

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

JANUARY 2014

DEVELOPING A 3D FINITE ELEMENT SOFTWARE

WITH AN OBJECT ORIENTED APPROACH

Halid Eren ADAK

Department of Aeronautical and Astronautical Engineering

Aeronautical and Astronautical Engineering Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

JANUARY 2014

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

DEVELOPING A 3D FINITE ELEMENT SOFTWARE

WITH AN OBJECT ORIENTED APPROACH

M.Sc. THESIS

Halid Eren ADAK

 (511101134)

Department of Aeronautical and Astronautical Engineering

Aeronautical and Astronautical Engineering Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Thesis Advisor: Prof. Dr. Zahit MECİTOĞLU

OCAK 2014

İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ

NESNE YÖNELİMLİ PROGRAMLAMA YAKLAŞIMI İLE ÜÇ BOYUTLU

SONLU ELEMANLAR YAZILIMI GELİŞTİRİLMESİ

YÜKSEK LİSANS TEZİ

Halid Eren ADAK

 (511101134)

Uçak ve Uzay Mühendisliği Anabilim Dalı

Uçak ve Uzay Mühendisliği Programı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Tez Danışmanı: Prof. Dr. Zahit MECİTOĞLU

v

Thesis Advisor : Prof. Dr. Zahit MECİTOĞLU

 İstanbul Technical University

Jury Members : Prof. Dr. Mehmet Hakkı OMURTAG

İstanbul Technical University

Date of Submission : 17 December 2013

Date of Defense : 23 January 2014

Assoc. Prof. Dr. Vedat Ziya DOĞAN

İstanbul Technical University

Halid Eren ADAK, a M.Sc. student of ITU Graduate School of Science

Engineering and Technology student ID 511101134, successfully defended the

thesis entitled “DEVELOPING A 3D FINITE ELEMENT SOFTWARE WITH AN

OBJECT ORIENTED APPROACH”, which he prepared after fulfilling the

requirements specified in the associated legislations, before the jury whose signatures

are below.

vi

vii

To my family,

viii

ix

FOREWORD

I would like to express my greatest appreciation and gratitude to my supervisor Prof.

Dr. Zahit Mecitoğlu for his support and guidance throughout the preparation of this

thesis.

I owe developers of Open Cascade library my special thanks since I wouldn’t be able

to complete this thesis without their valuable open source library. Additional thanks

go to the authors of Gmsh for their unique mesh generator library.

Finally, my sincere appreciation is extended to my mother, Gülseren, my father,

Dr. Burhan, and all my brothers and sister for their tireless patience, continuous

encouragement and great understanding during the whole of my graduate training

and this thesis.

December 2013

Halid Eren ADAK

(Industrial Engineer)

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix
TABLE OF CONTENTS .. xi

ABBREVIATIONS ... xiii
LIST OF TABLES ... xv

LIST OF FIGURES ... xvii
1. INTRODUCTION .. 1

1.1. Objective and Scope .. 1
1.2. Literature Review .. 2
1.3. Organization .. 3

2. DEVELOPMENT PROCEDURE .. 5
2.1. Object-Oriented Programming Philosophy ... 5

2.2. Unified Modelling Language .. 6
2.3. EAFE Software Development Procedure .. 8
2.4. Programming Language Selection .. 9

2.4.1. Programming in Java ... 10
2.4.2. Programming in C++ ... 10

2.5. Integrated Development Environment (IDE) .. 10
2.6. Windows Programming with the Microsoft Foundation Classes (MFC) 11

3. GEOMETRY MODULE ... 13
3.1. Computer Graphics ... 13
3.2. 3D Computer Graphics and OpenGL .. 14
3.3. Geometry Kernel ... 18

3.4. Open Cascade Technology (OCCT) ... 19
3.4.1. Modeling module ... 19
3.4.2. Visualization module ... 19
3.4.3. Data exchange module ... 19
3.4.4. Application framework module ... 20

3.5. Implementation of OCCT Modules in EAFE Software 20
3.6. Open Cascade Application Framework (OCAF) .. 21

4. MESH MODULE ... 25
4.1. Mesh Generators ... 25
4.2. GMSH Mesh Framework .. 26

4.3. Implementation of Gmsh in EAFE .. 26

5. SOLVER MODULE .. 31
5.1. Object-Oriented Programming .. 31

5.1.1. Fundamental concepts in object-oriented programming 31
5.1.1.1. Object .. 31
5.1.1.2. Class .. 31
5.1.1.3. Encapsulation .. 32

xii

5.1.1.4. Method .. 33

5.1.1.5. Inheritance ... 33
5.1.1.6. Polymorphism ... 34

5.2. Finite Element Method .. 34

5.2.1. Three-dimensional stress analysis .. 35
5.2.1.1. Fundamental equations .. 35
5.2.1.2. Tetrahedral element (Tet-4) .. 37
5.2.1.3. Stress calculations ... 42
5.2.1.4. Dynamic consideration .. 43

5.3. Object-Oriented Finite Element Analysis ... 46
5.3.1. EafeLib: A C++ finite element analysis library and its base classes 46

5.3.1.1. Element class ... 47
5.3.1.2. Node class ... 47
5.3.1.3. Material class ... 49

5.3.1.4. Load class .. 51

5.3.1.5. Boundary condition class .. 52

5.3.2. Global stiffness and mass matrices assembly process 52
5.3.2.1. Model class .. 52

5.3.3. Linear algebra library ... 55
5.3.3.1. PETSc .. 55

5.3.3.2. Trilinos .. 56
5.3.4. Input and output file formats .. 56

5.3.4.1. Input file .. 56
5.3.4.2. Output file ... 58

6. RESULTS AND DISCUSSION... 61
6.1. Application Tests ... 61

6.1.1. A loaded cantilever beam ... 61

6.1.2. A plate with a hole ... 64
6.1.3. A support beam with a uniform pressure ... 67

6.1.4. Dynamic analysis of a cantilever beam .. 70

7. CONCLUSIONS... 73

REFERENCES ... 75

APPENDICES .. 79
APPENDIX A ... 81

APPENDIX B .. 83
APPENDIX C .. 90
APPENDIX D ... 96

CURRICULUM VITAE .. 99

xiii

ABBREVIATIONS

API : Application Programming Interface

CAD : Computer Aided Design

CAE : Computer Aided Enginering

CAM : Computer Aided Manufacturing

DEAL : Differential Equations Analysis Library

FEM : Finite Element Method

GPU : Graphics Processing Unit

GUI : Graphical User Interface

IDE : Integrated Development Environment

MFC : Microsoft Foundation Classes

MPI : Message Passing Interface

OCAF : Open Cascade Application Framework

OCCT : Open CasCade Technology

OOFEM : Object-Oriented Finite Element Modeling

OOP : Object-Oriented Programming

OpenGL : Open Graphics Library

OS : Operating System

PC : Personal Computer

RAD : Rapid Application Development

UML : Unified Modeling Language

xiv

xv

LIST OF TABLES

Page

Table 2.1 : UML diagrams. ... 7
Table 2.2 : Softwares with implementation language and target operating system

[19]. ... 9
Table 3.1 : CAD/CAE softwares and related geometry kernels. 18

Table 5.1 : Open source linear algebra packages. ... 56

Table 6.1 : Displacements and stress results with different element numbers. 64

Table 6.2 : Displacements and stress results with different element numbers. 67
Table 6.3 : Displacements and stress results with different element numbers. 70
Table 6.4 : Cantilever beam mode shapes. .. 71
Table 6.5 : Cantilever beam natural frequencies. .. 72

xvi

xvii

LIST OF FIGURES

Page

Figure 2.1 : A UML diagram example [16]. ... 7
Figure 2.2 : EAFE software structure with dependent libraries. 9
Figure 2.3 : MFC Document/View concept [22]. ... 11
Figure 2.4 : Document/View structure. ... 12

Figure 3.1 : 3D perception: (a)How you see three dimension. (b)A simple wireframe

3D cube. .. 15

Figure 3.2 : Utah Teapot: (a)Wireframe model. (b) A modern render model.

(c) Original teapot [28]-[30]. .. 15
Figure 3.3 : An example of a simple OpenGL function. .. 16
Figure 3.4 : Screenshot of rendered polygon. ... 17

Figure 3.5 : Use of normal vectors in light calculation [32]: (a) Normal vectors

perpendicular to rectangles. (b) Normal vectors perpendicular to

surface. .. 17
Figure 3.6 : Geometry module of EAFE software. ... 21
Figure 3.7 : Import export properties of EAFE software. ... 21

Figure 3.8 : A basic OCAF data framework. .. 23
Figure 3.9 : EAFE software’s OCAF based data framework. 24

Figure 4.1 : EAFE software with GMSH mesh framework. 27
Figure 4.2 : Gmsh library usage. ... 28

Figure 4.3 : A solid shape with different mesh options: (a) Solid shape. (b) Constant

mesh size. (c) Variable mesh size. .. 29
Figure 5.1 : A simple code fragment to show classes and objects. 32
Figure 5.2 : An example class structure. ... 32

Figure 5.3 : A simple code fragment to show method usage. 33
Figure 5.4 : An inheritance hierarchy example. .. 34
Figure 5.5 : Three dimensional stresses on an element [41]. 36
Figure 5.6 : Master element used in shape functions. ... 38
Figure 5.7 : The simplified UML class diagrams of EafeLib solver. 48

Figure 5.8 : The UML representation of the element class. 49
Figure 5.9 : The UML representation of the node class.. 50
Figure 5.10 : The UML representation of Material and IsotropicMaterial classes. .. 51
Figure 5.11 : The UML representation of the Load and the DistributedLoad classes.

 .. 51

Figure 5.12 : The UML representation of the Boundary Condition classes. 52
Figure 5.13 : The UML representation of the SparseModel class. 53

Figure 5.14 : The UML activity diagram of the assembler function. 54
Figure 5.15 : EafeLib solver input file format. ... 57
Figure 5.16 : EafeLib solver displacements output file format. 58
Figure 5.17 : EafeLib solver stress output file format. ... 59
Figure 6.1 : A cantilever beam with a uniform load. .. 61

xviii

Figure 6.2 : Cantilever beam deformation contours in EAFE. 62

Figure 6.3 : Cantilever beam deformation contours in Abaqus. 62
Figure 6.4 : Cantilever beam Mises stress contours in EAFE. 63
Figure 6.5 : Cantilever beam Mises stress contours in Abaqus. 63

Figure 6.6 : A plate with a hole. .. 64
Figure 6.7 : Plate deformation contours in EAFE. .. 65
Figure 6.8 : Plate deformation contours in Abaqus... 65
Figure 6.9 : Plate Mises contours in EAFE. .. 66
Figure 6.10 : Plate Mises contours in Abaqus... 66

Figure 6.11 : Support beam. .. 67
Figure 6.12 : Support beam displacement contours in EAFE. 68
Figure 6.13 : Support beam displacement contours in Abaqus. 68
Figure 6.14 : Support beam Mises contours in EAFE. ... 69
Figure 6.15 : Support beam Mises contours in Abaqus. ... 69

Figure 6.16 : A cantilever beam .. 70

Figure A.1 : Solid model of cantilever beam and its finite element mesh. 81

Figure A.2 : Defining boundary condition and load for the model. 82
Figure B.1 : Adding points and lines to create half of the plate. 83
Figure B.2 : Creating a wire by connecting consecutive lines and an arc. 84
Figure B.3 : Using mirror function with an axis to complete the frame of the plate. 85

Figure B.4 : Creating two faces and extruding them along an axis. 86
Figure B.5 : Fusing two separate halves and defining material for the plate. 87

Figure B.6 : Discretizing the plate by increasing mesh density on critical region. ... 88
Figure B.7 : Defining boundary condition and load for the model. 89
Figure C.1 : Adding points and lines to create the cross-section of the model. 90

Figure C.2 : Creating a face and an axis for extrusion. ... 91
Figure C.3 : Extruding the face along the axis and creating cylinders for the holes. 92

Figure C.4 : Cutting cylinders from the part and defining material for the model. .. 93
Figure C.5 : Discretizing the model and adding boundary conditions. 94

Figure C.6 : Adding distributed load. ... 95
Figure D.1 : Solid model of cantilever beam and its finite element mesh. 96

Figure D.2 : Defining boundary condition for the model. .. 97

xix

DEVELOPING A 3D FINITE ELEMENT SOFTWARE WITH AN OBJECT

ORIENTED APPROACH

SUMMARY

In this thesis, a 3D finite element software is developed in the basis of an object-

oriented approach. Most of the problems in engineering fields are modeled by using

computers, and these models are solved by using various numerical methods. One of

the most frequently used numerical methods is the finite element method. The finite

element method is a powerful numerical technique for finding approximate solutions

of partial differential equations as well as of integral equations. The basic concept in

the physical interpretation of the finite element method is the subdivision of the

mathematical model into disjoint (non-overlapping) components of simple geometry

called finite elements or elements for short. The response of each element is

expressed in terms of a finite number of degrees of freedom characterized as the

value of an unknown function, or functions, at a set of nodal points.

Programs that implements finite element method in computers have long been

written in procedural languages such as FORTRAN and C. However, for the last

twenty years developers who seek to improve finite element programs modularity,

extensibility, and maintainability have a growing interest in developing finite

element software with object-oriented programming approach.

