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EFFECT OF SECOND ORDER VELOCITY SLIP AND TEMPERATURE 
JUMP BOUNDARY CONDITIONS ON ENTROPY GENERATION OF A 

FLOW  OVER ROTATING DISK IN CASE OF BLOWING AND SUCTION  

SUMMARY 

In this study, the effect of second order velocity slip and temperature jump boundary 
conditions on entropy generation of a flow over rotating disk in case of blowing and 
suction cases is investigated. As a model, the flow over a rotating single free disk for 
steady and axially symmetrical case in a Newtonian ambient fluid is chosen. The 
classical approach, which is introduced by Von Karman, is used with transformations 
introduced by Benton to reduce non-linear flow and thermal field equations to 
ordinary differential equations. Then flow field equations are solved by using 
differential transform method (DTM) and thermal field equations solved by 
numerical integration.  

The flow field, which is consisted of radial, circumferential and axial velocity 
components, is plotted separately. Velocity slip effects in both first order and second 
order boundary conditions are monitored. In comparison with no-slip flow regime, 
radial and circumferential velocities adjacent disk surface are different from disk 
velocity. Slip boundary conditions reduce the radial, circumferential and axial 
velocity gradients away from disk surface. Second order effects become significant 
on radial and axial velocities.  

The thermal field under the condition that heat transfer is only axial direction is 
plotted. The thermal field is graphed in blowing, suction and neutral case. First and 
second order velocity slip and temperature jump effects are observed case by case. 
The paramount difference between first and second order boundary conditions occur 
in blowing case. The first and second order effects are closer in suction and neutral 
case. 

Entropy generation equations for this system is then derived and non-
dimensionalized. These equations interpreted for various physical cases by using 
non-dimensional parameters of fluid and thermal fields in blowing and suction case. 
The local entropy generation and average entropy generation rates with first and 
second order boundary conditions are plotted. Additionally Bejan numbers, which 
are the ratio of entropy generation due to heat transfer to the total entropy generation, 
are monitored. It is observed that the effect of second order boundary conditions is to 
reduce velocity and temperature gradient so the magnitude of entropy generation is 
decrease.  
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ÜFLEME VE EMME KOŞULLARI ALTINDA İKİNCİ DERECE HIZ 
KAYMASI VE SICAKLIK SIÇRAMASI SINIR ŞARTLARININ DÖNEN 

DİSK ÜZERİNDEKİ AKIŞTAKİ ENTROPİ ÜRETİMİNE ETKİSİ 

ÖZET 

Bu çalışmada ikinci derece hız kayması ve sıcaklık sıçraması sınır şartlarının, dönen 
disk üzerindeki akışın, emme ve üfleme koşulları altındaki entropi üretimine etkisi 
incelenmiştir. Model olarak, basit dönen disk üzerinde istikrarlı, eksenel olarak 
simetrik Newtonian akış seçilmiştir. Von Karman tarafından geliştirilen klasik 
yaklaşımda, Benton dönüşümleri kullanılarak, lineer olmayan akış ve termal alan 
denklemleri adi diferansiyel denklemlere indirgenmiştir. Sonra akış alanı denklemleri 
diferansiyel dönüşüm metodu (DTM) yardımıyla, termal alan denklemleri ise 
nümerik integral yöntemi ile çözülmüştür.  

Bu çalışmada akış rejimlerinini belirlenmesinde etkin olan Knudsen sayısı (Kn) 
hakkında bilgi verilmiştir ve Knudsen sayısına bağlı olarak akış rejimleri 
anlatılmıştır. Bu rejimlerdeki uygulama alanlarından örnekler verilmiştir. Hangi 
rejimlerde hangi denklemlerin ve sınır şartlarının kullanılmasının uygun olduğu 
hakkında özet bilgiler verilmiştir. Bu kaymasız ve kaymalı akış rejimlerinde, hız 
kayması ve sıcaklık sıçraması sınır şartları altında geçerlidir. 

Birinci ve ikinci derece sınır şartları detaylı olarak anlatılmıştır. Kayma sınır 
şartlarını oluşturan parametreler hakkında bilgi verilmiş ve bu parametrelerden 
bazıları hakkında daha önce yapılan deneysel sonuçlar tablolar halinde listelenmiştir. 
Hız kaymasına etki eden parametreler, hız kayma parametresi olarak ele alınmış ve 
denklemler kayma parametresinin farklı değerlerine göre çözülmüştür. Aynı şekilde 
sıcaklık sıçramasına etki eden parametreler sıçaklık sıçrama parametresi olarak ele 
alınmıştır. Termal alana hem hız kayması hem de sıcaklık sıçraması sınır şartlar etki 
ettiğinden. Bu parametrelere bağlı olarak ayrı ayır termal grafikler çizilmiştir. 

Radyal, çevresel ve eksenel hız bileşenlerinin oluşturduğu akış alanı incelenmiş ve 
grafikleri ayrı ayrı çizilmiştir. Çizilen grafiklerde hem birinci derece hız kayması 
hem de ikinci derece hız kayması etkileri gösterilmiştir. Birinci derece hız kayması 
sınır koşulu altında ve ikinci derece hız kayması koşulu altındaki hız profilleri 
arasındaki farklar da ayrıca çizilmiştir. Kaymasız akış rejiminde diskin hemen 
üzerindeki akışın hızı ile diskin hızı aynı olmasına rağmen kaymalı akış rejiminde 
diskin hızı ile diske bitişik akışkanın hızı arasında fark oluşmaktadır. Diskin hemen 
üzerindeki bu fark sadece radyal ve çevresel hız bileşenlerinde oluşmaktadır. Birinci 
derece ve ikinci derece sınır koşulları hız alanı çözüldüğünde en büyük farkın radyal 
ve eksenel hız bileşeninlerinde olduğu görülmüştür. Çevresel hız bileşeninde ikinci 
derece sınır şartı etkisi ihmal edilecek kadar az olduğu tespit edilmiştir.  
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Isı transferinin sadece eksenel yönde olduğu varsayılarak, termal alan denlemleri 
çözülmüştür.  Emme, üfleme ve nötr koşullar altındaki boyutsuz sıcaklık değişimi 
grafikleri çizilmiştir ve etkileri incelenmiştir. Emme, üfleme ve nötr şartlarda birinci 
ve ikinci derece hız kayması, birinci ve ikinci derece sıcaklık sıçraması sınır şartları 
ayrı ayrı uygulanmış ve oluşan sonuçlar incelenmiştir.  

Isı transferinin sadece eksenel yönde değişimi varsayıldığından sadece eksenel 
yöndeki hız bileşeninin sıcaklık dağılımına etkisi olduğu belirtilmiştir. Kaymaz akış 
rejiminde disk yüzeyinin sıcaklığı ile diskin hemen üzerindeki akışkanın sıcaklığı 
aynı olmasına rağmen, hız kayması ve sıcaklık sıçraması sınır şartlarının etkili 
olduğu kaymalı akış rejiminde disk yüzeyinin sıcaklığı ile diskin hemen üzerindeki 
akışkanın sıcaklığı arasında fark gözlenmiştir. Bu fark temelde sıcaklık sıçrama sınır 
şartına bağlı olduğu görülmüştür. Hız kayma ve sıcaklık sıçrama parametrelerinin 
artması durumunda diskin üzerideki akışkanın sıcaklık dağılım gradyanının azaldığı 
görülmüştür. Sıcaklık dağılımları emme, üfleme ve nötr şartlarda incelenmiş ve 
birinci ile ikinci derece sınır şartları arasındaki en büyük farkın üfleme şartında 
oluştuğu tespit edilmiştir.  

