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ABSTRACT

During cold storage, the enzyme pectin methylesterase (PME) caused softening and loss
of desired gummy texture in rehydrated intermediate moisture (IM) sun-dried figs. Heat
inactivation studies indicated that the purified PME can be inactivated rapidly at 80 °
and 90 °C. However, at or below 70 °C the enzyme showed activation by heating and
inactivated very slowly. The in-situ activation of PME occurred much more extensively
when sun-dried figs were rehydrated between 70° and 90 °C to produce IM figs with
approximately 30 % moisture and this prevented the effective inactivation of enzyme
even by rehydrations conducted at 80 ° and 90 °C. The partial reduction of PME enzyme
activity (almost 30 %) by rehydration of figs at 80 °C for 16 min may be used to delay
undesirable textural changes in cold stored IM figs for 3 months. However, for longer
storage periods hot reyhdration alone is not sufficient to prevent softening. No
considerable yeast and mold growth was detected in IM figs cold stored 3-3.5 months.
However, in some samples rehydrated in water at 80 °C, the total mesophilic aerobic
counts and total yeast and mold counts showed a considerable increase when storage
time exceeded 3-3.5 months. The rehydration of IM figs in 2.5 % H,0O, for 16 min at 80
°C reduced the total mesophilic aerobic microbial count of figs almost 90 %. Due to
bleaching caused by H;O,, the brown fig color turned to a desirable and stable yellow-
light brown as well. However, during cold storage the O, gas released due to the
decomposition of H,O, by in situ fig catalase, accumulated within figs and caused some
physical defects. Also, the residual level of H,O; in the homogenates of disinfected figs
was too much (300 ppm) and it seemed unlikely to eliminate this amount of H,O, by
physical or chemical means during processing. Pureeing IM figs eliminated residual
H,0, very rapidly. The application of rehydration first in 2.5 % H,O, solution at 80 °C
for 4 or 8 min and then in hot water at the same temperature for 12 or 8 min,
respectively, also reduced the amount of residual H,O, in IM figs considerably.
Besides, these two-stage rehydration procedures eliminated the physical defects
occurred in IM figs due to O, gas release and gave firmer IM figs. To reduce the initial
microbial load of IM figs, 4 and 8 min disinfections conducted in H,O, solutions were
less effective than 16 min disinfection in H,O, solution. However, both 4 and 8 min
disinfections effectively suppressed microbial load for at least 3.5 months and they may

be used in the production of SO, free light colored fig products.
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Rehidre edilerek orta nemli hale getirilmis incirlerde sogukta depolama sirasinda ortaya
cikan en belirgin sorunlardan birisinin pektin metilesteraz (PME) enziminin neden
oldugu yumusama oldugu belirlenmistir. S6z konusu yumusama incirlerde arzu edilen
sakizims tekstiiriin ortadan kalkmasina neden olmakta ve 6nemli bir kalite kaybina yol
agmaktadir. Kuru incirlerden ekstrakte edilmis ve kismi olarak saflagtirllmis PME
enzimi 80 ° ve 90 °C" lerde siiratle inaktive edilebilmekte, ancak buna kargin 70 °C ve
bu derecenin altindaki sicakliklarda yavas bir gekilde inaktive olmakta ve Onemli
diizeyde aktivasyon gostermektedir. Nem diizeyi % 30 olacak sekilde incirlerin 70-90
°C’ler arasinda sicak su igerisinde rehidre edilmesi sirasinda incir dokularinda bulunan
PME enziminde goriilen 1siyla aktivasyon, saflastirilmis olan enzime gére gok daha
fazla gerceklesmekte ve bu durum enzimin incirlerde biiyitk oranda aktif kalmasina
neden olmaktadir. Incirlerin 80 °C de 16 dakika rehidre edilmesi PME enzimini kismi
olarak inaktive edebilmekte ( yaklagik % 30 diizeyinde) ve bu durum sogukta 3 ay kadar
depolanmis incirlerde yumusamay: geciktirebilmektedir. Ancak, depolama siiresinin 3-
3.5 ay1 agmasi durumunda yalmzca sicak rehidrasyon uygulayarak yumusamanin
Onlenmesi miimkiin goriilmemektedir. Yiiriitiilen mikrobiyolojik sayimlar 3-3.5 ay
sogukta depolanmus, 1sitilmis incirlerde herhangi bir kiif veya maya gelismesi meydana
gelmedigini gostermistir. Ancak bu siirenin agilmasiyla 80 °C’de rehidre edilmis
incirlerin toplam mezofilik aerobik mikroorganizma sayisinda ve toplam maya ve kiif
sayisinda Snemli artiglar olabilmektedir. 80 °C ‘deki rehidrasyon isleminin % 2.5 H,0,
¢ozeltisi icerisinde yiiriitlilmesi toplam mezofilik aerobik mikroorganizma sayisinda %
90°lik bir azalma meydana getirmis ve kullanilan H,O, incirlerin renginde oldukga
arzulanan stabil bir sari-agik kahve rengin olugmasini saglamistir.  Ancak, bu
uygulamayla dezenfekte edilmis incirlerde bulunan katalaz enziminin kalnti H,O,'i
pargalamasiyla olusan ve bitkisel dokuda biriken O, gazi, sogukta depolama sirasinda
incirlerde birtakim fiziksel hasarlara yol agmistir. Ayrica bu uygulama ile dezenfekte
edilmis incirlerden elde edilen homojenatlarda herhangi bir fiziksel veya kimyasal
yontemle zor giderilebilecek diizeyde yiiksek (300 ppm) H,O, kalintist bulunmugtur.
Ancak incirlerin pireye islenmesiyle ortamda bulunan H,O, kalintis1 katalaz enzimi
etkisiyle kisa siirede yok olabilmektedir. Ayrica, rehidrasyon isleminin sirasiyla 6nce 4
veya 8 dakika 80 °C deki %2.5'luk H,0; igerisinde ve daha sonra 12 veya 8 dakika ayni
derecedeki sicak su igerisinde gerceklestirilmesiyle, kalintt H,O, miktarimin biiyiik



oranda azaltilmasi ve depolama sirasinda olusan fiziksel hasarlarin tamamen giderilmesi
miimkiindiir. Ayrica bu iki agamal: dezenfeksiyon islemleriyle elde edilmis incirlerde
daha az yumusama belirlenmistir. % 2.5 "luk H,O, ¢6zeltileri igerisinde 4 veya 8 dakika
dezenfeksiyon uygulanmasi, aym ¢6zelti igerisinde 16 dakika dezenfeksiyon
uygulanmasina gére incirlerin baglangi¢ mikrobiyal yiikii lizerinde daha az bir etki
gOstermektedir. Ancak her iki uygulama da sogukta depolanan orta nemli incirlerde
mikrobiyal yiikiin en az 3,5 ay boyunca basariyla baskilanmasini saglamakta ve SO,

icermeyen agik renkli incir tiriinlerinin iiretilebilmesini miimkiin kilmaktadir.

vi
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Chapter 1

INTRODUCTION

Turkey with its 300.000 metric tones of annual production is the largest producer of figs
in world (Cabrita et al., 2001). Most of the figs are produced in the Aegean region of
Turkey, around the city of Izmir whose ancient name is Smyrna, and the dominating
cultivar grown is Sarilop cultivar. Almost all of the figs grown have been destined for
sun-drying that is conducted after the fruits left on trees dry partially and fall down.
Traditionally, the sun-drying is carried out in field by spreading the figs on mats for 8-
10 days (Cemeroglu, 1986). Currently, the drying is also conducted in some simple
tunnel driers that accelerate the drying process and increase the microbial quality of

figs.

The sun-dried figs generally contain 15-20 % moisture (Desai and Kotecha, 1995) and
with their characteristic gummy texture they may be consumed as is or may be utilized
as ingredients to different products such as breakfast cereals, cereal bars and
confectionary. In recent years, the demand of industry and consumers to intermediate
moisture (IM) fruits has increased the process of rehydration of sun-dried fruits to 25-40
% moisture (Cemeroglu, 1986; Desai and Kotecha, 1995; Simmons et al., 1997). IM
fruits are more suitable for direct consumption and they may also be used as ingredient
in the production of dairy and bakery products. Moreover, IM fruit pieces may be
utilized as ingredient in salads, fruit drink formulations, preserves, jams or jellies (de

Daza et al., 1997).

To obtain a microbial stability at room temperature, intermediate moisture foods (IMF)
are stabilized by different chemical preservatives such as sorbates, sulfates and
benzoates (Cemeroglu, 1986; de Daza et al., 1997). However, due to the increased
health concerns the use of such chemical preservatives has been limited, banned or
discouraged. For example, because of their asthmatic reactions FDA banned the use of
sulfites in fresh fruit and vegetables (Labuza et al., 1992). Also, there is a great pressure
from consumers to reduce or abandon the use of sulfites in dehydrated or sun-dried

fruits (Ozkan and Cemeroglu, 2002). The American dried-fruit industry has also



developed some hazard analysis and critical control point programs to find an

alternative to sorbates used in exportation products (Simmons et al., 1997).

Recently, some successful studies were conducted to reduce the microbial load of IM
fruits such as raisins and plums with vapor-phase H,O, disinfection (Simmons et al.,
1997; Sapers and Simmons, 1998). Also, many other successful applications of liquid
phase H,0, disinfection were demonstrated for fresh fruit and vegetables (Sappers and
Simmons, 1998). H,0, is a GRAS (Generally Recognized as Safe) chemical and FDA
approved the direct use of this chemical in the disinfection of different food products at
the concentrations ranging from a high of “sufficient for purpose” to a low of 0.04 %
(Code of Federal Regulations, 2000a). However, FDA requires that the residual H,O,
in disinfected food be removed by appropriate physical and/or chemical means

following disinfection.

Recently, the potential application of hurdles such as cold storage, mild heating and
H,0; disinfection for the preservation of IM sun-dried figs at 30 % moisture content
were investigated. During cold storage, one of the biggest problems observed was
softening and loss of desired gummy texture of IM figs in several months. The enzyme
pectin methylesterase (PME) plays a central role in the softening of fruits and
vegetables by reducing the degree of pectin methylation and making it a substrate for
polygalacturonases (PG) that depolymerize the pectin (Pressey and Woods, 1992;
Thakur et al., 1996). Thus, after the determination of considerable amounts of PME
activity in softened figs it was decided that in addition to the control of microbial load,
the control of PME action is also essential to obtain good quality IM sun-dried figs. In
this thesis, the activity and thermal properties of PME in sun-dried figs have been
investigated and the potential application of hot rehydration alone or in combination
with H,O, to control PME mediated textural changes and microbial load during cold
storage of IM sun-dried figs was tested.



