interactions with other resources such as the number of gates, airport topology, flight 
schedules, distances to baggage claim areas, etc. Therefore, GAPs are even more 
complicated than most other traditional scheduling problems. Moreover, as the air 
traffic becomes more demanding, the grandeur of the solution space gets even larger; 
in return, this makes traditional binary integer techniques practically inapplicable.  In 
those cases, nature inspired computing techniques became a good alternative for 
GAPs.  
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One other main contribution of the study is the GAP solution techniques proposed 
for both single and multi-objective gate assignment problems. The solution 
approaches combine the benefits of heuristic approaches that provide a fast initiating 
solution to the problem and later conduct stochastic searches in order to ameliorate 
the previously obtained result via heuristic approaches. The solution techniques are 
Single Leap-Big Bang Big Crunch (SL-BBBC) algorithm for single objective 
problems and enhanced Order Based Single Leap-Big Bang Big Crunch (eSL-
BBBC) algorithm for multi-objective problems. The algorithms are experimented on 
various artificial and actual field data to illustrate performance.  

The main contributions of the study can be listed as follows: 

a. Proposing Big Bang-Big Crunch with Local Directional Moves (BBBC-
LS) algorithm that possesses improvements over algorithmic capability of the 
classical Big Bang-Big Crunch (BB-BC) optimization method. The 
effectiveness of the hybridized algorithm has been illustrated on various test 
beds.  

b. Investigating Airport Gate Assignment Problem (AGAP) and proposing 
practically applicable problem formulations.  

c. Introducing Single Leap-Big Bang Big Crunch (SL-BBBC) algorithm for 
the solution of single objective AGAP. 

d. Proposing a systematic method for parameter-controlled quasi-realistic 
airport data generation for quasi-real simulations. 

e. Discussing previous work on multi-objective airport gate assignment 
problem and proposing a state-of-the-art solution strategy named as enhanced 
Order Based Single Leap-Big Bang Big Crunch (eSL-BBBC) method.  

.  
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GELĐŞTĐRĐLMĐŞ MELEZ BÜYÜK PATLAMA-BÜYÜK ÇÖKÜŞ 
OPTĐMĐZASYON ALGORĐTMALARI VE TEK VE ÇOK AMAÇLI 

HAVAALANI KAPI ATAMA PROBLEMĐ UYGULAMALARI 

ÖZET 

Büyük Patlama-Büyük Çöküş eniyileme algoritması, evrenin oluşumunu açıklayan 
en önemli teorilerden Büyük Patlama ve Büyük Çöküş teorilerine dayanan bir global 
eniyileme yöntemidir. Büyük Patlama-Büyük Çöküş algoritması ile çözüm 
adaylarından oluşan bir toplulukta, nesiller (iterasyonlar) boyunca değişime uğrayan 
bireylerin problemin çözümüne yakınsaması sağlanır. Bireylerin değişime uğraması, 
genetik algoritmalardaki mutasyon operatörünün işlevine yakın bir şekilde büyük 
patlama ve büyük çöküş fazları ile sağlanır. Büyük patlama, belli bir nokta etrafında 
standart sapması kontrol edilen bir normal dağılım vektörünün parametre uzayında 
bireylere eklenmesi işlemidir. Büyük çöküş operatörü ise arama uzayına dağılmış 
bireylerin ortak olarak belirlediği bir çökme noktasının ilgili iterasyonun sonucunda 
elde edilen en iyi nokta, yani ilgili iterasyonunun çözümü olarak hesaplanması 
işlemidir. En basit haliyle büyük çöküş operatörü arama uzayında en iyi amaç değere 
sahip bireyin yeri olarak belirlenebilir. Bununla birlikte en verimli yöntem her 
bireyin çökme noktasına katkıda bulunduğu ağırlıklı ortalama yöntemidir. Buna gore 
her birey amaç değerinin büyüklüğüne / küçüklüğüne göre ağırlıklandırılarak 
ortalama alınır ve ilgili iterasyonun çözümü olarak sunulur.  

Bu çalışmanın en önemli katkılarından birisi de Yerel Yönsel Đlerlemeli Büyük 
Patlama Büyük Çöküş isimli yöntemin geliştirilmiş olmasıdır. Yerel arama 
yöntemlerinin evrimsel aramalar içinde kullanılması ve melez yapılar oluşturularak 
her iki yaklaşımın güçlü yönlerinin uygun şekilde değişmeli olarak kullanılması 
literatürde sıkça rastlanan bir durumdur. Yerel Yönsel Đlerlemeli Büyük Patlama 
Büyük Çöküş eniyileme algoritmasında yerel arama algoritması güncel nesillerinin 
çözümü (jenerasyon merkezi, bir sonraki patlama merkezi) ile önceki nesillerin 
çözümü arasında oluşturulan yönde özelleşmiş arama yapmaktan sorumludur. Bu 
arama için, basit yerel arama yöntemlerinden bölerek arama ya da ikircilli arama 
kullanılır. Üretilecek arama vektörü ya da arama alanı sadece bir önceki ya da bir ve 
iki önceki nesil çözümleri kullanılarak belirlenir. Yerel arama adımları ile bir 
iyileşme sağlanırsa nesilin çözüm değeri; başka bir ifadeyle bir sonraki Büyük 
Patlama’nın merkezi bu noktaya taşınır. Yerel arama yöntemi, iterasyonlar arası elde 
edilen çözümlerin birbirlerine uzaklığına dayalı olarak arama alanının büyüklüğünü 
değiştireceğinden,  kendi kendini uyarlayabilir yapıdadır. Böylece ilk iterasyonlarda 
büyük bir alanda daha az yoğun bir arama icra edilirken; algoritmanın son 
iterasyonlarının arasındaki yerel aramalar çözüm üzerinde ince ayar yapmaktadır. 
Yerel arama işlevi, iterasyonlar arasına, Büyük Patlama-Büyük Çöküş algoritmasının 
adımlarına müdahale etmeden eklenmiştir.  

Yerel Yönsel Đlerlemeli Büyük Patlama-Büyük Çöküş yönteminin bir diğer özelliği 
Büyük Çöküş operatörü olarak Nelder-Mead eniyileme yöntemini kullanabilmesidir. 
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Literatürde sıklıkla kullanılmış olan bu yöntem, Büyük Çöküş operatörü olarak en 
iyiyi seçme ve ağırlıklı ortalandırma yöntemlerine bir alternatif olmaktadır. Hangi 
Büyük Çöküş operatörünün kullanılacağı algoritma koşumu esnasında önceden 
belirlenen parametre ile kontrol edilerek değiştirilebilmektedir. Bu sayede, arama 
başlangıcındaki topoloji bilgisinin az olduğu iterasyonlarda diğer Büyük Çöküş 
operatörleri ile daha hızlı yakınsama sağlanıp, arama olgunlaştıktan sonra Nelder-
Mead çokgenleri ile çözüm doğruluğu arttırılabilmektedir.  

Yerel Yönsel Đlerlemeli Büyük Patlama-Büyük Çöküş eniyileme algoritması ile elde 
edilen sonuçların Büyük Patlama-Büyük Çöküş eniyileme algoritması ile elde edilen 
sonuçlara göre oldukça iyileştiği; buna karşın algoritmanın harcadığı süre ve 
karmaşıklığının ihmal edilebilir oranda arttığı benzetim sonuçları ile gösterilmiştir. 
Dünya çapında yaygın kabul görmüş eniyileme yöntemleri (Genetik Algoritmalar, 
Evrimsel Stratejiler, Parçacık Sürü Optimizasyonu) ile karşılaştırıldığında, önerilen 
yöntemin doğruluk ve hız açısından üstün sonuçlar verebildiği; karmaşıklık 
metriklerinde ise çok daha üstün olduğu gösterilmiştir.     

Havaalanlarında ve havayolu işletmelerinde eniyileme yöntemlerinin birçok kullanım 
alanı vardır. Son otuz yılda bilgisayar işlemcilerinin güçlerindeki hızlı artış, çok 
karmaşık planlama ve çizelgeleme yöntemlerinin gerçekleştirilebilmesine olanak 
sağlamıştır. Her havayolu şirketleri hem de havaalanı işletme şirketleri bu alanda 
yatırımlar yaparak kazançlarını artırma yoluna gitmişlerdir. Havaalanlarındaki en 
önemli kısıtlı kaynaklardan biri de uçakların yanaştığı kapılardır. Dolayısıyla 
kapıların artan hava trafiğine en verimli şekilde hizmet etmesi gerekmektedir.  

Havaalanı kapı atama problemi literatürde ve pratik uygulamalarda özellikle son on 
yılda çokça çalışılmış ve birçok matematiksel problem tanımı ve çözüm tekniği 
önerilmiştir. Temel kısıtlar ve amaç fonksiyonları kolayca anlaşılabilir olmasına 
rağmen hava alanı kapı atama problemi, kapı sayısı, havaalanı topolojisi, uçuş 
planları, havaalanı içindeki yürüme mesafeleri gibi dış etkenlere bağımlılığı 
dolayısıyla karmaşık bir problemdir ve NP-zor olarak sınıflandırılır. Son yıllarda 
hızla artan havaalanı trafiği, problemin bir tamsayı problemi olarak klasik 
yöntemlerle çözülebilmesini zorlaştırmıştır. Bu nedenle evrimsel arama 
yöntemlerinin kapı atama problemine uygulanması yeni ortaya çıkan ve pratikte 
kullanım alanı bulan bir konudur.  

Bu çalışmanın bir diğer ana katkısı, havaalanı kapı atama problemine yeni bir 
matematiksel problem tanımı getirmek, bu tanım çerçevesindeki tek ve çok amaç 
fonksiyonuna sahip problemleri çözebilmek için evrimsel hesaplamaya dayalı 
yöntemler önermektir. Önerilen çözüm yöntemleri, deterministik sezgisel 
yaklaşımlar sayesinde ilk çözümü hızlı bir şekilde oluşturduktan sonra stokastik 
evrimsel yöntemlerle bu çözümü iyileştirmeyi amaçlar.  

Tek amaç fonksiyonu ile tanımlanan kapı atama probleminde amaç, kapılarda 
uçakların kalış süresini en çoklamaktır. Bir diğer ifade ile amaç, aprona çekilmek 
zorunda kalınan uçakların havaalanında kalacağı toplam sürenin en azlanmasıdır. Bu 
amaç fonksiyonunun en azlanması için öncelikle uçakları kalış sürelerinin çokluğuna 
göre sıralayan sezgisel yaklaşımla uçakların sıralanması sağlanır. Bu sıralama, 
iterasyonlar boyunca değiştirilip uçak yerleşimleri kontrol edilerek çözüme ulaşılır. 
Uçakların yerleştirilmesi işlemini sıralama kavramı ile ilişkilendiren bu yöntemin 
etkinliği üretilen yapay veri kümelerinde, Đstanbul Atatürk Havaalanından elde edilen 
veriler üzerinde gösterilmiştir. Ayrıca geliştirilen algoritma TAV Bilişim A.Ş. 
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firmasının havaalanı kaynak planlama sistemi içerisinde gerçeklenmiş ve ticari bir 
ürün olarak çeşitli havaalanlarında kullanımı sağlanmıştır.  

Çok amaçlı havaalanı kapı atama probleminde amaçlar; kapıların doluluğunu en 
çoklamak, yolcu yürüme mesafelerinin toplamını en aza indirmek ve çeşitli 
kriterlerin birleşimi olan önceliklerin karşılanmasını en çoklamak olarak 
tanımlanmıştır. Bu amaç fonksiyonları yer yer birbirleriyle çeliştiğinden tümünü 
birden eniyileyen bir çözüm bulmak her zaman mümkün değildir. Bu nedenle çözüm, 
en az bir amaç fonksiyonu açısından diğerlerinden iyi olan bireylerden oluşan 
kümedir. Pareto optimum kümesi olarak adlandırılan bu kümenin, çok amaçlı hava 
alanı kapı atama problemi için, Genişletilmiş Uçak Sıralaması Tabanlı Tek Atlamalı 
Büyük Patlama-Büyük Çöküş Yöntemi ile daha önce literatürde önerilen yönteme 
göre daha iyi şekilde oluşturulduğu çeşitli metrikler baz alınarak gösterilmiştir.  

Havaalanı kapı atama algoritmalarının testlerinde veri kümesinin gerçeğe yakınlığı, 
havaalanlarında kullanılabilir algoritmalar üretebilmek için çok önemlidir. Uçakların 
ortalama kalış süreleri, kalış sürelerinin standart sapması, yürüme mesafeleri, yolcu 
sayıları ve öncelikleri belirleyen modellerin dikkatle oluşturulması gerekir. Bu 
çalışmada, havaalanı kapı atama algoritmalarının testleri için parametrik olarak 
kontrol edilebilen gerçekçi bir veri üreteci tasarlanmıştır. Bu veri üreteci ile elde 
edilen algoritma sonuçları, Đstanbul Atatürk Havaalnından elde edilen verilerle 
yapılan deney sonuçları ile yüksek benzerlik göstermiştir.  

Tez çalışmasının içeriği aşağıdaki gibi maddelenebilir: 

a. Sürekli eniyileme problemlerinin çözümüne yönelik Yerel Yönsel Đlerlemeli 
Büyük Patlama-Büyük Çöküş algoritması önerilmiştir. Algoritmanın 
doğruluk, hız ve karmaşıklık analizi hem Büyük Patlama-Büyük Çöküş 
yöntemi hem de literatürde en çok kabul görmüş yöntemlerle karşılaştırmalı 
olarak verilmiştir.  

b.  Havaalanı kapı atama problemi için sahada gerçeklenebilir problem 
tanımlamaları önerilmiştir. 

c. Tek amaç fonksiyonuna sahip havaalanı kapı atama problemi için Tek 
Atlamalı Büyük Patlama-Büyük Çöküş yöntemi önerilmiş ve algoritma 
etkinliği çeşitli test kümelerinde gösterilmiştir. Önerilen yöntemin farklı amaç 
fonksiyonları üzerinde kullanılabilirliği tartışılmıştır.   

d. Uçuş planlaması ve havaalanı yolcu trafiği için parametrik yönetilebilen 
gerçeğe yakın bir test verisi üreteci sunulmuştur. Geliştirilen algoritmaların 
benzetimlerinde, yapay üretilen bu verilerin sahadan toplanan verilerle 
uyumluluğu ortaya konmuştur.  

e. Çok amaçlı kapı atama problemine ilişkin geçmişte raporlanan çalışma 
detayları ile incelenmiş, çalışmanın zayıflıkları ortaya konarak daha etkili bir 
yöntem olan Genişletilmiş Uçak Sıralaması Tabanlı Tek Atlamalı Büyük 
Patlama-Büyük Çöküş Yöntemi önerilmiştir. Önerilen yöntem, çeşitli yapay 
test kümeleri üzerinde ve Đstanbul Atatürk Havaalanı’ndan elde edilen gerçek 
saha verileri üzerinde test edilerek etkinliği incelenmiştir.                 
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1.  INTRODUCTION 

1.1 What is an Evolutionary Algorithm? 

Every real-world problem from economic to scientific and engineering fields is 

ultimately confronted with a common task, optimization. An optimization problem 

can be defined by specifying the set of all feasible candidates and a measure for 

evaluating their worth (Ahn, 2006). 

As the result of intense research over the years, there are many optimization 

algorithms reported.  One of the main classes of optimization algorithms is the 

evolutionary algorithms. 

Evolutionary algorithms are the umbrella term for many stochastically developed 

population based search techniques that are inspired from the natural evolution 

process. The analogy in between the natural evolution process and the optimization 

problem is given in Table 1.1. 

Table 1.1: Evolutionary computing metaphor. 

Natural Evolution Optimization 
Problem Solving 

Environment Problem 

Individual Candidate Solution 

Fitness Quality 

Frequently, Evolutionary Computation, Evolutionary Optimization, Evolutionary and 

Programming terms are interchangeably used. The slight differences of these terms 

are ignored in this thesis.   

Evolutionary computing techniques are based on Mendelian Genetics and Darwinian 

Theory of Evolution.  They, somehow imitate the nature to find out what is best for 

some specific problem. In today’s world, they have been successfully applied to 
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many areas such as scheduling applications, system design, learning and prediction 

applications, automated program development, multi-criteria decision-making, 

evolvable hardware design, etc.  

There are many variants of the evolutionary algorithms. Nevertheless, the common 

underlying idea behind all these techniques is the same: given a population of 

individuals, the environmental pressure causes natural selection that is survival of the 

fittest, which causes a rise of the fitness of the population. Given a quality function to 

be maximized, a set of candidate solutions can be created randomly, then these 

solutions can be scored by applying the quality function as an abstract fitness 

measure. Based on this fitness scores, some of the better candidates are chosen to 

seed the next generation by applying recombination and/or mutation (Eiben and 

Smith, 2003).  

1.2 A Brief History on Evoltionary Algorithms 

History of the evolutionary computation gets back to Turing when he first proposed 

genetical or evolutionary search concepts in 1948. Then in 1962, Bremermann 

executed a computer program on optimization through evolution and recombination 

(Fogel, 1998). After the 60s, when the evolutionary computation concepts 

accelerated to grow, three main branches emerged including Evolutionary 

Programming (Fogel et al, 1965; Fogel et al, 1966), Genetic Algorithm (De Jong, 

1975; Holland, 1973; Holland, 1975) and Evolutionary Strategies (Rechenberg, 

1973; Schwefel, 1995). Up to the 90s, these works are interpreted as separate fields 

of research, but now, as stated in the previous chapter they are classified under the 

term “evolutionary computation”. In 90s, also a fourth branch following the same 

concepts with a different approach emerged and became the final main branch of 

evolutionary computation: genetic programming (Banzhaf et al, 1998; Koza, 1992; 

Koza 1994).  

For more detailed literature survey, one can investigate Fogel (1998) and De Jong 

(2006). 
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1.3 Airport Gate Assignment Problem 

The air transportation becomes more and more widespread during the past fifteen 

years. As well as the opportunity of travelling long distances in reasonable short time 

duration, the moderate prices due to competition of the companies made several 

travelers to choose airline industry. These facts tremendously increased the traffic in 

the airports compared to mid-1990s. Assigning arriving flights to airport gates is an 

important issue in daily operations of an airline. It has a major impact on maintaining 

the efficiency of flight schedules, passenger satisfaction and the revenue obtained. 

Gate assignment problem is a quadratic assignment problem and the solution 

algorithm should handle large search spaces. Therefore, the evolutionary 

optimization algorithms can be good solution alternatives.  

1.4 Purpose of Thesis 

This thesis has the following purposes, 

I. To propose improvements on algorithm capability of the Big Bang-Big 

Crunch (BB-BC) optimization algorithm in numeric problem domains and 

illustrate the improvements on various test beds.  

II. To investigate airport gate assignment problem (AGAP) and propose 

practically applicable problem formulations.  

III. To propose an evolutionary method on the solution of AGAP 

IV. To generate quasi-realistic airport data for real-like simulations 

V. To discuss previous work on multi-objective gate assignment problem 

(MOGAP) and propose a state-of-the-art solution strategy remedying the 

weaknesses.  

1.5 A Brief Summary of Chapters 

Chapter 2 discusses the Big Bang-Big Crunch (BB-BC) algorithm within the 

evolutionary computation methods. In this context, the chapter briefly reviews the 

Genetic Algorithms (GA), Evolutionary Strategies (ES) and Big Bang-Big Crunch 

(BB-BC) algorithm. In the final subchapter, relations and differences of BB-BC with 

the previously reported literature is investigated.  
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In chapter 3, a new method based on BB-BC is introduced: Big Bang-Big Crunch 

Algorithm with Local Directional Moves (BBBC-LS). The method is shown to be 

good alternative for the well-accepted methods as Genetic Algorithms, Evolutionary 

Strategies and Particle Swarm Optimization.  

Chapter 4 introduces the total time slot maximization formulation for the AGAP. The 

problem is solved by the Single Leap-Big Bang Big Crunch (SL-BBBC), which is 

one of the main contributions of the study. In this chapter, the practical application of 

the problem is given.  

Chapter 5 briefly reviews the basics of multi-objective optimization. Performance 

metrics used in this work are also given. 

Chapter 6 introduces the Enhanced Order Based Single Leap-Big Bang Big Crunch 

(eSL-BBBC) optimization algorithm on the solution of multi-objective gate 

assignment problems (MOGAPs). In this chapter, a test data generator for quasi-

realistic airport flight data and airport pedestrian traffic data is introduced.  

Finally, chapter 7 gives some conclusions and further recommendations. 
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2.  BIG BANG-BIG CRUNCH ALGORITHM WITHIN EVOLUTIONARY 

COMPUTATION METHODS 

2.1 Components of the Evolutionary Algorithms 

All the evolutionary algorithms have a number of components in common. These can 

be listed in a generic manner as, 

I. Representation 

II. Objective Function 

III. Population 

IV. Parent Selection 

V. Variation Operators 

VI. Survivor Selection 

Here only the basic aspects for the terms are given.  

2.1.1 Representation 

The initial step of constructing the evolutionary algorithm is defining the mapping 

between the original problem space (phenotypes) and the problem solving space 

(genotypes). With respect to the nature of the problem, the parameters to be tuned are 

encoded in the genotype. The variation operators also act on genotype. Then, the 

results are mapped into their corresponding phenotypes for fitness evaluation. 

Representation of the solutions includes the selection of the genotypic expression 

(like binary coding, integer or floating representations and permutation 

representations) and encoding them into phenotypes. 

2.1.2 Objective function 

Objective function (also named as fitness function or cost function) is the component 

that defines the problem. The evolution trend is through to the global minimum (or 

maximum) of the objective function. It determines how well the particular candidate 
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solution is by assigning it a score value. These scores are used for mating pool 

selection in the next phase.  

2.1.3 Population 

The population includes the full set of candidate solutions at each generation. 

Working with population of solutions provides an environment to simulate natural 

survival of the fittest process.  

The diversity of a population is a measure of the number of different solutions 

present. No single measure for diversity exists. Typically, people might refer to the 

number of different fitness values present, the number of different phenotypes 

present, or the number of different genotypes. Other statistical measures such as 

entropy are also used. Note that only one fitness value does not necessarily imply 

only one phenotype is present, and in turn, only one phenotype does not necessarily 

imply only one genotype. The reverse is, however, not true: one genotype implies 

only one phenotype and fitness value (Eiben and Smith, 2003). 

2.1.4 Parent selection 

Parent selection (mating selection) is the process of selecting the parents for the next 

generation. The parents are selected with respect to the fitness scores assigned. Then 

they undergo some changes by the variation operators to produce children. 

2.1.5 Variation operators 

Variation operators produce new individuals from the mating pool parents. 

Designing a variation operator is the key point on designing an evolutionary 

algorithm. Variation operators can work on single parent (asexual reproduction) or 

two parents (sexual production). There are also multi-parent variation operators 

reported in the literature.  