Bu sistem için entropi üretimi denklemleri elde edilmiş ve boyutsuz hale 
getirilmiştir. Bu denklemler emme ve üfleme koşullarında, boyutsuz akış ve sıcaklık 
alanı parametreleri kullanılarak yorumlanmıştır.  

Yerel entropi üretim oranları hesaplanıp, grafiksel olarak gösterilmiştir. Bu 
grafiklerde birinci ve ikinci derece hız kayma parametresinin etkilerinin yanında 
birinci ve ikinci derece sıcaklık sıçrama parametrelerinin etkileri de ayrı ayrı 
gösterilmiştir. Ayrıca hem radyal hem de eksenel yöndeki local entropi üretim 
oranları üç boyutlu halde çizilmiştir. En yüksek entropi üretim oranı disk yüzeyine ve 
diskin merkezinden uzakta gözlemlenmektedir. Artan hız kayma ve sıcaklık sıçrama 
parametreleri yerel entropi oranını azaltmakta olduğu belirlenmiştir. Üfleme 
durumunda birinci derece sınır koşulları ile ikinci derece sınır koşulları arasındaki 
farkın, emme ve nötr durumlarına göre daha fazla olduğu gözlenmiştir.  

Benzer bir şekilde ortalama entropi üretim oranları da hesaplanıp, grafiksel olarak 
gösterilmiştir. Bu grafiklerde hem emme, üfleme ve nötr şartlar gözönünde 
bulundurularak hem de birinci ve ikinci derece sınır şartları dikkate alınarak ayrı ayrı 
gösterilmiştir.Hız kayma ve sıcaklık sıçrama parametreleri arttıkça ortalama entropi 
üretim oranları azalmaktadır. Üfleme koşullarında ikinci derece sınır şartlarının 
etkileri emme ve nötr duruma göre daha belirgin hale gelmektedir.  

Isı transferinden oluşan entropi üretiminin toplam entropi üretimine oranını temsil 
eden Bejan sayısı (Be), emme, üfleme ve nötr şartlarda   incelenmiştir. Hem birinci 
derece ve ikinci derece hız kayma sınır şartları hem de birinci ve ikinci derece 
sıcaklık sıçraması sınır şartlarının etkileri belirlenip grafiksel olarak gösterilmiştir. 
Buna ek olarak Bejan sayısının radyal ve eksenel yöndeki dağılımları emme, üfleme 
ve nötr şartlarda incelenmiştir. Bunun yanında birinci ve ikinci derece sınır şartı 
etkilerinin radyal ve eksenel yöndeki dağılımları çizilmiştir. Hız kayma parametresi 
arttıkça Bejan sayısı artmaktadır yani ısı transferinden oluşan entropi üretiminin 
toplam entropi üretimine oranının artmakta olduğu gözlenmiştir. Bunun aksine 
sıcaklık sıçrama parametresi arttıkça Bejan sayısı azalmaktadır yani ısı transferinden 
oluşan entropi üretiminin toplam entropi üretimine oranının azalmakta olduğu 
görülmüştür.  
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Hız kayma ve sıcaklık sıçrama parametreleri arttıkça hız ve sıcaklık gradyanleri 
azaldığından entropi üretim oranlarında da azalma görülmektedir. Entropi üretim 
oranı, disk yüzeyi üzerinde ve boyutsuz disk yarıçapının 1 olduğu bölgede en yüksek 
değerini almaktadır. Ayrıca Bejan sayısı diskin merkezinde en fazla değer ulaşırken, 
radyal yönde gittikçe azalma görülmektedir. 

 



  
xxiv



 
1

1.  INTRODUCTION 

It is required to know how efficiently have we used today’s energy sources and the 

efficiency of our energy transformation systems. During the process of energy 

transformation, the contributions of the irreversible agents should be known. We 

have all noticed that there is a strong connection between energy usage and economic 

growth. We should be kept in mind that nothing happens; nothing is created, without 

the irreversible dissipation of high-grade energy into degraded or less useable. 

1.1 Literature Review 

Flow over a rotating disk is of great interest in industrial, geothermal, geophysical, 

technological and engineering practices such as gas turbine design, electronic 

components having rotary parts, computer disk drives, estimating the flight path of 

rotating wheels and spin-stabilized missiles and modeling of many geophysical 

vortices. Von Karman [1] created a milestone in this problem. He defined the Navier-

Stokes equations governing the Newtonian flow over the rotating disk flow, reduced 

to a self-similar form and he obtained an approximate solution. Cochran [2] derived a 

more accurate solution to the same problem. 

Studies on rotating disk flow and heat transfer have been subjected to considerable 

interest from day to day. Attia investigated the steady laminar flow of a viscous 

incompressible fluid due to the rotating of a disk of infinite extent in a porous 

medium [3]. The laminar flow of a Newtonian bulk fluid arising from a solid rotating 

disk lubricated by a non-Newtonian liquid film is studied by Andersson [4]. 

Osalusi et al. studied the laminar convective and slip flow of an electrically 

conducting Newtonian fluid with variable properties over a rotating porous disk 

[5,6]. The study of laminar flow and heat transfer generated by two infinite parallel 

disks separated by a gas-filled micro-gap was considered by Jiji [7]. In another study, 

new three-dimensional solutions of the Navier–Stokes equations governing the 

steady-state stationary viscous flow of electrically conducting fluid associated with a 
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single rotating disk is proposed by Turkyilmazoglu [8]. Ozkol et al. determined the 

effect of slip on entropy generation in a single rotating disk in MHD flow [9]. 

On the other hand, there have been various researches on micro fluidic systems for 

compact reactor technologies in recent years [10]. Micro-Flow devices (MFD), 

which are substantially used in complex systems for medical diagnosis and surgery, 

chemical analysis, biotechnology, electronic cooling, are actually downscaled 

devices; such as micro-channels, mixers, pumps, and heat pipes [11]. Heat and fluid 

flow characteristics through micro devices are different from the macro scale 

counterparts. Velocity slip and temperature jump are constitute this difference 

substantially.  