Chapter 2

HURDLE CONCEPT AND FRUIT PRESERVATION TECHNOLOGIES

2.1. Hurdle Concept

Since many years foods have been preserved by traditional methods such as adding
chemical preservatives, canning, freezing, drying, chilling, fermentation, etc. Today,
these preservation methods are still employed extensively to obtain numerous products.
Thus, food technologists have still been developing and characterizing the effects of
traditional preservation methods on microbial safety, sensory attributes and nutritional

quality of foods to assure public health and consumer satisfaction.

Most traditional methods of food preservation provide sufficient safety by effectively
killing or preventing the growth of pathogenic and spoilage microorganisms. However,
when they applied alone almost all of them cause some changes in the sensory attributes
of food such as texture, flavor and color. Also, the use of chemical preservatives at high
concentrations causes some health concerns and reduces the consumer acceptance of
foods. Thus, in recent years many efforts have been spent to develop some alternative
preservation technologies that provide sufficient microbial safety, maintain the sensory
attributes and minimize health concerns of consumers. Hurdle technology has appeared
as a result of these intensive studies. In this technology carefully selected and combined
preservative factors are applied to obtain the indicated benefits. There are more than 60
potential hurdles that may be used in this technology (Leistner, 2000). However, the
most important hurdles used in food preservation are heating, water activity (ay), acidity
(pH), redox potential, refrigeration and competitive microorganisms (e.g., lactic acid
bacteria). The other hurdles include; oxygen tension (low or high), modified atmosphere
(carbon dioxide, nitrogen, oxygen), pressure (high or low), radiation (UV, microwaves,
irradiation), ohmic heating, pulsed electric fields, pulsed light, ultrasonication and new

packaging (e.g., selective permeable films, advanced edible coating) methods.

Some hurdles are very effective and they may influence both the microbiological safety
and flavor of foods positively when used properly. However, the same hurdles, when
their intensity is increased too much, may cause a negative effect on the foods. Thus,

considering the safety and quality, it is very critical to keep hurdles at the optimum



range. The kind of hurdle differs according to the type of food. One or set of hurdles
may be used to obtain high quality and food safety by keeping the normal population of
the microorganisms under control. At this point, the initial microbial quality of the food
is important. In fact, this is one of the main factors determining the intensity of the

hurdles.

2.2. Application of Hurdle Concept in Different Fruit Preservation Technologies

2.2.1. Intermediate moisture food (IMF) technology

IMF technology is considered as one of the major fruit preservation technologies. IMFs
have no precise definition based on their water activity (a,) and water content.
However, generally they include the products that have a,, between 0.75-0.92 (Welti-
Chanes et al., 1997). These products are obtained by adjusting their a, to the given
range by different methods such as dehydration, osmotic dehydration and dry infusion.
Although different sources report varying water contents for intermediate moisture (IM)
fruits, the water content between 20 and 50% may be accepted as the intermediate

moisture level which makes fruit soft, moist, and ready to eat (Cemeroglu, 1986).

Because of their suitable a,, the IM fruits may easily be spoiled by the action of fungi.
Thus, they should be stabilized by use of different preservative factors. In 1980s, the
commiittee for IMF of France’s National Center for Coordination of Research on Food
and Nutrition proposed the following comprehensive definition for intermediate
moisture foods; “Food products of soft texture, subjected to one or more technological
treatments, consumable without further preparation and with a shelf stability of several
months, assured without thermal sterilization, nor freezing or refrigeration, but an
adequate adjustment of their formulation: composition, pH, additives, etc. and mainly

v, which must be between 0,6 and 0,84 ( measured at 25 °C )"

2.2.1.1. Methods of a,, reduction
The major hurdle used to prevent microbiological spoilage of IMF is a, control. The

methods to reduce a,, are classified into four groups:



2.2.1.1.1, Partial drying

For partial drying the most frequently used method for fruits is sun-drying which is
simple and cheap. In Turkey, this method is still used extensively for figs apricots and
raisins. Commercial dehydrators can also be used to reduce the water content of fruits
and other food and to control their a,. This method is applied generally to pears, raisins,

peaches and apples.

2.2.1.1.2. Osmotic drying (moist infusion)

In this method food pieces are soaked in solutions of different humectants such as
sugars, alcohols, polyols, organic acid salts, proteins, etc. Difference between osmotic
pressure of food and solution provides a driving force. Thus, water in food particles
diffuses into solution and humectant diffuses into food particles. This method is applied

in the production of candied fruits by using sugar as a humectant in soaking solution.

2.2.1.1.3. Dry infusion
In this method food pieces are first dehydrated and then they are soaked in humectant
solution at the desired ay. This is the most energy intensive method of IMF production

but it gives high quality products.

2.2.1.1.4. Blending (formulation)

[n this method, which is currently very popular, foods and various ingredients including
humectants are mixed and different processes such as extrusion, cooking and baking are
applied to mixture to reach the target a,. This is a fast and energy-efficient method that
is more flexible than others in using different ingredients and it is employed both for

traditional IMF (confectionaries and preserves) and novel IMF (snacks and pet foods).

2.2.1.2. Stability of IMF

In the IMF technology, reduction of a, reduces the amount of free water participating in
chemical and biochemical reactions. Although, this does not slow down some
deteriorative reactions it may prevent the growth of most microorganisms in food and
increases the stability of IMF (Figure 2.1). For a microbiologist a,, is water availability
for microbial growth. The a, is measured as equilibrium relative humidity (ERH), the

percent relative humidity of an atmosphere in contact with a product at the equilibrium



water content (Toledo, 1994). a, is also the ratio of the partial pressure of water in the

headspace of a product (P) to the vapor pressure of the pure water (P°).

aw = ERH = P/P°

Relative Reaction Rate
Moisture Content

S
Mu&“
P = |
2 03 04 05 06 Q7

water activity

Figure 2.1.The effect of a, on chemical and biochemical reactions in foods

(www.fsci.umn.edu/Ted-Labuza / papers / IMF.pdf ).

2.2.1.2.1. Microbial stability of IMF

Although the reduction of a, in IMF prevents the growth of most pathogenic
microorganisms, there are still some microorganisms that can cause spoilage and health
problems when conditions are favorable. One of the major concerns of IMF is
Staphylococcus aureus. This microorganism is able to grow at a,, above 0.84-0.85 if the
pH is favorable (www.fsci.umn.eduw/Ted-Labuza / papers / IMF.pdf). Thus, formulation
of IMF at the highest possible moisture content, for improved texture and palatability,
requires additional measures for the inhibition of S. aureus. The other bacteria that can
be problem in IMF are Streptococcus faecalis and Lactobacillus spp. However, these
two bacteria can grow in IMF only when a,, is above 0.87-0.88. Thus, they are less

important.



Another concern is common Aspergillus and Penicillium species that can grow at a,
above 0.77-0.85. The minimum a,, for mycotoxin production by these molds is usually
higher. Osmophilic yeast, Saccharomyces rouxii, and molds such as Aspergillus
echinulatus and Monascus bisporus cause spoilage between 0.6 and 0.65 a,, whereas
Xerophilic molds such as Aspergillus chavalieri, Aspergillus candidus and Wallamia
sebi cause spoilage between 0.65 and 0.75 a,, (www.fsci.umn.edw/Ted-Labuza / papers /
IMF.pdf). In dried fruits such as figs and dates different species of Zygosaccharomyces
and Hanseniaspora are important agents causing spoilage, whereas Saccharomyces
rouxii, Aspegillus glaucus and Xeromyces bisporus cause spoilage mostly in plums
(Cemeroglu, 1986). Thus, besides a,, , some additional hurdles should also be used for

the microbial stabilization of IMF.

The second most important hurdle for the stabilization of IMF is the use of chemical
preservatives. The most frequently applied chemical preservatives are sulfites, sorbic,
citric, benzoic, propionic, phosphoric and ascorbic acids (Welti-Chanes et al., 1997).
Also, propylene glycol, a humectant with specific antimicrobial activity is used in the
stabilization of IMF. The effective mold inhibitors are sorbates and propionates,
whereas propylene glycol is effective on S, aureus. Above pH 5.4 and in 0.86-0.90 a,
range most chemical additives show very little antimicrobial effect. However, at these
conditions propylene glycol may inhibit S. aureus and molds such as Aspergillus
glaucus and Aspergillus niger. At higher a,, values at pH 5.4 propylene glycol should be
combined with mold inhibitors such as sorbates and propionates. At high a, values
generally organic acids are more effective than phosphoric acid. But at low a,, values
this inorganic acid is more effective then the organic acids (www.fsci.umn.edu/Ted-
Labuza / papers / IMF.pdf).

Other hurdles used in IMF technology are pH and heat treatment. Although, thermal
processing is not specified in the hurdles applied to IMF, pasteurization is sometimes
used to obtain IMF products. For example, Cemeroglu (1986) reported the

pasteurization of intermediate moisture dates.

2.2.1.2,2, Chemical and biochemical stability of IMF
[n the a, range of IMF the rates of some deteriorative chemical reactions increase

dramatically. In fact, this is the main disadvantage of IMF. The main chemical reactions



in IMFs are non-enzymatic browning and lipid oxidation. However, due to the very low
amount of lipids in fruits non-enzymatic browning is the major deteriorative reaction in
IM fruits. Also, some enzymatic changes may cause the loss of [M fruit quality if they

are not controlled.

Non-enzymatic browning: In dried fruits and M fruits the reducing sugars produce
some undesirable brown pigments. These pigments are formed especially during long-
term storage. However, thermal processing of foods may accelerate the brown pigment
formation by reducing sugars. The reaction that leads the formation of brown pigments
occurs by the interaction of carbonyl groups of reducing sugars, mainly D-glucose, with
amino groups of amino acids or free amino groups of amino acid residues in proteins
and it is called the Maillard reaction or non-enzymatic browning ( Davidek et al, 1990)
The flavor, aroma and color of brown pigments may be desirable for some foods such
as chocolate and caramels. However, in IM fruits the formation of brown pigments is

undesirable.

The formation of brown pigments by Maillard reaction occurs at different steps. In the
first step of reaction the reducing sugar reacts with amine reversibly to produce the
glycosylamine. This undergoes a reaction called Amadori rearrangement to give some
products that turn intermediates and then dehydrate to some cyclic furan derivative. In
the case of glucose the amadori rearrangement gives a derivative of 1-amino-1-deoxy-
D-furanose and when dehydrated this produces the furan derivative 5-hydroxymethyl-2-
furaldehyde (HMF) that polymerizes quickly to dark-colored pigments (BeMiller and
Whistler, 1996; Davidek et al., 1990).