Most commonly accepted name for asexual reproduction operators is mutation. It 

causes a random, unbiased change in the genotype of the parent individual. On the 

other hand, binary variation operators are generally referred as recombination or 

crossover operators. These operators work on two parent genotypes to produce one 

child or two children.  
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2.1.6 Survivor selection 

Survivor selection (often referred to as replacement or environment selection) is the 

process of selecting the individuals for the next generation. In most widespread 

approaches for survivor selection, either the children will all survive or some “fit” 

parents will still be in the population of the next generation.  

As opposed to parent selection, which is typically stochastic, survivor selection is 

often deterministic, for instance, ranking the unified multiset of parents and offspring 

and selecting the top segment (fitness biased), or selecting only from the offspring 

(age biased) (Eiben and Smith, 2003). 

2.2 Algorithms Reported in the Literature 

There are many evolutionary computation algorithm variants reported on the 

literature. In this thesis, a comprehensive introduction for Genetic algorithms, 

Evolution Strategies and Big Bang-Big Crunch Method is given. Genetic algorithms 

have been accepted in a wide sense and the most known variant for EAs. On the 

other hand, Evolution Strategies have many similar aspects with the Big Bang-Big 

Crunch Algorithm that is in the focus of the dissertation.    

2.2.1 Genetic algorithms 

Genetic algorithms (GAs) are the most known evolutionary algorithm variants. There 

is no single formulation for the genetic algorithm development; instead, it is tailored 

for the specific problem.  

2.2.1.1 Representation in GA 

There are four basic representations for the individuals for GAs: 

I. Binary representation, 

II. Integer representation, 

III. Real valued or floating-point representation and  

IV. Permutation representations. 

Unfortunately, the designer can select the best representation for a specific problem 

only by experience; there is no systematic way. The selection of the representation 
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directly effects the variation operators used and, of course, the encoding of the 

genotype into phenotype. The encoding should map all possible genotype 

combinations to valid phenotypes.  

2.2.1.2 Population in GA 

Generally, the population is initialized randomly. The population of each generation 

should be diverse enough to yield new populations through variation operators. In the 

most common sense, one can classify the population models into two classes: steady 

state and generational. The more frequently used model is generational population 

model and in that one all the members of the population are replaced by the children 

formed after processing of the variation operators. In widely accepted notation, µ 

designates the number of parents selected for the mating pool and λ designates the 

number of children (offspring) created. Then, in generational models λ = µ. On the 

other hand in steady state population models not all of the individuals are replaced, 

instead, some of the offspring are selected (generally λ <µ) and injected in the next 

generation. Parent replacement is done based on ages or fitness scores of the 

members.  

Selecting the size of the population is quite a fuzzy concept and generally depends on 

experience or trial and errors. For detailed investigation, one can investigate 

Goldberg et al. (1992).  

2.2.1.3 Parent selection in GA 

Parent selection for mating pool is performed in the favor of better members in all 

parent selection algorithms. However, this bias should not prevent the population to 

preserve its diversity. There are three commonly accepted modes for the parent 

selection, 

I. Fitness Proportional Selection, 

II. Ranking Selection and  

III. Tournament Selection.  

Fitness Proportional Selection (FPS) (Holland, 1975) assigns probabilities for each 

individual with respect to their absolute fitness.  
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In Ranking Selection (RS) (Baker, 1987), the individuals are sorted with respect to 

fitness scores and the probabilities are assigned respecting this order.  

FPS and RS techniques are stochastic methods assigning a probability value for each 

individual. Mapping these probabilities to actual selection counts is the next step. 

There are two prominent algorithms: Roulette Wheel Selection (RWS) and 

Stochastic Universal Sampling (SUS) (Baker, 1987). 

If the population size is considerably large, calculating all the fitness scores and 

sorting them can be very expensive. Instead, the members can be raced in subsets 

and the winner goes to the mating pool. This method is named as tournament 

selection since a tournament is organized among a subset of individuals and the 

winner is prized.  

2.2.1.4 Variation operators in GA 

In this subchapter, unary (mutation) and binary (crossover, recombination) variation 

operators are discussed. The algorithms for the variation operators are heavily 

dependent on representations of the individuals in the population.  

2.2.1.5 Recombination operators 

In common approach, binary variation operators produce two children from two 

parents. One other important aspect for the crossover operators is to ability to inherit 

common genes to the offspring (Radcliffe, 1991). The whole set of operators listed 

here have this property accept for partially mapped crossover for permutation 

representations.  

For binary representations, the basic methods of recombination are, 

I. one point crossover (Holland, 1975; De Jong, 1975), (Figure 2.1) 

II. two point crossover, (Figure 2.2)  

III. N-point crossover (Figure 2.3) and   

IV. uniform crossover. (Figure 2.4) 

The first three crossover types have tendency to take neighboring genes together, a 

phenomena named positional bias (Eshelnian et al 1989; Spears and De Jong, 1991). 

On the other hand, uniform crossover has the distributional bias since it is expected 

to transmit equal number of genes from both parents from random positions.  
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Figure 2.1 : One point crossover for binary representations. 

Figure 2.2 : Two point crossover for binary representations. 

Figure 2.3 : N-point crossover (N = 3) for binary representations. 

Figure 2.4 : Uniform crossover for binary representations. Eight random numbers 
are drawn for each gene and the 2nd, 4th and the 7th numbers are above 0.5.  

For integer and floating point representations the same set of operators with that of 

binary representations are used. For floating point representations, also arithmetic 

recombination operators can be defined. Simple arithmetic recombination proposes 

to choose a crossover point P. Then take first P genes from parent one, and then the 

other genes are weighted average of the two parents. In the second child, first P 

genes are taken from the second parent and the remaining genes are again a weighted 

mean of the parents (Figure 2.5). The mathematical model for simple arithmetic 

recombination is (2.1),  
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:

:

:

:

1 2 n n+1 l

1 2 n n+1 l

1 2 n n+1 n+1 l l

1 2 n n+1 n+1 l l

Parent - 1 a ,a ,...a ,a ,.....a

Parent - 2 b ,b ,...b ,b ,.....b

Offspring - 1 < a ,a ,...a , b +(1- )a ,..... b +(1- )a >

Offspring - 2 < b ,b ,...b , a +(1- )b ,..... a +(1- )b >

α α α α

α α α α

< >

< >

        

(2.1)

 

Figure 2.5 : Simple arithmetic recombination for real valued vectors. (P = 4, α = 
0.5).  

Single arithmetic recombination and whole arithmetic recombination can be 

illustrated in Figure 2.6 and Figure 2.7 and in (2.2).  

:

:

SingleArithmeticRecombination:

:

:

Wh
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(1- )a , b +(1- )a ,..... b +(1- )a >

Offspring - 2 < a +(1- )b , a +(1- )b ,... a +

(1- )

α α α α α

α α α α α

α α α α α

α
n n+1 n+1 l l

b , a +(1- )b ,..... a +(1- )b >α α α α
   (2.2)

 

Figure 2.6 : Single arithmetic recombination for real valued vectors. (n = 7, α = 
0.25).  
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Figure 2.7 : Whole arithmetic recombination for real valued vectors. (α = 0.5).  

Crossover operator design is hard for permutation problems since a simple 

exchanging operation arouses multiple copies of parameters in the chromosomes. 

Partially Mapped Crossover (Goldberg and Lingle, 1985) was proposed for 

adjacency-based problems and the algorithm run can be investigated from Whitley 

(2000). Edge crossover, order crossover (Davis, 1991) and cycle crossover (Oliver et 

al, 1987) are other well-applied permutation crossovers designed for order-based 

representations.  

2.2.1.6 Mutation operators 

For binary representations, mutation is performed on every bit with a small 

probability (Figure 2.8). Selection of the probability depends on the problem but in 

common sense, the expected value of the mutant bit number is 1. Then the 

probability of mutation is selected to be 1 / (length of the chromosome).  

Figure 2.8 : Bitwise mutation for binary representations. 

In integer representation, in connection with the binary mutation, random resetting 

draws a random number from the permissible set of integers. Random resetting is 

suitable for cardinal attributes. For ordinal attributes, creep mutation can be used in 

which a small value is added to ach gene. The value added is drawn from a normal 

distribution with mean zero and a small variance.  

Uniform mutation for floating point representations replaces a certain parameter 

value by a randomly drawn new one in the permissible interval. This mutation is 

analogous of the bit flipping of binary representations and random resetting of the 

integer representations. For floating point representations, the analogous of the creep 

mutation is the non-uniform mutation (with a fixed distribution such as Gaussian or 

Cauchy distribution) (Michalewicz, 1992).  
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Mutation operators designed for the permutation representations differ from the 

others since they cannot work on each gene separately. In swap mutation, the 

randomly selected two genes are swapped (Figure 2.9). In insert mutation, a 

randomly selected gene is transported to another randomly selected one moving the 

others (Figure 2.10). In the scramble mutation, between the randomly selected two 

genes, all the genes are reordered (Figure 2.11), and as a specific case, inversion 

mutation proposes to inversely reordering this subset (Figure 2.12).  

Figure 2.9 : Swap mutation for permutation representations. 

Figure 2.10 : Insert mutation for permutation representations. 

Figure 2.11 : Scramble mutation for permutation representations. 

Figure 2.12 : Inversion mutation for permutation representations. 

2.2.1.7 Survivor selection in GA  

Survivor selection or replacement concept is quite connected with the population 

model. If a steady population model is selected, generally the number of offspring is 

less than the population size. There are age based and fitness based methods for 

selecting which offspring and current members will survive to the next generation. In 

age based methods, a FIFO model or a stochastic selection where the probability of 

selection decreases with increasing age can be implemented. The replaced portion of 

the population is referred as generational gap.  

One another important point to note is the elitism strategy. Not to lose the current 

best members by age based or stochastical fitness based replacement strategies, best 
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n members of the population can be protected from elimination. Number n is 

commonly selected as one or two.  

2.2.2 Evolution strategies 

The main distinction of the Evolution Strategies (ES) from Genetic Algorithms is the 

inherited self-adaptation concept. In the broadest sense, self-adaptation is the 

dynamic altering of the algorithm run parameters throughout iterations. This feature 

is generally provided by including the parameters governing the algorithm run into 

the chromosome structure and therefore allowing them to co-evolve with the 

solutions. The famous rule of 1/5 success rule (Rechenberg, 1973) is one of the most 

known and used adaptation rule for controlling mutation step size. This rule states 

that if the ratio of the successful mutations (that is mutations yielding a fitter 

member) to all mutations should be 1/5. Therefore, if it is above this threshold, the 

mutation step size is increased; else it should be decreased. This check is performed 

at some specific period of iterations. Note that this adaptation process do not 

interacts with the chromosome representation and actually not a state-of-the-art 

technique.  

2.2.2.1 Representation in ES 

Evolution strategies are used in continuous optimization problems, hence real valued 

representation is used. Genotype and phenotype are usually the same; therefore, there 

is no need for a special encoding scheme. What is new for ES is the inclusion of 

control parameters (= strategy parameters) in the chromosome structure. The strategy 

parameters are, for the common sense, divided into two sets. One set is the 

parameters for mutation step size control (σ), the other set is the parameters for 

controlling the dependencies of the step sizes of the different parameters (covariance 

of σ set, Cσ). σ set must have at least one member valid for all elements of the 

chromosome for self adaptation implementation. Generally, σ set has either 1 or N 

elements, N being the dimension of the problem. Cσ set is not always used, but is 

needed for non-symmetrical mutation effects that will be later. Cσ set has different 

number of elements. 

The chromosome structure is -in the most generic manner-, 
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1 2 31 2 3 ,

    

, , , ....., ....., .....
CN 1 2 N

step size parametersoptimisation parameters covariance parameters

g g g ... g , ,... ,C ,C ,C ... Cσ σ σ σσ σ σ< >
1442443144424443 144424443

 

where C is the number of elements in set Cσ. 

2.2.2.2 Population in ES 

As in the case for GA, the population is randomly initialized generally. Both steady 

state and generational population models can be used, but generational population 

models are more common.  

2.2.2.3 Parent selection in ES 

There is not an actual selection routine for the parents as in GA. Because all the 

members are treated as parents, and whenever a parent is needed, it is drawn 

randomly (with uniform random distribution). That is to say, fitness scores (or 

rankings) are of no importance.  

2.2.2.4 Variation operators in ES 

2.2.2.5 Recombination operators 

Basic recombination scheme for ES yields one offspring from two parents. In 

discrete recombination, the allele of a specific element in the offspring is directly 

copied from the same location of the randomly selected parent (Figure 2.13). In 

intermediate recombination, the values of each location are averaged from the 

parents (Figure 2.14). These basic recombination schemes utilizing two parents are 

called local recombination.  

Figure 2.13 : Discrete recombination in evolutionary strategies. 
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Figure 2.14 : Intermediate recombination in evolutionary strategies. (The scheme is 
the same with whole arithmetic recombination with α = 0.5 for real valued vectors in 

genetic algorithms.) 

Extension to m-parents, where m ≤ µ (population size): the recombination operators 

describe above can be analogously applied for multi-parents. This is called global 

recombination for ES. Though this process does not match any real world process, in 

application it usually works better. There are many studies utilizing global 

recombination schemes as Beyer (1995), Schwefel and Rudolph (1995), Eiben and 

Back (1997),  Back and Eiben (1999), Gruenz and Beyer (1999), Matsumura et al. 

(2001 and 2002). 

In the literature, there are many reported recombination operator variants. One 

emerging idea is to use different recombination schemes for the optimization 

parameters and the strategy parameters. In fact, discrete recombination for the 

optimization parameters part is recommended to preserve diversity in the population. 

On the other hand, intermediate recombination has a more conservative tendency and 

provides more cautious adaptation of strategy parameters (Eiben and Smith, 2003).  

A mutation operator adds a random number drawn from a normal (Gaussian) 

distribution to each allele. One-dimensional Gaussian distribution is (2.3), 
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Then, the new element can be obtained by (2.4), 

    1 (0, )
i i

x x N σ+ = +                                                        (2.4) 

Remember that the step sizes will also undergo mutation then final equation can be 

re-written as (2.5), 

1 1(0, )i i ix x N σ+ += +                                                    (2.5) 
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where σi+1 is the mutation step size after self mutation. That is to say, the mutation 

step size should be mutated first, and then it must be used to mutate optimization 

parameters. Therefore, the chromosome is effectively evaluated twice: In survivor 

selection, if this member is worth surviving in the next generation, then the mutation 

step sizes are somehow validated to yield fit members. 

Selection of the strategy parameters and controlling their evolution through mutation 

operators generally depends on design experience. The categories for the mutation 

process can be divided into 3 basic branches, 

I. uncorrelated mutation with single step size, 

II. uncorrelated mutation with n step sizes and  

III. correlated mutations with n step sizes.  

uncorrelated mutation with single step size :  

{1 2 3 ,

   

, , , ....., N

step size parameteroptimisation parameters

g g g ... g σ< >
144424443

 

uncorrelated mutation with n step sizes: 

1 2 3 ,

   

, , , ....., .....,N 1 2 N

step size parametersoptimisation parameters

g g g ... g , ,...σ σ σ< >
1442443144424443

 

correlated mutations with n step sizes: 

1 2 31 2 3 ,

    

, , , ....., ....., .....
CN 1 2 N

step size parametersoptimisation parameters covariance parameters

g g g ... g , ,... ,C ,C ,C ... Cσ σ σ σσ σ σ< >
1442443144424443 144424443

 

In single step size case, σ is mutated at each iteration by multiplying by a term eΓ 

where Г is a random number drawn from a normal distribution τ. τ is generally 

inversely proportional to the square root of the problem dimension and is analogous 

to the learning rate of neural networks. Then the mutation rules can be written in the 

correct order as in (2.6), 
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(2.6) 
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Note that by using Gaussian distribution with zero mean, mutation is not biased to 

either side and the probability of smaller modifications is more than that of larger 

ones. Single step size uncorrelated mutation is illustrated in Figure 2.15. 

 

Figure 2.15 : Representation of uncorrelated mutation with single step size for a two 
dimensional problem.  The black dot represents a candidate solution (member) and 

the circle around is the possible positions after mutation. Circle radius is related with 
σ. Note that the probability of moving in x1 axis is the same as moving in x2 axis.  

If n-step sizes have been used, then the mutation effect on each dimension varies 

(Figure 2.16). In some problems that have different slopes in different dimensions, 

using multiple step sizes can be operational. The mutation process is as in (2.7), 
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Uncorrelated mutations are orthogonal in nature and so they are aligned with the 

axes. Correlation between dimensions defines rotation effect on the mutation (Figure 

2.17). Correlated mutation is in (2.8), 
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45 

 Figure 2.16 : Representation of uncorrelated mutation with 2-step sizes for a two 
dimensional problem.  The black dot represents a candidate solution (member) and 
the ellipse around is the possible positions after mutation. Minor axis of ellipse is 

aligned with  x1, major axis is aligned with x2. These axes lengths are related with σ1 
and σ2. Note that the probability of moving in x1 axis is not the same as moving in x2 

axis.  

 
Figure 2.17 : Representation of correlated mutation with 2-step sizes for a two 

dimensional problem.  The black dot represents a candidate solution (member) and 
the ellipse around is the possible positions after mutation. Neither of the axes is 

aligned with coordinates. Axes lengths are related with σ1 and σ2 and the rotation of 
the ellipse is related with α. Note that the probability of moving in x1 axis is not the 

same as moving in x2 axis, but they are correlated.  

Correlated mutations have the most parameters; however, effectively using these 

parameters is another matter of cost. Common approach is to start with uncorrelated 
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mutation with n-step sizes and then try moving to a simpler model if good results are 

obtained, or try moving to a correlation imposed one if results are not good enough.  

In all mutation types, to avoid negligibly small standard deviations, a limiting value 

can be applied as in (2.9), 

1 0 1 0i iσ ε σ ε+ +≤ ⇒ =                                                (2.9) 

where 0ε  is some  user defined constant.  

2.2.2.6 Survivor selection in ES 

µ members for the next generation can be selected from the members of current 

generation plus the offspring population ((µ + λ) selection) or if λ ≥ µ, they can be 

selected by only considering the offspring population (((µ, λ) selection). Defining in 

terms of population concepts, (µ + λ) selection causes a steady population model 

whereas (µ, λ) selection causes a generational population model.  

Generally (µ, λ) selection is preferred in modern variants of the ES. In (µ, λ) 

selection, dynamically changing fitness surfaces can be traced better, and it provides 

more efficient evolution of strategy parameters. λ is selected to be at around 5 to 10 

times of µ, therefore a great selection pressure is imposed in ES.  

2.2.2.7 Self adaptation in ES 

Self-adaptation of strategy parameters is the most critical aspect in ES. It has been 

firstly proposed as an ES issue and has been investigated for certain effects in ES 

algorithms. Now, its usage is widespread in EA society. Its benefits have been shown 

not only for real valued representations but also for binary and integer 

representations (Back, 2000). Theoretical (Beyer, 2001) and experimental results on 

self-adaptation clearly states that the standard deviation of the random number added 

at each iteration must decrease. By intuition, at the very first steps of the search, the 

algorithm is not intensified (focused on a specific point) but can even check the 

furthest places in the search space with higher probability. Then, as the iterations 

elapse, the search is focused on the specific regions of suspect by decreasing the 

probability of checking further points.   
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Academic studies up to now define the necessary conditions for self-adaptation as 

the following (Eiben and Smith, 2003), 

1. µ > 1 so that different strategies are present  

2. Generation of an offspring surplus: λ > µ  

3. A not too strong selective pressure (heuristic: λ / µ ≈ 7)  

4. (µ, λ)-selection (to guarantee extinction of misadapted individuals  

5. Recombination also on strategy parameters. 

2.2.3 Big Bang – Big Crunch optimization algorithm 

Big Bang-Big Crunch (BB-BC) optimization algorithm is a global optimization 

method inspired by two of the main theories on the formation of the universe, namely 

Big Bang and Big Crunch theories.  It was proposed by Erol and Eksin, (2006).  

BB-BC optimization method is a population based evolutionary algorithm. By the 

very first big bang, the individuals of the population are dispersed throughout to the 

search space in a random uniform manner. That is to say, big bang phase of the first 

iteration is randomly initializing the population members. This is done by adjusting 

the random number generators to cover only the search space of interest. Then in the 

following big crunch phase, a representative point (or representative member) is 

generated by using information from all of the members of the population. 

Representative point of the iteration is named as the centre of mass. Big crunch phase 

can be represented as multi input single output function and the formulation of the 

crunching process for a minimization problem can be simply given as in (2.10), 
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where, cx   is the centre of mass (representative point), ix
→

 is the position vector for 

the ith individual, i
f stands for the fitness value of the ith individual and N is the 

population size. Therefore, crunching operation is equivalent to taking weighted 
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average of the individual positions with respect to inverse of the fitness scores 

assigned.  

Big Bang and Big Crunch phases are performed at each iteration of the search.  In the 

second and the following iterations, new generation of population is created by using 

the weighted sum obtained in the previous big crunch phase. New members are 

calculated around the centre of mass by adding or subtracting a random number 

drawn from a Gaussian distribution whose value decreases as the iterations elapse. 

More precisely, the probability of having large random numbers is decreased by 

modifying the standard deviation of the Gaussian distribution and as a result, the 

probability of reaching the further corners of the search space is much more in 

comparison to that at the final iterations. The size of this added (or subtracted) value 

is analogous to the explosion strength of a physical explosion process. This dynamic 

behavior provides more diversification when there is little knowledge in the first few 

iterations and then causes intensified search around the suspected global minimum at 

the final iterations. Note that, even in the final iteration of the search, there is a 

certain (and probably very limited) probability for reaching far corners of the search 

space.  

Each member of the new generation (=population of the next iteration) can be 

derived by (2.11), 

/new c
x x lr k= +                                                      (2.11) 

where l is the upper limit of the parameter, r is a normal random number and k is the 

iteration step. Then, the new point newx  is upper and lower bounded to fit into the 

search space.  

As is the case for all evolutionary iterative algorithms, the algorithm runs until a 

predefined stopping criterion has been met. Among the commonly used stopping 

criteria are,  

I. maximum number of iterations,  

II. maximum number of fitness evaluations, 

III. maximum allowed run time, 

IV. minimum convergence goal  for the fitness values, 
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V. minimum convergence goal for the population member positions. 

The stopping criteria can be selected problem specifically. Basic BB-BC algorithm 

can be utilized to stop once a predetermined number of iterations elapsed.  

The algorithm steps can be summarized as follows,  

STEP 1: Form the initial population of N members distributed uniformly in the 

search space. 

STEP 2: Assign a fitness value for all the members. 

STEP 3: Calculate the representative point by using (2.10). 

STEP 4: Calculate the new members of the next generation by adding or subtracting 

a random number drawn from a Gaussian distribution whose value decreases as the 

iterations elapse. 

STEP 5: Check for the stopping criterion: if it has been met, stop; else go back to 

step 2.  