The software developed in this thesis, EAFE, is written in C++ language with an

object-oriented approach. The preferred integrated development environment is

Microsoft Visual Studio. The target operating system is Microsoft Windows and,

therefore, Microsoft Foundation Classes (MFC) is used to develop the graphical user

interface.

EAFE software has three main modules. The first module, which is developed by

using open source Open Cascade library, is the geometry module and it is used to

build 1D, 2D, or 3D geometric models. The second module, which is developed by

using open source Gmsh library, is the mesh module and it is used to discretize a

given geometric domain. The third module is the solver module and it is used to

assemble global stiffness matrix, global mass matrix, and global force vector and to

solve the system of linear equations. Different from the other two modules a stand-

alone library named EafeLib is developed from scratch for the solver module.

EafeLib library contains a number of C++ classes designed to do finite element

analysis in 3D with an object-oriented approach. It is built around six main classes:

Node, Element, Load, BoundaryCondition, Material, and Model. It also has some

auxiliary classes such as InputReader, Solver, and OutputWriter. The primary class

in EafeLib solver is the Model class.

Some benchmark problems are solved by making use of developed EafeLib library

and it is shown that object-oriented programming approach is well suited for

implementing finite element method in computer.

xx

xxi

NESNE YÖNELİMLİ PROGRAMLAMA YAKLAŞIMI İLE ÜÇ BOYUTLU

SONLU ELEMANLAR ANALİZİ YAZILIMI GELİŞTİRİLMESİ

ÖZET

Bu çalışmada nesne yönelimli programlama yaklaşımı ile, üç boyutlu sonlu

elemanlar analizi gerçekleştirebilecek bir yazılım geliştirilmiştir. Günümüzde

karşılaşılan mühendislik problemlerinin neredeyse tamamı bilgisayar ortamında

modellenmekte ve çözümlerinde sayısal yöntemlerden istifade edilmektedir. Bu

nümerik yöntemlerden en sık kullanılanı sonlu elemanlar yöntemdir. Geleneksel

olarak sonlu elemanlar yöntemi için geliştirilen algoritmaların çoğunda FORTRAN

ve C gibi prosedürel programlama dilleri kullanılmaktaydı. Prosedürel programlama

dillerinin sonlu elemanlar analizi için sağladığı en önemli avantaj performanstır.

Ancak bu yazılımların bilgisayar endüstrisindeki gelişmelere paralel olarak büyümesi

ve karmaşıklaşması bakım ve modifikasyon maliyetlerinin artmasına sebep olmuş ve

yazılımcıları farklı programlama yaklaşımları kullanmaya zorlamıştır. Son 20 yıldır

akademide ve endüstride sonlu elemanlar analizi yazılımlarına esneklik

kazandırabilmek için nesne yönelimli programlama yaklaşımı ile geliştirilmesi

düşüncesine artan bir ilgi söz konusudur.

Bilindiği üzere günümüzde en sık kullanılan nesne yönelimli programlama dilleri

C++ ve Java’dır. Yazılımın geliştirilme sürecinde ihtiyaç duyulabilecek

kütüphanelerin neredeyse tamamının C++ dilinde geliştirildiği gerçeği göz önünde

tutularak yazılımın geliştirilmesinde C++ programlama dili kullanılmasına karar

verilmiştir. Derleyici olarak ise Microsoft Visual Studio tercih edilmiştir. Hedef

işletim sistemi Microsoft Windows olarak belirlendiğinden kullanıcı arayüzü için

Microsoft Foundation Classes (MFC) kütüphanelerinden faydalanılmıştır.

Geliştirilen yazılım üç ana bölümden oluşmaktadır. Bu bölümlerden ilki bir, iki, veya

üç boyutlu model oluşturmak için kullanılabilecek bir geometri modülü, ikincisi

oluşturulan herhangi bir geometrik modeli basit geometrili elemanlara bölebilecek

bir çözüm ağı modülü, üçüncüsü ise sonlu elemanlar çözümünü gerçekleştirebilecek

bir çözücü modülüdür. Bunlara ek olarak problemin çözümü ile elde edilen sonuçlar

kullanıcı tarafından daha rahat yorumlanabilmesi için bir renk dağılımı şeklinde

görselleştirilmektedir. Geometri modülünün geliştirilmesinde açık kaynak kodlu

Open Cascade kütüphanesinden, mesh modülünün geliştirilmesinde ise aynı şekilde

açık kaynak kodlu Gmsh kütüphanesinden yararlanılmıştır. Buna karşılık çözücü

modülünde kullanılan kütüphane nesne yönelimli programlama yaklaşımı ile sıfırdan

yazar tarafından geliştirilmiştir ve söz konusu programa entegre edilmiştir.

Günümüzde yaygın olarak kullanılan bilgisayar destekli tasarım programlarının

tamamı geometrik çekirdek adı verilen ve genel anlamda bilgisayarda geometrik

şekiller çizmeye yardımcı olacak fonksiyonları içeren kütüphaneler kullanılarak

geliştirilir. Bu geometrik çekirdeklerin en bilinenleri Spatial firmasına ait ACIS ve

Siemens firmasına ait Parasolid kütüphaneleridir. Lisans bedelleri ödemek suretiyle

xxii

kullanılabilecek bu kütüphanelere alternatif olarak bu çalışmada açık kaynak kodlu

sunulan Open Cascade kütüphanesinden istifade edilmiştir.

Geometri modülü geometrik modellemede temel olarak kullanılabilecek nokta, çizgi,

yay gibi bir takım basit geometrik şekillerin çizilebileceği fonksiyonlar ile birlikte

dikdörtgenler prizması, silindir ve küre gibi temel katı cisimlerin kolayca

eklenebileceği kısa yolları içeren bir ortam olarak geliştirilmiştir. Bunlara ek olarak

bir yüzeye kalınlık vererek katı oluşturma, bir yüzeyi bir eksen etrafında döndürerek

katı oluşturma, iki katı modeli birleştirip yeni bir katı oluşturma ve bir katıdan bir

başka katı çıkararak katı oluşturma gibi bilgisayar destekli tasarımın en temel

fonksiyonları da bu modülde yer almaktadır. Geliştirilen yazılımın geometri

modülüne “import” ve “export” fonksiyonları eklenerek farklı programlar ile

oluşturulan ve yaygın olarak kullanılan IGES ve STEP gibi formatlarda kaydedilen

geometrik modellerinde yazılımda açılıp analiz edilebilmesine olanak sağlanmıştır.

Çözüm ağı oluşturma modülü sonlu elemanlar analizinin en önemli aşamalarından

biri olan geometrik şekillerin küçük sonlu elemanlara bölünerek çözüm ağı

geliştirilmesi işleminin yapılabilmesi için programa eklenmiştir. Bu işlem sırasında

kullanılan eleman çeşitleri tek boyutlu çizgisel eleman, iki boyutlu düzlem eleman

olarak üçgen eleman ve üç boyutlu katı eleman olarak da dörtyüzlü elemandır. Bu

modülün önemli özelliklerinden biri istenildiği takdirde söz konusu geometrinin

kritik bölgelerindeki ağ sıklığının arttırılabilmesine imkan tanımasıdır.

Çözücü modülü genel anlamda, model, düğüm noktası, eleman, sınır koşulları, yük

ve malzeme adlı altı temel sınıf ve bunlara ek olarak girdi okuyucu, çıktı yazıcı ve

çözücü gibi yardımcı sınıflar kullanılarak, nesne yönelimli programlama

yaklaşımıyla C++ dilinde geliştirilen bir sonlu elemanlar analizi kütüphanesidir. Bu

kütüphane geometrisi tanımlanmış, malzemesi belirlenmiş, çözüm ağı geliştirilmiş,

sınır koşulları ve yükleri girilmiş bir modeli önceden belirlenmiş bir girdi dosyası

formatında alıp sonlu elemanlar yöntemi kullanarak çözmek ve elde edilen sonuçları

aynı şekilde önceden formatı belirlenmiş bir çıktı dosyası halinde sunmak için

geliştirilmiştir. Girdi dosyası geliştirilen kütüphanenin girdi okuyucusu sınıfı

yardımıyla okunur. Dosyadaki bilgiler ışığında kütüphanenin düğüm noktası sınıfı

kullanılarak modelde bulunan her bir düğüm noktası için düğüm noktası numarası ile

x, y, ve z kartezyen kordinatları bilgisini barındıran düğüm noktası nesneleri

oluşturulur. Modelde bulunan her bir malzeme girdisi için ise kütüphanenin malzeme

sınıfı kullanılarak malzeme numarası, Elastisite modülü, Poisson oranı ve yoğunluk

değişkenlerini içeren malzeme nesneleri oluşturulur. Modelde bulunan her bir yük

girdisi için de kütüphanenin yük sınıfı kullanılarak yük numarası, yük şiddeti ve yük

doğrultusu değişkenlerini içeren yük nesneleri oluşturulur. Benzer şekilde modelde

tanımlanmış her bir sınır koşulu girdisi için kütüphanenin sınır koşulları sınıfı

kullanılarak x, y, ve z yönündeki u, v, ve w değişkenlerini içeren sınır koşulu

nesneleri oluşturulur. Bu işlemler gerçekleştikten sonra oluşturulan bu nesneler

kütüphanenin model sınıfı aracılığı ile girdi dosyasındaki her bir eleman girdisine

karşılık gelecek eleman nesnelerini oluşturmak için kullanılır. Dosyadaki bir

elemenan girdisi için düğüm noktası nesneleri, malzeme nesneleri, yük nesneleri ve

sınır koşulları nesneleri kullanılarak bir eleman nesnesi oluşturulur. Bu eleman

nesnesinin katılık matrisi hesaplanır ve bu matris global katılık matrisi içine

yerleştirilir. İhtiyaç duyuluyorsa elemanın kütle matrisi hesaplanıp global kütle

matrisi içine yerleştirilir. Eleman nesnesi bellekte gereksiz yer tutmaması için bu

işlemden sonra silinir ve bu adımlar modeldeki her bir eleman için tekrar eder.

Böylelikle global katılık matrisi ve global kütle matrisi hazırlanmış olur.

xxiii

Burada bahsi geçen matrislerin hazırlanması için gereken matris sınıfları C++ dilinde

standart olarak bulunmadığından bu matris sınıfları ya kullanıcı tarafından sıfırdan

geliştirilmeli yada daha önce geliştirilmiş hazır matris sınıflarından istifade

edilmelidir. Bu çalışmada hem sıfırdan EafeMatrix adı verilen temel bir C++ matris

sınıfı geliştirilmiş hemde uzman bir ekip tarafından geliştirilmiş açık kaynak kodlu

Trilinos adlı C++ lineer cebir kütüphanesinden faydalanılmıştır. Geliştirilen

yazılımın bütünlüğünün bozulmaması ve bu yazılım üzerinde çalışacak herhangi bir

geliştiricinin, yazılıma yeni eleman tipleri eklemek istemesi durumunda

karşılaşacağı, harici kütüphanelerin kullanılmasından kaynaklanacak yabancılığın

önüne geçilmesi için eleman katılık matrisleri yazılımın içerisindeki EafeMatrix

sınıfından türetilmiştir. Global katılık matrisinde ise oluşturulacak matrisin, lineer

denklem takımlarının çözümü için kullanılacak Trilinos çözücü sınıflarının girdi

olarak alabileceği bir formatta olması gerekliliği göz önünde tutularak Trilinos

kütüphanesinin seyrek matris sınıfı kullanılmıştır. Daha sonra bu matrisler global yük

vektörü ile birlikte çözücü sınıfında lineer denklem takımlarının çözülüp sonuçların

elde edilmesi için kullanılır. Son olarak elde edilen düğüm noktası yer değiştirmesi

veya eleman von Mises gerilme değerleri gibi sonuçların kullanıcılar tarafından rahat

yorumlanabilmesi için bir renk dağılımı şeklinde görselleştirilmesi işlemi

gerçekleştirilir.

Geliştirilen EAFE yazılımı kullanılarak elde edilen sonuçların doğruluğunu test

etmek için statik ve dinamik bazı örnek problemler çözülmüş ve sonuçlar Abaqus

yazılımı ile karşılaştırılmıştır. Her iki yazılım ile elde edilen sonuçların büyük oranda

örtüştüğü gösterilmiştir. Böylelikle nesne yönelimli programlamanın sonlu elemanlar

analizi için uygun bir yaklaşım olduğu bu kütüphane vasıtasıyla gösterilmiştir.

xxiv

1

1. INTRODUCTION

Many physical phenomena in science and engineering are mathematically modelled

by using partial differential equations. These equations have long been solved by

using analytical methods. However, due to the difficulty and inadequacy of analytical

methods in complex field problems, there has been an interest to develop different

numerical methods instead. One of the most powerful and widely used numerical

methods for finding solutions to such problems is the Finite Element Method (FEM).

The computations in the FEM are generally long and tedious, therefore requires a

computer. The use of computers in the FEM programming is shown a parallel growth

with the developments in the computer industry such as increasing processor

capabilities and the introduction of personal computers (PC). Nowadays FEM

programs has become commonplace and even a simple PC can be used to obtain

solutions to very complicated problems.

