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NUMERICAL SIMULATIONS OF WAVES
GENERATED BY

MOVING PRESSURE FIELDS

SUMMARY

The objective of this study is to simulate the generation and propagation of waves
due to a moving pressure field by employing Boussinesq equations with improved
dispersion characteristics. In Boussinesq models, the horizontal velocities are allowed
to vary parabolically over the water depth while the vertical velocity increases linearly
from zero at the bottom. Boussinesq equations are normally valid from intermediate
to shallow waters before the waves break. However, in engineering applications,
the equations are often used beyond the breaking point, up to wave run-up in the
swash zone. The original equations were derived for constant depth only. Later,
they are derived for variable depth. The standard Boussinesq equations are valid only
for relatively small kh and H/h values where kh and H/h represents the parameters
indicating the relative depth (dispersion) and the wave steepness (nonlinearity),
respectively. To extend the validity range of the equations, researchers have suggested
various ways to improve the linear dispersion characteristics in relatively deeper water
as well as including higher order wave nonlinearity.

The Boussinesq equations are also extended to describe wave generation and
propagation by moving surface disturbance. The surface disturbance may come from
a free surface, bottom, or a moving object in between. The first scenario is associated
with either the large-scale wave generation by wind or the local-scale ship wave
generation by a moving hull. In this case, the equations need to be revised to include
the surface pressure gradient. There has been several studies to represent moving
surface disturbance by using different numerical methods. The second scenario
corresponds to tsunami generation by underwater landslides or earthquakes.

In this study, the improved Boussinesq equations with appropriate surface pressure
gradient terms in the momentum equations are used so that better dispersion
characteristics could be achieved for relatively shorter waves generated on the surface.
Then, the equations are manipulated in the discretization procedure such that the
numerical scheme could be run either in the long wave mode or the Boussinesq
mode. By specifying a single parameter the proposed discretization enables the user
to run the program either in the long wave mode without dispersion terms or in the
Boussinesq mode. Furthermore, the Boussinesq mode may be run either in the classical
Boussinesq mode or in the improved Boussinesq mode by setting the dispersion
parameter appropriately. In any one of these modes it is possible to specify a fixed
or a moving surface pressure for simulating a moving object on the surface. Thus,
the new discretization procedure makes it possible to use a single computer code for
solving three different set of equations in turn. Such a versatility allows performance
comparisons of all these different sets of wave equations.

The discretization of 1-D Boussinesq model has been tested and numerically simulated
solitary waves are compared with their analytical counterparts. Moreover, the

xvii



numerically 2-D but actually 3-D model is tested for the performance of the
non-reflective boundaries. These boundaries are checked by a ring test which reveals
the symmetrical accuracy of the model. For all the modes (long wave, classical
Boussinesq and improved Boussinesq) of the numerical scheme the ring tests are
performed. The other tests compare the numerical solutions of moving surface
pressures with the analytical solutions of the long wave equations for all possible
modes (long wave, classical, and improved Boussinesq). For a Gaussian shaped
moving pressure field, the analytical solution obtained from the linearized 1-D long
wave equations is used for comparisons with the numerical solutions obtained from
three different modes of the scheme. All these test cases provide support about the
reliability of the numerical program and they are important for the verification of the
numerical scheme. The surface pressure field is not specified in the usually employed
simple cosine form but in a much more shiplike form, which is constructed newly in
this work. Besides a hemisperical moving object, slender body type moving pressure
has been used for simulating the waves generated. For the verification, the wedge
angles are compared with theoretical results of Havelock.

Furthermore, more than a single pressure field is specified in sample simulations to
investigate the combined wave patterns in catamaran-like surface vessels. In the future,
studies of wave patterns related to catamaran-like surface vessels can be done and more
realistic ship-like objects can be used to investigate the wave generation.
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HAREKET EDEN BASINÇ ALANLARININ
YARATTIG̃I DALGALARIN
SAYISAL MODELLENMESİ

ÖZET

Su dalgalarının teorik ve fiziksel modellenmesi, üzerinde onaltıncı yüzyıldan bu yana
çalışılan bir konudur. Genel olarak rüzgar etkisi ile oluşan açık deniz ve kıyı bölgesi
dalgalarının yanı sıra su içindeki bir cismin (gemi v.b.) hareketinden ötürü oluşan
dalgaların incelenmesi de önem taşımaktadır. Gemi hareketlerinden kaynaklanan
dalgaların modellenmesi özellikle son yılların güncel konularındandır. Su yüzeyinde
hareket eden bir cismin (gemi v.b.) farklı hızlarda oluşturdug̃u lineer olmayan
dalgaların, dispersiyon karakteristikleri yönünden gelişmiş Boussinesq denklemleri
ile simülasyonu bu çalışmanın temel konusudur. En önemli avantajı derinlik integre
edilmiş bir dalga modeli olması olan Boussinesq denklemleri, üç boyutlu bir problemi
iki boyutlu bir probleme indirgemektedir.

Boyuttaki bu azalma ve bilgisayar teknolojisinin ilerlemesine paralel olarak,
Boussinesq denklemleri farklı tipte dip batimetrileri ve kıyı şekilleri ile geniş
yüzeyleri kaplayan bölgeler için yaygın olarak kullanılabilmektedir. Boussinesq
modellerinde, yatay hızlar su derinlig̃ine göre parabolik olarak deg̃işirken, dikey hızlar
sıfır tabanından itibaren lineer olarak artar. Boussinesq denklemleri genellikle orta
derinlikten sıg̃ sulara kadar olan bölgede, dalgaların kırılmasından öncesine kadar
geçerlidir. Fakat, mühendislik uygulamalarında, bu denklemler genellikle kırılma
noktasının ötesinde, dalganın yükselerek çarpma bölgesinden dalgaların tırmanmasına
kadar olan yerde kullanılabilmektedir.

Orijinal Boussinesq denklemleri, sadece sabit su derinlig̃i için türetilmiştir. Daha
sonra, deg̃işken su derinlikleri için de türetilmişlerdir. Standart Boussinesq
denklemleri, görece küçük kh ve H/h deg̃erleri için geçerli olup, kh ve H/h
sırasıyla bag̃ıl derinlig̃i (dispersiyon) ve dalga diklig̃ini (nonlineerite) ifade eder. Bu
denklemlerin geçerli oldug̃u aralıg̃ı artırmak için, araştırmacılar görece derin sularda
lineer dispersiyon karakteristig̃ini iyileştirmenin yanısıra, yüksek mertebeden dalga
diklig̃ini göz önüne almak için bir çok çalışma yapmışlardır.

Tüm bunların yanı sıra, Boussinesq denklemleri, deniz dibindeki hareketlere bag̃lı
dalga oluşumu ve su yüzeyinde ilerleyen cisimlerin yarattıg̃ı dalgaları ifade etmek
için de kullanılabilir. Hareketli bir basınç alanının teorik formülasyonunu incelemek,
yüzen bir cismi istenilen formda elde edebilmek açısından oldukça önemlidir. Yüzey
deformasyonu, serbest yüzeyden, tabandan ya da bu ikisinin arasında hareket eden
bir cisimden ileri gelebilir. İlk durum, rüzgar kaynaklı yüksek ölçekli bir dalga
oluşumuyla ilgili olabileceg̃i gibi hareket halindeki bir tekne gövdesinin oluşturacag̃ı
yerel ölçekli bir gemi dalgasıyla da ilgili olabilir. Bu durumda, denklemler bir
basınç gradyanı içerecek şekilde yeniden düzenlenmelidir. Dolayısıyla, deg̃işik sayısal
yöntemleri kullanarak, hareket eden bu basınç alanını ifade eden bir çok çalışma
yapılmıştır. İkinci durum ise, yani yüzey kökenli olmayan basınç alanları su altındaki
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yer kaymaları ya da depremler nedeniyle meydana gelen tsunami oluşumunu ifade
eder.

Bu çalışmada, uygun basınç gradyanı terimlerinin momentum denklemlerine
eklenmesiyle geliştirilmiş Boussinesq denklemleri kullanılmıştır. Bu sayede, yüzeyde
oluşan görece kısa dalgalar için daha iyi dispersiyon karakteristig̃i elde edilebilir.
Sayısal programın uzun dalga modunda veya Boussineq modunda çalışabilmesi
için, söz konusu denklemlerin ayrıklaştırılması buna uygun şekilde yapılmıştır.
Uygulanan ayrıklaştırma, kullanıcının programı bir parametre tanımlayarak, hem
dispersiyon terimleri olmadan uzun dalga modunda, hem de Boussinesq modunda
çalıştırabilmesine olanak verir. Ayrıca, dispersiyon parametresinin uygun seçimiyle,
Boussinesq modu kendi içinde, klasik Boussinesq modu veya geliştirilmiş Boussinesq
modu olarak seçilebilir. Söz konusu tüm bu modlarda, yüzeyde hareket eden
cisim, sabit ya da hareket eden yüzey basıncı olarak tanımlanabilmektedir. Böylece,
yeni ayrıklaştırma yaklaşımıyla, tek bir bilgisayar kodu ile üç ayrı dalga denklemi
çözülebilmektedir. Bu çok yönlülük, söz konusu dalga denklemlerinin performans
karşılaştırmasına da olanak vermektedir.

Çalışmada öncelikle, bir boyutlu Boussinesq denkleminin ayrıklaştırılması ve
programı test edilmiştir. Bir boyutlu Boussinesq modelinin ayrıklaştırılması Green’in
teorik formülasyonu ile test edilmiştir. Lineerize edilmiş klasik ve geliştirilmiş
Boussinesq denklemlerinin testi için sinüzoidal ve parabolik tipteki batimetriler
kullanılmıştır. Yapılan karşılaştırmalarda, dalga genliklerinin Green’in teorik
formülüyle uyum içersinde oldug̃u gözlemlenmiştir.

Bu testin yanı sıra, sayısal olarak modellenen solitary dalgaları analitik ifadeleri ile
karşılaştırılmışlardır. Bunun sebebi, solitary dalgalarının Boussinesq denklemlerinin
en temel analitik çözümü olmasıdır. Sayısal olarak modellenen solitary dalgalar,
klasik ve geliştirilmiş Boussinesq modunda çalıştırılmış olup, farklı nonlineerite
parametreleri baz alınarak incelenmiştir. Klasik Boussinesq modunda çalıştırılmış
olan programdan elde edilen deg̃erlerin bag̃ıl hata yüzdeleri hesaplanarak programın
güvenilirlig̃i test edilmiştir.

Ayrıca, sayısal olarak iki boyutlu fakat gerçekte üç boyutlu olan model, açık
(yansıtmayan) sınır koşullarının performansı açısından test edilmiştir. Bu sınırlar,
modelin simetri özelliklerini ortaya çıkaran bir halka testine tabi tutulmuştur. Sayısal
model, bütün modlarda (uzun dalga, klasik Boussinesq ve geliştirilmiş Boussinesq)
çalıştırılmış olup, sadece geliştirilmiş Boussinesq modeline ait test sonuçlarına yer
verilmiştir. Kontur grafikleri mükemmele yakın bir simetri göstererek açık sınır
koşullarının iyi sonuçlar verdig̃ini ispatlamıştır.

Bahsedilmiş olan bu testler dışındaki dig̃er bir test ise, yine bütün modlar için (uzun
dalga, klasik ve geliştirilmiş Boussinesq), hareket eden ve sabit duran basıncın,
sayısal ve analitik çözümlerinin birbiriyle karşılaştırılmasıdır. Öncelikle, uzun
dalga denklemleri için, Gauss tipinde basınç dag̃ılımının analitik çözümleri, sabit
ve hareketli durumlar için ele alınmıştır. Daha sonra, aynı Gauss tipi basınç
dag̃ılımı Boussinesq modelinin çözebileceg̃i tüm modlar (uzun dalga, klasik ve
gelişmiş Boussinesq) için sayısal çözümlemelerde kullanılarak analitik sonuçlarla
karşılaştırılmıştır. Bag̃ıl hata yüzdesi hesaplanarak, tüm bu modlarda çalıştırılan
sayısal programın, belirlenen yüzey basıncı için dog̃ru bir şekilde çalışıp çalışmadıg̃ı
analitik çözümler ile karşılaştırma yapılarak kontrol edilmiştir. Yapılan tüm bu testler,
programın güvenilirlig̃ini desteklemektedir.

xx



Bir sonraki aşamada, farklı formda yüzey basınç alanları ile istenilen cismin/cisimlerin
etkilerinin yaratılıp tanımlandıg̃ı ve buna bag̃lı olarak yapılan simülasyonlar ile farklı
durumlar incelenip birbiriyle karşılaştırılmıştır. Bu simülasyonlar, hareket halindeki
bir gemi formunun yarattıg̃ı dalgalar ile bunların etkilerini anlayabilmek açısından
oldukça önemlidir. Bunu gerçekleştirebilmek için, yüzey basınç terimleri, bir ve iki
boyutlu (gerçekte iki ve üç boyutlu) olan Boussinesq sayısal modellerinin bir parçası
haline getirilip uygulanmıştır. Bu çalışmada, yüzey basınç alanı literatürde genellikle
kullanılan kosinüs formunda tanımlanmamıştır. Bunun yerine, daha yeni olarak, gemi
benzeri bir form oluşturulmuştur. Yarımküre şeklindeki ilerleyen basınç dışında, narin
gövde tipinde bir basınç alanı da, oluşan dalgaları modellemek için kullanılmıştır.

İlerleyen her iki basınç alanının oluşturdug̃u dalga şekillerinin, farklı derinlik Froude
sayıları için deg̃işik zaman aralıklarında simülasyonları yapılmıştır. Havelock’un
analitik sonuçları hesaplanan giriş açılarıyla karşılaştırılmıştır. Bu karşılaştırmalar,
özellikle bag̃ıl derinlig̃in küçük oldug̃u, kritik üstü Froude bölgesi için çok iyi
sonuçlar vermektedir. Ortalama hata yüzdelerinde ortaya çıkan fark, büyük ihtimalle
Boussinesq denklemlerinin su derinlig̃ine bag̃lı kısıtlayıcılıg̃ından ileri gelmektedir.
Kritik altı bölge, görece daha derin suları temsil etmekte ve Froude sayısının sıfıra
eşit oldug̃u durum ise, tamamen derin suya karşılık gelmektedir. Sayısal modelin,
kritik altı bölgede görece daha kötü sonuç vermesi, oluşan dalgaların derin su
özelliklerine bag̃lanabilir. Yapılmış olan bu simülasyonların hepsi, geliştirilmiş
Boussinesq modunda elde edilen deg̃erler kullanılarak yapılmıştır.

Nonlineeritenin etkisini gözlemleyebilmek için, narin gövde tipinde basıncın genlig̃i
önceki simülasyonlarda kullanılan deg̃erin iki katına çıkartılmıştır. Sonuç olarak,
nonlineeritenin giriş açıları üzerinde bir etkisi olmadıg̃ı fakat dalga şeklinin dikey
simetrisini etkiliyor oldug̃u gözlemlenmiştir. Öte yandan, dalga şeklinin temel
karakteristig̃inin aynı kaldıg̃ı görülmüştür.

Klasik Boussinesq denklemlerinin uygulama alanlarından farklı olarak bu araştırma
konusu, kıyı ve liman bölgelerindeki dalga hareketlerinin incelenmesinin dışında,
yüzer bir cisim veya cisimler etkisi altında oluşacak dalga hareketlerini de
inceleyebilmeyi mümkün kılmaktadır.

Örnek simülasyonlar olarak, birden fazla basınç alanı tanımlanarak, katamaran
benzeri teknelerin oluşturacag̃ı dalga şekilleri incelenmiştir. İleride yapılacak olan
çalışmalarda, katamaran benzeri teknelerin oluşturacag̃ı dalga şekilleri daha ayrıntılı
bir şekilde incelenebileceg̃i ve bunun yanı sıra, daha gerçekçi gemi benzeri cisimler
kullanılarak, oluşacak olan dalgaların modellenebileceg̃i düşünülmektedir. Katamaran
ya da gemi benzeri bir cismin yaratacag̃ı dalgaların incelenmesi özellikle hızın yüksek
oldug̃u durumlarda önem kazanmaktadır. Yüksek hızlı teknelerin günümüzdeki
popüleritesiyle birlikte, bu tip teknelerin yaratacag̃ı büyük genlikli dalgalar, kıyılarda,
deniz dibinde ve biyolojik çevrede erozyona neden olmaktadır. Öte yandan, bu
dalgalar, insanların can güvenlig̃i ve kıyıda bag̃lı bulunmakta olan teknelerin güvenlig̃i
bakımından da önemli bir etkiye sahiptir. Bu durum göz önüne alındıg̃ında, ileriki
çalışmalarda, özellikle yüksek hızdaki teknelerin oluşturdug̃u dalgaların incelenmesi
önem taşımaktadır.

xxi



xxii



1. INTRODUCTION

Waves are a common phenomenon in nature. By general definition, a wave is

a movement with a certain periodic back-and-forth (longitudinal) or up-and-down

(transverse) motion. A wave can also be defined as a disturbance that spreads in matter

or space, obeying a certain "wave equation". The theoretical and numerical modelling

of water waves has been extensively studied since the 16th century. In order to describe

different wave phenomena, various water wave theories have been developed and

these wave theories help us to understand the physical mechanisms of water waves

and provide the basis for various water wave models. Coastal, marine and offshore

engineers, naval architects, physical oceanographers and marine hydrodynamics have

all been interested in water wave problems. Due to the increasing demand of sea

transport and offshore oil exploration in the past few decades, research in water waves

has been very active.

Ocean surface waves, or simply water waves, are mainly generated by wind. However,

besides wind generated offshore and near shore waves, waves generated by moving

bodies are also studied. General mathematical description of water wave phenomenon

is given as Laplace’s equation in 2-D or 3-D region (whichever is appropriate), bottom

boundary condition, kinematic and dynamic boundary conditions on the free surface.

Due to the nature of the free surface boundary conditions the problem is nonlinear.

However, in most cases the problem is linearized by neglecting the nonlinear terms of

the kinematic and dynamic boundary conditions. The linearized set of equations can be

solved analytically to obtain a dispersion relationship, horizontal and vertical particle

velocities, and the pressure field due to waves. This complete solution of the linearized

problem is known under various names, such as Airy wave theory, the infinitesimal

amplitude wave theory, the sinusoidal wave theory, or simply the linear wave theory.

If the nonlinear terms in the free surface boundary conditions are retained the solution

of the complete problem must necessarily be numerical. Further, the numerical

solution must also be iterative as the unknown free surface elevation appears both in
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the kinematic and dynamic boundary conditions. Hence the general wave problem is

a solution of the Laplace equation within a domain with a continuously deforming

free surface, which itself is to be determined in time. For the numerical solution

of this time-dependent complicated problem various numerical techniques such as

finite-differences, finite-elements, boundary elements, etc. are in use. A somewhat

different way of attacking the problem is to develop a vertically integrated set of

equations from the general equations describing the problem. To achieve this goal,

a definite assumption regarding the vertical variation of the kinematic variables (i.e.,

velocities) must be made. Following an appropriate assumption the vertical or depth

integration may be performed, resulting in reduction of the dimension of the problem.

The long wave equations or the shallow water wave theory, in which the horizontal

velocities are taken constant over the entire water depth, is probably the most

frequently used depth-integrated wave model. In terms of dispersion characteristics

a better depth-integrated model is known as Boussinesq model.

In Boussinesq models [6], the horizontal velocities are allowed to vary parabolically

over the water depth while the vertical velocity increases linearly from zero at the

bottom. Boussinesq equations are normally valid from intermediate to shallow waters

before the waves break. However, in engineering applications, the equations are often

used beyond the breaking point, up to wave run-up in the swash zone. The original

Boussinesq equations were derived for constant depth only. Later, Mei and LeMeháute

[7], Peregrine [8] derived Boussinesq equations for variable depth. While Mei and

LeMeháute used the velocity at the bottom as the dependent variable, Peregrine used

the depth-averaged velocity and assumed the vertical velocity varying linearly over the

depth. Due to wide popularity of the equations derived by Peregrine, these equations

are often referred to as the standard Boussinesq equations for variable depth in the

coastal engineering community.

The standard Boussinesq equations are valid only for relatively small kh and H/h

values where kh and H/h represents the parameters indicating the relative depth

(dispersion) and the wave steepness (nonlinearity), respectively. To extend the validity

range of the equations, researchers have suggested various ways to improve the linear

dispersion characteristics in relatively deeper water as well as including higher order

wave nonlinearity. Witting [9] presented the first work on improving the dispersion
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characteristics of these equations. These equations make use of full free surface

boundary conditions hence are fully nonlinear, but are valid only for constant water

depth. Madsen et. al [10] and Madsen and Sørensen [11] included higher order terms

with adjustable coefficients into the standard Boussinesq equations for constant and

variable water depth, respectively. Beji and Nadaoka [12] presented an alternative

derivation of Madsen et. al’s [11] improved Boussinesq equations.

By defining the dependent variable as the velocity at an arbitrary depth, Nwogu [13]

introduced a new set of so-called extended Boussinesq equations, which are essentially

akin to Witting’s equations. To further extend the validity range of the Boussinesq

equations to higher nonlinearity Kirby et. al. [14] proposed a higher order accurate

Boussinesq model based on Nwogu’s equations. Chen and Liu [15], [16] derived

fully nonlinear and weakly dispersive Boussinesq equations using velocity potential

and free surface elevation. Madsen et. al. [10] have proposed a series of new highly

nonlinear Boussinesq models, in which either the mean velocity or the velocity at

an arbitrary depth level was used to minimize the depth-integrated error of the linear

velocity profile.

