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DEVELOPING A 3D FINITE ELEMENT SOFTWARE WITH AN OBJECT
ORIENTED APPROACH

SUMMARY

In this thesis, a 3D finite element software is developed in the basis of an object-
oriented approach. Most of the problems in engineering fields are modeled by using
computers, and these models are solved by using various numerical methods. One of
the most frequently used numerical methods is the finite element method. The finite
element method is a powerful numerical technique for finding approximate solutions
of partial differential equations as well as of integral equations. The basic concept in
the physical interpretation of the finite element method is the subdivision of the
mathematical model into disjoint (non-overlapping) components of simple geometry
called finite elements or elements for short. The response of each element is
expressed in terms of a finite number of degrees of freedom characterized as the
value of an unknown function, or functions, at a set of nodal points.

Programs that implements finite element method in computers have long been
written in procedural languages such as FORTRAN and C. However, for the last
twenty years developers who seek to improve finite element programs modularity,
extensibility, and maintainability have a growing interest in developing finite
element software with object-oriented programming approach.

The software developed in this thesis, EAFE, is written in C++ language with an
object-oriented approach. The preferred integrated development environment is
Microsoft Visual Studio. The target operating system is Microsoft Windows and,
therefore, Microsoft Foundation Classes (MFC) is used to develop the graphical user
interface.

EAFE software has three main modules. The first module, which is developed by
using open source Open Cascade library, is the geometry module and it is used to
build 1D, 2D, or 3D geometric models. The second module, which is developed by
using open source Gmsh library, is the mesh module and it is used to discretize a
given geometric domain. The third module is the solver module and it is used to
assemble global stiffness matrix, global mass matrix, and global force vector and to
solve the system of linear equations. Different from the other two modules a stand-
alone library named EafeL.ib is developed from scratch for the solver module.

EafeLib library contains a number of C++ classes designed to do finite element
analysis in 3D with an object-oriented approach. It is built around six main classes:
Node, Element, Load, BoundaryCondition, Material, and Model. It also has some
auxiliary classes such as InputReader, Solver, and OutputWriter. The primary class
in EafeLib solver is the Model class.

Some benchmark problems are solved by making use of developed EafeLib library
and it is shown that object-oriented programming approach is well suited for
implementing finite element method in computer.

XiX



XX



NESNE YONELIMLI PROGRAMLAMA YAKLASIMI iLE UC BOYUTLU
SONLU ELEMANLAR ANALIZi YAZILIMI GELISTIRILMESI

OZET

Bu calismada nesne yonelimli programlama yaklagimi ile, {i¢ boyutlu sonlu
elemanlar analizi gercgeklestirebilecek bir yazilim gelistirilmistir. Glinlimiizde
karsilagilan miihendislik problemlerinin neredeyse tamami bilgisayar ortaminda
modellenmekte ve ¢odziimlerinde sayisal yontemlerden istifade edilmektedir. Bu
niimerik yontemlerden en sik kullanilani sonlu elemanlar yontemdir. Geleneksel
olarak sonlu elemanlar yontemi igin gelistirilen algoritmalarin cogunda FORTRAN
ve C gibi prosediirel programlama dilleri kullanilmaktaydi. Prosediirel programlama
dillerinin sonlu elemanlar analizi i¢in sagladig1 en Onemli avantaj performanstir.
Ancak bu yazilimlarin bilgisayar endiistrisindeki gelismelere paralel olarak biiylimesi
ve karmasiklagsmasi bakim ve modifikasyon maliyetlerinin artmasina sebep olmus ve
yazilimcilart farkli programlama yaklasimlart kullanmaya zorlamistir. Son 20 yildir
akademide ve endiistride sonlu elemanlar analizi yazilimlarina esneklik
kazandirabilmek i¢in nesne yonelimli programlama yaklasimi ile gelistirilmesi
diisiincesine artan bir ilgi s6z konusudur.

Bilindigi iizere giliniimiizde en sik kullanilan nesne yonelimli programlama dilleri
C++ ve Java’dir. Yazilimm gelistirilme siirecinde ihtiya¢ duyulabilecek
kiitliphanelerin neredeyse tamaminin C++ dilinde gelistirildigi gercegi goz Oniinde
tutularak yazilimimn gelistirilmesinde C++ programlama dili kullanilmasina karar
verilmistir. Derleyici olarak ise Microsoft Visual Studio tercih edilmistir. Hedef
isletim sistemi Microsoft Windows olarak belirlendiginden kullanict arayiizii i¢in
Microsoft Foundation Classes (MFC) kiitiiphanelerinden faydalanilmistir.

Gelistirilen yazilim ii¢ ana boliimden olusmaktadir. Bu béliimlerden ilki bir, iki, veya
tic boyutlu model olusturmak i¢in kullanilabilecek bir geometri modiilii, ikincisi
olusturulan herhangi bir geometrik modeli basit geometrili elemanlara bolebilecek
bir ¢6ziim ag1 modiili, tiglinciisii ise sonlu elemanlar ¢éziimiinii gergeklestirebilecek
bir ¢ozilicli modiiliidiir. Bunlara ek olarak problemin ¢6ziimii ile elde edilen sonuglar
kullanic1 tarafindan daha rahat yorumlanabilmesi i¢in bir renk dagilimi seklinde
gorsellestirilmektedir. Geometri modiiliiniin gelistirilmesinde acik kaynak kodlu
Open Cascade kiitliphanesinden, mesh modiiliiniin gelistirilmesinde ise ayn1 sekilde
acik kaynak kodlu Gmsh kiitiiphanesinden yararlanilmistir. Buna karsilik ¢oziicii
modiiliinde kullanilan kiitliphane nesne yonelimli programlama yaklasimi ile sifirdan
yazar tarafindan gelistirilmistir ve s6z konusu programa entegre edilmistir.

Glinlimiizde yaygin olarak kullanilan bilgisayar destekli tasarim programlarinin
tamam1 geometrik c¢ekirdek adi verilen ve genel anlamda bilgisayarda geometrik
sekiller ¢izmeye yardimci olacak fonksiyonlari igeren kiitliphaneler kullanilarak
gelistirilir. Bu geometrik c¢ekirdeklerin en bilinenleri Spatial firmasina ait ACIS ve
Siemens firmasina ait Parasolid kiitiiphaneleridir. Lisans bedelleri 6demek suretiyle
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kullanilabilecek bu kiitiiphanelere alternatif olarak bu ¢alismada agik kaynak kodlu
sunulan Open Cascade kiitliphanesinden istifade edilmistir.

Geometri modiilii geometrik modellemede temel olarak kullanilabilecek nokta, ¢izgi,
yay gibi bir takim basit geometrik sekillerin ¢izilebilecegi fonksiyonlar ile birlikte
dikdortgenler prizmasi, silindir ve kiire gibi temel kati cisimlerin kolayca
eklenebilecegi kisa yollar1 igeren bir ortam olarak gelistirilmistir. Bunlara ek olarak
bir yiizeye kalinlik vererek kati olusturma, bir yiizeyi bir eksen etrafinda dondiirerek
kat1 olusturma, iki kat1 modeli birlestirip yeni bir kati1 olusturma ve bir katidan bir
baska kat1 c¢ikararak kati olusturma gibi bilgisayar destekli tasarimin en temel
fonksiyonlart da bu modiilde yer almaktadir. Gelistirilen yazilimin geometri
modiiliine “import” ve “export” fonksiyonlari eklenerek farkli programlar ile
olusturulan ve yaygin olarak kullanilan IGES ve STEP gibi formatlarda kaydedilen
geometrik modellerinde yazilimda agilip analiz edilebilmesine olanak saglanmistir.

Coziim ag1 olusturma modiili sonlu elemanlar analizinin en 6nemli agamalarindan
biri olan geometrik sekillerin kiigiik sonlu elemanlara bdliinerek ¢o6ziim agi
gelistirilmesi isleminin yapilabilmesi i¢in programa eklenmistir. Bu islem sirasinda
kullanilan eleman cesitleri tek boyutlu ¢izgisel eleman, iki boyutlu diizlem eleman
olarak tiggen eleman ve ii¢ boyutlu kat1 eleman olarak da dortyiizlii elemandir. Bu
modiiliin 6nemli 6zelliklerinden biri istenildigi takdirde s6z konusu geometrinin
kritik bolgelerindeki ag sikliginin arttirilabilmesine imkan tanimasidir.

Coziicii modiilii genel anlamda, model, diiglim noktasi, eleman, sinir kosullari, yiik
ve malzeme adli alt1 temel sinif ve bunlara ek olarak girdi okuyucu, ¢ikt1 yazici ve
¢coziici gibi yardimer smiflar kullanilarak, nesne yonelimli programlama
yaklasimiyla C++ dilinde gelistirilen bir sonlu elemanlar analizi kiitiiphanesidir. Bu
kiitiiphane geometrisi tanimlanmis, malzemesi belirlenmis, ¢oziim ag1 gelistirilmis,
siir kosullar1 ve yiikleri girilmig bir modeli 6nceden belirlenmis bir girdi dosyast
formatinda alip sonlu elemanlar yontemi kullanarak ¢6zmek ve elde edilen sonuglar
ayni sekilde onceden formati belirlenmis bir ¢iktt dosyasi halinde sunmak i¢in
gelistirilmistir. Girdi dosyas1 gelistirilen kiitiiphanenin girdi okuyucusu sinifi
yardimiyla okunur. Dosyadaki bilgiler 1s18inda kiitiiphanenin diiglim noktas1 sinifi
kullanilarak modelde bulunan her bir diigiim noktasi i¢in diiglim noktas: numarasi ile
X, y, ve z kartezyen kordinatlar1 bilgisini barindiran digiim noktasi nesneleri
olusturulur. Modelde bulunan her bir malzeme girdisi i¢in ise kiitliphanenin malzeme
sinift kullanilarak malzeme numarasi, Elastisite modiilii, Poisson orani ve yogunluk
degiskenlerini igeren malzeme nesneleri olusturulur. Modelde bulunan her bir yiik
girdisi i¢in de kiitliphanenin yiik siifi kullanilarak yiik numarasi, yiik siddeti ve yiik
dogrultusu degiskenlerini igeren yiik nesneleri olusturulur. Benzer sekilde modelde
tanimlanmis her bir sinir kosulu girdisi i¢in kiitliphanenin sinir kosullar1 simifi
kullanilarak x, y, ve z yoOniindeki u, v, ve w degiskenlerini iceren sinir kosulu
nesneleri olusturulur. Bu islemler gerceklestikten sonra olusturulan bu nesneler
kiitiiphanenin model smifi araciligr ile girdi dosyasindaki her bir eleman girdisine
karsilik gelecek eleman nesnelerini olusturmak i¢in kullanilir. Dosyadaki bir
elemenan girdisi i¢in diiglim noktasi nesneleri, malzeme nesneleri, yiik nesneleri ve
sinir kosullar1 nesneleri kullanilarak bir eleman nesnesi olusturulur. Bu eleman
nesnesinin katilik matrisi hesaplanir ve bu matris global katilik matrisi igine
yerlestirilir. Ihtiyag duyuluyorsa elemanin kiitle matrisi hesaplanip global kiitle
matrisi i¢ine yerlestirilir. Eleman nesnesi bellekte gereksiz yer tutmamasi icin bu
islemden sonra silinir ve bu adimlar modeldeki her bir eleman igin tekrar eder.
Boylelikle global katilik matrisi ve global kiitle matrisi hazirlanmis olur.
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Burada bahsi gegen matrislerin hazirlanmasi i¢in gereken matris siiflar1 C++ dilinde
standart olarak bulunmadigindan bu matris smiflar1 ya kullanici tarafindan sifirdan
gelistirilmeli yada daha oOnce gelistirilmis hazir matris smiflarindan istifade
edilmelidir. Bu ¢alismada hem sifirdan EafeMatrix adi verilen temel bir C++ matris
siifi gelistirilmis hemde uzman bir ekip tarafindan gelistirilmis a¢ik kaynak kodlu
Trilinos adli C++ lineer cebir kiitiiphanesinden faydalanilmistir. Gelistirilen
yazilimin biitiinliigliniin bozulmamasi ve bu yazilim iizerinde c¢alisacak herhangi bir
geligtiricinin, yazilima yeni eleman tipleri eklemek istemesi durumunda
karsilasacagi, harici kiitiiphanelerin kullanilmasindan kaynaklanacak yabanciligin
Oniine gec¢ilmesi i¢in eleman katilik matrisleri yazilimin igerisindeki EafeMatrix
sinifindan tiiretilmistir. Global katilik matrisinde ise olusturulacak matrisin, lineer
denklem takimlarinin ¢6ziimi i¢in kullanilacak Trilinos ¢oziicli siniflarinin girdi
olarak alabilecegi bir formatta olmasi gerekliligi géz Onilinde tutularak Trilinos
kiitiiphanesinin seyrek matris sinift kullanilmistir. Daha sonra bu matrisler global yiik
vektori ile birlikte ¢oziicii sinifinda lineer denklem takimlarinin ¢oziiliip sonuglarin
elde edilmesi igin kullanilir. Son olarak elde edilen diigiim noktas1 yer degistirmesi
veya eleman von Mises gerilme degerleri gibi sonuglarin kullanicilar tarafindan rahat
yorumlanabilmesi i¢in bir renk dagilimi seklinde gorsellestirilmesi islemi
gerceklestirilir.