In IMF these brown pigments may also cause the formation of off-flavors that are not
acceptable by consumers. Moreover, the reaction of reducing sugars with amino acids
destroys the amino acids. This is particularly important for the lysine that is an essential
amino acid important for the nutritive value of proteins. However, considering the low

lysine content of plant proteins this may not be a considerable problem in fruit products.

The reactivity of different sugars to form brown pigments is as follows: ribose > xylose

> arabinose > galactose > glucose > fructose > galactose > mannose > glucose >



fructose > lactose > saccharose (Davidek et al., 1990). Thus, when non-enzymatic
browning is a problem pentoses such as ribose, xylose and arabinose should not be used

in the formulation of IM fruits.

For the rate of Maillard reaction the ay, of food is very critical. Between 0.6-0.7 a,, the
reaction occurs with maximum rate. However, at lower and higher a, values the
reaction slows down. Thus, control of a, may be an effective method to limit non-
enzymatic browning. In fact, the use of sulfites is the most effective method to prevent
non-enzymatic browning. However, due to their adverse health effects, the use of these

chemicals has been discouraged.

Enzymatic browning: The enzymatic browning catalyzed by enzyme polyphenol
oxidase (PPO) is one of the biggest problems observed during processing of fruits.
Processes such as cutting, pitting and peeling cause disruption of plant cells and contact
of phenolic compounds in vacuols and PPO in cytoplasm in the presence of air starts
enzymatic oxidation. The oxidized phenolic compounds are not stable and turn
spontaneously to dark brown melanins. Compared to non-enzymatic browning, the
reaction occurs very fast and it causes the loss of food sensory properties such as color
and flavor. The enzymatic browning also causes the reduction of the nutritive value of
foods by causing the exhaustion of antioxidants such as ascorbic acid. Thus, during
processing the PPO is generally inactivated by heat treatment. In fact, PPO enzymes do
not belong to an “extremely heat-stable enzyme” group and short exposures of product
to temperatures between 70 ° and 90 °C are sufficient to inactivate them. However, in
some Prunus fruits such as cherries, plums and apricots PPO may have a considerable
thermostability (Vamos-Vigyazo, 1981). In particular, the thermostability of apricot
PPO has been known for a very long time (Ponting et al., 1954). Thus, during

processing of apricots the heat treatment may be combined by browning inhibitors.

Besides their considerable effect on non-enzymatic browning reactions, sulfites are also
used effectively to inhibit enzymatic browning. However, as indicated above due to the
health concerns, there have been great efforts to minimize or eliminate the use of
sulfites in food technology. This has encouraged the use of sulfite alternatives, such as
ascorbic acid and its derivatives, B-cyclodextrin, L-cysteine, and 4-hexylresorcinol

(Sapers and Miller, 1992; Santerre et al., 1991; Gunes and Lee, 1997). These chemicals



are less effective compared with sulfites. However, when they used in combination
with complementary treatments such as packaging under nitrogen atmosphere and/or
use in combination with heat treatments, acidic solutions or polyphosphates they
became more effective (Sapers and Miller, 1992; Sapers and Miller, 1995; Gunes and

Lee, 1997).

Enzymatic softening: By acting as a cement material between the plant cells, pectin
plays an important role for the firmness of plant tissues. During processing and storage,
pectic enzymes such as pectin methylesterase (PME) and polygalacturonase (PG) may
cause the softening of IM fruits by the degradation of pectin. The enzyme pectin
methylesterase (PME) plays a central role in the softening process (Pressey and Woods,
1992; Thakur et al, 1996). This enzyme demethylates pectic polysaccharides and makes
them suitable for the action of PG that degrades low methoxy pectin chains by
hydrolysis (Cemeroglu et al., 2001). Today, there is no commercial inhibitor for pectic
enzymes. Thus, the heat treatment of fruits is sometimes desired for the inactivation of

these enzymes.

2.2.1.3. Advantages of using IMF technology

The traditional methods such as canning, refrigeration and freezing are energy intensive
methods. Thus, compared to these methods IMF production requires less energy. This is
the main advantage of IMF technology and it is important especially in countries with
tropical climates and third world countries where refrigeration is scarce. The other
advantages of IMF are; (1) they are ready to eat foods and need no preparation, (2)
because of their high plasticity they can easily be shaped as needed and packed
uniformly, (3) the appropriate hurdles applied during their production make these food
safe, (4) IMF contains concentrated nutrients. Thus, compared to fresh fruits they
provide more nutrients and energy. With all these properties IMF are also very suitable

for military purposes and for use at times of natural disasters.

2.2.2. High moisture fruit products (HMFP) technology

The HMFP technology has recently been developed for the preservation of fruits. The
moisture level of HMFP is considerably higher than those of IMF, but it is lower than
those of the fresh products. Although, the a,, of HMFP varies in the range of 0.93-0.98,

they are shelf-stable at room temperature (de Dazza et al, 1997). Thus, compared to
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IMF technology the hurdles should be combined more carefully to obtain the desired

microbiological stability in these products.

The main hurdles used in the production of HMFP are ay, , pH, preservatives and mild
heating and this technology aims processing fresh fruits to stable fruit products with
maximum retention of their sensory properties. Thus, intensity of each hurdle should be
selected very carefully. In the application of HMFP technology, the ay of the product is
reduced by blending or by immersion in solutions of sucrose, glucose, maltodextrins,
etc.,, whereas the pH is adjusted to low levels (between 3.0-4.1) without flavor
impairment. The preservative effect of this technology depends mainly on the principle
that a slight reduction in a,, decreases the range of pH that allows the microbial growth.
Thus, the intensity of these two hurdles should be adjusted according to the a,-pH
resistance of pathogenic and spoilage microorganisms (Table 2.1). Antimicrobial agents
such as potassium sorbate or sodium benzoate between 0-1500 ppm concentrations and
a slight thermal treatment with saturated steam at 100 °C and hot filling are also
employed to obtain the desired shelf-life.

Table 2.1. Minimal a,, and pH for growth of bacteria in fruit products (de-Dazza et al.,
1997).

Microorganism ay pH
Clostridium butyricum 0.945- <0.965 (glucose) -
0.935- <0.950 (glycerol) -
Clostridium pasteurianum 0.985 3.54.5
Bacillus coagulans 0.94 (glucose) 3.8-4.8
Bacillus licheniformis >0.89- < 0.91 (NaCl or 4.2-44
glucose)
Bacillus stearothermophilus > 0.97 (NaCl or glucose) >5.0-< 6.0
Lactobacillus species > 0.94 (glycerol) 3.8-44
Lactobacillus plantarum 0.94 -
Leuconostoc mesenteroides 0,94 (NaCl) -
Streptococcus faecalis 0.94 4.4-4.7
Salmonella species 0.95 3.7-4.5

Salmonella oranienberg

0.95 (NaCl); 0.935 (glycerol)
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2.2.2.1. Stability of HMFP

Because of the low pH of HMFP, the pathogenic bacteria may not be considered a
major problem. However, to minimize the contamination of osmotolerant / osmophilic
and nonosmotolerant / osmophilic yeasts they should be processed, packaged and stored
carefully. Z. rouxii and Z. bailli are among the most potential agents causing spoilage
in HMFP. These yeasts may develop resistance to preservatives such as sorbates and
cause spoilage in HMFP and in other foods and beverages containing preservatives.
Especially, Z. bailli with its strong fermentation activity, ability to grow in hostile
environments and higher resistance to preservatives may cause major spoilage in fruit

products (de-Dazza et al, 1997).

Since HMFP are mostly heated by saturated steam, the quality degrading enzymes in
these products are inactivated. However, sulfites at the concentration of 0-150 ppm are
added to minimize non-enzymatic browning and to support the other preservatives that
used as hurdle (de-Daza et al., 1997).

2.2.3. Minimally processed foods (MPF) technology

This technology is developed to meet the consumer demand to fresh or fresh-like food
products. At the beginning, the MPF technology is mainly applied for the fresh meat
products. However, in recent years the main developments in MPF technology have
been on fruit and vegetables (Welti-Chanes et al., 1997).

The equivalent terms used for minimal processing are “partial preservation treatment”
and “invisible processing”, whereas those terms used for minimally processed foods
are; “partially processed foods” and “high moisture shelf-stable foods”. Welti-Chanes et
al. (1997), reported many different definitions for minimal processing. For example, one
of the early definitions is that; “minimal processing includes all the operations
(washing, selection, peeling, slicing, etc.) that must be carried out before blanching in a
conventional processing line that keep the food living tissue”. Minimal processing is
also defined as “procedures that cause fewer possible changes in the food quality
(keeping their freshness appearance), but at the same time provide the food enough
useful life to transport it from the production site to the consumer”. de-Dazza et al.
(1997) reported that the condition of keeping product cell tissues alive may not be

required, if products have fresh-like appearance. However, in most cases the life
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permanence in the biological tissues is one of the main elements that distinguish

minimally processed fruits and vegetables.

The most important hurdle used in all minimal processing applications is refrigeration.
In fact, this is one of the main points that make MPF different from IMF and HMFP
technologies (Figure 2.2). Other hurdles used frequently are disinfection to reduce
microbial load, addition of chemical additives (by direct incorporation, osmotic
processes or vacuum infusion), pH control and modified atmosphere packaging (Welti-
Chanes et al., 1997; Brody, 1998; Barry-Ryan and O'Beirne, 1999). Heat treatment is
not included to most minimal processing applications. However, a very mild heating
may be used to control undesirable enzymatic changes (Kim et al., 1993; Sapers and
Miller, 1995; Saltveit, 2000; Yemencioglu, 2002). Also, some new technologies may be
used alone or in combination to form a hurdle effect for the preservation of MPF. Such
new technologies include the use of natural antimicrobials (mostly phenolic
compounds), competitive flora (lactic acid bacteria), non-thermal processes (pulsed
electric fields, high or ultra high pressure, irradiation, oscillating magnetic fields, etc.)
and new thermal processing methods (light pulses) (Welti-Chanes et al., 1997; Breidt
and Fleming, 1997). Moreover, in future biopreservatives such as lactoperoxidase,
lysozym, lactoferrin and lactoferricin may be used in the minimal processing of fruits

and vegetables.