In the originating paper for the BB-BC optimization algorithm (Erol and Eksin, 

2006), simulation results on benchmark test functions are reported. The tests are 

carried for same iteration number, same fitness evaluation number and same run 

time. The algorithm had been proven to possess the quick convergence capability 

even in the long, narrow parabolic shaped flat valleys or in the existence of several 

local minima. Though it is a new algorithm, it has been applied to many areas 

including target motion analysis problem (Genç & Hocaoğlu, 2008), fuzzy model 

inversion (Kumbasar et al,  2008; Kumbasar et al, 2008), design of space trusses 

(Camp, 2007), size reduction of space trusses (Kaveh and Talatahari), airport gate 

assignment problem (Genç et al, 2009), non-linear controller design (Dogan   & 

Istefanopulos, 2007) and genetic programming classifier design (Akyol et al, 2007).   

2.2.4 Relations and differences with the previously reported literature 

There are tremendous amount of work carried out in the evolutionary computing 

society. Many components of the different algorithms have certain relationships with 

the others. This section is dedicated to report similar routines with the BB-BC 

algorithm or with a certain part of the BB-BC algorithm.  
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2.2.4.1 Similar genetic algorithm approaches 

Creep mutation for integer representations and non-uniform mutation for floating 

point representations: In both mutation routines, a randomly drawn number from a 

specific distribution (mostly Gaussian distribution) is added or subtracted from the 

genes. These mutations require different parameters for controlling the distribution 

and hence the size of the steps that mutation takes in the search space. This aspect of 

the mutation operators has great similarities with the banging phase of the BB-BC 

where randomly drawn numbers are added or subtracted from the center of mass. 

Moreover, the sizes of the perturbations (size of the added or subtracted numbers, 

explosion strength in BB-BC terminology) are controlled with a single parameter in 

original BB-BC that decreases as the iterations elapse. Similar approaches are 

reported in the literature for the creep mutation and the non-uniform mutation (Zhao 

and Gao, 2004; Clemente et al, 2003, Neubauer, 1997).  

Multi-parent arithmetic crossover (MAC): It is a multiparent arithmetic crossover for 

real valued (floating point) representations proposed by Mendoza et al. (2001). MAC 

is the generalized form of arithmetic recombination designed for P-parents. The 

crunching phase of the BB-BC algorithm is a specific version for this crossover 

working with N-parents (where N is the number of individuals in the population) and 

yielding only single offspring (that is named as the centre of mass in BB-BC 

optimization method). 

2.2.4.2 Similar evolutionary strategies approaches 

Uncorrelated mutation with single step size: Concept of self-evolution of the strategy 

parameters of ES is actually not implemented in BB-BC algorithm. Yet, there is a 

single strategy parameter controlling the magnitude of the random number (~step 

size) generated. This number is used for every dimensions of the search space. In that 

manner, there is single step size in BB-BC.   

Global recombination for ES: Intermediate recombination scheme can be expanded 

to more than two parents or more than two donors. Specifically, Beyer (1995) 

proposed to use all the members of the population to generate a centre of mass. This 

centre of mass is then used to produce λ offspring by mutating the individual with 

mutation vector Z of length λ. This ES variant is named as (µ/p, λ), meaning that, µ 

parents (whole population) generate λ offspring through recombination and mutation 
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at each generations. λ ≥ µ; so that best µ offspring is selected deterministically for the 

next generation. p is the number of donors (number of parents to form one new 

offspring) and in Beyer’s formulation p = µ (Figure 2.18). Beyer proposed to use 

mutation vector Z as generated by independent and identically distributed normal 

random numbers with zero mean and standard deviation, σi, for each component 

(Beyer, 1995). BB-BC is a reformulation of this multi parent ES variant that can be 

symbolized as (µ/µ, µ) and single σ. 

 
Figure 2.18 : (µ/µ, λ) recombination in general scheme.  

Beyer notes that this centre of mass operation enforces an extreme reduction of 

diversity, which could be expected to have a negative effect on convergence, 

reliability or the self-adaptation capability of the algorithm. Many other researchers 

utilizing global intermediate recombination have obtained similar facts as a result of 

their research work (Back and Eiben, (1999), Gruenz and Beyer (1999), Matsumura 

et al. (2001 and 2002)). 

BB-BC optimization originates from the Big Bang Theory; but ends up with nearly 

the same algorithm routine with global intermediate recombination in ES. The 

mutation routine for BB-BS is nonlinearly decreasing explosion strength that is 

correlated with the standard deviation (or single mutation step size).  

Crunching phase of BB-BC can select the fittest member of the population as the 

representative point. This approach is another ES variant.  

The performance comparison between the two BB-BC crunching phase variants 

(selecting the fittest or weighted averaging by (2.10)) in unimodal / multimodal 

problems reveals that there are no considerable accuracy difference between the two, 

but fittest selection is faster (Table 2.1).  
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Table 2.1 : Average costs for multimodal test functions, n = 20, 1000 evaluations, 
search space: [-10, 10] for both parameters. (Average of 1000 runs). 

FUNCTION Explosion 
Centre: Fittest 
Member  

Explosion 
Centre: 
Weighted 
Average 

Explosion 
Centre: Average 

Ackley 0.61925 0.62079 0.91577 

Griewank 0.01483 0.01278 0.00889 

Rastrigin 1.32720 1.29570 1.70310 

Rosenbrock 0.37051 0.33529 0.31980 

Schwefel 0.00194 0.00188 0.00335 

Beyer, in 2001 (Beyer, 2001) also proposed the weighted average recombination for 

global intermediate recombination. In the most general manner, the recombination 

output at each generation (=centre of mass) is the weighted average of samples in the 

parent population, (2.12), 
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(2.12) 

where c
→

is the d-dimensional centre of mass vector; wj’s are weighting coefficients 

such that all wj’s sum up to 1. Based on such intermediate recombination scheme 

different ways of determining the weights have been proposed (Salomon, 1998; 

Arnold, 2004; Arnold and MacDonald, 2006; Hansen and Ostermeier, 2001). For 

example, if all wj’s are selected to be 1 / µ, then the centre is simple the average of all 

members; if they are fitness related (2.13),  
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(2.13) 

then the centre is the mean of all individuals weighted with respect to fitness scores 

as in BB-BC. Using weighted mean as recombination centre is  used in one of the 

most commonly used variant of ES, namely CMA-ES (Covariance Matrix 

Adaptation Evolution Strategy) algorithm introduced by Hansen (Hansen and 

Ostermeier, 2001; Hansen et al, 2003).  
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3.  BIG BANG – BIG CRUNCH OPTIMIZATION WITH LOCAL 

DIRECTIONAL MOVES 

3.1 Local Search in Evolutionary Computation 

Memetic algorithms (MA) represent one of the recent growing areas of research in 

evolutionary computation. The term Memetic Algorithms has first appeared in the 

computing literature in 1989 (Moscato, 1989). The rationale behind MAs is to 

provide an effective and efficient global optimization method by compensating for 

deficiency of evolutionary algorithms (EA) in local exploitation and inadequacy of 

local search (LS) in global exploration (Noman and Iba, 2008). The term MA is now 

widely used for any population–based approach with separate local improvement 

procedures.  

Real coded memetic algorithms are classified into two main classes depending on the 

type of LS employed (Lozano et al, 2004): 

1) Local improvement process (LIP) oriented LS (LLS): This category refines the 

solutions of each generation by applying efficient LIPs, like gradient descent. LIPs 

can be applied to every member of the population or with some specific probability 

and with various replacement strategies. 

2) Crossover-based LS (XLS): This group employs crossover operators for local 

refinement. A crossover operator is a recombination operator that produces offspring 

around the parents. For this reason, it may be considered as a move operator in an LS 

strategy (Lozano et al, 2004).  

Adaptation of parameters has become a very promising research field in MAs. Ong 

and Keane (2004) proposed meta-Lamarckian learning in MAs that adaptively 

chooses among multiple memes during a MA search. They proposed two adaptive 

strategies in their work and empirical studies showed their superiority over other 

traditional MAs. A taxonomy and comparative study on adaptive choice of memes in 

MAs is presented in Ong et al. (2006). In order to balance between local and genetic 

search, Bambha et al. (2004) proposed simulated heating that systematically 
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integrates parameterized LS (both statically and dynamically) into EAs. Ahn et al. 

(2010) also applied adaptive local search routine to multi-objective evolutionary 

optimization problems. The common aspect for all the memetic methods proposed so 

far is that they needed mechanisms that have to, 

I. decide the step length (and adaptation of step length) of the local search,  

II. draw a balance between exploration and exploitation; that is, local search and 

global search. 

A comprehensive review on hybrid genetic algorithms can be found in El-Mihoub et 

al. (2004). 

In this chapter, a new memetic algorithm is introduced in which a local search is 

imposed between the phases of the BB – BC optimization method and the crunching 

phase is improved by the addition of Nelder-Mead method to calculate fittest point of 

the iteration. The local search algorithm generates a direction vector by using the 

current fittest point and the previous fittest points of the generations and checks for 

improvement in this direction. If an improvement is achieved, the new centre is 

forced to switch to that point. That is to say, the centre point of the explosion of next 

big bang phase is changed. Note that, by using the distance between these 

consecutive representative points, the step size of the local search is set and adjusted 

accordingly. Local search enhances the exploitation or intensification capability of 

the algorithm; and thus, the proposed hybridization operation produces much more 

accurate results than the original BB – BC algorithm. In fact, it also provides 

promising results when compared to the state-of-the-art optimization methods. 

Moreover, the newly proposed algorithm is shown to be much more effective in 

terms of complexity.  

The rest of the chapter is divided into four subsections. Effect of Nelder - Mead 

crunching and local directional moves are given first; then the newly proposed 

hybrid method is given as an complete algorithm. The simulation results on various 

test functions are presented to illustrate the effectiveness of the new hybrid 

algorithm. Possible further developments and conclusions are finally elaborated and 

discussed in the last subsection.  
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3.2 Inspection of the Effect of Nelder-Mead Crunching 

3.2.1 Big bang-big crunch algorithm with Nelder-Mead crunching 

For unimodal problems, the crunching phase of the original BB-BC optimization 

algorithm can be improved to end up with a better center of mass. The original BB-

BC method either uses a weighted sum for the population members or it simply takes 

the fittest member as the representative point. Instead, a more complex local search 

routine, namely Nelder and Mead method can be used (Genç, 2010; Genç et al, 

2010a). Nelder and Mead method (Nelder and Mead, 1965) is a simplex method for 

finding a local minimum (maximum) of a function of several variables. For two 

variables, this simplex becomes a triangle, and the method is a pattern search that 

compares function values at the three vertices of a triangle (Mathews and Fink, 

2004).  

In the proposed method, crunching is performed as the result of Nelder Mead 

Method. The worst vertex, where objective value is largest, is rejected and replaced 

with a new vertex. A new triangle is formed and the search is continued. The process 

generates a sequence of triangles (which are not necessarily regular), for which the 

function values at the vertices get smaller. The size of the triangles is reduced and the 

coordinates of the minimum point are found (Mathews and Fink, 2004). That is to 

say, Nelder and Mead method is used as a centre of mass operator of the original BB-

BC algorithm.  

At each iteration, after big bang phase, three vertices are chosen to form the simplex: 

the fittest member (B), the second fittest member (G) and the worst member (W). The 

hard constraint on algorithm construction is that the population size must be greater 

than or equal to three (and greater than or equal to n + 1 for n-dimensional 

problems). Then the Nelder and Mead algorithm steps for a two-dimensional 

minimization problem can be given as the following (Mathews and Fink, 2004) and 

the basic moves of the algorithm; reflection, contraction, expansion and shrinking are 

illustrated in the Figure 3.1-Figure 3.4. 

STEP 1: Construct the initial triangle with vertices Xl, Xs and Xh. 

STEP 2: Calculate centroid C for reflection 

C= (Xl + Xs) / 2                                                (3.1) 



STEP 3: Calculate reflection point Xr for getting away from Xh and compare f(Xr) 
and f(Xs) 

Xr = C + (C - Xh)                                     (3.2)         
 

 

Figure 3.1 : Reflection to point Xr. 

a. If f(Xl) < f(Xr) < f(Xs), then replace Xh with Xr (reflection move) 

b. If f(Xr) ≤ f(Xl) < f(Xs), then compute expansion point Xe , (3.3) 

   Xe = Xr + (Xr - Xh)                                         (3.3) 

If f(Xe) < f(Xr), replace Xh with Xe (expansion move) otherwise 
perform reflection move. 

 

Figure 3.2 : Extension to point Xe from Xr. 

 

c.  If f(Xh) > f(Xr) ≥ f(Xs),replace Xh with Xr and compute contraction point 
Xc ,(3.4), 

 

Xc = (Xh + C) / 2                                             (3.4) 

i. If f (Xc) < f(Xh), replace Xh with Xc 

ii. If f (Xc) ≥ f(Xh), compute shrinking points and replace these 
points with Xh, Xs 

 

 



   

  (a) 

 
  (b) 

Figure 3.3 : Contraction points Xc. (a) Outside contraction, (b) Inside contraction. 

 

 

Figure 3.4 : Shrinking towards Xl. Point Xs and point Xh comes closer to Xl.. 

 

STEP 4: Check the termination criterion (3.5) 
 

           |Xl – Xh| < tolerance                                             (3.5) 
         

If the termination criterion is satisfied, then the local search step terminates resulting 

point Xl as the centre of mass for the current iteration. If not, go back to step 2. 

The tolerance value used in step 4 of Nelder Mead algorithm flow is dynamically 

updated with respect to iteration count. As the iteration number for the overall 

algorithm increases, tolerance value for the corresponding Nelder-Mead run is 

decreased. Therefore, initial iterations have less intensive crunching search phases. 

Parameters affecting the explosion strength also control of the tolerance; that is no 

new parameters are introduced over the original BB-BC method.    

Test for convergence (or termination) can be carried on numerous ways. Tests based 

on  

 



58 

I. the standard deviations of the three points,  

II. the closeness of fitness values,  

III. the improvement gained,  

IV. the limitation of fitness evaluations,  

V. the limitation of iterations or  

VI. any combination of all these  

can be used. The aim of this hybridization scheme is to fasten the search by checking 

some local points in the crunching phase of the main global search algorithm so as to 

maximize improvement probability. The neighboring points check procedure should 

be carried in a guided manner (provided by using Nelder and Mead optimizer) and 

for limited points.  

NM crunching is a new approach in order to improve exploitation capability near a 

local minimum. If NM crunching is used at the initial iterations of the search then 

excessive function evaluations has to be performed since there is not enough 

knowledge on the function topology or coverage. Then, it is better not use NM 

crunching at the early iterations of the search algorithm; instead, this crunching 

method should be switched when the search has evolved and ripen. The effect of NM 

crunching after the initial iterations is illustrated in the convergence graph in Figure 

3.5 for a multi–modal function. 

 

Figure 3.5 : Convergence graphs for BB–BC algorithms using best point as the 
centre of mass (solid line) and the NM method (dashed line). 

3.2.2 Simulation results for Nelder Mead crunching 

The results of the addition of Nelder-Mead crunching are compared with results of 

the original BB-BC optimization algorithm on the Ackley, Rastrigin, Rosenbrock test 

functions. The stopping criterion is defined as the maximum number of fitness 
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evaluations for both algorithms. If one would have chosen the stopping criteria as 

number of iterations then the hybrid algorithm would have been advantageous 

compared to the pure BB-BC algorithm since the new hybrid algorithm searches for 

extra points around fittest individual in crunching phase; and therefore, the 

comparison would not have been fair. Utilizing the local search step instead of using 

weighted average method (or directly selecting the fittest member as the 

representative point) makes the algorithm slower but in most of the practical 

problems, main process time is spent in the cost function evaluation. Therefore, 

fitness evaluation time makes the other steps negligible. (In basic benchmark 

functions used, that is not the case though.) The time spent for both original and 

hybrid BB-BC Algorithms are reported in the Table 3.1-Table 3.4.  

The results logged in this chapter are obtained from 10000 random run for each test. 

This number is more than enough for reliable statistical analyses. Table 3.1-Table 

3.3 report the results with respect to the objective functions. The simulations are 

carried for different population sizes, different number of evaluations before 

termination and for different sizes of total search spaces. Here, the reported results 

are for 20 individuals allowed for 1000 objective evaluations. The search space is [-

10, 10] for both parameters. The tremendous improvement can be easily observed 

from both the average and median values for the total runs. Standard deviations of 

the results are also smaller for the newly proposed method, which makes it more 

consistent. 

Table 3.1 : Ackley test function results. 

ACKLEY BB-BC BB-BC with 
Nelder-Mead 

Average Cost 
 

0.625 0.022 

Median Cost 
 

0.529 0.023 

Std. Dev. Of Cost 0.430 0.005 

Average Time 
Elapsed (s) 

0.004 0.081 
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Table 3.2 : Rastrigin test function results. 

RASTRIGIN BB-BC BB-BC with 
Nelder-Mead 

Average Cost 
 

1.314 0.415 

Median Cost 
 

1.263 0.010 

Std. Dev. Of Cost 0.711 0.561 

Average Time 
Elapsed (s) 

0.003 0.069 

 

Table 3.3 : Rosenbrock test function results. 

ROSENBROCK BB-BC BB-BC with 
Nelder-Mead 

Average Cost 
 

0.386 0.004 

Median Cost 
 

0.135 0.003 

Std. Dev. Of Cost 0.918 0.002 

Average Time 
Elapsed (s) 

0.002 0.067 

In Table 3.1-Table 3.3, there is great amount of difference on average time elapsed 

values. For this reason, another test is designed: the algorithm is terminated when the 

fittest member of the iteration comes to 0.1 vicinity of the global minimum (Global 

minimum value is known at the beginning for these benchmark functions). The 

results of the tests are given for only the Ackley function in Table 3.4. The other 

functions behave the same.   In Table 3.4, the original algorithm needs %50 more 

time to process in order to achieve similar accuracy with the newly proposed hybrid 

algorithm. The difference between the evaluation numbers is also notable. 
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Table 3.4 : Ackley test function results for the second termination criterion (average 
and median errors < 0.1). 

ACKLEY BB-BC BB-BC with 
Nelder-Mead 

Average Cost 0.062 0.063 

Median Cost 

 

0.065 0.063 

# of av. fitness 
evaluations 

2663.7 120.1 

# of iterations 
carried (average) 

133.18 2.878 

Average Time 
Elapsed (s) 

0.012 0.008 

3.3 Inspection of the Effect of Improvement Vectors 

3.3.1 Big Bang-Big Crunch algorithm with improvement vectors 

Bang Big-Big Crunch optimization method can be further improved by using local 

search routines in conjunction with the original phases of the algorithm. Utilizing 

local search in between the algorithm iterations is a simple yet effective way of 

achieving this (Genç et al, 2010b).  As local search module, a direction is generated 

by using the current and the previous representative members of the population and 

this search line is further investigated in the aim of obtaining a better representative 

point. If the search terminates without improving the current best solution at hand, 

the algorithm run simply continues with the next iteration of the BB-BC algorithm; 

else, the obtained new point on the search space replaces the representative point. 

The global search part of the algorithm, that is the BB-BC algorithm reviewed in the 

previous chapter, has been preserved and applied with no modification within itself 

or its parameters: Between the iterations of BB-BC, local search step is injected.  

The steps of the algorithm are, 

STEP 1: Form the initial population of N members distributed uniformly in the 

search space. 

STEP 2: Perform the crunching phase of the BB-BC algorithm. This point becomes 

the first best point found in the iteration. Store this point.  
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STEP 3: Perform once more the consecutive banging and then crunching phases of 

the BB-BC algorithm.  

STEP 4: If the best point obtained in step (3) is better than the last stored point then 

this means an improvement then store that point. Next, generate a direction vector 

using one or two previous best candidate solution points so far attained, make 

exploratory moves in that direction, and assign a new virtual centre of mass on that 

direction if a better point has been obtained than the previous fittest point. If the best 

or the fittest point remains the same after the local search phase then go straight to 

step (5). 

STEP 5: Check the stopping criteria. If it is met stop; else go back to step (3). 

The proposed idea with this hybridization scheme is to fasten the search for global 

minimum. Once a search direction is obtained, a few points on this line are checked 

to look for any better points. The search is not intensive, so finding the exact local 

minimum is not the ultimate goal. Instead, a better starting point for the next iteration 

(or a better representative point for the current iteration) is tried to be obtained. Thus, 

the next explosion centre of the bang phase is not guaranteed to be a local minimum. 

Moreover, the big bang phase of the BB-BC algorithm is still global in nature and 

these two factors avoid search stagnation. Note that, local search is performed not 

randomly, but along an improving line by using commonly accepted contraction and 

expansion moves or dichotomous search. Otherwise, checking random neighbors or 

complete set of neighbors can cause unacceptable processing time or even search 

stagnation. Figure 3.6 gives the flowchart for the algorithm in a generic manner.  

Three different approaches for the local search part of the algorithm are reported in 

the following subchapters.  

3.3.1.1 Vector formation with single step regression 

In single step regression, the direction vector (also named as improvement vector) is 

the difference vector of the fittest point of current iteration and the previous best 

(fittest, representative) points stored after the last two consecutive crunching phases 

of the BB-BC algorithm, (3.6), 

1 ( ) ( 1)IV P n P n= − −                                                (3.6) 
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where IV1 stands for the improvement vector of single step regression BB-BC, P(n) 

is the current best or fittest point and P(n-1) is the last stored best or fittest point.  

 

 

Figure 3.6 : Generic algorithm flowchart. 

In this version of local search methodology, the memory usage is just for single step; 

and therefore, there is no information usage from the representative points belonging 

to the previous iterations. In the search methodology, the magnitude of the direction 

vector is halved after each unsuccessful expansion step. User should determine the 

number of halving operations. If all the expansion trials turn out to be a failure, only 

one contraction operation is allowed. None of these predetermined parameters within 

these local move operations are hard constraints for algorithm and they can be 

relaxed when needed with respect to the problem geometry. The flowchart of the 

local search part is given in Figure 3.7 and the search steps on the direction line are 

illustrated in Figure 3.8.  



64 

 

Figure 3.7 : Local search phase for single step regression in BB-BC algorithm. 

Figure 3.8 : Illustration of direction vector formation for local improvement with 
single step regression in BB-BC Algorithm. 

3.3.1.2 Vector formation with double step regression 

In double step regression, the direction vector is the weighted mean of IV1 and IV2 

where IV2 is defined similar to IV1, (3.7),  
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2 ( ) ( 2)IV P n P n= − −                                                       (3.7) 

                                          1 2(1 )
h

IV IV IVα α= + −  

where α  is a number in the interval [0, 1]. Note that if α = 1, double step regression 

procedure reduces to single step regression. There is information usage from both the 

(n-1)
th and (n-2)

th  representative points; thus, this provides to form non-regular 

simplex for local minimum search. 