As it is the case in most scientific application, traditionally there has been a tendency

to write FEM codes, because of their performance, in procedural languages such as

FORTRAN. However, in the last decade there has been a shift from procedural

languages to object-oriented languages such as C++ and Java. Object-Oriented

Programming (OOP) is a programming methodology based on objects, instead of just

functions or procedures and it is shown that OOP is well suited for FEM

programming.

1.1. Objective and Scope

The focus of this thesis is to develop a three-dimensional, object-oriented finite

element analysis software. The object-oriented environment selected with the

intention of providing efficient, robust, modular, and extensible finite element code

structure for future development. An important aspect of the work is the development

of a modern graphical user interface (GUI) which incorporates a geometry module

2

for creating and manipulating 3D solid shapes, a mesh module for discretizing a

given domain, and a solver module to solve the linear system of equations.

The geometry module is built with Open Cascade, an open source geometry kernel,

and the mesh module is built with Gmsh, an open source mesh framework. The

solver module is developed in C++ language with an object-oriented approach and

these three modules incorporated in a GUI, which is developed in Microsoft Visual

Studio 2010 Ultimate by using Office Ribbon Interface tools.

1.2. Literature Review

Over the last 20 years, some work has been done towards developing finite element

analysis programs with an object oriented programming approach. The pioneers of

the object-oriented finite element programming idea are Fenves [1] who highlighted

the potential benefits of using object-oriented programming approach in engineering

software, Rehak [2] who considered the subject from a knowledge-engineering

perspective, Peskin and Russo [3] who organized three base classes: Problem,

Domain and Equation to solve partial differential equations, and Miller [4] who

utilized Degree-of-freedom, Node, and Element classes in his work.

The first detailed description of applying object-oriented programming to the finite

element method is provided by Forde and co-workers [5] to deal with linear two-

dimensional problems in solid mechanics. They put forward the base classes of

object-oriented finite element analysis such as Element, DispBC, ForceBC, Material,

and Dof. These classes have been reused by several authors to organize their

program structures. Likewise, in early papers, Zimmerman, et al. [6]-[9] have

favored object-oriented programming over procedural programming and studied its

applications to the finite element method by using Smalltalk and C++ languages.

They considered linear dynamic analysis in their work by using three groups of

classes. The first group contains the finite element classes such as Node, Element,

Load, Material, etc., the second group is a collection of assistant classes like

GaussPoint, Polynomial, etc., and the third group is a gathering of data storage

classes such as Array, Matrix, etc. In addition, by redefining some of the original

classes such as Domain, Element, and Material from their previous work, they

considered nonlinear finite element analysis as well.

3

Lu, et al. [10],[11] contributed to the field by developing an object-oriented finite

element code called FE++. Their approach differs from the others in the way they

handled the assembly process by making use of a central Assemble object. Another

contribution they made is a complete C++ linear algebra library as an alternative to

the standard FORTRAN library LAPACK.

Bangerth et al. [12], [13] developed a flexible and efficient object-oriented library

called Differential Equations Analysis Library (DEAL) II in which they work

towards the computational solution of partial differential equations using adaptive

finite elements.

Patzák et al. [14] developed yet another program called Object Oriented Finite

Element Modeling (OOFEM). Their aim was to develop not only an efficient and

robust tool for FEM computations but also a modular and extensible environment for

future development.

In addition to the works mentioned here, there are several other commercial or public

domain object-oriented finite element analysis libraries developed by researchers and

engineers from academy and industry.

1.3. Organization

This thesis contains seven chapters including an introduction.

In Chapter Two an overview of the object-oriented programming and the unified

modeling language is provided, the development procedure of EAFE software along

with the preferred programming language and the integrated development

environment is presented.

In Chapter Three an introduction to the computer graphics and the OpenGL

application programming interface is given to illustrate the necessity to employ a

geometry kernel in the development of EAFE software’s geometry module. In

addition, the selected open source geometry kernel: Open Cascade, and its

application framework is detailed.

In Chapter Four an outline of mesh generation and freely available mesh generators,

or mesh frameworks, is given. In addition, the Gmsh library, which is the mesh

generator used in EAFE software’s mesh module, is presented.

4

In Chapter Five the development of a processor, named EafeLib, for finite element

analysis with object oriented programming approach is provided. Moreover, the

UML representation of the base classes in the EafeLib processor is given in detail.

In Chapter Six some example problems are solved to check the accuracy of the

results obtained from the developed software by comparing them with the results

from commercial FEA software.

In Chapter Seven conclusions are made and further work is discussed.

5

2. DEVELOPMENT PROCEDURE

2.1. Object-Oriented Programming Philosophy

Object-Oriented Programming (OOP) concepts were first introduced by Ole-Johan

Dahl and Kristen Nygaard at the Norwegian Computing Centre in Oslo in the early

1960s. They developed a programming language for discrete event simulation called

SIMULA in which OOP concepts such as objects, classes, inheritance, etc., were

used [15]. Many object-oriented programming languages developed later including

Smalltalk, LISP, Object Pascal and C++ are based on the ideas of SIMULA

language. Object-Oriented programming has become an indispensable programming

methodology for large software systems.

C and FORTRAN are examples of procedural languages in which functions, or

routines, are the means of programming. In procedural programming small functions,

or subroutines, are written to complete simple tasks. These small functions are

brought together in large functions to accomplish complex tasks. A program

developed in procedural programming concept is nothing but a collection of these

large functions arranged in a way that upon instruction computer can perform them

in sequence. Even though this approach can be used to develop small computer

programs, for large software with thousands of routines and subroutines, software

modification, maintenance or extensions becomes virtually impossible.

Object-Oriented Programming is the result of the growing demand for a new

approach to develop flexible, modular and reusable software components to meet the

requirements of dynamic and competitive environment. In order to develop the most

natural way of programming OOP offers the concept of a self-sustainable object

which is inspired from the real world objects such as people, animals, cars, buildings,

computers and so on. In real world, objects have attributes like size, mass, height,

color and they all exhibit behaviours like a truck accelerates, brakes, turns, or a

person walks, runs, sleeps and works. Moreover, objects in real world communicate

with each other and can be gathered according to their attributes and behaviours. For

6

example, cars, buses, trucks all shares some attributes, exhibit similar behaviours,

and might be grouped under vehicles.

Object-Oriented Programming uses objects initiated from prototype packages of data

types called classes, similar in many ways to the real world objects. They have

attributes, called data members, and behaviours, called methods, that can either view

or manipulate these hidden data members. In addition, OOP objects also

communicate with each other in terms of messages they send or receive and taking

advantage of the objects common attributes and behaviours new classes are easily

created through a process called inheritance. Fundamental concepts in Object-

Oriented Programming such as inheritance, encapsulation, and polymorphism are

explained in detail, along with their implementation to the Finite Element Method in

Chapter 5.

The notion of using objects as building blocks for software development in Object-

Oriented Programming has become successful to a large extent in contributing

software’s modularity, reusability, and maintainability.

2.2. Unified Modelling Language

Unified Modeling Language (UML) is a graphical modelling language developed by

Grady Booch, Ivar Jacobson and James Rumbaugh to support Object-Oriented

software analysis and design. UML was adopted by Object Management Group in

1997 and has become an international industry standard for modeling software

intensive systems.

A simple UML diagram with shape, color, rectangle and circle classes is shown in

Figure 2.1. Each of the rectangular boxes in the figure is the UML’s graphical

representation of a class. In this rectangular box, the class name is written on the top,

data members (attributes) are written in the middle, and member functions

(behaviours) are written at the end. The triangle between rectangle class and shape

class shows an “is-a” relationship. This relationship refers to the fact that each

rectangle object is also a shape object. This means rectangle class, which is a derived

class, inherits data members and member functions of shape class, which is a base

class in this case. Constructing classes in this manner is called inheritance and it is

one of the most important features of Object-Oriented Programming. The use of

7

inheritance during a new class generation provides code re-use, due to the fact that

derived classes by default retains member functions of base classes.

Figure 2.1 : A UML diagram example [16].

On the other hand, the white diamond shape between color class and shape class

shows a “has-a” relationship. This relationship illustrates the fact that a color object

is used as a data member in each shape object. Constructing new classes by using

existing classes as data members is called aggregation.

The UML version 2.2 contains 14 different diagrams under two main categories:

structural diagrams and behavioral diagrams, as detailed in Table 2.1. Structural

diagrams are used to show the static parts of the modeled system, while behavioral

diagrams are used to show the dynamic activities of the system [17]. In this thesis,

UML’s structural and behavioral diagrams are used to represent the developed EAFE

Software.

Table 2.1 : UML diagrams.

UML Diagrams

Structural UML Diagrams Behavioral UML Diagrams

Class diagram Activity diagram

Component diagram Communication diagram

Composite structure diagram Interaction overiew diagram

Deployment diagram Sequence diagram

Object diagram State diagram

Package diagram Timing diagram

Profile diagram Use case diagram

8

2.3. EAFE Software Development Procedure

The requirements analysis is the first and most important step in the development

process of every software system. For basic 3D finite element analysis software,

which is the subject of this thesis, the requirements are gathered as follows:

 It should have a geometry module (CAD) in which a user is able to create

some simple solid parts. In addition, there should be an import and export

functionality to exchange geometric shapes in standard formats.

 It should have a mesh module in which a user can generate at least an

unstructured mesh for the geometry with triangular or tetrahedral elements,

and change mesh density on critical regions.

 It should have a section that supports adding loads to and defining boundary

conditions for the system.

 It should have a solver module in which global stiffness matrix and global

force vector is assembled, global linear equation system is solved and nodal

displacement values are found.

 It should have a post-processing module in which the results such as nodal

displacement and element stress values can be displayed.

 It should have an easy to use graphical user interface (GUI) so that a user can

interact with the mentioned modules without any difficulty.

Designing software to meet all of these requirements is a formidable and time-

consuming task. To facilitate and accelerate the design process it has been taken

advantage of some ready-to-use open source libraries. In the development of EAFE

software’s geometry module Open Cascade library is used and explained in detail in

Chapter 3. While in mesh module Gmsh library is used and described in Chapter 4.

For graphical user interface Microsoft Foundation Classes (MFC) are used.

On the other hand, for EAFE software’s solver module, an FEM solver library named

EafeLib has been written from scratch and a complete explanation is given in

Chapter 5. The structure of EAFE software with its three main modules and related

libraries is illustrated in Figure 2.2.

9

Figure 2.2 : EAFE software structure with dependent libraries.

2.4. Programming Language Selection

Traditionally there has been a tendency to develop finite element codes in procedural

languages such as FORTRAN or C, due to the computational speed and ease of

implementation these languages have. Even though there are still numerous codes

written in FORTRAN, there has been a shift for the last 20 years from procedural

languages to Object-Oriented Languages such as C++ and Java [18]. Table 2.2 shows

some well-known open source finite element analysis software, languages used in

their development and the target operating systems.

Table 2.2 : Softwares with implementation language and target operating system

[19].

Software Language Operating System

CalculiX Fortran GNU/Linux, Windows

Code Aster Python and Fortran GNU/Linux, FreeBSD

Deal.II C++ GNU/Linux, Unix, Mac OS X, Windows

DUNE C++ GNU/Linux, Unix, Mac OS X

FEniCS Project Python and C++ Linux, Unix, Mac OS X, Windows

FreeFem++ C++ GNU/Linux, Mac OS X, Windows,

Solaris

Impact Java Linux, Windows

C++ and Java are the most widely used languages for the Object-Oriented

Programming. The advantages, disadvantages, strong and weak sides of these two

languages are explained in the following two sections.

10

2.4.1. Programming in Java

Java is a strictly object-oriented computer programming language developed by

James Gosling at Sun Microsystems and announced in 1995. Java uses a syntax

similar to C++ syntax. In order to prevent memory leaks, manual memory allocation

and deallocation is eliminated in Java with the addition of a Garbage collector. Java

source codes are compiled to java bytecodes. Perhaps one of the most important

features of the Java language is the Java Virtual Machine that can execute Java

bytecodes. Making use of bytecodes and virtual machines Java provides a software

portability mechanism called “write once, run anywhere”, which means when a Java

program compiled, it can be run on almost any device that has a Java Virtual

Machine. However, there is a performance loss due to the introduction of virtual

machine as an intermediate step to run the compiled program. Even though Just-in-

time compilation was introduced to boost the performance of Java programs,

compared to C++, it is less frequently used for programming finite element method

[20].

2.4.2. Programming in C++

C++ is a popular software development language that is widely used for both

commercial and academic purposes. It is developed by Bjarne Stroustrup in 1980 at

Bell Laboratories. C++ is based on C language, and in addition to C capabilities, it

has also support for object-oriented programming. Different from Java language C++

supports multiple inheritance and operator overloading [21].

In the development of the EAFE 3D finite element software, C++ language is used

because it is robust, fast, and reliable. Besides, most of the libraries required to

develop finite element software such as geometry kernels, mesh frameworks, and

linear algebra packages are generally written in C++ language.