The Boussinesq equations are also employed to model wave generation and

propagation by moving surface disturbances. The surface disturbance may come from

a moving free surface object, bottom movement, or a moving object in between. Liu

and Wu [17] presented a model with specific applications to ship waves generated

by a moving pressure distribution in a rectangular and trapezoidal channel by using

boundary integral method. Torsvik [18] made a numerical investigation on waves

generated by a pressure disturbance moving at constant speed in a channel with a

variable cross-channel depth profile by using Lynett et. al [19] and Liu and Wu [17]’s

COULWAVE long wave model. Naschimento [20] et al. adapted Wei and Kirby’s [21]

FUNWAVE in order to include a specified moving pressure at the free surface. All

these works use the same type of cosine function to represent the moving surface

object.

The present work introduces three novel approaches in modelling the nonlinear

waves due to moving surface pressure fields by Boussinesq equations. First, the

improved Boussinesq equations of Beji and Nadaoka [12] with appropriate surface

pressure gradient terms in the momentum equations are used so that better dispersion
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characteristics could be achieved for relatively shorter waves generated on the surface.

Secondly, the equations are manipulated in the discretization procedure such that the

numerical scheme could be run either in the long wave mode or the Boussinesq mode.

The Boussinesq mode could further be specified as the classical Boussinesq mode

or the improved Boussinesq mode. Thus, the new discretization procedure makes it

possible to use a single computer code for solving three different sets of equations in

turn. Such a versatility allows performance comparisons of all these equations. Finally,

the surface pressure field is not specified in the usually employed simple cosine form

but in a much more shiplike form, which is constructed newly in this work. Also,

more than a single pressure field is specified in sample simulations to investigate the

combined wave patterns in catamaran-like surface vessels.

4



2. GENERAL MATHEMATICAL DESCRIPTION OF WATER WAVE
PROBLEM

Wave theories are approximations to reality therefore they may describe only some

phenomena under certain conditions that satisfy the assumptions made in their

derivation. The same theory may not be adequate to describe other phenomena that

violate those assumptions. One should be very careful while selecting the appropriate

theory. It must be ensured that the wave phenomenon of interest is described well

enough by the selected theory because the designs depend on the ability to predict

wave surface profiles and water motion accurately.

The most elementary wave theory is the small-amplitude or linear wave theory. This

theory, which usually is attributed to Airy [22], is easy to apply, and gives reasonable

approximation of wave characteristics for a wide range of wave parameters. In 1847,

the linear theory of Airy was extended by Stokes for non-linear deep water wave

motion, correct up to third order in the wave steepness [23].

A more complete theoretical description of waves may be obtained as the sum of many

successive approximations, where each additional term in the series is a correction to

preceding terms. For some situations, waves are better described by these higher-order

theories, which are usually referred to as finite-amplitude wave theories [2], [24].

Although there are limitations to its applicability, linear theory can still be useful if

the assumptions made are valid. The assumptions made in linear wave theory are [1];

• The fluid is homogeneous and incompressible; therefore, the density is a constant.

• Surface tension can be neglected.

• The fluid is ideal or inviscid.

• Coriolis effect due to the earth’s rotation can be neglected.

• Pressure at the free surface is uniform and constant.
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• The particular wave being considered does not interact with any other water

motions. The flow is irrotational so that water particles do not rotate (only normal

forces are important and shearing forces are negligible).

• The bed is a horizontal, fixed, impermeable boundary, which implies that the

velocity normal to the bed is zero.

• The wave amplitude is small and the waveform is invariant in time and space.

• Waves are plane or long-crested (two-dimensional).

The derivation of the theory, given the assumptions of small wave slope (H/L ≪ 1) or

a depth much greater than the wave height (h/H << 1), assumes for the fluid surface

elevation η ,

η(x, t) = (H/2)cos(kx−ωt) (2.1)

where H is the wave height, k the wave number, and ω the cyclic wave frequency.

This theory is most often applied to ocean bodies and large lakes. An expression

for the wave length has also been developed, although it must be solved iteratively.

Simpler expressions are available for the limiting cases of deep and shallow water.

The particles move generally in closed elliptical orbits that decrease in diameter with

depth, reducing to limiting cases of circles and straight lines, respectively, in deep and

shallow water.

Like finite-amplitude waves, linear waves are described by two dimensionless

parameters, the wave steepness H/L and the relative water depth h/L. The relative

depth determines whether waves are dispersive or nondispersive and whether the

celerity, length, and height are influenced by water depth. Wave steepness is a tool

to understand how large a wave is relative to its length and whether the linear wave

theory assumption is applicable or not. For large values of the wave steepness one

must question the assumption of small-amplitude theory.

Another dimensionless parameter is the ratio of wave steepness to relative water depth,

which yields the definition "relative wave height", H/h for shallow water waves. Like

the wave steepness, the large values of relative wave height indicates the question of
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whether small-amplitude assumption is valid or not. Besides these parameters another

parameter called Ursell number is used for shallow water waves to select a wave theory

for a wave with given L and H (or T and H) in a given water depth h. The Ursell

number is given as

UR =

(
L
H

)2 H
h
=

L2H
h3 (2.2)

High values of UR indicates the necessity for using a nonlinear wave theory. Although

the linear or small-amplitude wave theory provides a useful tool to understand wave

motion, ocean waves are generally not small in amplitude. For a complete solution of

ocean waves, a perturbation solution using successive approximations are developed

to improve the linear theory solution of the hydrodynamic equations for gravity waves.

Each order wave theory in the perturbation expansion serves as a correction and

the net result is often a better agreement between theoretical and observed waves.

These higher-order or extended solutions for gravity waves are often called nonlinear

wave theories. Development of the nonlinear wave theories has evolved for a better

description of surface gravity waves. These include Stokes theories, solitary and

cnoidal waves [1].

After Stokes’s pioneering studies, [23], [25] , other studies such as De [26],

Bretschneider [27], Skjelbreia and Hendrickson [28], Laitone [29], [30], [31],

Chappelear [32] and Fenton [33] have assumed the wave slope ka is small where a

is wave amplitude. The perturbation solution is developed as a power series in terms

of ε = ka and expected to converge as more terms are included in the expansion.

However, convergence does not occur for steep waves unless a different perturbation

parameter from that of Stokes is chosen as shown in the studies of Schwartz [34],

Cokolet [35] and Williams [36], [37].

The most common theory is fifth-order Stokes finite-amplitude wave theory which is

used in deep and shallow water wave studies [1]. Fenton [33] has formulated Stokes

fifth-order theory with good convergence properties. In general, the perturbation

expansion for velocity potential ϕ may be written as

ϕ = εϕ1 + ε2ϕ2 + ... (2.3)
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where ε = ka, the perturbation parameter. Each term in the series is smaller than the

leading term by a factor of order ka. In this expansion, ϕ1 yields the first-order theory

(linear theory) and ϕ2 is the second-theory order. Substituting Equation 2.3 and similar

expressions for the surface elevation η , velocities u and v into the suitable governing

equations and boundary conditions, yields a series of higher-order solutions for ocean

waves. Equating the coefficients of equal powers of ka gives recurrence relations for

each order solution [2], [24] and [38]. The first-order Stokes theory is the linear (Airy)

theory [1].

In Stokes theory, the linear dispersion relation is still valid to second order, and both

wavelength and celerity are independent of wave height to this order. At third and

higher orders, wave celerity and wavelength depend on wave height, and therefore,

for a given wave period, celerity and length are greater for higher waves. In addition,

some limitations are imposed on the finite-amplitude Stokes theory in shallow water

by means of the water depth and amplitude nonlinearities. The Stokes perturbation

becomes invalid for steeper waves in shallow water because higher-order terms in

Stokes expansion may increase in magnitude to become comparable or larger than the

fundamental frequency component [33], [39]. Extension of the Stokes theory to higher

orders has become common with computers. For example, Dean [40] substituted the

stream function instead of velocity potential and developed the stream function theory.

Dean [41] compared measured horizontal particle velocity in a wave tank with the

tenth-order stream function theory and several other theories.

Stream function theory including currents has been developed using different

numerical techniques by Dalrymple [42], Chaplin [43], Reinecker and Fenton [44].

For near-breaking waves, Cokelet [35] extended the method used by Schwartz [34]

for steep waves for the full range of water depth and wave heights. Cokelet used a

110th-order theory for waves up to breaking and computed the wave profile, wave

celerity, and various integral properties of waves, including the mean momentum,

momentum flux, kinetic and potential energy, and radiation stress.

Since Stokes’ finite amplitude wave theory is applicable for the cases where h/L > 1/8

or kh > 0.78 or UR < 79, Peregrine [45] used a different method for longer waves.

Portions of the wave travel faster as they reach into shallow water because of amplitude

dispersion or waves travel faster because they are in deeper water. It can be said that in
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shallow water, waves also feel the effects of frequency dispersion less. Mathematical

representation for waves in shallow water needs a different perturbation parameter

which expresses the combined influence of amplitude and frequency dispersion which

are studied by Whitham [46], Miles [47], and Mei [24]. In Peregrine’s study [48]

he constructed two perturbation parameters whose ratio is equivalent to the Ursell

parameters. The set of equations obtained in this manner are called the "nonlinear

shallow-water wave equations".

2.1 Linear Wave Theory

A progressive wave is expressed by the variables x (spatial) and t (temporal) or by

their combination (phase), defined as θ = kx−ωt. Values of θ vary between 0 and

2π . Figure 2.1 shows parameters that define a simple, progressive wave as it passes a

fixed point in the ocean. A simple, periodic wave of permanent form propagating over

a horizontal bottom is characterized by the wave height H, wavelength L and water

depth h. As shown in Figure 2.1, the highest point of the wave is the crest and the

Figure 2.1: Schematic view of a simple progressive wave moving in the +x direction,
adapted from Coastal Engineering Manual [1].

lowest point is the trough. For linear or small-amplitude waves, the height of the crest

above the still-water level (SWL) and the distance of the trough below the SWL are

each equal to the wave amplitude a. Therefore a = H/2, where H is the wave height.

The time interval between the passage of two successive wave crests or troughs at a
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given point is the wave period T . The wavelength L is the horizontal distance between

two identical points on two successive wave crests or two successive wave troughs.

ω = 2π/T is the angular or radian frequency, the wave number is k = 2π/L, the phase

velocity or wave celerity is c= L/T =ω/k, the wave steepness is ε =H/L, the relative

depth is h/L and the relative wave height is H/h.

The most fundamental description of a simple sinusoidal oscillatory wave is its length

L, height H, period T and depth h (the distance from the bed to SWL). Figure 2.1 shows

a two-dimensional, simple progressive wave propagating in the positive x direction.

The symbol η denotes the displacement of the water surface relative to the SWL and

is a function of x and time t. At the wave crest, η is equal to the amplitude of the

wave a, or one-half the wave height H/2. Wave motion can be defined in terms of

dimensionless parameters H/L, H/h and h/L. The dimensionless parameters ka and kh

can be substituted for H/L and h/L, respectively, since these differ only by a constant

factor π and 2π respectively from those preferred by engineers [1].

The assumption of irrotationality allows the use of a mathematical function termed the

velocity potential Φ. The velocity potential is a scalar function whose gradient (i.e.,

the rate of change of Φ relative to the x-and z-coordinates in two dimensions where x

= horizontal, z = vertical) at any point in fluid is the velocity vector. Thus, the fluid

velocity in the x-direction is

u =
∂Φ
∂x

(2.4)

Similarly, the fluid velocity in the z-direction is

w =
∂Φ
∂ z

(2.5)

Φ has the units of length squared divided by time. Consequently, if Φ(x,z, t) is known

over the flow field, then fluid particle velocity components u and w can be determined.

Likewise, the irrotationality implies that there is another mathematical function termed

the stream function Ψ. Some wave theories are formulated in terms of the stream

function Ψ, which is orthogonal to the potential function Φ. Lines of constant values

of the potential function (equipotential lines) and lines of constant values of the stream
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function are mutually perpendicular or orthogonal. Consequently, if Ψ is known, Φ

can be found, or vice versa, using the equations

∂Φ
∂x

=
∂Ψ
∂ z

(2.6)

∂Φ
∂ z

=−∂Ψ
∂x

(2.7)

called as Cauchy-Riemann conditions [46]. Both Φ and Ψ satisfy the Laplace equation

which governs the flow of an ideal fluid (inviscid and incompressible fluid). Thus,

under these assumptions, the Laplace equation governs the flow beneath waves.

The Laplace equation in two dimensions with x being the horizontal and z the vertical

axes in terms of velocity potential Φ is given by

∂ 2Φ
∂x2 +

∂ 2Φ
∂ z2 = 0 (2.8)

In terms of stream function Ψ the Laplace equation becomes,

∂ 2Ψ
∂x2 +

∂ 2Ψ
∂ z2 = 0 (2.9)

Since the distance traveled by a wave during one wave period is equal to one

wavelength, wave celerity can be related to the wave period and length by

c =
L
T

(2.10)

The dispersion relationship uses wave celerity, wavelength and water depth and is

given by

c =

√
gL
2π

tanh
(

2πh
L

)
(2.11)

Dispersion relationship indicates that waves with different periods travels at different

speeds. For the case where there is more than one wave, the longer period wave will
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travel faster. Hence the waves get separated or "disperse", using the expression c =

L/T the same relationship can also be written as

c =
gT
2π

tanh
(

2πh
L

)
(2.12)

Substituting wave number and wave angular frequency, an expression for wavelength

as a function of water depth and wave period is obtained which is

L =
gT 2

2π
tanh

(
2πh

L

)
=

gT
ω

tanh(kh) (2.13)

In Equation (2.13) the wavelength L appears on both sides of the equation. Considering

this difficulty, tabulated values of h/L and h/L0 are used where L0 is the deep water

wavelength. An approximation to the expression (2.13) is given by Eckart [49] which

is correct within about 10 %:

L ≈ gT 2

2π

√
tanh

(
4π2h
T 2g

)
(2.14)

Gravity waves may also be classified by the water depth in which they travel. Note

that as the argument kh = 2πh/L of the hyperbolic tangent gets large, the tanh(kh)

approaches 1, and for small values of kh, tanh(kh) ≈ kh. According to the relative

depth h/L, waves are classified as deep water waves when tanh(kh) approaches unity

Table 2.1: Classifications of water waves according to the relative depth h/L.

Classification h/L kh tanh(kh)
Deep water 1/2 to ∞ π to ∞ 1
Transitional 1/20 to 1/2 π/10 to π tanh(kh)
Shallow water 0 to 1/20 0 to π/10 kh

thus equations (2.10) and (2.11) become

c0 =

√
gL0

2π
=

L0

T
(2.15)
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Similarly Equation (2.12) becomes

c0 =
gT
2π

(2.16)

When the relative depth h/L is greater than 1/2, the wave characteristics are almost

independent of depth. Deep water conditions can be expressed by the subscript 0

as in L0 and co except that the period T remains constant. Note that period, T is

independent of depth for oscillatory waves, and therefore, the subscript for wave period

is omitted [50]. In the SI system, the constant g/2π is equal to 1.56 m/s2 and therefore,

c0 =
gT
2π

=
9.8
2π

T = 1.56T (2.17)

L0 =
gT 2

2π
=

9.8
2π

T 2 = 1.56T 2 (2.18)

Using equations (2.17) and (2.18) for computing wave celerity when the relative depth

is h/L = 0.25, the resulting error will be about 9 percent. It is shown that a relative

depth (when the relative depth is between 0.5 and 0.04) of 0.5 is the limit of boundary

separating deep water waves from waves in water of transitional depth. It has to be

noted that if a wave is traveling in transitional depths, Equations (2.11) and (2.12)

must be used without simplification. When the relative water depth becomes shallow,

i.e., 2πh/L < 1/4 or h/L < 1/25, Equation (2.11) becomes

c =
√

gh (2.19)

The waves where Equation (2.19) may be applied are called long waves and this

relation is attributed to Lagrange. Thus, when a wave travels in shallow water, wave

celerity depends only on water depth.

In conclusion, as a wind wave moves over deep water its speed and length are only a

function of its period (or frequency); then as the depth becomes intermediate relative to

its length, the length and speed are dependent upon both depth and period; and finally
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when the wave reaches shallow regions its length and speed are dependent only on

depth (and not frequency) [1].

2.2 Particle Velocities

The horizontal component u and the vertical component w of the local fluid velocity

are given as

u =
H
2

gT
L

cosh[2π(z+h)/L]
cosh(2πh/L)

cosθ (2.20)

w =
H
2

gT
L

sinh[2π(z+h)/L]
cosh(2πh/L)

sinθ (2.21)

where they express the local fluid velocity components any distance (z+h) above the

bottom. The velocities are periodic in both x and t. For a given value of the phase angle

θ = (2πx/L−2πt/T ), the hyperbolic functions cosh and sinh, as functions of z result

in an approximate exponential decay of the magnitude of velocity components with

increasing distance below the free surface. The maximum positive horizontal velocity

occurs when θ = 0, 2π , etc., while the maximum horizontal velocity in the negative

direction occurs when θ = π , 3π , etc. On the other hand, the maximum positive

vertical velocity occurs when θ = π/2, 5π/2, etc., and the maximum vertical velocity

in the negative direction occurs when θ = 3π/2, 7π/2, etc. Fluid particle velocities

under a wave train are shown in Figure 2.2 by differentiating each equation with respect

to t, the local fluid particle accelerations are obtained from Equations (2.20) and (2.21)

which yields,

ax =
∂u
∂ t

=
Hgπ

L
cosh[2π(z+h)/L]

cosh(2πh/L)
sinθ (2.22)

az =
∂w
∂ t

=−Hgπ
L

cosh[2π(z+h)/L]
cosh(2πh/L)

cosθ (2.23)

Figure 2.2 shows that the fluid under the crest moves in the direction of wave

propagation and returns during passage of the trough. Since linear theory does not

predict any net mass transport, this schematic presentation shows only an oscillatory
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Figure 2.2: Local fluid velocities and accelerations under a sinusoidal progressive
wave, adapted from Coastal Engineering Manual [1].

fluid motion. However, Figure 2.3 depicts profiles of the surface elevation, particle

velocities, and accelerations by the linear wave theory [1].

Figure 2.3: Profiles of particle velocity and acceleration by Airy theory in relation to
the surface elevation, adapted from Coastal Engineering Manual [1].
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Linear wave theory deals with the displacement of individual water particles within

the wave. Water particles generally move in elliptical paths in shallow or transitional

depth water and in circular paths in deep water as it can be seen in Figure 2.4.

Figure 2.4: Water particle displacements from mean position for shallow-water and
deep water waves, adapted from Coastal Engineering Manual [1].

If the mean particle position is considered to be at the center of the ellipse or circle, then

vertical particle displacement with respect to the mean position cannot exceed one-half

the wave height. Thus, since the wave height is assumed to be small, the displacement

of any fluid particle from its mean position must be small. Figure 2.4 shows that the

integration of Equations (2.20) and (2.21) gives the horizontal and vertical particle

displacements from the mean position, respectively. Fluid particle displacements are,

ξ =−HgT 2

4πL

cosh
[

2π(z+h)
L

]
cosh

(2πh
L

) sinθ (2.24)

ζ =
HgT 2

4πL

sinh
[

2π(z+h)
L

]
cosh

(2πh
L

) cosθ (2.25)

where ξ is the horizontal displacement of the water particle from its mean position and

ζ is the vertical displacement of the water particle from its mean position. However,
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these equations can be simplified by using the expression,

(
2π
T

)2

=
2πg

L
tanh

2πh
L

(2.26)

Equations (2.24) and (2.25) become,

ξ =−H
2

cosh
[

2π(z+h)
L

]
sinh

(2πh
L

) sinθ (2.27)

ζ =
H
2

sinh
[

2π(z+h)
L

]
sinh

(2πh
L

) cosθ (2.28)

Rewriting Equations (2.27) and (2.28)

sin2 θ =

ξ
a

sinh
(2πh

L

)
cosh

[
2π(z+h)

L

]
2

(2.29)

cos2 θ =

ζ
a

sinh
(2πh

L

)
sinh

[
2π(z+h)

L

]
2

(2.30)

Adding these equations leads

ξ 2

A2 +
ζ 2

B2 = 1 (2.31)

where A and B are

A =
H
2

cosh
[

2π(z+h)
L

]
sinh

[2πh
L

] (2.32)

B =
H
2

sinh
(

2π(z+h)
L

)
sinh

(2πh
L

) (2.33)

Remembering that Equation (2.31) is the equation of an ellipse with a major-

(horizontal) semi-axis equal to A and a minor (vertical) semi-axis equal to B. The

lengths of A and B are measures of the horizontal and vertical displacements of the
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water particles as shown in Figure 2.4. Hence, the water particles are predicted to move

in closed orbits by linear wave theory; i.e., a fluid particle returns to its initial position

after each wave cycle. However, comparing laboratory measurements of particle orbits

with this theory shows that particle orbits are not completely closed. This difference

between linear theory and observations is due to the mass transport which means that

linear theory is insufficient to explain wave motion completely [1].

For deep water case (h/L > 1/2), Equation (2.32) and Equation (2.33) are equal to

each other as

A = B =
H
2

e(
2πz
L ) (2.34)

and paths of the particle is circular as seen in Figure 2.4. For shallow-water case

(h/L < 1/25), the same equations become

A =
H
2

L
2πh

(2.35)

B =
H
2

(
1+

z
h

)
(2.36)

As indicated by Equation (2.34), in deep water, the water particle orbits are circular.