Gelistirilen EAFE yazilimi kullanilarak elde edilen sonuglarin dogrulugunu test
etmek i¢in statik ve dinamik bazi 6rnek problemler ¢oziilmiis ve sonuglar Abaqus
yazilimi ile karsilagtirilmistir. Her iki yazilim ile elde edilen sonuglarin biiyiik oranda
ortiistiigii gosterilmistir. Boylelikle nesne yonelimli programlamanin sonlu elemanlar
analizi i¢in uygun bir yaklasim oldugu bu kiitiiphane vasitasiyla gosterilmistir.
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1. INTRODUCTION

Many physical phenomena in science and engineering are mathematically modelled
by using partial differential equations. These equations have long been solved by
using analytical methods. However, due to the difficulty and inadequacy of analytical
methods in complex field problems, there has been an interest to develop different
numerical methods instead. One of the most powerful and widely used numerical

methods for finding solutions to such problems is the Finite Element Method (FEM).

The computations in the FEM are generally long and tedious, therefore requires a
computer. The use of computers in the FEM programming is shown a parallel growth
with the developments in the computer industry such as increasing processor
capabilities and the introduction of personal computers (PC). Nowadays FEM
programs has become commonplace and even a simple PC can be used to obtain

solutions to very complicated problems.

As it is the case in most scientific application, traditionally there has been a tendency
to write FEM codes, because of their performance, in procedural languages such as
FORTRAN. However, in the last decade there has been a shift from procedural
languages to object-oriented languages such as C++ and Java. Object-Oriented
Programming (OOP) is a programming methodology based on objects, instead of just
functions or procedures and it is shown that OOP is well suited for FEM

programming.

1.1. Objective and Scope

The focus of this thesis is to develop a three-dimensional, object-oriented finite
element analysis software. The object-oriented environment selected with the
intention of providing efficient, robust, modular, and extensible finite element code
structure for future development. An important aspect of the work is the development

of a modern graphical user interface (GUI) which incorporates a geometry module



for creating and manipulating 3D solid shapes, a mesh module for discretizing a

given domain, and a solver module to solve the linear system of equations.

The geometry module is built with Open Cascade, an open source geometry kernel,
and the mesh module is built with Gmsh, an open source mesh framework. The
solver module is developed in C++ language with an object-oriented approach and
these three modules incorporated in a GUI, which is developed in Microsoft Visual
Studio 2010 Ultimate by using Office Ribbon Interface tools.

1.2. Literature Review

Over the last 20 years, some work has been done towards developing finite element
analysis programs with an object oriented programming approach. The pioneers of
the object-oriented finite element programming idea are Fenves [1] who highlighted
the potential benefits of using object-oriented programming approach in engineering
software, Rehak [2] who considered the subject from a knowledge-engineering
perspective, Peskin and Russo [3] who organized three base classes: Problem,
Domain and Equation to solve partial differential equations, and Miller [4] who

utilized Degree-of-freedom, Node, and Element classes in his work.

The first detailed description of applying object-oriented programming to the finite
element method is provided by Forde and co-workers [5] to deal with linear two-
dimensional problems in solid mechanics. They put forward the base classes of
object-oriented finite element analysis such as Element, DispBC, ForceBC, Material,
and Dof. These classes have been reused by several authors to organize their
program structures. Likewise, in early papers, Zimmerman, et al. [6]-[9] have
favored object-oriented programming over procedural programming and studied its
applications to the finite element method by using Smalltalk and C++ languages.
They considered linear dynamic analysis in their work by using three groups of
classes. The first group contains the finite element classes such as Node, Element,
Load, Material, etc., the second group is a collection of assistant classes like
GaussPoint, Polynomial, etc., and the third group is a gathering of data storage
classes such as Array, Matrix, etc. In addition, by redefining some of the original
classes such as Domain, Element, and Material from their previous work, they

considered nonlinear finite element analysis as well.



Lu, et al. [10],[11] contributed to the field by developing an object-oriented finite
element code called FE++. Their approach differs from the others in the way they
handled the assembly process by making use of a central Assemble object. Another
contribution they made is a complete C++ linear algebra library as an alternative to
the standard FORTRAN library LAPACK.

Bangerth et al. [12], [13] developed a flexible and efficient object-oriented library
called Differential Equations Analysis Library (DEAL) Il in which they work
towards the computational solution of partial differential equations using adaptive

finite elements.

Patzak et al. [14] developed yet another program called Object Oriented Finite
Element Modeling (OOFEM). Their aim was to develop not only an efficient and
robust tool for FEM computations but also a modular and extensible environment for

future development.

In addition to the works mentioned here, there are several other commercial or public
domain object-oriented finite element analysis libraries developed by researchers and

engineers from academy and industry.

1.3. Organization

This thesis contains seven chapters including an introduction.

In Chapter Two an overview of the object-oriented programming and the unified
modeling language is provided, the development procedure of EAFE software along
with the preferred programming language and the integrated development

environment is presented.

In Chapter Three an introduction to the computer graphics and the OpenGL
application programming interface is given to illustrate the necessity to employ a
geometry kernel in the development of EAFE software’s geometry module. In
addition, the selected open source geometry kernel: Open Cascade, and its
application framework is detailed.

In Chapter Four an outline of mesh generation and freely available mesh generators,
or mesh frameworks, is given. In addition, the Gmsh library, which is the mesh

generator used in EAFE software’s mesh module, is presented.



In Chapter Five the development of a processor, named EafeL.ib, for finite element
analysis with object oriented programming approach is provided. Moreover, the

UML representation of the base classes in the EafeLib processor is given in detail.

In Chapter Six some example problems are solved to check the accuracy of the
results obtained from the developed software by comparing them with the results

from commercial FEA software.

In Chapter Seven conclusions are made and further work is discussed.



2. DEVELOPMENT PROCEDURE

2.1. Object-Oriented Programming Philosophy

Object-Oriented Programming (OOP) concepts were first introduced by Ole-Johan
Dahl and Kristen Nygaard at the Norwegian Computing Centre in Oslo in the early
1960s. They developed a programming language for discrete event simulation called
SIMULA in which OOP concepts such as objects, classes, inheritance, etc., were
used [15]. Many object-oriented programming languages developed later including
Smalltalk, LISP, Object Pascal and C++ are based on the ideas of SIMULA
language. Object-Oriented programming has become an indispensable programming
methodology for large software systems.

C and FORTRAN are examples of procedural languages in which functions, or
routines, are the means of programming. In procedural programming small functions,
or subroutines, are written to complete simple tasks. These small functions are
brought together in large functions to accomplish complex tasks. A program
developed in procedural programming concept is nothing but a collection of these
large functions arranged in a way that upon instruction computer can perform them
in sequence. Even though this approach can be used to develop small computer
programs, for large software with thousands of routines and subroutines, software

modification, maintenance or extensions becomes virtually impossible.

Obiject-Oriented Programming is the result of the growing demand for a new
approach to develop flexible, modular and reusable software components to meet the
requirements of dynamic and competitive environment. In order to develop the most
natural way of programming OOP offers the concept of a self-sustainable object
which is inspired from the real world objects such as people, animals, cars, buildings,
computers and so on. In real world, objects have attributes like size, mass, height,
color and they all exhibit behaviours like a truck accelerates, brakes, turns, or a
person walks, runs, sleeps and works. Moreover, objects in real world communicate

with each other and can be gathered according to their attributes and behaviours. For



example, cars, buses, trucks all shares some attributes, exhibit similar behaviours,

and might be grouped under vehicles.

Object-Oriented Programming uses objects initiated from prototype packages of data
types called classes, similar in many ways to the real world objects. They have
attributes, called data members, and behaviours, called methods, that can either view
or manipulate these hidden data members. In addition, OOP objects also
communicate with each other in terms of messages they send or receive and taking
advantage of the objects common attributes and behaviours new classes are easily
created through a process called inheritance. Fundamental concepts in Object-
Oriented Programming such as inheritance, encapsulation, and polymorphism are
explained in detail, along with their implementation to the Finite Element Method in
Chapter 5.

The notion of using objects as building blocks for software development in Object-
Oriented Programming has become successful to a large extent in contributing

software’s modularity, reusability, and maintainability.

2.2. Unified Modelling Language

Unified Modeling Language (UML) is a graphical modelling language developed by
Grady Booch, lvar Jacobson and James Rumbaugh to support Object-Oriented
software analysis and design. UML was adopted by Object Management Group in
1997 and has become an international industry standard for modeling software

intensive systems.

A simple UML diagram with shape, color, rectangle and circle classes is shown in
Figure 2.1. Each of the rectangular boxes in the figure is the UML’s graphical
representation of a class. In this rectangular box, the class name is written on the top,
data members (attributes) are written in the middle, and member functions
(behaviours) are written at the end. The triangle between rectangle class and shape
class shows an “is-a” relationship. This relationship refers to the fact that each
rectangle object is also a shape object. This means rectangle class, which is a derived
class, inherits data members and member functions of shape class, which is a base
class in this case. Constructing classes in this manner is called inheritance and it is

one of the most important features of Object-Oriented Programming. The use of



inheritance during a new class generation provides code re-use, due to the fact that

derived classes by default retains member functions of base classes.
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Ty height © Integer Circle
g width © Integer ¥y radius : Integer
& draw [ ) Void & draw [ | : Void
§ gethrsal( ) Integer & gethrsa( ) : Integer

Figure 2.1 : A UML diagram example [16].

On the other hand, the white diamond shape between color class and shape class

shows a “has-a” relationship. This relationship illustrates the fact that a color object

is used as a data member in each shape object. Constructing new classes by using

existing classes as data members is called aggregation.

The UML version 2.2 contains 14 different diagrams under two main categories:

structural diagrams and behavioral diagrams, as detailed in Table 2.1. Structural

diagrams are used to show the static parts of the modeled system, while behavioral

diagrams are used to show the dynamic activities of the system [17]. In this thesis,

UML’s structural and behavioral diagrams are used to represent the developed EAFE

Software.

Table 2.1

: UML diagrams.

UML Diagrams

Structural UML Diagrams

Behavioral UML Diagrams

Class diagram

Component diagram
Composite structure diagram
Deployment diagram

Object diagram

Package diagram

Profile diagram

Activity diagram
Communication diagram
Interaction overiew diagram
Sequence diagram

State diagram

Timing diagram

Use case diagram




2.3. EAFE Software Development Procedure

The requirements analysis is the first and most important step in the development
process of every software system. For basic 3D finite element analysis software,

which is the subject of this thesis, the requirements are gathered as follows:

e It should have a geometry module (CAD) in which a user is able to create
some simple solid parts. In addition, there should be an import and export

functionality to exchange geometric shapes in standard formats.

e It should have a mesh module in which a user can generate at least an
unstructured mesh for the geometry with triangular or tetrahedral elements,

and change mesh density on critical regions.

e It should have a section that supports adding loads to and defining boundary

conditions for the system.

e It should have a solver module in which global stiffness matrix and global
force vector is assembled, global linear equation system is solved and nodal

displacement values are found.

e It should have a post-processing module in which the results such as nodal

displacement and element stress values can be displayed.

e It should have an easy to use graphical user interface (GUI) so that a user can

interact with the mentioned modules without any difficulty.

Designing software to meet all of these requirements is a formidable and time-
consuming task. To facilitate and accelerate the design process it has been taken
advantage of some ready-to-use open source libraries. In the development of EAFE
software’s geometry module Open Cascade library is used and explained in detail in
Chapter 3. While in mesh module Gmsh library is used and described in Chapter 4.

For graphical user interface Microsoft Foundation Classes (MFC) are used.

On the other hand, for EAFE software’s solver module, an FEM solver library named
EafeLib has been written from scratch and a complete explanation is given in
Chapter 5. The structure of EAFE software with its three main modules and related
libraries is illustrated in Figure 2.2.
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Figure 2.2 : EAFE software structure with dependent libraries.
2.4. Programming Language Selection

Traditionally there has been a tendency to develop finite element codes in procedural
languages such as FORTRAN or C, due to the computational speed and ease of
implementation these languages have. Even though there are still humerous codes
written in FORTRAN, there has been a shift for the last 20 years from procedural
languages to Object-Oriented Languages such as C++ and Java [18]. Table 2.2 shows
some well-known open source finite element analysis software, languages used in

their development and the target operating systems.