The bounds for the search direction are illustrated in Figure 3.9. In the figure, a 

possible direction vector is given for the case α  = 0.5.  

 

Figure 3.9 : Illustration of direction vector formation for local improvement with 
double step regression in BB-BC Algorithm. 

3.3.1.3 Dichotomous search on local direction vector 

Instead of checking extraction and contraction points, dichotomous search technique 

can be utilized on the generated search line. The flowchart for dichotomous search 

on local direction vector for one step regression in BB-BC Algorithm is illustrated in 

Figure 3.10. 

Figure 3.11 serves as an illustration example of the representative point evolutions in 

applying both the original BB-BC Algorithm and the hybrid BB-BC Algorithm. In 

this example, the original BB-BC Algorithm and the hybrid BB-BC Algorithm has 

been run on the same objective function (Rosenbrock objective function: minimum at 

(x=1,y=1), minimum cost = 0) with same parameters and same random number 

generator seeds and it starts from the same point (x1= 2.4721, y1=6.3589). In the 
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following iterations the fittest point moved to another location where is shown as p in 

Figure 3.11. While the original BB-BC Algorithm performs the next explosion 

centering this point, the proposed hybrid algorithm replaces point p with p’. The 

same procedure follows for the whole run and the resulting trajectories are given in 

Figure 3.11. The hybrid BB-BC Algorithm clearly ends up in a closer point to the 

global minimum at (1, 1) with a smoother trajectory. Note also that this simple 

example is given for the direction vector formation with single step regression case. 

Figure 3.10 : Flowchart for the dichotomous local search algorithm. 

3.3.2 Simulation results for improvement vector generation 

The results of the hybrid method are compared with results of the original BB-BC 

optimization algorithm on the objective test functions; namely, rosenbrock, rastrigin, 

ackley, sphere, step and ellipsoid functions. All these test functions are chosen to be 

same with the original paper presenting the BB-BC Algorithm (Erol & Eksin, 2006). 

The stopping criterion is defined as the maximum number of fitness evaluations for 
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both algorithms. The time spent for both original and hybrid BB-BC Algorithms are 

almost the same; and therefore, this criteria is not taken into consideration for 

comparison purposes. 

 
 

Figure 3.11 : The hybrid BB-BC Algorithm versus the original BB-BC Algorithm - 
Upper left hand side: movement of the original BB-BC, Upper right side: movement 

of the proposed hybrid algorithm, Lower left hand side: zoomed movement of the 
original BB-BC, Lower right hand side: zoomed movement of the proposed hybrid 

algorithm. 

The results logged in this chapter are obtained from 10000 random run for each test.  

The following tables arranged with respect to the objective functions. For ellipsoid, 

step and sphere functions, the space topology is easier in comparison and the number 

of function evaluations (stopping criteria) is chosen to be half of the Ackley, 

Rastrigin or Rosenbrock counterpart.  

 Table 3.5-Table 3.10 reports the cases for small search space and 20 individuals per 

population. Figure 3.12-Figure 3.17 shows the average best fitness of whole runs 

with respect to the iteration number, respectively.  On the other hand, Table 3.11 and 
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Figure 3.18 illustrate a condensed view for large search space and 30 individuals per 

population. 

Table 3.5 : Ackley test function, n = 20, 500 evaluations, search space: [-10, 10]. 

ACKLEY BB-BC Single Step 
Regression 

Double Step 
Regression 

Dichotomous 
Search 
(OneStep) 

Average Cost 
[improvement%] 

0.65 0.49[25%] 0.51[22%] 0. 47[28%] 

Median Cost 
[improvement%] 

0.53 0.40[25%] 0.40[25%] 0.39[27%] 

Std. Dev. Of Cost 0.43 0.36 0.37 0.33 

Figure 3.12 : Improvement of the Ackley cost value with respect to increasing 
evaluation number. 
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Table 3.6 : Ellipsoid test function, n = 20, 500 evaluations, search space: [-10, 10]. 

ELLIPSOID BB-BC Single Step 
Regression 

Double Step 
Regression 

Dichotomous 
Search 
(OneStep) 

Average Cost 
[improvement%] 

0.11 0.07[36%] 0.07[36%] 0.06[45%] 

Median Cost 
[improvement%] 

0.07 0.04[43%] 0.03[57%] 0.02[71%] 

Std. Dev. Of Cost 0.10 0.08 0.09 0.07 

Figure 3.13 : Improvement of the Ellipsoid cost value with respect to increasing 
evaluation number. 
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Table 3.7 : Rastrigin test function, n = 20, 500 evaluations, search space: [-10, 10]. 

RASTRIGIN BB-BC Single Step 
Regression 

Double Step 
Regression 

Dichotomous 
Search 
(OneStep) 

Average Cost 
[improvement%] 

1.35 1.15[15%] 1.11[18%] 1.18[13%] 

Median Cost 
[improvement%] 

1.26 1.11[12%] 1.09[13%] 1.15[9%] 

Std. Dev. Of Cost 0.71 0.69 0.70 0.69 

Figure 3.14 : Improvement of the Rastrigin cost value with respect to increasing 
evaluation number. 
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Table 3.8 : Rosenbrock test function, n = 20, 500 evaluations, search space:[-10, 10].  

ROSENBROCK BB-BC Single Step 
Regression 

Double Step 
Regression 

Dichotomous 
Search 
(OneStep) 

Average Cost 
[improvement%] 

0.40 0.31[23%] 0.30[25%] 0.29[28%] 

Median Cost 
[improvement%] 

0.13 0.08[%38] 0.08[38%] 0.08[38%] 

Std. Dev. Of Cost 0.95 0.78 0.81 0.79 

 

 

Figure 3.15: Improvement of the Rosenbrock cost value with respect to increasing 
evaluation number. 
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Table 3.9 : Sphere test function, n = 20, 500 evaluations, search space: [-10, 10]. 

SPHERE BB-BC Single Step 
Regression 

Double Step 
Regression 

Dichotomous 
Search 
(OneStep) 

Average Cost 
[improvement%] 

0.08 0.05[38%] 0.05[38%] 0.04[50%] 

Median Cost 
[improvement%] 

0.05 0.03[40%] 0.03[50%] 0.02[60%] 

Std. Dev. Of Cost 0.07 0.05 0.06 0.05 

 

 

Figure 3.16 : Improvement of the Sphere cost value with respect to increasing 
evaluation number. 
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Table 3.10 : Step test function, n = 20, 500 evaluations, search space: [-10, 10].  

STEP BB-BC Single Step 
Regression 

Double Step 
Regression 

Dichotomous 
Search 
(OneStep) 

Average Cost 
[improvement%] 

0.08 0.05[38%] 0.05[38%] 0.04[50%] 

Median Cost 
[improvement%] 

0.05 0.03[40%] 0.03[40%] 0.02[60%] 

Std. Dev. Of Cost 0.07 0.05 0.06 0.05 

Figure 3.17 : Improvement of the Rastrigin cost value with respect to increasing 
evaluation number. 
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Table 3.11 : Average costs for all functions, n = 30, 3000 / 1500 evaluations, search 
space: [-50, 50]. 

Function BB-BC 
Average 
Cost 

Single Step 
Regression 
Average Cost 
[improvement%] 

Double Step 
Regression 
Average Cost 
[improvement%] 

Dichotomous 
Search Average 
Cost 
[improvement%] 

Ackley 1.14 0.87[24%] 0.81[29%] 0.75[34%] 

Ellipsoid 0.33 0.19[42%] 0.18[45%] 0.16[52%] 

Rastrigin 1.96 1.63[17%] 1.53[22%] 1.65[16%] 

Rosenbrock 3.59 3.04[15%] 3.20[11%] 2.96[18%] 

Sphere 0.23 0.13[43%] 0.12[48%] 0.11[52%] 

Step 0.24 0.13[46%] 0.12[50%] 0.11[54%] 

 

Figure 3.18 : The improvements of the cost values for all functions for large search 
space through evaluations. 
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columns of the tables. Main purpose is not to intensify on the local search step but 

the idea of amalgamating local and global search procedures. Better results could 

have been obtained by fine-tuning the parameters of the local search algorithm but 

generality of the hybrid algorithm would have been sacrificed.  

The simulation results clearly illustrate the improvement on the algorithm 

performance. Though the new hybrid method is not faster or slower than the original 

BB-BC in time-wise, the accuracy achieved within the same number of fitness 

function evaluations is quite considerable and makes the routine worthy. 

3.4 BB – BC with Local Directional Moves (BBBC – LS) 

3.4.1 Algorithm formulation 

BBBC-LS has the same general algorithm run as in Figure 3.6. However, the 

algorithm defines new parameters to control crunching function and allowed number 

of function evaluations at the crunching phase. 

The steps of the algorithm can be summarized as follows: 

STEP 1: Form an initial generation of N individuals in a random manner. 

STEP 2: Perform the crunching phase of the BB – BC algorithm. The centre of 

mass is selected as the fittest individual. This point becomes the first best point 

found in the iteration. Store this point.  

STEP 3: Perform once more the consecutive banging and then crunching phases 

of the BB – BC algorithm. Crunching phase is switched to NM crunching after 

Tfe portion of function evaluations completed.  

STEP 4: If the best point obtained in step 3 is better than the last stored point then 

this means an improvement then store that point. Next, generate a direction 

vector using one or two previous best candidate solution points so far attained 

and make nh exploratory moves in that direction and assign a new virtual centre 

of mass on that direction if a better point has been obtained than the previous 
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fittest points. If the best (fittest) point remains the same after the local search 

phase then go straight to step 5. 

STEP 5: Check the stopping criteria. If it is met stop; else go back to step 3. 

Definition, abbreviation and value intervals for the algorithm specific parameters are 

listed in Table 3.12.  

The proposed idea on this study is to speed up the search by checking some local 

points after the crunching phase of the main global search algorithm so as to 

maximize improvement probability. The neighboring points check procedure should 

be carried in the guided and limited direction(s). Otherwise, checking random 

neighbors or complete set of neighbors can cause unacceptable processing time or 

even search stagnation. In this study, the proposed local search moves of the 

hybridization procedure are based on defining a possible improving direction to 

check neighboring points. Between iterations, the movement of the best point forms 

a basis for linear search direction definition. Search directions are generated by 

utilizing auto regression on the locations of the representative points of consecutive 

crunch phases. The local search operation can be performed for a few predetermined 

numbers of steps on these directions so abstaining from sticking into a local optimum 

point. Any local search method can be utilized in these generated directions; here, 

expansion and contraction moves of basic simplex search method and dichotomous 

search algorithms are exploited for the local search phase of hybridized optimization 

method.  
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Table 3.12 :  Definition of algorithm parameters. 

Abb. Definition Value Interval Data 
Type 

N population size 1N D≥ + , if NM 

crunching is used 

integer 

nmb allowed function evaluation budget for the 

NM crunching phase (if used) 

nmb  < total function 

evaluation budget (FE) 

integer 

nmt NM crunching tolerance error (if used), 

(algorithm ends either nmb or nmt fulfilled) 

0 < nmt < ∞  double 

nh number of expansion/contraction steps 

performed between each iteration 

0 < nh < total function 

evaluation budget (FE) 

integer 

Tfe Normalized crunching phase switching 

parameter: After Tfe proportion of total FE 

carried switch to NM crunching 

0 ≤  Tfe ≤1 double 

sm explosion strength adjusting parameter, 

determines mean step size of banging phase 

1 ≤  sm ≤  ∞  double 

3.4.2  Simulation results for BBBC-LS 

To evaluate the performance of the newly proposed hybrid method (BBBC–LS), the 

algorithm is applied to four test functions with distinct characteristics, selected from 

the benchmark test bed proposed for the CEC’05 Special Session on Real–Parameter 

Optimization (Suganthan et al, 2005). Three-dimensional mappings for two 

dimensional search spaces of the selected benchmark functions are given in Figure 

3.18. In the simulations, 10 dimensional versions of these functions are used. 

Mathematical expressions, search range, global minimum function values and basic 

properties for the benchmark functions are given in Table 3.13. 
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Figure 3.19 : Benchmark test functions from CEC’05 competition. (a) Shifted 
Sphere, (b) Shifted Rotated Griewank, (c) Shifted Rotated Rastrigin, (d) Shifted 

Rotated Weierstrass. 

 

To verify the effectiveness of the proposed approach, three well known optimization 

routines are utilized on the same test functions: Genetic Algorithm (GA) is probably 

the most commonly accepted umbrella term covering many variants. Covariance 

Matrix Adaptation Evolutionary Strategies (CMA–ES) and Particle Swarm 

Optimization (PSO) have also been successfully applied in many research and 

application areas over the past few decades. For comparison purposes, GA is used as 

implemented in the Global Optimization Toolbox of Matlab R2010a; CMA–ES is 

used as detailed in (Hansen et al, 2003; Hansen, 2006; Hansen et al, 2009) and code 

is used as the January, 2011 version in Hansen’s web page (Url-1); and PSO Toolbox 

(Url-2) is used for particle swarm evaluations. 
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Table 3.13 : Summary of the benchmark functions (D = 10). 

Function Minimum Search Range Properties 
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Table 3.14 reports the benchmark function scores for all algorithms at the end of 500 

/ 1000 / 2000 function evaluations (FE) for 1000 independent runs. In these 

simulations, BBBC–LS algorithm uses the following parameters: N = 15, nh = 2, Tfe 

= 0.6, sm = 10, nmt = 0.1 / (1 + k / sm) where k is the iteration number. As local 
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directional move, dichotomous search is used. Stopping criterion for the NM 

crunching phase is chosen to be termination tolerance, therefore NM crunching 

budget (nmb) parameter set to infinity. The other algorithms are optimized only for 

population size; all the remaining algorithm specific parameters are either left as 

default / suggested parameters or self tuned by the algorithm itself. 

Table 3.14 : Average performance scores. 

Sphere FE: 500  FE: 1000 FE: 2000 
GA –433,502 –445,616 –448,277 
CMA–ES –449,688 –449,997 –450.000 
PSO –422,404 –441,127 –449,009 
BBBC–LS –448,667 –449,838 –449,979 

Rastrigin FE: 500  FE: 1000 FE: 2000 
GA –231,448 –273,896 –276,315 
CMA–ES –246,733 –274,883 –309,702 
PSO –230,444 –262,460 –287,820 
BBBC–LS –299,244 –309,962 –310,070 
Griewank FE: 500  FE: 1000 FE: 2000 

GA –53,481 –99,3917 –116,699 

CMA–ES –169,161 –169,982 –170,983 

PSO –167,573 –173,789 –179,555 

BBBC–LS –174,719 –177,160 –178,314 

Weierstrass FE: 500  FE: 1000 FE: 2000 

GA 101,271 99,491 99,510 

CMA–ES 101,640 97,047 94,414 

PSO 100,386 98,850 98,866 

BBBC–LS 98,316 97,020 95,223 

Table 3.15 and Table 3.16 serve for summarizing the performances of the 

algorithms: In Table 3.15, every entry gives the order for the corresponding 

algorithm at the end of corresponding FE budget. Table 3.16 reports the number of 

being the best method on 4 test functions and 3 different FE levels (summing up 12 

cases) and assigns an overall rating considering the mean place.  

The power of BBBC–LS lies not only in its capability for quick convergence but also 

in its low level of complexity. There are a few number of parameters to be tuned: the 

user should select the population size (N), number of expansion/contraction steps 

(nh), NM crunching budget (nmb), NM crunching tolerance (nmt), crunching phase 

switching parameter (Tfe) and the explosion strength adjusting parameter (sm). 

However, GA, CMA–ES and PSO have many parameters to be selected by the 
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designer, though many variants of these methods generally offer self selection / 

adaptation of these parameters settings. 

Table 3.15 : Order of algorithms (1: Best, 2: Second, 3: Third, 4: Worst). 

Sphere FE: 500  FE: 
1000 

FE: 
2000 

Griewank FE: 
500  

FE: 
1000 

FE: 
2000 

GA 3 3 4 GA 4 4 4 
CMA–ES 1 1 1 CMA–ES 2 3 3 
PSO 4 4 3 PSO 3 2 1 
BBBC–
LS 2 2 2 

BBBC–LS 
1 1 2 

Rastrigin FE: 500  FE: 
1000 

FE: 
2000 

Weierstrass FE: 
500  

FE: 
1000 

FE: 
2000 

GA 3 3 4 GA 3 4 4 
CMA–ES 2 2 2 CMA–ES 4 2 1 
PSO 4 4 3 PSO 2 3 3 
BBBC–
LS 1 1 1 

BBBC–LS 
1 1 2 

Table 3.16 : Summary of algorithm comparison. 

Algorithm # of first 
rankings  

Average 
ranking  

Overall 
rank 

GA 0 3.5833 4 
CMA–ES 4 2 2 
PSO 1 3 3 
BBBC–LS 7 1.4167 1 

There are many metrics on algorithm complexity but neither of them is universally 

accepted. In CEC’05, running time difference between 200000 function evaluations 

(T1) and the complete computing time for the algorithm with 200000 function 

evaluations (T2) have been normalized with a run time of reference mathematical 

function (T0) on a dedicated computer. This can be formulated as in (3.8), 

2 1

0

T T
Complexity

T

< > −
=                                           (3.8) 

where <  . > symbol stands for averaging function over multiple runs.  The details 

for the complexity analysis can be further investigated on Suganthan et al. (2005). 

The results for complexity analysis can be found in Table 3.17. The test function 

used for complexity analysis is randomly chosen to be as the shifted rotated 

Weierstrass function.    
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Table 3.17 : Complexity Analysis. 

Algorithm CEC–2005 

Complexity 

Run Time (s) Number of 

Parameters to 

Adjust 

GA 27.9551 189.6874 13 

CMA–ES 44.9625 294.4760 24 

PSO 25.1343 172.3075 14 

BBBC–LS 12.8308 96.5014 6 

3.5 Conclusion 

A simple but effective hybridization procedure for the Big Bang–Big Crunch 

optimization algorithm is presented in this chapter. The method generates a direction 

vector from the past positions of the best individuals found so far and investigates on 

this line with extraction or contraction moves. This local search phase is modular and 

works without interception to the original BB – BC algorithm. Moreover, the 

crunching phase of the algorithm is expanded to include a simplex based approach; 

namely, the Nelder– Mead optimization method.  

The crunching phase using the Nelder – Mead optimization method improves the 

exploitation capability of the BB–BC algorithm so, it is more appropriate to use it 

towards the final steps of the search. Therefore, the proposed method introduces a 

switching parameter (Tfe) for crunching phase selection. Then, at the early iterations, 

weighted mean of the candidate member solutions or the best solution member is 

selected as the centre of mass; whereas, after the switching condition is fulfilled, NM 

crunching is used for more exploitive search. The switching threshold parameter is 

assigned at the beginning and kept constant throughout the search, but it is a 

promising idea to adapt this parameter in a dynamical manner. This adaptation could 

be performed based on a feedback controller observing the population diversity and 

history of the population diversity.  

The simulation results on various test functions clearly illustrate the superiority of 

adding local directional moves over the original BB – BC algorithm. The accuracy 

achieved by the newly proposed method within the same number of fitness function 

evaluations is quite considerable and makes this routine worthy. Moreover, as a 
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compact new algorithm, BBBC–LS turns out to be a good alternative to the widely 

accepted state–of–the–art evolutionary optimization algorithms. Its accuracy is better 

or at least comparable for the tested benchmark functions and the complexity and 

running time are far better than GA, CMA–ES and PSO. 
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4.  SINGLE LEAP-BIG BANG BIG CRUNCH OPTIMIZATION APPROACH 

TO SINGLE OBJECTIVE AIRPORT GATE ASSIGNMENT PROBLEM 

4.1 Introduction 

The air transportation becomes more and more widespread during the past fifteen 

years. As well as the opportunity of travelling long distances in reasonable short time 

duration, the moderate prices due to competition of the companies made several 

travelers to choose airline industry. These facts tremendously increased the traffic in 

the airports compared to mid-1990s. In addition, the hub-and-spoke system has 

resulted in a large volume of baggage and passengers transferring between flights 

(Bazargan, 2004). Assigning arriving flights to airport gates is therefore an important 

issue in daily operations of an airline. It has a major impact on maintaining the 

efficiency of flight schedules, passenger satisfaction and the revenue obtained.  

The problem of finding a suitable gate assignment is generally handled in three 

levels. In the first level, the ground controllers use the flight schedule to examine the 

capacity of the gates to accommodate these flights. The second level involves the 

development of daily plans before the actual day of operation. In the third level, 

because of the unexpected situations such as delays, bad weather, mechanical failure 

and maintenance requirements, these daily plans are updated and revised on the same 

hour/day of the operation (Bolat, 2000). In this chapter, the second and the third 

levels of operation are considered. 

Possible objective functions can be defined in terms of the staying time of the planes 

in the gates, number of passengers in aircrafts, the total walking distances belonging 

to the passengers of all scheduled flights within a specified and closed time interval. 

Therefore, the problem formulation can vary quite a lot due to this large span of 

objectives. Moreover, basic gate assignment problem is NP-hard (non-deterministic 

polynomial-time hard) (Obata, 1979) quadratic assignment problem. Because of 

these, there are various approaches to this problem in the literature with respect to 

requirements imposed. The solution approaches have two heavily interacting main 

branches: rule based expert systems and mathematical models. In the implementation 
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given in this chapter, the GAP objective is to maximize total gate time as an integer 

programming mathematical formulation that uses multiple time slots and the basic 

constraint that allows one flight at one gate at one time. No rule-based expert system 

is utilized algorithm; but in the system developed for Atatürk Airport, the constraints 

are processed by user-defined rules. 

Teodorovic & Guberinic (1984) and Teodorovic & Stojkovic (1990) focus on total 

passenger delay and the number of flights cancellations in the case of irregularity of 

flights. Among other possible criteria, passenger walking distances (Hu & Paulo, 

2007; Ding et al, 2004; Ding et al, 2004; Ding et al, 2005; Haghani & Chen., 1998; 

Babic et al, 1984; Wirasinghe & Bandara, 1990; Bandara & Wirasinghe, 1992); 

baggage transfer distances (Hu & Paulo, 2007; Haghani & Chen., 1998) are also 

considered. Chang (1994) considers the distance covered by passengers in carrying 

their baggage as an objective in addition to passenger walking distance. Even any 

objective criterion has factions in implementation: for example, passenger walking 

distance can be handled as,  

I. minimize the sum of total distance that all passengers walk,  

II. minimize the distance after baggage claim area,  

III. minimize connection flight travelling distance,  

IV. minimize the maximum distance that a passenger need to walk  

V. minimize the number of passengers that need to walk more than x units.  

The list can be further extended. Unfortunately, assignment objectives depending on 

passenger walking distance are quite fragile (Dorndorf et al, 2007). 