PRESERVATION

Figure 2.2. Hurdles applied in different fruit preservation systems (Welti-Chanes et al.,
1997): A: Intermediate moisture fruits B: High moisture fruits. C: Minimally processed
refrigerated fruits and vegetables.
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2.2.3.1. Modified atmosphere packaging (MAP)

Nowadays the combination of MAP with minimal processing is very popular. MAP is a
packaging technology that shelf-live of foods is increased by modification of package
gas atmosphere. For fruits and vegetables the gas composition desired to increase the
shelf-life consists of low O, and high CO,. Generally, increase of air CO, concentration
and reduction of air O, concentration around 5 % reduce the respiration rates of most
fruits and vegetables. The reduction of respiration rate slows down the metabolic
processes in plant tissues and increases their shelf-life. To obtain the desired shelf-life
in MAP, the refrigeration of products after packaging is essential. By refrigeration the
control of fruit or vegetable respiration rate is achieved more easily. Also, low

temperature reduces microbial growth and minimizes spoilage.

In MAP the package atmosphere is modified by passive or active modification methods.

2.2.3.1.1. Passive modification

In this method the fruits and vegetables are packed with a suitable packaging film.
During their respiration, fruits and vegetables consume O, and produce CO,. Thus,
modification of the package atmosphere occurs by the respiration of the packed fruits or
vegetables. However, to achieve the desired equilibrium O, and CO, concentrations in
package within a short time period, packaging film used should be semi-permeable. It is
reported that the packaging film should let the permeation of sufficient amounts of O,
from air to package and CO, from package to air (Cemeroglu et al., 2001). Otherwise,
the exhaustion of O, and/or accumulation of CO, in package cause(s) the initiation of
anaerobic respiration in fruits and vegetables. This is undesirable, because it causes the
formation of off-flavors in fruits and vegetables due to the accumulation of excessive
amounts of alcohols and acids in their tissues (Yahia and Rivera, 1992; Yemenicioglu
and Cemeroglu, 1996). The most frequently used packaging materials for passive
modification are polyethylene (PE) and low-density polyethylene (LDPE) films (Labuza
and Breene, 1989).

During their respiration, besides CO», fruit and vegetables produce also H,O and some
respiration metabolites such as ethylene. The production of too much H,O may increase
the risk of microbial growth at product surface, whereas the presence of ethylene

increases the respiration rate. Thus, some small sachets containing ethylene absorbers
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(active char-coal) or scavengers (potassium permanganate) and H,O absorbers such as
NaCl and silicagel are also placed in package to increase the shelf life of products

(Yemenicioglu and Cemeroglu, 1996; Yahia and Rivera, 1992).

2.2.3.1.2. Active modification

In active modification, the desired gas atmosphere (low O, and high CO,) in package is
formed by two different methods. In one of these methods the air in packages is first
evacuated by vacuum, and then the desired gas mixture is flushed into packages (Figure
2.3), whereas in the other the air in packages is swept by continuous flushing of desired
gas mixture into packages. In active modification, packaging films with suitable
permeability should also be used to maintain the flushed gas mixture within acceptable

limits and to enable the formation of equilibrium conditions.

@ ©) @

Figure 2.3. Active modification by vacuum + gas flushing ( Cemeroglu et al., 2001) 1.
Placing material into packaging equipment 2.Vacuum application 3.Gas flushing 4.

Sealing.

The application of active modification to fresh fruit and vegetables has been studied
intensively (Cemeroglu et al., 2001). However, there are very limited studies related to
the use of active modification as a hurdle for the preservation of HMFP and IM fruits.
The only study that has been found is that of El Halouat et al (1998). These researchers
reported that modified atmospheres containing 40 % CO,-60 % N, or 80 % CO,-20 %
N; in combination with the addition of 417 and 343 ppm potassium sorbate or 383 and
321 ppm sodium benzoate inhibited the growth of Z. rouxii and extended the shelf life
of high moisture (ay: 0.84-0.87) prunes and raisins at 30 °C for at least 6 months. These
results are very promising for the application of MAP in the preservation of IM fruits
and HMFP. However, further studies should be conducted related to the effects of high

CO, concentrations on fruit flavor.
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Chapter 3

THE USE OF H,0, DISINFECTION AS A HURDLE

3.1. Physical and Chemical Properties of H,O,

H,0, is a clear and colorless chemical with a pungent odor. It is nonflammable and very
stable at high temperatures (Ozkan and Kirca, 2001). It is also totally miscible with
water and commercially sold as 30, 35 or 50 % solutions. Some physical and chemical

properties of H,O, were given in Table 3.1.

Table 3.1. Some physical and chemical properties of H,O, (www.H202.com).

Properties Concentration ( % )
35 50
Active oxygen content 16,5 23,5
pH 2-3 1-2
Acidity (mg. L' H,SO,) <50 <50
Freezing point ( °C) -33 -52
Boiling point 108 114
Vapor pressure ( mmHg, 30 °C) 23 18
Viscosity ( cp)
0 (°C) 1,81 1,87
20(°C) 1,11 1,17

H,0, is one of the most powerful oxidizers known. Its oxidation potential is stronger

than those of chlorine, chlorine dioxide, and potassium permanganate (Table 3.2).

Table 3.2. Different oxidants and their oxidation potentials (Ozkan and Kirca, 2001).

Oxidant Oxidation potential (V)
Chlorine 3.0
Hydroxyl radical 2.8
Ozone 2.1
Hydrogen peroxide 1.8
Potassium permanganate 1.7
Chlorine dioxide 1.5
Chlorine 1.4
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In aqueous solution H>O, decomposes to a more powerful oxidizer, hydroxyl radical
("OH), and some other reactive compounds such as perhydroxyl anion and perhydroxyl

radical (Ozkan et al., 2002).

H,0, © H + HOO" (perhydroxyl anion)............Dissociation

HOOH - "OOH (perhdroxyl radical ) + *H.........Homolytic cleavage of O-H bond

HOOH - 2 *OH (hydroxyl radical )....................Homolytic cleavage of O-O bond

The presence of metal atoms such as iron, copper and manganese in medium encourages
the decomposition of H,O, to its more reactive hydroxyl radical and increases its
antimicrobial effect considerably (Brul and Coote; 1999; Neyens and Baeyens; 2003).
The decomposition of H,O; in the presence of iron occurs by Fenton reaction as given

below;

H,0, +Fe'? > Fe™ + OH + *OH (hydroxyl radical)....... Fenton reaction

3.2. Mode of Action

Some microorganisms protect themselves against the harmful effects of H,O, by their
antioxidant enzymes such as catalase and peroxidase. However, in biological systems
there are no enzymes to degrade the more reactive hydroxyl radical formed by the
decomposition of H,O, (Vattanaviboon and Mongkolsuk, 1998). Thus, antimicrobial
effect of H,O, is mainly due to its highly reactive hydroxyl radical ("OH) that diffuses
microbial cells and damages their DNA. The oxidation of sulthydryl groups and double
bonds in proteins, lipids and surface membranes of microbial cells is also effective on

the death of microbial vegetative cells.

Besides vegetative cells HyO, shows antimicrobial action also on bacterial and fungal
spores. The mechanism of the sporicidal action of H,O, has not been fully understood.
In fact, today there is still a great discussion on this phenomenon. H,O, is a small
molecule about twice the size of water and might be expected to pass readily through

biological membranes to sensitive targets within the cytoplasm of bacterial cells.
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However, there have been suggestions that bacterial spores may have low permeability
to H,O, and that this low permeability contributes to resistance. Recently, Riesenman
and Nicholson (2000) reported an increased sensitivity of decoated B. subtilis spores to
H,0,. Thus, it was thought that the spore coats could potentially act as a barrier to H,O,
entry. In contrast, Rutherford et al. (2000) reported that chemical decoating of B.
megaterium spores had minor effect on their sensitivity to HO,. According to Khadre
and Yousef (2001), DNA damage is the main reason of the inactivation of spores by
H»,0,. However, there are some contrary reports to this hypothesis that DNA in spores
is not affected from H,O, due to the protective effects of some small acid-soluble spore
proteins (Riesenman and Nicholson, 2000). Also, it was showed that the mechanism of
sporicidal action of H»O, may be due to its inhibitory action on some enzymes
responsible from the germination and outgrowth in spore core (Rutherford et al., 2000).
Thus, further studies should be conducted to clarify the mode of H,O, action on

microbial spores.

3.3. Factors Effecting Antimicrobial Power

The antimicrobial power of H»O, is highly affected from its concentration and
temperature and pH of the medium. The effect of H,O, concentration on microbial
death has been investigated in details. At very high concentrations, especially at
elevated temperatures, HyO, causes major dissolution of spores with loss of the
structures of their coat, cortex and core. However, at much lower concentrations, H,O,
kills spores without inducing microscopically evident cytological changes (Rutherford
et al., 2000). This indicates that the lytic action of H,O, has a secondary importance on
its antimicrobial effect. In literature, there are different reports about the effective
concentrations of H0,. For example Davidson et al. (1993) reported that the
concentrations of H,O, between 0.001-0.1 % are sufficient to inhibit the growth of most
bacteria and fungi at room temperature. The same authors reported the concentration of
hydrogen peroxide to obtain a bactericidal or fungicidal effect at room temperature to be
at least 0.1 %. On the other hand, according to Vijayakumar and Wolf-Hall (2002) in
strains of Escherichia coli that cause diseases in humans, the minimum bacteriostatic
and bactericidal concentrations of H,O, at 35 °C are 0.3-0.4% and 0.4% for commercial

H,0; solutions, respectively.
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For killing spores, long contact times and 3 % or greater concentrations of H,O, are
required (Table 3.3, Figure 3.1).However, the contact times may be shortened
considerably by increasing the temperature (Table 3.4). It was found that for each 10 °C
increase in temperature, destruction of spores increased by one third to one half using
1% H,0, (Davidson et al., 1993).

Table 3.3. The effect of different H,O, concentrations and contact times on B. subtilis

spores (Davidson et al., 1993).

H,0; concentration (%) ' Exposure time (min)
2 30 60
3 85" 22 2
10 35 0.0027
15 22 0.0022 0

? percentage of survivors
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Figure 3.1. Inactivation of B. subtilis spores treated with varying concentrations of

H,0; at 20 °C for 1 min (Khadre and Yousef, 2001).
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Besides temperature and concentration, pH of medium is also effective on the
antimicrobial power of H,0,. In acidic pH, H,0, is more effective on microorganisms.
As pH increases, higher concentrations of H,O, are required to obtain the same
lethality. For example, 5 ppm H,O; may inhibit the growth of P. aeruginosa at pH 5,
but to obtain the same inhibitory effect 10 and 50 ppm H,O, is required at pH 6.7 and
pH 8.0, respectively (Davidson et al., 1993).

19



Table 3.4. The effect of temperature on number of decimal reductions obtained for B.

subtilis spores at different HO, concentrations (Cemeroglu and Karadeniz, 2001).