Table 2.2 : Softwares with implementation language and target operating system

19].
Software =) Language Operating System
CalculiX Fortran GNUY/Linux, Windows
Code Aster Python and Fortran ~ GNU/Linux, FreeBSD
Deal.ll C++ GNUY/Linux, Unix, Mac OS X, Windows
DUNE C++ GNUY/Linux, Unix, Mac OS X
FENIiCS Project  Python and C++ Linux, Unix, Mac OS X, Windows
FreeFem++ C++ GNU/Linux, Mac OS X, Windows,
Solaris
Impact Java Linux, Windows

C++ and Java are the most widely used languages for the Object-Oriented
Programming. The advantages, disadvantages, strong and weak sides of these two

languages are explained in the following two sections.



2.4.1. Programming in Java

Java is a strictly object-oriented computer programming language developed by
James Gosling at Sun Microsystems and announced in 1995. Java uses a syntax
similar to C++ syntax. In order to prevent memory leaks, manual memory allocation
and deallocation is eliminated in Java with the addition of a Garbage collector. Java
source codes are compiled to java bytecodes. Perhaps one of the most important
features of the Java language is the Java Virtual Machine that can execute Java
bytecodes. Making use of bytecodes and virtual machines Java provides a software
portability mechanism called “write once, run anywhere”, which means when a Java
program compiled, it can be run on almost any device that has a Java Virtual
Machine. However, there is a performance loss due to the introduction of virtual
machine as an intermediate step to run the compiled program. Even though Just-in-
time compilation was introduced to boost the performance of Java programs,
compared to C++, it is less frequently used for programming finite element method
[20].

2.4.2. Programming in C++

C++ is a popular software development language that is widely used for both
commercial and academic purposes. It is developed by Bjarne Stroustrup in 1980 at
Bell Laboratories. C++ is based on C language, and in addition to C capabilities, it
has also support for object-oriented programming. Different from Java language C++

supports multiple inheritance and operator overloading [21].

In the development of the EAFE 3D finite element software, C++ language is used
because it is robust, fast, and reliable. Besides, most of the libraries required to
develop finite element software such as geometry kernels, mesh frameworks, and

linear algebra packages are generally written in C++ language.

2.5. Integrated Development Environment (IDE)

Integrated development environments or interactive development environments are
programs specifically designed to assist software developers in the software
development, maintenance and modification processes. IDEs are generally composed

of four components: a graphical user interface (GUI) builder, a source code editor, a
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compiler, and a debugger. GUI builder and source code editor are used to develop
programs, compiler is used to translate written source codes to object codes, and
debugger is used to locate and fix probable bugs in the software. Some of the famous
IDEs are Microsoft Visual Studio, Oracle Netbeans, Xcode, and Eclipse. EAFE
software’s target operating system is Microsoft Windows OS. Hence, it has been
developed in Microsoft Visual Studio 2010 Professional IDE.

2.6. Windows Programming with the Microsoft Foundation Classes (MFC)

Microsoft Foundation Class Library is a collection of C++ wrapper classes for
Windows Application Programming Interface (API). It is a framework to develop
Windows based applications. In MFC, there is a certain structure for processing and
storing application data that must be used by the developer to develop an MFC based
application. Although it looks restrictive, the advantages of using this structure far
outweigh any possible disadvantage. This structure is based on document and view
objects. A document object is an instance of application specific document class that
is created by extending MFC’s CDocument class. Every data member that is used in
the application must be stored in this document object. On the other hand, a view
object is an instance of an application specific view class that is created by extending
MFC’s CView class. View objects are used to display the data stored in the
document object. In Figure 2.3 the data that a document object contains displayed

with two view objects.
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Figure 2.3 : MFC Document/View concept [22].

In EAFE software classes CEAFEDoc, which is a subclass of CDocument class, and

CEAFEView, which is a subclass of CView class, created to employ this
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document/view structure. The UML class representations of simplified CEAFEDoc
and CEAFEView classes are shown in Figure 2.4 with randomly selected data

members and member functions.
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Figure 2.4 : Document/View structure.
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3. GEOMETRY MODULE

3.1. Computer Graphics

Computer graphics, as its name suggests, are graphics generated using computers and
usually abbreviated as CG. William Fetter, a graphic designer at Boeing Aircraft Co.,
was coined the term “computer graphics” to describe his job in 1960. But the major
breakthrough to demonstrate the potential of computer graphics came when lvan
Sutherland, a Ph.D. student at MIT, developed a drawing program called Sketchpad,
as part of his thesis in 1963 [23].

Computer graphics are widespread today. Some of the major industries in which
computer graphics are commonly used are entertainment, education, medicine and
industrial design. Examples of computer graphics usage in entertainment industry
include video games, cartoons, animated films and visual effects. In education area
one come across computer graphics in simulations (i.e. flight simulators) and
information visualization, while in medicine it is used in medical imaging. In
industrial design area, computer graphics are used for computer-aided design and

computer-aided manufacturing [24].

The creation, modification, analysis or optimization of an engineering design with
the assistance of the computer systems are collectively called computer-aided design
[25]. It is argued that the origin of the computer-aided design discipline, same as the
most computer graphics fields, is the Sutherland’s Sketchpad program. Companies in
the aerospace and automotive industries, realizing the prospects of Sutherland’s
revolutionary work, initiated projects to take complete advantage of the computer
graphics. The industries wide-ranging interests in the usage of computer graphics in
design processes developed and gave birth to multi-billion dollar companies such as
Autodesk, Dassault Systems and MSC Software [26].
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3.2. 3D Computer Graphics and OpenGL

Computer screen has two dimensions width and height, whereas in real world objects
there is one more dimension called depth. The eyes and the brain work together to
help us decide the depth of objects. Being supplied with two slightly different images
from two eyes, our brains are responsible for combining these images in a way that
creates the perception of depth as shown in Figure 3.1 (a). Even though two eyes are
needed to truly see in 3D, covering one eye will not cause our 3D perception to
disappear abruptly. Because there are other factors, such as perspective, lights,
shades, textures and reflections, that can still activate our brain’s ability to perceive
depth in two dimensions. Artists have long been taking advantage of these factors to
depict a three-dimensional scene on a flat canvas, likewise computer graphic
designers use the same factors to draw three-dimensional objects on a 2D computer

screen.

The use of perspective, which is the way an observer perceives size and details of
objects depending on their distance, is the simplest approach to provide an illusion of
depth as shown in Figure 3.1 (b). However, inspecting the given figure closely
reveals that there is a degree of ambiguity in determining the front and back of the
cube. The perspective alone is not enough to accurately represent a three-
dimensional object. In addition to the perspective usage, lighting, which refers to the
simulation of light, shading, which is using various amount of darkness to illustrate
the reflection of light on a surface, texture mapping, which is basically adding a
specific pattern or a picture to a surface, and blending, which is mixing different
colors to create reflection of a surface on another surface, should be utilized as well
[27].

In order to draw a three-dimensional object on a computer screen, a full-scale
detailed model has to be constructed first. A model is a mathematical representation
of an object on a computer. Models are collection of points that are connected by a
number of primitive geometric shapes, such as lines, triangles, curved surfaces, etc.
In addition to the geometrical data, models can also include texture, lighting and

shading data structures.

Figure 3.2 (a) shows a wireframe model of Utah Teapot, also known as Newell

Teapot, which is a 3D model of a regular teapot, Figure 3.2 (c), created by Martin
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Newell, a researcher at University of Utah, in 1975, since then extremely frequently

used and has become a standard reference object in computer graphics community.

®
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‘/\ N \5\ P —
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Refina image l E Refina image 2
N\ |

(a) (b)
Figure 3.1 : 3D perception: (a)How you see three dimension. (b)A simple wireframe

3D cube.

The process of drawing the final scene on the computer screen from models is called
rendering. Historically one of the first complex three-dimensional models to be
rendered is the Utah Teapot as mentioned above. Figure 3.2 (b) shows a modern
rendered image of Utah Teapot. In computer applications rendering 3D computer
graphics are achieved through some specialized application programming interfaces
(API). In general, most application programming interfaces are libraries that consist
of some object classes, data structures and related variables to accomplish
demanding tasks and considerably ease software development procedure. OpenGL
(Open Graphics Library) is a language-independent APl that can be used in
applications to render two-dimensional and three-dimensional computer graphics.
The usage of graphics cards to perform 3D graphics operations at high speed is
called 3D hardware acceleration. In order to achieve hardware accelerated rendering,

OpenGL Interacts with Graphics processing unit(GPU).

Figure 3.2 : Utah Teapot: (a)Wireframe model. (b) A modern render model.
(c) Original teapot [28]-[30].

15



OpenGL API alone is not enough to develop complete applications because it does
not have support for opening windows on computer screen or listening mouse and
keyboard events. To accomplish these tasks OpenGL must be combined with a

general-purpose programming language, such as C++ , Java, Python, etc.

In addition to OpenGL there is another major 3d graphics rendering API called
DirectX. However, contrary to OpenGL’s cross platform support and open standard,
the target operating system(OS) in DirectX API is the Microsoft Windows OS and
DirectX API is proprietary. Therefore, OpenGL is more commonly adopted
throughout academia and industry and used for widely diverse purposes, from

computer-aided design and scientific visualization to entertainment and simulations.

OpenGL API consists of several hundreds of function calls to perform 3D rendering
tasks. Using OpenGL’s predefined geometric primitives — also called drawing
primitives — such as GL_POINTS, GL_LINES, GL_TRIANGLES, GL_QUADS,
GL_POLYGON, etc., with these functions, fairly complex objects can be constructed
in a Lego-like manner. Figure 3.3 is an example of a simple OpenGL function calls

to draw a square with different colored vertices.

The different color values at each vertex are interpolated over the rest of the polygon.
Figure 3.4 shows a screenshot of the polygon drawn in a window [31].

In OpenGL each vertex has some quantities called attributes of the vertex. One of
these attributes is color as shown above. Another important attribute is the normal
vector. Normal vectors are used in lighting calculations. The light beam which comes
from a light source, hits a surface and reflects. The properties of this reflection
depend on the surface it hits, on the light source and to a great extend on the angle at
which the light strikes. OpenGL uses this normal vector which is perpendicular to the

surface to calculate the aforementioned angle.

glBegin(GL_POLYGON)
glColor3f( 1.0, 0.0, 0.0 );
glVertex3f( 20.0, 20.0, 0.0 );
glColor3f( 0.0, 1.0, 0.0 );
glVertex3f( 80.0, 20.0, 0.0 );
glColor3f( 0.0, 0.0, 1.0);
glVertex3f( 80.0, 80.0, 0.0 );
glColor3f( 1.0, 1.0, 0.0 );
glVertex3f( 20.0, 80.0, 0.0 );

glEnd();

Figure 3.3 : An example of a simple OpenGL function.
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800 Colorful Polygon

Figure 3.4 : Screenshot of rendered polygon.

The effect of using different normal vectors on the same geometric shape is
illustrated below. In Figure 3.5 (a) normal vectors stored in each vertex are
perpendicular to the primitive rectangles and this causes the abrupt change in shading
on consequtive rectangles, whereas in Figure 3.5(b) normal vectors are
perpendicular to the curved surface that is being approximated and this causes the
smooth change in shading on consequtice rectangles. As it can be inferred, increasing
the number of primitive rectangles results in better approximations, in fact, this is
exactly what OpenGL does to approximate curved surfaces.

(b)

Figure 3.5 : Use of normal vectors in light calculation [32]: (a) Normal vectors
perpendicular to rectangles. (b) Normal vectors perpendicular to
surface.

Even though some simple shapes could be drawn via supplying normal vectors for

each vertex by hand, calculating normal vectors is not an easy task and involve some
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non-trivial math [33]. This is one of the reasons why a geometry kernel is needed to

build a cad software.

3.3. Geometry Kernel

A Geometry kernel or geometry engine is an independent software component
specifically developed to perform 3D solid modeling tasks such as creating, editing,
storing, and analyzing 3D models. Many end user applications in computer aided
design (CAD), computer aided manufacturing (CAM), and computer aided
engineering (CAE) fields are based on geometric modeling kernels. Currently there
are two major geometry kernels offered for license: ACIS owned by Spatial and
Parasolid owned by Siemens [34]. Table 3.1 shows some well known CAD/CAE

softwares and corresponding geometric modeling kernels.