The slip flow regime has been widely studied and these studies increasingly 

continue. Navier-Stokes and energy equations with slip boundary conditions are 

valid in the slip flow regime. Velocity slip and temperature jump are the two major 

parameter of slip BCs. Velocity slip is very important for precise analysis of the 

behavior of micro flows. On the other hand, temperature jump has become 

significant to determine the heat transfer in this type flow regime. Aziz [12] 

considered the effect of slip flow on the thermal boundary layer over a flat plate with 

a constant heat flux boundary condition instead of a constant temperature boundary 

condition. Ozkol et.al. [13] analyzed the combined effects of velocity and 

temperature jump on the entropy generation over a rotating disk. Renksizbulut et al. 

studied incompressible gas flows and heat transfer in rectangular micro channels of 

various aspect ratios [14]. In their study, they carried out for various Knudsen 

numbers related to the slip-flow regime by using three-dimensional Navier-Stokes 

and energy equations together with velocity-slip and temperature-jump boundary 

conditions.  

The second order temperature jump and velocity slip condition effects were 

investigated in other studies.  Ameel et al. studied micro tube gas flows with second-

order velocity slip and temperature jump boundary conditions [15].  He investigated 

heat transfer in the slip regime for fully developed flow in circular microtubes. 

Meolans studied thermal slip boundary conditions in vibrational nonequilibrium 

flows [16]. Karniadakis and Beskok [11] proposed a general, second order slip 

condition in nondimensional form and provided a comparison of the various forms of 

the slip regime boundary conditions. In another studies of authors, the fundamental 
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laws and the methodology of gas microflows, i.e., gas flows in devices with 

characteristic dimensions of the order of a micron were studied [17]. Deissler’s [18] 

second-order model was proposed relatively recently to compare to the other slip 

models. Hamdan [19] studied the effects of adding the second-order term to the 

velocity-slip and temperature-jump boundary condition on the solution of four cases 

of basic gas micro-flow problems, the transient Couette flow, the pulsating 

Poiseuille flow, the Stoke's second problem flow and the transient natural convection 

flow, studied by Haddad et al. [20]. Hooman [21] presented the closed form solutions 

for local and bulk temperature distribution as well as the Nusselt number in the fully 

developed region and extends the analysis to the Second Law where local and 

average values of the entropy generation and the Bejan number are reported in his 

study. The aim of Niazmand’s study [22] is to determine the high order slip and 

thermal creep effects in micro channel natural convection. Zahmatkesh et al. [23] 

focused on the derivation of new velocity-slip and temperature-jump boundary 

conditions for rarefied non-reacting gas mixtures. 

Differential Transform Method (DTM) is semi-numerical–analytical technique that 

formulizes Taylor series in a very different manner. Zhou [24] introduced DTM in a 

study about electrical circuits. Mao [25] designed a piezoelectric modal sensor for 

non-uniform Euler-Bernoulli beams with rectangular cross-section by using 

differential transformation method. Rahimi et al. [26] used DTM for temperature 

distribution in a radiating fin. Ozkol and Arikoglu [27] successfully extended DTM, 

by presenting and proving new theorems, to the solution of differential-difference 

equaitons. 

1.2 Research Objectives and Goals 

In this study, the combined effects of the velocity slip and temperature jump on the 

thermal and flow fields are investigated in detail for different values of the non-

dimensional field parameters for a rotating disk. Differential Transform Method 

(DTM) is employed to solve the reduced governing equations under the assumptions 

of velocity and thermal jump conditions on the disk surface. In order to show the 

second order temperature jump and velocity slip condition effects on the rotating 

disk type flow three different flow field cases are considered, i.e., neutral, suction 
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and blowing. To evaluate the efficiency of such rotating fluidic system, the entropy 

generation equation is derived and non-dimensionalized. Additionally, special 

attention has been given to Bejan (Be) and Entropy generation numbers, their 

characteristics and their dependency on various parameters, i.e., slip and jump 

factors. First and second order slips and jump boundary conditions are applied 

separately and their sole effects are shown. Differences in applying first and second 

order slip and jump boundary conditions are depicted. 

Graphical representations for local and volumetric values of entropy generation and 

Be number are presented for different values of the flow parameters.
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2.  THEORETICAL CONSIDERATION 

2.1 Fluid Modelling and Flow Regimes 

There are generally two ways of modeling a flow field such as molecular model and 

continuum model. Molecular method consists of deterministic and probabilistic 

methods. In the continuum method, the velocity, density, pressure, temperature is 

defined at every point in space and time. Fluid modeling illustrated in Fig.2.1 

 

 

 

                                           Figure 2.1 : Fluid Modelling 

Microscale fluid system behaves differently than macroscale fluid systems. Flow 

characteristic change as per fluid regimes. Most important parameter is rarefaction, 

which is represented by Knudsen Number (Kn). [11] 

2 Re
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Kn

L

λ πβ
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Where λ  is mean free path,  β  is specific heat ratio, Ma is mach number and Re is 

Reynolds number. Thermophysical properties of typical gases used in microdomain 

applications listed in Table 2.1. 

Table 2.1: Thermophysical properties of typical gases used in microdomain 
applications at atmospheric conditions (298 K and 1 atm) 

 

Effects of rarefaction become more important when the Knudsen number increases 

and thus pressure drop, shear stress, heat flux, and corresponding mass flow rate 

cannot be estimated from flow and heat transfer models based on the continuum 

hypothesis. Flow regimes divided into four regimes according to Knudsen Numbers 

as follows; [30] 

For Kn≤0.01 (the continuum flow regime) conventional continuum conservation of 

Momentum and energy methods, such as the Navier-Stokes equations with no-slip 

boundary condition, may be used. 

For 0.01≤ Kn≤0.1 (the slip flow regime) Navier-Stokes equations may be used with 

velocity slip and temperature jump boundary conditions 

For 0.1≤ Kn≤10 (the transition regime) Both numerical solution of Boltzmann 

equation and Direct Simulation Monte Carlo method may be used 

For Kn>10 (the free molecular regime) Either Lattice Boltzmann equation or DSMC 

methods are commonly used. 
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These flow regimes is very important in order to choose the methods used for the 

modeling and estimation of the microflows. Fig.2.2 illustrates different regimes and 

equations of the microflow depending on the Knudsen Number.[33] 

The operation regimes of typical microsystems at standard temperature and pressure 

are shown in Fig.2.3 Micro Electro-Mechanical System (MEMS) devices operate in a 

wide range of flow regimes covering the continuum, slip, and transition flow. [11] 

 

Figure 2.2 : Classifications of the gas flow regimes and governing equations over 

the range of Knudsen Numbers (Beskok, 2002) 

 

Figure 2.3 : Typical MEMS and nanotechnology applications in standart 

atmospheric conditions span the entire Knudsen regime. (Beskok,2002) 



 
8

2.2 Flow Over Rotating Disk 

The flow over rotating disk is modelled in a cylindrical coordinate system as an 

infinite planar disk. The fluid is assummed to be incompressible with constant 

properties. A schematic diagram of the problem illustrated in Fig. 2.4 

 

                     Figure 2.4 : Coordinate system for the rotating disk flow 

2.2.1 Flow Field 

An incompressible flow over rotating disk described with the Navier-Stokes 

equations, which are four coupled nonlinear partial differential equations for four 

unknown functions, which are the three components of u and the pressure p, in a 

Cartesian coordinate system shown as follow. [30] 

1 1 1 1 1 1 1
1 2 3

1
, ,

u u u u u u up
u u u

t x y z x x y z

µ

ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂∂
+ + + + =  

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (2.1) 

2 2 2 2 2 2 2
1 2 3

1
, ,

u u u u u u up
u u u

t x y z x x y z

µ

ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂∂
+ + + + =  

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

(2.3) 

 

3 3 3 3 3 3 3
1 2 3

1
, ,

u u u u u u up
u u u

t x y z x x y z

µ

ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂∂
+ + + + =  

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(2.4) 

31 2 0
uu u

x y z

∂∂ ∂
+ + =

∂ ∂ ∂
 

(2.5) 
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ρ(X,t) is the fluid density, u(X,t) is the velocity vector field and p(X,t)is the pressure;  

3X R d∈

 

is the spatial coordinate. µ is the dynamic viscosity. 