Meanwhile, Equations (2.35) and (2.36) show that in transitional and shallow water,

the orbits are elliptical. The more shallow the water, the flatter the ellipse and the

amplitude of the water particle displacement decreases exponentially with depth. In

deep water regions the amplitude of the water particle displacement becomes small

relative to the wave height, H, at a depth equal to one-half the wavelength below the

free surface; i.e., when z = L0/2. For shallow regions, horizontal particle displacement

near the bottom can be large and the vertical displacement of water particles varies

from a minimum of zero at the bottom to a maximum equal to one-half the wave

height at the surface.
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2.3 Dynamic Pressure

Subsurface pressure under a wave is the sum of dynamic and static pressures which is

p′ =
ρgH cosh

[
2π(z+h)

L

]
2cosh

(2πh
L

) cosθ −ρgz+ pa (2.37)

where p′ is the total pressure, pa is the atmospheric pressure, and ρ is the mass density

of water. The first term represents a dynamic component due to vertical acceleration

and the second term is the static component of pressure. For convenience, the pressure

is usually taken as the gauge pressure defined as

p = p′− pa =
ρgH cosh

[
2π(z+h)

L

]
2cosh

(2πh
L

) cosθ −ρgz (2.38)

Noting that η = H
2 cos

(2πx
L − 2πt

T

)
−ρgz the above equation can be rewritten

p = ρgη
cosh

[
2π(z+h)

L

]
cosh

(2πh
L

) −ρgz (2.39)

The pressure response factor is defined as

Kz =
cosh

[
2π(z+h)

L

]
cosh

(2πh
L

) (2.40)

Substituting this expression into the Equation (2.39) leads

p = ρg(ηKz − z) (2.41)

For the pressure at the bottom z =−h the response factor becomes

Kz = K =
1

cosh
(2πh

L

) (2.42)
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In Figure 2.5 the pressure response factors are given as the functions of h/L0. One can

easily determine intermediate and shallow water values and choose the appropriate

bottom pressure response factor K. Besides determining the ratios, c/c0, L/L0 or k0/k,

other variables necessary for water wave calculations can be found. For determining

Figure 2.5: Variation of wave parameters with h/L0, adapted from Dean and
Dalrymple [2].

the height of surface waves based on subsurface measurements of pressure, it is

convenient to rewrite Equation (2.41)

η =
N(p+ρgz)

ρgKz
(2.43)

where z is the depth below the still water line of the pressure gauge and N is a correction

factor equal to the unity if the linear theory applies [1]. Chakrabarti [39] presented

experimental measurements that correlate dynamic pressure in the water column with

linear wave theory. Although these laboratory measurements include a number of

water depths, wave periods, and wave heights, the best agreement between the theory

and these measurements occurs in deep water. Moreover, shallow water pressure

measurements for steep water waves deviate significantly from the linear wave theory

predictions.

20



2.4 Wave Groups

Speed of wave groups is an important tool to determine the propagation of wave energy

in time and space. The speed of a group of waves or a wave train is generally not

identical to the speed with which individual waves within the group travel. The group

speed is termed the group velocity Cg; the individual wave speed is the phase velocity

or wave celerity.

For waves propagating in deep or transitional water with gravity as the primary

restoring force, the group velocity will be less than the phase velocity. For those waves,

propagated primarily under the influence of surface tension (i.e., capillary waves), the

group velocity may exceed the velocity of an individual wave [1]. Interaction of two

sinusoidal wave trains moving in the same direction with slightly different wavelengths

and periods might be used to understand group velocity phenomena. The equation of

the water surface of two components, η1 and η2 is

η = η1 +η2 =
H
2

cos
(

2πx
L1

− 2πt
T1

)
+

H
2

cos
(

2πx
L2

− 2πt
T2

)
(2.44)

The surface profile which is developed can be seen in Figure 2.6. It is possible

to sum up the two water surface elevation because superposition of solutions is

permissible since the linear wave theory is used. For simplicity the heights of both

wave components have been assumed to be equal. Since the wavelengths of the two

component waves, L1 and L2, have been assumed slightly different for some values of

x at a given time, the two components will be in phase and the wave height observed

will be 2H; for some other values of x, the two waves will be completely out of phase

and the resultant wave height will be zero.

The waves described in Figure 2.6 can be expressed by

ηenvelope =±cos
[

π
(

L2 −L1

L1L2

)
x−π

(
T2 −T1

T1T2

)
T
]

(2.45)

The group velocity is represented by the speed of these groups. The limiting speed

of the wave groups as they become large (i.e., as the wavelength L1 approaches L2
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Figure 2.6: Wave group formed by the addition of two sinusoidal waves with slightly
different periods, adapted from Coastal Engineering Manual [1].

and consequently the wave period T1 approaches T2) is the group velocity and can be

shown to be equal to [1].

cg =
1
2

L
T

[
1+

4πh
L

sinh
(4πh

L

)]= nc (2.46)

and n is

n =
1
2

[
1+

4πh
L

sinh
(4πh

L

)] (2.47)

For the deep water case, the term (4πh/L)/sinh(4πh/L) approximately equals to zero

hence n = 1/2, which leads

cg0 =
1
2

c0 =
1
2

√
gL
2π

(2.48)
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or briefly one can say that group velocity is half of the phase velocity, cg0 = c0/2. For

the shallow water case in which the term is sinh(4πh/L ≈ 4πh/L) which leads

cgs = c =
√

gh (2.49)

in which the group velocity is equal to the phase velocity. Hence, in shallow water,

since the wave celerity is determined by the water depth, all component waves in

a wave train will travel at the same speed excluding the alternate reinforcing and

canceling of components.

In deep and transitional waters, wave celerity depends on wavelength; hence, slightly

longer waves travel slightly faster and produce the small phase differences resulting

in wave groups. These waves are said to be dispersive or propagating in a dispersive

medium; i.e., in a medium where their celerity is dependent on wavelength [1].

The ratios of group and phase velocities to the deep water phase velocity cg/c0 and

c/c0 respectively are given as a function of the depth relative to the deep water

wavelength h/L0 in Figure 2.7. In Figure 2.7, for small values of depth the two curves

merge together and cg reaches a maximum point before tending asymptotically toward

c/2. Outside of shallow water zone, the phase velocity of gravity waves is greater

than the group velocity. An observer who follows a group of waves at group velocity

will see waves that originate at the back of the group move forward through the group

traveling at the phase velocity and disappear at the front of the wave group.

The importance of group velocity is that it is the group velocity at which the wave

energy is propagated. On the other hand Lamb [51] expressed that the group velocity

can be obtained rigorously from the interference of two or more waves mathematically.

However, the physical significance is not as obvious as it is in the method based on the

consideration of wave energy. Therefore, wave energy and energy transmission is used

for the additional explanation of group velocity.

2.5 Wave Energy and Energy Flux

The sum of kinetic energy and its potential energy gives the total energy of a wave

system. The kinetic energy is that part of the total energy due to water particle
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Figure 2.7: Variation of the ratios of group and phase velocities to deepwater phase
speed using linear theory, adapted from Sarpkaya and Isaacson [3].

velocities associated with wave motion. The kinetic energy per unit length of wave

crest for a wave defined with the linear theory can be found from

Ēk =
∫ x+L

x

∫ η

−h
ρ
(

u2 +w2

2

)
dzdx (2.50)

which is

Ēk =
1
16

ρgH2L (2.51)

Potential energy is that part of the energy resulting from part of the fluid mass being

above the trough: the wave crest. The potential energy per unit length of wave crest

24



for a linear wave is given by

Ēp =
1

16
ρgH2L (2.52)

Thus, Airy theory says that if the potential energy is determined relative to still water

level, and all waves are propagated in the same direction, potential and kinetic energy

components are equal to each other and the total wave energy in one wavelength per

unit crest width is given by

E = Ek +Ep =
ρgH2L

16
+

ρgH2L
16

=
ρgH2L

8
(2.53)

Total average wave energy per unit surface area which is called the specific energy or

energy density is given by

Ē =
E
L
=

ρgH2

8
(2.54)

Wave energy flux is the rate at which energy is transmitted in the direction of wave

propagation across a vertical plan perpendicular to the direction of wave advance and

extending down the entire depth [1]. Assuming that linear theory is valid, the average

energy flux per unit wave crest width transmitted across a vertical plane perpendicular

to the direction of wave advance is

P̄ =
1
T

∫ t+r

t

∫ η

−h
pudzdt (2.55)

After integration,

P̄ = Ēnc = Ēcg (2.56)

where P̄ is wave power and the variable n was given in Equation (2.47). If a vertical

plane is taken other than perpendicular to the direction of wave advance, P = Ecg sinθ ,

where θ is the angle between the plane across which the energy is being transmitted
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and the direction of wave advance. For deep water Equation (2.56) becomes

P̄0 =
1
2

Ē0c0 (2.57)

Likewise, for shallow water Equation (2.56) becomes

P̄ = Ēcg = Ēc (2.58)

For steady state, an energy balance for a region through which waves are passing will

reveal that amount of energy entering the region will equal the amount leaving the

region provided no energy is added or removed. Therefore, when the waves are moving

so that their crests are parallel to the bottom contours

Ē0n0c0 = Ēnc (2.59)

or since n0 =
1
2 , it can be rewritten as

1
2

Ē0c0 = Ēnc (2.60)

When the wave crests are not parallel to the bottom contours, some parts of the

wave will be traveling at different speeds and the wave will be refracted; in this case

Equation (2.60) does not apply. The rate of energy transmission is important for coastal

design, and it requires knowledge of cg to determine how fast waves move toward

shore. The mean rate of energy transmission associated with waves propagating into

an area of calm water provides a different physical description of the concept of group

velocity. Equation (2.60) establishes a relationship between the ratio of the wave height

at some arbitrary depth and the deep water wave height. This ratio, known as the

shoaling coefficient which is dependent on the wave steepness [1].

26



3. BOUSSINESQ EQUATIONS

Compared to the long wave equations the idea of Boussinesq formulation is to add

in the effects of non-hydrostatic pressure, while eliminating the vertical coordinate.

The procedure reduces the computational effort relative to a full three-dimensional

solution. This principle was initially introduced by Boussinesq [6] who derived

the new equations under the assumption that the magnitude of the vertical velocity

increases parabolically from the bottom to the free surface. This assumption

inevitably leads to a relative depth limitation in the accuracy of the embedded

dispersive and nonlinear properties. This is the reason why Boussinesq-type equations

are conventionally associated with somewhat shallow waters. As the water depth

increases the errors modeling linear dispersion relationship increases and the classical

Boussinesq equations are limited to relatively shallow waters. On the other hand, the

increasing availability of the computer resources to run the numerical models and

the development of variants of the theory which could be optimized to obtain better

dispersion properties at larger values triggered further developments in Boussinesq

models. For making Boussinesq equations applicable to relatively intermediate water

depths, many researchers developed several ways to extend the validity of these

equations. These extended Boussinesq equations have adjustable parameters to provide

a better match with the exact dispersion relationship [52].

After Boussinesq’s [6] depth-averaged model that included both weakly dispersive

and nonlinear effects, Mei and LeMeháute [7] and Peregrine [8] derived Boussinesq

equations for variable depth. While Mei and LéMehauté [7] used the velocity at the

bottom as the dependent variable Peregrine [8] used the depth-averaged velocity. In

the following years Peregrine’s derivation is referred to as the standard Boussinesq

equations. In general, Peregrine described the nonlinear transformation of irregular

and multidirectional waves in shallow water where the vertical velocity is assumed to

27



vary linearly over the depth. However, the standard Boussinesq equations derived by

Peregrine [8] are applicable to relatively shallow water depths.

3.1 Nonlinear Long Waves in Shallow Water: Derivation and Classification of

Approximate Equations

The linearized shallow-water approximation is useful only if the two length ratios are

small; µ ≡ kh << 1 and ε ≡ a/h << 1 where a typical free surface amplitude and

h is depth. A nonlinear theory of shallow water waves is necessary for dealing with

coastal engineering problems. The presence of two small parameters (three length

scales) add extra challenges into the approximation process since the magnitude of

one ratio relative to the other is now important. Airy, Boussinesq [6] with Korteweg

and de Vries [53] separately developed two theories which led to opposite conclusions

regarding wave breaking on constant depth. Ursell [54] resolved this confusion by

introducing a ratio which is used to decide which theory should be chosen. This ratio

is referred to as Ursell parameter and given as,

Ur =
a
h

1
(kh)2 =

ka
(kh)3 =

aL2

h3(2π)2 (3.1)

For long waves (L ≫ h) with small Ursell number, Ur ≪ 32π2/3 ≈ 100, linear wave

theory is applicable. Otherwise, a nonlinear theory for fairly long waves (L > 7h),

like the Korteweg-de Vries equation or Boussinesq equations has to be used. The

approximation procedure for constant depth is demonstrated by using the formalism

of Benney [55] and Peregrine [8]. Since there are two small parameters, it is useful to

utilize dimensionless variables where the scales of these variables are suggested by the

linearized theory:

(x′,y′) = k(x,y), z′ =
z
h
, t ′ = k(gh)1/2t

η ′ =
η
a
, Φ′ = Φ

[ a
kh

(gh)1/2
]−1

(3.2)
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The normalizations on velocity components are shown as,

(u,v) =
(

∂
∂x

,
∂
∂y

)
Φ =

a
h
(gh)1/2

(
∂

∂x′
,

∂
∂y′

)
Φ′ =

a
h
(gh)1/2(u′,v′)

w =
∂Φ
∂ z

=
1
kh

a
h
(gh)1/2 ∂Φ′

∂ z′
=

1
kh

a
h
(gh)1/2(w′) (3.3)

Scaling horizontal and vertical components are different and is required by continuity.

The normalized equations are,

µ2(Φ′
x′x′ +Φ′

y′y′)+Φ′
z′z′ = 0, −1 < z′ < εη ′ (3.4)

µ2[η ′
t ′ + εΦ′

x′η
′
x′ + εΦ′

y′η
′
y′ ] = Φ′

z′ , z′ = εη ′ (3.5)

µ2[Φ′
t ′ +η ′]+

1
2

ε[µ2(Φ′2
x′ +Φ′2

y′ )+Φ′2
z′ ], z′ = εη ′ (3.6)

Φ′
z′ = 0, z =−1 (3.7)

Note that the primes will be ignored after this step and µ = kh is assumed to be small

and ε is left to be arbitrary for the time being. Remembering that Φ is analytic, it can

be expanded as a power series in the vertical coordinate,

Φ(x,y,z, t) = Σ∞
n=0(z+1)nΦn (3.8)

where Φn = Φn(x,y, t),n = 0,1,2,3, ..., whose orders of magnitude are yet unknown.

To denote horizontal gradient ( ∂
∂x , ∂

∂y), ∇ is used and derivatives are evaluated as,

∇Φ = Σ∞
0 (z+a)n∇Φn (3.9)

∇2Φ = Σ∞
0 (z+1)n∇2Φn (3.10)

∂Φ
∂ z

= Σ∞
0 (z+1)n−1Φn = Σ∞

0 (z+1)n(n+1)Φn+1 (3.11)

∂ 2Φ
∂ z2 = Σ∞

0 (z+1)n−1(n+1)nΦn+1 = Σ∞
0 (z+1)n(n+2)(n+1)Φn+2 (3.12)
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Substituting Equations (3.10) and (3.12) into the Laplace equation leads to

µ2∇2Φ+
∂ 2

∂ z2 Φ = Σ∞
n=0(z+1)n[µ2∇2Φn +(n+2)(n+1)Φn+2] = 0 (3.13)

The coefficient of each power of (z+ 1) vanishes since z is arbitrary within (−1,εη)

and this yields a recursive relation which is,

Φn+2 =
−µ2∇2Φn

(n+2)(n+1)
, n = 0,1,2, ... (3.14)

Equation (3.7) leads to Φ1 ≡ 0 on the horizontal bottom which implies from

Equation (3.14) that all Φn’s with odd n vanish

Φ1 = Φ3 = Φ5 = ...0 (3.15)

For even n,

Φ2 =
−µ2

2 ·1
∇2Φ0 =

−µ2

2!
∇2Φ0

Φ4 =
−µ2

4 ·3
∇2Φ2 =

µ4

4!
∇2∇2Φ0

Φ6 =
−µ2

6 ·5
∇2Φ4 =

−µ6

6!
∇2∇2∇2Φ0 (3.16)

Noting that Φ0 = O(ϕ) = O(1) yields Φ2 = O(µ2) and Φ4 = O(µ4) and so on. The

potential with an error of O(µ6) is,

Φ = Φ0 −
µ2

2
(z+1)2∇2Φ0 +

µ4

24
(z+1)4∇2∇2Φ0 +O(µ6) (3.17)

Using the boundary conditions on the free surface and keeping O(µ4) terms in Φt , Φx

and Φy because of the multiplier µ2,

µ2
[

Ht

ε
+∇H ·

(
∇Φ0 −

µ2

2
H2∇2∇Φ0

)]
=−µ2H∇2Φ0 +

µ4

6
H3∇2∇2Φ0 +O(µ6)

(3.18)

30



µ2
[

Φ0t −
µ2

2
H2∇2Φ0t +η

]
+

1
2

εµ2[(∇Φ0)
2 −µ2H2∇Φ0 ·∇2(∇Φ0)]

+
1
2

εµ4H2(∇2Φ0)
2 = O(µ6) (3.19)

where H is total depth and equals to H = 1+ εη . Defining horizontal velocity at the

bottom as u0 = ∇Φ0, equation (3.18) can be rewritten,

1
ε

Ht +∇H ·
(

u0 −
µ2

2
H2∇2u0

)
+H∇ ·u0 −

µ2

6
H3∇2(∇ ·u0) = O(µ4) (3.20)

The gradient of equation (3.19) yields,

u0t + εu0 ·∇u0 +
∇H
ε

+µ2∇
[
−ε

2
H2u0 ·∇2u0 +

ε
2

H2(∇ ·u0)
2 − 1

2
H2∇ ·u0t

]
= O(µ4)

(3.21)

Solving η and u0, the actual velocity components are,

(u,v) = ∇Φ = u0 −
µ2

2
(z+1)2∇∇ ·u0 +O(µ4) (3.22)

w =
∂Φ
∂ z

=−µ2(z+1)∇2Φ0 = µ2(z+1)∇ ·u0 +O(µ4) (3.23)

From the Bernoulli equation, the dimensionless form of the pressure field is which is

normalized by ρgh is,

−P = z+ ε{Φt +
ε
2

[
(∇Φ)2 +

1
µ2 Φ2

z

]
} (3.24)

Substituting equations (3.22) and (3.23) into equation (3.24) one gets,

−P = z + ε{
[

Φ0t −
µ2

2
(z+1)2∇ ·u0t

]
+

ε
2
[u2

0 −µ2(z+1)2u0 ·∇2u0 +µ2(z+1)2(∇ ·u0)
2]}+O(µ4) (3.25)
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For eliminating Φ0t Equation (3.19) is used which yields,

P=(εη−z)− εµ2

2
[H2−(z+1)2]×{∇ ·u0t +ε[u0 ·∇2u0−(∇ ·u0)

2]}+O(µ4) (3.26)

However, instead of using u0 a depth averaged horizontal velocity ū can be introduced

such as,

ū =
1
H

∫ εη

−1
dz∇Φ

=
1
H

∫ εη

−1
dz
(

u0 −
µ2

2
(z+1)2∇∇ ·u0 + ...

)

= u0 −
µ2

6
H2∇2u0 +O(µ4) (3.27)

which can be inverted to give

u0 = ū+
µ2

6
H2∇2ū+O(µ4) (3.28)

Substituting Equation (3.28) into Equation (3.20) yields,

Ht + ε∇ · (Hū) = 0 (3.29)

Note that this equation is just the depth averaged law of continuity and is exact to all

orders of µ2. If u0 is expressed in terms of ū ,

ūt + ε ū · ū+ ∇H
ε

+
µ2

6
(
H2

2
∇2ū)t

+ µ2∇{−ε
3

H2ū ·∇2ū+
ε
2

H2(∇ · ū)2 − H2

2
∇ · ūt}= O(µ4) (3.30)

Note that all the equations thus far are valid for arbitrary ε and extension to higher

orders in µ2 is unnecessary. Expressing Equations (3.29), (3.30) and (3.26) in physical

variables leads,

Ht +∇ · (Hū) = 0 (3.31)

32



ūt + ū ·∇ū+g∇H +
1
6
(H2∇2ū)t +∇{−1

3
H2ū ·∇2ū+

H2

2
(∇ · ū)2 − H2

2
∇ · ūt}= 0

(3.32)

P = ρg(η − z)− 1
2
[H2 − (z+h)2]{∇ ·ut +[u ·∇2u− (∇ ·u)2]} (3.33)

There are two limiting cases; namely, long wave equations and Boussinesq equations.

3.1.1 Airy’s theory for very long waves

As it is mentioned before, Airy’s theory is proper approximation for very long waves

of finite amplitude and within this approximation the pressure is hydrostatic. The

limiting case is when ρ → 0 and ε = O(1). Neglecting the terms proportional to µ2

from Equations (3.26) and (3.30), the physical variables are obtained as,

ηt +∇ · [(η +h)ū] = 0 (3.34)

ūt + ū ·∇ū+g∇η = 0 (3.35)

P = ρg(η − z) (3.36)

The previous equations are actually valid for variable h(x,y).

3.1.2 Boussinesq theory

The limiting case is when O(ε) = O(µ2) < 1. For weakly nonlinear and moderately

long waves in shallow water, Equations (3.29), (3.30) and (3.26) are approximated in

order to include the terms of order O(ε) and O(µ2) by obtaining,

ηt +∇ · [(εη +1)ū] = 0 (3.37)

ūt + ε ū ·∇ū+∇η − µ2

3
∇∇ · ūt = 0 (3.38)

P = εη − z+
εµ2

2
(z2 +2z)∇ · ūt (3.39)
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The corresponding physical variables are,

ηt +∇ · [(η +h)ū] = 0 (3.40)

ūt + ū ·∇ū+g∇η − h2

3
∇∇ · ūt = 0 (3.41)

P = ρg(η − z)+
ρ
2
(2zh+ z2)∇ · ūt (3.42)

Equations (3.37) and (3.38) or their equivalents Equations (3.40) and (3.41) are

called Boussinesq equations. Note that the pressure is not hydrostatic. Airy’s and

Boussinesq’s theories differ by the linear term multiplied by µ2 in Equation (3.38).