On the other hand, as an alternative to the proprietary softwares Open Cascade S.A.S
company offers an open source geometric modeling kernel: Open Cascade
Technology (OCCT). OCCT is open source and written in C++ language with an
object oriented approach, has adequate documentation and example code fragments,
and supports standard geometry file formats such as, ACIS, Parasolid, IGES, STEP,
STL, and DXF. Therefore, in the 3D Finite element analysis software developed in
this thesis(EAFE), Open Cascade Technology was used as geometric modeling
kernel. Taking advantage of some of OCCT’s capabilities, a basic solid geometric

modeling module was developed and included in the EAFE software.

Table 3.1 : CAD/CAE softwares and related geometry kernels.

CAD/CAE Software Geometry Kernel
AutoCad ACIS
SolidWorks Parasolid

Catia CGM
Solid Edge Parasolid
Abaqus Parasolid
Ansys Parasolid
MSC.SimXpert Parasolid
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3.4. Open Cascade Technology (OCCT)

Open Cascade Technology is a freely available collection of object-oriented C++
classes designed to assist CAD/CAM/CAE software developers with the rapid
development of domain-specific end user applications. OCCT libraries can be
divided broadly into four major parts: modelling, visualization, data exchange and
application framework.

3.4.1. Modeling module

The 2D and 3D modeling algorithms module brings together a wide range of
topological algorithms used in modelling which allow you to model any type of
object. Some of the capabilities of modeling module are;

e Creating primitives such as prism, cylinder, cone and torus.

e Performing boolean operations ( addition, subtraction and intersection )

e Tweaking constructions using fillets, chamfers and drafts.

e Modeling constructions using offsets, shelling, hollowing, and sweeps.

e Computing properties such as surface, volume, center of gravity, curvature.

e Computing geometry using projection, interpolation, approximation

3.4.2. Visualization module

Includes services that allow you to manage object display and manipulate views.

Some of the capabilities of visulization module are:
¢ 3D Rotation, zooming and panning,
e Shading.

3.4.3. Data exchange module

Provides import and export functions of OCCT models to and from standard formats
such as IGES and STEP.
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3.4.4. Application framework module

e Association between non-geometrical application data and geometry.

e Parameterization of models.

3.5. Implementation of OCCT Modules in EAFE Software

In the development of EAFE 3D Finite element analysis software, OCCT modules

are used to provide CAD functionality in the software.

Partial implementation of modeling and visualization components of OCCT in the
developed EAFE software’s geometry module is shown in Figure 3.6. The first
highlighted section includes necessary buttons such as Fill, Pan, Rotate, Zoom, etc.,
to manipulate views. Each of these buttons has a unique event handler in EAFEView
class, which calls related functions with required parameters from OCCT’s

visualization module to adjust the view as desired.

The second highlighted section displays undo, redo and delete buttons on the edit
panel. These buttons are one of the most important features of modern softwares,
because they provide recovery from mistakes. This functionality is included in EAFE
software with the use of OpenCascade’s Application Framework(OCAF) module
which is going to be explained in the subsequent pages.

The third highlighted section shows three panels named: geometry, solid, and
modeling. Geometry panel includes some buttons for primitive geometric shapes that
can be used as starting points for solid modeling. Solid panel contains buttons to
create some frequently used solid shapes such as boxes, spheres, and cylinders.
Lastly, modeling panel has a number of buttons that are useful to make desired
shapes. Event handlers, in which OCCT’s modeling module functions are called, for

these buttons are implemented in EAFEDoc class.

Exchanging data is another fundamental feature that most CAD softwares has in
common. The fourth highlighted section in Figure 3.7 shows EAFE software’s
import and export functionality which is provided by OCCT’s data exchange module
and can be used to import or export solid models to or from other well known CAD

softwares by using standard formats such as STEP or IGES.
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Figure 3.7 : Import export properties of EAFE software.
3.6. Open Cascade Application Framework (OCAF)

One of the most essential modules of OCCT is the Open Cascade Application
Framework (OCAF). OCAF is much more than just one toolkit among many in

OCCT libraries. Since it can handle any data and algorithms in these libraries —
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modeling algorithms, topology or geometry — OCAF is a logical supplement to these

libraries and is going to be explained here in detail.

OCAF is a rapid application development (RAD) framework used for specifying and
organizing application data. To do this, OCAF provides:

e Ready-to-use data common to most CAD/CAM applications,
e A scalable extension protocol for implementing new application specific data,
e Aninfrastructure

— To attach any data to any topological element

— To link data produced by different applications

— To register the modeling process — the creation history, or parametrics,

used to carry out modifications.

Using OCAF, the application designer concentrates on the functionality and its
specific algorithms. In this way, he avoids architectural problems notably
implementing undo-redo and saving application data. In OCAF, all of the above are
already handled for the application designer, allowing him to reach a significant

increase in productivity.

In OCAF, data structure is reference key-driven. The reference key is implemented
in the form of labels. Application data is attached to these labels as attributes. By
means of these labels and a tree structure they are organized in, the reference key
aggregates all user data, not just shapes and their geometry. These attributes have

similar importance; no attribute is master in respect of the others [35].

The reference keys of a model - in the form of labels - have to be kept together in a
single container. This container is called a document. OCAF documents are in turn
managed by an OCAF application. Inside a document, there is a data framework.
This is a set of labels organized in a tree structure. Figure 3.8 shows a rudimentary
example of an OCAF data framework, in which the the tags are illustrated in the

circles, and the labels are illustrated under the circles as tag lists.

The data framework offers a single environment in which data from different

application components can be handled. This allows you to exchange and modify
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data simply, consistently, with a maximum level of information, and with stable

semantics. The building blocks of this approach are: 1. Tag, 2. Label, 3.Attribute.

0
0 W Tags
1 3 B Labels
0:1 0:3
2 1 3 i |

0:1:2 0:3:1 0:3:3 0:3:4
Figure 3.8 : A basic OCAF data framework.

The first label in a framework is the root label of the tree. Each label has a tag
expressed as an integer value, and a label is uniquely defined by an entry expressed
as a list of tags from the root, 0:3:1, for example. Each label can have a list of

attributes, which contain data, and several attributes can be attached to a label.

The data framework in EAFE Software’s geometry module is OCAF based and
shown in Figure 3.9. The simplified tree like structure holds tags, labels and the
label’s attributes as shown in the figure. Each geometric primitive or solid part
created in the application is an attribute and stored under this tree structure with
associated label. The labels can have a list of attributes including name, number,
color, etc., along with the shape. When a change, modification or removal is needed
for any shape the particular label for this shape can be used to retrieve the shape. A

label’s entry is its persistent address in the data framework.
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4. MESH MODULE

4.1. Mesh Generators

One of the most important and time consuming steps in the finite element analysis is
mesh generation. A mesh is a geometrical discretization of a computational domain.
During this discretization the continuous domain split into geometrically simple and
smaller subdomains called elements. Examples of elements used in finite element
analysis include lines, triangles and quadrangles in 2D and tetrahedrons,

hexahedrons, prisms and pyramids in 3D.

An unstructured (or irregular) mesh is a tessellation of a domain by simple shapes in
an irregular pattern. The process of obtaining an appropriate mesh is called mesh
generation. In unstructured mesh generation, triangular and tetrahedral elements are
by far the most common used element types. In general, Octree, Delaunay and
Advancing front techniques are applied for unstructured mesh generation. There are
public domain and commercial mesh generators which are distributed by software
vendors, research labs and educational institutions. Two of the prominent open
source mesh generators which also offers built-in post processing facilities are

Salome and Gmsh.

Salome is an open source software that provides a generic platform for pre-
processing and post-processing for numerical simulation. It is based on an open and
flexible architecture made of reusable components [36]. Similarly, Gmsh is a three-
dimensional finite element mesh generator with a build-in geometry engine and post-
processor. It aims to provide a fast, light and user-friendly meshing tool with

parametric input and advanced visualization capabilities [37].

As it is the case in the most open source softwares both Salome and Gmsh libraries
do not have enough documentation to describe member functions. Contrary to
Salome, Gmsh supports 64bit Windows OS and is written in C++, it is light and easy
to use, therefore, Gmsh is used as a mesh framework in the EAFE Software.
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4.2. GMSH Mesh Framework

GMSH is an open source mesh generator developed and is being maintained by
Christophe Geuzaine from University of Liége and Jean-Frangois Remacle from
Université catholique de Louvain, in order to meet the expectations of researchers
and engineers in academia and industry. Making use of lines, triangles and
tetrahedrons, Gmsh generates 1D, 2D and 3D finite element meshes with adjustable
element size. Gmsh also provides a post-processor that can load and manipulate
scalar, vector and tensor maps. Gmsh is powerful enough to be used in academic and

engineering applications.

Gmsh uses four model entities to represent 3D solids: vertices, edges, faces and
regions. The logic behind this representation is that any solid can be defined as a
volumetric region bounded by a set of surfaces, surfaces bounded by a sequence of
edges and edges bounded by two vertices at each end. Taking into account this
geometric representation, the discretization process in Gmsh is designed to go from

bottom to up following three main steps as shown below:
e The first discretized entities are edges,
e Using discretized edges, surfaces are triangulated,
e Making use of surface mesh data, volumetric regions are tetrahedralized.

Gmsh has three different algorithm options for 2D meshing: Mesh adapt, Delaunay,
and Frontal. Delaunay and Frontal algorithms are standard algorithms. In addition to
these algorithms Gmsh offers a new surface meshing technique in which the notion
of local mesh modifications are used. In the MeshAdapt algorithm discretized
domain is locally modified such that an edge is split if it is too long or is collapsed if
it is too short, and edges are swapped if swapping an edge results in a better
geometric configuration. Gmsh uses Delaunay and Frontal algorithms for 3D

unstructured discretization [38].

4.3. Implementation of Gmsh in EAFE

In order to provide meshing ability some of the Gmsh library’s capabilities such as
1D, 2D and 3D mesh generation, mesh optimization, mesh size manipulation and

increasing mesh density in critical regions of the discretized shape, are used in EAFE
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Software. Along with these mentioned capabilities, some of the wide range of
options that Gmsh library offers to control the behavior of mesh commands, and the

way meshes are displayed, are provided in the EAFE Software.

Implementation of Gmsh through mesh related buttons in EAFE software’s Mesh
module is highlighted in Figure 4.1. Similar to the buttons in Geometry module, each
of these buttons also has event handlers in EAFEDoc class which is one of the two
main classes in EAFE software. Pressing one of these buttons results in a call to the
corresponding event handler function in which Gmsh library’s related function

employed.
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Figure 4.1 : EAFE software with GMSH mesh framework.

Overly simplified code fragments taken from original EAFE source code and put
together to illustrate the use of Gmsh library is given in Figure 4.2. Gmsh must be
initialized before using its accompanying functions, hence statement in line 1
initializes Gmsh. Line 2 creates a geometric model with GModel class which is one
of the most important classes in Gmsh library. Line 4 imports an Open Cascade
shape that is created in advance with the EAFE’s geometry module, into the
geometric model and checks whether any problem occur. In case of a problem it

prompts an error message in a dialog box.
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Gmshlnitialize ();  // initialize gmsh

GModel* myModel = new GModel();

/l import open cascade shape into the geometric model

if ({(myModel->importOCCShape((void*)&aShapeToMesh)))

AfxMessageBox( L"Error during shape loading " );
return;

¥

/l generating a 3d mesh
.ty {
myModel ->mesh(3);
. }catch (...) {
AfxMessageBox(L"Error in gmsh--aborting mesh!\n");
}
./l update View and save the mesh data
DrawScene();
myModel->writeMSH("C:/Users/EafeTemp/Mesh/part.msh");
./l delete the geometric model and terminate gmsh
delete myModel;
GmshFinalize();

Co~NSO~wWN =

NREPERPRPREPRRPERPERRE
SOXNDOTAWN PO

Figure 4.2 : Gmsh library usage.

An exception is a problem that rarely occurs during a program’s execution. Try and
catch blocks are used to handle exceptions in programs. Using exception handling
enables programmers to develop fault tolerant programs. Statements from line 10 to
14 generate a 3D mesh for the geometric model using a try and catch block to handle
any kind of exception that could happen during discretization process. Line 16
updates the scene and line 17 writes mesh data to the file in the given directory. Line
19 deletes the model and additional entities such as geometry data, mesh data, etc.
Line 20 terminates the process.