2.5. Integrated Development Environment (IDE)

Integrated development environments or interactive development environments are

programs specifically designed to assist software developers in the software

development, maintenance and modification processes. IDEs are generally composed

of four components: a graphical user interface (GUI) builder, a source code editor, a

11

compiler, and a debugger. GUI builder and source code editor are used to develop

programs, compiler is used to translate written source codes to object codes, and

debugger is used to locate and fix probable bugs in the software. Some of the famous

IDEs are Microsoft Visual Studio, Oracle Netbeans, Xcode, and Eclipse. EAFE

software’s target operating system is Microsoft Windows OS. Hence, it has been

developed in Microsoft Visual Studio 2010 Professional IDE.

2.6. Windows Programming with the Microsoft Foundation Classes (MFC)

Microsoft Foundation Class Library is a collection of C++ wrapper classes for

Windows Application Programming Interface (API). It is a framework to develop

Windows based applications. In MFC, there is a certain structure for processing and

storing application data that must be used by the developer to develop an MFC based

application. Although it looks restrictive, the advantages of using this structure far

outweigh any possible disadvantage. This structure is based on document and view

objects. A document object is an instance of application specific document class that

is created by extending MFC’s CDocument class. Every data member that is used in

the application must be stored in this document object. On the other hand, a view

object is an instance of an application specific view class that is created by extending

MFC’s CView class. View objects are used to display the data stored in the

document object. In Figure 2.3 the data that a document object contains displayed

with two view objects.

Figure 2.3 : MFC Document/View concept [22].

In EAFE software classes CEAFEDoc, which is a subclass of CDocument class, and

CEAFEView, which is a subclass of CView class, created to employ this

12

document/view structure. The UML class representations of simplified CEAFEDoc

and CEAFEView classes are shown in Figure 2.4 with randomly selected data

members and member functions.

Figure 2.4 : Document/View structure.

13

3. GEOMETRY MODULE

3.1. Computer Graphics

Computer graphics, as its name suggests, are graphics generated using computers and

usually abbreviated as CG. William Fetter, a graphic designer at Boeing Aircraft Co.,

was coined the term “computer graphics” to describe his job in 1960. But the major

breakthrough to demonstrate the potential of computer graphics came when Ivan

Sutherland, a Ph.D. student at MIT, developed a drawing program called Sketchpad,

as part of his thesis in 1963 [23].

Computer graphics are widespread today. Some of the major industries in which

computer graphics are commonly used are entertainment, education, medicine and

industrial design. Examples of computer graphics usage in entertainment industry

include video games, cartoons, animated films and visual effects. In education area

one come across computer graphics in simulations (i.e. flight simulators) and

information visualization, while in medicine it is used in medical imaging. In

industrial design area, computer graphics are used for computer-aided design and

computer-aided manufacturing [24].

The creation, modification, analysis or optimization of an engineering design with

the assistance of the computer systems are collectively called computer-aided design

[25]. It is argued that the origin of the computer-aided design discipline, same as the

most computer graphics fields, is the Sutherland’s Sketchpad program. Companies in

the aerospace and automotive industries, realizing the prospects of Sutherland’s

revolutionary work, initiated projects to take complete advantage of the computer

graphics. The industries wide-ranging interests in the usage of computer graphics in

design processes developed and gave birth to multi-billion dollar companies such as

Autodesk, Dassault Systems and MSC Software [26].

14

3.2. 3D Computer Graphics and OpenGL

Computer screen has two dimensions width and height, whereas in real world objects

there is one more dimension called depth. The eyes and the brain work together to

help us decide the depth of objects. Being supplied with two slightly different images

from two eyes, our brains are responsible for combining these images in a way that

creates the perception of depth as shown in Figure 3.1 (a). Even though two eyes are

needed to truly see in 3D, covering one eye will not cause our 3D perception to

disappear abruptly. Because there are other factors, such as perspective, lights,

shades, textures and reflections, that can still activate our brain’s ability to perceive

depth in two dimensions. Artists have long been taking advantage of these factors to

depict a three-dimensional scene on a flat canvas, likewise computer graphic

designers use the same factors to draw three-dimensional objects on a 2D computer

screen.

The use of perspective, which is the way an observer perceives size and details of

objects depending on their distance, is the simplest approach to provide an illusion of

depth as shown in Figure 3.1 (b). However, inspecting the given figure closely

reveals that there is a degree of ambiguity in determining the front and back of the

cube. The perspective alone is not enough to accurately represent a three-

dimensional object. In addition to the perspective usage, lighting, which refers to the

simulation of light, shading, which is using various amount of darkness to illustrate

the reflection of light on a surface, texture mapping, which is basically adding a

specific pattern or a picture to a surface, and blending, which is mixing different

colors to create reflection of a surface on another surface, should be utilized as well

[27].

In order to draw a three-dimensional object on a computer screen, a full-scale

detailed model has to be constructed first. A model is a mathematical representation

of an object on a computer. Models are collection of points that are connected by a

number of primitive geometric shapes, such as lines, triangles, curved surfaces, etc.

In addition to the geometrical data, models can also include texture, lighting and

shading data structures.

Figure 3.2 (a) shows a wireframe model of Utah Teapot, also known as Newell

Teapot, which is a 3D model of a regular teapot, Figure 3.2 (c), created by Martin

15

Newell, a researcher at University of Utah, in 1975, since then extremely frequently

used and has become a standard reference object in computer graphics community.

(a) (b)

Figure 3.1 : 3D perception: (a)How you see three dimension. (b)A simple wireframe

3D cube.

The process of drawing the final scene on the computer screen from models is called

rendering. Historically one of the first complex three-dimensional models to be

rendered is the Utah Teapot as mentioned above. Figure 3.2 (b) shows a modern

rendered image of Utah Teapot. In computer applications rendering 3D computer

graphics are achieved through some specialized application programming interfaces

(API). In general, most application programming interfaces are libraries that consist

of some object classes, data structures and related variables to accomplish

demanding tasks and considerably ease software development procedure. OpenGL

(Open Graphics Library) is a language-independent API that can be used in

applications to render two-dimensional and three-dimensional computer graphics.

The usage of graphics cards to perform 3D graphics operations at high speed is

called 3D hardware acceleration. In order to achieve hardware accelerated rendering,

OpenGL Interacts with Graphics processing unit(GPU).

Figure 3.2 : Utah Teapot: (a)Wireframe model. (b) A modern render model.

(c) Original teapot [28]-[30].

16

OpenGL API alone is not enough to develop complete applications because it does

not have support for opening windows on computer screen or listening mouse and

keyboard events. To accomplish these tasks OpenGL must be combined with a

general-purpose programming language, such as C++ , Java, Python, etc.

In addition to OpenGL there is another major 3d graphics rendering API called

DirectX. However, contrary to OpenGL’s cross platform support and open standard,

the target operating system(OS) in DirectX API is the Microsoft Windows OS and

DirectX API is proprietary. Therefore, OpenGL is more commonly adopted

throughout academia and industry and used for widely diverse purposes, from

computer-aided design and scientific visualization to entertainment and simulations.

OpenGL API consists of several hundreds of function calls to perform 3D rendering

tasks. Using OpenGL’s predefined geometric primitives – also called drawing

primitives – such as GL_POINTS, GL_LINES, GL_TRIANGLES, GL_QUADS,

GL_POLYGON, etc., with these functions, fairly complex objects can be constructed

in a Lego-like manner. Figure 3.3 is an example of a simple OpenGL function calls

to draw a square with different colored vertices.

The different color values at each vertex are interpolated over the rest of the polygon.

Figure 3.4 shows a screenshot of the polygon drawn in a window [31].

In OpenGL each vertex has some quantities called attributes of the vertex. One of

these attributes is color as shown above. Another important attribute is the normal

vector. Normal vectors are used in lighting calculations. The light beam which comes

from a light source, hits a surface and reflects. The properties of this reflection

depend on the surface it hits, on the light source and to a great extend on the angle at

which the light strikes. OpenGL uses this normal vector which is perpendicular to the

surface to calculate the aforementioned angle.

glBegin(GL_POLYGON)

 glColor3f(1.0, 0.0, 0.0);

 glVertex3f(20.0, 20.0, 0.0);

 glColor3f(0.0, 1.0, 0.0);

 glVertex3f(80.0, 20.0, 0.0);

 glColor3f(0.0, 0.0, 1.0);

 glVertex3f(80.0, 80.0, 0.0);

 glColor3f(1.0, 1.0, 0.0);

 glVertex3f(20.0, 80.0, 0.0);

glEnd();

Figure 3.3 : An example of a simple OpenGL function.

17

Figure 3.4 : Screenshot of rendered polygon.

The effect of using different normal vectors on the same geometric shape is

illustrated below. In Figure 3.5 (a) normal vectors stored in each vertex are

perpendicular to the primitive rectangles and this causes the abrupt change in shading

on consequtive rectangles, whereas in Figure 3.5 (b) normal vectors are

perpendicular to the curved surface that is being approximated and this causes the

smooth change in shading on consequtice rectangles. As it can be inferred, increasing

the number of primitive rectangles results in better approximations, in fact, this is

exactly what OpenGL does to approximate curved surfaces.

 (a)

 (b)

Figure 3.5 : Use of normal vectors in light calculation [32]: (a) Normal vectors

perpendicular to rectangles. (b) Normal vectors perpendicular to

surface.

Even though some simple shapes could be drawn via supplying normal vectors for

each vertex by hand, calculating normal vectors is not an easy task and involve some

18

non-trivial math [33]. This is one of the reasons why a geometry kernel is needed to

build a cad software.

3.3. Geometry Kernel

A Geometry kernel or geometry engine is an independent software component

specifically developed to perform 3D solid modeling tasks such as creating, editing,

storing, and analyzing 3D models. Many end user applications in computer aided

design (CAD), computer aided manufacturing (CAM), and computer aided

engineering (CAE) fields are based on geometric modeling kernels. Currently there

are two major geometry kernels offered for license: ACIS owned by Spatial and

Parasolid owned by Siemens [34]. Table 3.1 shows some well known CAD/CAE

softwares and corresponding geometric modeling kernels.

On the other hand, as an alternative to the proprietary softwares Open Cascade S.A.S

company offers an open source geometric modeling kernel: Open Cascade

Technology (OCCT). OCCT is open source and written in C++ language with an

object oriented approach, has adequate documentation and example code fragments,

and supports standard geometry file formats such as, ACIS, Parasolid, IGES, STEP,

STL, and DXF. Therefore, in the 3D Finite element analysis software developed in

this thesis(EAFE), Open Cascade Technology was used as geometric modeling

kernel. Taking advantage of some of OCCT’s capabilities, a basic solid geometric

modeling module was developed and included in the EAFE software.

Table 3.1 : CAD/CAE softwares and related geometry kernels.

CAD/CAE Software Geometry Kernel

AutoCad ACIS

SolidWorks Parasolid

Catia CGM

Solid Edge Parasolid

Abaqus Parasolid

Ansys Parasolid

MSC.SimXpert Parasolid

19

3.4. Open Cascade Technology (OCCT)

Open Cascade Technology is a freely available collection of object-oriented C++

classes designed to assist CAD/CAM/CAE software developers with the rapid

development of domain-specific end user applications. OCCT libraries can be

divided broadly into four major parts: modelling, visualization, data exchange and

application framework.

3.4.1. Modeling module

The 2D and 3D modeling algorithms module brings together a wide range of

topological algorithms used in modelling which allow you to model any type of

object. Some of the capabilities of modeling module are;

 Creating primitives such as prism, cylinder, cone and torus.

 Performing boolean operations (addition, subtraction and intersection)

 Tweaking constructions using fillets, chamfers and drafts.

 Modeling constructions using offsets, shelling, hollowing, and sweeps.

 Computing properties such as surface, volume, center of gravity, curvature.

 Computing geometry using projection, interpolation, approximation

3.4.2. Visualization module

Includes services that allow you to manage object display and manipulate views.

Some of the capabilities of visulization module are:

 3D Rotation, zooming and panning,

 Shading.

3.4.3. Data exchange module

Provides import and export functions of OCCT models to and from standard formats

such as IGES and STEP.

20

3.4.4. Application framework module

 Association between non-geometrical application data and geometry.

 Parameterization of models.

3.5. Implementation of OCCT Modules in EAFE Software

In the development of EAFE 3D Finite element analysis software, OCCT modules

are used to provide CAD functionality in the software.

Partial implementation of modeling and visualization components of OCCT in the

developed EAFE software’s geometry module is shown in Figure 3.6. The first

highlighted section includes necessary buttons such as Fill, Pan, Rotate, Zoom, etc.,

to manipulate views. Each of these buttons has a unique event handler in EAFEView

class, which calls related functions with required parameters from OCCT’s

visualization module to adjust the view as desired.

The second highlighted section displays undo, redo and delete buttons on the edit

panel. These buttons are one of the most important features of modern softwares,

because they provide recovery from mistakes. This functionality is included in EAFE

software with the use of OpenCascade’s Application Framework(OCAF) module

which is going to be explained in the subsequent pages.

The third highlighted section shows three panels named: geometry, solid, and

modeling. Geometry panel includes some buttons for primitive geometric shapes that

can be used as starting points for solid modeling. Solid panel contains buttons to

create some frequently used solid shapes such as boxes, spheres, and cylinders.

Lastly, modeling panel has a number of buttons that are useful to make desired

shapes. Event handlers, in which OCCT’s modeling module functions are called, for

these buttons are implemented in EAFEDoc class.