Number of Time to achieve the given decimal reduction (seconds)
decimal 15 % H,0, 20 % H,0,
reduction
go°c!  90°C* 95°C* 80°C' 90°C? 95°C?
3 17 10 9 11 7 5
4 23 14 11 15 9 7
5 39 18 14 19 12 9
6 35 21 16 23 14 11

*Values determined experimentally; “Values determined by extrapolation

3.4. Disinfection of Food and Food Contact Surfaces with H,0O,

Hydrogen peroxide (H,0O;) has been used in foods and food-packaging materials for
various purposes in many European countries for over 30 years (Andres, 1981; Wang
and Toledo, 1986). It has major advantages for sterilization of packaging materials for
aseptic products in that it is both bactericidal and sporicidal, but does not leave toxic
residues that could adversely affect human health (Rutherford et al., 2000). In the US,
FDA approved H,0, for the sterilization of polyethylene food-contact surfaces only
after February 1981 (Nielson et al., 1993). From this date, HO, has been the choice of
chemical sterilant for treatment of plastic packaging materials used in aseptic processing
systems (Tillotson, 1984; Wang and Toledo, 1986; Kunz and Binnig, 1987; Mitchell,
1988).

In aceptic systems H>O, concentrations between 15 and 30 % and temperatures between
60° and 90 °C are generally applied for the disinfection of food contact packaging
material surfaces. (Ozkan and Kirca, 2001; Cemeroglu et al., 2001). FDA regulation
currently limits the residual H,O, to 0.5 ppm, leached into distilled water, in the
finished food packages (Code of Federal Regulations, 2000b). Thus, excessive H,O; is
removed form the food contact surfaces by pressure roller in combination with
scrappers and subsequent drying with sterile hot air at 180° - 205°C (von Bockelman
and von Bockelman, 1986).
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In addition to its successful applications for the disinfection of food packaging
materials, in most countries H,O; is also approved for use in different food products as
an antimicrobial agent. FDA approved the use of H,O, for treatment of milk for use in
cheese, preparation of modified whey and preparation of thermophile-free starch
(Sapers and Simmons, 1998). Recently, FDA also approved the use of H,O; in a
mixture of disinfectants for red meat carcasses (Mermelstein, 2001). Moreover, the
United States Department of Agriculture (USDA) approved the use of H,O, for the
pasteurization of egg white ( Muriana, 1997). For these and other food applications of
H,0; the Food and Drug Administration (FDA) in the United States requires that
residual H,O, be removed by appropriate physical or chemical means during processing.
Out of US, H,0, is used more extensively for the disinfection of food. In fact, some
H>0; containing disinfectants approved by the ministry of health in Europe and Israel
have still been used extensively in drinking water and food industries (Fallik et al.,
1994).

Today, there are extensive studies to develop different protocols for the H,O,
disinfection of foods. Recently, as an alternative to chlorine, H,O, has been
recommended for the surface disinfection of fruits and vegetables to inhibit the post-
harvest decay during storage (Fallik et al., 1994; Sapers and Simmons, 1998). Thus,
many experimental studies had been carried out related to the disinfection of table
grapes (Forney et al., 1991), sweet red pepper and eggplant (Fallik et al., 1994), dried
prunes (Simmons et al.,, 1997), mushrooms, melon, cucumber, zucchini, green bell

pepper and raisins (Sapers and Simmons, 1998).

During disinfection, H,O, may be applied as vapor or liquid phase. In vapor phase
application, H,O, solution is volatilized into a stream of dried air until this mixture
reaches the desired composition. For this application which a chamber and H,0, vapor
generator are required, the main difficulty is to obtain constant air-H,O, vapor
composition. The boiling point of H>O, is 150,2 °C at atmospheric pressure. Thus, H,O,
vapor shows a great tendency to condense in treatment chamber that kept at near-
ambient temperatures. Wang and Toledo (1986) by first heating air to a temperature
same as H,O, solution and then bubbling air into liquid H>O, reduced this problem. In
fact, the American Steriliser Company (AMSCO) has developed a patented vapor phase

H;0O, generator for commercial sterilisation of medical devices and clean rooms
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(Simmons et al., 1997). This machine is now used in different experiments to optimize
the vapor phase H,0, disinfection of different foods. However, these systems are still
expensive, slow working and very complicated. During disinfection the operating
parameters such as air flow rate, H,O, concentration, vapor injection rate, air
dehumidification time etc. should be controlled very carefully. Thus, commercialization

of such systems for food disinfection still needs some time.

On the other hand, the use of liquid phase H,O, during disinfection is fast, easier to
control H,O, concentration and apply commercially. In aqueous application, H,O,
solution can be sprayed onto food surface or food can be dipped in H,O, solution.
Since it is more effective and has some advantages, dipping is the most commonly
applied method. The main parameters of dipping are treatment time and concentration
of H,0,. Thus, this method is a very practical low-cost method that requires no
complex machinery. Sapers et al (2001b) successfully built the first continuous,
commercial-scale washing facility that will be used for the disinfection of fresh
mushrooms. This was a great achievement to commercialize the use of liquid phase
H,0, disinfection in fruits and vegetables. Thus, it is expected that this chemical will be

alternative to chlorine in a near future.

Besides vapor and liquid phase disinfection, H,O, producing bacteria can also be added
to foods for preservation. Lactic acid bacteria have ability to produce H,O, even during
cold storage and in some cultures, H,O, may accumulate to inhibitory levels. It was
reported that Lactobacillus delbrueckii subspecies produced sufficient amount of H,O,
to kill cells of Escherichia coli O157:H7 on refrigerated raw chicken meat (Villegas and
Gilliland, 1998).

3.5. Removal of Residual H,O; from Disinfected Food

As indicated above, FDA requires the removal of residual H,O, in food following its
application. The residual H,O, in foods may be removed effectively by using H,0,
decomposing enzyme catalase. This enzyme decomposes H,O, to water and oxygen
(H,O, = HyO + %4 O,) and it exists in many foods. Therefore, in most cases the
residual H,O, in food disappears without an additional treatment of the food. This

enzyme exists also in saliva of humans and this provides an extra protection against
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H,0; residues. In fact, this is why H,O, is safely used in tooth pastes to obtain a better

antimicrobial effect and washing effect.

The antioxidant chemicals such as ascorbic acid and its derivatives and sulfites may also
be used to eliminate residual H,O,. In addition to the in situ catalase, Sapers and
Simmons (1998) used 4,5 %, pH 5,5 Na-erythorbate solution to better eliminate the
residual H,O, in fresh fruit and vegetables. In some cases, the residual H,O, in food
may be eliminated by washing. For example, after dipping to 5 % H,O, solution,
residual H,0; in cucumbers and melons may be removed completely by washing with

water for 5 and 20 min, respectively (Sapers and Simmons, 1998).

3.6. Potential Effects of H,O; on Food Quality

The use of H,O, in foods may cause the oxidation of some sensitive food components.
For example, the deleterious effect of H,O, on anthocyanins is well-known. The
degradation of anthocyanins by H,O, has been demonstrated in strawberry,
pomegrenate and sour cheery juices (Sondheimer and Kertesz, 1952; Ozkan et al., 2000;
Ozkan et al., 2002). Thus, application of H,0, disinfection may not be suitable for some
fresh cut fruits rich in these color pigments. However, when whole fruits are
disinfected, the waxy peel of some fruits may prevent the penetration of H,O, to fruit
flesh and this eliminates the possible discoloration. For example, Forney et al. (1991),
applied vapor phase H,O, disinfection, observed no discoloration in Red globe grapes.
Sapers and Simmons (1998) also did not report the bleaching of sweet cherry
anthocyanins while strawberry and raspberry anthocyanins showed bleaching.
Simmons et al. (1997) indicated that prunes exposed to vapor phase H,O, became

lighter because of bleaching and blistering occurred at long exposures.

Besides anthocyanins H,O, shows bleaching also on carotenoids. For example, Ozkan
and Cemeroglu (2002), showed the bleaching of sun-dried apricots treated with 0.5-
1.5% H,0;. A slight bleaching was also observed in cantaloupes that were treated with
H,0; (Sapers and Simmons, 1998). However, compared to anthocyanins carotenoids are
considerably more resistant to the oxidative effects of H,O,. Thus, the partial bleaching

of carotenoids may not result the rejection of products by the consumers.
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Another possible undesirable effect of H,O, may be the oxidation of vitamin C. Johnson
and Toledo (1975) reported that the half-life of ascorbic acid in orange juice concentrate
was only 21 days at 24°C when the aseptic chamber was pre-sterilized with H,O, and
42 days when it was pre-sterilized with steam. Thus, the disinfected foods may be

supplemented with additional vitamin C to recover the portion degraded by H,O,.

In literature the studies related to the effect of H;O, on food nutrients are very limited.
Sapers et al. (1999) reported that the washing of mushrooms with 5% H,O, caused no
considerable change in the composition and nutrient content of mushrooms. In contrast,
Ozkan and Kirca (2001) reported the reduced quality of proteins in peanuts especially

due to the oxidation of cysteine, methionine, lysine and trionine.

3.7. Advantages of Using H,0; as a Disinfectant

The use of H,0; as a disinfectant brings many advantages. First of all H,O, is a GRAS
chemical which shows strong bactericidal and sporicidal effects without leaving toxic
residues. The instability of H>O, in a medium enables the elimination of its residues
following the disinfection. In fact, that is one of the main reasons that make H,O, an
alternative to clorine which currently used extensively for the disinfection of food and
drinking water. Clorine when reacts with food constituents may form toxic by-products
named trihalomethans (THMs). Therefore, environmental and health communities have
expressed concerns about the residual by-products of chlorine and questioned its future

applications (Xu, 1999).

In commercial applications, H;O, is usually added into washing water of fruits and
vegetables. By washing in the presence of H,0,, adhering dirt and soil on food can be
removed very effectively. This is because of the excessive O, gas release during
decomposition of H,O,. The presence of catalase enzyme activity in disinfected food
increases the gas release and the mechanical action helps to remove adhering dirt and
soil from food surface more effectively (Sapers and Simmons, 1998). This is an
important advantage for the disinfection of sun-dried fruits that left in field for a very
long time and contaminated with dirt and soil.




the presence of H,O,. Different studies about reduction of aflatoxin level in groundnuts
and peanuts by H,O, were also reported by Ozkan and Kirca (2001). McFeeters (1998)
successfully applied H,O, to remove sulfites from fresh cucumbers, whereas Ozkan and
Cemeroglu (2002) used H,0, to reduce sulfur level in apricots. The degradation of
pesticide residues by H,O, is also reported by Doong and Chang (1998) and Fallmann
et al. (1999).

