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EFFECT OF SECOND ORDER VELOCITY SLIP AND TEMPERATURE
JUMP BOUNDARY CONDITIONS ON ENTROPY GENERATION OF A
FLOW OVER ROTATING DISK IN CASE OF BLOWING AND SUCTION

SUMMARY

In this study, the effect of second order velocity slip and temperature jump boundary
conditions on entropy generation of a flow over rotating disk in case of blowing and
suction cases is investigated. As a model, the flow over a rotating single free disk for
steady and axially symmetrical case in a Newtonian ambient fluid is chosen. The
classical approach, which is introduced by Von Karman, is used with transformations
introduced by Benton to reduce non-linear flow and thermal field equations to
ordinary differential equations. Then flow field equations are solved by using
differential transform method (DTM) and thermal field equations solved by
numerical integration.

The flow field, which is consisted of radial, circumferential and axial velocity
components, is plotted separately. Velocity slip effects in both first order and second
order boundary conditions are monitored. In comparison with no-slip flow regime,
radial and circumferential velocities adjacent disk surface are different from disk
velocity. Slip boundary conditions reduce the radial, circumferential and axial
velocity gradients away from disk surface. Second order effects become significant
on radial and axial velocities.

The thermal field under the condition that heat transfer is only axial direction is
plotted. The thermal field is graphed in blowing, suction and neutral case. First and
second order velocity slip and temperature jump effects are observed case by case.
The paramount difference between first and second order boundary conditions occur
in blowing case. The first and second order effects are closer in suction and neutral
case.

Entropy generation equations for this system is then derived and non-
dimensionalized. These equations interpreted for various physical cases by using
non-dimensional parameters of fluid and thermal fields in blowing and suction case.
The local entropy generation and average entropy generation rates with first and
second order boundary conditions are plotted. Additionally Bejan numbers, which
are the ratio of entropy generation due to heat transfer to the total entropy generation,
are monitored. It is observed that the effect of second order boundary conditions is to
reduce velocity and temperature gradient so the magnitude of entropy generation is
decrease.
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UFLEME VE EMME KOSULLARI ALTINDA IKiNCi DERECE HIZ
KAYMASI VE SICAKLIK SICRAMASI SINIR SARTLARININ DONEN
DiSK UZERINDEKIi AKISTAKI ENTROPI URETIMINE ETKISi

OZET

Bu calismada ikinci derece hiz kaymasi ve sicaklik sigramasi sinir sartlarinin, dénen
disk iizerindeki akisin, emme ve iifleme kosullar1 altindaki entropi iiretimine etkisi
incelenmistir. Model olarak, basit donen disk iizerinde istikrarli, eksenel olarak
simetrik Newtonian akis secilmistir. Von Karman tarafindan gelistirilen klasik
yaklasimda, Benton doniisiimleri kullanilarak, lineer olmayan akis ve termal alan
denklemleri adi diferansiyel denklemlere indirgenmistir. Sonra akis alan1 denklemleri
diferansiyel doniisim metodu (DTM) yardimiyla, termal alan denklemleri ise
niimerik integral yontemi ile ¢oziilmiistiir.

Bu calismada akis rejimlerinini belirlenmesinde etkin olan Knudsen sayisit (Kn)
hakkinda bilgi verilmistir ve Knudsen sayisina bagli olarak akis rejimleri
anlatilmistir. Bu rejimlerdeki uygulama alanlarindan Ornekler verilmistir. Hangi
rejimlerde hangi denklemlerin ve sinir sartlarinin kullanilmasinin uygun oldugu
hakkinda ©zet bilgiler verilmistir. Bu kaymasiz ve kaymali akis rejimlerinde, hiz
kaymasi ve sicaklik sicramasi sinir sartlart altinda gegerlidir.

Birinci ve ikinci derece sinir sartlari detayli olarak anlatilmistir. Kayma sinir
sartlarin1 olusturan parametreler hakkinda bilgi verilmis ve bu parametrelerden
bazilar1 hakkinda daha 6nce yapilan deneysel sonuglar tablolar halinde listelenmistir.
Hiz kaymasina etki eden parametreler, hiz kayma parametresi olarak ele alinmis ve
denklemler kayma parametresinin farkli degerlerine gore ¢oziilmiistiir. Ayni sekilde
sicaklik sicramasina etki eden parametreler sicaklik sicrama parametresi olarak ele
alinmustir. Termal alana hem hiz kaymas1 hem de sicaklik sicramasi sinir sartlar etki
ettiginden. Bu parametrelere bagl olarak ayr1 ayir termal grafikler ¢izilmistir.

Radyal, cevresel ve eksenel hiz bilesenlerinin olusturdugu akis alani incelenmis ve
grafikleri ayr1 ayn cizilmistir. Cizilen grafiklerde hem birinci derece hiz kaymasi
hem de ikinci derece hiz kaymasi etkileri gosterilmistir. Birinci derece hiz kaymasi
sinir kosulu altinda ve ikinci derece hiz kaymasi kosulu altindaki hiz profilleri
arasindaki farklar da ayrica cizilmistir. Kaymasiz akis rejiminde diskin hemen
tizerindeki akisin hiz1 ile diskin hizi ayni1 olmasina ragmen kaymali akis rejiminde
diskin hiz1 ile diske bitisik akiskanin hizi arasinda fark olusmaktadir. Diskin hemen
tizerindeki bu fark sadece radyal ve cevresel hiz bilesenlerinde olusmaktadir. Birinci
derece ve ikinci derece sinir kosullart hiz alan1 ¢oziildiigiinde en biiyiik farkin radyal
ve eksenel hiz bileseninlerinde oldugu goriilmiistiir. Cevresel hiz bileseninde ikinci
derece sinir sart1 etkisi ihmal edilecek kadar az oldugu tespit edilmistir.
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Is1 transferinin sadece eksenel yonde oldugu varsayilarak, termal alan denlemleri
cozillmiistir. Emme, iifleme ve notr kosullar altindaki boyutsuz sicaklik degisimi
grafikleri ¢izilmistir ve etkileri incelenmistir. Emme, iifleme ve notr sartlarda birinci
ve ikinci derece hiz kaymasi, birinci ve ikinci derece sicaklik sicramasi sinir sartlar
ayri ayr1 uygulanmis ve olusan sonuclar incelenmistir.