 Consider the steady, incompressible flow over a single free disk in a Newtonian 

fluid. The equations of steady motion in the cylindrical coordinates (r,θ,z) are given 

as follows; 

2 2 2

2 2 2

1 1u u v p u u u u
u w

r z r r r r r r z

µ

ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂
+ − + = + − + 

∂ ∂ ∂ ∂ ∂ ∂   
(2.6)

 

2 2

2 2 2

1v v uv v v v v
u w

r z r r r r r z

µ

ρ

 ∂ ∂ ∂ ∂ ∂
+ + = + − + 

∂ ∂ ∂ ∂ ∂   
(2.7) 

2 2

2 2

1 1w w p w w w
u w

r z z r r r z

µ

ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + 

∂ ∂ ∂ ∂ ∂ ∂   
(2.8) 

( ) ( )
0

ru rw

r z

∂ ∂
+ =

∂ ∂
 

(2.9) 

Where u is the radial, v is the circumferential and w is the axial components of the 

velocity. 

2.2.2 Thermal Field   

After neglecting dissipation terms, the energy equation can be written as follows; 

2 2

2 2

1
0p

T T T T T
c u w k

r z z r r r
ρ

 ∂ ∂ ∂ ∂ ∂ 
+ − + + =  

∂ ∂ ∂ ∂ ∂     
(2.10) 

Where T is the temperature, k is the thermal conductivity, pc

 

is the constant 

temperature specific heat. It is assumed that heat transfer is only in the z direction 

and then equation (2.10) becomes; 

2

2
0p

dT d T
c w k

dz dz
ρ

 
− = 

   
(2.11) 
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2.3 Velocity Slip and Temperature Jump 

Microscale fluid system behaves differently than macroscale fluid system because of 

various factors. For microscale system, rarefaction effects may be considerable. 

Rarefaction effects become significant while the mean free path of the fluid 

molecules comparable with the characteristic length of the system rarefaction effects 

become significant. When this occurs, noncontinuum behaviors begin to develop. 

While in the slip flow regime (0.01≤ Kn ≤0.1) continuum equations may be used 

with velocity slip and temperature jump boundary conditions. In the slip flow 

regime, boundary conditions named as velocity slip and temperature jump are the 

state of difference momentum and energy exchange between the fluid molecules and 

the solid surface. Maxwell and Smoluchowski [11] define first order velocity slip and 

temperature jump, respectively. 

22 3 ( 1) Re

2
s

s w

U T
U U

y Ec x
υ

υ

σ β λ
λ

σ π β

− ∂ − ∂
− = +

∂ ∂
 

(2.12)

 
2 2

1 Pr
T

s w

T

T
T T

y

σ β λ

σ β

 − ∂
− =  + ∂   

(2.13) 

Where β  is the specific heat ratio, Re is Reynolds number, Ec is Eckert number, Pr 

is Prandtl number. vσ

 

and Tσ

 

are tangential momentum and thermal accommodation 

coefficients, respectively. These accommodation coefficients are defined by; 

i r
T

i w

dE dE

dE dE
σ

−
=

−  
(2.14) 

ri
v

wi

τ τ
σ

τ τ

−
=

−  
(2.15) 

Where idE  and rdE denote the energy fluxes of incoming and reflected molecules 

per unit time and wdE denote the energy flux if all the incoming molecules had been 

reemitted with the energy flux corresponding to the surface temperature wT . iτ  and 

rτ  show the tangential momentum of incoming and reflected molecules, 

respectively. wτ  is the tangential momentum of reemitted molecules, corresponding 
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to that of the surface. Some values of thermal and tangential accomodation 

coefficients for typical gases and surface are tabled in Table 2.2 [11] 

Table 2.2: Thermal and tangential momentum accomodation coefficients for typical 
gases and surfaces. (Beskok, 2002) 

 

 However, it is possible to solve the Navier-Stokes equations (NS) by applying first 

order boundary conditions, near transition regime many second order modifications 

and methods are proposed for accurate solutions. Second order boundary modified 

conditions proposed by Beskok and Karniadakis [11] shown as follow; 










∂

∂
+

∂

∂−
=−

2

2
2

2

12

y

U

y

U
UU ss

ws λλ
σ

σ

υ

υ

 
(2.16) 

2 2

2

2 2 1

1 Pr 2
T

s w

T

T T
T T

y y

σ β λ
λ

σ β

  − ∂ ∂
− = +  + ∂ ∂     

(2.17) 

The concise closed form of second order boundary conditions can be given as below; 

2

1 2 2
s s

s w v v

U U
U U

y y
β β
 ∂ ∂

− = + 
∂ ∂   

(2.18) 

2

1 2 2s w t t

T T
T T

y y
β β
 ∂ ∂

− = + 
∂ ∂   

(2.19) 

 Where, 1vβ and 2vβ  are first and second order velocity slip factors. Similarly, 

1tβ and 2tβ are first and second thermal jump factors. These factors are introduced 

respectively. 
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1

2 v
v

v

σ
β γ λ

σ

−
= =

 
(2.20) 

2

2
2 2

v
υ

υ

σ γ
β

σ
=

−  
(2.21) 

1

2 2 1

1 Pr
T

t

T

σ β
β η λ

σ β

 −
= =  +   

(2.22) 

2

1

Pr 1

2 2 2
T

t

T

ση β
β

σ β

 +
=  −    

(2.23) 

 

Where, γ  is slip factor andη  is jump factor.

 
2.4 Entropy Generation 

The volumetric rate of entropy generation for the steady, axially symmetric, 

newtonian fluid flow can be written as   

``` ``` ```S = S + Sgen gen,h gen, f
& & &

 
(2.24) 

Where ```Sgen
&  is the volumetric entropy generation rate per unit volume. ```Sgen,h

&  and 

```Sgen, f
& are the local volumetric entropy generation rate due to heat transfer and fluid 

friction, respectively. Steady and axially symmetrical Newtonian fluid-flow entropy 

generation rate can be expressed in cylindrical coordinates as follow [9]; 

2 2

2

22
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u
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S

T z T v u v
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∂ ∂     ∂   
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(2.25) 
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3.  DIFFERENTIAL TRANSFORM METHOD 

Differential Transform Method (DTM) is semi-numerical analytical technique that 

formulized Taylor series in a very different form. The transformation of the kth 

derivative of a function in one variable is as below [28]    

1 ( )( )
!