However, this term has a significant importance. For instance, using the linearized

forms of Equations (3.40) and (3.41) for one-dimensional infinitesimal waves,

η = Aei(kx−ωt), ū =Uei(kx−ωt) (3.43)

After neglecting the exponential factor,

−iωA+ ikhU = 0 (3.44)

iωU + ikgA− h2

3
− (ik)2(−iω)U = 0 (3.45)

which is a homogeneous set of equations for A and U . For a nontrivial solution the

discriminant must vanish,

∣∣∣∣∣ −iω ikh

igk −iω
(

1+ k2h2

3

) ∣∣∣∣∣= 0

ω2 =
ghk2

1+ 1
3k2h2

= ghk2
(

1− k2h2

3
+ ...

)
(3.46)

c ∼= (gh)1/2
(

1− k2h2

3

)1/2

where c is the phase velocity. The terms 1
3(kh)2 = 1

3 µ2 represents the frequency

dispersion and arises from the term
(1

3h2)uxxt . Note that Equation (3.46) is the regular
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dispersion relation which is expanded with two-term. Boussinesq equations includes

the effects of nonlinearity with ε and dispersion µ2 to the leading order. When

ε >> µ2 they reduce to Airy equations which are valid for all ε . When ε << µ2, they

reduce to the linearized approximation with weak dispersion. As ε → 0 and µ2 → 0

the classical linearized wave equation is obtained.

3.1.3 Variable depth

The procedure beginning from Equation (3.8) may be extended, if the horizontal scale

of depth variation is not greater the the typical wavelength. The bottom boundary

condition by means of physical variables is,

Φz =−hxΦx −hyΦy, z =−h(x,y) (3.47)

In dimensionless variables the same condition becomes

Φz =−µ2(hxΦx +hyΦy), z =−h(x,y) (3.48)

in which the variable depth is normalized by the typical depth h0. It is also used

in defining the dimensionless variables of Equations ( 3.2) and ( 3.3). Instead of

Equation ( 3.8) one may assume,

Φ = Σ∞
n=0[z+h(x,y)]nΦn(x,y) (3.49)

Substituting Equation (3.49) into the Laplace equation and applying Equation (3.48),

a set of recursive relations among Φn are obtained. For odd n, the Φn’s do not vanish.

According to the similar arguments Mei and LèMehautè [7] obtained the Boussinesq

equations for one-dimensional waves. For two dimensions the following equations

were deduced by Peregrine [8] in terms of ū and η .

ηt +∇ · [(h+η)ū] = 0 (3.50)

∂ ū
∂ t

+ ū ·∇ū+g∇η =
h
2

∇[∇ · (hūt)]−
h2

6
∇[∇ · ūt ] (3.51)
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3.2 The Mathematical Framework for Nonlinear, Dispersive Shallow Water

Waves

Based on the initial assumptions of an inviscid, incompressible Newtonian fluid,

the mathematical framework for the analysis of nonlinear, dispersive shallow-water

waves is outlined in this section and the non-dimensionalisation and scaling of the

equations are described. Note that the derivation procedure for Boussinesq-type

shallow water equations is not unique and a variety of different equation systems have

been proposed, for instance [10], [12], [13] and [48]. The derivation of classical form

of the Boussinesq equations are given in this chapter where the derivation procedure

followed Peregrine’s work but includes the effect of a spatially varying depth to derive

the variable depth equation system.

The incompressible Navier-Stokes equations are capable of modeling water waves.

However, the numerical solution of these equations is very complex since the wave

phenomenon is a three-dimensional problem with unknown free surface boundary

conditions. Since the viscosity is negligible in wave motion the Euler equations may

be used instead of the Navier-Stokes equations.

The Euler equations for an inviscid, incompressible, irrotational flow with a free

surface over a horizontal bottom are used for deriving Boussinesq equations describing

shallow water flows by Peregrine [48]. Vorticity can diffuse from the boundary once

the fluid is in motion but for a finite time the effects will not be felt throughout

the fluid. The Boussinesq equations describing shallow water flow are derived from

the incompressible, irrotational Euler equations as it is been indicated in Peregrine’s

study [48]. There are two spatial dimensions are considered; (x,z) being horizontal and

vertical respectively. The z coordinate varies between the free surface η(x, t) and the

sea bed −h(x) with the origin taken at the still-water depth. The governing equations

are horizontal momentum, vertical momentum, incompressibility and irrotationality

equations respectively. These equations are written in terms of the two-dimensional

velocity field (u,w), pressure p, constant density ρ and acceleration due to gravity g
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with respect to the coordinate system (x,z) and time t.

∂u
∂ t

+u
∂u
∂x

+w
∂u
∂ z

+
1
ρ

∂ p
∂x

= 0 (3.52)

∂w
∂ t

+u
∂w
∂x

+w
∂w
∂ z

+
1
ρ

∂ p
∂ z

+g = 0 (3.53)

∂u
∂x

+
∂w
∂ z

= 0 (3.54)

∂u
∂ z

− ∂w
∂x

= 0 (3.55)

At the free surface z = η(x, t) the particles are free to move with the fluid velocity,

hence there is a kinematic boundary condition,

w−u
∂η
∂x

− ∂η
∂ t

= 0 (3.56)

At the surface it is also assumed that surface tension is negligible and that there are

no applied stresses [48], hence there is a simple constant pressure boundary condition

where the constant pressure is set to a reference level zero at the free surface.

p = 0 (3.57)

The bottom boundary z = −h(x) is assumed to be fixed and impermeable and hence

the kinematic boundary condition reduces to,

w+u
∂h
∂x

= 0 (3.58)

3.2.1 Non-dimensionalization and scaling

The parameters ρ , g, and H are chosen to non-dimensionalize the system variables,

where H is a typical water depth eg. the average depth. This choice follows the work
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of Peregrine [8], but is not unique.

x̃ =
x
H
, z̃ =

z
H
, h̃ =

h
H
, η̃ =

η
H
, t̃ =

√
g
H

t (3.59)

ũ =
u√
gH

, w̃ =
w√
gH

, p̃ =
p

ρgH

For examining the magnitude of each term, scaling the individual variables is necessary

so that every aspect of the problem has variation O(1). The physical system can be

characterized by the typical water depth H, a typical wavelength L and a typical wave

amplitude a. The nonlinearity and dispersion present in the system are parameterized

by the ratios ε and µ respectively [48].

ε =
a
H

(3.60)

µ =
H
L

(3.61)

As explained in Chapter 2, Ursell [54] established a correlation number known as

Ursell number,

Ur =
ε

µ2 =
aL2

H3 (3.62)

where it predicts which wave theory is applicable. The Boussinesq wave theory

requires ε << 1, µ << 1 and Ur to be O(1) [54]. Afterwards, the equation system

can be derived from the suitably scaled and non-dimensionalised fluid flow equations

by integrating through the depth and then expanding in terms of the small parameters

µ and ε . Terms up to and including O(ε,µ2) are retained. In order to change scaled

coordinate x̂ as O(1) over one wavelength, the horizontal coordinate is scaled. Time

is also scaled considering this situation since the flow will be horizontal to first order

and this choice will produce an O(1) horizontal velocity. The free surface elevation is

scaled similarly as to be O(1) compared to a typical wave amplitude.

x̂ = µ x̃, t̂ = µ t̃, η̂ =
η̃
ε

(3.63)
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Considering the free surface boundary condition (3.56) and the continuity

equation (3.54) yields the following scaled velocities.

û =
ũ
ε
, ŵ =

w̃
εµ

(3.64)

All the other variables are assumed to have scaling factors 1. Substituting these new

variables into the equations (3.52)-(3.55) gives,

ε
∂ û
∂ t̂

+ ε2û
∂ û
∂ x̂

+ ε2ŵ
∂ û
∂ z̃

+
∂ p̃
∂ x̂

= 0 (3.65)

εµ2 ∂ ŵ
∂ t̂

+ ε2µ2û
∂ v̂
∂ x̂

+ ε2µ2ŵ
∂ ŵ
∂ z̃

+
∂ p̂
∂ z̃

+1 = 0 (3.66)

∂ û
∂ x̂

+
∂ ŵ
∂ z̃

= 0 (3.67)

∂ û
∂ z̃

−µ2 ∂ ŵ
∂ x̂

= 0 (3.68)

At the free surface z̃ = εη̂ , the boundary conditions equations (3.56) and (3.57)

become,

ŵ− ε û
∂ η̂
∂ x̂

− ∂ η̂
∂ t̂

= 0 (3.69)

p̃ = 0 (3.70)

At the bed z̃ =−h̃ the kinematic bottom boundary condition (3.58) becomes,

ŵ+ û
∂ h̃
∂ x̂

= 0 (3.71)

These equations shows a non-dimensionalised, scaled system for small amplitude

nonlinear water waves and are the basis for the derivation of all the Boussinesq-type

shallow water equations.
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3.3 The Classical Form of the Boussinesq Equations for Constant Depth

Peregrine’s study [48] includes a precise mathematical framework for the rigorous

derivation of water wave equations. In his study one-dimensional system

of Boussinesq equation is described by means of small amplitude nonlinear

water waves in a constant depth environment which are derived by expanding

equations (3.65)-(3.71) in terms of the small parameters ε and µ . Peregrine’s derivation

of one-dimensional Boussinesq equations is shown here in detail with the effects of

a variable depth. Although the depth is assumed constant at the beginning, terms

including a variation in depth are not neglected and the extension to the depth variable

equations, stated by Peregrine [48], follows straightforwardly afterwards.

Integrating equation (3.67) with respect to z̃ and applying Leibniz Rule gives,

∫ z̃

−h̃

∂ ŵ
∂ z̃

dz̃ = −
∫ z̃

−h̃

∂ û
∂ x̂

dz̃

ŵ|z̃ − ŵ|−h̃ = − ∂
∂ x̂

∫ z̃

h̃
ûdz̃− û|−h̃

∂ (−h̃)
∂ x̂

+ û|z̃
∂ (z̃)
∂ x̂

Considering that the coordinates x̂ and ẑ are independent and using the boundary

condition (3.71) at z̃ =−h̃ gives,

ŵ =− ∂
∂ x̂

∫ z̃

−h̃
ûdz̃ (3.72)

Noting that the vertical velocity ŵ|z̃ is denoted by ŵ. Substituting equation (3.72) into

equation (3.68) and integrating with respect to z̃ gives,

∂ û
∂ z̃

= µ2 ∂ ŵ
∂ x̂

= −µ2 ∂ 2

∂ x̂2

∫ z̃

−h̃
ûdz̃ (3.73)

û = û0(x̃, t̃)+O(µ2) (3.74)
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where û0(x̃, t̃) is an arbitrary function of x̂ and t̂. Hence, equation (3.74) implies that

û is independent of z̃ to O(µ2). Noting that û is independent from z̃ to evaluate the

integral and substituting equation (3.74) into equation (3.72) one obtains an expression

for the vertical velocity ŵ.

ŵ = − ∂
∂ x̂

∫ z̃

−h̃
û0(x̂, t̂)+O(µ2)

= − ∂
∂ x̂

((z̃+ h̃)û0)+O(µ2)

= −z̃
∂ û0

∂ x̂
− ∂ (h̃û0)

∂ x̂
+O(µ2) (3.75)

Substituting equation (3.75) into equation (3.68) and integrating with respect to z̃, an

expression for û is obtained.

∂ û
∂ z̃

=−µ2
(

z̃
∂ 2û0

∂ x̂2 +
∂ 2(h̃û0)

∂ x̂2

)
+O(µ4) (3.76)

û = û0(x̂, t̂)−µ2
(

z̃2

2
∂ 2û0

∂ x̃2 + z̃
∂ 2(h̃û0)

∂ x̂2

)
+O(µ4) (3.77)

The expression for pressure is rewritten by using equations (3.66) and (3.75).

−∂ p̃
∂ z̃

= εµ2 ∂ ŵ
∂ t̂

+1+O(ε2µ2)

= −εµ2
(

z̃
∂ 2û0

∂ x̂∂ t̂
+

∂ 2(h̃û0)

∂ x̂∂ t̂

)
+1+O(ε2µ2,εµ4) (3.78)

where it is integrated with respect to z̃ from an arbitrary depth z̃ to the free surface εη̂

which yields,

−
∫ εη̂

z̃

∂ p̃
∂ z̃

dz̃ =−εµ2
[

z̃2

2
∂ 2û0

∂ x̂∂ t̂
+ z̃

∂ 2(h̃û0)

∂ x̂∂ t̂

]εη̂

z̃
+[z̃]εη̂

z̃ +O(ε2µ2,εµ4) (3.79)

The boundary condition (3.70) gives p̃|εη̂ = 0. By redefining p̃|z̃ as p̃ and expanding

both sides of the terms, noting that evaluation at εη̂ introduces only O(ε2µ2) terms
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give,

p̃ = εµ2
(

z̃2

2
∂ 2û0

∂ x̂∂ t̂
+ z̃

∂ 2(h̃û0)

∂ x̂∂ t̂

)
+ εη̂ − z̃+O(ε2µ2,εµ4) (3.80)

The expressions for ŵ, û and p̃ which are given in equations (3.75), (3.77) and (3.80)

are substituted into the horizontal momentum equation (3.65) in which the terms are

rearranged and higher order terms in ε and µ on the right hand side are collected gives,

∂ û0

∂ t̂
+ ε û0

∂ û0

∂ x̂
+

∂ η̂
∂ x̂

= O(εµ2,µ4) (3.81)

Peregrine [48] defined the depth averaged velocity, ˆ̄u(x̂, t̂) in terms of the velocity field

û(x̂, z̃, t̂) which is,

ˆ̄u =
1

h̃+ εη̂

∫ εη̂

−h̃
ûdz̃ (3.82)

Although Mei and Le Méhauté [7] used the bottom velocity û(x̂,−h̃, t̂) in order to

derive the set of Boussinesq equations, the choice of velocity variable is not unique.

However, the choice of depth averaged velocity allows a simpler form of continuity

equation in Boussinesq model. Substituting from equation (3.77) and rearranging the

terms ignoring the higher order terms in ε and µ gives,

ˆ̄u =
1

h̃+ εη̂

{
û0(h̃+ εη̂)−µ2

((
(εη̂)3 + h̃3

6

)
∂ 2û0

∂ x̂2 +

(
(εη̂)2 − h̃2

2

)
∂ 2(h̃û0)

∂ x̂2

)}
+O(µ4)

= û0 −
µ2

h̃
(

1+ ε η̂
h̃

) ( h̃3

6
∂ 2û0

∂ x̂2 − h̃2

2
∂ 2(h̃û0)

∂ x̂2 +O(εµ2,µ4)

)

= û0 −µ2
(

h̃2

6
∂ 2û0

∂ x̂2 − h̃
2

∂ 2(h̃û0)

∂ x̂2

)
+O(εµ2,µ4) (3.83)

Noting that û0 = ˆ̄u+O(µ2) the above expression is rearranged to give an expression

for û(x̂, t̂).

û0 = ˆ̄u+µ2
(

h̃2

6
∂ 2 ˆ̄u
∂ x̂2 − h̃

2
∂ 2(h̃ ˆ̄u)

∂ x̂2

)
+O(εµ2,µ4) (3.84)
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Substituting the above expression into equation (3.81) yields the momentum equation

which is

∂ ˆ̄u
∂ t̂

+ ε ˆ̄u
∂ ˆ̄u
∂ x̂

+
∂ η̂
∂ x̂

+µ2
(

h̃2

6
∂ 2

∂ x̂2

(
∂ ˆ̄u
∂ t̂

)
− h̃

2
∂ 2

∂ x̂2

(
h̃

∂ ˆ̄u
∂ t̂

))
= O(εµ2,µ4) (3.85)

By integrating equation (3.67) by depth,

∫ εη̂

−h̃

(
∂ û
∂ x̂

+
∂ ŵ
∂ z̃

)
dz̃ = 0 (3.86)

Applying Leibniz rule and using the boundary conditions (3.69) and (3.71) considering

the depth averaged velocity defined in equation (3.82) yields,

∂
∂ x̂

∫ εη̂

−h̃
ûdz̃− û|εη̂

∂ (εη̂)

∂ x̂
+ û|−h̃

∂ (−h̃)
∂ x̂

+ ŵ|εη̂ − ŵ−h̃ = 0

∂
∂ x̂

[(h̃+ εη̂) ˆ̄u]+
∂ η̂
∂ t̂

= 0 (3.87)

Reusing the dimensional and unscaled forms of the expressions gives the Boussinesq

equations,

∂ ū
∂ t

+ ū
∂ ū
∂x

+g
∂η
∂x

+
h2

6
∂ 3ū

∂x2∂ t
− h

2
∂ 3(hū)
∂x2∂ t

= 0 (3.88)

∂η
∂ t

+
∂
∂x

[(h+η)ū] = 0 (3.89)

As Peregrine [8] used a constant depth, H, the Boussinesq equations (3.88) and (3.89)

are simplified to,

∂ ū
∂ t

+ ū
∂ ū
∂x

+g
∂η
∂x

− H2

3
∂ 3ū

∂x2∂ t
= 0 (3.90)

∂η
∂ t

+
∂
∂x

[(H +η)ū] = 0 (3.91)
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3.4 The Classical Form of the Boussinesq Equations for Varying Depth

Peregrine [48] introduced an extra scaling parameter over the spatial domain for a

variable depth environment which characterize the variation in depth.

αh = max
(

∂ h̃
∂ x̃

)
(3.92)

This new scaling leads the bottom boundary condition 3.58 as,

µŵ+αhû
(

∂ h̃
∂ x̃

)
= 0 (3.93)

It shows that requiring αh =O(µ) leads the same set of equations when compared with

the original scaling equation (3.71). This suggests that the depth must not vary rapidly

over the scale of a typical wavelength and especially in sudden changes of depth, such

as a step, leads inconsistencies in this formulation. Following the procedure given

by Peregrine the derivation of Boussinesq equations is shown here which includes

the effect of a variable depth. For long waves there are two important parameters

which are, the nonlinearity parameter, ε (ratio of amplitude to depth) and the dispersion

parameter µ (ratio of depth to wavelength). µ ≪ 1 for all long wave theories and

ε = O(1) for small amplitude theory but there is an assumption made for solitary wave

and the Boussinesq equations that ε and µ2 are of the same order. By choosing a

suitable horizontal length scale, it can be assumed that ε ≈ µ2.

The variables η , p, u and
∫ η
−h udz are expanded as follows.

f = f0 + ε f1 + ε2 f2 + ... (3.94)

while w is expanded as,

w = µ (w0 + εw1 + ...) (3.95)
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The independent variables can be scaled as follows,

∂
∂ t

= µ
(

∂
∂ t1

)
,

∂
∂x

= µ
(

∂
∂x1

)
,

∂
∂y

= µ
(

∂
∂y1

)
(3.96)

To make the order of magnitude of terms in the equations appear explicitly the variables

ηi, pi, ui and
(∫ η

−h udz
)

i their derivatives with respect to x1, y1, z and t1 are all assumed

to be O(1) when the equations (3.94), (3.95), (3.96) are substituted. Noting that here

the index i corresponds to 1 and 2. The first order form of the irrotationality condition

∂u/∂ z = ∇w becomes,

∂u1

∂ z
= 0

hence
(∫ η

−h
udz
)

1
= hu1

Equation (3.53) shows that ∂ p1/∂ z = 0 and when this is combined with the bounday

condition p0 + ε p1 = 0 at z = εη1, it gives p1 = ρgη1. Then, Euler’s equation of

motion and the vertically integrated continuity equation where the kinematic free

surface and bottom boundary conditions are applied, become linearized long wave

equations.

∂u1

∂ t1
+g∇1η1 = 0 (3.97)

∂η1

∂ t1
+∇1 · (hu1) = 0 (3.98)

Integrating the first order form of continuity equation over the depth by using Leibniz

rule and applying the boundary conditions at z =−h yields,

w1 =−∇1 · (hu1)− z∇1 ·u1

For the second order terms the integration of the irrotationality condition ∂u2
∂ z = ∇1w1

gives

u2 = U2(x1, t1)− z∇1[∇1 · (hu1)]−
1
2

z2∇1(∇1u1)
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where U2(x1, t1) is an arbitrary function arises from the integration. Equation (3.53)

including the vertical acceleration is;

∂w1

∂ t1
+

1
ρ

∂ p2

∂ z
= 0

and using the boundary conditions at z = εη1 + ε2η2 this integrates to,

p2 = ρgη2 (x1, t1)+ z
∂

∂ t1
∇1 · (hu1)+

1
2

z2 ∂
∂ t1

∇1 ·u1

From equation (3.52) substituting u2 and p2 the second order momentum becomes,

∂U2

∂ t
+(u1 ·∇1)u1 +g∇1η2 = 0 (3.99)

The higher derivatives cancel out when the undisturbed free surface is taken as z = 0.