Another important Gmsh functionality that is used in EAFE software is the mesh size
manipulation. The effect of changing element size at certain points over the shape to
the mesh density is shown in Figure 4.3. An Open Cascade solid generated in EAFE
geometry module is given in Figure 4.3 (a). The solid shape imported to the EAFE
mesh module and discretized with constant mesh size as shown in Figure 4.3 (b). By
means of changing element size at two vertices a new mesh generated to demonstrate

the element size manipulation capability of the software and shown in Figure 4.3 (c).
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Figure 4.3 : A solid shape with different mesh options: (a) Solid shape.
(b) Constant mesh size. (c) Variable mesh size.
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5. SOLVER MODULE

5.1. Object-Oriented Programming

In contrast to the procedural programming’s function oriented approach, in the
object-oriented programming the application is build around its data, which is stored
in small packages called objects. A brief introduction to the object-oriented
programming philosophy is provided in Chapter 2. Here the fundamental concepts in
object-oriented programming such as object, class, method, inheritance,

polymorphism, etc., are introduced.

5.1.1. Fundamental concepts in object-oriented programming

Moving from procedural programming to object-oriented programming is not an
easy task. To successfully develop a software with object-oriented programming
approach, a developer must have a thorough understanding of the essential concepts

given in this section.

5.1.1.1. Object

Almost each programming language has standard data types such as integer, float,
double, string, etc. In essence, an object is a new type of data variable that is defined
by the user and anything can be an object. Objects have data members composed of
classic variables and/or other new user defined variables. Objects also have member

functions that view or manipulate its encapsulated data members.

5.1.1.2. Class

Classes are the building blocks of object-oriented programming. A software
developed with object oriented approach is basically a collection of classes that
communicate with each other via messages to complete the required tasks. Classes
are user defined data types that are used to instantiate objects as shown in Figure 5.1.
In this figure ahmet and mehmet objects are instantiated from Person class and as

many objects as needed can be initiated from a class.
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int a = 12; // a is a classic data variable an integer

double b = 2.3; // b is a classic data variable a double
bool stop = false; // stop is a classic data variable a boolean
Person ahmet; // ahmet is a new data variable a Person
Person mehmet; // mehmet is a new data variable a Person

Figure 5.1 : A simple code fragment to show classes and objects.

To illustrate the class concept the UML representation of this person class with
possible member fields like age, gender, weight and member methods like

constructer, get and set functions are given in Figure 5.2.

»] |

| Person
Class

= Fields

age :int

%

47 employment: bool
#? gender: string

47 name :string

47 weight : double

= Methods

~Person()

getAge() : int

getGender() : string

getName() : string

getWeight() : double

Person()

setAge(int ageValue) : void
setGender(string genderStr) : void
setName(string personName) : void
setWeight(double weightVal) : void

<

O T O OCT T

./J

Figure 5.2 : An example class structure.
5.1.1.3. Encapsulation

Encapsulation is a mechanism in which only a classes methods are allowed to access
the same classes fields. For example, in the given person class the fields such as age,
employment, weight, etc., are only accessible to the methods in the person class. If
another class needs to view or modify a field in the person class, due to its restricted
access, it must use the related get or set method provided in the person class.
Encapsulation is an important topic in object-oriented programming, because of the

fact that it provides softwares flexibility and modularity.
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5.1.1.4. Method

A method in object-oriented programming is similar to a procedure, function, or
routine in procedural programming languages. The main distinction is that, methods

are always associated with classes.

In object-oriented programming methods are used to view and manipulate data
members (attributes) of objects. A simple example is given in Figure 5.3 to show
method usage in object-oriented programming. In the figure age and gender
attributes for ahmet and mehmet objects are set by using setAge and setGender
methods respectively. Using methods to set an object’s attributes, can be very useful
to prevent assigning invalid values to the attributes. For example, inside the setAge
and setGender methods’ implementations, it is possible to check age and gender
parameters supplied in the method calls, before setting the object’s age and gender

attributes. This is known as keeping the object in a consistent state.

ahmet.setAge( 25 ); // sets age to 25 for ahmet object
mehmet.setAge( 35 ); // sets age to 35 for mehmet object

ahmet.setGender( "Male" ); // sets gender for ahmet object
mehmet.setGender( ahmet.getGender() ); // sets gender for mehmet object

ahmet.setAge(-10); // in setAge method’s implementation negative values
// are set to @ to maintain object’s integrity

Figure 5.3 : A simple code fragment to show method usage.
5.1.1.5. Inheritance

Inheritance is one of the essential features of object-oriented programming. It is a
mechanism that facilitates software reuse. By using inheritance a new class, called
derived class, can be built on a pre-existing class, called base class in C++ language.
In general, derived classes inherits base classes fields and methods, and adds its
particular variables and methods. Therefore, derived classes are more specific than
their base classes. The use of inheritance makes it possible to organize objects into a

hierarchy, and define relationships with each other.

A simple example is given to illustrate the use of inheritance to create new classes in
Figure 5.4. In this example Student and Employee classes both inherit Person classes
fields and methods. Similarly, Undergraduate and Graduate classes adds their own
specific variables and methods on the inherited fields and methods from the Student

class. This example shows how a base class functionality is extended by derived

33




classes. Creating new classes in this way produces neat and clean code that is

reusable and easier to understand.

" Person

Class
pukblic pukblic
| Student ¥ ( Employee ¥ |

Class Class

= Person = Person

a ; )
public public public public
( Undergraduate ¥ | | Graduate ¥ ( TeachingStaff ¥ | ( MonTeachingStaff ¥ |
Class Class Class Class

=+ Student =+ Student = Employee = Employee

Figure 5.4 : An inheritance hierarchy example.
5.1.1.6. Polymorphism

Polymorphism is the ability of a field, method or object to take on multiple forms.
Using polymorphism, a developer is able to program in the general rather than
program in the specific. In polymorphism, sending the same message to different
objects can bring about different behaviour, depending on the object type, and the
exact behaviour is determined at program execution time. Using this property of
polymorphism, messages can be sent to the objects, without knowing the types of the
objects. This is an important property of polymorphism which makes designing and

implementing easily extensible object-oriented systems possible.

5.2. Finite Element Method

Differential or integral equations are used to describe many physical phenomena in
engineering such as elasticity, heat, sound, or fluid flow. In complex field problems
numerical solution methods are used, because solution of these equations with classic
analytical approaches becomes virtually impossible. The finite element method
(FEM) is a numerical approach to find approximate solutions to the differential and
integral equations [39].
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The finite element method consists of three steps: 1. Preprocessing, 2. Processing
(Solution), 3. Postprocessing.

In the preprocessing step problem domain is discretized, material properties and
boundary conditions are defined, and loads are applied. In the processing step mesh
data from the previous step is used to create element matrices. In the case of
distributed loads such as body forces and surface loads, the equivalent nodal load
vectors are obtained for these elements. Subsequently, element matrices and load
vectors are used to create global matrices such as stiffness matrix [K], mass matrix
[M], and load vector {F}. The boundary conditions are applied on the matrix
equation such as [K]{Q} = {F} for the static analysis of structures. Here {Q} is the
vector of unknown displacements. Finally, the results are graphically displayed in the

postprocessing step.

5.2.1. Three-dimensional stress analysis

Elasticity is an important subject that deals with determination of the stress, strain,
and displacement distribution in an elastic solid under the influence of external
forces. Following the usual assumptions of linear, small-deformation theory, the
formulation establishes a mathematical model that allows solutions to problems that
have applications in many engineering and scientific fields. Applications in
aeronautical and aerospace engineering include stress, fracture, and fatigue analysis

in aerostructures.

The basic aim of structural mechanics problem is to determine the distribution of
displacements and stresses under the loading and boundary conditions. A
mathematical model of the structural problem is necessary to find the desired
distributions by using FEM. An understanding of all the basic equations of structural
mechanics is essential to devise an appropriate or adequate mathematical model.
Hence, the basic equations of solid mechanics are summarized in the following
sections for ready reference in the formulation of FE equations [40].

5.2.1.1. Fundamental equations

If the deformation of an elastic body is considered under the applied external forces,
any point of the body is displaced from a point to another point. A displacement
vector can be defined for any point of the body, and it can be resolved into three

35



displacement components u, v and w in the X, y and z axis, repectively.

Displacements are unkown functions of coordinates.

On the other hand six independent strain components and corresponding six stress
components can be defined for any point of the body. Three of them are normal
strains or stresses and three others shear strains and stresses. The displacements,
strains and strains are unknowns of an elasticity problem. Three-dimensional stresses

on an infinitesimal element are given in Figure 5.5.

Figure 5.5 : Three dimensional stresses on an element [41].

The stresses and strains are given by
{0-} = [ Ox, Gyr 0z, Txy; Tyz' sz]T (51)
{e} = [ex &y €2 Vay Vyzr Vax]© (5.2)

The stress-strain relations are given by Hooke’s law as

{0} = [E]{¢} (53)

where the constitutive matrix [E] in equation (5.3) for an isotropic material is given
by

1—v v v 0 0 0
1-v v 0 0 0
1-v 0 0 0
1-2v
E] = E > 0 0
(1+v)(1-2v) _ 1—2p (5.4)
Symmetric > 0
1-2v
2
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The displacements in x, y and z directions are represented in a vector as
{6} = [u, v, W] (5.5)

For the three-dimensional case, the strain-displacement relations can be written as

follows
_ a 0 0 -
0x
9 0
Ex dy 5
& 0 0 —|u
&y aZ
= v (5.6)
Vxy | i i o |Ww
Lyyz J dy 0x
Vzx 0 d d
dz Ody
d 0 d
Lz Ox

or using (5.2) and (5.5) the equation in (5.6) can be shown in matrix form as

{e} = [d]{6} (5.7)
where [d] is called strain-displacement operator.

5.2.1.2. Tetrahedral element (Tet-4)

The four node tetrahedral element is generally abberivated in computer programs as
Tet-4, and because of its linear shape functions, it is also called the linear
tetrahedron. The tetrahedral element is the simplest solid element [42]. Element

formulations for tetrahedral element are developed in this section.

Each node in tetrahedral element has three degrees of freedom and the vector of the
nodal degrees of freedom is given by

{q} = [u1»171'W1»u2'U2'Wz'u3'v3'W3,u4,U4,W4]T (5.8)

The displacements u, v, and w at any point in the element can be found by
interpolating displacement values at four nodes, and this relationship is given by

{63 = [Nl{q} (5.9)
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where [N] matrix is given by

NN O 0ON O O Ny, O O N, O O
[NJ=|0 N, 0 0 N, 0 O N, O O N, O
O 0N O O N, 0 0 N; O O N,

(5.10)

The N; shape functions are defined by using the master element given in Figure 5.6

as follows

Ny=§ Ny=1n N3=0C Ny=1-¢—1n-C (5.11)

In these functions N; = 1 at node i, and N; = 0 at all other nodes [43].

vt .

Wy.—>

2 E_,:O

.
i
1
=

zZ
Figure 5.6 : Master element used in shape functions.

The same shape functions can be used to define x,y, z coordinates of any point at

which u,v,w displacements are interpolated. The isoparametric transformation is

given by
x = Nixq1 + Nyx, + N3x3 + Nyx,
Yy =Niy1 + Ny, + N3yz + Nyy, (5.12)
Z = Nqyzy + NyzZy + N3zz + Nyzy
Using (5.11), the equations in the (5.12) can be rewritten as
X = X4 + X148 + X241 + x34C
(5.13)

Y= Yo+ Y14 + Y2un + Y340

Z = Zy + Z14€ + ZpaM + Z34C

38



where the notations x;;, y;;, and z;; are given by

xij = X —x]

Yij = Vi —Jj

Zij =

Zi —Zj

Using equations (5.7) and (5.9), the following equation can be written

{e} = [Bl{q}

where [B] matrix is equal to [d][N] and is given by

—aNI
Ox

0

0
dy
0

L 0z

0

0

0z
0

aN,
ay
aN,
ox

— 0
ox

dN.
0 2

dy
0 0
Jdy 0x
0 N

0z
0z

0

0

0z
0

N,
ay
N,
ox

ox
0o — 0
dy
0z
— — 0
dy Ox
0 R N
0z dy
0z 0x

ox
0

0
dy
0

0z

0
0

0z
0
dy

x|

(5.14)

(5.15)

(5.16)

Using the chain rule, the relation between the derivatives of the shape functions N;

with respect to &,n, C and cartesian derivatives are given by

(ON;
E3
N,
on
aN;
L 9T )

ON;
) i

faNi\
0x

dy (
dN;

\ 9z /

where the Jacobian matrix [] ] is given by

rox
¢
O0x
an
0x
I3

dy
ER
dy
an
dy
a

0z _
on B

i=1234

X14
X24
X34

Via
Y24
V34

Z14
Z24

Z34

(5.17)

(5.18)

Using the inverse of the Jacobian matrix, the equation in (5.17) can be written as
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(ON;) (ONi
ax ¢