Is1 transferinin sadece eksenel yonde degisimi varsayildigindan sadece eksenel
yondeki hiz bileseninin sicaklik dagilimina etkisi oldugu belirtilmistir. Kaymaz akis
rejiminde disk yiizeyinin sicakligi ile diskin hemen iizerindeki akiskanin sicakligi
aynt olmasina ragmen, hiz kaymasi ve sicaklik sicramasi sinir sartlarinin etkili
oldugu kaymali akis rejiminde disk yiizeyinin sicakligi ile diskin hemen iizerindeki
akigskanin sicakligi arasinda fark gézlenmistir. Bu fark temelde sicaklik sicrama sinir
sartina bagli oldugu goriilmiistiir. Hiz kayma ve sicaklik sigrama parametrelerinin
artmast durumunda diskin tizerideki akiskanin sicaklik dagilim gradyaninin azaldig
goriilmiistiir. Sicaklik dagilimlari emme, iifleme ve notr sartlarda incelenmis ve
birinci ile ikinci derece simir sartlar1 arasindaki en biiylik farkin iifleme sartinda
olustugu tespit edilmistir.

Bu sistem icin entropi {iiretimi denklemleri elde edilmis ve boyutsuz hale
getirilmistir. Bu denklemler emme ve iifleme kosullarinda, boyutsuz akis ve sicaklik
alan1 parametreleri kullanilarak yorumlanmaistir.

Yerel entropi iretim oranlart hesaplanip, grafiksel olarak gosterilmistir. Bu
grafiklerde birinci ve ikinci derece hiz kayma parametresinin etkilerinin yaninda
birinci ve ikinci derece sicaklik sicrama parametrelerinin etkileri de ayri ayr
gosterilmistir. Ayrica hem radyal hem de eksenel yondeki local entropi iiretim
oranlari ti¢ boyutlu halde ¢izilmistir. En yiiksek entropi iiretim orani disk yiizeyine ve
diskin merkezinden uzakta gozlemlenmektedir. Artan hiz kayma ve sicaklik sigrama
parametreleri yerel entropi oramini azaltmakta oldugu belirlenmistir. Ufleme
durumunda birinci derece sinir kosullar ile ikinci derece sinir kosullar1 arasindaki
farkin, emme ve notr durumlarina gore daha fazla oldugu gozlenmistir.

Benzer bir sekilde ortalama entropi iiretim oranlar1 da hesaplanip, grafiksel olarak
gosterilmistir. Bu grafiklerde hem emme, iifleme ve notr sartlar gozoniinde
bulundurularak hem de birinci ve ikinci derece sinir sartlar1 dikkate alinarak ayr1 ayri
gosterilmistir. Hiz kayma ve sicaklik sigrama parametreleri arttikca ortalama entropi
iretim oranlar1 azalmaktadir. Ufleme kosullarinda ikinci derece sinir sartlarinin
etkileri emme ve nétr duruma gore daha belirgin hale gelmektedir.

Is1 transferinden olusan entropi iiretiminin toplam entropi iiretimine oranini temsil
eden Bejan sayis1 (Be), emme, iifleme ve notr sartlarda incelenmistir. Hem birinci
derece ve ikinci derece hiz kayma smir sartlar1 hem de birinci ve ikinci derece
sicaklik sigramasi sinir sartlarinin etkileri belirlenip grafiksel olarak gosterilmistir.
Buna ek olarak Bejan sayisinin radyal ve eksenel yondeki dagilimlart emme, iifleme
ve notr sartlarda incelenmistir. Bunun yaninda birinci ve ikinci derece sinir sarti
etkilerinin radyal ve eksenel yondeki dagilimlart ¢izilmistir. Hiz kayma parametresi
arttikca Bejan sayist artmaktadir yani 1s1 transferinden olusan entropi iiretiminin
toplam entropi liretimine oraninin artmakta oldugu gozlenmistir. Bunun aksine
sicaklik sicrama parametresi arttikca Bejan sayisi azalmaktadir yani 1s1 transferinden
olusan entropi iiretiminin toplam entropi Uretimine oraninin azalmakta oldugu
goriilmiistiir.
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Hiz kayma ve sicaklik sicrama parametreleri arttikca hiz ve sicaklik gradyanleri
azaldigindan entropi iiretim oranlarinda da azalma goriilmektedir. Entropi iiretim
orani, disk yiizeyi iizerinde ve boyutsuz disk yarigapinin 1 oldugu bolgede en yiiksek
degerini almaktadir. Ayrica Bejan sayisi diskin merkezinde en fazla deger ulasirken,
radyal yonde gittik¢e azalma goriilmektedir.
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1. INTRODUCTION

It is required to know how efficiently have we used today’s energy sources and the
efficiency of our energy transformation systems. During the process of energy
transformation, the contributions of the irreversible agents should be known. We
have all noticed that there is a strong connection between energy usage and economic
growth. We should be kept in mind that nothing happens; nothing is created, without

the irreversible dissipation of high-grade energy into degraded or less useable.

1.1 Literature Review

Flow over a rotating disk is of great interest in industrial, geothermal, geophysical,
technological and engineering practices such as gas turbine design, electronic
components having rotary parts, computer disk drives, estimating the flight path of
rotating wheels and spin-stabilized missiles and modeling of many geophysical
vortices. Von Karman [1] created a milestone in this problem. He defined the Navier-
Stokes equations governing the Newtonian flow over the rotating disk flow, reduced
to a self-similar form and he obtained an approximate solution. Cochran [2] derived a

more accurate solution to the same problem.

Studies on rotating disk flow and heat transfer have been subjected to considerable
interest from day to day. Attia investigated the steady laminar flow of a viscous
incompressible fluid due to the rotating of a disk of infinite extent in a porous
medium [3]. The laminar flow of a Newtonian bulk fluid arising from a solid rotating

disk lubricated by a non-Newtonian liquid film is studied by Andersson [4].