Genetic Algorithms (GAs) are the most known and widespread used global 

optimization methods. Since GAs use random number generators and they exhibit an 

ability to avoidance to get trapped to local optima they are considered to be 

successful search procedures when the objective function is nonlinear, non-derivative 

and discontinuous. Some researchers proposed GA based methods for the gate 

assignment problem (Gu & Chung, 1999; Hu & Paulo, 2007; Bolat, 2001). All the 

approaches utilizing population based routines, including GA based approaches, use 

global optimization methods to top down solve the problem or to improve the result 

of some heuristics. However, forming a complete solution candidate or altering the 

list once all the flights are assigned can be quite tardy for GA or similar GA like 
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stochastic methods since they oblige to check all constraints to build up a valid 

solution. Therefore, using stochastic methods to ameliorate assignment after all the 

list has been built up is not a good solution alternative for GAP in practical 

applications. 

For the Đstanbul Atatürk Airport’s operator, criterion of highest priority is to increase 

the revenue obtained from the gate allocation operation. The most important 

parameter in the revenues is therefore the allocated gates, which are available in a 

limited number. The more efficiently the gates are assigned to the aircrafts, the lesser 

idle time is left between two successive flights and this means that more passengers 

use the gates. Hence, the revenue and passenger satisfaction are both increased. 

Flight gates are the major items addressed in the GAP. At Đstanbul Atatürk Airport, 

as well as the most of the airports throughout the world, the revenues are majorly 

dependent upon assignment of an airplane to a gate or not. This leads to a cost 

function which changes greatly if an airplane is assigned to a gate or not. This gives 

rise to a discontinuous objective function or more generally, a cost or fitness function 

where inter-gate aircraft switches do not have a great influence on it.  

Next section gives the mathematical description of the problem. The details of the 

proposed method are presented in section 3, the simulation results are given in 

section 4. The developed system for the Đstanbul Atatürk Airport this airport is given 

in section 5. The concluding remarks of the chapter are finally given in section 6. 

4.2 Problem Formulation 

The objective is to maximize gate duration, which is total time of the gates allocated 

for all flights of a day. The basic constraint of the GAP imposed in the formulation 

can be stated as follows: one gate can only accommodate a single aircraft at a time 

and that therefore two flights must not be assigned to the same gate if their staying 

times overlap in time (Dorndorf et al, 2007). To measure density of the gates, the 

whole day is sampled for n minutes, where n can be chosen as 5 or 10 in a practical 

application. Note that selection of the length of a time slot directly effects the 

algorithm run time. In literature, selected time slots are in between five minutes and 

one hour duration (Bolat, 1999; Bolat 2001; Haghani & Chen., 1998). This time 

interval corresponding to n minutes is called a time slot and the density is measured 

by counting allocated timeslots.  
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The parameters related to gate assignment problem are defined as follows: 

N:  number of aircrafts,  

Ng:  number of gates,  

Noa: number of open air parking places 

Ns: number of stands where Ns = Ng + Noa 

Nt: number of time slots in a day (depends on time slot length n, Nt = 24*60/n) 

TA(i): arrival time of flight i, 

TD(i): departure time of flight i, 

Mu:  (NxNt) matrix of aircrafts (scheduling) where,  

Mu(i,j) = 1, if the aircraft i  is at the airport in time slot j according to TA(i) and 

TD(i), 

  Mu(i,j) = 0,  if otherwise. 

Mc:  (NsxNt) matrix of assignments (gate assignments) where, 

Mc(i,j) = U, (U=1,...,N),  if the gate i is assigned at time slot j to the Uth flight,  

Mc(i,j) =  0, if otherwise. 

The function to be maximized can be formulated as in (4.1), 

            
1 1

( ( , ))
tNNg

fitness c

k l

F any M k l
= =

=∑∑       (4.1)  

where, 

any(Mc(k,l)) = 1,  if Mc(k,l) ≠ 0; 

any(Mc(k,l)) = 0 , if otherwise. 

Figure 4.1 illustrates an assignment list for the planes. The vertical axis represents the 

gates available and the horizontal axis is the time. The list is given for a whole day. 

The planes, depicted as horizontal bars, are shown to occupy the corresponding gates 

for certain sojourn.  
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Figure 4.1 : A sample gate allocation. 

Figure 4.2 illustrates certain focused area of Figure xxx; that is, the assigned planes 

to the first 5 gates for the time interval of 8am to 10am. In this specific interval, first 

gate has no assigned planes; whereas, second gate resides the plane 01 for one time 

slot and the plane 18 for three time slots. Time axis is displayed in discrete version 

where each day has been divided into (24*60/n) timeslots.  

 

Figure 4.2 : A sample gate allocation – condensed view. 

4.3 Heuristic and Optimization Based Solution Approaches 

In this section, firstly a greedy method from the literature will be introduced. 

Secondly, a new heuristic method that has been named as ground time duration 

maximization algorithm (GTMA) will be discussed. Finally, one of the main 

contributions of this thesis work, implementation of the Single Leap-Big BangBig 

Crunch (SL-BBBC) method will be given. 
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The design of an efficient heuristic becomes a paramount importance and constitutes 

the key focus of this important application (Xu & Bailey, 2001). Deterministic 

solutions provide a good initial starting point for the stochastic algorithm. Starting 

with the best heuristic solution, the stochastic approaches can improve the solution 

by modifying the assignment list that is given in Figure 4.1. On contrary to all the 

previous work so far done in this area, the newly proposed method does not work on 

the final assignment list, but on the plane ordering process. Plane ordering process 

can be defined as assigning priority for all the planes with respect to a chosen 

criterion. Once all the planes are ordered, they are tried to be allocated starting from 

the one having highest priority. By doing so, all the constraint satisfaction checks 

needed after a modification on the assignment list can be omitted. Besides this, new 

approach can be used with any heuristic that constitutes a basis for ordering – or 

priority assignment – for the flights and with the allocation module in any airport 

having different constraints.  

4.3.1 Heuristic approaches 

4.3.1.1 A previously reported heuristic: Greedy algorithm for minimizing the 

number of flights assigned to the apron 

In their previous works, Ding et al. (2004a, 2004b, 2005) proposed a greedy 

algorithm to minimize the number of the ungated flights. The flights are ordered with 

respect to departure times and assigned to the gates one by one respecting this order. 

If there are no gates available, then that flight is assigned to the apron. The algorithm 

steps are summarized for quick referencing as below: 

STEP 1: Sort the flights according to the departure time TD(i). 

STEP 2: Set gk = -1 for all gates where gk (1<k< Ng) represents the earliest available 

time in 

gate-k (that is the departure time of the last assigned plane to gate-k). 

STEP 3: For each flight i find gate-k such that gk< TA(i) and gk is maximized 

(i) if such k exists, assign flight i to gate-k, update gk = TD(i). 

(ii) else assign flight i to the apron. 

STEP 4: Output the result. 
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The algorithm is proven optimum for minimizing the number of flights assigned to 

the apron but it has a weakness in maximizing the total gate time if the early 

departing flight is a short staying one as illustrated in Figure 4.3. 

 

Figure 4.3 : Failure of greedy method. 

4.3.1.2 A new heuristic approach: Ground time duration maximization 

algorithm (GTMA) 

GTMA is designed with the objective to maximize the total gate duration. The 

underlying idea is to sort planes with respect to their staying durations and then 

allocating them one by one. That is to say, the longest staying plane is assigned with 

the highest priority: 

STEP 1: Pick the flight with longest time interval between its arrival and departure, 

STEP 2: Start from gate #1, 

STEP 3: Assign the flight to the gate if possible; else, select the next gate and repeat 

the procedure until finding a vacant gate. 

STEP 4: Remove the flight from the list once it is assigned. 

STEP 5: Go to step #1 until all the flights have been assigned. 

This heuristic method generates an order for the allocation process as the greedy 

method. The long staying flights are assigned in the first place and the flight with 

smaller gate durations can be inserted in between these larger gate durations. 

However, this method may not be optimal for certain cases with respect to gate time 

maximization criterion as illustrated in Figure 4.4. 
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Figure 4.4 : Illustration of failure of GTMA. 

4.3.2 Single Leap-Big Bang Big Crunch algorithm (SL- BBBC) 

All the studies in GAP that are based on evolutionary algorithms focus on modifying 

the final assignment list given in Figure 4.1 in different ways. This makes the 

running procedure highly nonlinear and that causes very long run time for the 

algorithm. This is unfavorable or unacceptable in most cases because frequently 

occurring delays in the flights pin down a quick reconfiguration of the gate 

assignment list. 

Single Leap-Big Bang Big Crunch (SL-BBBC) algorithm makes its progress on an 

individual which is initially assigned by the deterministic solution developed by any 

heuristic plane ordering algorithm. SL-BBBC algorithm is used after the heuristic 

GTMA since it provides much better results compared to greedy heuristic method 

reported in Section 4.3.1.1.  In Single Leap-Big Bang Big Crunch (SL-BBBC) 

algorithm, there is no population of solutions, so no information exchange between 

solution candidates will take place. For this reason, the BBBC algorithm has been 

renamed as ―Single Leap-Big Bang Big Crunch. The unique solution at hand is 

modified at each iteration step and if a better solution is attained, then the next 

iteration works on newly generated solution. In summary, aforementioned GTMA 

algorithm is used to find deterministic solution and then the solutions are further 

improved by using SL-BBBC, that is to say, the deterministic algorithms serve initial 

point for the evolutionary algorithm. 

Key point is that the SL-BBBC algorithm works on the assignment order of planes 

instead of the final assignment list itself. Once the initial assignment list and the 
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order of plane assignment have been obtained, SL-BBBC algorithm is conducted on 

the assignment order for further improvement. 

The flight list is input for the plane-ordering module, which is followed by the 

allocation module. The final output is the assignment list (Figure 4.). 

 

Figure 4.5 : Algorithm flow. 
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The new assignment methodology can be summarized as follows: 

STEP 1:  Apply GTMA and find an assignment list. 

STEP 2:  Log the order in which the planes are assigned. 

STEP 3:  Apply SL-BBBC to find better assignment list. 

SL-BBBC algorithm can be implemented in three possible formulations. 

a. Interchanging the order of only two flights with random distances away 

from a random center in the ordering list: In Figure 4.6, the center is 

chosen to be the position of Flight #3 and the distance is chosen to be two 

units. Then Flight #1 and Flight #5 interchange the positions. Note that 

the distance here is related with the explosion strength and center is 

related with the center of mass in the original BB-BC algorithm (Erol & 

Eksin, 2006).    

Original Order 

 

Result of one 

 BBBC iteration 

Flight #1  

 

RE - ORDERING 

Flight #5 

Flight #2 Flight #2 

Flight #3 Flight #3 

Flight #4 Flight #4 

Flight #5 Flight #1 

Flight #6 Flight #6 

Flight #7 Flight #7 

Figure 4.6 : Reordering of the flights: Type-a reordering. 

b. Randomly permuting the flights in between randomly selected two points. 

In       Figure 4., all the flights between Flight #2 and Flight #6 are 

reordered. Number of flights to be rearranged is correlated with the 

explosion strength. 

c. Interchanging the order of N random flights pairs with random distances 

away from random centers in the list. This is a generalized version for 

case (a). Here, both the number of changes and the distances in between 

are related with the explosion strength that is getting smaller as the 

number of iterations increase (Figure 4.). 
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Original Order 

 

Result of one 

 BBBC iteration 

Flight #1  

 

RE - ORDERING 

Flight #1 

Flight #2 Flight #4 

Flight #3 Flight #3 

Flight #4 Flight #6 

Flight #5 Flight #2 

Flight #6 Flight #5 

Flight #7 Flight #7 

      Figure 4.7 : Reordering of the flights: Type-b reordering. 

Original Order 

 

Result of one 

 BBBC iteration 

Flight #1  

 

RE - ORDERING 

Flight #5 

Flight #2 Flight #2 

Flight #3 Flight #4 

Flight #4 Flight #3 

Flight #5 Flight #1 

Flight #6 Flight #6 

Flight #7 Flight #7 

Figure 4.8 : Reordering of the flights: Type-c reordering. 

4.4 Simulation Results 

4.4.1 Simulation results with artificially generated dataset 

 In this section, the performance results are provided to demonstrate the effect of SL-

BBBC method over test data sets. Dedicated test data generator has been developed 

that considers the following parameters as inputs: 

I. the proportion in between total time slot demand and total available discrete 

time slots, d 

II. prime time traffic factors, p1 and p2; 

III. mean staying time for a plane, m; 

IV. standard deviation for staying times of all arranged flights, σ. 
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The user of this test data generator can define at most two prime time (high gate 

demand time interval during a day). When a flight is generated by the adjusted 

parameters, it will be assigned to each prime time with a probability equal to the 

chosen factor of the corresponding prime time. Even if it is not assigned to prime 

time by this step, the flight can still be assigned to that region by coincidence. The 

test data generator makes up the whole flight list accordingly. The mean, standard 

deviation and prime time factors are directly used in daily flight list generation. 

However, the ratio of demanded slot/available slot (= demanded gate duration / 

available gate time) is used to find the necessary plane number and then this value is 

assigned with some uniform random number in the vicinity of 10%. This simple 

manipulation is done just for the diversity of the plane numbers for batch data file 

generation. Figure 4. shows the graphical user interface for the test data generation 

software. For a sample (not optimized) view for the selected parameters, one may use 

“Sample allocation” button. Then, “Generate” button produces data files derived by 

the selected parameters at the instant. The passenger flow generator, walking 

distance parameters and preference value generator models are used in chapter 6.  

 

Figure 4.9 : Graphical user interface for problem instance generation. 

Data generation steps for a single day is as follows, 
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STEP 1: Find total gate duration demanded, Tt, in terms of discretized time 

slot number, (4.2) 

 Tt = d * Ng*Nt                                                        (4.2) 

where Ng is the number of gates and Nt is the number of time slots in a whole day. 

STEP 2: Find number of planes, N, to be generated, (4.3), 

N=round(Tt /m+10*rand)                                             (4.3) 

where rand is a uniform random number in the interval [-1, 1]. round function 

produces the nearest integer as the number of planes should be an integer value. 

STEP 3: For all N planes, pick up an integer gate duration value from normal 

distribution with mean m and standard deviation σ that are defined by the user. 

STEP 4: For all N planes, assign the plane to the corresponding prime time 

region with a probability chosen by the user. 

STEP 5: For the planes not allocated to the prime time regions, randomly 

assign arrival indexes that are convenient with the gate time determined in step 3. 

The number of files to be produced can also be changed. “Number of Gates” 

parameter is arranged to depict preferable first Ng gates. In this specific example, the 

parameters are selected as follows: 

Ng = 15, Noa = 25 and Ns = 40. 

Three different files representing three different characteristics for a flight schedule 

are generated: 

1) Moderate data set: This data set structure is close to data set structures 

observed in Turkey Airports. There is a relatively high demand for certain 

time slots during the morning and evening. Average gate time is close to an 

hour and median value is nearly half an hour. Demanded gate time does not 

exceed available gates. That is to say, the ratio of demanded time slot / 

available time slot is less than one. However, there occur un-gated flights due 

to lack of perfect fitting of gate durations. 

2) High gate demand distributed uniformly: There are considerably larger 

demand for the same number of gates with data set-1. The ratio of demanded 

time slot / available time slot is slightly larger than one and this causes 
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irrepressible ungated flights. There are no intended peaks on the gate 

demands throughout the day. 

3) High gate demand with demand peaks: Demanded gate duration / available 

gate time is same with data set-2. In this data set, the mean staying time for 

the flights are quite decreased (represents the flight schedule for an airport 

having very crowded traffic and many connection flights) and two regions of 

demand peak are defined, one of them hosting the 35% of the total flights. 

Every experiment is carried for 100 times. The results are analyzed to yield mean, 

median, standard deviation, maximum and maximum of deviations and some of these 

are reported whenever appropriate. 

Each stand at the airport has full vacancy at start. The whole day is divided into 5 

minutes time intervals summing up 24 * 60 / 5 = 288 time slots. When scoring an 

assignment list, first Ng = 15 stands are concerned. Each assigned time slot at the first 

Ng stands equally contributes to the scoring. For example, a plane arriving at 

08:00am and departing at 11:00am stays for 36 time slots and if the plane can be 

assigned to one of the score contributing stands, the overall score for the assignment 

list will increase by 36. 

Table 4.1 reports the average results over 30-days. Note that the SL-BBBC 

algorithm is only allowed to run for 2500 fitness evaluations taking less than 1 

minute in Intel Core 2 Duo Processor. Though three different approaches for SL-

BBBC implementation have been tried through simulations, only the last one coded 

as SL-BBBC version-c is reported since it yielded the most successful results. Figure 

4., Figure 4. and Figure 4. show the cost scores of the three algorithms with respect 

to days. 

Table 4.1 : Mean cost values for synthetic dataset (each consists of 30 days data). 

Method Moderate 
data set 

High gate 
demand 
distributed 
uniformly 

High gate 
demand having 
demand peaks 

Greedy Method 2847.23 3004.50 2913.77 

GTMA 3440.33 3715.56 3285.63 

SL-BBBC 3483.67 3760.08 3308.20 
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Figure 4.10 : Comparison of the three algorithms for moderate data set. 

 -  

Figure 4.11 : Comparison of the three algorithms for high gate demand distributed 
uniformly data set. 
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Figure 4.12 : Comparison of the three algorithms for high gate demand with demand 
peaks data set. 

4.4.2 Simulation results with actual field data 

In this part, the experiments are performed on the data collected from the Atatürk 

Airport in Đstanbul. Data collected are for 31 days of month January 2009 and 

represent an average of 300 planes per day. The problem at hand is, again, squeezing 

maximum planes to the gates. 

All the testing procedure and analyzing parameters are the same with tests performed 

in section 4.4.1.  

Table 4.2 reports the cost values of random ordering, in which the planes are ordered 

randomly (average on 100 random ordering for each day results are averaged over 

whole days); greedy method, GTMA, Random re-ordering over GTMA, where 

heuristic method‘s outputs are randomly interchanged for the same iteration number 

as SL-BBBC; and finally SL-BBBC method. 

Greedy method performs even worse than random ordering average in this data set. 

Besides, even if one starts from a good initial point then it is observed that 

interchanging the plane orders in a totally random manner makes not much 

difference in performance; whereas, being a systematic method, applying SL-BBBC 
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algorithm with good initial conditions is still able to create respectful difference in 

performance. Note that the average cost score of random ordered allocations is 

somewhere near 2866 and GTMA heuristic improves this score by 16 percent. The 

stochastic neighborhood search method further improves the results by 9.6 percent of 

the previous improvement. That is to say, SL-BBBC algorithm starts from a quite 

acceptable solution and further improves the solution; on the other hand, if it had 

been started from a random solution candidate (that is a random ordering of the 

planes) the improvement would have been much more in the expense of process 

time. The algorithm is optimized both in terms of objective function value and 

process time by using an initial solution generated by a deterministic heuristic 

method. 

Table 4.2 : Mean cost values for 31 days. 

Method Real world data 
set 

Random ordering 2866.71 

Greedy method 2761.52 

GTMA 3327.39 

Random re-ordering 3333.00 

SL-BBBC 3371.53 

 

The annual profit (company confidential) obtained by this final improvement 

justifies the importance of the new algorithm. Figure 4. clearly shows the 

improvement gained in using the SL-BBBC method in daily basis. 

Since the total run time for the SL-BBBC algorithm is less than one minute it allows 

quick restructuring of the assignment table. That is one of the most powerful aspects 

of the algorithm for the practical applications. The method is compatible with any 

cost function evaluation but the algorithm speed heavily depends on cost function 

process time. Moreover, if the algorithm were allowed to evaluate more candidate 

fitness values, the objective function value scores could have been further improved. 
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Figure 4.13 : Comparison of GTMA and SL-BBBC in a real world data set. 

4.5 Application at Atatürk Airport of Đstanbul 

The proposed algorithm is used on a real world application to work both as an off-

line and on-line gate allocation module in one of the most frequented airports of 

Europe, Đstanbul Atatürk Airport. The software developed is a resource management 

system having the architecture given in Figure 4.13. The gate assignment automation 

is implemented on ROTA Engine Server. The detailed explanations for the other 

components are beyond the scope of this work and deliberately omitted here. 

The Resource Management System (RMS) can be used as a web-based or desktop 

application. Thus, a variety of users with different devices throughout the airport can 

utilize the system in a collaborative manner. The user interface, Dashboard includes 

touch screen capability to maximize usability and control. Dashboard is designed 

mainly for maximizing monitoring capabilities according to the needs of control 

centre staff. Figure 4., Figure 4. and Figure 4. gives some example screenshots 

from the Dashboard. 
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Figure 4.14 : The architecture for the resource management system. 

 

Figure 4.15 : An example gate allocation screen when flight information window is 
open. 
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Figure 4.16 : An example gate allocation screen when manual edit window is open. 

 

Figure 4.17 : Operator display for gate allocating (taken from Atatürk Airport with 
courtesy of TAV Bilişim A.S.) 

The operator can display the statistics of assignment as well as the basic information 

about a particular flight. The flight list and the assignment list; the inputs and outputs 

of the system are displayed concurrently. 

The core module of RMS is the Rule & Optimization Engine. The rule engine 

enables authorized personnel to model the constraints and relationships both for 
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resources and tasks through all their possible attributes according to market 

considerations and airline/agent preferences. These task-oriented rules can be based 

on the following groups and extended according to other classes and attributes: 

I. Airport-based 

II. Terminal-based 

III. Airline-based 

IV. Based on Registration Number 

V. Other (i.e. recurring assignment rules, etc.) 

Predictably, because planning staff will utilize so many of the above constraints, it is 

inevitable that some of them will overlap. Although, in some cases, this can be a 

preferred result in terms of operational workload, some unexpected and undesired 

results may occur under normal circumstances. The rule engine module resolves this 

issue with a scoring mechanism and the overlapped constraints can be managed 

using this functionality. In addition to scoring and constraints, there is another 

functional parameter that can be accessed in modeling constraints called Soft 

Constraints (Preferences). These constraints refer to the rules, which can be violated 

by the Optimization Engine under some circumstances in order to meet functional 

objectives. At any given time during an operation (and in planning), if there is a 

shortage of resources, the system proactively generates automatic conflict messages 

with pre-defined solutions. It would be appropriate to point out at this stage that the 

SL-BBBC optimization algorithm operates independently from constraint generation. 

Optimization Engine sub-module provides optimization of daily tasks based on pre-

defined flight lists. The main idea in developing the optimization engine is to serve 

the priorities set by airport operators according to their management policies and 

preferences. Some of the common objective functions are given below: 

I. Revenue maximization through the optimization of gate and stand 

assignments. 

II. Maximizing the utilization of gate capacity. 

III. Maximizing airport capacity. 

IV. Enhancing overall service quality (punctual departures, cost competitiveness 

and reliability). 
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V. Minimizing the walking distance for departing and arriving passengers to 

provide smooth passenger flow. 

These objectives can be evaluated together according to their priority levels simply 

by defining the cost function as a weighted sum of the all listed above. It will again 

be appropriate to underline that SL-BBBC algorithm used here does not need to 

know this fitness function but just needs the score to proceed. 