0

k f xF k
k kx x x

 
 
 
 

∂=
∂ =  

(3.1) 

The inverse transformation is defined as,            

( )( ) ( ) 0
0

kf x F k x x
k

∞
= −∑

=  
(3.2) 

3.1 Theorems 

Theorems 1-10, which can be derived equations (3.1) and (3.2) are as follows. 

Theorem 1 If ( ) ( ) ( )f x g x h x= ±  then ( ) ( ) ( )F k G k H k= ±  

Theorem 2 If ( ) ( )f x cg x=  then ( ) ( )F k cG k=  

Theorem 3 If 
( )

( )
nd g x

f x
ndx

=  then 
( )!

( ) ( )
!

k n
F k G k n

k

+
= +  

Theorem 4 If ( ) ( ) ( )f x g x h x=  then 1( ) ( ) (101
)kF k G k H k kk∑= −=  
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Theorem 5 If ( )
n

f x x=  then ( ) ( )F k k nδ= −  where 
1

( )
0

k n
k n

k n
δ

→ = 
− = 

→ ≠ 
 

Theorem 6 If 1 2 1( ) ( ) ( )... ( ) ( )n nf x g x g x g x g x−=  then 

1 3 2

1 2 2 1

1 1 1 2 2 1 1 1 2 1
0 0 0 0

( ) ( ) ... ( ) ( )... ( ) ( )
n

n n

k k kk

n n n n n
k k k k

F k H k k G k G k k G k k G k k
−

− −

− − − −
= = = =

= − − − −∑ ∑ ∑ ∑

 

Theorem 7 If ( ) ( )1f x g x a= +  then  

 
1 1( ) ( )1

1

h h kNF k a G h
h k k

  −=∑  =  
 for N →∞ 

Theorem 8 If [ ]( ) ( )
nd

f x g x a
ndx

= +

 

then  

 
( 1)! 1 1( ) ( )1! 1

hk h k nNF k a G hh k nk k n

+   − −∑=  = + + 
 for N →∞ 

Theorem 9 If ( )
( ) ( ) ( )

n
f x p x g x a= +  then 

1 11
1 1

111 1

( )! 1( ) ( ) ( )
( )!01

k N h h k k nk k n
F k a P k G h

k k nk kk h k k n

  − + −− +
∑=  ∑  − +−  = = − +

 for N →∞ 

Theorem 10 If ( ) ( )1 2( ) ( ) ( )1 1 2 2
n n

f x g x a g x a= + +  then 

( )!( )!1 1 1 2( )
! ( )!1 101 1 1 1 2 1 2

1 2 1 1 1 2 1 2 ( ) ( )1 2 1 1 2 21 1 1 2

k N N k n k k n
F k

k k kk h k n h k k n

h h h k n h k k n
a a G h G h

k n k k n

+ − +
∑= ∑ ∑

−= = + = − +

   − − − + −
∗    + − +  

 for N →∞ 
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4.  ANALYSIS AND SOLUTION OF EQUATIONS 

4.1 Transform of The Equations 

4.1.1 Flow Field 

Von Karman dimensionless axial coordinate /zζ ν= Ω  is introduced together with 

the following velocity components and pressure.[1] 

( )u rF ζ= Ω , ( )v rG ζ= Ω , ( )w Hν ζ= Ω , ( )p Pρ ν ζ= − Ω
 

(4.1) 

Equations (2.6), (2.7), (2.8) and (2.9) can be non-dimensionalized with equation (4.1) 

as follows, 

2 2F HF F G′′ ′= + −
 

(4.2) 

2G HG FG′′ ′= +  (4.3) 

2H F′ = −  (4.4) 

P HH H′′ ′ ′′= −  (4.5) 

The slip boundary conditions for the considered problem are introduced as follows; 

2

1 2 2v v

u u
u

z z
β β

∂ ∂
= +

∂ ∂
, 

2

1 2 2v v

v v
v r

z z
β β

∂ ∂
= Ω + +

∂ ∂
,   w W=    at 0z =  (4.6) 

0u → ,  0v →       as z → ∞
 

(4.7) 

Where 0 /W w ων=  is the uniform suction or blowing parameter. For suction 

case, this parameter takes constant negative values and for blowing case, this 

parameter takes positive constant values. 
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Boundary conditions in equations (4.6)-(4.7) can be written as follow by using Von 

Karman dimensionless coordinate system, 

1 2(0) (0 '(0)')v vF F Fβ β′= + , 1 2(0) 1 (0) 0)'('v vG G Gβ β′= + + , (0)H W=
 

(4.8) 

( ) 0F ∞ = ,     ( ) 0G ∞ =
 (4.9) 

In an effort to transform infinite ζ range to finite ξ range, the following dependent 

and independent variables are used. This method firstly introduced by Benton [29]. 

ce ζξ −=  

2( ) ( )F c fζ ξ= ,   2( ) ( )G c gζ ξ= ,   [ ]( ) 1 ( )H W c hζ ξ= − −  

(4.10) 

(4.11) 

Equations (4.2)-(4.5) can be rewritten as below by using transformation in quations 

(4.10)-(4.11). 

2 2 2''( ) ( ) ( ) '( ) ( )f f g f hξ ξ ξ ξ ξ ξ ξ= − −  

2 ''( ) 2 ( ) ( ) '( ) ( )g f g g hξ ξ ξ ξ ξ ξ ξ= −  

'( ) 2 ( )h fξ ξ ξ=
 

(4.12) 

(4.13) 

(4.14) 

Comparably, boundary conditions (4.8)-(4.9) become as follow, 

2
1 2(1) '(1) ''(1)v vf cf c fβ β= − + ,  2 2

1 2(1) '(1) ''(1)v vg c cg c gβ β−= − + ,  (1) 1h =  

(0) 0f = ,    (0) 0g =
 

(4.15) 

(4.16) 

4.1.2  Thermal Field 

Dimensionless temperature for rotating disk flow is defined as follows, 

w

T T

T T
θ ∞

∞

−
=

−  (4.17) 

Where T∞  is temperature at infinity, wT  is temperature on the disk. Equation (2.11) 

becomes as follows by using dimensionless form in equation (4.17). 
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PrHθ θ′ =′ ′
 (4.18) 

Where Pr is the Prandtl Number. Comparably, by using equation (4.17) boundary 

condition in equation (2.19) becomes as follows: 

( ) 0θ ∞ = ,      1 2'(0) ''(0)(0) 1 t tθ β θ β θ+= +  (4.19) 

φ  is the generalized thermal jump factor can be defined as follows; 

1 2 Prt t Wφ β β+=  (4.20) 

Integrating equation (4.18) and implementing the second boundary condition in 

equation (4.19) then dimensionless temperature can be defined in terms of the axial 

component of the velocity field as follows; 

0

Pr ( )

0

( ) '(0)( ) 1
H d

e d

χ

ζ α α

θ ζ θ χ φ
∫

= + +∫  
(4.21) 

In addition, the missing boundary condition '(0)θ  is evaluated by equation (4.21) 

together with the first boundary condition in equation (4.19) as follows; 

0

Pr ( )

0

'(0) 1/ ( )
H d

e d

χ

α α

θ χ φ
∞ ∫

= − +∫  
(4.22) 

After solving the flow field, the thermal field is determined from equations (4.21)-

(4.22) by using numerical integration. 