Osalusi et al. studied the laminar convective and slip flow of an electrically
conducting Newtonian fluid with variable properties over a rotating porous disk
[5,6]. The study of laminar flow and heat transfer generated by two infinite parallel
disks separated by a gas-filled micro-gap was considered by Jiji [7]. In another study,
new three-dimensional solutions of the Navier—Stokes equations governing the

steady-state stationary viscous flow of electrically conducting fluid associated with a



single rotating disk is proposed by Turkyilmazoglu [8]. Ozkol et al. determined the

effect of slip on entropy generation in a single rotating disk in MHD flow [9].

On the other hand, there have been various researches on micro fluidic systems for
compact reactor technologies in recent years [10]. Micro-Flow devices (MFD),
which are substantially used in complex systems for medical diagnosis and surgery,
chemical analysis, biotechnology, electronic cooling, are actually downscaled
devices; such as micro-channels, mixers, pumps, and heat pipes [11]. Heat and fluid
flow characteristics through micro devices are different from the macro scale
counterparts. Velocity slip and temperature jump are constitute this difference

substantially.

The slip flow regime has been widely studied and these studies increasingly
continue. Navier-Stokes and energy equations with slip boundary conditions are
valid in the slip flow regime. Velocity slip and temperature jump are the two major
parameter of slip BCs. Velocity slip is very important for precise analysis of the
behavior of micro flows. On the other hand, temperature jump has become
significant to determine the heat transfer in this type flow regime. Aziz [12]
considered the effect of slip flow on the thermal boundary layer over a flat plate with
a constant heat flux boundary condition instead of a constant temperature boundary
condition. Ozkol et.al. [13] analyzed the combined effects of velocity and
temperature jump on the entropy generation over a rotating disk. Renksizbulut et al.
studied incompressible gas flows and heat transfer in rectangular micro channels of
various aspect ratios [14]. In their study, they carried out for various Knudsen
numbers related to the slip-flow regime by using three-dimensional Navier-Stokes
and energy equations together with velocity-slip and temperature-jump boundary

conditions.

The second order temperature jump and velocity slip condition effects were
investigated in other studies. Ameel et al. studied micro tube gas flows with second-
order velocity slip and temperature jump boundary conditions [15]. He investigated
heat transfer in the slip regime for fully developed flow in circular microtubes.
Meolans studied thermal slip boundary conditions in vibrational nonequilibrium
flows [16]. Karniadakis and Beskok [11] proposed a general, second order slip
condition in nondimensional form and provided a comparison of the various forms of

the slip regime boundary conditions. In another studies of authors, the fundamental



laws and the methodology of gas microflows, i.e., gas flows in devices with
characteristic dimensions of the order of a micron were studied [17]. Deissler’s [18]
second-order model was proposed relatively recently to compare to the other slip
models. Hamdan [19] studied the effects of adding the second-order term to the
velocity-slip and temperature-jump boundary condition on the solution of four cases
of basic gas micro-flow problems, the transient Couette flow, the pulsating
Poiseuille flow, the Stoke's second problem flow and the transient natural convection
flow, studied by Haddad et al. [20]. Hooman [21] presented the closed form solutions
for local and bulk temperature distribution as well as the Nusselt number in the fully
developed region and extends the analysis to the Second Law where local and
average values of the entropy generation and the Bejan number are reported in his
study. The aim of Niazmand’s study [22] is to determine the high order slip and
thermal creep effects in micro channel natural convection. Zahmatkesh et al. [23]
focused on the derivation of new velocity-slip and temperature-jump boundary

conditions for rarefied non-reacting gas mixtures.

Differential Transform Method (DTM) is semi-numerical-analytical technique that
formulizes Taylor series in a very different manner. Zhou [24] introduced DTM in a
study about electrical circuits. Mao [25] designed a piezoelectric modal sensor for
non-uniform Euler-Bernoulli beams with rectangular cross-section by using
differential transformation method. Rahimi et al. [26] used DTM for temperature
distribution in a radiating fin. Ozkol and Arikoglu [27] successfully extended DTM,
by presenting and proving new theorems, to the solution of differential-difference

equaitons.

1.2 Research Objectives and Goals

In this study, the combined effects of the velocity slip and temperature jump on the
thermal and flow fields are investigated in detail for different values of the non-
dimensional field parameters for a rotating disk. Differential Transform Method
(DTM) is employed to solve the reduced governing equations under the assumptions
of velocity and thermal jump conditions on the disk surface. In order to show the
second order temperature jump and velocity slip condition effects on the rotating

disk type flow three different flow field cases are considered, i.e., neutral, suction



and blowing. To evaluate the efficiency of such rotating fluidic system, the entropy
generation equation is derived and non-dimensionalized. Additionally, special
attention has been given to Bejan (Be) and Entropy generation numbers, their
characteristics and their dependency on various parameters, i.e., slip and jump
factors. First and second order slips and jump boundary conditions are applied
separately and their sole effects are shown. Differences in applying first and second

order slip and jump boundary conditions are depicted.

Graphical representations for local and volumetric values of entropy generation and

Be number are presented for different values of the flow parameters.



2. THEORETICAL CONSIDERATION

2.1 Fluid Modelling and Flow Regimes

There are generally two ways of modeling a flow field such as molecular model and
continuum model. Molecular method consists of deterministic and probabilistic
methods. In the continuum method, the velocity, density, pressure, temperature is

defined at every point in space and time. Fluid modeling illustrated in Fig.2.1
FLUID
MODELING
MOLECULAR CONTINUUM
MODELS MODELS
1

1
[DETERMINISTIC] [ STATISTICAL ] [ EULER ] [NAVIER—STOKES] [ BURNETT ]

BOLTZMANN

Figure 2.1 : Fluid Modelling

Microscale fluid system behaves differently than macroscale fluid systems. Flow
characteristic change as per fluid regimes. Most important parameter is rarefaction,

which is represented by Knudsen Number (Kn). [11]

Kn:&:‘/ﬁ—ﬂ@ (2.1)
L 2 Re



Where A is mean free path, /[ is specific heat ratio, Ma is mach number and Re is

Reynolds number. Thermophysical properties of typical gases used in microdomain

applications listed in Table 2.1.