In nature many microorganisms produce H,O, as a natural metabolite, and some
microorganisms have enzyme systems that decompose H,O, to O, and H,0. Also, H,O,
does not cause a selection on microorganisms and it is environmentally safe. In fact,

H,0; is used for the bioremediation of contaminated sites (Neyens and Baeyens, 2003).
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Chapter 4

MATERIALS AND METHODS

4.1. Materials

Sun-dried figs (cultivar Sarilop from Aydin, Turkey) were supplied by TARIS (Izmir,
Turkey), the cooperative for marketing agricultural products grown in Aegean region.
Two different parties of sun-dried figs were supplied at two different seasons (2001 and
2002). Fresh figs (cultivar Sarilop from Aydin, Turkey) were obtained from a local
market in Izmir and kept frozen at — 25 °C until used in the experiments. The dialysis
tubing (prepared as described in the product information), citrus pectin (Galacturonic
acid content 79 %, methoxy content 8 %), insoluble PVPP (polyvinylpolypyrrolidone),
and Horseraddish peroxidase (Type II) were purchased from Sigma Chem. Co. (St.
Louis, MO). H,0, test strips were obtained from Macherey-Nagel Co. (Dueren,
Germany) or Merck (Darmstadt). H,0, (30%, extra pure), Ammonium sulfate (for
biochemistry), plate count agar (PCA), potato dextrose agar (PDA) and tartaric acid
were purchased from Merck (Darmstadt). Chloramphenicol antibiotic was kindly
donated by Borkim Chem Co. (Izmir, Turkey) or purchased from Oxoid (Hampshire,
England). All other chemicals were reagent grade.

4.2. Methods

4.2.1. PME extraction

For the extraction of PME enzyme, 30-50 g sun-dried or fresh figs were homogenized in
180-200 mL cold 0.02 M sodium phosphate buffer (pH 7.0) containing 1 M NaCl for
1.5 min by using a Waring blender. 2 % PVPP was also added to medium to absorb the
phenolic compounds during homogenization. The slurry obtained was then filtrated
through a four layers of cheese-cloth and used in this study after centrifugation. This
enzyme extract containing ionically bound + soluble enzymes was designated crude
PME extract. The residues obtained from the filtration and centrifugation of this extract
were combined and used for the determination of covalently bound PME enzyme

activity.



4.2.2. Partial purification

In partial purification studies, obtained crude PME extract was centrifuged at 4000 g for
30 min (+ 4 °C). For the partial purification, solid (NH4),SO4 was added slowly to
enzyme extract at + 4 °C up to 90 % saturation. The mixture was stirred slowly for 1 h
and the precipitate collected by 45 min centrifugation at 4000 g (+ 4 °C) was dissolved
in minimum amount of deionized water. The enzyme extract was then dialyzed for 24 h
at + 4 °C by two changes of 2000 mL of deionized water and used in heat inactivation
studies.

4.2.3. PME activity

For the determination of PME enzyme activity spectrophotometric or titrimetric
methods were used. In the spectrophotometric tests the method of Hagerman and Austin
(1986) was used with slight modifications to determine enzyme activity in crude or
partially purified PME extracts. The reaction mixture was formed by mixing 2.3 mL 0.5
% pectin solution prepared in 0.1 M NaCl, 0.5 mL of 0.01 % bromothymol blue
prepared in 0.003 M sodium phosphate buffer (pH 7.5) and 0.2 mL crude or partially
purified enzyme extract. The decrease in absorbance at 620 nm was monitored by using
a Shimadzu (Model 2450) spectrophotometer, equipped with a constant temperature cell
holder working at 30 °C, and enzyme activity was determined from the slope of the
initial linear portion of abs versus time curve. All activities measured were corrected by
determining spontaneous decreases in absorbance by using the reaction mixture
containing boiled enzyme extract. In heat inactivation and partial purification studies
the enzyme activities were expressed as percent initial activity and units, respectively.
One unit was defined as that amount of enzyme that caused 0.001 change in absorbance

in 1 min.

The activities of crude PME, covalently bound PME, and fig homogenates were
determined by the modification of the titrimetric method given in Yemenicioglu (2002).
The fig homogenate was obtained by homogenizing 50 g of figs with 150 mL of 8.8 %
NaCl. For the determination of covalently bound PME activity the residues obtained
from the filtration and centrifugation of crude PME extract were combined and
suspended in some deionized water. The reaction mixture contained 1.5 mL of enzyme
extract (or 0.8-4 g of homogenate or suspension) and 20 mL of 0.5 % pectin solution

prepared in 0.1 M NaCl. The pH of reaction mixture was brought to 7.5 with 0.1 N
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NaOH and kept constant for 10 min by titrating slowly with 0.01 or 0.05 N NaOH. The
titrations were conducted in a double walled magnetically stirred cell connected to a
circulating water bath working at 30 °C and enzyme activities were expressed as percent
initial activity or pmol of liberated carboxyl groups per minute per mL enzyme extract.

All activity measurements were done at least three times and averages were calculated.

4.2.4. Heat inactivation of PME

The temperature profiles were determined by heating 1.5 mL of crude PME enzyme
extract (centrifuged at 3000 g and + 4 °C for 15 min) in thermal inactivation time (TIT)
tubes (i.d., 9 mm; wall thickness, 1mm) for 5 min over 50-70 °C. The tubes were then
cooled in an ice water bath and the residual enzyme activities were assayed by the

titrimetric method.

The heat inactivation of partially purified PME was studied over the temperature range
of 60-90 °C. To minimize the lag phase, 0.3 mL of enzyme extracts were pipetted into
preheated TIT tubes. After heating for a given period, the tubes were cooled in an ice
water bath and immediately assayed for PME activity by the spectrophotometric
method. All heat inactivation studies were conducted as three replicates and averages

were calculated.

4.2.5. Determination of protein content

Protein was determined by the Lowry method by using bovine serum albumin as
standard (Harris, 1987). For the assay 0.2 mL samples, diluted to 25-200 pg. mL™
protein, were mixed with 2.1 mL of alkaline copper reagent prepared by mixing 1 %
CuS0,4.5H,0 and 1% NaK tartrate. 4H,0 in a 1:1 ratio and diluting to 100 mL with 2 %
Na;CO; (in 0.1 M NaOH). After 10 minutes incubation, 0.2 mL commercial folin-
ciocalteau reagent diluted 1:1 with bidistilled water was added to medium and the
mixture was incubated at dark for 1h. At the end of incubation period the absorbances
of samples were read at 750 nm against blanks prepared by adding 0.2 water to reaction
mixture in place of samples. The concentrations of protein standards were between 25-

200 pg. mL" (10-40 pg. 0.2 mL™. For the calibration curve see Appendix Al.
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4.2.6. Microbiological tests

For these tests 50 or 60 g fig pieces (1/4 pieces obtained from 10 figs) were put into
flasks containing 200-250 mL 0.1 % (w/w) peptone water. For counting osmotrophs
0.1 % (w/w) peptone water was supplemented with 20% sucrose. The flasks were
shaken by hand for 2 min and 0.1 ml samples were spread onto the surface of agar
plates. 1/10 dilutions were performed when needed by using 0.1 % peptone water
(supplemented with 20 % sucrose when dilution was conducted for osmotrophs). The
total number of mesophilic aerobic microorganisms and total number of yeasts and
molds were determined by using PCA and PDA (acidified to pH 3.5 with 10 % tartaric
acid or supplemented with 100 mg.L" chloramphenicol) agars, respectively. The PCA
plates were incubated at 35 °C for 48 h, whereas PDA plates were incubated at 25-28 °C
for 5 days. The averages of three or five plate counts were used in all microbiological

tests.

4.2.7. Selection of suitable rehydration conditions

To determine suitable rehdration temperatures and times required to obtain IM figs with
approximately 30 % moisture content, the rehydration curves of samples at 30 °, 70 °,
80 ° and 90 °C were determined using a circulating water bath (Polysience, Model 71).
In these experiments, 200-250 g figs were put into sucks made from cheese-cloth and
rehydrated at the given temperatures. In all rehydration studies the fig/water ratio was
set to 0.1 (w/w) and the increase in the weight of samples was monitored by draining
and weighting (£ 0.01 g) the sucks at different time intervals. The initial moisture
content of figs was determined by the standard vacuum oven method for dried fruits
(AOAC, 1995). During rehydration studies the temperature profiles of three figs were
also determined by placing a 0.9 mm diameter thermocouple in their geometric center
and by using a portable temperature recorder (Cole Parmer, DualLogR). The moisture
analysis, rehydration experiments and temperature measurements were repeated for
each party of figs separately and the rehydration times to obtain 30 % moisture figs at
different temperatures were modified if necessary. The most suitable rehydration
temperature was selected according to the amount of residual PME activity remained in

IM figs after rehydration.
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4.2.8. Rehydration of figs in hot water

After evaluating the remaining PME activities in IM figs rehydrated at different
temperatures, the most suitable rehydration temperature was selected as 80 °C. In both
season 2001 and 2002 the time to bring sun-dried figs to 30 % moisture content at 80 °C
was almost 16 min. The figs were rehydrated as 1.2 kg parties and all rehydrations
were at least duplicated. The results of PME activity and microbiological tests were
given separately for each trial and IM figs rehydrated at 30 °C were used as control. For
figs obtained in season 2001 and 2002 the rehydration times of controls were 65 and 51

min, respectively.

4.2.9. Disinfection of figs with H,O,

The disinfections were conducted by adding H,O, to rehydration water immediately
before dipping sun-dried figs. All disinfections were conducted at 80 °C and at 2.5 %
H,0, concentration. However, the contact period of figs with H;O, was changed.
Some of the samples were brought to 30 % moisture content directly by rehydrating
them in 2.5 % H,O, solution at 80 °C for 16 min, whereas others were brought to the
same moisture content by rehydrating them first in 2.5 % H,0, solution at 80 °C for 4 or
8 min and then in water at 80 °C for 12 or 8 min, respectively. All rehydrations were at
least duplicated and the results of PME activity and microbiological tests were given

separately for each trial.