The performance results for the resource management system are given in Table 4.3 

and Figure 4.. In Table 4.3, the data collected for the month February of 2010 (28 

days) are used and the scores are reported as the average for the month. The GTMA 

heuristic improves the cost by 12.49% with respect to manual (random) allocations 

and applying SL-BBBC algorithm for 100 iterations (= 100 “leaps”) improves the 

results by 22.68% of the previous improvement. For 1000 iterations, this 

improvement value is 34.59%. Fig.xxx gives the results in daily basis. The results for 

SL-BBBC algorithm for 100 iterations are omitted in order to decrease figure 

complexity. 

Table 4.3 : Mean cost values for the data collected from resource management 
system of Atatürk Airport for month February 2010. 

Method Cost Score 
Manual allocations 2866.71 

GTMA 3327.39 

SL-BBBC (100 evaluations) 3333.00 

SL-BBBC (1000 evaluations) 3371.53 
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Figure 4.18 : Comparison of the algorithms running on Atatürk Airport. Data are the 
28 days of February 2010. 

4.6 Conclusion 

In this chapter, the airport gate assignment problem is considered as to maximize the 

total gate duration of the flights assigned to the gates. Then, the airport gate 

assignment problem turns out to be maximizing the total sojourn in the first Ng gates. 

A new stochastic approach has been introduced to the problem utilizing a problem 

specific modification of Big Bang-Big Crunch optimization algorithm, namely 

Single Leap-Big Bang Big Crunch (SL-BBBC). The key feature of this problem 

specific evolutionary optimization algorithm, that is also the one of the main 

contributions of this Chapter, is to interchange the queue order of the planes 

(=flights) to be assigned rather than interchanging the positions of the N planes that 

are already assigned. Therefore, the algorithm steps do not interact with the 

assignment strategy and they just exchange the order of plane handling by the 

determined strategy. This modularity of SL-BBBC makes it compatible with any 

assignment logic. This hybridized approach is shown on a simple yet effective 

heuristic algorithm, which is abbreviated as GTMA. Starting from a good initial 
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solution obtained by this heuristic and then using the newly proposed stochastic 

method is rather effective in terms of process time and the method proposed can be 

used in all practical applications.  

The results obtained through simulation examples and experiments with real world 

data show the effectiveness of the allocation strategy. The modularity of the plane 

ordering logic provides great flexibility to work with any constraint-processing 

engine. Moreover, this new algorithm does not require any objective score 

calculation and does not have to know details on constraints or cost calculation.  

These facts are tried to be illustrated at the final section dedicated to the application 

study done on the biggest airport of Turkey. 
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5.  INTRODUCTION TO MULTI-OBJECTIVE EVOLUTIONARY 

ALGORITHMS 

5.1 Multi-Objective Problem (MOP) Definitions and Basic Concepts 

The multi-objective optimization problem (MOP) is defined by Osyczka (1985) as 

follows:  

a vector of decision variables which satisfies constraints and optimizes a 

vector function whose elements represent the objective functions. These 

functions form a mathematical description of performance criteria, which are 

usually in conflict with each other. Hence, the term “optimize” means finding 

such a solution which would give the values of all the objective functions 

acceptable to the decision maker. 

 

A general MOP is formally defined as minimizing (or maximizing) (5.1) 

1( ) ( ( ),....., ( ))
k

F x f x f x=                                              (5.1) 

subject to 

( ) 0, {1,..., }  and     ( ) 0, {1,...., }i jg x i m h x j p≤ = = =
 

where ( )
i

f x is the objective function, m is the number of inequality constraints and p 

is the number of equality constraints. An MOP solution minimizes (or maximizes) 

the components of a vector x = (x1,…, xn).               

Pareto Optimality: For a given MOP, pareto optimal set (P*) is defined as,      

* ' ': { |    s.t. ( ) ( )}P x x F x F x= ∈Ω ¬∃ ∈Ω p  

 

The solutions in the Pareto optimal set are defined as non-inferior, admissible or 

efficient solutions. Corresponding genotypes are the nondominated vectors. 

Pareto Front: For a given MOP and Pareto optimal set (P*), the pareto front (PF
*) is 

defined as, 
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* *: { ( ) | }PF u F x x P= = ∈  

 

Pareto Optimal Set is defined on genotype space whereas the Pareto front is the 

mapping on the phenotype space (Figure 5.1). 

 

Figure 5.1 : Mapping between genotype and phenotype space. 

Decision Making: Pareto optimal solutions are those which when evaluated, produce 

vectors whose performance in one dimension cannot be improved without adversely 

affecting another. The global minimum or the single solution for a multi-objective 

problem can be obtained by selecting the best compromise solution in the Pareto 

optimal set. Selecting this single solution is the process of decision-making.  

5.2 Classification of MOP Solution Techniques 

A commonly accepted classification is based on the interaction between optimization 

and decision tradeoffs: 

 A priori preference articulation (make decisions before search): this group of 

techniques includes those approaches that assume either a certain desired achievable 

goal or a certain pre-ordering of the objectives can be performed by the decision 

maker (DM) prior to the search. The most common methods reported in the literature 

are listed as follows: 

I. Global Criterion Method 

II. Goal Programming 

III. Goal Attainment Method 

IV. Lexicographic Method 

V. Min-Max Optimization 

Ω = {� ∈ ℝn}   Λ = �y ∈ ℝk � 
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VI. Multi-attribute Utility Theory 

VII. Surrogate Worth Trade-Off 

VIII. ELECTRE- I 

IX. ELECTRE-II 

X. PROMETHEE 

 A posteriori preference articulation (search before making decisions): These 

techniques do not require prior preference information from the DM. These 

techniques do not require prior preference information from the DM. Some of the 

techniques included in this category are among the oldest multi-objective 

optimization approaches proposed: 

I. Linear Combination of Weights,  

II. є-Constraint Method. 

 Progressive Preference Articulation (integrate search and decision making): 

These techniques operate in 3 steps (Cohon and Marks, 1975): 

STEP 1: find a nondominated solution, 

STEP 2: get the reaction of the DM regarding this nondominated solution, 

and modify the preferences of the objectives accordingly 

  STEP 3: repeat the two previous steps until the DM is satisfied or no further 

improvement is possible. 

General progressive preference articulation methods are, 

I. Probabilistic Trade-Off Development Method,  

II. STEP Method and  

III. Sequential Multi-objective Problem Solving Method. 

5.3 Basic Concepts on Multi-Objective Evolutionary Algorithms (MOEAs) 

In many occasions, the problem domain is either too complex to be mathematically 

formulate or finding pareto optimal set through classical methods can be 

tremendously difficult. These types of problems can be effectively handled utilizing 

evolutionary routines. The basic algorithm design concept is to use Pareto-based 
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fitness assignment to identify nondominated vectors from a MOEA’s current 

population. A generic MOEA steps can be summarized as follows (Coello Coello et 

al, 2007): 

STEP 0: Define the MOP:  

• determine the mathematical form of objective vector 

• determine chromosome representation 

• define constraints (dynamic, static, linear, nonlinear, etc.) 

• integrate the model into a specific MOEA algorithmic search process. 

STEP 1: The MOEA generates PFknown (hard part): 

Determine the nondominated sets, generation to generation, via populations. 

Converge “close” to the true computational Pareto front, PFtrue. 

STEP 2: The MOEA attempts to generate a uniform distribution across the known 

Pareto front, PFknown, at the end of each generation. 

STEP 3: Select several of the optimal points on the pareto front, PFknown, for decision 

maker (DM) consideration. 

STEP 4: Determine the associated pareto optimal set, Pknown; implement decision 

variable values (i.e., approximation of the Pareto optimal set) as selected by the DM. 

STEP 5: Visualize algorithm processing and results as appropriate for improving 

MOEA performance (i.e., efficiency and effectiveness).  

 

Through these steps, a MOEA serves for the following goals: 

I. to preserve nondominated points (elitism vs. non-elitism) with PFcurrent → 

PFknown 

II. to progress or guide PFknown towards PFtrue 

III. to generate and maintain diversity of points on the PF, (PFknown (phenotype) 

and/or Pareto optimal solutions Pknown) 

IV. Provide the decision maker (DM) with a limited number of PFknown points. 

5.4 Pareto Based MOEA Concepts 

A solution strategy for a multi-objective problem introduces three main issues (over 

its single objective counterpart). To extract a population of nondominated solutions, 
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dominance based ranking, diversity preservation and secondary population 

management concepts are vital.  

5.4.1 Dominance-based ranking or fitness assignment 

Dominance operator is binary and has two possible results: either one operand 

dominates or they do not dominate each other. Besides, dominance operator is 

transitive, that is, propositions “A dominates B” and “B dominates C” requires “A 

dominates C”.  

Regarding the selection and generation of the PF, an ordering method is needed 

based on dominance concept. There are three commonly accepted methods on 

dominance-based ranking:  

I. dominance rank: How many individuals is an individual dominated by (plus 

1)? (See Figure 5.2) 

II. dominance count: How many individuals does an individual dominate? 

(Figure 5.3) 

III. dominance depth: At which front is an individual located? Sort. 

Given a particular problem domain, selecting any of the dominance based ranking 

method, varies the performance (efficiency and effectiveness) considerably. 

 

Figure 5.2 : Dominance rank.  



114 

 

Figure 5.3 : Dominance count. 

5.4.2 Diversity preservation 

Another important issue in designing a MOEA is diversity preservation. Finding 

nondominated members is expensive in terms of calculation, so it is important to 

select appropriate members to the mating pool as much as possible. To achieve this, 

diversity in the population should be preserved and all the search space must be 

scanned with nearly equal probability. At the end of the day, the ultimate goal is to 

provide a diverse set of PFknown or Pknown points (having a uniform distribution across 

the known PF) to the DM. The diversity preservation methods can be investigated in 

five categories:  

1) Weight Vector Approach: A vector set in fitness/objective space is used to 

attempt to diversify points of the Pareto front surface. By changing the 

weights, different directions are defined, in order to bias the search, and to 

move solutions away from its neighbors. 

2) Fitness Sharing/Niching Approach: In most general case of fitness sharing all 

the members within a certain radius σshare is penalized. This radius is 

frequently called as niche radius. The definition of the niche radius is critical 

for algorithm success. 
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In order to apply a fitness sharing function, it is necessary to measure 

distances. Such distances can be measured in genotype or phenotype space. 

Illustrations for the fitness sharing approach is given in Figure 5.4 and 

Figure 5.5.  

Other most common fitness sharing approaches are as follows: 

� Kernel approach: The density estimator is based on the sum of 

distance (vector) measured either in genotypic or in phenotypic space. 

� Nearest neighbor approach: The density estimator is based on the 

volume of the hyper-rectangle defined by the nearest neighbors. 

� Histogram approach: The density estimator is based on the number of 

solutions that lie within the same hyper-box. 

 

Figure 5.4 : An illustration of fitness sharing. 
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Figure 5.5 : Another implementation of fitness sharing: Niching by gridding (The 
figure is taken from Coello coello et al. (2007)). 

3) Crowding/Clustering: The main idea is selecting the surviving solutions 

according to region crowdedness metric measured in objective function 

space. The approach is similar with fitness sharing but more efficient in terms 

of computation complexity. In clustering, many points can be induced to one 

representative point. Both approaches provide the elimination of excessive 

members before dominance degrees are calculated.    

4) Restricted Mating: In this case, diversity is preserved through the avoidance 

of certain recombinations. A parameter (σmate) is defined for the minimum 

distance that must separate two individuals so that they can mate.  

5) Relaxed Dominance: Key point in relaxed domination forms is to use a 

certain solution x even though it is worse than some solution y in regards to a 

particular objective (value comparison in objective function space). This 

relaxation may be compensated by an improvement in other objectives. As an 

example in Figure 5.6, if there are more than one nondominated point (since 

there are two dimensions, every point can be better in only one dimension in 

comparison to the other point) in the same grid, the one improving the most 

can be taken as nondominated pruning the others. So, in this minimization 
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problem point 3 is selected over 4 in the nondominated set. Note that 2 is 

dominated by 1 and 6 is dominated by 5 and they are out of the scope of 

relaxed dominance definition.  

 
Figure 5.6 : A relaxed dominance form. 

5.5 MOEA Population Structure 

In parameter space, two population structures exist:  

1) Pknown: obtained nondominated solutions, updated periodically. (also called 

archival, external, secondary population) . It can be perceived as the multi-

objective counterpart of the elitism concept. 

2) Pcurrent: main population evolving. Periodically some members or offspring 

can promote to the archival population. (Main evolution population is also 

called as primary or generational population) 

There are continuing discussions on the management of the secondary population. 

The main question is “Actively involve Pknown in evolution process or not?” The 

addressed issues are:  

I. Continuous addition and culling (choosing the addition and culling criteria) 

II. Update period selection 

III. Clustering or culling in case of size overflow 

IV. Homogenizing population distribution or remedy holes in the distribution 

�               2�               3�            4�             5�  

 5�   
 4�   
 3�   
 2�   

�   
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5.6 Baseline Algorithms 

There are many evolutionary multi-objective optimization algorithms reported in the 

literature. Some of the most used versions include: 

I. Multi-Objective Genetic Algorithm (MOGA) 

II. Multi-Objective Genetic Algorithm-II (MOGA-II) 

III. Nondominated Sorting Genetic Algorithm (NSGA) 

IV. Nondominated Sorting Genetic Algorithm-II (NSGA-II) 

V. Niched-Pareto Genetic Algorithm (NPGA)  

VI. Niched-Pareto Genetic Algorithm-II (NPGA-II)  

VII. Pareto Archived Evolution Strategy (PAES)  

VIII. Strength Pareto Evolutionary Algorithm (SPEA) 

IX. Strength Pareto Evolutionary Algorithm-II (SPEA-II) 

In this chapter, only NSGA-II, PAES and SPEA-II are briefly reviewed since they 

are used in the most common sense.  

5.6.1 Nondominated sorting genetic algorithm-II  

 There were three main disadvantages of MOEAs up to 2000s (Deb et al, 2000, 

2002): 

I. O(MN
3
) computational complexity (where M is the number of objectives and 

N is the population size) 

II. Non-elitism 

III. Need for specifying a sharing parameter.   

NSGA-II is proposed to overcome all these disadvantages (Deb et al, 2000). To 

improve worst case computational complexity, “Fast Non-Dominated Sorting 

Approach” is implemented:  

STEP 1: Calculate (for each individual) 

I. Number of solutions that dominate p 

II. Set Sp of solutions that the solution p dominates  

STEP 2: Take members having domination count 0 to the first front. Then visit its set 

and decrease the dominance count of the members by one. If any set becomes 0; they 
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constitute the second front. The process terminates once all fronts are identified. 

(dominance depth) 

For each solution in the second or higher level of nondomination, the domination 

count can be at most (N – 1). Thus, each solution p will be visited at most (N – 1) 

times before its domination count becomes zero. At this point, the solution is 

assigned a nondomination level and will never be visited again. Since there are at 

most (N – 1) such solutions, the total complexity is O(N
2
). Thus, the overall 

complexity of the procedure is O(MN
2
). 

The performance of the sharing function method in maintaining a spread of solutions 

depends largely on the chosen σshare value. Since each solution must be compared 

with all other solutions in the population, the overall complexity of the sharing 

function approach is O(N
2
). However, NSGA-II algorithm introduces fast crowding 

distance estimation procedure. This procedure can be summarized as follows:  

STEP 1: Sort population according to each objective. 

STEP 2: Boundary solutions are assigned an infinite distance value. 

STEP 3: For other solutions assign a distance value equal to the absolute normalized 

difference in the function values of two adjacent solutions. 

STEP 4: Perform this calculation for all objectives. 

STEP 5: The overall crowding-distance value is calculated as the sum of individual 

distance values corresponding to each objective (objectives are normalized) (Figure 

5.7). 

 

Figure 5.7 : Crowding distances. 
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Sorting algorithm governs the complexity of this procedure. Since M independent 

sortings of at most N solutions (when all population members are in one front) are 

involved, the above algorithm has O(MNlogN) computational complexity. 

I. In NSGA-II, a simple crowded comparison operator is used to ensure uniform 

spread over the pareto front by guiding selection process. Every member has 

two attributes: Nondomination rank (irank) 

II. Crowding distance (idistance , Average length of the sides of the cuboid along 

the objectives in Figure 5.7).  

Then the crowding comparison operator is i  ‹  j  if  irank  < jrank || (irank  = jrank && 

idistance  > jdistance), where  ‹  is the crowded-comparison operator.  

The pseudocode for NSGA-II algorithm is given in Table 5.1. 

Table 5.1 : Pseudocode for NSGA-II. 

 

 

 

 

 

 

 

 

5.6.2 Pareto archived evolution strategy 

PAES algorithm (Knowles and Corne, 2000) is the multi-objective version of the 

evolution strategies. It introduces a recursive crowding procedure named as adaptive 

gridding. Each solution is placed in a certain grid location based on the values of its 

objectives (which are used as its coordinates or geographical location). A map of 

such grid is maintained, indicating the number of solutions that reside in each grid 

Initialize Population P 
Evaluate Objective Values 
Assign Rank (level) Based on Pareto dominance - sort 
Generate Child Population of size N 

Binary Tournament Selection 
Recombination and Mutation 

for i = 1 to g do 
for each Parent and Child in Population do (combined population~elitism) 

Assign Rank (level) based on Pareto - sort 
Generate sets of nondominated vectors along PFknown  
Loop (inside) by adding solutions to next generation starting from the first 
front until N individuals found 
Determine crowding distance between points on each front 

Select points (elitist) on the lower front (with lower rank) and are outside a 
crowding distance 
Create next generation 

Binary Tournament Selection 
Recombination and Mutation 

 



location. Since the procedure is adaptive, no extra parameters are required (except 

for the number of divisions of the objective space). Furthermore, the procedure has a 

lower computational complexity than traditional niching methods (Figure 5.8).  

 

Figure 5.8 : Adaptive Gridding algorithm  (The figure is taken from Coello coello et 
al. (2007)). 

Pseudo code for single individual case is given in Table 5.2. A historical archive 

(~secondary population) is used as a reference set against which each mutated 

individual is being compared. The pseudo code for archiving test is given in  

 

Table 5.3. 

Table 5.2 : Pseudocode for (1+1) PAES 

 

 

 

 

repeat 
Initialize Single Population parent, C, and add to archive, A 
Mutate C to produce child M and evaluate fitness 
if C dominates M 

discard M 
else if M dominates C 

replace C with M, and add M to archive 
else if M is dominated by any member in the archive 

discard M 
else 

apply test (C, M, A) to determine which becomes the new current solution 
and whether to add M to A 
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Table 5.3 : Pseudocode for archiving test in PAES 

 

 

 

 

 

 

 

 

 

 

5.6.3 Strength pareto evolutionary algorithm-II  

The key idea of the strength pareto evolutionary algorithm is to assign degrees to 

dominating members in terms of strength measures. SPEA-II (Zitzler et al, 2001) 

takes forward to this approach and introduces a fine-grained fitness assignment 

strategy, a new density estimation technique and enhanced archive truncation 

method. The archive size is fixed, i.e., whenever the number of nondominated 

individuals is less than the predefined archive size, the archive is filled up by 

dominated individuals (with SPEA, the archive size may vary over time). In addition, 

the clustering technique, which is invoked when the nondominated front exceeds the 

archive limit, has been replaced by an alternative truncation method which has 

similar features but does not loose boundary points. Only members of the archive 

participate in the mating selection process.  

Individuals that are dominated by the same archive members have identical fitness 

values. When the archive contains only a single individual, all population members 

have the same rank independent of whether they dominate each other or not. 

If the archive is not full 
Add M to the archive 
if M is in a less crowded region of the archive than C  

Accept M as the new current solution 
else  

Maintain C as the current solution 
else 

if M is a less crowded region of the archive than X, for some member X in the 
archive 

Add M to the archive and remove a member of the archive from the most 
crowded region 

If M is in a less crowded region of the archive than C 
   Accept M as the new current solution 

else 
Maintain C as the current solution 

else 
if(M is in a less crowded region of the archive than C 

Accept M as the new current solution 
else 

Maintain C as the current solution 
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Therefore, the selection pressure is decreased substantially and in this particular case, 

SPEA behaves like a random search algorithm. In SPEA-II, members are penalized 

with respect to domination depth (Figure 5.9).  

 

Figure 5.9 : Strength assignments of SPEA and SPEA-II. 

Although the raw fitness assignment provides a sort of niching mechanism based on 

the concept of pareto dominance, it may fail when most individuals do not dominate 

each other. Therefore, additional density information is incorporated to discriminate 

between individuals having identical raw fitness values (5.2).  

�(�)  =  �(�)  +  �(�)                                              (5.2) 

where F(i) is the fitness for ith member; R(i) is the dominance based ranking value 

and finally D(i) is the density measure for the ith member.  

Although the clustering technique used in SPEA is able to reduce the nondominated 

set without destroying its characteristics, it may lose outer solutions. However, these 

solutions should be kept in the archive in order to obtain a good spread of 

nondominated solutions. Therefore, a simple archive truncation method is adopted 

(Figure 5.10). 



 

Figure 5.10 : Illustration of the archive truncation method used in SPEA2. On the  
right, a nondominated set is shown. On the left, it is depicted which solutions are 

removed in which order by the truncate operator. 

Pseudo code for SPEA-II algorithm is given in Table 5.4. 

Table 5.4 : Pseudocode for archiving test in SPEA-II 

 

 

 

 

 

5.7 MOEA Testing 

The main goal of testing is usually to compare MOEA effectiveness over various 

chosen MOPs by measuring solution quality. The test functions used and the metrics 

differ quite a lot in comparison with the single objective counterpart. Every 

algorithm can maintain a group of nondominated individuals at the end of the run. 

Sometimes the result from one algorithm fully dominates the other, which is the 

simplest condition. However, generally, some results from one algorithm dominate 

some from another algorithm, and vice versa. Another reason for the special 

consideration on the performance evaluation is that one is interested in not only the 

convergence to PFtrue but also the distribution of the individuals along PFtrue. 

Initialize Population P 
Create empty external set E 
for i=1 to g do 

Compute fitness of each individual in P and E 
Copy all individual evaluating to nondominated vectors P and E to E 
Use the truncation operator to remove elements from E when the capacity of the 
file has been extended 
If the capacity of E has not been exceeded then use dominated individuals in P to 

fill E 
Perform binary tournament selection with replacement to fill the mating pool 
Apply crossover and mutation to the mating pool 
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Adequately evaluating convergence and distribution is still an open problem in the 

field of MOEAs (Yu and Mitsuo, 2010).  