4.1.3 Entropy Generation 

Using dimensionless variables in equation (4.1), equation (2.24) can be written as in 

simple terms as follow [9]; 

{ }2 2 2 3 2 2 2Re '( ) 3Re '( ) '( ) '( )gN H Re r G Fθ ζ ψ ζ ζ ζ = + + +   (4.23) 

Where 2Re /R υ= Ω  is the rotational Reynolds number, 2 2 /Br R k Tµ= Ω ∆  is the 

rotational Brinkman number, /T Tβ = ∆ is the dimensionless temperature difference, 
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/r r R=  is the dimensionless radial coordinate and 2/ ReBrψ α=  is called the group 

parameter. It helps us to compare the relative importance of viscous effects and heat 

transfer irreversibility.  

   The total local entropy generation in equation (4.23) can be written as the 

summation of local entropy generation due to heat transfer irreversibility (NH), which 

is the first term and the local entropy generation due to fluid friction irreversibility 

(NF), which is the second term on the right-hand side. 

G H FN N N= +  (4.24) 

It may be possible to evaluate these terms individually then check against them to see 

the dominance of one term on the other. Local entropy generation because of heat 

transfer (NH) includes the entropy generation by heat transfer due to axial conduction 

from the rotating disk. Local entropy generation because of fluid friction contains 

velocity gradients in axial, radial and circumferential directions. 

   The irreversibility distribution ratio ( Φ ) is the first dimensionless parameter in the 

entropy generation analysis of convective heat transfer problem. This ratio shows the 

ratio between the entropy generation due to fluid friction and heat transfer. The 

irreversibility distribution ratio can be written as follows: [9,13] 

{ }2 2 2 2 2

2

3Re '( ) Re '( ) '( )

'( )
F

H

H r G FN

N T

ψ ζ ζ ζ

ζ

 + + 
Φ = =  

(4.25) 

In the range 0 1< Φ < , heat transfer irreversibility is dominant and when 1Φ > , 

fluid friction dominates the entropy generation. When 1Φ = , the contributions of 

heat transfer and fluid friction to entropy generation are equal Another alternative 

irreversibility distribution parameter is the Bejan number (Be), which is the ratio of 

entropy generation due to heat transfer to the total entropy generation. This number 

is given in dimensionless form as follows [31]: 

{ }
2

22 2 2 2 2

1 '( )

1 '( ) 3Re '( ) Re '( ) '( )

H

G

N T
Be

N T H r G F

ζ

ζ ψ ζ ζ ζ
= = =

+ Φ  + + + 
 (4.26) 
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In the range 0 1Be< <  and the specific value of 1Be =  corresponds to a condition, 

where the heat transfer irreversibility totally dominates and for 0Be =  fluid friction 

effects totally dominate the entropy generation. For 1/ 2Be ≤ , the irreversibility 

caused by viscous effects dominates and for 1/ 2Be ≥ , the irreversibility caused by 

heat transfer is dominant. When 1/ 2Be = , the heat transfer and the fluid friction 

entropy generation rates are equal. 

The dimensionless volumetric entropy generation rate, which is an important 

measure of the total global entropy generation, can be written as: 

1

,

0 0

1
2

m

G av GN rN drdπ ζ=
∀ ∫ ∫  (4.27) 

Where ∀  is the volume considered. Since the gradients in velocity and thermal fields 

exponentially decrease with increasingζ , consideration of the complete flow domain 

results in zero volumetric entropy generation. The integration in equation (4.27) is 

obtained in the domain 0 1r≤ ≤  and 0 mζ≤ ≤ , where m  is a adequately large 

number. It can be introduced that the average Bejan number as follows. 

1

0 0

1
2

m

avBe rBedrdπ ζ=
∀ ∫ ∫  (4.28) 

4.2 Solution of The Equations 

We applied differential transform method (DTM) to the equations (4.12) – (4.14) and 

used B.C.’s in equations (4.15)-(4-16) at 0ξ = . By using DTM theorems, the 

differential transform of equations (4.15)-(4-16) can be calculated as follows: 

0

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

( 1)

k

l

F k F l F k l G l G k l lF l H k l
k k =

 = − − − − − −
∑ % %% % % % %

 (4.29) 

0

1
( ) 2 ( ) ( ) ( ) ( )

( 1)

k

l

G k F l G k l lG l H k l
k k =

 = − − − −
∑% % %% %

 
(4.30) 

2
( ) ( )H k F k

k
=% %

 
(4.31) 
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Where, 2k ≥  and ( )F k% , ( )G k% and ( )H k%  denote to the differential transform of 

( )f ξ , ( )g ξ and ( )h ξ  respectively. For determining the dependent variables, we need 

to know the unknown B.C.’s '(0)f  and '(0)g . First, the values of ( )F k% , ( )G k% , ( )H k%  

for 2,3,....,k N=  in terms of '(0)f , '(0)g , which will be called as 1f , 1g  

respectively, are obtained and then by using the boundary conditions given in 

equation (4.15) for 1ξ = , we calculated 1f , 1g  and c numerically. This is much 

faster and cost efficient than the numerical techniques since it is not iterative. The 

boundary conditions given in equation (4.16) for 0ξ =  are transformed as follows: 

(0) 0F =% , (0) 0G =% , (0) 0H =%  and 1(1)F f=%  , 1(1)G g=%

 
(4.32) 

By using the inverse relations in equations (4.29)-(4.31) and the transformed 

boundary conditions in equation (4.32), ( )F k% , ( )G k% and ( )H k%   for 2,3,....,k N=  

are evaluated. Then, using the inverse transformation rule in [12], the series solutions 

are obtained from: 

0

( ) ( )
N

k

k

f F kξ ξ
=

=∑ % , 
0

( ) ( )
N

k

k

g G kξ ξ
=

=∑ % , 
0

( ) ( )
N

k

k

h H kξ ξ
=

=∑ %

 
(4.33) 

where, N is the number of terms to be evaluated. By calculating up to 7N = , we get: 

2 2 3 2
2 3

4 2 2 4 5 3 2 4
4 5

6 4 2 2 4 6
6

1 1 1 1 1
( ) 1 ( ) ( )

2 2 4 4

17 1 1 1 1 61 1 37 1 1 13 1 1
( ) ( )

144 8 144 1152 576 1152

73 1 113 1 1 889 1 1 7 1
( )

3200 3456 86400 17280

f g f f g
f f

f f g g f f g f g

f f g f g g

ξ ξ ξ ξ

ξ ξ

ξ

= + − − + + +

− − − + + + +

− − − −

  (4.34) 

2 3 3 3
3 4

4 2 3 5 5 3 3 5
5 6

1 1 1 1 1 1 1
( ) 1 ( ) ( )