Table 2.1: Thermophysical properties of typical gases used in microdomain
applications at atmospheric conditions (298 K and 1 atm)
Gas Density| Dynamic Thermal Thermal Specific Mean
Viscosity Con- Diffusivity | Heat Free
ductivity Path
ke/m?]| [kg/(ms)] | [W/(m K)] | [m?/5] J/(kg K)] | [m]

Air 1.293 1.85E-5 0.0261 2.01E-5 1004.5 6.111E-8

Ny 1.251 1.80E-5 0.0260 2.00E-5 1038.3 6.044E-8

COs | 1.965 1.50E-5 0.0166 1.00E-5 845.7 4.019E-8

O, 1.429 2.07E-5 0.0267 2.04E-5 916.9 6G.503E-8

He 0.179 1.99E-5 0.150 1.60E-4 5233.5 17.651E-8

Ar 1.783 2.29E-5 0.0177 1.93E-5 515.0 6.441E-8

Effects of rarefaction become more important when the Knudsen number increases
and thus pressure drop, shear stress, heat flux, and corresponding mass flow rate
cannot be estimated from flow and heat transfer models based on the continuum
hypothesis. Flow regimes divided into four regimes according to Knudsen Numbers

as follows; [30]

For Kn<0.01 (the continuum flow regime) conventional continuum conservation of
Momentum and energy methods, such as the Navier-Stokes equations with no-slip

boundary condition, may be used.

For 0.01< Kn<0.1 (the slip flow regime) Navier-Stokes equations may be used with

velocity slip and temperature jump boundary conditions

For 0.1< Kn<10 (the transition regime) Both numerical solution of Boltzmann

equation and Direct Simulation Monte Carlo method may be used

For Kn>10 (the free molecular regime) Either Lattice Boltzmann equation or DSMC

methods are commonly used.



These flow regimes is very important in order to choose the methods used for the
modeling and estimation of the microflows. Fig.2.2 illustrates different regimes and

equations of the microflow depending on the Knudsen Number.[33]

The operation regimes of typical microsystems at standard temperature and pressure
are shown in Fig.2.3 Micro Electro-Mechanical System (MEMS) devices operate in a

wide range of flow regimes covering the continuum, slip, and transition flow. [11]

Free
Continuom ‘ Slip ‘ Transition R hicalng
Coticzonice |
Mn:\]etlui!lu.r Balizmann equation | Boltzmann
|  eqantion
I I
ot v
U ombim o Euler | Mavier-Slokes | Burmett |
mcad el equtions | equations |
el
|
0.e il 1 10,0 Kn
Local Knodsen number

Figure 2.2 : Classifications of the gas flow regimes and governing equations over

the range of Knudsen Numbers (Beskok, 2002)
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Figure 2.3 : Typical MEMS and nanotechnology applications in standart

atmospheric conditions span the entire Knudsen regime. (Beskok,2002)



2.2 Flow Over Rotating Disk

The flow over rotating disk is modelled in a cylindrical coordinate system as an

infinite planar disk. The fluid is assummed to be incompressible with constant

properties. A schematic diagram of the problem illustrated in Fig. 2.4

Figure 2.4 : Coordinate system for the rotating disk flow

2.2.1 Flow Field

An incompressible flow over rotating disk described with the Navier-Stokes

equations, which are four coupled nonlinear partial differential equations for four

unknown functions, which are the three components of u and the pressure p, in a

Cartesian coordinate system shown as follow. [30]
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p(X,t) is the fluid density, u(X,t) is the velocity vector field and p(X,#)is the pressure;
X € R3d is the spatial coordinate. u is the dynamic viscosity.

Consider the steady, incompressible flow over a single free disk in a Newtonian
fluid. The equations of steady motion in the cylindrical coordinates (1,0,z) are given

as follows;

au ou v 10p wu(ou 1dou u Ju
Wt = ottty (2.6)
ar oz r pdr plorr ror r 0dz
ov v uv _H v 1ov v 9%
—tWw—t— st Q2.7)
or 9z r p\or’ ror r* oz
dw —dw 1ladp _H dw low 9w
U—+W— e 2.8)
or dz podz p\ort ror oz
a(arr”) +—a(a”: )_0 2.9)

Where u is the radial, v is the circumferential and w is the axial components of the

velocity.

2.2.2 Thermal Field

After neglecting dissipation terms, the energy equation can be written as follows;

(ua_TeraTj k 82_T+82T+18T =0 2.10
pe or 0z oz>  or* ror (2.10)

Where T is the temperature, k is the thermal conductivity, c, is the constant

temperature specific heat. It is assumed that heat transfer is only in the z direction

and then equation (2.10) becomes;

dT d’T
pc, (w dzj k = =0 (2.11D)




2.3 Velocity Slip and Temperature Jump

Microscale fluid system behaves differently than macroscale fluid system because of
various factors. For microscale system, rarefaction effects may be considerable.
Rarefaction effects become significant while the mean free path of the fluid
molecules comparable with the characteristic length of the system rarefaction effects
become significant. When this occurs, noncontinuum behaviors begin to develop.
While in the slip flow regime (0.01< Kn <0.1) continuum equations may be used
with velocity slip and temperature jump boundary conditions. In the slip flow
regime, boundary conditions named as velocity slip and temperature jump are the
state of difference momentum and energy exchange between the fluid molecules and
the solid surface. Maxwell and Smoluchowski [11] define first order velocity slip and

temperature jump, respectively.