4.2.10. Storage studies

Following rehydration the figs were rinsed, spread over trays and incubated 12 min at
100 °C to remove free water from their surface. After that the samples were separated
to 300 g groups, each group was put into zipped polyethylene bags and cold stored at
+4 °C for 1, 3, 3.5 or 5 months. Although the free surface water of figs was removed by
the oven treatment, after rehydration some figs may entrap water and this may cause
leakage during storage. To prevent this, test tubes containing 4 g of silicagel were also
placed into bags before closing them. These tubes were remained in packages when IM
figs were stored for 1 or 3 months. However, when storage period exceeded 3 months
the tubes were removed from the packages under aceptic conditions after 15 days

storage. The summary of the processes applied to IM figs were given in Figure 4.1.
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SUN-DRIED FIGS

REHYDRATION to 30 % MOISTURE CONTENT"

SPREADING OVER TRAYS AND INCUBATION FOR 12 MIN AT 100 °C

PACKAGING AND COLD STORAGE

Figure 4.1. The summary of the processes applied to sun-dried figs (*Rehydration
procedures;(1) Rehydration in water at 30 °C for 65 or 51 min (Controls); (2)
Rehydration in water at 80 °C for 16 min; (3) Rehydration in 2.5 % H,O, solution at 80
°C for 16 min; (4) Rehydration in 2.5 % H,O, solution at 80 °C for 4 min + Rehydration
in water at 80 °C for 12 min; (5) Rehydration in 2.5 % H,0, solution at 80 °C for 8 min
+ Rehydration in water at 80 °C for 8 min).

4.2.11. Examination of texture and color

In addition to the samples rehydrated, packed and stored for monitoring PME activity
and microbial load, some samples rehydrated at different conditions were also packed
and stored separately for color and texture analysis. On this purpose almost 40-50 figs
were rehydrated at the same time. These figs were then divided into two groups, packed
and stored for 3.5 or 5 months. The textural examinations were conducted by some
simple tests performed with hand or with a fruit harness tester (Nippon-1kg/Model
FHR-5 equipped with a cone type tip, base diameter: 12 mm, height: 10 mm). In tests
conducted by hand, the figs were firstly examined by the classical thumb test to detect
whether they softened. Secondly, to detect any sticky and gel like structure formation
the figs were halved and their fleshes were squeezed by using thumb and forefinger.
Thirdly, with thumb the internal surface of halved figs was went-over to see whether it
was rubbed-off from the peels easily. When storage period exceeds 3 months the
firmnesses of figs were determined with a fruit hardness tester. Before penetration tests
the fruits were shaped by hand like discs to form a homogenous surface. The neck and
eye of shaped fruits always remained at the edges and the penetrations were always
conducted close the middle part of flattened fruit surfaces. For each fruit, the number of

penetrations conducted was 6 and the points of measurement were equally spaced to
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form 2 columns and 3 rows. The effect of storage and H,0; on fig color was monitored
by taking photographs of samples with a digital camera (Nikon, PIX995 or Sony, DCR-
PC115E).

4.2.12. Determination of residual H,O;

The residual H,O, in disinfected figs was determined by using semi-quantitative
Quantofix test stripes which can detect residual H,O, in the range of 1-100 mg
H,0,. L', During tests 25g figs, chilled by holding 10 min at —25 °C, were
homogenized with 200 mL 0.05M cold Na-phosphate buffer (pH 7.0) or bidistilled
water for 1.5 min at low speed by using a Waring blender. In this study, considerable
amount of catalase enzyme activity was determined in sun-dried figs. Thus, to prevent
the degradation of residual H,O, by catalase, the slurry obtained was very rapidly
filtrated through a single layer of cheese-cloth and a test stripe was immediately dipped
to the filtrate. The residual H,O, in filtrate was determined by comparing the intensity
of blue color developed on test stripes and color-concentration scale given and it was

expressed as ppm.

The disinfected figs were tested for residual HO, immediately after the oven treatment
applied following the rehydration process and during cold storage for different time
periods, until no residual H,O, was detected by the test stripes. The disappearance of
residual H,O, in IM figs during cold storage was also confirmed qualitatively by the
more sensitive enzymatic H>O, determination method. In this method the residual H,O,
is determined by the color change formed by peroxidase enzyme. In the presence of
residual H,0,, this enzyme forms a very distinguishable brown color from guaiacol.
The reaction mixtures used in this study were formed by mixing 4mL of filtrate
prepared as described above, 0.25 mL peroxidase (almost 42 purpurogallin unit)
prepared in 0.05M , pH 7.0 phosphate buffer and 0.2mL 0.5 % guaiacol (prepared in 50
% ethanol). The blanks for comparison were prepared by using 0.2mL phosphate buffer
in place of guaiacol.

4.2.13. Catalase activity

The presence of catalase activity in sun-dried IM figs was controlled qualitatively. On
this purpose the figs rehydrated at 30 °C or 80 °C were halved and dipped to a 2.5 %
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H,0, solution at room temperature. The gas evolution and foaming observed were

accepted as the indication of catalase activity.

33



Chapter 5

RESULTS AND DISCUSSION

5.1. Rehydration Studies

In this thesis, one of our purposes’ is to use hot rehydration as a hurdle for the
preservation of IM figs. A carefully selected rehydration temperature may be used to
control or at least minimize enzymatic and microbial changes in IM figs during cold
storage. In the preliminary studies, a very rapid yeast and mold growth was determined
in cold stored IM figs when their moisture content exceeded 30 %. For example, at 35
% moisture content the total mesophilic aerobic count and total yeast and mold count of
samples cold stored for 2.5 months were > 1.3 x 10*and 3 x 10> CFU.g™, respectively.

Thus, during cold storage it was decided to keep the moisture content of figs almost at

30 %.

To find the times to reach the desired moisture content at different temperatures, the
rehydration kinetics of sun-dried figs were studied. Figure 5.1 and Figure 5.2 show the

rehydration curves of sun-dired figs obtained in 2001 and 2002 seasons, respectively.
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Figure 5.1. Rehydration curves of sun-dried figs at different temperatures (Season 2001,

the percent initial moisture content of figs was 15.4 £0,2).
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Figure 5.2. Rehydration curves of sun-dried figs at different temperatures (Season 2002,
the percent initial moisture content of figs was 16.1 £0.07).

Table 5.1. Rehydration times at different temperatures to bring the moisture content

of figs to 30 %.
Temperature (°C) Reyhdration time (min)
Season 2001 Season 2002

30 65 51

60 30 -

70 - 17.5

80 16 16

85 - 11

90 - 8.8

Note: The times were read from the rehydration curves

As given in Table 5.1, for sun-dried figs produced at different seasons, the times to
bring the moisture level of figs to 30 % vary slightly at 30 °C. However, at 80 °C the

samples have the same rehydration times. In fact, for season 2002 there are also no
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considerable differences in rehydration times between 70 ° and 80 °C and rehydration

times between 85° and 90 °C.
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Figure 5.3. Heat penetration curves of sun-dried figs during rehydration at different

temperatures.

The temperature changes at the geometric center of average figs during rehydration
were also given in Figure 5.3. For most enzymes and vegetative cells 55 °C is a critical
temperature that starts the inactivation. As seen in this figure, between 70 ° and 90 °C it
takes almost 10 min to bring the temperature of the geometric center of figs to
rehydration temperature. During rehydration at 70 °, 80 ° and 90 °C, the times above 55

°C, were approximately 13.5, 13 and 7 min, respectively.

5.2. Possible Mechanisms of Textural Change During Cold Storage

In season 2001, during cold storage of IM sun-dried figs, extensive softening was
determined in samples rehydrated at 30 °C. The softening, initiated at the end of first
month of the storage, increased dramatically at the end of third month of the storage.
When softened figs were halved and examined carefully by hand, the substantial
reduction in the consistency of their fleshes was felt easily. The fleshes of softened
fruits were also very sticky and gel like and this caused loss of their desired gummy
texture.
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The properties, solubility and amount of pectic compounds are the primary factors
determining the texture of fresh and processed fruits and vegetables (Cemeroglu et al.
2001). Thus, because of its central role in the modification of pectin, PME affects the
textural properties of these products considerably (Castaldo et al., 1989, Thakur et al.,
1996, Alonso et al., 1997). The PME enzyme is capable to catalyze pectin
demethylation even at low storage temperatures, while depolymerization enzymes such
as PG slows down under the same conditions (Marangoni et al., 1995; Artes et al.,
1996). Thus, it seems that during cold storage PME reduced the degree of pectin
methylation in figs. This possibly enabled the interaction of pectin and divalent ions
such as Ca *" and Mg ™ and caused the gel formation. The enzyme PG should have
also degraded pectin molecules partially and this reduced the consistency of the fruit
fleshes and induced the formation of a very sticky structure.

5.3. The Origin of PME in Sun-dried Figs

The ability of different bacteria and fungi to produce pectic enzymes was reported by
different workers (Liu and Luh, 1978, Hao and Bracket, 1994). However, the presence
of PME enzyme activity in sun-dried figs immediately after rehydration indicated that
the enzyme was not formed by some microorganisms during cold storage. To obtain a
better proof related to the origin of this enzyme, the temperature profiles of crude PME
obtained from healthy fresh figs and softened IM sun-dried figs rehydrated at 30 °C and
cold stored for 3 months were compared (Fig 5.4).

—&— Fresh figs —0—IM sun-dried figs
—~ 100 o
§ ]
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Figure 5.4. Temperature profiles of crude PME from fresh figs and 3 months cold stored

softened intermediate moisture sun-dried figs (Season 2001).
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As seen in this figure, temperature profiles of crude PME in fresh and softened IM sun-
dried figs are quite similar. Thus, this result suggests that the enzyme was fig PME that

survived from sun-drying.

5.4, Partial Purification of PME

The crude PME from sun-dried figs and fresh figs was also partially purified to compare
their purification parameters. As seen in Table 5.2, 0-90 % (NH4)>SO, precipitation and
dialysis of PME extracted from fresh and sun-dried figs gave 132 % and 168 %
recoveries, respectively. During partial purification of enzymes, the increase of recovery
over 100 % has been observed by many workers (Benjamin and Montgomery, 1973;
Hara et al, 1989; Soderhall and Soderhall, 1989). Segel (1976) explained this by the
removal of an enzyme inhibitor by partial purification. However, this may also be due
to the activation of the enzyme during partial purification. The total PME activity
purified from sun-dried figs was almost 1.6 fold higher than that purified from fresh
figs. Thus, it seems that the enzyme concentrated by drying is very stable under low ay

conditions and it may show activation.

Table 5.2. Partial purification of pectin methylesterase from fresh and sun-dried figs
(Season 2001).

Purification Volume Total  Total Specific activity Recovery Purity
step (mL) activity protein (Units.mg™) (%) (Fold)
(Units) (mg)

Fresh figs
Crude extract

111 10934 230 48 100 1.0
0-90 % (NH,),SO4 precipitation and 24 h dialysis

65 14398 42 343 132 7.2
Sun-dried figs
Crude extract

76 12943 262 49 100 1.0
0-90 % (NH4),SO4 precipitation and 24 h dialysis

48 21782 25 871 168 17.8

The total protein contents in the crude extracts of fresh and sun-dried figs were almost

same. However, after ammonium sulfate precipitation and dialysis more protein
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remained in the partially purified extract obtained from fresh figs. This suggests the
partial hydrolysis of the proteins in sun-dried figs by in-situ action of proteases and
explains the higher purity of this enzyme extract after partial purification.