12 12 18 18

53 1 1 29 1 1 1 13 1 1 41 1 1 17 1 1
( ) ( )

1920 960 384 1080 2700 5400

f g g f g f g
g g

f g f g g f g f g f g

ξ ξ ξ ξ

ξ ξ

= + − − + + +

− − − + + +

  (4.35) 



 
21

2 2 3 2
2 3

4 2 2 4 5 3 2 4
4 5

6 4 2 2 4 6
6

1 1 1 1 1
( ) 2 1 ( ) ( )

2 2 6 6

17 1 1 1 1 61 1 37 1 1 13 1 1
( ) ( )

288 16 288 2880 1440 2880

73 1 113 1 1 889 1 1 7 1
( )

9600 10368 259200 51840

f g f f g
h f

f f g g f f g f g

f f g f g g

ξ ξ ξ ξ

ξ ξ

ξ

= + − − + + +

− − − + + + +

− − − −

  (4.36) 

After calculating ( )f ξ , ( )g ξ and ( )h ξ  the original dependent variables ( )F ζ , 

( )G ζ and ( )H ζ  are obtained by using equations (4.10)-(4.11).
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5.  EFFECT OF SECOND ORDER VELOCITY SLIP AND TEMPERATURE 

JUMP CONDITIONS ON ROTATING DISK FLOW IN CASE OF BLOWING 

AND SUCTION WITH ENTROPY GENERATION 

Effect of second order velocity slip and temperature jump boundary conditions is 

examined in three subtitles. Blowing, suction and neutral cases are considered in 

flow field, temperature field and entropy generation. 

5.1 Flow Field 

After solution of the flow field, radial, circumferential and axial velocity profiles 

plotted in Fig 5.1-5.3. 

The upper side of Fig 5.1 illustrates the variation of radial velocity with respect to ζ 

for first order and second order slip effects in case of difference slip factors. 

Differently from no-slip regime, the flow has radial velocity on disk surface in slip 

flow regime.   

The lower side of the Fig 5.1 illustrates the variations of the dimensionless radial 

velocity profile by carrying out the first and second order boundary conditions. 

Radial flow velocity (F(ζ)) on the disk surface and the velocity of the disk itself 

become different in the slip-flow regime. While the slip factor takes greater values, 

the velocity gradient reduces. 
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Figure 5.1 : Variation of F(ζ) with respect to ζ for first order and second order slip. 

Difference between first and second order value of F(ζ) with respect to 

ζ. 

The upper side of Fig 5.2 illustrates the dimensionless circumferential velocity in 

case of different slip factors. The lower side of the Fig 5.2 illustrates the variations of 

the dimensionless circumferential velocity profile by carrying out the first and 

second order boundary conditions. Similarly, circumferential flow velocity (G(ζ)) 

and the disk velocity show a deviation when the slip factor increases. The maximum 

difference between first and second order boundary conditions occurs about ζ=2 as 

shown in lower side of Fig. 5.2 
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Figure 5.2 : Variation of G(ζ)with respect to ζ for first order and second order slip. 

Difference between first and second order value of G(ζ) with respect to ζ. 

The upper side of Fig 5.3 illustrates the dimensionless axial velocity in case of 

different slip factors. The lower side of the Fig 5.3 illustrates the variations of the 

dimensionless axial velocity profile by carrying out the first and second order 

boundary conditions. The maximum difference between first and second order 

boundary conditions occurs about ζ=2-3 as shown in lower side of Fig. 5.3 
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Figure 5.3 : Variation of H(ζ)with respect to ζ for first order and second order slip. 

Difference between first and second order value of H(ζ) with respect to ζ. 

5.2 Thermal Field 

The variation of temperature with respect to ζ for first order and second order slip 

and differences occur by applying first and second order boundary conditions as 

presented in Fig. 5.4. 

 



 
27

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ æ æ æ

à
à
à

à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à à à à à

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì ì

ì ì ìì ìì ì

ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò ò

ò ò ò ò ò ò ò

ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô ô ô ô ô ô ô ô ô

ç

ç

ç

ç

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç ç ç ç

á

á

á

á
á

á
á

á
á

á
á
á

á
á

á á á

0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

z

qH
zL á h=0,75 2nd Order

ç h=0,75 1st Order
ô h=0,5 2nd Order
ò h=0,5 1st Order
ì h=0,2 2nd Order
à h=0,2 1st Order
æ h=0 1st Order

g=1, W=0

 

æ

æ

æ

æ

æ

æ
æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ æ æ æ æ

à
à

à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à à à à à

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì ì

ì ì ìì ìì ì

ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò ò ò ò ò ò ò

ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô
ô ô ô ô ô ô

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç

ç

á
á

á
á

á
á

á
á

á
á

á
á

á
á

á
á

á

0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

z

qH
zL

á g=5 2nd Order
ç g=5 1st Order
ô g=3 2nd Order
ò g=3 1st Order
ì g=1 2nd Order
à g=1 1st Order
æ g=0 1st Order

h=0.2, W=0

 

Figure 5.4 : Variation of θ(ζ) with respect to ζ for first order and second order slip. 

Difference between first and second order value of θ(ζ) with respect to ζ. 

The upper side of Fig. 5.4 shows the variation of temperature field in several jump 

factors. The lower side of Fig. 5.4 shows the variation of temperature field in several 

slip factors. Increasing jump factor raise the temperature deviation between disk and 

adjacent flow. Additionally increasing jump and slip factors reduce the temperature 

gradient. 

 



 
28

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ æ

æ æ æ æ æ æ æ æ

à

à

à

à

à

à

à
à
à
à
à
à
à
à
à
à à

à à à à à à à à

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

z

qH
zL

à 2nd Order

æ 1st Order

g=1,h=0.2, W=0

 

æ

æ

æ

æ

æ

æ

æ
æ
æ æ æ

æ
æ
æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ

0 1 2 3 4 5 6

-0.015

-0.010

-0.005

z

D
Hq
Hz
L1

st
-
qH
zL

2
nd
L

æ
D

g=1,h=0.2, W=0

 

Figure 5.5 : Variation of θ (ζ)with respect to ζ for first order and second order slip in 

Neutral case (W=0). Difference between first and second order value of   

θ (ζ) with respect to ζ. 

After solving the dimensionless temperature profile, results for neutral, suction and 

blowing case are plotted in Fig.5.5-5.7. The most difference between the effects of 

applying first and second order boundary condition occurs in blowing case.  
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Figure 5.6 : Variation of θ (ζ)with respect to ζ for first order and second order slip in 

Suction case (W=-1). Difference between first and second order value 

of   θ (ζ) with respect to ζ. 

In the suction case (W=-1) shown in Fig.5.6, the temperature sharply decreases away 

from the disk surface, however for the blowing case (W=1)  shown in Fig. 5.7 the 

temperature is almost  constant along the ζ-axis then it takes the decreasing trend 

after ζ =15. For suction and neutral cases showns in Fig. 5.5 and Fig. 5.7, the first 

and second order effects are closer and second order effects are negligible. 
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Figure 5.7 : Variation of θ (ζ)with respect to ζ for first order and second order slip in 

Blowing case (W=1). Difference between first and second order value 

of   θ (ζ) with respect to ζ. 