Exchanging data is another fundamental feature that most CAD softwares has in

common. The fourth highlighted section in Figure 3.7 shows EAFE software’s

import and export functionality which is provided by OCCT’s data exchange module

and can be used to import or export solid models to or from other well known CAD

softwares by using standard formats such as STEP or IGES.

21

Figure 3.6 : Geometry module of EAFE software.

Figure 3.7 : Import export properties of EAFE software.

3.6. Open Cascade Application Framework (OCAF)

One of the most essential modules of OCCT is the Open Cascade Application

Framework (OCAF). OCAF is much more than just one toolkit among many in

OCCT libraries. Since it can handle any data and algorithms in these libraries –

22

modeling algorithms, topology or geometry – OCAF is a logical supplement to these

libraries and is going to be explained here in detail.

OCAF is a rapid application development (RAD) framework used for specifying and

organizing application data. To do this, OCAF provides:

 Ready-to-use data common to most CAD/CAM applications,

 A scalable extension protocol for implementing new application specific data,

 An infrastructure

 To attach any data to any topological element

 To link data produced by different applications

 To register the modeling process – the creation history, or parametrics,

used to carry out modifications.

Using OCAF, the application designer concentrates on the functionality and its

specific algorithms. In this way, he avoids architectural problems notably

implementing undo-redo and saving application data. In OCAF, all of the above are

already handled for the application designer, allowing him to reach a significant

increase in productivity.

In OCAF, data structure is reference key-driven. The reference key is implemented

in the form of labels. Application data is attached to these labels as attributes. By

means of these labels and a tree structure they are organized in, the reference key

aggregates all user data, not just shapes and their geometry. These attributes have

similar importance; no attribute is master in respect of the others [35].

The reference keys of a model - in the form of labels - have to be kept together in a

single container. This container is called a document. OCAF documents are in turn

managed by an OCAF application. Inside a document, there is a data framework.

This is a set of labels organized in a tree structure. Figure 3.8 shows a rudimentary

example of an OCAF data framework, in which the the tags are illustrated in the

circles, and the labels are illustrated under the circles as tag lists.

The data framework offers a single environment in which data from different

application components can be handled. This allows you to exchange and modify

23

data simply, consistently, with a maximum level of information, and with stable

semantics. The building blocks of this approach are: 1. Tag, 2. Label, 3.Attribute.

Figure 3.8 : A basic OCAF data framework.

The first label in a framework is the root label of the tree. Each label has a tag

expressed as an integer value, and a label is uniquely defined by an entry expressed

as a list of tags from the root, 0:3:1, for example. Each label can have a list of

attributes, which contain data, and several attributes can be attached to a label.

The data framework in EAFE Software’s geometry module is OCAF based and

shown in Figure 3.9. The simplified tree like structure holds tags, labels and the

label’s attributes as shown in the figure. Each geometric primitive or solid part

created in the application is an attribute and stored under this tree structure with

associated label. The labels can have a list of attributes including name, number,

color, etc., along with the shape. When a change, modification or removal is needed

for any shape the particular label for this shape can be used to retrieve the shape. A

label’s entry is its persistent address in the data framework.

24

Figure 3.9 : EAFE software’s OCAF based data framework.

25

4. MESH MODULE

4.1. Mesh Generators

One of the most important and time consuming steps in the finite element analysis is

mesh generation. A mesh is a geometrical discretization of a computational domain.

During this discretization the continuous domain split into geometrically simple and

smaller subdomains called elements. Examples of elements used in finite element

analysis include lines, triangles and quadrangles in 2D and tetrahedrons,

hexahedrons, prisms and pyramids in 3D.

An unstructured (or irregular) mesh is a tessellation of a domain by simple shapes in

an irregular pattern. The process of obtaining an appropriate mesh is called mesh

generation. In unstructured mesh generation, triangular and tetrahedral elements are

by far the most common used element types. In general, Octree, Delaunay and

Advancing front techniques are applied for unstructured mesh generation. There are

public domain and commercial mesh generators which are distributed by software

vendors, research labs and educational institutions. Two of the prominent open

source mesh generators which also offers built-in post processing facilities are

Salome and Gmsh.

Salome is an open source software that provides a generic platform for pre-

processing and post-processing for numerical simulation. It is based on an open and

flexible architecture made of reusable components [36]. Similarly, Gmsh is a three-

dimensional finite element mesh generator with a build-in geometry engine and post-

processor. It aims to provide a fast, light and user-friendly meshing tool with

parametric input and advanced visualization capabilities [37].

As it is the case in the most open source softwares both Salome and Gmsh libraries

do not have enough documentation to describe member functions. Contrary to

Salome, Gmsh supports 64bit Windows OS and is written in C++, it is light and easy

to use, therefore, Gmsh is used as a mesh framework in the EAFE Software.

26

4.2. GMSH Mesh Framework

GMSH is an open source mesh generator developed and is being maintained by

Christophe Geuzaine from University of Liège and Jean-François Remacle from

Université catholique de Louvain, in order to meet the expectations of researchers

and engineers in academia and industry. Making use of lines, triangles and

tetrahedrons, Gmsh generates 1D, 2D and 3D finite element meshes with adjustable

element size. Gmsh also provides a post-processor that can load and manipulate

scalar, vector and tensor maps. Gmsh is powerful enough to be used in academic and

engineering applications.

Gmsh uses four model entities to represent 3D solids: vertices, edges, faces and

regions. The logic behind this representation is that any solid can be defined as a

volumetric region bounded by a set of surfaces, surfaces bounded by a sequence of

edges and edges bounded by two vertices at each end. Taking into account this

geometric representation, the discretization process in Gmsh is designed to go from

bottom to up following three main steps as shown below:

 The first discretized entities are edges,

 Using discretized edges, surfaces are triangulated,

 Making use of surface mesh data, volumetric regions are tetrahedralized.

Gmsh has three different algorithm options for 2D meshing: Mesh adapt, Delaunay,

and Frontal. Delaunay and Frontal algorithms are standard algorithms. In addition to

these algorithms Gmsh offers a new surface meshing technique in which the notion

of local mesh modifications are used. In the MeshAdapt algorithm discretized

domain is locally modified such that an edge is split if it is too long or is collapsed if

it is too short, and edges are swapped if swapping an edge results in a better

geometric configuration. Gmsh uses Delaunay and Frontal algorithms for 3D

unstructured discretization [38].

4.3. Implementation of Gmsh in EAFE

In order to provide meshing ability some of the Gmsh library’s capabilities such as

1D, 2D and 3D mesh generation, mesh optimization, mesh size manipulation and

increasing mesh density in critical regions of the discretized shape, are used in EAFE

27

Software. Along with these mentioned capabilities, some of the wide range of

options that Gmsh library offers to control the behavior of mesh commands, and the

way meshes are displayed, are provided in the EAFE Software.

Implementation of Gmsh through mesh related buttons in EAFE software’s Mesh

module is highlighted in Figure 4.1. Similar to the buttons in Geometry module, each

of these buttons also has event handlers in EAFEDoc class which is one of the two

main classes in EAFE software. Pressing one of these buttons results in a call to the

corresponding event handler function in which Gmsh library’s related function

employed.

Figure 4.1 : EAFE software with GMSH mesh framework.

Overly simplified code fragments taken from original EAFE source code and put

together to illustrate the use of Gmsh library is given in Figure 4.2. Gmsh must be

initialized before using its accompanying functions, hence statement in line 1

initializes Gmsh. Line 2 creates a geometric model with GModel class which is one

of the most important classes in Gmsh library. Line 4 imports an Open Cascade

shape that is created in advance with the EAFE’s geometry module, into the

geometric model and checks whether any problem occur. In case of a problem it

prompts an error message in a dialog box.

28

 1. GmshInitialize (); // initialize gmsh

 2. GModel* myModel = new GModel();

 3. // import open cascade shape into the geometric model

 4. if (!(myModel->importOCCShape((void*)&aShapeToMesh)))

5. {

 6. AfxMessageBox(L"Error during shape loading !");

7. return;

8. }

 9. // generating a 3d mesh

 10. try {

 11. myModel ->mesh(3);

 12. } catch (...) {

 13. AfxMessageBox(L"Error in gmsh--aborting mesh!\n");

 14. }

15. // update View and save the mesh data

 16. DrawScene();

 17. myModel->writeMSH("C:/Users/EafeTemp/Mesh/part.msh");

 18. // delete the geometric model and terminate gmsh

 19. delete myModel;

 20. GmshFinalize();

Figure 4.2 : Gmsh library usage.

An exception is a problem that rarely occurs during a program’s execution. Try and

catch blocks are used to handle exceptions in programs. Using exception handling

enables programmers to develop fault tolerant programs. Statements from line 10 to

14 generate a 3D mesh for the geometric model using a try and catch block to handle

any kind of exception that could happen during discretization process. Line 16

updates the scene and line 17 writes mesh data to the file in the given directory. Line

19 deletes the model and additional entities such as geometry data, mesh data, etc.

Line 20 terminates the process.

Another important Gmsh functionality that is used in EAFE software is the mesh size

manipulation. The effect of changing element size at certain points over the shape to

the mesh density is shown in Figure 4.3. An Open Cascade solid generated in EAFE

geometry module is given in Figure 4.3 (a). The solid shape imported to the EAFE

mesh module and discretized with constant mesh size as shown in Figure 4.3 (b). By

means of changing element size at two vertices a new mesh generated to demonstrate

the element size manipulation capability of the software and shown in Figure 4.3 (c).

29

(a)

(b)

(c)

Figure 4.3 : A solid shape with different mesh options: (a) Solid shape.

(b) Constant mesh size. (c) Variable mesh size.

30

31

5. SOLVER MODULE

5.1. Object-Oriented Programming

In contrast to the procedural programming’s function oriented approach, in the

object-oriented programming the application is build around its data, which is stored

in small packages called objects. A brief introduction to the object-oriented

programming philosophy is provided in Chapter 2. Here the fundamental concepts in

object-oriented programming such as object, class, method, inheritance,

polymorphism, etc., are introduced.

5.1.1. Fundamental concepts in object-oriented programming

Moving from procedural programming to object-oriented programming is not an

easy task. To successfully develop a software with object-oriented programming

approach, a developer must have a thorough understanding of the essential concepts

given in this section.

5.1.1.1. Object

Almost each programming language has standard data types such as integer, float,

double, string, etc. In essence, an object is a new type of data variable that is defined

by the user and anything can be an object. Objects have data members composed of

classic variables and/or other new user defined variables. Objects also have member

functions that view or manipulate its encapsulated data members.

5.1.1.2. Class

Classes are the building blocks of object-oriented programming. A software

developed with object oriented approach is basically a collection of classes that

communicate with each other via messages to complete the required tasks. Classes

are user defined data types that are used to instantiate objects as shown in Figure 5.1.

In this figure ahmet and mehmet objects are instantiated from Person class and as

many objects as needed can be initiated from a class.

32

int a = 12; // a is a classic data variable an integer
 double b = 2.3; // b is a classic data variable a double
 bool stop = false; // stop is a classic data variable a boolean

 Person ahmet; // ahmet is a new data variable a Person
 Person mehmet; // mehmet is a new data variable a Person

Figure 5.1 : A simple code fragment to show classes and objects.

To illustrate the class concept the UML representation of this person class with

possible member fields like age, gender, weight and member methods like

constructer, get and set functions are given in Figure 5.2.

Figure 5.2 : An example class structure.

5.1.1.3. Encapsulation

Encapsulation is a mechanism in which only a classes methods are allowed to access

the same classes fields. For example, in the given person class the fields such as age,

employment, weight, etc., are only accessible to the methods in the person class. If

another class needs to view or modify a field in the person class, due to its restricted

access, it must use the related get or set method provided in the person class.

Encapsulation is an important topic in object-oriented programming, because of the

fact that it provides softwares flexibility and modularity.

33

5.1.1.4. Method

A method in object-oriented programming is similar to a procedure, function, or

routine in procedural programming languages. The main distinction is that, methods

are always associated with classes.

In object-oriented programming methods are used to view and manipulate data

members (attributes) of objects. A simple example is given in Figure 5.3 to show

method usage in object-oriented programming. In the figure age and gender

attributes for ahmet and mehmet objects are set by using setAge and setGender

methods respectively. Using methods to set an object’s attributes, can be very useful

to prevent assigning invalid values to the attributes. For example, inside the setAge

and setGender methods’ implementations, it is possible to check age and gender

parameters supplied in the method calls, before setting the object’s age and gender

attributes. This is known as keeping the object in a consistent state.

ahmet.setAge(25); // sets age to 25 for ahmet object
 mehmet.setAge(35); // sets age to 35 for mehmet object

 ahmet.setGender("Male"); // sets gender for ahmet object
 mehmet.setGender(ahmet.getGender()); // sets gender for mehmet object

 ahmet.setAge(-10); // in setAge method’s implementation negative values
 // are set to 0 to maintain object’s integrity

Figure 5.3 : A simple code fragment to show method usage.

5.1.1.5. Inheritance

Inheritance is one of the essential features of object-oriented programming. It is a

mechanism that facilitates software reuse. By using inheritance a new class, called

derived class, can be built on a pre-existing class, called base class in C++ language.