<6Ni>=[]]—1<aNi> i =1,2,3,4 (5.19)
dy on e '
aN; N,

\ 9z / \ 9 J

where the inverse of the Jacobian matrix is given by

1 V24234 — Y34Z24 V34214 — V14234 V14224 — V24214
[Al=[]] = m X34Z24 — X24Z34 X14Z34 — X34Z14 X24Z14 — X14Z24 (5.20)
X24Y34 — X34YV24 X34Y14 — X14YV34 X14Y24 — X24Y14

and the determinant of the Jacobian matrix | J | is given by

[T = x14(V2aZ34 — V34Z24) + ¥14(Z24X34 — Z34X24) + Z14(X24Y34 — X34Y24)  (5.21)

Using equations (5.19) and (5.20) the [B] is modified as

4, 0 0 A4, 0 o0 43 0 0 —4
0 A4,y 0 0 4,, 0 0 Ay O 0
0 0 A3 0 0 Ay, 0 0 Az ¢
0 As; Az 0 Az Az 0 Ay Ay 0 —A3 -4,
—A,
—A,

[B] = . 3| (5.22)
A31 0 Ay Az 0 Az Ay, 0 Ags 0 -4
_A21 A;n 0 Ay A O A,z Az O -4, 0
where A4,, A,, and 4; are
Ay = A+ A+ Az A=Ay +Ayn+ A A=Az + Asp + Az (5.23)
Element stiffness matrix
Element stiffness matrix is given by
K= [[[ iz (5.24)
14

If the element is a four node tetrahedral element the [E] and [B] matrices are

constant, therefore, equation (5.24) simplifies to
[k] = V[B]"[E][B] (5.25)

where V is the volume of the element given by
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1
V=2 ldet]] (5.26)

Force terms

The potential term associated with body force is
[y = " ||| mrirdegagands = @iy 5.27)

If f., fy, and f, components of the {f} load are constant, solution of the integral in

equation (5.27) gives the element body force vector by

|74 T
{re} = Z[fx:fy:fz:fx:fy'fz'fx'fy'fz'fx'fy'fz] (5.28)

The potential term associated with surface traction is

{u}'{T}dA = {q}" j [N]"{T}dA = {q}"{T*} (5.29)

Ae Ae

If T, Ty, and T, components of the {T} load are constant, solution of the integral in

equation (5.29) gives the element traction load vector by
e Ae
rey== [T, Ty, T, T, Ty, Ty, T, Ty, T, 0, 0, 0] (5.30)

The potential energy of an element can be written as
1
ne=ve+we= E{q}T[k]{q} —{a}"{fe} —{a}" (7%} (5.31)

Assembly procedure

Total potential energy for the structure can be obtained by summing potential

energies of individual elements
E
= 1 - (QY'{F) (5.32)
e=1
where {Q} is the nodal displacement vector as shown below
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E

Q1
w={%=>w (539
QN e=1
Thus, the total potential energy is given by

E E E
1=3 > @ g~ Y @ - Y (@ 74~ ()T (£}
e=1 e=1 e=1

(5.34)
1
= {QY'IK1{Q} - (@) {F)
where [K ]and {F }are
K=Ykl {F}= ) {f}+{T}+ (R} (535)

Using the principle of minimum potential energy, the static equilibrium equations for

the structure can be obtained.

on
00;

0 i=123..N (5.36)

The set of linear algebraic equations to solve nodal displacements are obtained by

substituting equation (5.34) into equation (5.36) and shown below
[K1{Q} = {F} (5.37)
The element stresses are calculated after solving the equation given above.

5.2.1.3. Stress calculations

Using the Hooke’s law given in (5.3) and substituting equation (5.15) for the strain,
the element stresses can be calculated by

{0} = [E][Bl{q} (5.38)

Making use of equation (5.38), gy, 0y, 0, Tyy, Ty, and T4, stress components can be

obtained, and by using them the three principal stresses are calculated as follows
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I
01 = —+ccosf

3
I 21
0, = gy cos(60 +—) (5.39)
3 3
by L
03 =73 c cos( 3 )
where c and 6 are given by
12
a = ?1 - 12
I\’ L
b=-2(3) + -1
3 3 7
(5.40)
_ a
NN
1, 3b
0 = —cos (— —)
3 ac
and the three invariants I, I,, I;0f the stress tensor are
I =0y +0,+0,
I, = 0,0y + 0,0, + 0,0, — T4y — T, — T2, (5.41)
Iy = 0,00, 4 2Ty Ty, Ty — Ox Ty, — Oy Tiy — O,T2y
5.2.1.4. Dynamic consideration
The Lagrangean is defined by
L=T-1I (5.42)

According to Hamilton’s principle, in an arbitrary t; — t, time interval, the state of

motion of a body extremizes the functional
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2
I = f Ldt (5.43)
t

1

If generalized variables (q4, 92, -, Gn, 41, 92, ---» Gn), Where q; = dgq;/dt, are used to

express L, then the equations of motion are given by

d (0L L o (5.44)
E(a—ql)—a—ql—o i=1ton
The kinetic energy is given by
(5.45)

1o
=5 f @y pdv

where density of the material is shown by p and velocity vector of the point at x with

components i, v, and w is
{u} = [u,v,w]" (5.46)
u can be expressed by using shape functions as follows

{u} = [Nl{q} (5.47)

similarly the velocity vector is given by

{u} = [N){4} (5.48)

using equations (5.48) and (5.45) the kinetic energy T, in element e is

1
T, =5 {@)" [ | p[N]T[N]dv] @ (5.49)
e
The bracketed expression in equation (5.49) is the element mass matrix
) = [ pVT NIV (550)

This mass matrix is consistent with the shape functions chosen and is called the

consistent mass matrix. On summing over all the elements
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1 1, .
T="T,= ) (@) Imela} = 5 {0} M) (551)
The potential energy is given by

1= ()" [K}Q} ~ (@) {F) (552)

Using the Lagrangean given in equation (5.42), the equation of motion is obtained as

follows

[MI{Q} + [K1{Q} = {F} (5.53)
The force F is zero for free vibrations. Thus,
[MI{Q} + [K]{Q} = {0} (5.54)

Considering the steady-state condition, starting from the equilibrium state, {Q} can

be taken as
{Q} = {U}sinwt (5.55)

where w is the circular frequency and {U} is the vector of nodal amplitudes of
vibration. Substituting equation (5.55) into (5.54)

[KI{U} = w?[M]{U} (5.56)
This is the generalized eigenvalue problem
[K1{U} = A[M]{U} (5.57)

where {U} is the eigenvector, which represents vibration mode for corresponding
eigenvalue, and A, the square of the circular frequency w, is the eigenvalue. The

frequency f in hertz (cycles per second) is obtained from

f= . (5.58)

Element mass matrix

The consistent mass matrix for tetrahedral element is obtained by using equation

(5.50) and is given by
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2 0 01 001 0 0 1 0 0

2 0 01 0 01 0 0 10

2 0 01 0 0 1 0 01

2 0 01 0 0 1 0O

. 2 0 01 0 010

PVe 2 0 0 1 0 0 1
m1=%0 20010 0 (5.59)

2 0 0 1 0

Symmetric 2 0 0 1

2 00

2 0

21

5.3. Object-Oriented Finite Element Analysis

The fundamental concepts in object-oriented programming is introduced in section
5.1 and an overview of finite element method with element formulations is given in
section 5.2. In this section, the development of a new finite element solver by

combining these two methodologies is presented.

5.3.1. EafeLib: A C++ finite element analysis library and its base classes

EafeLib is a collection of C++ classes designed to do finite element analysis in 3D
with an object-oriented approach. It is built around six main classes: Node, Element,
Load, BoundaryCondition, Material, and Model. It also has some auxiliary classes
such as InputReader, Solver, and OutputWriter. The primary class in EafeLib solver
is the Model class. Using UML class diagrams the relationship between these classes

are shown in Figure 5.7.

In order to successfully use EafeLib solver for a finite element problem, an input file,
which is consistent with the EafeLib’s predefined input file format, must be
provided. EafeLib’s input file format contains the nodal coordinates, element
connectivities, boundary conditions, loads and material definitions. An InputReader
class object reads this input file and creates corresponding Node,
BoundaryCondition, Load and Material objects. Subsequently, Model class uses
these objects along with a vector, obtained from InputReader and filled with element
connectivities, to create elements, calculate element stiffness matrices and assemble
them into the global stiffness matrix. In addition, the force terms for each element is

calculated and assembled into the global force vector. The Global stiffness matrix
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can be stored in two different matrix types: dense matrix type and sparse matrix type.
In dense matrix all of the elements of the stiffness matrix is stored, whereas in sparse
matrix only the nonzero elements are stored. The matrices that arise from the
discretization of a three-dimensional domain are inherently sparse matrices and
storing them in a dense matrix format requires a considerable amount of memory.
Therefore, the global stiffness matrix in EafeLib solver is stored in a sparse matrix
format by default, and the inclusion of dense matrix format is just for illustration

purposes.

A Solver class object obtains the global stiffness matrix and global force vector from
a Model class object, than solves the linear system and returns the displacements.
Finally, an OutputWriter class object takes the displacement results and writes them
into a text file. The procedure described so far is a berief overview of the EafeLib
solver structure and the detailed base class explanations are given in the following

sections.

5.3.1.1. Element class

Element class in EafeLib solver is created as an abstract class and includes
declarations of pure functions that must be implemented in the derived classes. The
UML class diagram for the element class is given in Figure 5.8. Most of the methods
shown in the figure does not have an implementation in the element class. A derived

class, for example Tet4 , must have implementations for these pure functions.

5.3.1.2. Node class

A Node class object mainly holds x, y, z coordinates, loads and boundary conditions

defined on the node, displacements, and nodal stresses as shown in the Figure 5.9.

A class such as Tet4 that is derived from Element class will have a number of Node
class objects as its data members. In Tetd class, for example, there are four node

objects associated with the four nodes of the tetrahedral element.

Making use of Node class’s member functions, global node number of an element’s
local node, along with the X, y, and z coordinates with corresponding displacement
values can be acquired inside the element class. Moreover, loads and boundary
conditions defined on a node object that is a member of the aforementioned element

class are also become accessible.
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Figure 5.7 : The simplified UML class diagrams of EafeLib solver.
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' Element

Class

|

=l Fields

o
av

elementMumkber: int

elementType : string

= Methods

O ¢ o e OO OO OO OO OO OO OO0

~Element()

addFaceTag(int tag) : void
add5tressToElementModes() ; void
calculateForceVector() : void
calculateMassMatrix() : void
calculatestiffnesshatrix) © void
calculateStressVector) : void
calculateVonMisesDirectly() : double
calculateVonMisesWithPrincipalStresses() : double
Element()

getElementMumber() : int
getElementTypel) : string

getForceVMector() : vector<double>&
getGlobalNodeMNumber(int localMede) @ int
getloadFaceTagVector() : vector<unsigned int>8&
getMassMatnx() : EafeMatnxB
getStiffnessMatrix() : EafeMatrix&
hasFilledForceVector() | boaol
setElementMumber(int num) : void
cethdaterial[Material & material) @ void
updateModalAdjacentInfol) : void

A

Figure 5.8 : The UML representation of the element class.

5.3.1.3. Material class

Material class is an abstract base class and IsotropicMaterial class is a more specific
class derived from material class as shown in Figure 5.10. IsotropicMaterial class’s
data members are density, poisson ration, shear modulus, and young modulus. In
addition, IsotropicMaterial class has set and get functions to manipulate its data
members. The material data obtained from the input file are stored in the objects of
the IsotropicMaterial class. Element class is designed to have objects of classes that
are derived from Material class as its data members. Hence, it is possible to store

different material data and even different material type for each element.
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[}
B

Node
Class
= Fields
4* averageModalStress : double
47 bePntrs : vector<BoundaryCondition™
@¥ dof: Dof
5,\" loadPntrs : vector<Load®»
#* nodeCounter: int
5,\" nodekumber: int
4 numberOfAdjacentElements : int
5,\" x ¢ double
4% xDisplacement : double
& y:double
¥ yDisplacement : double
;*P' z: double
7 zDisplacement : double
= Methods

~MyMode()

addAdjacentElement() : void
addModalStress(double stressVal) @ void
getBel} @ vector<BoundaryCondition™=
getDof() : double

getLoad() : vector<Load™>
getLoadAtFace(int faceTag) : Load™
getModalStressValuel) : double
getModeMumber() @ int
getMumberCfAdjacentElements() : int
get¥Z(} : double

get{displacement() : double
getYdisplacement() : double
getZdisplacement() : double
hasLoadAtFace(int faceTag) : bool
MyMNode(double xVal, double yWal, double 2Val)
setBe(BoundaryCondition™ be) @ woid
setDof(int dofValue) : void
setload(Load™ load) : void
setModeMumber(int nodeMum) @ void
set¥displacement{double xdisp) : void
set¥displacement{double ydisp) @ void

LAl S S A A S SR SR S A A U SRR G SR G Gl Gl S Sl S ¢

set/displacement(double zdisp) : void

Figure 5.9 : The UML representation of the node class.
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| Material

Class

= Fields

o

type: MaterialType

= Methods

& o 44

v

~Material()

getDensityValue() : double

getMaterialType() : MaterialType

Material()

Material(MaterialType materialType)

setMaterial Type(Material Type materialType) : void

* Mested Types

» |

pulblic

» |

( IsotropicMaterial
Class
—+ Waterial

=l Fields

@ density : double

&* poissonsRatio : double

L',V shearfModulus ; double

@# youngModulus : double
= Methods
~IsotropicMaterial()
getDensityValue() : double
getPoissonsRatiof) : double
getShearModulusl) : double
getYoungMoedulus() : double
IsotropicMatenal(double E, double v, dou..
setDensityValue(double ro) @ void
setPoissonsRatio(double v) : void
setShearModulus(double G) : void
set¥oungModulus(double E) @ void

LG SR SN SR SO SRR SR G S ¢

Figure 5.10 : The UML representation of Material and IsotropicMaterial classes.