 
Using a test suite of any kind can be useful from a pedagogical perspective in 

comparing MOEAs, but in general, may be of little importance when solving real-

world problems. Supporting this judgment, the no free lunch theorem (NFL) states 

“if problem domain knowledge is not incorporated into the algorithm domain, no 

formal assurances of an algorithm’s general robust effectiveness exist.” Still, a 

commonly accepted method is to use test functions first, then performing problem 

specific modifications. These test functions must have the following properties 

(Husband et al, 2006): 

I. The Pareto solution set should not reside at the edge of the feasible domain. 

II. The Pareto solution set should not reside in the center of the domain. 

III. Benchmark MOPs should have a scalable number of variables so that the 

designer and the analyzer can generate arbitrary dimensional MOPs. 

IV. Benchmark MOPs should have a scalable number of objectives. 

V. The variables of benchmark MOPs should have definition domains of 

different magnitudes. This characteristic tests the ability to change mutation 

strengths with different variables or the normalization ability of the 

algorithm. 

VI. The magnitudes of different objectives in PFactual should be different. 

VII. The PFactual of the problem can be expressed in explicit expression.  

5.7.1 Basic test suites for multi-objective evolutionary algorithms 

Most commonly used test suites in the literature are given here for complete 

referencing.  

1. Van Veldhuizen summarized the multi-objective test problems before 1999 and 

selected seven of them as the benchmark (Van Veldhuizen, 1999). 

2. ZDT: In 1999, Deb suggested a way to construct multi-objective test problems 

systematically (Deb, 1999). In Deb’s method, there is a function h to control the 

shape of PFtrue, a function g to test the MOEAs’ ability to converge to PFtrue, and a 

function f1 to test the MOEAs’ ability to distribute the individuals along PFtrue. In 
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2000, Zitzler et al. used Deb’s method to generate six benchmark MOPs (Zitzler et 

al, 2000). 

3. DTLZ: In 2001, Deb et al. developed ZDT to nine scalable benchmark problems 

(Deb et al, 2001). 

4. OKA: In 2004, Okabe et al. suggested another way to generate benchmark MOPs 

with an arbitrary Pareto optimal set shape and PFtrue shape (Okabe et al, 2004). Apart 

from two examples to illustrate the effectiveness of the method, Okabe et al. also 

introduced a way to measure the convergence difficulty in OKA. 

5. WFG: In 2005 and 2006, Husband et al. suggested a new scalable benchmark 

MOP suite with nine problems that contain and consider the characteristics and 

features discussed above (Husband et al, 2005, 2006). 

6. In 2006, Iorio and Li pointed out that rotation might introduce difficulties for 

MOEAs and suggested four rotated benchmark MOP examples (Iorio and Li, 2006). 

7. In 2006, Deb et al. addressed the importance of parameter dependencies for 

designing MOP benchmark problems and developed their ZDT and DTLZ through 

variable linkage (Deb et al, 2006) 

8. In 2007 and 2009, the IEEE Congress on Evolutionary Computation held special 

sessions on multi-objective optimization and multi-objective optimization with 

constraints, respectively. The technical reports illustrate the corresponding 

benchmark problems (Huang et al, 2007, Zhang et al, 2008). 

9. In 2009, Li and Zhang provided a new way of generating MOP benchmark 

problems with arbitrary prescribed PFtrue shapes and gave nine examples (Li and 

Zhang, 2009). 

5.8 Metrics of Performance 

Comparing different optimization techniques experimentally always involves the 

notion of performance (Yu and Mitsuo, 2010). Performance is not only correlated 

with the convergence of the population; but also homogeneous distribution over the 

pareto front and the coverage:  

1) Convergence: The distance of the resulting nondominated set to the Pareto-

optimal front should be minimized. 
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2) Distribution: A good (~uniform) distribution of the solutions found is 

desirable (needs a distance metric). 

3) Coverage: extent of the obtained nondominated front should be maximized.  

The performance indices can be grouped in 7 main categories:  

I. Cardinality-based Performance Indices: If PFtrue is known, the performance 

of the algorithm can be found by comparing the members in PFknown 

II. Volume-based Performance Indices: The size of the space dominated by the 

final pareto set is used.  

III. Distance-based Performance Indices: If PFtrue is known, the distance of the 

members in the found pareto set to the members in PFtrue is used.  

IV. Attainment Surface-based Performance Indices 

V. Distribution Performance Indices: The homogeneity of the solution set is 

considered.  

VI. Spread Performance Indices: the spread (extent) of the pareto front is used.  

VII. Distribution and Spread Performance Indices: Both the spread and the 

distribution is considered.  

In this thesis, for evaluating the performance of the MOEAs in chapter 6, following 

performance metrics will be used.  

Two set coverage, CS(S1, S2) (Zitzler, 1999): is a binary metric that assigns 

dominance degrees to two sets of data. CS(S1, S2) is defined as the percent of the 

individuals in the second set, S2 who are weakly dominated by first set, S1, (5.3). 

That is, the larger CS(S1, S2) is, the better S1 outperforms S2.  

��(��, ��) = |!"#$%#&∃"($%( :"(≼"#||%#|                                            (5.3) 

 

Hyper-volume (HV) (Zitzler et al, 2003): is the size of the space dominated by a 

pareto front of solutions. In calculating HV, one needs to decide a reference point to 

compute dominated space size. This point is illustrated as RP point in Figure 5.11.   

 

Coverage Difference, D(S1, S2) (Zitzler, 1999): is a binary implementation for 

hypervolume metric that emphasizes on the dominating areas of both sets. In Figure 

5.11, areas corresponding to D(S1, S2) and D(S2,S1) are illustrated.  
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�(��, ��) = +,(�� + ��) − +,(��)                                 (5.4) 

�(��, ��) = +,(�� + ��) − +,(��)                                 (5.5) 

 
Figure 5.11 : 2D illustration of two fictitious pareto front representations to be 

compared. 

Hyper-volume Ratio, HR(S1, S2) (Van Veldhuizen, 1999): is another binary 

implementation for hypervolume metric that gives the proportion of domination area 

hypervolumes of the two pareto fronts, (5.6),  

+�(��, ��) = ./(%()./(%#)                                                   (5.6) 

 

Spacing (Spc) (Coello Coello, 2007; , Schott, 1995): is a measure of homogeneity 

of the pareto front. Spacing numerically describes the spread of the vectors in the non 

dominated set.  

�01 ≜ 3 �|%|4� ∑ 67̅ − 79:�|%|9;�                                             (5.7) 

where 79 = min>(?��9(@) − ��>(@)? + ?�A9(@) − �A>(@)?) , i, j = 1, …|S| , 7̅ is the mean 

of all 79 and �B9  stands for the objective value corresponding to the kth function for 

the ith individual in the archive. 
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Overall Non-dominated Vector Generation (ONVG) (Van Veldhuizen, 1999; 

Van Veldhuizen and Lamont, 1999): measures the total number of non-dominated 

vectors found during algorithm execution, (5.8), 

ONVG = |S|                                                         (5.8) 

 CD∗  Spread (CD∗) (Zitzler, 1999): is a unary spread metric that is used to evaluate the 

ability of the algorithm in extreme conditions. The algorithm sums up the squares of 

the largest distances in different objectives (Fig. 9),  

FA∗(�) = √(∑ max{‖K9 − L9‖ |M, N ��}O 9;� )                             (5.9) 

where || . || stands for a way of measuring distance. In this study, FA∗ Spread distances 

are evaluated in Euclidean norm.  
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6.  ENHANCED ORDER BASED SINGLE LEAP-BIG BANG BIG CRUNCH 

OPTIMIZATION APPROACH TO MULTI-OBJECTIVE AIRPORT GATE 

ASSIGNMENT PROBLEM 

6.1 Introduction 

Gate assignment problem (GAP) is well studied in the literature and consequently, 

there are many proposed problem formulations and solution techniques. Though the 

basic constraints and objectives are easily perceived, the problem has many 

interactions with other resources such as the number of gates, airport topology, flight 

schedules, distances to baggage claim areas, etc. Therefore, GAPs are even more 

complicated than most other traditional scheduling problems (Dorndorf et al, 2007). 

Moreover, as the air traffic becomes more demanding, the grandeur of the solution 

space gets even larger; in return, this makes traditional binary integer techniques 

practically inapplicable.  In those cases, nature inspired computing techniques 

became a good alternative for GAPs. 

A practical formulation for the GAP could have multiple objectives and a 

corresponding solution technique should handle possible large solution spaces. For 

instance, a central European airport hosts up to a thousand flights over approximately 

a hundred gates summing up to nearly  1000100 possible solution candidates.  There 

are many multi-objective formulations reported in literature (Teodorovic & 

Guberinic, 1984; Teodorovic & Stojkovic, 1990; Ding et al, 2004; Ding et al, 2004; 

Ding et al, 2005; Hu & Paulo, 2007; Chang, 1994; Dorndorf, 2002; Yan & Huo, 

2001; Zhu et al, 2003; Wei & Liu, 2007); however, most of the proposed 

formulations either fuse the preferences into a single objective function and omit 

compromise solutions or use classical integer programming techniques in relatively 

small problem instances. Drexl and Nikulin (2008) propose a multi-objective 

problem formulation with three objectives and use pareto simulated annealing 

method to obtain a pareto front of solutions. This is the first study using a multi-

objective evolutionary approach capable of handling a very large scale problem. The 

objectives are to minimize the number of ungated flights and the total passenger 
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walking distances as well as to maximize the total gate assignment preferences. In 

that study, a lexicographic approach has been used to minimize first the ungated 

flights with an optimal greedy method (Xu and Bailey, 2001). Next, the problem 

solving has been carried out over the remaining two objectives, starting from the 

assignment list obtained after the application of the greedy method. 

In this chapter, problem of maximizing gate duration in chapter 4 is expanded to 

include passenger walking distances and gate preferences. The solution technique 

using plane ordering method has been enhanced to generate compromise solutions of 

the pareto front. Besides, a real problem instance generation method is developed 

and used for the experiments. The algorithm is also verified on data collected from 

the Atatürk Airport of Đstanbul.  

The chapter is organized as follows: The GAP mathematical model is given in the 

next section.  The details of the new method are presented in section 3 which also 

includes a brief overview of the previously developed multi-objective gate 

assignment methods reported in the literature.   The simulation results based on 

artificial and real data set are then given in section 4. Finally, the concluding remarks 

and discussions are done in section 5. 

6.2 Problem Formulation 

The problem of airport gate assignment is formulated as a multi-objective 

optimization problem. The objectives introduced include the maximization of gating 

duration, minimizing the total walking distance and maximizing the gate preferences.  

The parameters are defined as follows:   

F : set of flights arriving at and/or departing from the airport 

G : set of available gates at the airport 

PQ : total number of flights, i.e. PQ  = |F| 
PS : total number of gates, i.e. PS = |T| 
PU: number of time slots in a day (depends on time slot length n) 

VW(9) : arrival time of flight i 

VX(9) : departure time of flight i 



133 

YB ,Z  : walking distance for passengers from gate k to gate l 

[9 ,> :number of passengers transferring from flight i to flight j 

0[9 : preference value for flight i 

0\9 ,B : normalized preference value of assigning flight i to gate k 

F]  : (PS@ PU ) matrix of assignments (gate assignments)  

 

where, F](�, ^) = _, (U=1,........,PQ), if the gate i is assigned at time slot j to the _U` 

flight,  F](�, ^) = 0, if otherwise. 

In addition, two dummy gates are introduced as in Drexl and Nikulin (2008). Gate PS+1 represents the apron and the gate PS+2 represents the entrance / exit of the 

airport. The variable @9 ,B = 1 denotes that flight i is assigned to gate k, such that 1 ≤ d ≤ PS + 1, and @9,B = 0 otherwise. Then, the objective functions can be 

defined (all in minimizing form) as follows: 

 

O1: Gate duration maximization (negative function is minimized)  min �� = − ∑ ∑ efg(F](d, h))ijZ;�ikB;� ,                                    (6.1) 

       efg(F](d, h) = 1 �[ F](d, h) ≠ 0) 

                    efg(F](d, h) = 0 �[ mNℎopY�Mo.  
 

O2: Walking distance minimization r�f�� = ∑ ∑ ∑ ∑ [9,>iks�Z;�iks�B;�it>;�it9;� YB,Z@9,B@>,Z + ∑ ∑ [iks�,9Yiks�,B@9,B +iks�B;�it9;�∑ ∑ [9,iks�YB,iks�@9,Biks�B;�it9;�                                               (6.2) 

 

O3: Preference maximization (negative function is minimized) min �A = − ∑ ∑ 0[9  0\9 ,B  @9 ,B iks�B;�it9;�                                    (6.3) 

 

Objective function given in (6.1) is to maximize gate duration, which is total 

occupation time of the gates allocated for all flights within a day. This objective 

function is already studied in Chapter 4. Gate duration maximization is first studied 

in Genç et al. (2011, 2012) and reported to be the most important criterion since it is 
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highly correlated with the revenue obtained. The second objective represents the total 

passenger walking distance minimization and it is another most commonly used 

objective function. The third objective represents the total flight to gate assignment 

preference. Preference is a general term mathematically covering airline dependent 

priorities.  

An operation day is quantized with n minute long time intervals in order to measure 

the occupation density of the gates (see Chapter 4).  

The formal definitions for the constraints introduced in Chapter 4 are given next: 

1) One gate can only accommodate a single aircraft at a time; and therefore, two 

flights must not be assigned to the same gate if their staying times overlap in time 

(Dorndorf et al, 2007). This can be expressed as (6.4) 

 @9 ,B @>,B 6VX(>) − VW(9):6VX(9) − VW(>): ≤ 0            1 ≤ �, ^ ≤ PQ, d ≠ PS + 1  (6.4) 

 

2) Every flight must be assigned to only one gate (or apron) (6.5) 

∑ @9,B = 1, 1 ≤ � ≤ PQiks�B;�                                        (6.5) 

 

The constraint given in (2.5) is not valid for assignment problems that allow the 

movement of planes between gates during their stay at the airport. This is not 

permitted in the formulation of this problem.  

6.3 Multi-Objective Gate Assignment Problem Solution Techniques 

Drexl and Nikulin (2008) used the well-studied three objectives; namely, minimizing 

the number of planes assigned to apron area, minimizing total walking distances and 

maximizing preferences formulated in their GAP. Passenger walking distance 

minimization and preference maximization are given in (6.2) and (6.3), respectively. 

The objective of minimizing the number of planes allocated to apron is formulated as 

in (6.6),  

min �� = ∑ @9,iSs�itB;� ,                                                      (6.6) 

An implementation of the Pareto Simulated Approach (PSA), which is the multi-

objective adaptation of the simulated annealing algorithm, is used to solve their 
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MOGAP in Drexl and Nikulin (2008). In that study, the designer has to define many 

parameters such as the search space, neighbor generation method, neighbor 

acceptance criterion, cooling function and the stopping temperature. The main 

distinction with the single objective case is the design of the acceptance rule. The 

idea in PSA acceptance probability is a local aggregation of all objectives with the 

weighted Tchebycheff function, (6.7) or weighted linear function with reference to 

the current solution (6.8) 

u�(@, @v, w, V9) = min {1, exp (− maxz;�,….| }~��~6��:4�~(�)��� )}         (6.7) 

u�(@, @v, w, V9) = min {1, exp (− ∑ }~��~6��:4�~(�)���OB;� )}                  (6.8) 

 

where δ is the number of objective functions and Ti is the temperature value 

associated with ith iteration. λ is the weighting coefficient that changes at each 

iteration in order to increase the probability of moving current solution away from its 

closest neighbor. 

In Drexl and Nikulin (2008) the objective of minimizing the number of planes 

allocated to apron lexicographically dominates the other objectives. Hence, that 

objective is firstly tried to be minimized then PSA is applied to the remaining two 

objectives. The initial gate assignment solution, which is the solution for minimum 

planes assigned to the apron as given in (6.6), is obtained using the optimal greedy 

allocation method (Ding et al, 2005). Then, Na distinct agents are generated by 

applying apron moves (Ding et al, 2005) to the greedy solution Na times to the initial 

population. In the following iterations, the algorithm searches for neighbors by using 

simple moves on the assignment list.  This neighboring search approach consists of 

three moves (Ding et al, 2005): 

The Insert Move: Move a single flight to a gate other than the one it has been 

currently assigned.  

The Interval Exchange Move: Exchange two flight intervals in the current 

assignment. A flight interval consists of one or more consecutive flights in one gate. 

The Apron Exchange Move: Exchange one flight which has been assigned to the 

apron with a flight that has been currently assigned to a gate.   
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The types of neighboring moves can be further studied from the single objective 

GAP application in (Ding et al, 2005; Xu and Bailey, 2001). The acceptance criterion 

is given in (6.9) 

 u(@, @v, w, V�) = min × {1, exp (−e × maxB;�,A }~�Q�~6��:4Q�~(�)��×�9 )}         (6.9) 

 

where [�B is the normalized function value and a = b = 1. The initial temperature is 

selected as in (6.10) 

 V� = 2 ∗ PQ                                                              (6.10) 

and the cooling schedule is expressed as in (6.11),  V9 = 0.9989 ∗ V�                                                     (6.11) 

where i stands for the iteration number. Algorithm continues until the temperature 

decreases below 10-4.  

To the best of our knowledge, this work is unique in comprising the following 

properties: 

I. There are multiple objectives. 

II. The algorithm is solved with multi-objective techniques to obtain a pareto 

front in objective space. 

III. Multi-objective optimization algorithm is a (evolutionary) nature inspired 

computation technique.  

However, there are some shortcomings in the solution approach given in Drexl and 
Nikulin (2008) such as  

 

o Acceptance criterion is formulated assuming all the objectives have to be 

minimized by taking the inverse or the negative of the third objective function 

(that is originally a maximizing one).  

o The exponential term approaches to zero since the starting temperature is in 

the orders of hundreds to thousands and constant b is equal to one. As final 

iterations are reached the candidate acquires a high probability of selection.    

o In under-constrained situations, where there is no need to assign any plane to 

the apron, the method is unable to generate a solution.  
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o The algorithm focuses on modifying the final assignment list by neighboring 

search moves. In practical situations, the running procedure can be 

cumbersome due to the constraints, which in turn, leads to very long 

computational run times. In most cases, this is neither favorable nor 

acceptable since frequently occurring flight delays pin down a quick 

reconfiguration of the gate assignment list.   

o Though the problem is formulated in three-dimensional objective space, 

highly dominant objective of minimizing the number of planes allocated to 

apron is optimized first, then the problem is solved for a two-dimensional 

pareto front. There is no concern or information on the objective score 

corresponding to the number of planes assigned to the apron for the pareto 

optimal members.  

6.3.1 Enhanced order based SL-BBBC algorithm (eSL-BBBC):  

In their recent work, Genç et al. (2011, 2012) defined an objective function to 

maximize gate time duration which is the total time of the gates allocated for all 

flights of a day. This objective function is given in (6.1). The proposed solution 

strategy, SL-BBBC algorithm is reviewed in Chapter 4.  

One of the main contributions of this paper is the Enhanced Order Based Single 

Leap-Big Bang Big Crunch algorithm (eSL- BBCC) algorithm for the solution of the 

MOGAP proposed in (6.1)-(6.3). The algorithm has its origins from the 

aforementioned single objective counterpart. It starts with generating handling order 

of planes by GTMA heuristic. However, in the assignment phase, objective 

preferences are considered; that is, the assignments are done according to 

minimization of walking distances or maximization of preferences. Gate duration 

maximization is inherently included by these two functions since all the gates equally 

contribute to the objective score. The non-dominated members obtained through the 

algorithm are stored in the archive population. The multi-objective version of the 

above algorithm can be briefly summarized as follows and it is illustrated in Figure 

6.6:  

STEP 1: Apply Ground Time Maximization Algorithm (GTMA) and find an 

assignment list. 

STEP 2: Store the objective function values in a vector form.   
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STEP 3: Log the order in which the planes are assigned. 

STEP 4: Apply Enhanced Order Based Single Leap-Big Bang Big Crunch Algorithm 

(eSL-BBBC) to change handling order, at the same time, find the pareto optimal 

solution candidates by using dominance evaluation. 

 

Figure 6.1 : Main loop of the MOGAP algorithm. 

6.3.1.1 Creating the initial population 

GTMA creates a single order for the plane handling process. Then, the initial 

population of solutions is generated from this order by swapping the plane positions 
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randomly. Hence, unlike the case in Genç et al. (2012), the algorithm can progress by 

relying on more than one solution candidate. However, the solution candidates do not 

interact with each other in the primary population.  

6.3.1.2 Neighbor generation  

The solution candidates (the individuals of the population) are considered to be plane 

orders. To generate neighbors, a modification is done on the plane orders by the 

utilization of SL-BBBC. The big bang phase of the SL-BBBC algorithm is 

implemented as in Genç et al. (2012). The effect of big bang resembles the N-swap 

mutation operator where the number of swappings, and the distance of the swapping 

members are controlled by the explosion strength of “big bang” phase (Figure 6.2). 

 

Figure 6.2 : Interchanging the order of N = 2 random flight pairs with random 
distances away from random centers in the list. The first bang centers the 4th flight 

and explosion strength is 3 units, whereas the second flight centers the 5th flight and 
explosion strength is 2 units.  

6.3.1.3 Assignment of planes 

The plane ordering process constitutes a basis for the allocation of the flights with 

long staying times in the first place. In the proposed algorithm, planes are assigned 

with respect to the order logged in the solution candidate as well as their specific 
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objective function preferences.  For instance, each plane is assigned to the nearest 

available gate for transferring and embarking / disembarking passengers for 

passenger walking minimization and the plane is assigned to the gate having the most 

preference value for the flight for preference maximization. Besides, each plane is 

assigned according to one objective function that is selected randomly between the 

two. Then, in most general sense, the algorithm creates (δ + β) offspring for any 

solution candidate, where δ is the number of objective functions and β is the number 

of objective function combinations. In this study δ and β are chosen to be equal to 2 

and 1, respectively. Details of the algorithm tailored for the MOGAP are given in 

Figure 6.3.   

6.3.1.4 Acceptance of the neighbors 

The (δ + β) offspring dominance status defines the acceptance probability of their 

parent order. Each new created child is compared with the previously generated child 

using the same objective function preference. They can be in one of the three states 

cited below with respect to other in terms of dominance relation (Figure 6.3): 

1. child generated at iteration k dominates the one created at iteration k+1: 

 Childk ≼ Childk+1,   

then gets the score of µj1 

2. child generated at iteration k is dominated by the one created at iteration k+1: 

Childk+1 ≼ Childk,  

then gets the score of µj2 

3. they are both non-dominated with respect to each other, that gets the score of 

µj3 

Here, µji is the normalized acceptance score assigned in conjunction with the child’s 

dominance relation. Note that j є Z, 1 ≤ j ≤ δ + β and µj2 ≥ µj3 ≥ µj1. Then the 

acceptance probability for an assignment order representation becomes, (6.12), 

u(@v) = ∑ ∑ g9| s �>;� �>9A9;�       (6.12) 
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Figure 6.3 : Algorithm progress: Each solution representation is decoded into three 
objective space vectors. Child1,k is created favoring minimum walking distance; 

Child2,k is created favoring flight to gate preferences. Child3,k is created by randomly 
favoring the two objective functions. Acceptance of the plane order in generation k+1 

depends on the dominance levels of (Child1,k+1 to Child1,k), (Child2,k+1 to Child2,k) 
and (Child3,k+1 to Child3,k). 

where yi is the binary decision variable set to 1 if ith dominance relation holds; 

otherwise, it is reset to 0.  