In general, derived classes inherits base classes fields and methods, and adds its

particular variables and methods. Therefore, derived classes are more specific than

their base classes. The use of inheritance makes it possible to organize objects into a

hierarchy, and define relationships with each other.

A simple example is given to illustrate the use of inheritance to create new classes in

Figure 5.4. In this example Student and Employee classes both inherit Person classes

fields and methods. Similarly, Undergraduate and Graduate classes adds their own

specific variables and methods on the inherited fields and methods from the Student

class. This example shows how a base class functionality is extended by derived

34

classes. Creating new classes in this way produces neat and clean code that is

reusable and easier to understand.

Figure 5.4 : An inheritance hierarchy example.

5.1.1.6. Polymorphism

Polymorphism is the ability of a field, method or object to take on multiple forms.

Using polymorphism, a developer is able to program in the general rather than

program in the specific. In polymorphism, sending the same message to different

objects can bring about different behaviour, depending on the object type, and the

exact behaviour is determined at program execution time. Using this property of

polymorphism, messages can be sent to the objects, without knowing the types of the

objects. This is an important property of polymorphism which makes designing and

implementing easily extensible object-oriented systems possible.

5.2. Finite Element Method

Differential or integral equations are used to describe many physical phenomena in

engineering such as elasticity, heat, sound, or fluid flow. In complex field problems

numerical solution methods are used, because solution of these equations with classic

analytical approaches becomes virtually impossible. The finite element method

(FEM) is a numerical approach to find approximate solutions to the differential and

integral equations [39].

35

The finite element method consists of three steps: 1. Preprocessing, 2. Processing

(Solution), 3. Postprocessing.

In the preprocessing step problem domain is discretized, material properties and

boundary conditions are defined, and loads are applied. In the processing step mesh

data from the previous step is used to create element matrices. In the case of

distributed loads such as body forces and surface loads, the equivalent nodal load

vectors are obtained for these elements. Subsequently, element matrices and load

vectors are used to create global matrices such as stiffness matrix [K], mass matrix

[M], and load vector {F}. The boundary conditions are applied on the matrix

equation such as [K]{Q} = {F} for the static analysis of structures. Here {Q} is the

vector of unknown displacements. Finally, the results are graphically displayed in the

postprocessing step.

5.2.1. Three-dimensional stress analysis

Elasticity is an important subject that deals with determination of the stress, strain,

and displacement distribution in an elastic solid under the influence of external

forces. Following the usual assumptions of linear, small-deformation theory, the

formulation establishes a mathematical model that allows solutions to problems that

have applications in many engineering and scientific fields. Applications in

aeronautical and aerospace engineering include stress, fracture, and fatigue analysis

in aerostructures.

The basic aim of structural mechanics problem is to determine the distribution of

displacements and stresses under the loading and boundary conditions. A

mathematical model of the structural problem is necessary to find the desired

distributions by using FEM. An understanding of all the basic equations of structural

mechanics is essential to devise an appropriate or adequate mathematical model.

Hence, the basic equations of solid mechanics are summarized in the following

sections for ready reference in the formulation of FE equations [40].

5.2.1.1. Fundamental equations

If the deformation of an elastic body is considered under the applied external forces,

any point of the body is displaced from a point to another point. A displacement

vector can be defined for any point of the body, and it can be resolved into three

36

displacement components u, v and w in the x, y and z axis, repectively.

Displacements are unkown functions of coordinates.

On the other hand six independent strain components and corresponding six stress

components can be defined for any point of the body. Three of them are normal

strains or stresses and three others shear strains and stresses. The displacements,

strains and strains are unknowns of an elasticity problem. Three-dimensional stresses

on an infinitesimal element are given in Figure 5.5.

Figure 5.5 : Three dimensional stresses on an element [41].

The stresses and strains are given by

 (5.1)

 (5.2)

The stress-strain relations are given by Hooke’s law as

(5.3)

where the constitutive matrix [E] in equation (5.3) for an isotropic material is given

by

[

]

(5.4)

37

The displacements in x, y and z directions are represented in a vector as

 (5.5)

For the three-dimensional case, the strain-displacement relations can be written as

follows

{

 }

[

]

{

} (5.6)

or using (5.2) and (5.5) the equation in (5.6) can be shown in matrix form as

 (5.7)

where is called strain-displacement operator.

5.2.1.2. Tetrahedral element (Tet-4)

The four node tetrahedral element is generally abberivated in computer programs as

Tet-4, and because of its linear shape functions, it is also called the linear

tetrahedron. The tetrahedral element is the simplest solid element [42]. Element

formulations for tetrahedral element are developed in this section.

Each node in tetrahedral element has three degrees of freedom and the vector of the

nodal degrees of freedom is given by

 (5.8)

The displacements u, v, and w at any point in the element can be found by

interpolating displacement values at four nodes, and this relationship is given by

 (5.9)

38

where matrix is given by

 [

] (5.10)

The shape functions are defined by using the master element given in Figure 5.6

as follows

 ζ ζ (5.11)

In these functions at node i, and at all other nodes [43].

Figure 5.6 : Master element used in shape functions.

The same shape functions can be used to define coordinates of any point at

which displacements are interpolated. The isoparametric transformation is

given by

 (5.12)

Using (5.11), the equations in the (5.12) can be rewritten as

 ζ

 ζ (5.13)

 ζ

2

1

4

3

y

z

 = 1

ui

vi

wi

u
v

w

 = 1/2

 = 0

x

3

39

 where the notations , , and are given by

 (5.14)

Using equations (5.7) and (5.9), the following equation can be written

 (5.15)

where matrix is equal to and is given by

[

]

 (5.16)

Using the chain rule, the relation between the derivatives of the shape functions

with respect to ζ and cartesian derivatives are given by

{

 }

{

 }

 (5.17)

where the Jacobian matrix is given by

[

]

 [

] (5.18)

Using the inverse of the Jacobian matrix, the equation in (5.17) can be written as

40

{

 }

{

 }

 (5.19)

where the inverse of the Jacobian matrix is given by

| |
[

] (5.20)

and the determinant of the Jacobian matrix | | is given by

| | (5.21)

Using equations (5.19) and (5.20) the is modified as

[

 ̃

 ̃

 ̃

 ̃ ̃

 ̃ ̃

 ̃ ̃]

 (5.22)

where ̃ , ̃ , and ̃ are

 ̃ ̃ ̃ (5.23)

Element stiffness matrix

Element stiffness matrix is given by

 ∭

 (5.24)

If the element is a four node tetrahedral element the and matrices are

constant, therefore, equation (5.24) simplifies to

 (5.25)

where is the volume of the element given by

41

| | (5.26)

Force terms

The potential term associated with body force is

∫

 ∭ (5.27)

If components of the {f} load are constant, solution of the integral in

equation (5.27) gives the element body force vector by

[]

 (5.28)

The potential term associated with surface traction is

∫

 ∫

 (5.29)

If components of the {T} load are constant, solution of the integral in

equation (5.29) gives the element traction load vector by

[] (5.30)

The potential energy of an element can be written as

 (5.31)

Assembly procedure

Total potential energy for the structure can be obtained by summing potential

energies of individual elements

 ∑

 (5.32)

where {Q} is the nodal displacement vector as shown below

42

 {

} ∑

 (5.33)

Thus, the total potential energy is given by

∑

 ∑

 ∑

(5.34)

where [K]and {F }are

 ∑

 ∑

 (5.35)

Using the principle of minimum potential energy, the static equilibrium equations for

the structure can be obtained.

 (5.36)

The set of linear algebraic equations to solve nodal displacements are obtained by

substituting equation (5.34) into equation (5.36) and shown below

 (5.37)

The element stresses are calculated after solving the equation given above.

5.2.1.3. Stress calculations

Using the Hooke’s law given in (5.3) and substituting equation (5.15) for the strain,

the element stresses can be calculated by

 (5.38)

Making use of equation (5.38), and stress components can be

obtained, and by using them the three principal stresses are calculated as follows

43

 (5.39)

where and are given by

 (

)

(5.40)

 √

 (

)

and the three invariants , , of the stress tensor are

 (5.41)

5.2.1.4. Dynamic consideration

The Lagrangean is defined by

 (5.42)

According to Hamilton’s principle, in an arbitrary time interval, the state of

motion of a body extremizes the functional

44

 ∫

 (5.43)

If generalized variables (̇ ̇ ̇), where ̇ ̇ , are used to

express , then the equations of motion are given by

(

 ̇
)

(5.44)

The kinetic energy is given by

∫ ̇ ̇

(5.45)

where density of the material is shown by and velocity vector of the point at x with

components ̇ ̇ ̇ is

 ̇ ̇ ̇ ̇ (5.46)

u can be expressed by using shape functions as follows

 (5.47)

similarly the velocity vector is given by

 ̇ ̇ (5.48)

using equations (5.48) and (5.45) the kinetic energy in element e is

 ̇ [∫

] ̇ (5.49)

The bracketed expression in equation (5.49) is the element mass matrix

 ∫

 (5.50)

This mass matrix is consistent with the shape functions chosen and is called the

consistent mass matrix. On summing over all the elements

45

 ∑

 ∑

 ̇ ̇

{ ̇}

 ̇

(5.51)

The potential energy is given by

 (5.52)

Using the Lagrangean given in equation (5.42), the equation of motion is obtained as

follows

 { ̈} (5.53)

The force F is zero for free vibrations. Thus,

 { ̈} (5.54)

Considering the steady-state condition, starting from the equilibrium state, { } can

be taken as

 (5.55)

where is the circular frequency and { } is the vector of nodal amplitudes of

vibration. Substituting equation (5.55) into (5.54)

 (5.56)

This is the generalized eigenvalue problem

 (5.57)

where { } is the eigenvector, which represents vibration mode for corresponding

eigenvalue, and , the square of the circular frequency , is the eigenvalue. The

frequency in hertz (cycles per second) is obtained from

 (5.58)

Element mass matrix

The consistent mass matrix for tetrahedral element is obtained by using equation

(5.50) and is given by

46

[

]

 (5.59)

5.3. Object-Oriented Finite Element Analysis

The fundamental concepts in object-oriented programming is introduced in section

5.1 and an overview of finite element method with element formulations is given in

section 5.2. In this section, the development of a new finite element solver by

combining these two methodologies is presented.

5.3.1. EafeLib: A C++ finite element analysis library and its base classes

EafeLib is a collection of C++ classes designed to do finite element analysis in 3D

with an object-oriented approach. It is built around six main classes: Node, Element,

Load, BoundaryCondition, Material, and Model. It also has some auxiliary classes

such as InputReader, Solver, and OutputWriter. The primary class in EafeLib solver

is the Model class. Using UML class diagrams the relationship between these classes

are shown in Figure 5.7.

In order to successfully use EafeLib solver for a finite element problem, an input file,

which is consistent with the EafeLib’s predefined input file format, must be

provided. EafeLib’s input file format contains the nodal coordinates, element

connectivities, boundary conditions, loads and material definitions. An InputReader

class object reads this input file and creates corresponding Node,

BoundaryCondition, Load and Material objects. Subsequently, Model class uses

these objects along with a vector, obtained from InputReader and filled with element

connectivities, to create elements, calculate element stiffness matrices and assemble

them into the global stiffness matrix. In addition, the force terms for each element is

calculated and assembled into the global force vector. The Global stiffness matrix

47

can be stored in two different matrix types: dense matrix type and sparse matrix type.

In dense matrix all of the elements of the stiffness matrix is stored, whereas in sparse

matrix only the nonzero elements are stored. The matrices that arise from the

discretization of a three-dimensional domain are inherently sparse matrices and

storing them in a dense matrix format requires a considerable amount of memory.

Therefore, the global stiffness matrix in EafeLib solver is stored in a sparse matrix

format by default, and the inclusion of dense matrix format is just for illustration

purposes.

A Solver class object obtains the global stiffness matrix and global force vector from

a Model class object, than solves the linear system and returns the displacements.

Finally, an OutputWriter class object takes the displacement results and writes them

into a text file. The procedure described so far is a berief overview of the EafeLib

solver structure and the detailed base class explanations are given in the following

sections.

5.3.1.1. Element class

Element class in EafeLib solver is created as an abstract class and includes

declarations of pure functions that must be implemented in the derived classes. The

UML class diagram for the element class is given in Figure 5.8. Most of the methods

shown in the figure does not have an implementation in the element class. A derived

class, for example Tet4 , must have implementations for these pure functions.

5.3.1.2. Node class

A Node class object mainly holds x, y, z coordinates, loads and boundary conditions

defined on the node, displacements, and nodal stresses as shown in the Figure 5.9.

A class such as Tet4 that is derived from Element class will have a number of Node

class objects as its data members. In Tet4 class, for example, there are four node

objects associated with the four nodes of the tetrahedral element.

Making use of Node class’s member functions, global node number of an element’s

local node, along with the x, y, and z coordinates with corresponding displacement

values can be acquired inside the element class. Moreover, loads and boundary

conditions defined on a node object that is a member of the aforementioned element

class are also become accessible.

48

Figure 5.7 : The simplified UML class diagrams of EafeLib solver.

49

Figure 5.8 : The UML representation of the element class.