2-0 8U,+i(,b’—1) A*Re oT

U -U, = Lo — .
Y o, dy 2% f  Ec ox (212)
2-0,| 28 | A 0T
7 -1,=="9r| 2P 1 £90 .
A+ @

Where [ is the specific heat ratio, Re is Reynolds number, Ec is Eckert number, Pr
is Prandtl number. 0, and o, are tangential momentum and thermal accommodation

coefficients, respectively. These accommodation coefficients are defined by;

o _dE —dE, 214

" dE,—-dE, 2.14)
Tl - Z'r

oy = (2.15)
T, =Ty

Where dE, and dE denote the energy fluxes of incoming and reflected molecules
per unit time and dE, denote the energy flux if all the incoming molecules had been
reemitted with the energy flux corresponding to the surface temperature 7,,. 7; and
7, show the tangential momentum of incoming and reflected molecules,

respectively. 7,, is the tangential momentum of reemitted molecules, corresponding

10



to that of the surface. Some values of thermal and tangential accomodation

coefficients for typical gases and surface are tabled in Table 2.2 [11]

Table 2.2: Thermal and tangential momentum accomodation coefficients for typical
gases and surfaces. (Beskok, 2002)

Gas | Surface oT Oy
Air Al 0.87-0.97 | 0.87-0.97
He Al 0.073

Air Iron 0.87-0.96 | 0.87-0.93
Ho Iron 0.31-0.55
Air | Bronze 0.88-0.95

However, it is possible to solve the Navier-Stokes equations (NS) by applying first
order boundary conditions, near transition regime many second order modifications
and methods are proposed for accurate solutions. Second order boundary modified

conditions proposed by Beskok and Karniadakis [11] shown as follow;

2— oUu, 1,0°U

U -U, = Gav [,1 ays s A ay;] (2.16)
2 2

TS—TW=2_O-T i i la_T+/?’_a]; (2.17)
o, |B+1|Pr{ dy 2 dy

The concise closed form of second order boundary conditions can be given as below;

U, U,
Us _Uw = [ﬁvl ay +IBv2 ay2 ] (2.18)
oT o°’T
I.-T, = (ﬁﬂ gﬂgzz a_yzj (2.19)

Where, [,and 5, are first and second order velocity slip factors. Similarly,

B, and B, are first and second thermal jump factors. These factors are introduced

respectively.
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B,=7= =1 (2.20)

Po=3m0 (2.21)
_ 270 28 |1
B,=n= > Lb’+1}Pr/1 (2.22)
_Prp® o, | f+1
Bu=—] 2—%{215’} (2.23)

Where, ¥ is slip factor and 7 is jump factor.

2.4 Entropy Generation

The volumetric rate of entropy generation for the steady, axially symmetric,

newtonian fluid flow can be written as

Sgen =Sgenn*Sgen s (2.24)

Where S gen 15 the volumetric entropy generation rate per unit volume. Sgen h and

Sgen pare the local volumetric entropy generation rate due to heat transfer and fluid
friction, respectively. Steady and axially symmetrical Newtonian fluid-flow entropy

generation rate can be expressed in cylindrical coordinates as follow [9];

]
HRGEE6]

. k(0T u
=" 2| 4L
¢ Tf(azj +Tw (2.25)
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3. DIFFERENTIAL TRANSFORM METHOD

Differential Transform Method (DTM) is semi-numerical analytical technique that
formulized Taylor series in a very different form. The transformation of the kth

derivative of a function in one variable is as below [28]

_1okrw)
F(k)—ﬁ{aka @3.1)
X=X()
The inverse transformation is defined as,
f@)= 3 Fkx-x) 3.2)
k=0
3.1 Theorems
Theorems 1-10, which can be derived equations (3.1) and (3.2) are as follows.
Theorem1 If  f(x)=g(x)th(x) then F(k)=G(k)x H(k)
Theorem 2 If f(x)=cg(x) then F(k) =cG(k)
n !
Theorem3 If  f(x)= a8 then F(k)= (kZl)' G(k +n)
Theorem4 If  f(x)=g(x)h(x) then F(k)= Zﬁl -0 G(kpH(k —kl)

13



Theorem 5  If f)=x" then F(k)=6(k—n) where &k-n) Hk:n]

Theorem 6  If f=g,xg,(%)..8, ,(x)g (x) then

F(k)=H(k - mz 2 ZkZCi(kl)Gz(kZ —k)-G,(k, =k, ,)G,(k—k, )

k, =0k, ,=0
Theorem?7 If  f(x)=g|(xta) then
h
<N 1| m—k

Theorem 8 If fo=—0 dxn[g (x+a)] then

(k+D)!

Fy= Zhl—k+n(hl jﬂhl_k_nG(hl) for N —o0

Theorem9 If () = p(x) g(n) (x+a) then

kN
. (k—k1+n)z(l;1 k+n]ah1—k+kl—n
1

k=0 y=k—k+n (k=k)! P(kl)G(hl) for N —e0

Theorem 10 If f(x) = gl(nl) (x+a1)g2(n2) (x+a2) then

F(k)=§ %, %’ (k) (k= +m))!

k=0 =kt Ip=k—g+my 11t (KR!

no k), o ke for M=
*[k1+mJ(k—k1+n2J 2 GGy
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4. ANALYSIS AND SOLUTION OF EQUATIONS

4.1 Transform of The Equations

4.1.1 Flow Field

Von Karman dimensionless axial coordinate { =z+/Q /v is introduced together with

the following velocity components and pressure.[1]

u=QrF (), v=rG({), w=JQvH (), p=—pQVP() 4.1)

Equations (2.6), (2.7), (2.8) and (2.9) can be non-dimensionalized with equation (4.1)

as follows,

F'=HF +F* -G’ 4.2)
G” = HG +2FG (4.3)
H' =-2F (4.4)
P"=HH - H” 4.5)

The slip boundary conditions for the considered problem are introduced as follows;

) 9’ 0 0’
u:ﬁvla_Z+IBVZa_ZI;t’v:rQ+ﬁvla_‘Z/+ﬁv2#’ W:W atZ:O (4'6)
u—>0, vo0 as z —» o 4.7)

Where W =w, /N @V is the uniform suction or blowing parameter. For suction

case, this parameter takes constant negative values and for blowing case, this

parameter takes positive constant values.
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Boundary conditions in equations (4.6)-(4.7) can be written as follow by using Von

Karman dimensionless coordinate system,
F0)=p,F(0)+8,F"0), G0)=1+8,G(0)+ 5,G"©0), HO)=W 4.8)
F(0)=0, G(0)=0 4.9)

In an effort to transform infinite { range to finite & range, the following dependent

and independent variables are used. This method firstly introduced by Benton [29].

E=e* (4.10)

F()=cf(&), G)=cg&), H()=W-c[1-h(&)] (4.11)

Equations (4.2)-(4.5) can be rewritten as below by using transformation in quations

(4.10)-(4.11).