In continuity equation there are equivalent terms which also depend on the origin of

z. From ε2 (∫ η
−h udz

)
2 =

∫ 0
−h ε2u2dz+

∫ εη1
0 εu1dz; it is possible to define second order∫ η

−h udz as follows,

(∫ η

−h
udz
)

2
= η1u1 +hU2 +

1
2

h2∇1 [∇1 · (hu1)]−
1
6

h3∇1 (∇1 ·u1)

The second order terms of the continuity equation are;

∂η2

∂ t1
+∇1 ·

(∫ η

−h
udz
)

2
= 0 (3.100)

Since the second order terms have first order effects over moderate times, it is necessary

to include these effects. Hence, first order variables incorparating the second order

terms are used. The mean velocity can be defined as follows,

ū =

∫ η
−h udz
h+η

= εu1 + ε2U2 +
1
2

h∇1[∇1 · (hu1)]−
1
6

h2∇1(∇1 ·u1) (3.101)

By adding ε times equations (3.99) and (3.100) to equations (3.97) and (3.98)

respectively and by changing back to the variables x, y and t , the momentum and
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continuity equations in terms of ū are,

∂ ū
∂ t

+(ū ·∇)ū+g∇η =
1
2

h
∂
∂ t

∇ [∇ · (hū)]− 1
6

h2 ∂
∂ t

∇(∇ · ū) (3.102)

∂η
∂ t

+∇ · [(h+η) ū] = 0 (3.103)

where ū(x,y, t) is the two-dimensional depth averaged velocity field, and ∇ is the

two-dimensional gradient operator with respect to horizontal coordinates x and y.

These equations have been derived by assuming that the wave amplitude is small

compared to the depth and the depth is small compared to the wavelength. By

introducing ε and µ into these equations, these statements have been made precise.

3.5 Improved Boussinesq Equations

Dispersion relation of Peregrine’s system is an accurate approximation to Stokes first

order wave theory for very small values of the dispersion parameter µ . Witting [9] used

a different form of the exact, fully nonlinear, depth-integrated momentum equation for

one horizontal dimension in which velocity at the free surface is used. An expansion

of Padé series was used to relate the different velocity variables in the governing

equations, with the coefficients of the expansion determined to yield the best linear

dispersion characteristics [52]. By retaining terms up to the fourth order in dispersion,

Witting [9] obtained relatively accurate result for both deep and shallow water waves.

However, the model presented by Witting is only valid in water of constant depth [52].

Murray [56] and Madsen et al. [10] examined the dispersion properties of various

forms of the Boussinesq equations as well as Witting’s [9] Pade approximation of the

linear dispersion relation for Airy waves [52]. They have introduced an additional

third-order term to the momentum equation to improve the dispersion properties of

the Boussinesq equations. The third-order is derived from the long wave equations

and reduces to zero in shallow water, resulting in the standard form of the equations

for shallow water. The equations assume a constant water depth and, thus, are not

applicable to shoaling waves.

Beji and Nadaoka introduced a slightly different method to improve the dispersion

characteristics by a simple algebraic manipulation of Peregrine’s work for variable
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depth [12], [57]. On the other hand, Nwogu [13] defined the dependent variable

as the velocity at an arbitrary depth with a rational polynomial approximation to

the exact linear dispersion relationship without the need to add higher order terms

to the equations. Although the arbitrary location could be chosen to give a Pade

approximation to the linear dispersion relationship, Nwogu [13] chose an alternative

value which minimized the error in the linear phase speed over certain depth range [52].

Liu [16] and Wei et al. [58] presented a set of highly nonlinear Boussinesq-type

equations that not only can be applied to intermediate water depth but also are capable

of simulating wave propagation with strong nonlinear interaction. Wei et al. [58] have

also developed a high-order numerical scheme to solve these equations. Although

the higher-order Boussinesq equations for the improvement of the nonlinear and

dispersive properties in water waves have been successful in certain aspects, most of

them involved numerous additional derivatives and hence made the accurate numerical

solution increasingly difficult to obtain.

Although several studies has been done in order to use Boussinesq-type equation model

such that wave evolution from relatively deep water to the breaking point could be

accurately captured, the processes of runup and rundown are not included. In Figure

3.1 the validity zones of standard and improved Boussinesq equations can be seen.

Figure 3.1: Validity zone of different type of Boussinesq equations.

48



3.5.1 Derivation of Beji and Nadaoka’s improved Boussinesq equations

According to Beji and Nadaoka the second order terms are replaced with their

equivalents in the Boussinesq type equations as these equations are the result of an

ordering process with respect to two parameters, which are ε and µ2. As given by Beji

and Nadaoka [12] a simple addition and substraction in equation (3.102) gives

ut +(u ·∇)u+g∇η = (1+β )
h
2

∇[∇ · (hut)]−β
h
2

∇[∇ · (hut)]

−(1+β )
h2

6
∇(∇ ·ut)+β

h2

6
∇(∇ ·ut) (3.104)

where β is a scalar to be determined from the dispersion relation. Instead of a full

replacement, a partial replacement of the dispersion terms are made so a form with

better dispersion characteristics is obtained.

Using ut =−g∇η for replacing the terms proportional to β gives

ut +(u ·∇)u+g∇η = (1+β )
h
2

∇[∇ · (hut)]+βg
h
2

∇[∇ · (h∇η)]

−(1+β )
h2

6
∇(∇ ·ut)−βg

h2

6
∇(∇2η) (3.105)

which is a momentum equation with mixed dispersion terms. Setting β = 0 recovers

the original equation, while β = −1 corresponds to replacing ut with −g∇η in

equation (3.102). Equations (3.103) and (3.105) constitute the improved Boussinesq

Equations.

3.5.2 Specification of dispersion parameter

Linearized 1-D Boussinesq Equations for mildly varying depth is formulated as

follows. The continuity equation in expanded form

∂η
∂ t

+
∂h
∂x

u+h
∂u
∂x

= 0 (3.106)
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The momentum equation can be expanded as

∂u
∂ t

+g
∂η
∂x

= h
∂h
∂x

∂ 2u
∂x∂ t

+
h2

3
∂ 3u

∂x2∂ t
(3.107)

where h∂h
∂x

∂ 2u
∂x∂ t is the linear shoaling term while h2

3
∂ 3u

∂x2∂ t is the linear dispersing term.

Linearized 1-D Boussinesq Equations for constant depth simplify to the following

equations.

∂η
∂ t

+h
∂u
∂x

= 0 (3.108)

∂u
∂ t

+g
∂η
∂x

=
h2

3
∂ 3u

∂x2∂ t
(3.109)

In order to obtain the combined form of the 1-D Boussinesq Equations, linearized

relations ux =−1
hηt ,uxxt =−1

hηxtt ,uxxxt =−1
hηxxtt and uxt =−1

hηtt are considered.

Partial differentiation of momentum equation with respect to x gives;

uxt +gηxx =
h2

3

(
−1

h
ηxxtt

)
(3.110)

Substituting the above expressions into equation (3.110) leads to,

−1
h

ηtt +gηxx =
h2

3

(
−1

h
ηxxtt

)

ηtt −ghηxx =
h2

3
ηxxtt (3.111)

Finally, combined form of the 1-D Boussinesq Equations for constant depth is obtained

as,

∂ 2η
∂ t2 −gh

∂ 2η
∂x2 =

h2

3
∂ 4η

∂x2∂ t2 (3.112)

where h2

3
∂ 4η

∂x2∂ t2 is the linear dispersion depth. Water waves of different wave lengths

travel with different phase speeds, a phenomenon known as frequency dispersion.

For the case of infinitesimal wave amplitude, the terminology is linear frequency
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dispersion. The frequency dispersion characteristics of a Boussinesq-type of equation

can be used to determine the range of wavelengths for which it is a valid approximation.

Assume η = η0ei(kx±ωt) so that ηtt = −ω2η0ei(kx±ωt), ηxx = −k2η0ei(kx±ωt) and

ηxxtt = k2ω2η0ei(kx±ωt). If we sustitute the above expressions into (3.112) it becomes

−ω2 −gh
(
−k2)= h2

3
(
k2ω2) (3.113)

Rearranging this equation yields

ω2
(

1+
k2h2

3

)
= ghk2 (3.114)

which can be rewritten as,

ω2 =
k2

1+ k2h2

3

gh ≃ k2
(

1− k2h2

3

)
gh (3.115)

since (1+µ2)
−1 ≈ 1− µ2 for small values of µ2. For not so shallow water waves

tanh(kh)≈ kh− k3h3

3 which yields

ω2 = gk
(

kh− k3h3

3

)

ω2 = gk2h
(

1− k2h2

3

)

Since ω = kc,

k2c2 = gk2h
(

1− k2h2

3

)

c =
√

gh√
1+ k2h2

3

≈
√

gh

√(
1− k2h2

3

)
(3.116)

Here k2h2

3 shows the correction to the wave celerity due to the inclusion of the weak

dispersion effect. Considering the improved Boussinesq equations, in linearized forms
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Figure 3.2: Dispersion curves for various values of dispersion parameter β compared
with linear theory.

equations (3.103) and (3.105) yield the following dispersion relation evaluated by Beji

and Nadaoka [12]:

ω2

gk
=

kh(1+βk2h2/3)
[1+(1+β )k2h2/3]

(3.117)

where ω is the wave frequency, k2 = k2
x + k2

y and kx, ky are the components of the

wave number vector. Equation (3.117) is specified according to matching the resulting

dispersion relation with a second order Padé expansion of the linear theory dispersion

and β is determined from this second order Padé expansion of the linear theory

dispersion relation ω2/gk = tanhkh:

ω2

gk
=

kh+ k3h3/15
1+2k2h2/5

(3.118)

In order that Equation (3.117) be identical with Equation (3.118) β should be set

to 1/5. Figure (3.2) compares various values of dispersion parameters with the

exact expression of linear theory. Among these asymptotic expansions, the one

corresponding the Padé type expansion is the best. Thus, when β = 1/5, the model

may propagate relatively shorter waves (h/L = 1) with acceptable errors in amplitude

and celerity.
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4. A NEW DISCRETIZATION SCHEME FOR 1-D and 2-D IMPROVED
BOUSSINESQ EQUATIONS

The finite difference method is the most natural way of solving a PDE directly in

an approximate manner. The idea behind this method is to discretize the continuous

space and time into a finite number of discrete grid points and time steps, and then to

approximate the local derivatives at these grid points with finite difference schemes.

There are two approaches used in numerical analysis for obtaining numerical solutions

of time-dependent ordinary and partial differential equations: explicit and implicit

methods. Explicit methods calculate the state of a system at a later time directly from

the state of the system at the current time, while implicit methods do the same by

requiring the solution of a matrix equation at each new time level. The advantages and

disadvantages of these two approaches are summarized as follows.

• Explicit Approach

– Advantage: Relatively simple to set up and program

– Disadvantage: For a given ∆x, ∆t must be less than some limit imposed

by stability constraints. In many cases, ∆t must be very small to maintain

stability; this can result in long computer running times to make calculations

over a given interval of t.

• Implicit Approach

– Advantage: Stability can be maintained over much larger values of ∆t, hence

using considerably fewer time steps to make calculations over a given interval

of t. This result in less computer time.

– Disadvantage: More complicated to set up and program.

– Disadvantage: Since matrix manipulations are usually required at each time

step, the computer time per time step is much larger than in the explicit

approach.
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Figure 4.1: The Arakawa-C grid.

– Disadvantage: Since large ∆t can be taken, truncation error is larger, and

the use of implicit methods to follow the exact transients (time variations

of the independent variable) may not be as accurate as an explicit approach.

However, for a time-dependent solution in which the steady state is the desired

result, this relative time-wise inaccuracy is not important.

For numerical modeling, the discretization of the variables u, v and η are necessary in

order to solve momentum and continuity equations. Arakawa C grid which is shown

in Figure (4.1), is the most appropriate system for wave problems since it enables the

discretization of the continuity equation in the most accurate manner. Here, u, v and η

represent the velocity vectors and the free surface displacement, respectively.

4.1 A New Discretization Scheme for 1-D Improved Boussinesq Equations

The surface displacement is obtained from a semi-explicit discretization of the

continuity equation which is,

ηt +
∂
∂x

[(h+η)u] = 0 (4.1)
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Rearranging and discretizing the continuity equation gives,

ηk+1
i −ηk

i
∆t

+
1
2

h

[(
∂u
∂x

)k+1

+

(
∂u
∂x

)k
]

i− 1
2

=−hxu
k+ 1

2
i− 1

2
− ∂

∂x

(
ηiui− 1

2

)k+ 1
2 (4.2)

where i is the spatial increment index and k denotes the time level. It should be noted

that the discretization is centered at ηk+1/2
i . Multiplying both sides of the continuity

equation by ∆t and differentiating with respect to x gives:

(
∂η
∂x

)k+1

i
=

(
∂η
∂x

)k

i
− 1

2
h

[(
∂ 2u
∂x2

)k+1

+

(
∂ 2u
∂x2

)k
]

i− 1
2

∆t (4.3)

−2hx

(
∂u
∂x

)k+ 1
2

i− 1
2

∆t − ∂ 2

∂x2

(
ηiui− 1

2

)k+ 1
2 ∆t

The momentum equation which is solved for u is

ut +uux +gηx = (1+β )
h2

3
uxxt +(1+β )hhxuxt +gβ

h2

3
ηxxx +gβhhxηxx (4.4)
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Discretization of the momentum equation is given as follows with all spatial derivatives

being centered at the grid point where uk
i is located.

uk+1
i −uk

i
∆t

+
1
2

g

[(
∂η
∂x

)k+1

i+ 1
2 , j

+

(
∂η
∂x

)k

i+ 1
2 , j

]

= (1+β )
h2

3[
(uk+1

i+1 −2uk+1
i +uk+1

i−1 )− (uk
i+1 −2uk

i +uk
i−1)

∆x2∆t

]

+(1+β )hhx

[
(uk+1

i+1 −uk+1
i−1 )− (uk

i+1 −uk
i−1)

2∆x∆t

]

−u
k+ 1

2
i

(
∂ui

∂x

)k+ 1
2

+gβ
h2

3

ηk+ 1
2

i+1 −3ηk+ 1
2

i +3ηk+ 1
2

i−1 −ηk+ 1
2

i−2

∆x3


+gβhhx

ηk+ 1
2

i−2 −ηk+ 1
2

i+1 −ηk+ 1
2

i −ηk+ 1
2

i−1

2∆x2

 (4.5)
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Substituting
(

∂η
∂x

)k+1

i, j
from equation (4.3) into the discretized x-momentum

equation (4.5) and multiplying by ∆t gives

−
[

1
4

gh
∆t2

∆x2 +
(1+β )

3
h2

∆x2 −
(1+β )

2
hhx

∆x
− 1

4
ghx

∆t2

∆x

]
uk+1

i−1

+

[
1+

1
2

gh
∆t2

∆x2 +
2(1+β )

3
h2

∆x2

]
uk+1

i

−
[

1
4

gh
∆t2

∆x2 +
(1+β )

3
h2

∆x2 +
(1+β )

2
hhx

∆x
+

1
4

ghx
∆t2

∆x

]
uk+1

i+1

=

[
1
4

gh
∆t2

∆x2 −
(1+β )

3
h2

∆x2 +
(1+β )

2
hhx

∆x
− 1

4
ghx

∆t2

∆x

]
uk

i−1

+

[
1− 1

2
gh

∆t2

∆x2 +
2(1+β )

3
h2

∆x2

]
uk

i

+

[
1
4

gh
∆t2

∆x2 −
(1+β )

3
h2

∆x2 −
(1+β )

2
hhx

∆x
+

1
4

ghx
∆t2

∆x

]
uk

i+1

−g

(
∂ηi+ 1

2

∂x

)k

∆t +
1
2

g
∂ 2

∂x2 (η
k+ 1

2
i+ 1

2
u

k+ 1
2

i )∆t2 −u
k+ 1

2
i

(
∂ui

∂x

)k+ 1
2

∆t

+
1
2

gβhhx
∆t

∆x2 (η
k+ 1

2
i+2 −ηk+ 1

2
i+1 −ηk+ 1

2
i +ηk+ 1

2
i−1 )

+
1
3

gβh2 ∆t
∆x3 (η

k+ 1
2

i+2 −3ηk+ 1
2

i+1 +3ηk+ 1
2

i −ηk+ 1
2

i−1 ) (4.6)

which is essentially a tridiagonal matrix system for uk+1
i−1 , uk+1

i and uk+1
i+1 .

The numerical tests presented in Figure 4.2 are done using the above discretization

scheme. Figure 4.2 shows computations using two different bathymetries for linearized

original Boussinesq equations (β = 0) and the linearized improved Boussinesq

equations (β = 1/5). For varying bathymetries Green’s formula [51] predicts an

amplitude variation for long waves according to

a(x) = a0

√√
h0/h(x) (4.7)

where a0 is the wave amplitude and h0 is the water depth at x = 0.
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In Figure 4.2 all the wave profiles are compared with the theoretical formula of Green.

The computational wave amplitudes are almost perfectly matching with Green’s

formula.

4.2 A New Discretization Scheme for 2-D Improved Boussinesq Equations

For 2-D Boussinesq equations the x-momentum equation is solved for u, while the

y-momentum equation is solved for v. The surface displacement is obtained from

a semi-explicit discretization of the continuity equation. Consider the continuity

equation for 2-D case:

ηt +
∂
∂x

[(h+η)u]+
∂
∂y

[(h+η)v] = 0 (4.8)

Rearranging and discretizing the continuity equation in time only gives,

ηk+1
i, j −ηk

i, j

∆t
+

1
2

h

[(
∂u
∂x

)k+1

+

(
∂u
∂x

)k
]

i− 1
2 , j

=−

hxu
k+ 1

2
i− 1

2 , j
+hyv

k+ 1
2

i, j− 1
2
+

∂
∂x

(ηu)k+ 1
2 +

∂
∂y

(ηv)k+ 1
2 +h

∂v
k+ 1

2
i, j− 1

2

∂y

 (4.9)

where i is the spatial incremental index in the x-direction, j is the spatial incremental

index in the y-direction and k is the incremental index in time.
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(a) Parabolic bathymetry for β = 0
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/a

0
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(b) Parabolic bathymetry for β = 1/5
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η
/a

0

(c) Sinusoidally changing bathymetry for β = 0

η
/a

0

x

(d) Sinusoidally changing bathymetry for β = 1/5

Figure 4.2: Numerical tests for 1-D Boussinesq equations for varying bathymetries.
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For later use, multiplying both sides of the continuity equation by ∆t and differentiating

with respect to x gives

(
∂η
∂x

)k+1

i, j
=

(
∂η
∂x

)k

i, j
− 1

2
h

[(
∂ 2u
∂x2

)k+1

+

(
∂ 2u
∂x2

)k
]

i− 1
2 , j

∆t

−2hx

(
∂u
∂x

)k+ 1
2

i− 1
2 , j

∆t −hy

(
∂v
∂x

)k+ 1
2

i, j− 1
2

∆t

−hx

(
∂v
∂y

)k+ 1
2

i, j− 1
2

−h
(

∂ 2v
∂x∂y

)k+ 1
2

i, j− 1
2

∆t

− ∂ 2

∂x2 (ηu)
k+ 1

2
i− 1

2 , j
∆t − ∂ 2

∂x∂y
(ηv)

k+ 1
2

i, j− 1
2

∆t (4.10)

Likewise, multiplying both sides of the continuity equation by ∆t and differentiating

with respect to y gives

(
∂η
∂y

)k+1

i, j
=

(
∂η
∂y

)k

i, j
− 1

2
h

[(
∂ 2v
∂y2

)k+1

+

(
∂ 2v
∂y2

)k
]

i− 1
2 , j

∆t

−2hy

(
∂v
∂y

)k+ 1
2

i− 1
2 , j

∆t −hx

(
∂u
∂y

)k+ 1
2

i, j− 1
2

∆t

−hy

(
∂u
∂x

)k+ 1
2

i, j− 1
2

∆t −h
(

∂ 2u
∂x∂y

)k+ 1
2

i, j− 1
2

∆t

− ∂ 2

∂x∂y
(ηu)

k+ 1
2

i− 1
2 , j

∆t − ∂ 2

∂y2 (ηv)
k+ 1

2
i, j− 1

2
∆t (4.11)
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The x momentum equation in 2-D form is given by

ut +uux + vuy +gηx = (1+β )
h2

3
uxxt +(1+β )hhxuxt

+(1+β )
h2

3
vxyt +

1
2
(1+β )hhxvyt

+
1
2
(1+β )hhyvxt +gβ

h2

3
ηxxx

+gβhhxηxx +gβ
h2

3
ηxyy

+
1
2

gβhhxηyy +
1
2

gβhhyηxy (4.12)

Discretization of the x momentum equation in time reads

uk+1
i, j −uk

i, j

∆t
+

1
2

g

[(
∂η
∂x

)k+1

+

(
∂η
∂x

)k
]

i+ 1
2 , j

= (1+β )
h2

3

[(
∂ 2u
∂x2

)k+1

−
(

∂ 2u
∂x2

)k
]

1
∆t

+(1+β )hhx

[(
∂u
∂x

)k+1

−
(

∂u
∂x

)k
]

1
∆t

−(uux)
k+ 1

2 − (vuy)
k+ 1

2 +(1+β )
h2

3
vxyt

+
1
2
(1+β )hhxvyt +

1
2
(1+β )hhyvxt

+gβ
h2

3
ηxxx +gβhhxηxx +gβ

h2

3
ηxyy +

1
2

gβhhxηyy

+
1
2

gβhhyηxy (4.13)
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Substituting
(

∂η
∂x

)k+1

i, j
from equation (4.10) into the time discretized x-momentum

equation (4.13) and multiplying by ∆t gives,

uk+1
i, j − uk

i, j −
1
4

gh

[(
∂ 2u
∂x2

)k+1

+

(
∂ 2u
∂x2

)k
]

∆t2 +g
(

∂η
∂x

)k

∆t

= (1+β )
h2

3

[(
∂ 2u
∂x2

)k+1

−
(

∂ 2u
∂x2

)k
]
+(1+β )hhx

[(
∂u
∂x

)k+1

+

(
∂u
∂x

)k
]