5.3.1.3. Material class

Material class is an abstract base class and IsotropicMaterial class is a more specific

class derived from material class as shown in Figure 5.10. IsotropicMaterial class’s

data members are density, poisson ration, shear modulus, and young modulus. In

addition, IsotropicMaterial class has set and get functions to manipulate its data

members. The material data obtained from the input file are stored in the objects of

the IsotropicMaterial class. Element class is designed to have objects of classes that

are derived from Material class as its data members. Hence, it is possible to store

different material data and even different material type for each element.

50

Figure 5.9 : The UML representation of the node class.

51

Figure 5.10 : The UML representation of Material and IsotropicMaterial classes.

5.3.1.4. Load class

The loads applied to the system are held in the objects of the subclasses of Load class

such as NodalLoad class and DistributedLoad class as shown in Figure 5.11. Both

Node and Element classes have pointers to the load objects, due to the fact that, a

load can be applied either on a single node or on an element. NodalLoad class deals

with loads applied on a single node, whereas DistributedLoad class deals with loads

such as pressure or surface traction. Another load class, such as body load, can easily

be created by subclassing load class.

Figure 5.11 : The UML representation of the Load and the DistributedLoad classes.

52

5.3.1.5. Boundary condition class

BoundaryCondition class is designed as an abstract base class and it is used to create

subclasses such as SingleNodeBC. The UML class diagrams with data members and

member functions for these two classes are given in Figure 5.12. The figure shows

that by using SingleNodeBC class’s member functions such as setU, setV, and SetW,

it is possible to set u,v and w displacement components of a boundary condition

object. Subsequently, boundary condition for any node can be defined by

incorporating a pointer to this boundary condition object into the node object .

5.3.2. Global stiffness and mass matrices assembly process

The two fundamental components of the finite element model are the global stiffness

and global mass matrices.The assemblage of the global stiffnes and mass matrices

are accomplished by Model class’s member functions as it is explained in the

following section.

Figure 5.12 : The UML representation of the Boundary Condition classes.

5.3.2.1. Model class

The Model class is the most important class in the EafeLib FEM solver library and it

holds the global stiffness and global mass matrices of the problem. Figure 5.13

shows the UML class diagram with data members and member functions of the

SparseModel class which is a subclass of the base Model class. The SparseModel

class has everything that is necessary to describe a finite element problem such as

53

global stiffness matrix, global load vector, and an empty global displacements vector

which is filled by Solver class after solving linear system of equations.

The function assembleGlobalStiffnessAndMassMatrices (bool assembleMassMatrix)

of SparseModel class does exactly what its name suggests and it is explained below.

Figure 5.13 : The UML representation of the SparseModel class.

The UML activity diagram for assembleGlobalStiffnessAndMassMatrices function is

given in Figure 5.14. Calculating mass matrices for each element and assembling

them into a redundant global mass matrix is a waste of computer processor and

memory. To avoid this, the function begins with an if statement to check whether the

54

mass matrix is required for the problem, and the mass matrix is initialized only if it is

necessary.

Figure 5.14 : The UML activity diagram of the assembler function.

After the mass matrix check, the assembler function enters into an iteration over the

element data matrix, which is a matrix created by InputReader class and includes the

required data (e.g. element type, nodes, and material) to create element objects. The

55

function gets an integer value that represents the element type from the second

column of each row of the matrix and by using a switch statement it creates a

corresponding element object. Subsequently, for the created element the material is

set, stiffness matrix and element force vector are calculated. Afterward, element

stiffness matrix is assembled into the global stiffness matrix and if the element has a

filled force vector, this vector is assembled into the global force vector. Before

leaving the switch statement the created element is deleted to free the allocated

memory. The same procedure is repeated for each element until the global stifness

and mass matrices are completely assembled.

5.3.3. Linear algebra library

Most of the calculations in the finite element method such as solving linear system of

algebraic equations given in (5.60) or generalized eigenvalue problem given in (5.61)

are done by using matrices.

 (5.60)

 (5.61)

Unfortunately, C++ language does not have an in-built matrix library. Users are

encouraged either to develop their own matrix classes or rely on third party linear

algebra packages. A list of well-known open source linear algebra packages are

given in Table 5.1. Two of the libraries given in the table are more professionally

developed and widely used: Trilinos and PETSc. In comparison to these two, the

other libraries given in the table are rather small libraries.

5.3.3.1. PETSc

PETSc, the portable, extensible toolkit for scientific computation, is a suite of data

structures and routines in C language for the parallel solution of scientific

applications modeled by partial differential equations. It supports Message Passing

Interface (MPI), and is developed by Argonne National Laboratory of University of

Chicago [44].

56

Table 5.1 : Open source linear algebra packages.

Package Language

Trilinos C++

PETSc C

Eigen C++

Armadillo C++

MTL C++

Blitz++ C++

5.3.3.2. Trilinos

The Trilinos project is a collection of open source linear algebra packages developed

by a team at the Sandia National Laboratories for the solution of large-scale,

complex multi-physics engineering and scientific problems [45]. Trilinos package’s

capabilities include constructing and using vectors, dense and sparse matrices,

iterative and direct solution of linear systems and solution of nonlinear, eigenvalue

and time dependent problems. Moreover, unlike PETSc, Trilinos is developed in

C++ language with an object oriented software framework. Therefore, Trilinos is

selected as linear algebra package in EafeLib solver in which it is utilized to create

large matrices and to solve linear system of equations as well as eigenvalue

problems.

5.3.4. Input and output file formats

EafeLib solver is designed to read an input file, to process it and to write the results

in an output file. EafeLib solver’s input and output file formats is given below.

5.3.4.1. Input file

An example input file is given in Figure 5.15. It contains nodes, elements, materials,

boundary conditions, and loads sections. In each section the first line defines the total

number of entries in the section and the last line indicates the end of the section.

In the nodes section, each node is described by a line which contains x, y, z

coordinates, boundary conditions, and loads data for the node. If there is no defined

load or boundary condition for a node, it is shown by a zero value.

57

--

NODES
--

%NumberOfNodes

621

 x y z bc load

%Node

%EndNode

--

ELEMENTS
--

%NumberOfElements

2230

 Type Material Nodes load

%Element

%EndElement
--

MATERIALS
--

%NumberOfMaterials

1

 Type E v rho

%Material

1 Isotropic 29000000 0.29 1

%EndMaterial
--

BOUNDARY CONDITIONS
--

%NumberOfBoundaryConditions

1

 Type u v w

%BoundaryCondition

29 1 0 0 0

%EndBoundaryCondition
--

LOADS
--

%NumberOfLoads

1

 Type x y z Load

%Load

30 2 1 0 0 1000

%EndLoads

1 0 0 0 29 0 0

2 0 0 0.25 29 0 0

...

619 2.3083 3.0800 0.1163 0 0

620 1.3955 1.9918 0.125 0 0

621 7.7994 1.0015 0.1249 0 0

1 4 1 25 466 18 528 0

2 4 1 395 123 111 464 2 30 0

3 4 1 190 22 253 463 0

...

2228 4 1 325 297 457 576 0

2229 4 1 234 251 220 445 0

2230 4 1 188 171 157 445 0

Figure 5.15 : EafeLib solver input file format.

Similarly, in the elements section each entry defines a new element by providing

element type, material, nodes and load data defined for the element. Materials section

58

contains the defined materials with modulus of elasticity, poissons ratio and density

values. Boundary conditions and loads sections contain boundary conditions and

loads defined for the system respectively.

5.3.4.2. Output file

OutputWriter class in EafeLib solver provides several output files for displacement

and stress calculation results. Figure 5.16 shows an example output file for u, v, and

w nodal displacements, and Figure 5.17 shows an example output file for element

von Mises stress values.

-- -----

DISPLACEMENTS

-- ---------------------------

%Nodes

 u v w

1 -1.40167e-012 -6.02496e-013 6.5739e-013

2 -1.81538e-012 -5.99436e-013 -7.54723e-013

3 1.34795e-012 -5.73226e-013 -6.16082e-013

4 1.7111e-012 6.15215e-013 -7.16354e-013

5 -0.0464359 -0.702057 7.14397e-005

6 -0.0464268 -0.702054 6.9327e-005

7 0.0465672 -0.702081 8.03487e-005

8 0.046576 -0.702078 6.4535e-005

...

22305 0.000534384 -0.444953 5.11811e-005

22306 0.0431585 -0.667012 6.93339e-005

22307 0.0368602 -0.287516 -7.32378e-005

22308 0.00417458 -0.51658 5.70998e-005

22309 -0.00751449 -0.0101135 0.00134165

22310 0.020127 -0.372122 -5.9786e-005

22311 -0.0368561 -0.247867 -0.00018198

%EndNodeData

Figure 5.16 : EafeLib solver displacements output file format.

59

STRESS

-- -------------------------------

%Elements von Mises

1 50.2329

2 11.1298

3 84.5721

4 0.705486

5 21.652

6 3.27621

7 1.55988

8 100.364

9 78.9913

10 34.5102

... ...

121903 12.7636

121904 13.3287

121905 85.2865

121906 84.1093

121907 79.6254

121908 7.87697

121909 7.85883

121910 7.07428

$EndElementData

Figure 5.17 : EafeLib solver stress output file format.

60

61

6. RESULTS AND DISCUSSION

6.1. Application Tests

In this section some example problems are solved by using EAFE software. The

solutions are compared with the results obtained from a commercial FEM software:

Abaqus.

6.1.1. A loaded cantilever beam

The problem is graphically represented in Figure 6.1. In order to find nodal

displacements and element von Mises stress values for this problem, a model that

contains 122833 linear tetrahedrons is used in EAFE software as given in Appendix

A. Likewise, a model that contains 121205 linear tetrahedral elements is used in

Abaqus software. EAFE’s displacement and stress results are show in Figure 6.2 and

Figure 6.4 respectively. Similarly Figure 6.3 and Figure 6.5 shows the Abaqus

displacement and stress values. These figures clearly show that the results obtained

from EAFE and Abaqus software are almost identical.

Figure 6.1 : A cantilever beam with a uniform load.

62

Figure 6.2 : Cantilever beam deformation contours in EAFE.

Figure 6.3 : Cantilever beam deformation contours in Abaqus.

63

Figure 6.4 : Cantilever beam Mises stress contours in EAFE.

Figure 6.5 : Cantilever beam Mises stress contours in Abaqus.

64

Cantilever beam example is solved for different element numbers in both EAFE and

Abaqus software. The maximum displacement and stress results from six analyses

are summarized in Table 6.1.

Table 6.1 : Displacements and stress results with different element numbers.

Number of Elements Max Displacement (mm) Max von Mises (MPa)

EAFE Abaqus EAFE Abaqus EAFE Abaqus

93857 94725 0.701 0.702 139 142

54626 53960 0.694 0.695 132 134

37947 36080 0.687 0.686 128 130

14456 13601 0.664 0.658 120 120

4111 3834 0.604 0.593 106 116

2015 1919 0.554 0.560 97.6 108

6.1.2. A plate with a hole

The problem is graphically represented in Figure 6.6 and EAFE model for this

problem is given in Appendix B. Different from the previous problem a mesh of

315735 tetrahedrons is used in both software. Nodal displacement contours obtained

from EAFE and Abaqus are given in Figure 6.7 and Figure 6.8 respectively. Also,

von Misses stress contours are given in Figure 6.9 for EAFE software, and in Figure

6.10 for Abaqus software. It is shown that same results are obtained from EAFE and

Abaqus.

Figure 6.6 : A plate with a hole.

65

Figure 6.7 : Plate deformation contours in EAFE.

Figure 6.8 : Plate deformation contours in Abaqus.

66

Figure 6.9 : Plate Mises contours in EAFE.

Figure 6.10 : Plate Mises contours in Abaqus.

67

The plate with a hole example is solved by using same mesh in both EAFE and

Abaqus software. The maximum displacement and stress results from six analyses

are summarized in Table 6.2.

Table 6.2 : Displacements and stress results with different element numbers.

Number of Elements Max Displacement (mm) Max von Mises (MPa)

EAFE Abaqus EAFE Abaqus EAFE Abaqus

201019 201019 0,009957 0,0099568 29,716 29,723

33803 33803 0,009931 0,0099314 29,371 29,357

26866 26866 0,009931 0,0099314 28,199 28,199

13981 13981 0,009881 0,0098806 25,855 25,834

7928 7928 0,009830 0,0098298 24,683 24,683

2729 2729 0,009804 0,0098044 23,304 23,304

6.1.3. A support beam with a uniform pressure

The problem is graphically represented in Figure 6.11 and EAFE model for this

problem is given in Appendix C. Similar to the previous examples nodal

displacement contours obtained from EAFE and Abaqus by using 133552 tetrahedral

elements are given in Figure 6.12 and Figure 6.13 respectively. Also, von Misses

stress contours are given in Figure 6.14 for EAFE software, and in Figure 6.15 for

Abaqus software. It is shown that results from EAFE and Abaqus are similar.

Figure 6.11 : Support beam.

68

Figure 6.12 : Support beam displacement contours in EAFE.

Figure 6.13 : Support beam displacement contours in Abaqus.

69

Figure 6.14 : Support beam Mises contours in EAFE.

Figure 6.15 : Support beam Mises contours in Abaqus.

70

A support beam with a uniform pressure example is solved for different element

numbers in both EAFE and Abaqus software. The maximum displacement and stress

results from six analyses are summarized in Table 6.3.