Ef& =19~ (©O-Ef (NS 4.12)
&¢"$=2f(e(&) - (En) (4.13)
Sh'(&)=21(&) (4.14)

Comparably, boundary conditions (4.8)-(4.9) become as follow,

fMy==B.cf W+ B, D), g)=c?=pcg' D)+ B,,c’g"D), D=1 (4.15)

f(0)=0, g0)=0 (4.16)

4.1.2 Thermal Field

Dimensionless temperature for rotating disk flow is defined as follows,

0= = 4.17)

Where T is temperature at infinity, 7, is temperature on the disk. Equation (2.11)

becomes as follows by using dimensionless form in equation (4.17).

16



0" =PrH® (4.18)

Where Pr is the Prandtl Number. Comparably, by using equation (4.17) boundary

condition in equation (2.19) becomes as follows:
0(=)=0, 60)=1+4,0'0)+/5,6"0) 4.19)
@ is the generalized thermal jump factor can be defined as follows;

¢= :le + ﬂzz Prw (4.20)

Integrating equation (4.18) and implementing the second boundary condition in
equation (4.19) then dimensionless temperature can be defined in terms of the axial

component of the velocity field as follows;

X
¢ PrJ‘H(a)da

0)=0'0)|e *  dy+p)+] 4.21)

In addition, the missing boundary condition 8'(0) is evaluated by equation (4.21)

together with the first boundary condition in equation (4.19) as follows;

Z
o Pr|H(a)da

0O ==1/([e *  dy+¢) (4.22)

0

After solving the flow field, the thermal field is determined from equations (4.21)-

(4.22) by using numerical integration.

4.1.3 Entropy Generation

Using dimensionless variables in equation (4.1), equation (2.24) can be written as in

simple terms as follow [9];
N, =Re6'({) +y{3Re’ H'(Y +RCT*[G'{) +F({)’ ] 4.23)

Where Re=QR?/v is the rotational Reynolds number, Br = ,quR2 [ kAT is the

rotational Brinkman number, £ = AT /T is the dimensionless temperature difference,

17



7 =r/R is the dimensionless radial coordinate and ¥ = Br/ aRe” is called the group

parameter. It helps us to compare the relative importance of viscous effects and heat

transfer irreversibility.

The total local entropy generation in equation (4.23) can be written as the
summation of local entropy generation due to heat transfer irreversibility (Ny), which
is the first term and the local entropy generation due to fluid friction irreversibility

(NF), which is the second term on the right-hand side.
Ng =Ny +Ng (4.24)

It may be possible to evaluate these terms individually then check against them to see
the dominance of one term on the other. Local entropy generation because of heat
transfer (Np) includes the entropy generation by heat transfer due to axial conduction
from the rotating disk. Local entropy generation because of fluid friction contains

velocity gradients in axial, radial and circumferential directions.

The irreversibility distribution ratio (@) is the first dimensionless parameter in the
entropy generation analysis of convective heat transfer problem. This ratio shows the
ratio between the entropy generation due to fluid friction and heat transfer. The
irreversibility distribution ratio can be written as follows: [9,13]

N, V[BReH()+RF[G(O) +F(O) ]}

d=—t= (4.25)
Ny T'(¢)

In the range 0<® <1, heat transfer irreversibility is dominant and when & >1,
fluid friction dominates the entropy generation. When & =1, the contributions of
heat transfer and fluid friction to entropy generation are equal Another alternative
irreversibility distribution parameter is the Bejan number (Be), which is the ratio of
entropy generation due to heat transfer to the total entropy generation. This number

is given in dimensionless form as follows [31]:

N, 1 Ty’

Be = = =
¢ NG 1+P T'(é‘)z+1//{3R3H'(§)2+R62;2|:G'(§)2+F'(§)2]}

(4.26)
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In the range 0< Be <1 and the specific value of Be=1 corresponds to a condition,
where the heat transfer irreversibility totally dominates and for Be =0 fluid friction
effects totally dominate the entropy generation. For Be <1/2, the irreversibility
caused by viscous effects dominates and for Be >1/2, the irreversibility caused by
heat transfer is dominant. When Be =1/2, the heat transfer and the fluid friction

entropy generation rates are equal.

The dimensionless volumetric entropy generation rate, which is an important

measure of the total global entropy generation, can be written as:
m 1
Now= H 27TNgdrd§ (4.27)
0 0

Where V is the volume considered. Since the gradients in velocity and thermal fields

exponentially decrease with increasing ¢, consideration of the complete flow domain

results in zero volumetric entropy generation. The integration in equation (4.27) is

obtained in the domain 0<7 <1 and0< ¢ <m, where m is a adequately large

number. It can be introduced that the average Bejan number as follows.

m 1
Be, :é [ [277Bedrds (4.28)
00

4.2 Solution of The Equations

We applied differential transform method (DTM) to the equations (4.12) — (4.14) and
used B.C.’s in equations (4.15)-(4-16) at £=0. By using DTM theorems, the

differential transform of equations (4.15)-(4-16) can be calculated as follows:

F(k)—k(k D ;[F(I)F(k—l) GG (k—1)- lF(l)H(k—l)] (4.29)
G(k) = k(k 5 ;[ZF(Z)G(k—l) IG(H (k=1) | (4.30)

~ 2 .
H (k) = F (k) (4.31)
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Where, k>2 and F (k), G(k) and H (k) denote to the differential transform of
f (&), g(&)and h(&) respectively. For determining the dependent variables, we need
to know the unknown B.C.’s f'(0) and g '(0). First, the values of I:“(k) , G(k) , ﬁ(k)
for £=23,..,N in terms of f'(0), g'(0), which will be called as f,g,

respectively, are obtained and then by using the boundary conditions given in

equation (4.15) for &=1, we calculated f,, g, and ¢ numerically. This is much

faster and cost efficient than the numerical techniques since it is not iterative. The

boundary conditions given in equation (4.16) for £ =0 are transformed as follows:
F0)=0, G0)=0, H0)=0 and F()= f, , G() = g, (4.32)

By using the inverse relations in equations (4.29)-(4.31) and the transformed
boundary conditions in equation (4.32), ﬁ(k), é(k)and ﬁ(k) for k=2,3,.....N

are evaluated. Then, using the inverse transformation rule in [12], the series solutions

are obtained from:
FE=DFKE, (&)=Y Gh)&", (&)=Y H(k)E (4.33)

where, N is the number of terms to be evaluated. By calculatingup to N =7, we get:

F&=r1er -t 80 ST 18

2 2 4 4
4 2 2 4 5 3 2 4
LTI frel g )54+(61f1 L3Sl 13f1gl o 434)
144 8 144 1152 576 1152
. 73f1° 113f1'g1> 889f1°g1'  7gl° o
3200 3456 86400 17280

- _frgl gl ., fTgl flgl
8=+ (- E =S8+ (e

53f1'gl 29f1%°gl> @I’ 13f1°g1 41f1gl> 17f1g1°
_fg_fg_g)§s+(fg+fg+fg)§6
1920 960 384 1080 2700 5400

(4.35)
(
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n& =216+ I8y ST S8 e,

2 2 6 6
4 2 2 4 5 3 2 4
VST STl gl e LS 3TSIE 137161 o 4.36)
288 16 288 2880 1440 2880

CT3f1° 113f1°g1 889f1gl*  7g1°

6
9600 10368 259200 51840 %

(

After calculating (&), g(&)and h(E) the original dependent variables F((),
G({)and H({) are obtained by using equations (4.10)-(4.11).
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5. EFFECT OF SECOND ORDER VELOCITY SLIP AND TEMPERATURE
JUMP CONDITIONS ON ROTATING DISK FLOW IN CASE OF BLOWING
AND SUCTION WITH ENTROPY GENERATION

Effect of second order velocity slip and temperature jump boundary conditions is
examined in three subtitles. Blowing, suction and neutral cases are considered in

flow field, temperature field and entropy generation.

5.1 Flow Field

After solution of the flow field, radial, circumferential and axial velocity profiles

plotted in Fig 5.1-5.3.

The upper side of Fig 5.1 illustrates the variation of radial velocity with respect to {
for first order and second order slip effects in case of difference slip factors.
Differently from no-slip regime, the flow has radial velocity on disk surface in slip

flow regime.

The lower side of the Fig 5.1 illustrates the variations of the dimensionless radial
velocity profile by carrying out the first and second order boundary conditions.
Radial flow velocity (F({)) on the disk surface and the velocity of the disk itself
become different in the slip-flow regime. While the slip factor takes greater values,

the velocity gradient reduces.
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Figure 5.1 : Variation of F({) with respect to ( for first order and second order slip.

Difference between first and second order value of F({) with respect to

.

The upper side of Fig 5.2 illustrates the dimensionless circumferential velocity in
case of different slip factors. The lower side of the Fig 5.2 illustrates the variations of
the dimensionless circumferential velocity profile by carrying out the first and
second order boundary conditions. Similarly, circumferential flow velocity (G(())
and the disk velocity show a deviation when the slip factor increases. The maximum
difference between first and second order boundary conditions occurs about (=2 as

shown in lower side of Fig. 5.2
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Figure 5.2 : Variation of G({)with respect to { for first order and second order slip.

Difference between first and second order value of G({) with respect to C.

The upper side of Fig 5.3 illustrates the dimensionless axial velocity in case of
different slip factors. The lower side of the Fig 5.3 illustrates the variations of the
dimensionless axial velocity profile by carrying out the first and second order
boundary conditions. The maximum difference between first and second order

boundary conditions occurs about {=2-3 as shown in lower side of Fig. 5.3
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Figure 5.3 : Variation of H({)with respect to { for first order and second order slip.

Difference between first and second order value of H({) with respect to C.

5.2 Thermal Field

The variation of temperature with respect to ( for first order and second order slip
and differences occur by applying first and second order boundary conditions as

presented in Fig. 5.4.
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Figure 5.4 : Variation of 0() with respect to { for first order and second order slip.

Difference between first and second order value of 0({) with respect to .

The upper side of Fig. 5.4 shows the variation of temperature field in several jump
factors. The lower side of Fig. 5.4 shows the variation of temperature field in several
slip factors. Increasing jump factor raise the temperature deviation between disk and

adjacent flow. Additionally increasing jump and slip factors reduce the temperature

gradient.
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Figure 5.5 : Variation of 0 ({)with respect to ( for first order and second order slip in

Neutral case (W=0). Difference between first and second order value of

0 (€) with respect to (.

After solving the dimensionless temperature profile, results for neutral, suction and
blowing case are plotted in Fig.5.5-5.7. The most difference between the effects of

applying first and second order boundary condition occurs in blowing case.
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Figure 5.6 : Variation of 0 ({)with respect to ( for first order and second order slip in
Suction case (W=-1). Difference between first and second order value

of 0 ({) with respect to C.

In the suction case (W=-1) shown in Fig.5.6, the temperature sharply decreases away
from the disk surface, however for the blowing case (W=1) shown in Fig. 5.7 the
temperature is almost constant along the (-axis then it takes the decreasing trend
after  =15. For suction and neutral cases showns in Fig. 5.5 and Fig. 5.7, the first

and second order effects are closer and second order effects are negligible.

29



()

0.00f
—0.01}

.0zl

AR g yEndy

—0.03}

0.4l
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If the temperature distributions in the flow fields are represented greater than two

degree polynomial, second order boundary condition approach would have to be

used [11].

5.3 Entropy Generation

Local entropy generation rates are shown in Fig. 5.8-5.10.
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Figure 5.8 : Variation of N, with respect to slip factor and jump factor (t=1) in

Neutral case (W=0)

While slip and jump factors take greater values, the local entropy generation rates
reduce. Excluding blowing case (W=1), the local entropy generation rate show a

noticeable difference for the first and the second order boundary conditions (Fig. 5.8-

5.9).
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Figure 5.9 : Variation of N, with respect to slip factor and jump factor (T =1) in

Suction case (W=-1)

Local entropy generation rates are shown in Fig. 5.8-5.10. While slip and jump
factors take greater values, the local entropy generation rates reduce. Excluding
blowing case (W=1), the local entropy generation rate show a noticeable difference

for the first and the second order boundary conditions (Fig. 5.8-5.9).
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Figure 5.10 : Variation of N, with respect to slip factor and jump factor (T =1) in

Blowing case (W=1)

In neutral, suction and blowing cases, the change of N,,, with respect to slip and
jump factors for first and second order are shown in Fig. 5.11-5.13. The rarefied
effect reduces the velocity gradients in all directions and consequently as the
temperature gradient in the entire flow field. This situation causes a reduction in the

volumetric entropy generation rate.