+
1
2

ghx

[(
∂u
∂x

)k+1

+

(
∂u
∂x

)k
]

∆t2 +
1
4

ghy

[(
∂v
∂x

)k+1

+

(
∂v
∂x

)k
]

∆t2

+
1
4

ghx

[(
∂v
∂y

)k+1

+

(
∂v
∂y

)k
]

∆t2 +
1
4

gh∆t2

[(
∂ 2v

∂x∂y

)k+1

+

(
∂ 2v

∂x∂y

)k
]

+(1+β )
h2

3
+

[(
∂ 2v

∂x∂y

)k+1

−
(

∂ 2v
∂x∂y

)k
]

+
1
2
(1+β )hhx

[(
∂v
∂y

)k+1

−
(

∂v
∂y

)k
]
+

1
2
(1+β )hhy

[(
∂v
∂x

)k+1

−
(

∂v
∂x

)k
]

+gβh∆t
[

h
3
(ηxxx +ηxyy)+hx

(
ηxx +

1
2

ηyy

)
+

1
2

hyηxy

]

+
1
2

g∆t2
[

∂ 2

∂x2 (ηu)k+ 1
2 +

∂ 2

∂x∂y
(ηv)k+ 1

2

]
− [(uux)

k+ 1
2 +(vuy)

k+ 1
2 ]∆t (4.14)
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Rearranging the equation (4.14) gives,

h
[

1
3
(1+β )h+

1
4

g∆t2
](

∂ 2u
∂x2

)k+1

+hx

[
(1+β )h+

1
2

g∆t2
](

∂u
∂x

)k+1

−uk+1
i, j

= h
[

1
3
(1+β )h− 1

4
g∆t2

](
∂ 2u
∂x2

)k

+hx

[
(1+β )h− 1

2
g∆t2

](
∂u
∂x

)k

−uk
i, j +g

(
∂η
∂x

)k

∆t − 1
2

hx

[
(1+β )h+

1
2

g∆t2
](

∂v
∂y

)k+1

+
1
2

hx

[
(1+β )h− 1

2
g∆t2

](
∂v
∂y

)k

− 1
2

hy

[
(1+β )h+

1
2

g∆t2
](

∂v
∂x

)k+1

+
1
2

hy

[
(1+β )h− 1

2
g∆t2

](
∂v
∂x

)k

−h
[

1
3
(1+β )h+

1
4

g∆t2
](

∂ 2v
∂x∂y

)k+1

+h
[

1
3
(1+β )h− 1

4
g∆t2

](
∂ 2v

∂x∂y

)k

−gβh∆t
[

h
3
(ηxxx +ηxyy)+hx

(
ηxx +

1
2

ηyy

)
+

1
2

hyηxy

]

−1
2

g∆t2
[

∂ 2

∂x2 (ηu)k+ 1
2 +

∂ 2

∂x∂y
(ηv)k+ 1

2

]
+[(uux)

k+ 1
2 +(vuy)

k+ 1
2 ]∆t (4.15)

The y momentum equation in 2-D form is given by

vt +uvx + vvy +gηy = (1+β )
h2

3
vyyt +(1+β )hhyvyt

+(1+β )
h2

3
uxyt +

1
2
(1+β )hhxuyt

+
1
2
(1+β )hhyuxt +gβ

h2

3
ηyyy

+gβhhyηyy +gβ
h2

3
ηxxy

+
1
2

gβhhyηxx +
1
2

gβhhxηxy (4.16)
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Discretization of the y momentum equation reads

vk+1
i, j − vk

i, j

∆t
+

1
2

g

[(
∂η
∂y

)k+1

+

(
∂η
∂y

)k
]

i+ 1
2 , j

= (1+β )
h2

3

[(
∂ 2v
∂y2

)k+1

−
(

∂ 2v
∂y2

)k
]

1
∆t

+(1+β )hhy

[(
∂v
∂y

)k+1

−
(

∂v
∂y

)k
]

1
∆t

−(uvx)
k+ 1

2 − (vvy)
k+ 1

2 +(1+β )
h2

3
uxyt

+
1
2
(1+β )hhxuyt +

1
2
(1+β )hhyuxt

+gβ
h2

3
ηyyy +gβhhyηyy +gβ

h2

3
ηxxy +

1
2

gβhhyηxx

+
1
2

gβhhxηxy (4.17)
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Substituting
(

∂η
∂y

)k+1

i, j
from equation (4.11) into the discretized y-momentum

equation (4.17) and multiplying by ∆t gives,

vk+1
i, j − vk

i, j −
1
4

gh

[(
∂ 2v
∂y2

)k+1

+

(
∂ 2v
∂y2

)k
]

∆t2 +g
(

∂η
∂y

)k

∆t

= (1+β )
h2

3

[(
∂ 2v
∂y2

)k+1

−
(

∂ 2v
∂y2

)k
]
+(1+β )hhy

[(
∂v
∂y

)k+1

+

(
∂v
∂y

)k
]

+
1
2

ghy

[(
∂v
∂y

)k+1

+

(
∂v
∂y

)k
]

∆t2 +
1
4

ghx

[(
∂u
∂y

)k+1

+

(
∂u
∂y

)k
]

∆t2

+
1
4

ghy

[(
∂u
∂x

)k+1

+

(
∂u
∂x

)k
]

∆t2 +
1
4

gh∆t2

[(
∂ 2u

∂x∂y

)k+1

+

(
∂ 2u

∂x∂y

)k
]

+(1+β )
h2

3
+

[(
∂ 2u

∂x∂y

)k+1

−
(

∂ 2u
∂x∂y

)k
]

+
1
2
(1+β )hhx

[(
∂u
∂y

)k+1

−
(

∂u
∂y

)k
]
+

1
2
(1+β )hhy

[(
∂u
∂x

)k+1

−
(

∂u
∂x

)k
]

+gβh∆t
[

h
3
(ηyyy +ηxxy)+hy

(
ηyy +

1
2

ηxx

)
+

1
2

hxηxy

]

+
1
2

g∆t2
[

∂ 2

∂y2 (ηv)k+ 1
2 +

∂ 2

∂x∂y
(ηu)k+ 1

2

]
− [(uvx)

k+ 1
2 +(vvy)

k+ 1
2 ]∆t (4.18)
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Rearranging equation (4.18) given above,

h
[

1
3
(1+β )h+

1
4

g∆t2
](

∂ 2v
∂y2

)k+1

+hy

[
(1+β )h+

1
2

g∆t2
](

∂v
∂y

)k+1

− vk+1
i, j
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1
3
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4
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∂ 2v
∂y2
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+hy
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∂y
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∂η
∂x
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2

hy
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1
2

g∆t2
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∂u
∂x

)k+1

+
1
2

hy

[
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2
g∆t2

](
∂u
∂x

)k
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2

hx
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1
2

g∆t2
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∂u
∂y

)k+1
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2

hx

[
(1+β )h− 1

2
g∆t2

](
∂u
∂y

)k

−h
[

1
3
(1+β )h+

1
4

g∆t2
](

∂ 2u
∂x∂y

)k+1

+h
[

1
3
(1+β )h− 1

4
g∆t2

](
∂ 2u

∂x∂y

)k

−gβh∆t
[

h
3
(ηyyy +ηxxy)+hy

(
ηyy +

1
2

ηxx

)
+

1
2

hxηxy

]

−1
2

g∆t2
[

∂ 2

∂y2 (ηv)k+ 1
2 +

∂ 2

∂x∂y
(ηu)k+ 1

2

]
+[(uvx)

k+ 1
2 +(vvy)

k+ 1
2 ]∆t (4.19)

The numerical solution proceeds as follows. First, the provisional values of η are

computed from the continuity equation (4.9) using the old time velocity values. The

discretized x- and y-momentum equations (4.15) and (4.19) yield a tridiagonal matrix

system for the velocities u and v at new time level. For the x-sweep, the new time

level values of vk+1s are treated as known by using the last computed values so that

uk+1s are the only unknowns. The resulting matrix system is solved by Thomas

Algorithm. Similarly for the y-sweep, the vk+1s are the only unknowns to be solved.

Finally the continuity equation (4.9) is used again to obtain the improved values of η

using the newly computed uk+1 and vk+1 values. At each time step the procedure

is iterated thrice, which is found to be sufficient for reliable results. For a more

precise approach the successive values of the variables may be compared according

to a convergence criterium. Nevertheless the numerical experiments do not justify the
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additional computational load as no appreciable improvement in the results is observed

with increasing iteration number.

The performance of the non-reflective boundaries is checked by a ring test which

reveals the symmetrical accuracy of the model. The ring test for all the modes (long

wave, classical Boussinesq and Boussinesq with Padé (2,2)) of the numerical scheme

are performed; however, only the test for the improved Boussinesq model is shown

here. The computational domain is taken as 2×2 m with h = 0.1 m water depth. The

region is discretized by 50 points along both x- and y-axes. Time step ∆t = 1/50 s, and

the simulations are shown for t = 0.2 s, 0.4 s and 0.5 s in Figure 4.3 and for t = 0.6 s,

0.8 s and 1.0 s in Figure 4.4. The contour plots show nearly perfect symmetry.
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(a) t = 0.2s (b) t = 0.2s

(c) t = 0.4s (d) t = 0.4s

(e) t = 0.6s (f) t = 0.6s

Figure 4.3: Ring test for 2-D Boussinesq equations with β = 1/5 at t = 0.2, t = 0.4
and t = 0.5 seconds. Left column: perspective views, right column:
contour graphics.
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(a) t = 0.6s (b) t = 0.6s

(c) t = 0.8s (d) t = 0.8s

(e) t = 1.0s (f) t = 1.0s

Figure 4.4: Ring test for 2-D Boussinesq equations with β = 1/5 at t = 0.6, t = 0.8
and t = 1.0 seconds. Left column: perspective views, right column:
contour graphics.
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5. SOLITARY WAVES AND CNOIDAL WAVES

5.1 Theoretical Description of Solitary Waves

The most elementary analytical solution of Boussinesq equations is the solitary wave

[59], [60], [61]. A solitary wave is a wave with only crest and a surface profile lying

entirely above the still water level. It is neither oscillatory nor does it exhibit a trough.

The solitary wave can be defined as a wave of translation since the water particles are

displaced at a distance in the direction of wave propagation as the wave passes [1]. The

initial observation of a solitary wave in shallow water was made by John Scott Russell.

In Russells [59] own words: "I was observing the motion of a boat which was rapidly

drawn along a narrow channel by a pair of horses, when the boat suddenly stopped-not

so the mass of water in the channel which it had put in motion; it accumulated round

the prow of the vessel in a state of violent agitation, then suddenly leaving it behind,

rolled forward with great velocity, assuming the form of a large solitary elevation, a

rounded, smooth and well-defined heap of water, which continued its course along the

channel apparently without change of form or diminution of speed. I followed it on

horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour,

preserving its original figure some thirty feet long and a foot to a foot and a half in

height. Its height gradually diminished, and after a chase of one or two miles I lost it in

the windings of the channel. Such, in the month of August 1834, was my first chance

interview with that singular and beautiful phenomenon which I have called the Wave

of Translation." Russell built a water tank to visualize this wave and made research

about the properties of the solitary waves.

Boussinesq [6] , Rayleigh [62], Keller [63] and Munk [64] performed pioneering

theoretical studies of solitary waves [1]. In 1895, the Dutch professor Diederik

Korteweg and his doctoral student Gustav de Vries [53] derived a partial differential

equation which models the solitary wave that Russell had observed. So called the

Korteweg-de Vries (KdV) equation had already appeared in studies on water waves
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published by Boussinesq [6] and Rayleigh [62]. More recent analyses of solitary waves

were performed by Fenton [60], Longuet-Higgins and Fenton [65], and Byatt-Smith

and Longuet-Higgins [66]. In 1965, Zabusky and Kruskal [67] simulated the collision

of solitary waves in a nonlinear crystal lattice and observed that they retain their

shapes and speed after collision. Interacting solitary waves experience a phase shift,

advancing the faster and retarding the slower. In analogy with colliding particles, the

word "solitons" is used to describe these elastically colliding waves. A narrative of the

discovery of solitons can be found in Zabusky [68]. A true solitary wave cannot be

formed in nature because there are usually small dispersive waves at the trailing edge

of the wave. On the other hand, long waves such as tsunamis and waves resulting from

large displacements of water caused by such phenomena as landslides and earthquakes

sometimes behave approximately like solitary waves. Also, when an oscillatory wave

moves into shallow water, it may often be approximated by a solitary wave [64]. In this

situation, the wave amplitude becomes progressively higher, the crests become shorter

and more pointed, and the trough becomes longer and flatter. Fenton’s solution gives

the maximum solitary wave height, Hmax = 0.85h and maximum propagation speed

c2
max = 1.7gh. Earlier research studies using the solitary waves obtained Hmax = 0.78h

and c2
max = 1.56gh where H is wave height, h is water depth, c is wave speed and

g is gravity of acceleration. For calculating the height of breaking waves in shallow

water, usually the maximum solitary-amplitude wave is used. However, other studies

has shown that the highest solitary wave is not necessarily the most energetic [69].

Only one parameter, wave steepness, ε = H/h is needed to specify a solitary wave

because both wavelength and period of solitary waves are infinite. To lowest order,

the solitary wave profile varies as sech2q [70], where q = (3H/h)1/2(x− ct)/2h. The

free-surface elevation, particle velocities, and pressure may be expressed respectively

as follows [1];

η
H

=
u

√
ghH

h
(5.1)

u√
gh

H
h
=

△p
ρgH

(5.2)

△p
ρgH

= sech2q (5.3)
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where △p is the difference in pressure at a point under the wave due to the presence

of the solitary wave. To second approximation, this pressure difference is given by

△p
ρgH

= 1− 3
4

H
h

[
1−
(

Ys

h

)2
]

(5.4)

where Ys is the height of the surface profile above the bottom. Since the solitary wave

has horizontal particle velocities only in the direction of wave advance, there is a net

displacement of fluid in the direction of wave propagation.

The solitary wave is a limiting case of the cnoidal wave. Cnoidal waves may

be viewed as the nonlinear counterparts of the sinusoidal waves in shallow water.

When k2 = 1,K(k) = K(1) = ∞, and the elliptic cosine reduces to the hyperbolic

secant function and the water surface Ys measured above the bottom reduces to

Ys = h+Hsech2

[√
3
4

H
h3 (x− ct)

]
(5.5)

and the free surface is given by,

η = Hsech2

[√
3
4

H
h3 (x− ct)

]
(5.6)

5.2 Numerical Simulations of Solitary Waves

The numerical tests presented here are done using the numerical scheme developed

in Section 3. The water depth is taken constant with h = 1 m and both the original

(β = 0) and the improved Boussinesq equations (β = 1/5) are used for comparing the

difference between analytical and numerical solutions. As it can be seen in Figures 5.1

and 5.2, except for a phase difference especially for steeper waves, the analytical

and computational results agree fairly well for both β = 0 and β = 1/5. From

analytical point of view, the solitary waves corresponding to the improved Boussinesq

equations should be slightly different. Differences in height between analytical and

computational results are shown in Figure 5.3 for β = 0 by calculating the relative

error percentage for different ε values. It is observed that as nonlinearity parameter,
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(a) β = 0, ε = 0.1

(b) β = 0, ε = 0.2

(c) β = 0, ε = 0.3

Figure 5.1: Solitary waves for different wave heights ε = H/h = 0.1,0.2,0.3 when
β = 0.
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(a) β = 1/5, ε = 0.1

(b) β = 1/5, ε = 0.2

(c) β = 1/5, ε = 0.3

Figure 5.2: Solitary waves for different wave heights ε = H/h = 0.1,0.2,0.3 when
β = 1/5.
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Figure 5.3: Relative error of the calculated wave height versus nonlinearity parameter.

ε , increases, the relative error percentage increases up to 20% for ε = 0.4. Note that

ε = 0.78 is the theoretical wave breaking limit.

5.3 Theoretical Description of Cnoidal Waves

Long, finite-amplitude waves of permanent form propagating in shallow water may be

described by cnoidal wave theory. The existence in shallow water of such long waves

of permanent form may have first been recognized by Boussinesq [6]. However, the

theory was originally developed by Korteweg and de Vries [53] and it is applicable to

finite-amplitude shallow-water waves and includes both nonlinearity and dispersion

effects [1]. Although cnoidal theory is based on the Boussinesq equations, it is

restricted to waves progressing in only one direction. The theory is defined in terms

of the Jacobian elliptic function, cn, thus it is called cnoidal waves. In Figure 5.4 the

schematic comparisons are given for different wave theories. It is seen that the linear

profile is symmetric about the still water level while the Stokes wave has higher more

peaked crests and shorter, flatter troughs. The cnoidal wave crests are higher above the

still water level than the troughs are below the still water level. Compared to Stokes

waves, cnoidal troughs are longer and flatter and crests are sharper and steeper. The

solitary wave which is describes in the previous section has all of its profile above the

still water level. Validity range of cnoidal theory is approximately h/L < 1/8 when

the Ursell number UR > 20. As wavelength becomes long and approaches infinity,

cnoidal wave theory reduces to the solitary wave theory. In addition, as H/h ratio
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Figure 5.4: Wave profiles of different progressive waves, adapted from Coastal
Engineering Manual [1].

decreases, the wave profile approaches the sinusoidal profile predicted by the linear

theory [1]. Keulegan and Patterson [71], Keller [63], Laitone [30] developed first-

through third-order approximations to the cnoidal wave theory. However, Wiegel’s

study [72] summarized the principal results in a more practical way by presenting

such wave characteristics as length, celerity, and period in tabular and graphical form.

Furthermore, Wiegel [70] simplified the previous works for engineering applications.

Additional improvements to the theory have been made by Miles [47] and Fenton

[60], [73]. Fenton [73] used a Rayleigh-Boussinesq series in order to develop a

generalized recursion relationship for the KdV solution of any order. The theoretical

representations are given by Fenton [73], Fenton and McKee [74] and Miles [47].

Wave characteristics are described in terms of the modules k of the elliptic integrals

where k itself has no physical significance, it is used to express the relationships

between various wave parameters. The ordinate of the water surface ys measured above

the bottom is given by

ys = yt +Hcn2
[
2K(k)

( x
L
− t

T

)
,k
]

(5.7)
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where yt is the distance from the bottom to the wave trough, H is wave height between

trough and crest, cn is elliptic cosine function, K(k) is complete elliptic integral of the

first kind and k modulus of the elliptic integrals. The elliptic cosine function cn is a

periodic function where cn2[2K(k)(x/L)− (t/T )]has a maximum amplitude equal to

unity. The modulus k is defined within the range 0 and 1. Note that when k = 0, the

wave profile becomes a sinusoid, as in the linear theory; when k = 1, the wave profile

becomes that of a solitary wave [1]. The distance from the bottom to the wave trough

yt is,

yt

h
=

yc

h
− H

h
=

16H2

3L2 K(k)[K(k)−E(k)]+1− H
h

(5.8)

where yc is the distance from the bottom to the crest, and E(k) is the complete elliptic

integral of the second kind. Wavelength, L is expressed as,

L =

√
16H3

3H
kK(k) (5.9)

Similarly, the wave period, T is expressed by means of elliptic integrals.

T
√

g
h
=

√
16yt

3H
h
yt

 kK(k)

1+ H
ytk2

(
1
2 −

E(k)
K(k)

)
 (5.10)
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6. 1-D LINEAR SHALLOW WATER WAVES FORCED BY A MOVING
PRESSURE FIELD

There are different techniques for modeling a specific wave system; namely, analytical

wave modeling, empirical wave modeling, physical wave modeling, and numerical

wave modeling. Since every method has their own advantage and limitation, the

purpose of their application should be chosen carefully. A physical wave system in

nature is very complicated. However, it is possible to capture the most important

characteristic of this wave system by analyzing it with a simplified theoretical model.

Waves propagating in shallow water, kh< π/10, are often called long waves or shallow

water waves. Tidal waves, tsunamis and other waves with extremely long periods

and wave lengths are shallow water waves, even in the deep ocean [2]. Linearized

continuity equation (2-D) without a moving pressure field can be written as,

∂ (uh)
∂x

+
∂ (vh)

∂y
=−∂η

∂ t
(6.1)

Linearized frictionless long wave equations of motion (2-D) are,

∂u
∂ t

=−g
∂η
∂x

(6.2)

∂v
∂ t

=−g
∂η
∂y

(6.3)

With the condition of bottom being horizontal, cross differentiating to eliminate u and

v, the equations yield

c2
(

∂ 2η
∂x2 +

∂ 2η
∂y2

)
=

∂ 2η
∂ t2 (6.4)

where c =
√

gh. This is known as the wave equation which is used in several fields

such as membrane vibrations and planar sound waves [2]. The solution of this equation
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for a progressive long wave is,

η =
H
2

cos(kx−ωt) (6.5)

Substituting into the x− momentum equation into equation (6.2) yields,

∂u
∂ t

= g
H
2

k sin(kx−ωt) (6.6)

or

u = g
H
2ω

k cos(kx−ωt) =
η
h

c (6.7)

Substituting into the continuity equation yields c2 = gh which corresponds to the long

wave form of the dispersion relationship. The reason of considering linearized long

wave equations is to facilitate analytical solutions. In this sense, it is assumed that u

and η and their products are small.