Table 6.3 : Displacements and stress results with different element numbers.

Number of Elements Max Displacement (mm) Max von Mises (MPa)

EAFE Abaqus EAFE Abaqus EAFE Abaqus

134026 133045 0.827 0.829 268 240

92941 97467 0.819 0.822 233 225

54580 55051 0.804 0.807 212 208

17692 17016 0.769 0.754 202 207

10526 10539 0.748 0.724 167 159

4517 4811 0.665 0.677 144 150

6.1.4. Dynamic analysis of a cantilever beam

The problem is graphically represented in Figure 6.16 and EAFE model for this

problem is given in Appendix D. The first 8 mode shapes and corresponding natural

frequencies obtained from EAFE and Abaqus by using a mesh of 3347 tetrahedral

elements are given in Table 6.4 and Table 6.5 respectively. It is shown that the

results from EAFE and Abaqus are similar.

Figure 6.16 : A cantilever beam

71

Table 6.4 : Cantilever beam mode shapes.

Modes EAFE Abaqus

Mode1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

Mode 7

Mode 8

72

Table 6.5 : Cantilever beam natural frequencies.

Modes
Natural Frequencies (Hertz)

EAFE Abaqus

1 54.4382 54.412

2 167.1536 167,08

3 335.1094 334.04

4 504.8248 490.5

5 902.6512 900.34

6 920.8526 914.16

7 1306.8326 1306.6

8 1521.8421 1496

73

7. CONCLUSIONS

In the present work, a 3D finite element software, with a geometry module, a mesh

module and a stand-alone solver module is developed by using C++ programming

language and an object-oriented programming approach. The geometry module is

tested via creating a number of solid parts for finite element analysis, whereas the

mesh module is tested by means of their discretization. Moreover, an important

aspect of this study, the suitability of object-oriented programming for finite element

analysis is demonstrated through developing an FEM processor library: EafeLib. The

performance of EafeLib processor is compared with a commercial software package.

The aim at using OOP philosophy in EafeLib processor development was to provide

a modular, extensible and reusable FEM software framework. In order to accomplish

this, six main classes are used in EafeLib. One of them is the abstract element class

which interfaces common virtual functions that any element subclass in this

framework must implement. To exemplify usage of these virtual functions a linear

tetrahedral element class is developed and in a similar fashion as many different

element classes as desired can be easily developed and integrated into the software.

Likewise, three other classes: load, boundary condition and material are made

abstract to further stimulate extensibility of the software. Another important class in

the framework is the model class and it is used to build FEM models. In addition, a

node class developed to hold nodal coordinate and displacement data for each node.

The flexibility in EafeLib processor is provided by these six base classes.

Three linear static analysis examples are solved both in the developed software and

in Abaqus. Nodal displacements and von Mises stress values obtained from the

EAFE software are compared to the ones from the Abaqus. It is shown that, the

results are almost identical.

The first thing to do to extend EAFE software is to add 1D and 2D modeling

capabilities. This can be accomplished by adding 1D and 2D elements such as beam

and triangle to the EafeLib processor. Moreover, new solid elements will be added to

74

let users select an element type from the element library according to the analysis

they make.

Currently EAFE software can only handle simple load and boundary condition

scenarios. New load and boundary condition types will be added to improve the

software.

Mesh module in EAFE software has limited functionalities and is not able to

generate meshes with some important element types such as quadrilateral or

hexahedral elements. This limitation can be overcome by providing a mesh import

function. If a mesh import function is provided, users will be able to use different

software for mesh generation.

EAFE software has linear static and linear dynamic analysis options. Different

analysis types should be added to the EafeLib processor.

75

REFERENCES

[1] Fenves, G. L. (1990). Object-oriented programming for engineering software

development. Engineering with Computers, Vol. 6, pp. 1-15.

[2] Rehak, D. R. (1986). Artificial intelligence based techniques for finite element

program development. In: Bathe K-J, Owen DRJ, editors. Symposium

on Reliability of Methods for Engineering Analysis. Pineridge Press,

pp. 515-532.

[3] Peskin, R. L., Russo, M. F. (1988). An object-oriented system environment for

partial differential equation solving. Proceedings ASME Computations

in Engineering, pp. 409-415.

[4] Miller, G. R. (1988). A LISP based, object-oriented approach to structural

analysis. Engineering with Computers, Vol. 4, pp. 197-203.

[5] Forde, B. W. R., Foschi, R. O., Stiemer, S. F. (1990). Object-oriented finite

element analysis. Comput Struct, 34(3), pp. 355–374.

[6] Duboispelerin, Y. and Zimmermann T. (1993). Object-Oriented Finite Element

Programming.3. An Efficient Implementation in C++. Computer

Methods in Applied Mechanics and Engineering, Sept., Vol. 108, N1-

2, pp. 165-183.

[7] Duboispelerin, Y., Zimmermann, T., Bomme, P. (1992). Object-Oriented Finite

Element Programming.2. A Prototype Program in Smalltalk.

Computer Methods in Applied Mechanics and Engineering, Aug., Vol.

98, N3, pp. 361-397.

[8] Menetrey, P., Zimmermann, T. (1993). Object-Oriented Non-Linear Finite

Element Analysis - Application to J2 Plasticity. Computers &

Structures, Dec. 3, Vol. 49, N5, pp. 767-777.

[9] Zimmermann, T., Duboispelerin, Y., Bomme, P. (1992). Object-Oriented Finite

Element Programming .1. Governing Principles, Computer Methods

in Applied Mechanics and Engineering, Jul., Vol. 98, N2, pp. 291-

303.

[10] Lu, J., White, D., Chen, W. F. (1993). Applying object-oriented design to finite

element programming. SAC ’93: proceedings of the 1993

ACM/SIGAPP symposium on applied computing. ACM, New York,

pp. 424–429.

[11] Lu, J., White, D. W., Chen, W. F., Dunsmore, H. E. (1995). A matrix class

library in C++ for structural engineering computing. Comput Struct.

Vol. 55, N1, pp. 95–111.

76

[12] Bangerth, W., Hartmann, R., Kanschat, G. (2006). deal.II—a general purpose

object oriented finite element library. Technical Report. ISC-06-02-

MATH, Institute for Scientific Computation, Texas A&M University.

[13] Bangerth, W., Hartmann, R., Kanschat, G. deal.II Differential equations

analysis library, Technical reference. Date retrieved: 17.10.2013,

address: http://www.dealii.org

[14] Patzák, B., Bittnar, Z. (1999). Object oriented finite element modeling. Acta

Polytech 39(2), pp. 99–113.

[15] Holmevik, J., R. Compiling SIMULA: A historical study of technological

genesis.

[16] Url-1 <http://www.ntecs.de/old-hp/uu9r/lang/html/uml_shape.png>, date

retrieved 08.09.2013.

[17] UML, Superstructure Specification Version 2.2. OMG, February 2009.

[18] Forde, B. W. R., Foschi, R. O. and Steimer, S. F. (1990). Object-oriented finite

element analysis. Computers and Structures, Vol. 34, pp. 355–374.

[19] Url-2 <http://homepage.usask.ca/~ijm451/finite/fe_resources/node139.html>,

date retrieved 07.07.2013.

[20] Deitel, H. M., Deitel, P. J. (2003). Java, How to Program, Deitel Associates Inc.

5
th

 edition, Prentice Hall, USA, pp. 1-25.

[21] Deitel, P., Deitel H. (2012). C++ How to Program, Deitel Associates Inc. 8
th

edition, Prentice Hall, USA, pp. 17-18.

[22] Hortons, I. (2010). Beginning Visual C, Wiley, USA, pp. 877.

[23] Guha, S. (2011). Computer graphics through OpenGL from theory to experiments,

CRC Press, USA, pp. 6.

[24] Shirley, P., Marschner, S. (2009). Fundamentals of computer graphics, 3
rd

edition, CRC Press, USA, pp. 3.

[25] Sarcar, M. M. M., Rao, M. K., Narayan, L. K. (2008), Computer aided design

and manufacturing , pp. 3.

[26] Url-3 <http://design.osu.edu/carlson/history/lesson10.html>, date retrieved

06.05.2013.

[27] Richard, S., Wright, Jr., Haemel, N., Sellers, G., Lipchak, B. (2011). OpenGL

Super Bible Comprehensive Tutorial and Reference, 5
th

 edition,

Addison-Wesley, USA, pp. 11–18.

[28] Wireframe teapot. (n.d.). Date retrieved: 06.07.2013, address:

http://caig.cs.nctu.edu.tw/course/CG2007

[29] Modern render. (n.d.). Date retrieved: 06.07.2013, address:

http://commons.wikimedia.org/wiki/File:Utah_teapot_simple_2.png

[30] Original teapot. (n.d.) Date retrieved: 06.07.2013, address:

http://boakes.org/2005/07/01/teapot/

[31] Guha, S. (2011). Computer Graphics through OpenGL, from theory to

experiments, CRC Press, USA, pp. 35-39.

[32] Url-4 <http://math.hws.edu/graphicsnotes/c2/s4.html>, date retrieved 07.04.2013.

77

[33] Eck., D. J. Fundamentals of computer graphics with java, openGL and jogl, pp.

51-54.

[34] Url-5 <http://gfxspeak.com/2013/06/06/does-the-cad-world-need-another-

geometry-kernel/>, date retrieved 07.05.2013.

[35] OCCT Object Libraries, Application Framework user guide, version 6.5.5,

March 2013.

[36] Url-6 <http://www.salome-platform.org/>, date retrieved 21.08.2013.

[37] Geuzaine, C., Remacle, J. F. (2013), Gmsh reference manual , pp. 5-6.

[38] Geuzaine, C. and Remacle, J. F. (2009). Gmsh: a three-dimensional finite

element mesh generator with built-in pre- and post-processing

facilities. International Journal for Numerical Methods in

Engineering, Vol. 79, N11, pp. 1309-1331.

[39] Fish, J., Belytschko, T. (2007). A First Course in Finite Elements, Wiley, USA,

pp. 1-2.

[40] Chandrupatla, T. R., Belegundu, A. D. (2002). Introduction to finite elements in

Engineering, 3rd edition, Prentice Hall, pp. 275-284.

[41] Url-7 <http://www.engapplets.vt.edu/Mohr/java/nsfapplets/MohrCircles2

3D/Theory/brick.gif>, date retrieved 08.05.2013.

[42] Url-8 < http://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/AFE

M.Ch09.d/AFEM.Ch09.pdf>, date retrieved 23.10.2013.

[43] Lakshmininarayana, H. (2004). Finite Elements Analysis: Procedures in

Engineering, Universities Press, pp. 111-112.

[44] Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D.,

Knepley, M., Curfman L., McInnes, Smith, B. and Zhang H.
(2013). PETSc Users Manual, Revision 3.4 by Mathematics and

Computer Science Division, Argonne National Laboratory, pp. 19-21.

[45] Sala, M., Heroux, M. A., Day, D. M., Willenbring J. M. (2004). Trilinos user

manual, Trilinos Release 10.12, Sandia Report SAND2004-2189, pp.

1-8.

http://www.salome-platform.org/
http://geuz.org/gmsh/doc/preprints/gmsh_paper_preprint.pdf
http://geuz.org/gmsh/doc/preprints/gmsh_paper_preprint.pdf
http://geuz.org/gmsh/doc/preprints/gmsh_paper_preprint.pdf
http://geuz.org/gmsh/doc/preprints/gmsh_paper_preprint.pdf

78

79

APPENDICES

APPENDIX A: EAFE model for cantilever beam example

APPENDIX B: EAFE model for a plate with hole example

APPENDIX C: EAFE model for support beam example

APPENDIX D: EAFE model for modal analysis of a cantilever beam

80

81

APPENDIX A

Figure A.1 : Solid model of cantilever beam and its finite element mesh.

82

Figure A.2 : Defining boundary condition and load for the model.

83

APPENDIX B

Figure B.1 : Adding points and lines to create half of the plate.

84

Figure B.2 : Creating a wire by connecting consecutive lines and an arc.

85

Figure B.3 : Using mirror function with an axis to complete the frame of the plate.

86

Figure B.4 : Creating two faces and extruding them along an axis.

87

Figure B.5 : Fusing two separate halves and defining material for the plate.

88

Figure B.6 : Discretizing the plate by increasing mesh density on critical region.

89

Figure B.7 : Defining boundary condition and load for the model.

90

APPENDIX C

Figure C.1 : Adding points and lines to create the cross-section of the model.

91

Figure C.2 : Creating a face and an axis for extrusion.

92

Figure C.3 : Extruding the face along the axis and creating cylinders for the holes.

93

Figure C.4 : Cutting cylinders from the part and defining material for the model.

94

Figure C.5 : Discretizing the model and adding boundary conditions.

95

Figure C.6 : Adding distributed load.

96

APPENDIX D

Figure D.1 : Solid model of cantilever beam and its finite element mesh.

97

Figure D.2 : Defining boundary condition for the model.

98

99

CURRICULUM VITAE

Name Surname: Halid Eren Adak

Place and Date of Birth: İstanbul, 23/10/1987

E-Mail: erad_5@hotmail.com

BSc: Industrial Engineering (Kocaeli University)