Since the dominance relations are mutually exclusive, the following relation should 

hold 

∑ g9 = 1A9;�       (6.13) 

In this formulation, there is no explicit term that gradually decreases the probability 

of acceptance as in (6.9). However, the probability of finding a dominating (or non-

dominated) individual decreases as the iterations elapse; therefore, the acceptance 

probability inherently decreases.  



6.3.1.5 Archive postprocessing 

All the visited members are candidate for archive collection. The algorithm run ends 

up with a bunch of members that are nondominated and these members represent the 

pareto front. These pareto front members may be not homogenously scattered and / 

or not adequately informative. Finally, during archive postprocessing, the possible 

gaps among pareto front members are tried to be filled by homogenously scattered 

new members and pareto front itself is tried to be shifted into a better position hence 

optimizing the total related cost values (Figure 6.4).  

 

Figure 6.4 : The effect of archive postprocessing: (a) Pareto front shift, (b) Repairing 
gaps, (c) Homogenezing the distribution. 

Archive postprocessing algorithm is given in Table 6.1. 

Table 6.1: Archive Postprocessing Algorithm. 

 

 

 

 

 

 

 

 

for i = 1 : Sarc do 

 Copy archive to archive mating list 

 while archive mating list is not empty  

Select two random individuals to mate 

Discard these individuals from the archive mating list 

  Apply PMX 

  Store the offspring in offspring population 

end 
Add offspring population to the archive  

Eliminate the dominated members in archive 

end 

a b 

c 
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6.3.1.6 Stopping criterion 

The stopping criterion of the algorithm can be chosen as the maximum number of 

iterations or function evaluations, a convergence measure for the population or any 

combination of the above-mentioned criteria. In this study, function evaluation 

number is used as the stopping criterion of the algorithm for fair comparison in 

experiments.  

The complete algorithm steps can be given as in Table 6.2. 

Table 6.2 : MOGAP solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Acceptance criterion for the neighbors is designed to be quite simple and self-

adjusting the selective pressure parameter. Initial population is generated 

independent of the planes assigned to apron or gate. The neighbors are generated 

using plane assignment orders, not the final assignment list. Finally, although it is 

also highly related to the remaining two objective functions, the first objective 

function is optimized within the problem.  Therefore, the problems existing in PSA 

based MOGAP solution reported in Drexl and Nikulin (2008) are eliminated or cured 

in the approach to the problem and in the algorithm presented in this chapter. 

Apply GTMA given in Algorithm 1  

Calculate the initial cost vector and then apply the following loops  

for i = 1 : number of iterations (Ni)  

for k = 1 : number of individuals in the population (Np) 

i. Apply a big bang step to get a new order of planes 

ii. Assign the planes for minimum walking distance and obtain child1,k 

iii. Assign the planes for maximum preference and obtain child2,k 

iv. Assign the planes for maximum preference or minimum walking 

distance that is selected randomly and obtain child3,k 

v. Calculate cost vector for all children and check whether they will be 

added to archive or not.  

vi. Calculate the acceptance probability u(@v) of the new solution using 

Eq. (3.7). 

vii. Accept the new plane order with probability equals to u(@v) 

end 

end 
Perform archive postprocessing given in Algorithm 2.  
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6.4 Simulation Results  

In order to make realistic and credible simulations on the newly developed algorithm, 

the problem instance must be designed veraciously.  For this purpose, a generator 

engine is designed to provide a quasi-realistic airport plane and pedestrian traffic 

data, which is the second main contribution of this Chapter. In the succeeding 

subchapter, this engine including airport flight generation (detailed in chapter 4), 

airport walking distance, passenger flow and preference assignments modules will be 

discussed in detail. Then, the MOGAP formulated in Eq. (2.1-2.3) will be solved for 

both the artificial data formed by the above problem instance generator, and real 

flight data obtained from Đstanbul Atatürk Airport.   

6.4.1 Problem instance generation 

Problem instance consists of a complete flight schedule with arrival and departure 

times of every single flight, airport walking distances, number of passenger transfers 

between the flights and the preferences of flight to gate assignments.  

6.4.1.1 Flight generation 

Flight generation is the same as given in Chapter 4.  

6.4.1.2 Airport topology and walking distances 

Airport topology and walking distance model is the generalized version of airport 

gate and walking distances model given in Drexl and Nikulin (2008). The layout of a 

representative airport consists of two parallel terminals and symmetrically located Ng 

gates. Since there are have two parallel terminals, each terminal has (Ng / 2) gates 

(Figure 6.5a). If the number of gates is odd, remaining gate is located in between 

gates (Ng – 1) / 2 and (Ng – 1) and between the two terminals (Figure 6.5b).  There 

are two more dummy gates: one to represent all the parking places of the apron, gate 

Ng+1, and one to represent airport entrance / exit (assumed to be the same place), 

gate Ng + 2.  



145 

 

Figure 6.5 : The layout of a representative airport. 

Distance between gates is measured according to the Manhattan metric, and then 

passengers are allowed to move only horizontally and vertically. The distance matrix 

W for Ng gates is defined as (6.14), 

 

w�,� = �                                     0                                                 if i = j                         g���� ∗ |i − j|                                   if condition I appliesg���� ∗ �max(i, j) −  � − min (i. j)� + t����         if condition II applies¡    (6.14) 

 

I:  ¢i < PS2 + 1¤ ∧ ¢j ≤ PS2 ¤ ∨ ¢i > PS2 ¤ ∧ ¢j ≥ PS2 + 1¤ 

II: ¢i < PS2 + 1¤ ∧ ¢j ≥ PS2 + 1¤ ∨ ¢i > Nª2 ¤ ∧ (j ≤ PS2 ) 

 

where N«9"U  is the distance between two terminals, \«9"U is the distance between two 

neighboring gates belonging to the same terminal. Additionally, the walking 
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distances between the gates and the airport entrance / exit are assumed to be 

symmetric as given in (6.15) 

                         Yiks�,9=Y9,iks� = � + u¬/¬         � = 1, … … … . , ik�            (6.15) 

where u¬/¬  is the extra walking distance added for entrance / exit gate. The walking 

distances between the apron and the airport gates are as follows:  

                         Yiks�,9 = Y9,iks� = � + u®        � = 1, … … … . , ik�             (6.16)

  

That is, an assignment to the apron is penalized with an extra penalty, u®. Moreover, 

if passengers are walking from a plane assigned to the apron to another one that is 

also in the apron, then a walking distance, u®,®, is added which is missing in Drexl 

and Nikulin (2008).  

6.4.1.3 Passenger flow model 

Passenger flow model given in Drexl and Nikulin (2008) has many deficiencies that 

can be summarized as follows: 

o A plane can host up to half a thousand passengers in the model and the 

number of passengers rises as the number of planes or time horizon increases. 

In general, airplanes carry between 100 to 300 passengers and a maximum of 

about 800 (Url-3).  

o The number of boarding passengers is not equal to the number of passengers 

deplaning. 

o All the planes are assumed to have the same passenger capacity; there are not 

any fluctuations in passenger numbers due to physical conditions.  

o All the planes have similar gating durations. No turnaround time impact is 

allowed.  

o Deplaning passengers can be transferred to any flight departing after a while 

from their arrival to the airport. However, in practice, the passengers may 

transfer to only a small portion of the available flights.  

o In real life, transfer passengers are mostly booked to the soonest departing 

flight and the probability of transfer decreases as time elapses. Even if there 

is a connected flight long after arriving at the airport, this should not increase 

walking distance penalty. This is not the case in the reported model.  
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In this chapter, a high fidelity passenger flow model is proposed. Details of the 

model parameters and remedy options for the previously reported literature are given 

in subsequent sections.    

Number of Passengers: Scheduled plane gate duration depends on the turnaround 

time of the planes. A major component of turnaround time is the passenger boarding 

time (Horstmeier and Haan, (2001) provide detailed analyses of all the components 

in an aircraft turn-around time) and boarding time is directly related to the number of 

passengers. Then, in a realistic model, as the number of passengers increase, gating 

durations get longer. The flow model proposed in this work has passenger counts 

distributed uniformly in the interval [c – γ, c + γ], where c is the mean passenger 

count for the scheduled flight and γ is a normalized constant introducing randomness. 

Mean passenger count for flight i is obtained by multiplying scheduled staying time 

with the average passenger count for an hour of turnaround, (6.17), 

19 = (VX(9) − VW(9)) (60 f⁄ ) ∗ ±⁄                                         (6.17) 

 where ci is the mean passenger count of flight i, and τ is the average passenger count 

for a plane. ± is typically in between 150 and 250 (Bazargan, 2004; Url-3) 

Consistency of the passenger flow model: After the arrival of an airplane at an 

airport, all the passengers are either transferred to another plane or disembarked 

through the exit gate. Similarly, before departure, all the passengers are either 

transferred from another flight or embarked. Hence, the number of boarding 

passengers must be equal to the number of passengers deplaning. 

Transferring passenger behaviors: Airliners utilize hub and spoke systems to 

provide connections between city pairs in their network. Then, the probability of 

connections increases; however, the passengers are not transferred to all the flights 

homogenously but to only a small subset (percent of transferred flights, Ftp) of them.  

The number of passengers disembarking after deplaning is generally more than 

transferring passengers to a specific flight. Percent of transferring passengers (Ptp) is 

defined typically in between 30% - 80%. These passengers are transferred to flights 

and remaining passengers are assumed to be disembarked.  

Departure of the plane j must be at least Bmin time slots later than arrival of the plane 

i in order to be able to transfer passengers from flight i to flight j, (6.18) 

VX(^) ≥ VW(�) + ²³9´                                                  (6.18) 
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As the time interval between flights increases, the probability of transfers decreases 

proportionally with (VX(^) − VW(�)). Moreover, if the following condition holds 

VX(^) ≥ VW(�) + ²³®�                                                   (6.19) 

where Bmax >> Bmin, then the walking distance penalty will no longer be important as 

the time interval between two flights is too long that passengers will probably walk 

not only between the gates but also inside or outside the airport. 

6.4.1.4 Preference model 

Flight to gate assignment preferences depends on many physical, economical and 

even political constraints. Instead of separately modeling all, the preference of a 

specific flight and assigning a flight to a specific gate is considered.  

Flights with more passengers and high security flights have higher preference values. 

Since both of these categories need more turnaround times (Horstmeier and Haan, 

2001), preference value of each flight can be modeled directly related to the gate 

duration (Note that, in Drexl and Nikulin (2008), flight preferences are generated 

randomly). The vector of preferences V = <vi> is generated from normal distribution 

having mean µp and standard deviation σp.  µp is calculated by normalizing each 

scheduled gate duration with the maximum gate duration of the day. The preference 

value µ9,B of assigning flight i to gate k is randomly generated within the interval 

(0,1). Then, the overall preference of assigning flight i to gate k becomes vi * uik.  

6.4.2 Experiments on artificial data 

Multi-objective gate assignment algorithms are compared by using artificial data of 

the test data generator given in the preceding chapter. In the experiments, Moderate 

dataset and high gate demand distributed uniformly data sets that are introduced in 

Chapter 4 have been used with slight modifications and additions. The parameters 

used to generate these sets of data are given in Table 6.3. In generating a dataset, a 

reasonable set of values have been chosen; there is no effort in finding the algorithm 

performances in the whole range of parameters. This task is left as a future work.    
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Table 6.3 : Parameters of the artificial data sets. 

Parameter 
Moderate 
Demand 

High 
Demand  

Parameter 
Moderate 
Demand 

High 
Demand  PS 15 20 \«9"U 1 1 f 1 1 u¬/¬  2 2 PU 265 265 u® 5 2 7 0.7 0.94 u®,®  5 5 0� 0.1 0.0 ± 150 200 0� 0.1 0.0 �U¶ 0.25 0.2 �QS 30 50 uU¶ 0.6 0.75 ·QS 20 40 ²³9´ 20 30 N«9"U 2 2 ²³®� 100 120 

 

Every experiment is carried independently for 30 times to produce reliable statistics 

since the running algorithms have stochastic nature. 30 runs are assumed to be 

enough to obtain credible results in the literature (Huang et al, 2007; Zhang et al, 

2009; Deb et al, 2002). For a fair comparison, remaining test parameters are selected 

similarly as given in Drexl and Nikulin (2008): 

� Both algorithms are allowed to perform same number of function evaluations. 

Number of function evaluations (Nfe) is selected to be 7248 where the 

temperature decreases below 10-4. 

� Time horizon for the flight data is 4 hours and 30 minutes and the length of 

one time slot, n, is equal to be 1 minute.  

� Only the second and third objective functions are considered. In both works, 

the first objective function is strongly correlated with the other two. Hence it 

is rational to compare pareto fronts in 2-dimension. Nevertheless, the results 

of the first objective functions will also be reported.  

� PSA based MOGAP have identical parameter settings as suggested in the 

original study. 

No single metric can entirely capture total algorithm performance (Coello Coello et 

al, 2007). Performance metrics can be classified in two groups as convergence 

metrics and distribution (and spread) metrics (Yu and Gen, 2010). In this study, four 

convergence metrics and three distribution metrics are used. Algorithm performances 

with respect to the selected metrics are reported in Table 6.4 and Table 6.5 for the 

moderate and high demand data sets, respectively. In the tables, seven different 
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datasets representing the days of the week are used and daily average values for the 

performance metrics are given. The last column of the specific algorithm reports the 

average of the weekly scores.   

The performance metrics are summarized in Chapter 5.8. 

Table 6.4 : Performance metrics for moderate demand data set (For binary metrics 
CS, D and HR, S1 is the pareto optimal set of the related algorithm). 

 

Table 6.5 : Performance metrics for high demand data set (For binary metrics CS, D 
and HR, S1 is the pareto optimal set of the related algorithm). 

 

The pareto front members of both algorithms are normalized with the initial cost 

score obtained after the GTMA heuristics; and then, the performance metrics are 

calculated. All the metrics are designed to favor bigger values. Hence, the newly 

Performanc
e Measure 

PSA based MOGAP eSL-BBBC based MOGAP 

Day 

1 

Day 

2 

Day 

3 

Day 

4 

Day 

5 

Day 

6 

Day 

7 Av 

Day 

1 

Day 

2 

Day 

3 

Day 

4 

Day 

5 

Day 

6 

Day 

7 Av 

CS(S1, S2) 2,90 4,57 2,10 3,97 5,30 0,87 2,47 3,17 12,60 8,83 11,83 11,33 10,27 9,13 13,37 11,05 

D(S1, S2) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,01 0,02 0,01 0,02 0,01 0,02 0,01 

HV 0,05 0,05 0,07 0,07 0,09 0,04 0,07 0,06 0,10 0,09 0,10 0,11 0,13 0,09 0,09 0,10 

HR(S1, S2) 0,02 0,02 0,02 0,02 0,01 0,01 0,02 0,02 61,21 61,59 58,12 65,52 60,39 68,53 51,79 61,02 

Spc 0,03 0,03 0,06 0,05 0,06 0,02 0,04 0,04 0,05 0,05 0,06 0,06 0,05 0,06 0,08 0,06 

ONVG 
14,0

7 11,43 13,20 12,40 12,53 9,93 14,40 12,57 20,33 15,83 18,27 18,30 24,90 15,20 13,23 18,01 FA∗  0,60 0,58 0,72 0,71 0,74 0,46 0,69 0,64 1,05 1,02 1,07 1,15 1,17 1,00 0,99 1,07 

Performanc
e Measure 

PSA based MOGAP eSL-BBBC based MOGAP 

Day 

1 

Day 

2 

Day 

3 

Day 

4 

Day 

5 

Day 

6 

Day 

7 Av 

Day 

1 

Day 

2 

Day 

3 

Day 

4 

Day 

5 

Day 

6 

Day 

7 Av 

CS(S1, S2) 2,70 3,07 1,77 3,53 4,57 3,27 1,93 2,98 10,00 10,20 9,77 11,33 12,03 9,17 10,33 10,40 

D(S1, S2) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,03 0,02 0,02 0,03 0,02 0,02 0,02 

HV 0,06 0,08 0,05 0,06 0,10 0,06 0,06 0,07 0,11 0,17 0,11 0,12 0,14 0,11 0,11 0,12 

HR(S1, S2) 0,02 0,01 0,01 0,01 0,02 0,02 0,02 0,02 59,93 78,36 74,33 63,12 49,65 58,39 67,30 64,44 

Spc 0,02 0,04 0,02 0,03 0,05 0,04 0,03 0,03 0,06 0,05 0,06 0,06 0,05 0,07 0,07 0,06 

ONVG 11,7

3 11,90 10,10 12,47 13,73 11,40 11,97 11,90 17,50 26,07 23,30 19,70 21,67 16,10 17,57 20,27 FA∗  0,54 0,63 0,48 0,61 0,79 0,57 0,56 0,60 1,08 1,29 1,12 1,14 1,15 1,05 1,08 1,13 
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proposed method clearly outperforms the PSA based MOGAP approach reported in 

Drexl and Nikulin (2008). Although it is not included in the tables, the first objective 

function is ameliorated at around ten percent in the proposed method; whereas, the 

objective score for minimizing the number of planes assigned to apron get worse in 

PSA based MOGAP.  

6.4.3 Experiments on actual field data 

In this part, the experiments are performed on a daily flight schedule data obtained 

from the operator of the Đstanbul Atatürk Airport. There are 359 flights to be 

assigned to the gates and this corresponds to a demanded time slots / available time 

slot ratio of 0.71. The performance results for the actual field data are reported in 

Table 6.6 for the same testing parameters and performance metrics reported in 

Chapter 6.4.2.  

Table 6.6 : Performance metric for actual field data. (For binary metrics CS, D and 
HR, S1 is the pareto optimal set of the related algorithm). 

Performance 
Measure 

PSA based 

MOGAP 

eSL-BBBC based 

MOGAP 

CS(S1, S2) 0,00000 12,66667 

D(S1, S2) 0,00014 0,08091 

HV 0,10161 0,17213 

HR(S1, S2) 0,01969 53,42133 

Spc 0,04553 0,04091 

ONVG 12,66667 34,13333 FA∗  0,63584 1,12716 

 
Figure 6.6 provides an illustration of an experiment on actual field data. In Figure 

6.6, the pareto fronts of 30 independent algorithm runs for both algorithms are given 

on the same graph.  
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Figure 6.6 : The complete picture for the 30 independent pareto front 
representations: points with red dots designate the results of PSA method and blue 

and green crosses show the results of eSL-BBBC method before and after the archive 
post processing phase, respectively.  

6.5 Conclusions  

In this chapter, a multi-objective gate assignment problem with the objectives of 

maximizing gate allocation, minimizing passenger walking distances and 

maximizing flight to gate preferences is defined and solved.  

As the major contributions, a multi-objective nature inspired solution technique; 

namely, enhanced order based Single Leap-Big Bang Big Crunch (eSL-BBBC) 

optimization algorithm that possesses the main properties stated below is proposed: 

• The result of the algorithm is a set of non-dominated members; this is to say, 

there are no a priori articulation of the preferences and the algorithm yields a 

representative set of compromise solutions.  

• The optimization method used here is a global evolutionary algorithm.  

• The proposed methodology and the generated algorithm have the capacity of 

handling large data sets, which occur more frequently in real life applications.  
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• The proposed algorithm uses a plane ordering logic to handle flights and 

introduces a preference based assignment strategy to assign the flight to a 

specific gate.  

The other main contribution of the study is the implementation of a test data 

generator for the airport gate assignment problem. The test data generator has the 

modules for flight data generation, walking distance generation, passenger transfer 

model generation and flight to gate preference generation.  

In order to verify the performance of the algorithm, a set of different metrics has 

been defined. The two methods are then tested on the sets of artificially generated 

data as well as actual field data obtained from the Đstanbul Atatürk Airport based on 

these metrics. As it is detailed in the final section, the results obtained through 

simulations clearly show the effectiveness and the superiority of the newly proposed 

enhanced order based Single Leap-Big Bang Big Crunch (eSL-BB BC) optimization 

allocation strategy when compared to the PSA based method. 
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7.  CONCLUSIONS AND RECOMMENDATIONS  

In this thesis work, a comprehensive study on the extensions and enhancements of 

the Big Bang-Big Crunch algorithm is given. Then, an increasingly important topic 

on operations research society, airport gate assignment problem is studied both as a 

single objective and as a multi-objective problem and it has been tried to be solved 

using BB-BC based algorithms.  

Big Bang-Big Crunch with Local Directional Moves (BBBC-LS) algorithm 

generates a direction vector from the past positions of the best individuals found so 

far and investigates on this line with extraction or contraction moves. In addition, 

well-practiced Nelder-Mead method is presented as a crunching function option. The 

switching of the crunching function is controlled by a newly introduced switching 

parameter. The switching threshold parameter is assigned at the beginning of the 

algorithm and it is kept constant throughout the search. However, it is a promising 

idea to adapt this parameter in a dynamical manner. One decent idea is to use a 

feedback controller observing the population diversity and history of the population 

diversity.  

BBBC-LS algorithm is shown to be accurate, effective and fast in the experiments 

done. Moreover, it is easy to tune the existing parameters within the algorithm.  

The second main contribution of this thesis is the new approach proposed for gate 

assignment operations in the airports. To the best of my knowledge, this thesis work 

is the first attempt to propose the following: 

I. The binary problem formulation of maximizing total time slots, 

II. Plane order based solution approach for single objective gate assignment 

problem (SOGAP) : Single Leap -Big Bang Big Crunch (SL-BBBC) 

Optimization Algorithm, 

III. Plane order based solution approach for multi-objective gate assignment 

problem (MOGAP) : Enhanced Order Based Single Leap-Big Bang Big 

Crunch (eSL-BBBC) Optimization Algorithm, 
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IV. Test data generator engine to provide a quasi-realistic airport plane and 

pedestrian traffic data. 

Airport gate assignment problem is one of the most important issues in operation 

research as well as in airline industry. Consequently, there is a good opportunity of 

practically applying academic findings. Using the results of this thesis work, 

specifically the SL-BBBC algorithm, a resource management system has been 

constructed in the Atatürk Airport of Đstanbul. Performance results collected on the 

field (Atatürk Airport, Đstanbul) are highly correlated with the results on artificially 

generated test data. 

The eSL-BBBC method developed in this work is illustrated to produce a good 

representation of the pareto optimal set. The next goal is to implement the multi-

objective version of the algorithm in the resource management system and visually 

assisting the operator in his/her decisions. 
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