6.1 Analytical Solution of 1-D Linear Shallow Water Waves Forced By A Moving

Pressure Field

For testing the accuracy of numerically simulated waves due to a moving pressure field,

a 1-D case with known analytical solution is considered. The analytical solution for the

1-D linearized long wave equations is recapitulated first and then comparisons with the

numerical solutions are given. The linearized long wave equations for constant depth

may be written as

ηt +hux = 0

ut +gηx =− 1
ρ

px (6.8)
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where p is the applied surface pressure. In absence of any forcing function (p = 0) the

above equations have the free wave solutions

η1 = a1 f (x− ct)

η2 = a2 f (x+ ct) (6.9)

u1 =
c
h

a1 f (x− ct)

u2 =−c
h

a2 f (x+ ct) (6.10)

where f (x, t) is an arbitrary function, a1 and a2 are arbitrary constants and c =
√

gh

is the shallow water wave celerity. If the pressure field is defined as p = p0 f (x− vt)

with v being the speed of the pressure field in the positive x-direction then the forced

system has a solution of the form

η3 = a3 f (x− vt)

u3 = b3 f (x− vt) (6.11)

with a3 and b3 to be determined from the wave equations. Substituting η3, u3 and p

into equation (6.8) gives

a3 =
−hp0

ρ(c2 − v2)

b3 =
−vp0

ρ(c2 − v2)
(6.12)

Finally, applying the initial condition that the total displacement and velocity must

separately be zero at t = 0,

η1 +η2 +η3 = 0

u1 +u2 +u3 = 0 (6.13)
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gives

a1 =
(c+ v)hp0

2ρc(c2 − v2)

a2 =
(c− v)hp0

2ρc(c2 − v2)
(6.14)

The final solution is then

η =
hp0

2ρc(c2 − v2)
[(c+ v) f (x− ct)+(c− v) f (x+ ct)−2c f (x− vt)] (6.15)

and

u =
p0

2ρ(c2 − v2)
[(c+ v) f (x− ct)− (c− v) f (x+ ct)−2v f (x− vt)] (6.16)

Note that when t = 0 both η and u become identically zero.

6.2 Numerical Solution of 1-D Linear Shallow Water Waves Forced By A Moving

Pressure Field

For the test case the pressure function f is selected in the form of a Gaussian

distribution function as f (χ) = exp
[
−(χ/250)2

]
where χ = x− vt. p0 = −5000 Pa,

ρ = 1000 kg/m3, g = 9.81 m/s2 and the water depth is h = 20 m so that c =
√

gh =

14 m/s. The length of the computational domain is taken 20000 m, grid size 20 m

and time step 1 s. The initial location of the pressure field is in the middle of the

computational domain, x0 = 10000 m. Figure 6.1 compares the analytical solution

with the numerical solution of long wave equations for v = 0, 10, and 18 m/s cases,

which corresponds to the depth-based Froude numbers Fr = v/c = v/
√

gh = 0.0, 0.7,

and 1.3 approximately.
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(a) t = 50 s, v = 0 m/s (b) t = 100 s, v = 0 m/s

(c) t = 50 s, v = 10 m/s (d) t = 100 s, v = 10 m/s

(e) t = 50 s, v = 18 m/s (f) t = 100 s, v = 18 m/s

Figure 6.1: Comparison of numerical and analytical solutions of linear shallow water
wave equations for a moving pressure with v = 0 m/s, v = 10 m/s and
v = 18 m/s at t = 50 s (left column) and t = 100 s (right column).

The same comparisons using the Boussinesq equations with β = 1/5 instead of the

long wave equations are made in Figure 6.2. As seen from the figures numerical

simulations in both cases agree well with the analytical solution derived from the

linearized long wave equations.
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(a) t = 50 s, v = 0 m/s (b) t = 100 s, v = 0 m/s

(c) t = 50 s, v = 10 m/s (d) t = 100 s, v = 10 m/s

(e) t = 50 s, v = 18 m/s (f) t = 100 s, v = 18 m/s

Figure 6.2: Comparison of analytical solution with 1-D Boussinesq solution generated
by a moving pressure with v = 0 m/s, v = 10 m/s and v = 18 m/s for
β = 1/5 at t = 50 s (left column) and t = 100 s (right column).

In Figure 6.3 the average (using 500 points) error percentages between analytical and

computational surface elevations are shown for five different pressure field speeds V =

5,10,15,20 and 25 m/s which corresponds to depth Froude numbers, 0.4, 0.7, 1.1, 1.4

and 1.8 at t = 50 s when β = 1/5.
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Figure 6.3: Average relative error of the calculated and analytical surface elevation
versus Froude number.

Results show that around Froude number 1, the relative error percentage takes its

maximum value and as Froude number differs from 1, the error percentage decreases.

Having thus established a certain degree of confidence in the numerical scheme

regarding the simulation of surface-forced waves the scheme may be used for 2-D

simulations.
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7. SHIP GENERATED WAVES

As a body moves on the water surface, pressure varies and produces a series of waves

within the interface of water and air. The moving point source in deep water generates

two sets of waves that move forward and out from the disturbance, which is called

divergent waves and the other set of waves moving in the direction of the disturbance

is called transverse waves [75].

Figure 7.1: Kelvin wave pattern and Kelvin wedge.

7.1 Kelvin Waves for Infinite Depth

In 1887, Lord Kelvin [76] described the wave system produced by a moving vessel in

deep water. This wave pattern is confined to a wedge shape known as the Kelvin wedge

as seen in Figure 7.1. The envelope of these waves stands at a fixed angle of 19o28′.

Diverging waves propagates at an angle of θ = 90 to 35o from the vessel’s track but

transverse waves propagates at an angle of θ = 35o to 0o from the vessels track. Under

steady conditions, the transverse waves along the vessels track travel at the same speed

as the vessel [77]. Lets assume a single small disturbance that generates of waves with

87



amplitude a. Considering that the coordinate system is moving with the disturbance,

the free surface profile will be,

η = acos(kx+α) (7.1)

where k = g/v2 and v denotes the velocity of the body and phase angle α considered

to be not important. As in kelvin ship waves, surface wave systems of general forms

consist of combinations of plane progressive waves which have different frequencies

and directions. The most general wave distributions of wave at all possible oblique

angles θ can be written as [4],

η(x,z, t) = Re
∫ ∞

0
dω

∫ 2π

0
dθA(ω ,θ)exp[−ik(ω)(xcosθ + zsinθ)+ iωt] (7.2)

Equation 7.2 is a two dimensional Fourier integral so the formulas from Fourier theory

can be used to find appropriate amplitude functions A(ω, t) required to generate surface

elevation θ . If Equation 7.2 translated into a reference frame moving with the ship in

the positive +x direction with velocity v replacing x by x+ vt gives,

η(x,z, t) = Re
∫ ∞

0
dω

∫ 2π

0
dθA(ω,θ)exp[−ik(xcosθ + zsinθ)+ i(ω − kvcosθ)t]

(7.3)

Here k(ω) is the wave number corresponding to a given frequency ω in accordance

with the dispersion relation k = ω2/g for infinite depth or k tanh = ω2/g for finite

depth. If we consider the ship as it is moving with the reference frame, the

equation (7.3) will be independent of time which means there will be a restriction on

the phase velocity of the waves and thus on the wave numbers. In the present situation,

equation (7.3) will be independent of time provided that

ω = kvcosθ (7.4)
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This expression is in accordance with stipulating that the phase velocity of each

allowable wave component is given by,

c =
ω
k
= vcosθ (7.5)

In this manner, as it can be seen in figure (7.2) if a system of plane progressive wave

is moving at an angle θ with respect to the x axis, the wave pattern will appear will

appear steady state to the observer moving along the x axis with velocity csecθ . Note

that the phase velocity of the waves, c in the kelvin wake propagating in direction θ

must be equal to vcosθ otherwise they cannot be stationary relative to the ship. The

Figure 7.2: View from above of a plane progressive wave system, moving parallel to
the x′-axis at an angle θ relative to x. The wave crests are shown by dashed
lines, adapted from Newman [4].

restriction given in equation (7.4) can be used to eliminate one of the variables given in

equation (7.3). Retaining the wave angle θ , and noting that equations (7.4) and (7.5)

require the condition cosθ > 0, equation (7.3) can be replaced by the single integral,

η(x,z) = Re
∫ π/2

−π/2
dθA(θ)exp[−ik(θ)(xcosθ + zsinθ)] (7.6)
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For deep water, k = ω2/g and combining this with the expression (7.4) one gets,

k(θ) = g/v2 cos2 θ (7.7)

The free wave distribution of a given ship considered in equation (7.6) can be simplified

if the distance downstream from the position of the ship is very large so one get

the classical ship wave pattern derived by Lord Kelvin in 1887. Noting that in two

dimensions, wave groups travel with the group velocity U = dω
dk . Equation (7.6) is a

slowly varying two dimensional wave system so the same result should be valid here.

Defining x′ with respect to a fixed reference frame, then it can be said that x′ is the

local coordinate normal to the wave crests as seen in figure (7.2). The waves travelling

in groups, U = x′/t are determined as [5],

x′

t
=U =

dω
dk

(7.8)

Focusing on the speed of the energy density rather than the speed of wave crests,

relative to the earth fixed inclined coordinate system (X ′,Z′),

x′ =
dω
dk

t ⇒ d
dk

(kx′−ωt) = 0 (7.9)

x′ = X cosθ +Z sinθ

x′ = xcosθ + zsinθ + vt cosθ

then,

kx′−ωt = k(xcosθ + zsinθ)+(kvcosθ −ω)t

Recalling equation (7.4) and substituting this expression into the above equation

yields,

kx′−ωt = k(xcosθ + zsinθ) (7.10)
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If expression (7.9) is transformed into the frame of reference of equation (7.6), the

waves will satisfy,

d
dk

[k(θ)(xcosθ + zsinθ)] = 0 (7.11)

It follows from the chain rule of differentiation d
dk = d

dθ
dθ
dk , since k and θ are related

by the equation (7.7), equation (7.11) takes the form,

d
dθ

(
xcosθ + zsinθ

cos2 θ

)
= 0 (7.12)

The equation above is not valid for the points θ = 0 and θ = ±π/2 where dθ/dk is

infinite or zero respectively. Evaluating the above derivative yields,

xsec2 θ sinθ + zsec3 θ(1+ sin2 θ) = 0 (7.13)

Simple algebra results in,

z
x
=−cosθ sinθ

1+ sin2 θ
(7.14)

The solution gives us a relation between z/x and θ which shows that local waves in a

Kelvin wake can only propagate in a certain direction θ for a given z/x. The plot of

this equation is as follows, As it can be seen in figure (7.3) the maximum value of the

ratio, tan19◦28′, occurs when the wave angle is ±35◦16′. z/x is antisymmetric about

θ = 0 which represents the Kelvin wakes in the port and starboard sides of the vessel.

If θ = 0, waves propagate in the same direction as the ship but they only exist at z = 0.

If θ = π/2 this means that waves are propagating at an angle 90◦ relative to the ship

direction of forward translation. Waves propagating θ = 35◦16′ relative to the ship

axis are seen at the caustic of the Kelvin wake.

Lighthill [5] showed that during tg seconds the energy generated in waves with wave

speed c does not travel a distance ctg. Regarding group velocity, the waves travel a

distance of vtg where group velocity is U = c/2 for deep water. Therefore all the wave
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Figure 7.3: Waves situated along the radial line moving in the direction θ , adapted
from Lighthill [5].

energy generated tg seconds earlier has travelled exactly half as far as indicated in

Figure 7.4.

Figure 7.4: Positions C1, C2, C3 of any waves generated tg seconds ago (when the
ship was at A) if their energy had travelled a distance ctg, adapted from
Lighthill [5].

Figure 7.5 shows the real locus of all the wave energy obtained. Here, the locus

previously obtained is indicated with a circle of diameter | AD | since D is the halfway

from A to B. E1, E2 or E3 indicate the positions of the waves while C1, C2 and C3

are the positions the waves would reach if the energy had travelled at the speed of the

crests.
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Figure 7.5: Waves generated in deep water by a ship B, adapted from Lighthill [5].

At position E1, the waves propagate at a relatively small angle θ to the direction of the

ship’s motion. On the other hand, at this position waves have higher speeds c = vcosθ

so these waves are the longer waves in the pattern. The waves at E3 have smaller wave

speed c and much smaller wave length λ = 2πc2g. The rest of the ship wave pattern is

generated when the ship was at particular points such as, A, A′ and A′′ where the points

D, D′ and D′′ are exactly halfway to B, the present position of the ship. The tangent

from B to the circle with diameter | AD | makes an angle sin−1 1/3 = 19o28′ to the

ship’s path. The reason is, since |BD |=|DA |, the circle’s center is at a distance from B

of three times its radius | 1/2AD |. Therefore, all the circles generating the wave pattern

lies within a wedge of 19o28′ meaning that the wave energy generated at different times

carried by these circles are tangent to this wedge. The waves on the boundary of the

wedge such as, E1, E2 or E3 propagate at the angle 1/2(1/2π − sin−1) = 35o to the

ship’s path.

Let’s calculate the crest shapes in the Kelvin ship wave pattern. Supposing that the

ship is traveling in the −x direction, the waves generated when it was at x = vtg = X

which refers to a distance of | AB | are now let’s say at point E1. As seen in Figure 7.6

Figure 7.6: Detailed view of Kelvin Wedge, adapted from Lighthill [5].
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more detailed, geometrically this point is at x =| FB | and z =| FE1 |. Remembering

once again that during tg seconds, the energy generated in waves with speed c does

not travel a distance ctg but travels a distance c/2tg, it can be denoted that | AB |= vtg,

| AC1 |= vtg cosθ and | AE1 |= (vtg cosθ)/2 respectively.

Substituting | AE1 | into the expression | FA |=| AE1 | cosθ , one gets | FA |=

(vtg cosθ)/2cosθ . Considering that | FB |=| AB | − | FA | and by substituting

| AB | and | FA | into this expression, | FB |= vtg − (vtg cosθ)/2cosθ . Similarly,

| FE1 |=| AE1 | sinθ = (vtg cosθ)/2sinθ . Substituting vtg by X and rearranging in

expressions | FB | and | FE1 | gives the new position of the wave crest on the x and z

axis which are,

x = X
(

1− 1
2

cos2 θ
)
, z =

1
2

X cosθ sinθ (7.15)

The crest at the above mentioned points (7.15), x and z, make an angle 1
2π −θ with the

x axis so the slope is,

dz/dx = cotθ (7.16)

Satisfying this crest slope at each point, one should observe that these portions of crest

should be varying with positions of generation (X ,0) and directions of propagation θ .

Substituting x and z in equation (7.16) and solving for X we obtain,

X = X1 cosθ (7.17)

where X1 is a constant. Using equation (7.15), the crest shape can be obtained

parametrically as,

x = X1 cosθ
(

1− 1
2

cos2 θ
)
, z =

1
2

X1 cos2 θ sinθ (7.18)

By using equation 7.18, indication of the crest shapes in the Kelvin ship-wave pattern

can be plotted for several values of X1 as seen in Figure 7.7 . On the boundaries of

the wedge all the crest shapes have cusps. In addition, the longer waves propagating at
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Figure 7.7: Kelvin ship-wave pattern.

small angles θ and the much shorter waves propagating at large angles θ are often

superimposed for intermediate Froude numbers [5]. At low Froude numbers, the

longer waves with crests nearly perpendicular to the ship’s path predominate while at

higher Froude numbers much shorter waves predominate as observed for typical high

speed boats. On the other hand, for intermediate Froude numbers, the entire Kelvin

ship-wave pattern may be apparent. Here the Froude number mentioned is denoted by

v2/gL where L is the ship’s length and v is the speed of the ship.

7.2 Havelock’s Analytical Solution for Finite Depth

In 1908, Havelock [78] investigated the wave pattern generated by a single point

source in shallow water. He introduced the depth Froude number, stating that the

characteristics of the wave pattern in depth-limited water are a function of vessel speed

and water depth. Later on, Lighthill [5] and Whitham [46] studied the kinematics of

ship wave interaction. These researches showed that all steady surface perturbations

are inside a wedge which has an angle about 39o. This angle is determined only by the

dispersion properties of surface waves. In other words, it does not depend on the ship

velocity.

Havelock [78] investigated point impulse moving on water of finite depth. Considering

a point impulse moving with a uniform velocity v over the surface of a dispersive

medium for which U is the group velocity and c is the wave velocity for a value

of wave number, k of 2π/λ , he investigated wave patterns for various depth Froude
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numbers. This must be emphasized strongly that the Froude numbers defined and

used by Havelock is not the same as that of Kelvin. Here the depth-based Froude

number is Fr = v/
√

gh where v is the speed of the disturbance and h is the water

depth. Including all wave lengths and water depths, the phase velocity, c and group

velocity U are expressed as,

c =
(g

k
tanhkh

)1/2
, U =

1
2

(g
k

tanhkh
)1/2

(
1+

2kh
sinh2kh

)
(7.19)

Havelock expressed the group velocity as U = 1
2(n+1)c where n varies between 0 and

1 depending on the value of wave number k which is denoted by n = 2kh/sinh2kh.

Besides the defining the parameter n, he defined two other parameters which are p =

gh/v2 = c2/v2 = 1/Fr2 and m = tanhkh/kh. The parameters m and n are the function

of the wave number k and their limiting values are as k = 0; m = 1 and n = 1. In

addition, as k → ∞; m = 0 and n = 0. Havelock [78] considered two cases as p > 1

where c <
√

gh and p < 1 where c >
√

gh.

For subcritical Froude numbers when c <
√

gh (p > 1) the lines of cusps within which

the wave pattern lies are given by such values of k,

cos2 θ =
8(1−n)
(3−n)2 (7.20)

As it can be seen in Table 7.1 for any value of k, n only lies between 1 and 0. Therefore

θ can only take the values between cos−1(2
√

2/3) and π/2 which corresponds the

values between 19o28′ and 90o. For a given Froude number or p in the subcritical

range, first kh is solved by iteration from the relationship m(3−n) = 2/p. Afterwards,

using the computed kh the numerical value of n is obtained to compute θ . Here, the

greatest value that the expression m(3− n) = 2/p can take is 2 since p > 1. As p

approaches 1 the speed of the moving impulse v approaches the critical value
√

gh.

Correspondingly, at the line of cusps m and n both approach to their limiting value

1 while the cusp angle widens out approaching to 90o. On the other hand, if n is

1, the group velocity U is equal to the wave speed c and in such a case the medium

is non-dispersive shallow water. Therefore, at
√

gh which is the critical velocity v,

there is a source emitting disturbances and it propagates at the rate of propagation
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of disturbances. The pattern seen is a line through the source at right angles to the

direction of motion.

Table 7.1: Havelock’s analytical results for subcritical Froude numbers (Fr < 1)
computed from the iterative solution of m(3−n) = 2/p.

Fr (v/
√

gh) n kh p 2/p m(3−n) θ
0.39 0.00 10.00 6.67 0.30 0.30 19.47
0.38 0.00 10.39 6.93 0.29 0.29 19.47
0.38 0.00 10.50 7.00 0.29 0.29 19.47
0.43 0.00 8.00 5.33 0.37 0.37 19.47
0.43 0.00 8.10 5.40 0.37 0.37 19.47
0.42 0.00 8.50 5.67 0.35 0.35 19.47
0.50 0.00 6.00 4.00 0.50 0.50 19.48
0.50 0.00 6.00 4.00 0.50 0.50 19.48
0.55 0.00 4.96 3.31 0.61 0.60 19.50
0.55 0.00 5.00 3.33 0.60 0.60 19.50
0.55 0.00 4.95 3.30 0.61 0.61 19.50
0.60 0.00 4.16 2.78 0.72 0.72 19.58
0.61 0.00 4.04 2.70 0.74 0.74 19.61
0.61 0.01 4.00 2.67 0.75 0.75 19.62
0.63 0.01 3.77 2.52 0.79 0.79 19.69
0.70 0.03 3.02 2.04 0.98 0.98 20.26
0.70 0.03 3.00 2.03 0.99 0.99 20.28
0.71 0.03 2.95 2.00 1.00 1.00 20.35
0.75 0.06 2.58 1.78 1.13 1.12 21.10
0.82 0.13 2.06 1.49 1.34 1.34 23.28
0.83 0.15 2.00 1.45 1.38 1.38 23.69
0.82 0.13 2.09 1.50 1.33 1.33 23.13
0.86 0.20 1.79 1.35 1.48 1.48 25.36
0.90 0.29 1.52 1.23 1.62 1.62 28.50
0.92 0.35 1.37 1.18 1.69 1.69 30.78
0.92 0.35 1.38 1.18 1.69 1.69 30.71
0.93 0.39 1.30 1.16 1.73 1.73 32.06
0.96 0.52 1.05 1.09 1.84 1.84 37.78
0.96 0.53 1.03 1.08 1.85 1.85 38.37
0.97 0.55 1.00 1.07 1.86 1.86 39.32
0.97 0.58 0.95 1.06 1.88 1.88 40.69
0.98 0.65 0.84 1.04 1.92 1.92 44.66
0.99 0.75 0.68 1.02 1.96 1.96 51.01
1.00 0.82 0.55 1.01 1.98 1.98 56.75
1.00 0.84 0.52 1.01 1.98 1.98 58.37
1.00 0.86 0.48 1.01 1.99 1.99 60.43
1.00 0.90 0.40 1.00 1.99 1.99 64.91
1.00 1.00 0.00 1.00 2.00 2.00 89.99
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For supercritical Froude numbers when c >
√

gh (p < 1) the outer limit is defined by,

cos2 θ = 1− p sin2 θ = p = gh/v2 (7.21)

where m = n = 1. In this zone, the wave pattern is generated by waves travelling at

an angle of θ with respect to x axis and as v increases, this angle diminishes. In this

situation, the regular waves are contained within a narrower angle radiating from the

center of disturbance. As v exceeds
√

gh the transverse waves disappear. On the other

Table 7.2: Havelock’s analytical results for supercritical Froude numbers (Fr > 1)
computed from the relationship cos2 θ = 1− p.