33



40l =070 R <200, w=1 |

—a— W, Lst Order

o 351 e W0, Ind ovder 1
=" '
10} ]
o0 01 02 03 04 05
n
3.5 ]
5
=3 i
| afr=107% Re =200, =02
[ —a— =0, Lst Order
15t -
_g W=, 2nd order

0.0 0.5 1.0 1.5 2.0 45 3.0
¥

Figure 5.11 : Variation of N, ,, with respect to slip factor and jump factor for first

and second order in Neutral case (W=0)

For the cases W=1 as well as W=0 and W=-1, the entropy generation must be carried
out in volumetric measure to get a sense about the total entropy generation. It has
been observed from Fig. 5.11-5.13 that using the second order boundary conditions
results in lower entropy generation comparing to first order boundary condition case.
It means that it is possible to reduce entropy generation and increase system

efficiency. This result is paramount importance for the design of fluidic systems.
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Figure 5.12 : Variation of N, ,, with respect to slip factor and jump factor for first

and second order in Suction case (W=-1)

In neutral, suction and blowing conditions, the local entropy generation rate is
illustrated as 3-D in Fig.5.14-5.16. Maximum local entropy generation rate occurs on

disk surface and local entropy generation rate reduces away the disk surface.

35



El.lllil;
0.105¢
III.IIIIEI%

0.095
0.090 F | e W, 1st Order

ar=10"% e =200, y=1

NE’ &

0.085F |, Wi, 2nd order

0.080F
L S S S S S
0.0 0.1 Nz 0.3 0.4 0.5
n
0.35F
. Wr=10"" e =200, =02
0.30
035 ] —g— W=l 1st Order
=] D_ED:- _g W=l 2nd order
= :
=, I
0.15F
0.10}
0.05F

Figure 5.13 : Variation of N ,, with respect to slip factor and jump factor for first

and second order in Blowing case (W=1)

Local entropy generation rate is decreases when the second order velocity slip and
temperature jump conditions are used. Local entropy generation on disk surface
increases to the radial direction and takes its maximum value when the dimensionless

disk radius reach 1.
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Figure 5.14 : Variation of N, with respect to 7 and ( in Neutral case (W=0)

Upper sides of Fig. 5.14-5.16 show the local entropy generation rate with only first
order velocity slip and temperature jump boundary conditions and lower side of Fig.
5.14-5.16 show the local entropy generation rate with second order velocity slip and

temperature jump boundary conditions.
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Figure 5.15 : Variation of N, with respect to 7 and  in Suction case (W=--1)

Maximum local entropy generation rate occurs in suction case. It is observed that
using second order velocity slip and temperature jump boundary decrease the local

entropy generation rate.
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Figure 5.16 : Variation of N, with respect to 7 and { in Blowing case (W=1)

In blowing case, local entropy generation rate is very little. Local entropy generation
rate occurs only the area while dimensionless disk radius closes to 1. On the remain

area local entropy generation rate can be ignore.
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Figure 5.17 : Variation of Be with respect to slip factor and jump factor (t =1) in

Neutral case (W=0)

Fig. 5.17-5.19 show the mutual effects of different flow field conditions (W=0, W=1,
W=-1) and first and second order boundary conditions. For neutral cases, W=0,
Bejan number is not effected either the boundary condition first or second order. For
the blowing case, W=1, Bejan number takes its possible smallest value since the
entropy generation created by viscous effect dominates on total entropy generation.
In the suction case , W=-1, Bejan number approaches to 1 since heat transfer entropy

generation dominates on total entropy generation.
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Figure 5.18 : Variation of Be with respect to slip factor and jump factor (t=1) in

Suction case (W=-1)

While the slip factor takes greater values, Bejan number increases. On the other
hand, while the jump factor takes grater values, Bejan number redudes. The
rarefaction effects reduce the velocity and temperature gradient so the entropy

generation rate is decreases.
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Figure 5.19 : Variation of Be with respect to slip factor and jump factor (t =1) in

Blowing case (W=1)

Be number is plotted as in Fig. 5.20-5.22. In neutral and suction cases, variations
between Bejan numbers, which are determined by using first and second order
velocity slip and temperature jump boundary condition, are ignorable. In blowing

case, second order effects become admirable.
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Figure 5.20 : Variation of Be with respect to ¥ and { in Neutral case (W=0)

In neutral and suction case, heat transfer irreversibility is dominant. In blowing case,
fluid friction is dominant excluded the area while the dimensionless disk radius close

to 1.
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Figure 5.21 : Variation of Be with respect to 7 and { in Suction case (W=-1)
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Figure 5.22 : Variation of Be with respect to ¥ and ( in Blowing case (W=1)
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6. CONCLUSION

The paramount importance of this study is the application of the second order
velocity slip and temperature jump boundary conditions, to a rotating free disk, for
steady and axially symmetrical case in a Newtonian Fluid. Effect of second order

boundary conditions on entropy generation is examined.

Additionally, these effects are examined in three different cases that are the suction,
blowing and neutral cases. These types of flow field cases are frequently encountered

in many engineering applications.

Navier-Stokes and energy equations with second order velocity slip and temperature

jump boundary conditions are solved by using DTM and numerical integration.

Local and volumetric entropy generation and Bejan number are graphically presented

for neutral, suction and blowing cases.

First and second order slip and jump boundary conditions were applied separately to
show their sole effects. The common argument observed in these graphical
representations is that the effect of slip factor and jump factor reduces the magnitude

of entropy generation.

Using second order velocity slip and temperature jump boundary conditions
decreases the entropy generation. This means that minimum the entropy generation

maximum the available work. In other words, the efficiency of the system increases.

Finally one notices that to use the second order boundary conditions creates a
difference in the total entropy generation, i.e., reducing the total entropy generation,
which directly affects the efficiency calculation of the thermal system. That is vital

for the design calculation of the energy consumptions.
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