5.3.1

4. LLoad class

The loads applied to the system are held in the objects of the subclasses of Load class

such as NodalLoad class and DistributedLoad class as shown in Figure 5.11. Both

Node and Element classes have pointers to the load objects, due to the fact that, a

load can be applied either on a single node or on an element. NodalLoad class deals

with loads applied on a single node, whereas DistributedLoad class deals with loads

such as pressure or surface traction. Another load class, such as body load, can easily

be created by subclassing load class.

[ Load
Class

|

= Fields

i

loadType : string

° tag:int
= Methods

.
.
.
.
.
.
a4
.
.

~Load()

getLoadInX() : double

getLoadIn¥() : double

getlLoadInZ() : double

getLoadType() : string

getTag() : int

Load(string type)

setModeMum{unsigned int nodeMumValue) : void
sefTag(int tagVal) : void

( DistributedLoad

public .

|

Class
+ Load

=| Fields

load : double

loadInX : double

loadInY : double

loadInzZ : double

nedenums @ vector<unsigned int>
xDirection : double

yDirection : double

TR

zDirecticn : double

ethods

~DistributedLoad()

DistributedLoad(double loadVal, double dirX, double dirY, double dir)
getlLoad() : double

getLoadInX() : double

getLoadIn¥() : double

getlLoadInZ() : double

setModeMNum(unsigned int nedeMumValue) : void

=

e o oA

Figure 5.11 : The UML representation of the Load and the DistributedLoad classes.
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5.3.1.5. Boundary condition class

BoundaryCondition class is designed as an abstract base class and it is used to create
subclasses such as SingleNodeBC. The UML class diagrams with data members and
member functions for these two classes are given in Figure 5.12. The figure shows
that by using SingleNodeBC class’s member functions such as setU, setV, and SetW,
it is possible to set u,v and w displacement components of a boundary condition
object. Subsequently, boundary condition for any node can be defined by

incorporating a pointer to this boundary condition object into the node object .

5.3.2. Global stiffness and mass matrices assembly process

The two fundamental components of the finite element model are the global stiffness
and global mass matrices.The assemblage of the global stiffnes and mass matrices
are accomplished by Model class’s member functions as it is explained in the

following section.

public
| BoundaryCondition & | SingleNodeBC z
Class Class
=+ BoundaryCondition
= Fields
. = Fields
#* tag:int

@ bcMum:int
@¥ bounCond : EafeMatrix
#* degreesOfFreedom : int
= Methods
% -~SingleMNodeBC()
% cetl)(double u) : bool
% =etlV(double u, double v) : bool
Y setlWVWidouble u, double v, double w) : bool
b
v
v

#* type:string
= Methods

% ~BoundaryCondition()

% BoundaryCondition(string BCType)
% getTagl):int

% getType{) : string

% setTag(int tagVal) : void

setV(double v) : bool
setWidouble w) : bool
SingleModeBC(int dof)

Figure 5.12 : The UML representation of the Boundary Condition classes.
5.3.2.1. Model class

The Model class is the most important class in the EafeLib FEM solver library and it
holds the global stiffness and global mass matrices of the problem. Figure 5.13
shows the UML class diagram with data members and member functions of the
SparseModel class which is a subclass of the base Model class. The SparseModel

class has everything that is necessary to describe a finite element problem such as
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global stiffness matrix, global load vector, and an empty global displacements vector

which is filled by Solver class after solving linear system of equations.

The function assembleGlobalStiffnessAndMassMatrices (bool assembleMassMatrix)

of SparseModel class does exactly what its name suggests and it is explained below.

((SparseModel

Class

¥

= Fields

=

ECECELEELEEECEEEEEEEEEee 222 ee%

et

averageModalStresses @ vector<double>

beshrray @ vector<BoundaryCondition®>
calculationtime : double

elementsMatrix : vector<vector<ints=
globalDisplacementVector : RCP <Epetra_Vectors
globalForceVector : RCP <Epetra_Vectors
globalMassMatrix : RCP <Global SparselassMatrix>
globalStiffnessMatrix : RCP <GlobkalSparseStiffnessMatrix
loadsArray : vector<Load™>

rnaterialsArray @ vector<Material™>

nodesArray : vector<MyMNode™>

reader : InputReader

vonMisesStress  vector<doubles

hods

applyBoundaryConditions(bool BCforMassMatrix) @ veid
assemblef (Element™ element) : void

assembleGlobalForceVector() @ void

assembleGlobal StiffnessindMassMatrices(bool assembleMassMatrix) : void
assemblekElement™ element) : void

assembleM(Element” element) : void
calculateAverageStressesAtModes() @ void
calculateElementsStress() ; void

fillModeDisplacements() : void

getAverageModalStressesVector() : vector<double> &
getCalculationTime() : double

getGlobalDisplacementVector() : Epetra_Vectoré
getGlobalForceVector() : Epetra_Vectoré
getGlobalStiffnessMatrix() : GlokalSparseStiffnessMatrix &
getMumberCfElements() : int

getMumberCfNodes() @ int

getRCPGlobalMassMatrix() : RCP < GlobkalSparsefassMatrix >
getRCPGlobalStiffnessMatrix() « RCP <GlobalSparseStifinesshatrin>
getVonMisesStressVector() : vector<double» &

SparseModel(string fileMame)

J

Figure 5.13 : The UML representation of the SparseModel class.

The UML activity diagram for assembleGlobalStiffnessAndMassMatrices function is

given in Figure 5.14. Calculating mass matrices for each element and assembling

them into a redundant global mass matrix is a waste of computer processor and

memory. To avoid this, the function begins with an if statement to check whether the
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mass matrix is required for the problem, and the mass matrix is initialized only if it is

necessary.

[don'tassemble massmatrod r\ [assemblemass matrix]

N4 |Initialize mass matrix b—
int control = 0 ¢

Initialize control variable\. -~ il !
< The only differenceis the
4 calculation of elementand
N int numOfElem = B globalmass matrices
Getnumber of elements @ - — getNumberOfElements() not shown here

A
<D

control < numOfElem =

t
\% Getelementtype )

/ GG
[false]
case Tet4
= ~ N -
\. [true] Create elementobject @ - — - — — Element®e =
N /T new Tet4( nodes) |
[false]

Set material ®----- e->setMaterial(Mat)

‘ e->calculateStiffnessMatn)

RO\
Calculatek ®---

Elementforce
vectoris filled

|\ [true]
| Assemblefinto F
|
& A
b

Calculatef & > )
7 [false] ¢

for{ints =0;s< krow;s++)
for(intt=0;t< k.ol ;t++)
int r= {(e->getGlobalNodeNumber(s /3))}-1)*3+ (s% 3 )

int ¢ = ((e->getGlobalNodeNumber(t /3))-1 )*3+ (t% 3)
Klrllcl=K[ri[cl+k[sI[t]

®

Assemblekinto K-

_deleteelement

N\
4

(0 e

~ default -
e

Figure 5.14 : The UML activity diagram of the assembler function.

After the mass matrix check, the assembler function enters into an iteration over the
element data matrix, which is a matrix created by InputReader class and includes the

required data (e.g. element type, nodes, and material) to create element objects. The
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function gets an integer value that represents the element type from the second
column of each row of the matrix and by using a switch statement it creates a
corresponding element object. Subsequently, for the created element the material is
set, stiffness matrix and element force vector are calculated. Afterward, element
stiffness matrix is assembled into the global stiffness matrix and if the element has a
filled force vector, this vector is assembled into the global force vector. Before
leaving the switch statement the created element is deleted to free the allocated
memory. The same procedure is repeated for each element until the global stifness

and mass matrices are completely assembled.

5.3.3. Linear algebra library

Most of the calculations in the finite element method such as solving linear system of
algebraic equations given in (5.60) or generalized eigenvalue problem given in (5.61)

are done by using matrices.
{F} = [K]{d} (5.60)
[KI{A} = A[M]{A} (5.61)

Unfortunately, C++ language does not have an in-built matrix library. Users are
encouraged either to develop their own matrix classes or rely on third party linear
algebra packages. A list of well-known open source linear algebra packages are
given in Table 5.1. Two of the libraries given in the table are more professionally
developed and widely used: Trilinos and PETSc. In comparison to these two, the

other libraries given in the table are rather small libraries.

5.3.3.1. PETSc

PETSc, the portable, extensible toolkit for scientific computation, is a suite of data
structures and routines in C language for the parallel solution of scientific
applications modeled by partial differential equations. It supports Message Passing
Interface (MPI), and is developed by Argonne National Laboratory of University of
Chicago [44].
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Table 5.1 : Open source linear algebra packages.

Package Language
Trilinos C++
PETSc C
Eigen C++
Armadillo C++
MTL C++
Blitz++ C++

5.3.3.2. Trilinos

The Trilinos project is a collection of open source linear algebra packages developed
by a team at the Sandia National Laboratories for the solution of large-scale,
complex multi-physics engineering and scientific problems [45]. Trilinos package’s
capabilities include constructing and using vectors, dense and sparse matrices,
iterative and direct solution of linear systems and solution of nonlinear, eigenvalue
and time dependent problems. Moreover, unlike PETSc, Trilinos is developed in
C++ language with an object oriented software framework. Therefore, Trilinos is
selected as linear algebra package in EafeLib solver in which it is utilized to create
large matrices and to solve linear system of equations as well as eigenvalue

problems.

5.3.4. Input and output file formats

EafeLib solver is designed to read an input file, to process it and to write the results

in an output file. EafeLib solver’s input and output file formats is given below.

5.3.4.1. Input file

An example input file is given in Figure 5.15. It contains nodes, elements, materials,
boundary conditions, and loads sections. In each section the first line defines the total

number of entries in the section and the last line indicates the end of the section.

In the nodes section, each node is described by a line which contains x, vy, z
coordinates, boundary conditions, and loads data for the node. If there is no defined
load or boundary condition for a node, it is shown by a zero value.
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NODES

%NumberOfNodes
621
X y z bc load
%Node
1 0 0 0 290 0
2 0 0 0.25 290 0
619 2.3083 3.0800 0.1163 0 0
620 1.3955 1.9918 0.125 0 0
621 7.7994 1.0015 0.1249 0 0
%EndNode
ELEMENTS
%NumberOfElements
2230
Type Material Nodes load
%Element
1 4 1 25 466 18 528 0
2 4 1 395 123 111 464 2300
3 4 1 190 22 253 463 0
2228 4 1 325 297 457 576 0
2229 4 1 234 251 220 445 0
2230 4 1 188 171 157 445 0
%EndElement
MATERIALS
%NumberOfMaterials
1
Type E % rho
%Material
1 Isotropic 29000000  0.29 1
%EndMaterial

BOUNDARY CONDITIONS

%NumberOfBoundaryConditions
1

Type u \ w
%BoundaryCondition
29 1 0 0 0
%EndBoundaryCondition

LOADS

%NumberOfLoads
1

Type X y z Load
%L oad
30 2 1 0 0 1000
%EndLoads

Figure 5.15 : EafeLib solver input file format.

Similarly, in the elements section each entry defines a new element by providing

element type, material, nodes and load data defined for the element. Materials section
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contains the defined materials with modulus of elasticity, poissons ratio and density

values. Boundary conditions and loads sections contain boundary conditions and

loads defined for the system respectively.

5.3.4.2. Output file

OutputWriter class in EafeLib solver provides several output files for displacement

and stress calculation results. Figure 5.16 shows an example output file for u, v, and

w nodal displacements, and Figure 5.17 shows an example output file for element

von Mises stress values.