Fr (v/
√

gh) n kh p 2/p m(3−n) θ
1.00 0.26 1.61 1.00 1.00 1.00 90.00
1.01 0.27 1.57 0.99 1.01 1.01 84.28
1.01 0.29 1.53 0.98 1.02 1.02 81.93
1.05 0.54 1.02 0.91 1.10 1.10 72.25
1.10 0.60 0.92 0.83 1.21 1.10 65.38
1.15 0.52 1.05 0.76 1.32 1.10 60.41
1.20 0.54 1.02 0.69 1.44 1.10 56.44
1.25 0.54 1.02 0.64 1.56 1.10 53.13
1.30 0.54 1.02 0.59 1.69 1.10 50.28
1.35 0.54 1.02 0.55 1.82 1.10 47.79
1.40 0.54 1.02 0.51 1.96 1.10 45.58
1.41 0.54 1.02 0.50 1.99 1.10 45.17
1.45 0.54 1.02 0.48 2.10 1.10 43.60
1.50 0.54 1.02 0.44 2.25 1.10 41.81
1.55 0.54 1.02 0.42 2.40 1.10 40.18
1.60 0.54 1.02 0.39 2.56 1.10 38.68
1.65 0.54 1.02 0.37 2.72 1.10 37.31
1.70 0.54 1.02 0.35 2.89 1.10 36.03
1.73 0.54 1.02 0.33 2.99 1.10 35.31
1.75 0.54 1.02 0.33 3.06 1.10 34.85
1.80 0.54 1.02 0.31 3.24 1.10 33.75
1.85 0.54 1.02 0.29 3.42 1.10 32.72
1.90 0.54 1.02 0.28 3.61 1.10 31.76
1.95 0.54 1.02 0.26 3.80 1.10 30.85
2.00 0.54 1.02 0.25 4.00 1.10 30.00
3.00 0.60 0.92 0.11 9.00 1.10 19.47

hand, the transverse wave system can only exist if p is greater than unity. Unlike the

previous case where p> 1 (c<
√

gh) the wave fronts (lines of equal phase) are concave
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to the axis. The values obtained by Havelock’s analytical formulas for supercritical

Froude numbers are given in Table 7.2.

The detailed plots given in Chapter 8 for various Froude numbers verify the wave

patterns described by Havelock [78]. The wave propagation angle θ varies for different

Froude numbers which results in generation of different wave patterns as it is obtained

from Havelock’s analytical formulas. Particularly, the change in propagation angle θ

can be observed in two different zones which are subcritical Froude numbers (Fr < 1)

and supercritical Froude numbers (Fr > 1) as it can be seen in Figure 7.8.

Figure 7.8: Havelock’s analytical results for a range of Froude numbers.
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8. 2-D NUMERICAL SIMULATIONS OF SURFACE GENERATED WAVES

Ship waves and their effects have been the subject of a large number of studies since

they may cause significant environmental damage as well as put a risk on safety and

maintenance of moored yachts and boats. Huang et al. [79] studied waves travelling

in channels of finite depth and width at near-critical speeds. Theoretical evidence for

the excitation of solitons near critical conditions was first studied by the numerical

calculations of Wu and Wu [80]. Using as excitation a pressure distribution localized

in the streamwise direction but entirely uniform in the spanwise direction, they solved

numerically the Boussinesq equations and found a series of solitons propagating ahead

of the source. Akylas [81] studied the wave disturbance generated by a localized steady

pressure distribution travelling at a speed close to the long-water-wave phase speed on

water of finite depth. He developed a nonlinear theory which shows that the generated

waves are actually of bounded amplitude, and are governed by a forced Korteweg-de

Vries equation subject to appropriate asymptotic initial conditions and a numerical

study of the forced Korteweg-de Vries equation revealed a series of solitons which are

generated in front of the pressure distribution.

Besides Akylas [81], Ertekin et. al. [82], Chen and Sharma [83] and Lowery and

Liapis [84] studied runaway solitons generated by a 3D surface pressure or bottom

disturbance limited in a confined fluid domain. Meanwhile, Cole [85] and Grimshaw

and Smyth [86] who pointed out, respectively, that the same KdV equation is valid for

two-dimensional transcritical flow past a bump and stratified flow over topography.

Also, Miles (1986) showed analytically that no nonlinear steady state exists for a

certain range of transcritical speeds which are in agreement with the continuous

radiation of solitons revealed by the numerical calculations.

Later on, Katsis and Akylas [87] studied the three-dimensional wave pattern

generated by a moving pressure distribution of finite extent acting on the surface

of water of depth h and they showed that when the pressure distribution travels

at a speed near the linear-long-wave speed, the response is governed by a forced
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nonlinear Kadomtsev-Petviashvili (KP) equation, which describes a balance between

linear dispersive, nonlinear and three-dimensional effects. This equation is the

two-dimensional counterpart of the forced KdV equation [81].

A fundamental work on the forced KdV equation was carried out later by Wu [88] to

examine the mechanism of the so called runaway solitons. In addition to early studies

of Wu and Wu [80] and Wu [88], Lee et al. [89] carried out a series of experimental

measurements on the generation of solitary waves by a submerged moving object.

This problem was also examined by Zhang and Chwang [90] with solutions from 2D

momentum equations. Katsis and Akylas [87], Pedersen [91], Lee and Grimshaw [92]

and Li and Sclavounos [93] extended the wave generation related researches using

depth-averaged models to an unbounded fluid region. Sung and Grilli [94] modeled

fully nonlinear free surface waves caused by a translating disturbance made by a

pressure patch and/or a surface-piercing body (ship) by using potential flow theory.

Peters [95] and Peregrine [96] have also studied waves propagating in channels

with arbitrary cross-section. Liu and Wu [17] modified fully nonlinear and weakly

dispersive depth-integrated wave equations to include the effects of moving free

surface pressure and investigated waves generated by a moving free surface pressure

distribution in rectangular and trapezoidal channels. For the rectangular channels,

Liu and Wu [17] compared their numerical results with those obtained by the forced

KdV equations, Green-Naghdi (GN) equations and the Boundary Integral Equation

(BIEM) formulation based on the potential flow theory. Results have been checked

with Cao et al.’s [97] BIEM results and Ertekin et al.’s [82] 2D GN results. Cao

[97] solved the problem in time domain using a time-stepping procedure combined

with a two-dimensional version of the desingularized boundary integral method and

compared the results with Wu’s [88] fKdV model. Liu and Wu, Henn et al. [98] and

Torsvik [99] studied the generation of upstream propagating waves in nonrectangular

channels.

The common point of these studies are channels with trapezoidal cross-section profiles,

but Jiang et al. [100] also include results for a channel with a deep trench along the

center line, which is similar to Torsvik’s studies [99]. Many of these studies considered

the moving pressure distribution as a sinusoidal shape moving on the free surface. The

pressure acts inside a rectangle symmetric about the x− and y−axes with length L
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and width B and vanishes outside the rectangle while Sung and Grilli [94] used a

theoretical Gaussian shape for the moving pressure. Apart from these moving pressure

disturbance, in this thesis 2-D simulations of waves generated by moving pressure

fields are performed for two different surface pressure functions; a hemispherical

pressure field and a slender-body type pressure field.

8.1 Hemispherical Pressure Forcing

A hemispherical pressure field of the form

p(x,y) = p0
√

R2 − x2 − y2 (8.1)

is used for the first simulation. Here p0 is the peak value of the pressure distribution

and R is the radius of the hemisphere. Figure 8.1 shows the hemispherical field. In the

Figure 8.1: Definition of the pressure distribution p(x,y) = p0
√

R2 − x2 − y2.

simulation R is taken as 40 m, p0 = 300 Pa and the water depth h = 10 m which gives

c =
√

gh = 10 m/s. The simulation region is 2400 m × 1200 m with △x =△y = 4 m.

Time step is taken as ∆t = 0.2 s. In the x-momentum equation px =−xp0/(R2 − x2 −

y2)1/2 and in the y-momentum py = −yp0/(R2 − x2 − y2)1/2. Figure 8.2 shows the

contour plots of the simulated wave field at t = 28 s, 60 s and 92 s for the depth-based

Froude number Fr = v/c = v/
√

gh = 0.99 and 1.3 which corresponds the pressure

field speed v = 0.99
√

gh = 0.99c = 9.9 m/s and v = 1.3
√

gh = 1.3c = 13 m/s. It is

to be noted that for Fr = 0.99 and Fr = 1.3 the wedge angles 48o and 47o measured
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from the simulated wave fields at t = 92 s respectively are acceptable approximations

to the theoretical values 51o and 50o of Havelock [78] as can be seen in Table 8.1 and

Figure 8.7.

Table 8.1: Comparisons of numerically obtained wedge angles (a hemispherical
moving pressure field) from with Havelock’s analytical results for a range
of depth-based Froude numbers.

Wedge Angle
Fr Boussinesq Havelock Relative error

(Numerical) (Analytical) percentage (%)
0.63 18 19.69 8.58
0.70 20 20.26 1.29
0.75 21 21.10 0.47
0.86 25 25.36 1.43
0.90 25 28.50 12.28
0.96 40 37.78 5.86
0.97 40 40.69 1.69
0.98 39 44.66 12.68
0.99 48 51.01 5.90
1.01 82 81.93 0.08
1.05 72 72.25 0.34
1.10 65 65.38 0.58
1.20 54 56.44 4.33
1.30 47 50.28 6.53
1.40 43 45.58 5.67
1.50 42 41.81 0.45
1.60 36 36.03 0.09
1.80 33 33.75 2.22
2.00 30 30.00 0.00
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(a) t = 28 s, Fr=0.99

(b) t = 60 s, Fr=0.99

(c) t = 92 s, Fr=0.99

Figure 8.2: Wave contours of a moving hemisphere at different time steps using
Boussinesq model with β = 1/5 for Fr = 0.99.
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(a) t = 28 s, Fr=1.3

(b) t = 60 s, Fr=1.3

(c) t = 92 s, Fr=1.3

Figure 8.3: Wave contours of a moving hemisphere at different time steps using
Boussinesq model with β = 1/5 for Fr = 1.3.
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8.2 Slender-Body Type Pressure Forcing

For a more ship-like form a slender body shaped pressure field of the form

p(x,y) = p0
[
1−16(x/L)4][1−2(y/B)2]exp

[
−16(y/B)2] (8.2)

is used. Here p0 is the peak pressure value which is set to 3000 Pa, L is the length-wise

and B is the breadth-wise parameter. The pressure field p(x,y) is defined only within

the intervals −L/2 ≤ x ≤ L/2 and −B/2 ≤ y ≤ B/2 and set to zero outside these

regions. Figure 8.4 shows the slender parabolic type pressure field.

Figure 8.4: Perspective view of the slender-body type pressure distribution.

The simulation area is 2400 m × 1200 m with grid sizes of ∆x=∆y= 1 m and the time

step ∆t = 0.06 s. In the simulations the length to beam ratio L/B is set to 5 with L =

100 m and B = 20 m and the water depth is h = 20 m, resulting in c =
√

gh = 14 m/s.

Note that in the x-momentum equation px =−64x3e−16(y/B)2
(1−2(y/B)2)/L4 and in

the y-momentum equation py = 4ye−16(y/B)2
(L4 − 16x4)(16y2 − 9B2)/(LB)4. Unlike

the previous test case, a range of depth-based Froude numbers is covered. Out of 19

test cases the contour plots of only three cases, corresponding to Fr = 0.98 and 1.30

are shown in Figures 8.5 and 8.6.
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(a) t = 30 s, Fr = 0.98

(b) t = 60 s, Fr = 0.98

(c) t = 90 s, Fr = 0.98

Figure 8.5: Wave contours generated by a slender-body type moving pressure field
using Boussinesq model with β = 1/5 for Fr = 0.98.
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(a) t = 30 s, Fr = 1.3

(b) t = 60 s, Fr = 1.3

(c) t = 90 s, Fr = 1.3

Figure 8.6: Wave contours generated by a slender-body type moving pressure field
using Boussinesq model with β = 1/5 for Fr = 1.3.
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The tabular form of the numerically and analytically computed wedge angles for the

Froude numbers considered are given below in Table 8.2. Havelock [78] investigated

Table 8.2: Comparisons of numerically obtained wedge angles (a slender-body type
moving pressure field) from with Havelock’s analytical results for a range
of depth-based Froude numbers.

Wedge Angle
Fr Boussinesq Havelock Relative error

(Numerical) (Analytical) percentage (%)
0.63 18 19.69 8.58
0.70 20 20.26 1.29
0.75 20 21.10 5.21
0.86 24 25.36 5.37
0.90 28 28.50 1.75
0.96 40 37.78 5.86
0.97 39 40.69 4.15
0.98 44 44.66 1.49
0.99 49 51.01 3.94
1.01 80 81.93 2.36
1.05 72 72.25 0.34
1.10 66 65.38 0.95
1.20 58 56.44 2.76
1.30 50 50.28 0.57
1.40 44 45.58 3.48
1.50 42 41.81 0.45
1.70 37 36.03 2.69
1.80 33 33.75 2.22
2.00 30 30.00 0.00

the wave patterns due to a moving surface pressure and showed the main differences

between subcritical and supercritical Froude numbers. The results for the wedge and

propagation angles show that as the Froude number decreases the divergent waves

become more dominant while transverse wave’s position, whether being crest or

trough, changes with respect to ship velocity. For the wedge angle of a point impulse

moving on water of finite depth Havelock gives

α = arccos
√

8(1−n)/(3−n) if Fr ≤ 1

α = arcsin
√

p if Fr > 1

where p = gh/v2 = c2/v2 = 1/Fr2.

110



For a given Froude number or p in the subcritical range, first kh is solved by iteration

from the relationship m(3− n) = 2/p where m = tanhkh/kh and n = 2kh/sinh2kh.

Afterwards, using the computed kh the numerical value of n is obtained to compute α .

For the supercritical range α is a function of p alone therefore no additional

computation is needed. It is to be noted that in the subcritical range as Froude number

approaches zero the relative depth kh becomes larger. On the other hand, in the entire

supercritical range kh assumes the limiting case of zero and disappears from the wedge

angle computations. Thus, in a sense, low Froude numbers represent relatively deep

waters while high Froude numbers correspond to very shallow waters.

For Fr = 0 Kelvin’s well-known result of a deep-water wedge angle α = 19o28′

is obtained as may be seen in Figure 8.7 where the wedge angles computed from

Havelock’s analytical formulas and measured from the graphs of the numerical

solutions of the present Boussinesq model are shown.
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Figure 8.7: Comparison of numerically obtained wedge angles with Havelock’s
theoretical formulas.
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Finally, two perspective views of a nonlinear simulation with slender-body shaped

pressure field for Fr = 0.9 are shown in Figure 8.8. The nonlinearity is ascertained

by considerably increased pressure amplitude p0 (twice the previous simulations).

Nevertheless, no appreciable differences are observed in the wedge angles for the

simulation shown here and for the other simulations not shown. The nonlinearity

appears to affect the vertical symmetry of the wave profile only. Otherwise, the

essential characteristics of the wave pattern remain nearly the same.
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(a) t = 9 s for Fr = 0.9

(b) t = 18 s for Fr = 0.9

(c) t = 24 s for Fr = 0.9

Figure 8.8: Perspective views of nonlinear waves generated by slender-body type
moving pressure for Fr = 0.9 at t = 9 s, t = 18 s and t = 24 s.

Besides using one slender-body shaped pressure field for representing the ship itself, a

catamaran-like vessel may also be represented by using two slender bodies. The waves

generated and their interaction are shown visually in Figure 8.9 for Fr = 0.97 at t = 9

s, t = 18 s and t = 24 s respectively.
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(a) t = 9 s for Fr = 0.97

(b) t = 18 s for Fr = 0.97

(c) t = 24 s for Fr = 0.97

Figure 8.9: Perspective views of nonlinear waves generated by two slender-body type
moving pressures for Fr = 0.9 at t = 9 s, t = 18 s and t = 24 s.
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9. RESULTS AND CONCLUSION

Several types of Boussinesq equations are in use for modeling nearshore waves or

waves in intermediate water depths. Besides these rather common applications,

the Boussinesq equations may also be employed to model wave generation and

propagation by moving surface disturbances. The surface disturbance may come from

a moving free surface object which is associated with a moving surface vessel. By

adding a moving surface pressure into Boussinesq equations, the wave patterns for

different depth based Froude numbers are investigated. In this work an improved

Boussinesq model [12] with a surface pressure term is discretized by a new approach.

With this new discretization the program can be run either in the long wave mode

without dispersion terms or in the Boussinesq mode by specifying a single parameter.

In any one of these modes it is possible to specify a fixed or a moving surface

pressure for simulating a moving object on the surface. Although in several studies in

literature, the moving object has been represented by a cosine function, in this study,

a hemispherical pressure function and a slender-body type pressure function are used

for numerical simulation of waves generated. Moreover, visualization of waves due

to a catamaran-like vessel is also obtained by using two slender-body shaped pressure

fields.

Before simulating the 3-D moving objects, the numerical scheme is tested for its

discretization and absorbing boundaries. The discretization of 1-D Boussinesq model

has been tested by Green’s theoretical formula. Two different bathymetries which

are sinusoidal and parabolic are used for testing the linearized original Boussinesq

equations (β = 0) and the linearized improved Boussinesq equations (β = 1/5).

Comparisons show that computational wave amplitudes are almost perfectly matching

with Green’s formula. Secondly, the numerically 2-D but actually 3-D model is tested

for the performance of its non-reflective boundaries. These boundaries are checked by

a ring test which reveals the symmetrical accuracy of the model. The ring tests for

all the modes (long wave, classical Boussinesq and Boussinesq with Padé (2,2)) of the
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numerical scheme are performed. Only the test for the improved Boussinesq model

is shown. The contour plots show nearly perfect symmetry hence confirms that the

radiation boundaries perform well.

The numerical model is also tested for its nonlinear properties by comparing the

numerically simulated solitary waves with their analytical counterparts. These

simulations serve to a twofold purpose; namely, testing of the nonlinear and the

dispersive performance of the numerical model. The analytical and computational

results agree fairly well for both β = 0 and β = 1/5, although from analytical point of

view, the solitary waves corresponding to the improved Boussinesq equations should

be slightly different. Differences in height between analytical and computational

results are given as the relative error percentage for different ε values. It is observed

that as nonlinearity parameter, ε , increases, the relative error percentage increases

linearly. However, in general the relative error percentages are reasonably low hence

establish the reliability of the numerical approach adopted.

For testing the accuracy of numerically simulated waves due to a moving pressure field,

a 1-D case with known analytical solution is considered. The analytical solution for the

1-D linearized long wave equations is recapitulated first and then comparisons with the

numerical solutions are given. For the test case the pressure function is selected in the

form of a Gaussian distribution function. The analytical solution is compared with the

numerical solution of long wave equations for different depth based Froude numbers.

The comparisons using the Boussinesq equations with β = 1/5 instead of the long

wave equations are also made. The results show that numerical simulations in both

cases agree well with the analytical solution derived from the linearized long wave

equations. Besides, from the average relative error of the calculated and analytical

surface elevation versus Froude number plots, it is observed that around critical Froude

number, the error increases but for Froude numbers different than unity, the error

percentage decreases again.

Finally, 2-D simulations of waves generated by moving pressure fields are performed

for two different surface pressure functions; a hemispherical pressure field and a

slender-body type pressure field. The waves generated by these pressure fields

are simulated for various depth based Froude numbers. For the verification of the

numerical simulation, the wedge angles are compared with Havelock’s theoretical
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formulations. With surface pressure terms in the momentum equations the numerical

scheme is run for a moving 3-D hemispherical pressure field and a slender-body type

pressure field for a range of depth based Froude numbers. The wedge angles obtained

from both simulations are compared with the values calculated from the analytical

formulas of Havelock [78]. For hemispherical pressure field, in the subcritical range,

Fr ≤ 1, the average error percentage between the computed and the theoretical values

in the subcritical range is around 5.58%, considerably greater than those of the

supercritical range, which is on the average 2.03%. In addition, for a slender-body type

pressure field, the average error percentage between the computed and the theoretical

valuesin the subcritical range is around 4.18%, which is again greater than those of the

supercritical range, being on the average 1.58%.

In both cases, the average error percentage for super critical Froude numbers is

relatively small and the reason for this is probably due to the depth limited character

of the Boussinesq equations. Note that the subcritical range indicates relatively greater

depths with completely deep water for zero Froude number. Therefore, the relatively

poor performance of the numerical model in the subcritical range may be attributed

to the deep water characteristics of the waves generated. Moreover, it is observed

that the average error percentage of the slender-body type pressure is less than the

hemispherical pressure field. The reason, might be the form of the slender-body shape,

creating better defined waves.

Although, the calculated wedge angles can vary according to the specified speed of

moving pressure field, the nonlinearity which is determined by increasing the pressure

amplitude, p0, appears to play only a relatively minor role by affecting the wave

symmetry without altering the overall wave patterns such as the wedge angles as

observed from the comparisons of the linear and nonlinear simulations. Since there

are no appreciable differences between the calculated wedge angles, other simulations

for different Froude numbers are not given.

In addition, the two slender-body type pressure fields are used for visual demonstration

purpose of waves due to a catamaran-like surface object. The interaction of waves

generated are clearly visible in the simulations which might be a useful tool for

investigating similar vessels sailing in different water depths. In general, the simulation

of the waves generated whether by a catamaran or ship-like vessel is an important
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matter, especially for the cases where moving object’s speed is relatively high.

With the wide popularity of high speed vessels in waterways, large amplitude wake

wash generated by those vessels cause erosion of the shore, sea bottoms and the

biological environment. Besides, these waves have a significant impact on the safety

of people and vessels moored along the shore. Considering those effects, in future

work, the simulation of waves generated especially at high speeds can be utilized for

investigating such effects.
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