If the temperature distributions in the flow fields are represented greater than two 

degree polynomial, second order boundary condition approach would have to be 

used [11]. 

5.3 Entropy Generation 

Local entropy generation rates are shown in Fig. 5.8-5.10.  
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Figure 5.8 : Variation  of  Ng with respect to slip factor and jump factor ( r =1) in 

Neutral case (W=0) 

While slip and jump factors take greater values, the local entropy generation rates 

reduce. Excluding  blowing case (W=1), the local entropy generation rate show a 

noticeable difference for the first and the second order boundary conditions (Fig. 5.8-

5.9). 
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Figure 5.9 : Variation  of  Ng with respect to slip factor and jump factor ( r =1) in 

Suction case (W=-1) 

Local entropy generation rates are shown in Fig. 5.8-5.10. While slip and jump 

factors take greater values, the local entropy generation rates reduce. Excluding 

blowing case (W=1), the local entropy generation rate show a noticeable difference 

for the first and the second order boundary conditions (Fig. 5.8-5.9). 
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Figure 5.10 : Variation  of  Ng with respect to slip factor and jump factor ( r =1) in 

Blowing case (W=1) 

In neutral, suction and blowing cases, the change of Ng,av with respect to slip and 

jump factors for first and second order  are shown in Fig. 5.11-5.13. The rarefied 

effect reduces the velocity gradients in all directions and consequently as the 

temperature gradient in the entire flow field. This situation causes a reduction in the 

volumetric entropy generation rate. 
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Figure 5.11 : Variation of Ng,av with respect to slip factor and jump factor for first 

and second order in Neutral case (W=0) 

For the cases W=1 as well as W=0 and W=-1, the entropy generation must be carried 

out in volumetric measure to get a sense about the total entropy generation. It has 

been observed from Fig. 5.11-5.13 that using the second order boundary conditions 

results in lower entropy generation comparing to first order boundary condition case. 

It means that it is possible to reduce entropy generation and increase system 

efficiency. This result is paramount importance for the design of fluidic systems. 
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Figure 5.12 : Variation of Ng,av with respect to slip factor and jump factor for first 

and second order in Suction case (W=-1) 

In neutral, suction and blowing conditions, the local entropy generation rate is 

illustrated as 3-D in Fig.5.14-5.16. Maximum local entropy generation rate occurs on 

disk surface and local entropy generation rate reduces away the disk surface.  
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Figure 5.13 : Variation of Ng,av with respect to slip factor and jump factor for first 

and second order in Blowing case (W=1) 

Local entropy generation rate is decreases when the second order velocity slip and 

temperature jump conditions are used. Local entropy generation on disk surface 

increases to the radial direction and takes its maximum value when the dimensionless 

disk radius reach 1. 
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First Order 

 

Second Order 

Figure 5.14 : Variation of Ng with respect to r and ζ in Neutral case (W=0) 

Upper sides of Fig. 5.14-5.16 show the local entropy generation rate with only first 

order velocity slip and temperature jump boundary conditions and lower side of  Fig. 

5.14-5.16 show the local entropy generation rate with second order velocity slip and 

temperature jump boundary conditions. 
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First Order 

 

Second Order 

Figure 5.15 : Variation of Ng with respect to r and ζ in Suction case (W=--1) 

Maximum local entropy generation rate occurs in suction case. It is observed that 

using second order velocity slip and temperature jump boundary decrease the local 

entropy generation rate. 
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First Order 

 

Second Order 

Figure 5.16 : Variation of Ng with respect to r and ζ in Blowing case (W=1) 

In blowing case, local entropy generation rate is very little. Local entropy generation 

rate occurs only the area while dimensionless disk radius closes to 1. On the remain 

area local entropy generation rate can be ignore. 
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Figure 5.17 : Variation  of  Be with respect to slip factor and jump factor ( r =1) in 

Neutral case (W=0) 

Fig. 5.17-5.19 show the mutual effects of different flow field conditions (W=0, W=1, 

W=-1) and first and second order boundary conditions.  For neutral cases, W=0, 

Bejan number is not effected either the boundary condition first or second order. For 

the blowing case, W=1, Bejan number takes its possible smallest value since the 

entropy generation created by viscous effect dominates on total entropy generation. 

In the suction case , W=-1, Bejan number approaches to 1 since heat transfer entropy 

generation dominates on total entropy generation.  
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Figure 5.18 : Variation  of  Be with respect to slip factor and jump factor ( r =1) in 

Suction case (W=-1) 

While the slip factor takes greater values, Bejan number increases. On the other 

hand, while the jump factor takes grater values, Bejan number redudes. The 

rarefaction effects reduce the velocity and temperature gradient so the entropy 

generation rate is decreases. 
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Figure 5.19 : Variation  of  Be with respect to slip factor and jump factor ( r =1) in 

Blowing case (W=1) 

Be number is plotted as in Fig. 5.20-5.22. In neutral and suction cases, variations 

between Bejan numbers, which are determined by using first and second order 

velocity slip and temperature jump boundary condition, are ignorable. In blowing 

case, second order effects become admirable.  
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                                                      First Order 

 

                                                       Second Order 

Figure 5.20 : Variation of Be with respect to r  and ζ in Neutral case (W=0) 

In neutral and suction case, heat transfer irreversibility is dominant. In blowing case, 

fluid friction is dominant excluded the area while the dimensionless disk radius close 

to 1.  

 



 
44

 

                                               First Order 

 

                                              Second Order 

Figure 5.21 : Variation of Be with respect to r  and ζ in Suction case (W=-1) 
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                                            First Order 

 

                                           Second Order 

Figure 5.22 : Variation of Be with respect to r  and ζ in Blowing case (W=1) 
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6.  CONCLUSION 

The paramount importance of this study is the application of the second order 

velocity slip and temperature jump boundary conditions, to a rotating free disk, for 

steady and axially symmetrical case in a Newtonian Fluid. Effect of second order 

boundary conditions on entropy generation is examined.  

Additionally, these effects are examined in three different cases that are the suction, 

blowing and neutral cases. These types of flow field cases are frequently encountered 

in many engineering applications.  

Navier-Stokes and energy equations with second order velocity slip and temperature 

jump boundary conditions are solved by using DTM and numerical integration.  

Local and volumetric entropy generation and Bejan number are graphically presented 

for neutral, suction and blowing cases. 

First and second order slip and jump boundary conditions were applied separately to 

show their sole effects. The common argument observed in these graphical 

representations is that the effect of slip factor and jump factor reduces the magnitude 

of entropy generation. 

 Using second order velocity slip and temperature jump boundary conditions 

decreases the entropy generation. This means that minimum the entropy generation 

maximum the available work. In other words, the efficiency of the system increases. 

Finally one notices that to use the second order boundary conditions creates a 

difference in the total entropy generation, i.e., reducing the total entropy generation, 

which directly affects the efficiency calculation of the thermal system. That is vital 

for the design calculation of the energy consumptions. 
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