DISPLACEMENTS

%Nodes

u
1 -1.40167e-012
2 -1.81538e-012
3 1.34795e-012
4 1.7111e-012
5 -0.0464359
6 -0.0464268
7 0.0465672
8 0.046576
22305 0.000534384
22306 0.0431585
22307 0.0368602
22308 0.00417458
22309 -0.00751449
22310 0.020127
22311 -0.0368561
%EndNodeData

\'
-6.02496e-013
-5.99436e-013
-5.73226e-013
6.15215e-013
-0.702057
-0.702054
-0.702081
-0.702078

-0.444953
-0.667012
-0.287516
-0.51658
-0.0101135
-0.372122
-0.247867

W
6.5739e-013
-7.54723e-013
-6.16082e-013
-7.16354e-013
7.14397e-005
6.9327e-005
8.03487e-005
6.4535e-005

5.11811e-005
6.93339e-005
-7.32378e-005
5.70998e-005
0.00134165
-5.9786e-005
-0.00018198

Figure 5.16 : EafeLib solver displacements output file format.
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STRESS

%Elements von Mises
1 50.2329
2 11.1298
3 84.5721
4 0.705486
5 21.652

6 3.27621
7 1.55988
8 100.364
9 78.9913
10 34.5102
121903 12.7636
121904 13.3287
121905 85.2865
121906 84.1093
121907 79.6254
121908 7.87697
121909 7.85883
121910 7.07428

$EndElementData

Figure 5.17 : EafeL.ib solver stress output file format.
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6. RESULTS AND DISCUSSION

6.1. Application Tests

In this section some example problems are solved by using EAFE software. The
solutions are compared with the results obtained from a commercial FEM software:

Abaqus.

6.1.1. A loaded cantilever beam

The problem is graphically represented in Figure 6.1. In order to find nodal
displacements and element von Mises stress values for this problem, a model that
contains 122833 linear tetrahedrons is used in EAFE software as given in Appendix
A. Likewise, a model that contains 121205 linear tetrahedral elements is used in
Abaqus software. EAFE’s displacement and stress results are show in Figure 6.2 and
Figure 6.4 respectively. Similarly Figure 6.3 and Figure 6.5 shows the Abaqus
displacement and stress values. These figures clearly show that the results obtained
from EAFE and Abaqus software are almost identical.

li T N

e e F e A
| v v v 4 Y 20 mm E v
\ i 209E3 03
| v
| /i

25 mm
\ i 200 mm =4

Figure 6.1 : A cantilever beam with a uniform load.
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Figure 6.2 : Cantilever beam deformation contours in EAFE.

U, Magnitude

+7.050e-01
+6.462e-01
+5.875e-01
+5.287e-01
+4.700e-01
+4.112e-01
+3.525e-01
+2.937e-01
+2.350e-01
+1.762e-01
+1.175e-01
+5.875e-02
+0.000e+00

ODE: Jab-1.0d0 Abaqux/Slandaid 6.10-1 Sun Dec D8 22:17:2] GTE Standaid Time 2011

Siep: Beamhad, kaad e lop af Lhe beam
Inciament IJl: Slep Time = 1.00D
i

Primary Yau: U, Magnilude .
Dgl_mmga qu: u _%ghnmal’q- Scale Faclar: +2.84Je+01

Figure 6.3 : Cantilever beam deformation contours in Abaqus.
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Figure 6.4 : Cantilever beam Mises stress contours in EAFE.
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Figure 6.5 : Cantilever beam Mises stress contours in Abaqus.
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Cantilever beam example is solved for different element numbers in both EAFE and
Abaqus software. The maximum displacement and stress results from six analyses

are summarized in Table 6.1.

Table 6.1 : Displacements and stress results with different element numbers.

Number of Elements Max Displacement (mm) Max von Mises (MPa)
EAFE | Abaqus EAFE | Abaqus EAFE | Abaqus
93857 94725 0.701 0.702 139 142
54626 53960 0.694 0.695 132 134
37947 36080 0.687 0.686 128 130
14456 13601 0.664 0.658 120 120
4111 3834 0.604 0.593 106 116
2015 1919 0.554 0.560 97.6 108

6.1.2. A plate with a hole

The problem is graphically represented in Figure 6.6 and EAFE model for this
problem is given in Appendix B. Different from the previous problem a mesh of
315735 tetrahedrons is used in both software. Nodal displacement contours obtained
from EAFE and Abaqus are given in Figure 6.7 and Figure 6.8 respectively. Also,
von Misses stress contours are given in Figure 6.9 for EAFE software, and in Figure
6.10 for Abaqus software. It is shown that same results are obtained from EAFE and

Abagqus.

| - 20e4 MPa 0.3
25.4 mm
— 17 6.35 mm.
2032 mmi ?ﬁ N
T 482N

Figure 6.6 : A plate with a hole.
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Figure 6.7 : Plate deformation contours in EAFE.
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Figure 6.8 : Plate deformation contours in Abaqus.
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Figure 6.9 : Plate Mises contours in EAFE.
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Figure 6.10 : Plate Mises contours in Abaqus.
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The plate with a hole example is solved by using same mesh in both EAFE and
Abaqus software. The maximum displacement and stress results from six analyses

are summarized in Table 6.2.

Table 6.2 : Displacements and stress results with different element numbers.

Number of Elements Max Displacement (mm) Max von Mises (MPa)

EAFE | Abaqus EAFE | Abagus EAFE | Abaqus
201019 201019 0,009957  0,0099568 29,716 29,723
33803 33803 0,009931  0,0099314 29,371 29,357
26866 26866 0,009931  0,0099314 28,199 28,199
13981 13981 0,009881  0,0098806 25,855 25,834

7928 7928 0,009830  0,0098298 24,683 24,683

2729 2729 0,009804  0,0098044 23,304 23,304

6.1.3. A support beam with a uniform pressure

The problem is graphically represented in Figure 6.11 and EAFE model for this
problem is given in Appendix C. Similar to the previous examples nodal
displacement contours obtained from EAFE and Abaqus by using 133552 tetrahedral
elements are given in Figure 6.12 and Figure 6.13 respectively. Also, von Misses
stress contours are given in Figure 6.14 for EAFE software, and in Figure 6.15 for
Abaqus software. It is shown that results from EAFE and Abaqus are similar.

E v

68.9 GPa 0.33

15(15115

Figure 6.11 : Support beam.
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Figure 6.12 : Support beam displacement contours in EAFE.

U, Magnitude
+8.271e-01
+7.582e-01
+6.892e-01
+6.203e-01
+5.514e-01
+4.825e-01
+4,135e-01
+3.446e-01
+2.757e-01
+2.068e-01
+1.378e-01
+6.892e-02
+0.000e+00

QODE: Jab-1.0ab Abaqus/Standaid 6.10-1 Man Dec [& 12:16: 1% GTE Slandaid Time 2011

Step: Slep-1

Inciement  1; Slep Time = 1,000

Primary Vau: U, Magnitude

Defaimed Vai: U Defaimatan Scale Facla: +6.0452+D1

Figure 6.13 : Support beam displacement contours in Abaqus.
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Figure 6.14 : Support beam Mises contours in EAFE.
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Figure 6.15 : Support beam Mises contours in Abaqus.
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A support beam with a uniform pressure example is solved for different element
numbers in both EAFE and Abaqus software. The maximum displacement and stress

results from six analyses are summarized in Table 6.3.

Table 6.3 : Displacements and stress results with different element numbers.

Number of Elements Max Displacement (mm) Max von Mises (MPa)
EAFE [ Abaqus EAFE | Abaqus EAFE [ Abaqus
134026 133045 0.827 0.829 268 240
92941 97467 0.819 0.822 233 225
54580 55051 0.804 0.807 212 208
17692 17016 0.769 0.754 202 207
10526 10539 0.748 0.724 167 159

4517 4811 0.665 0.677 144 150

6.1.4. Dynamic analysis of a cantilever beam

The problem is graphically represented in Figure 6.16 and EAFE model for this
problem is given in Appendix D. The first 8 mode shapes and corresponding natural
frequencies obtained from EAFE and Abaqus by using a mesh of 3347 tetrahedral
elements are given in Table 6.4 and Table 6.5 respectively. It is shown that the
results from EAFE and Abaqus are similar.

E v p

l. N . 739Pa 03 2700 kgm?

Figure 6.16 : A cantilever beam
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Table 6.4 : Cantilever beam mode shapes.

Model

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

Mode 7

Mode 8

EAFE

Abaqus
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Table 6.5 : Cantilever beam natural frequencies.

Natural Frequencies (Hertz)
Modes EAFE Abaqus
1 54.4382 54.412
2 167.1536 167,08
3 335.1094 334.04
4 504.8248 490.5
5 902.6512 900.34
6 920.8526 914.16
7 1306.8326 1306.6
8 1521.8421 1496
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7. CONCLUSIONS

In the present work, a 3D finite element software, with a geometry module, a mesh
module and a stand-alone solver module is developed by using C++ programming
language and an object-oriented programming approach. The geometry module is
tested via creating a number of solid parts for finite element analysis, whereas the
mesh module is tested by means of their discretization. Moreover, an important
aspect of this study, the suitability of object-oriented programming for finite element
analysis is demonstrated through developing an FEM processor library: EafeLib. The

performance of EafeLib processor is compared with a commercial software package.

The aim at using OOP philosophy in EafeLib processor development was to provide
a modular, extensible and reusable FEM software framework. In order to accomplish
this, six main classes are used in EafeLib. One of them is the abstract element class
which interfaces common virtual functions that any element subclass in this
framework must implement. To exemplify usage of these virtual functions a linear
tetrahedral element class is developed and in a similar fashion as many different
element classes as desired can be easily developed and integrated into the software.
Likewise, three other classes: load, boundary condition and material are made
abstract to further stimulate extensibility of the software. Another important class in
the framework is the model class and it is used to build FEM models. In addition, a
node class developed to hold nodal coordinate and displacement data for each node.

The flexibility in EafeLib processor is provided by these six base classes.

Three linear static analysis examples are solved both in the developed software and
in Abaqus. Nodal displacements and von Mises stress values obtained from the
EAFE software are compared to the ones from the Abaqus. It is shown that, the

results are almost identical.

The first thing to do to extend EAFE software is to add 1D and 2D modeling
capabilities. This can be accomplished by adding 1D and 2D elements such as beam

and triangle to the EafeLib processor. Moreover, new solid elements will be added to
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let users select an element type from the element library according to the analysis

they make.

Currently EAFE software can only handle simple load and boundary condition
scenarios. New load and boundary condition types will be added to improve the

software.

Mesh module in EAFE software has limited functionalities and is not able to
generate meshes with some important element types such as quadrilateral or
hexahedral elements. This limitation can be overcome by providing a mesh import
function. If a mesh import function is provided, users will be able to use different

software for mesh generation.

EAFE software has linear static and linear dynamic analysis options. Different

analysis types should be added to the EafeLib processor.
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APPENDICES

APPENDIX A: EAFE model for cantilever beam example
APPENDIX B: EAFE model for a plate with hole example
APPENDIX C: EAFE model for support beam example
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APPENDIX A
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Figure A.1 : Solid model of cantilever beam and its finite element mesh.
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Figure A.2 : Defining boundary condition and load for the model.
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Figure B.1 : Adding points and lines to create half of the plate.
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Figure B.3 : Using mirror function with an axis to complete the frame of the plate.
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Figure B.4 : Creating two faces and extruding them along an axis.
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Figure B.5 : Fusing two separate halves and defining material for the plate.
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Figure C.1 : Adding points and lines to create the cross-section of the model.
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Figure C.2 : Creating a face and an axis for extrusion.
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Figure C.3 : Extruding the face along the axis and creating cylinders for the holes.

92



EAFE - [EAFEL]

@l ‘w‘ C@D |y & § % B Point O Cirde - wire || @ Box L dMirror £S5 Revolve
L Sl | @ Logo Sym T x Delete | L7l Line ¢ »Ellipse J.. Axis OSpI\ele <% Face Fuse

[ Hidden on ~ are EPE Arc @ cytinder || @ extrude @ cut
Edit

Fill Pan  Rotate

Name

finalShape

Master Solid

CompSolidi1

Tool Solid
Cylinder12

Build output is being displayed here,
The output is being displayed in rows of a list view

EAFE - [EAFEL]

Isotropic Material0

Properties
Modulus of Elasticity 68300

Poisson's Ratio 0.33

Build output is being displayed here.
The output is being displayed in rows of a list view

Figure C.4 : Cutting cylinders from the part and defining material for the model.
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Figure C.5 : Discretizing the model and adding boundary conditions.
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Figure D.1 : Solid model of cantilever beam and its finite element mesh.
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Figure D.2 : Defining boundary condition for the model.
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