5.5. Heat Inactivation of PME

One of the main objectives of this study was to test the potential application of hot
rehydration to control PME catalyzed undesirable textural changes in IM figs. Thus, to
determine a suitable rehydration temperature, the heat inactivation kinetic of partially
purified PME from sun-dried figs between 60 ° and 90 °C was investigated. The
inactivation of PME from sun-dried figs followed a first order reaction kinetic, and the
biphasic inactivation curves of enzyme indicated that it contained heat labile and heat
stable enzyme fractions (Fig. 5.5). The enzyme also showed activation by heating and
this occurred particularly at 60 ° and 70 °C. However, at 80 ° and 90 °C the activation
was not observed and PME showed rapid inactivation. Thus, it seems that the
rehydration temperature should be above 70 °C to achieve faster enzyme inactivation

and minimize activation.

Inactivation temperatures ("C)
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Figure 5.5. Heat inactivation curves of partially purified PME from sun-dried figs
(Season 2001).
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Table 5.3. Heat inactivation parameters of partially purified PME in sun-dried and fresh
figs (Season 2001).

Enzyme Temperature or D value (min)

temperature range

o) Heat labile Heat stable

PME from sun-dried figs

60 7.3 42.0

70 4.6 10.5

80 1.2 2.7

90 0.5 1.1
60-90 z=24.5°C (0.971) z=18.6°C (0.992)
70-90 z=20.8°C (0.984) z=20.2°C (0.989)

PME from fresh figs

60 Activated Activated

70 2.7 26.0

80 2.0 5.5

90 0.3 2.9
70-90 z=20.8°C (0.853) z=21.1°C (0.948)

For the calculation of enzyme's heat inactivation parameters, the residual enzyme
activities determined at different temperatures were plotted on semi-log curves.
However, the points of activation were not considered during calculation of D values
(Table 5.3). For comparison, the heat inactivation kinetic of partially purified PME from
fresh figs was also determined (Fig 5.6). Although the D values of PME from fresh figs
were almost two folds higher than those of PME from sun-dried figs, both enzyme
showed almost the same activation and inactivation patterns. In particular, the
activation and inactivation patterns observed at 70 °C were quite similar. Also, the z
values of enzyme's heat labile and heat stable portions between 70-90 °C were almost
same. Thus, these results confirm that the PME in sun-dried fruits is fig PME survived

from sun-drying.
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Figure 5.6. Heat inactivation curves of partially purified PME from fresh figs (Season
2001).

5.6. Effect of Hot Rehydration on IM Fig Texture, Color and Residual PME
Activity

The heat inactivation studies conducted with partially purified extracts indicated that hot
rehydration of sun-dried figs above 70 °C may be used to control PME catalyzed
undesirable textural changes in IM figs during cold storage. Thus, in season 2001 figs
were rehydrated at 30 ° and 80 °C to 30 % moisture content and their textural properties
and remaining PME activities were compared after 3 months cold storage. During
examinations, the apparent browning occurred in IM figs rehydrated either at 30 ° or 80
°C was observed clearly (See photos A2 and A3 in Appendix). The softening of figs
rehydrated at 30 °C was felt clearly by the thumb test. In contrast, figs rehydrated at 80
°C were found firmer. When all figs were halved and examined by hand, the fleshes of
most figs rehydrated at 30 °C were found very sticky. In contrast, the fleshes of most
figs rehydrated at 80 °C were considerably more consistent, less sticky and they were
not easily rubbed-off from the peels with thumb. These results suggest that the problem
of softening of IM figs may be controlled for 3 months by hot rehydration at 80 °C.

It is interesting to note that at the end of 3 months storage, compared to controls

rehydrated at 30 °C, only 28 % less PME activity was found in the homogenates of IM
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figs rehydrated at 80 °C (Table 5.4). In heat inactivation studies, fig PME was found
heat labile. Thus, this result clearly showed the considerably different inactivation
kinetic of PME in whole figs and in partially purified extracts. In contrast, the control
of undesirable textural changes in IM figs for 3 months by partial PME inactivation
suggests that the loss of desired textural properties occurs when enzyme PME reduces
the degree of pectin methylation below a critical level.

Although we investigated the thermal properties of crude and partially purified ionically
bound + soluble enzyme extracts in season 2001 with details, we have no information
related to the presence or thermal stability of covalently bound PME enzyme in sun-
dried figs. Thus, in season 2002, to find the reason of limited PME inactivation by hot
rehydration at 80 °C, the residual activities of PME in ionically bound + soluble enzyme
extracts and covalently bound enzyme extracts were also compared immediately after

rehydration of sun-dried figs at different temperatures (Fig 5.7).

Table 5.4. Residual PME activities in the homogenates of IM sun-dried figs rehydrated

at different conditions and cold stored for 3 months ( Season 2001).

Type of rehydration Activity
(umol COOH min™ g!)
Control / 65 min in water at 30 °C
1 25,73 £0,2
2 22,42 10,6

Average 24.1 (100)

16 min in water at 80 °C
1 17,24 +1,5
2 17,58 0,3
Average 17,4 (72)*

16 min in 2.5% H,0; solution at 80 °C
1 16,47 +0,6
2 15,92 £1,2
Average 16,2 (67)

* Percentage of remaining PME activity in IM figs as compared to activity of control
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As expected sun-dried figs contained also covalently bound PME activity (5.7 uM
COOH . min™. g). This enzyme forms almost 25 % of the total PME activity in sun-
dried figs. However, compared to inonically bound + soluble PME that showed 16.6
uM COOH . min™. g™activity, it is heat labile and lost almost 50 % of its activity when
rehydration was conducted at 80 ° or 90 °C. Thus, the limited PME inactivation
observed in IM figs rehydrated in water at 80 °C was not due to the presence of an
extremely thermostable covalently bound enzyme fraction. The ionically bound +
soluble PME, on the other hand, showed almost 25 and 30 percent inactivation after 80 °
and 90 °C rehydrations, respectively. Thus, for PME inactivation, rehydration at 90 °C
has almost no benefits. The times of rehydration to achieve 30 % moisture content at 80
® and 90 °C were almost 16, 8.8 min, respectively (Table 5.1). According to the results

M Covalently bound PME
TIonically bound + soluble PME

Remaining activity (%)

Rehydration temperature ("C)

Figure 5.7. Residual activities of ionically bound + soluble PME and covalently bound
PME in IM figs rehydrated at different temperatures (Season 2002).

of heat penetration studies (Fig 5.3) and heat inactivation data obtained (Table 5.3),
these temperatures and times should be enough to achieve at least 1 decimal or more
inactivation of ionically bound + soluble PME fraction. However, the increase of
ionically bound + soluble PME enzyme activity after rehydration at 70 °C clearly
indicated the in situ activation of this PME fraction in whole figs by heating. The

activation of this enzyme fraction was also observed during the heat inactivation studies
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conducted with partially purified ionically bound + soluble PME enzyme extracts.
However, during these studies the activation at 70 °C did not cause the increase of
enzyme activity over initial activity. Thus, it appears that the limited enzyme
inactivation by hot rehydration was due to the considerably more activation of in-situ
PME in whole figs. It is very difficult to explain how ionically bound + soluble PME
showed more activation in whole figs. However, it is likely that when fig tissue was
homogenized for enzyme extraction the enzyme came into contact with some inhibitors
that limited its activation during heating. Also, it is well known that the heat
inactivation of enzymes is affected from their solubility (Wasserman, 1984; Weng et al.,
1991). Thus, the PME in sun-dried figs may be immobilized by the concentrated
cellular matrices such as pectic compounds and this may increase the activation and

thermal stability of enzyme.

As indicated above rehydration at 80 ° or 90 °C has almost the same effect on PME
activity. Thus, in 2002 season all hot rehydrations were applied at 80 °C. However, to
see the effect of longer storage periods on remaining PME activity and IM fig texture,
this time IM sun-dried figs were stored for more than 3 months. As seen in Table 5.5,
after rehydration the average PME activity in the homogenates of IM figs rehydrated in
water at 80 °C was almost 25 % less than that of the homogenates of IM figs rehydrated
in water at 30 °C. This result complies well with previous findings of this study related
to the inactivation of PME in whole IM figs rehydrated at 80 °C (Figure 5.7). As given
before, in season 2001 the PME activity of IM figs rehydrated in water at 80 °C and
cold stored for 3 months was 28 % lower than that of controls stored for the same time
period. However, in 2002 season these differences between the activities of cold stored
control and heat treated IM figs were smaller. This was because of the slight increase
and reduction in the PME activities of heat treated and control samples during cold
storage, respectively. As seen in Table 5.5 after 3.5 and 5 months cold storage the PME
activity of IM figs rehydrated in water at 80 °C was almost 14 % and 21 % lower than

those of the controls stored for the same time periods, respectively.

After 3.5 months cold storage when IM figs rehydrated in water at 80 °C and 30 °C
were examined by the classical thumb test, an apparent softening was detected in both

groups. Although, it is very difficult to determine which group was firmer, it seemed



that the controls were slightly firmer. When the firmnesses of IM figs were determined

by fruit hardness tester this difference was observed more clearly (Table 5.6).

Table 5.5. Residual PME activities in the homogenates of IM sun-dried figs rehydrated

at different conditions and cold stored for different time periods (Season 2002).

Activity (WM COOH. min™. g™)

Type of Storage time (months)
rehydration 0 35 5
Control / 51 min in water at 30 °C
1 24,16 +1,1 26,09 +0,2 24,83 £0,9
2 26,35 10,6 22,75 +1,1 23,78 10,5
3 25,90 +0,3 22,23 10,2 26,52 10,7
Average 25,5 (100) | Average 23,69 (93) | Average 25,04 (98)
16 min in water at 80 °C
1 20,22 +0,4 20,40 +0,6 19,08 +0,3
2 18,53 +0,3 21,30 10,5 21,78 £ 0,4
3 18,62 +0,4 19,27 +0,4 18,27 £1,2
Average 19,1 (75)* | Average 20,32 (80) | Average 19,71 (77)

4 min in 2.5% H,0, solution at 80 °C + 12 min in water at 80 °C

1 20,87 10,3 19,93 10,4 22,08 10,4
2 17,27 £0,1 18,65 10,7 19,05 +0,4
3 19,17 £0,5 18,32 +0,5 19,47 10,9
Average 19,1 (75) | Average 18,97 (74) | Average 20,20 (79)
8 min in 2.5% H,;0; solution at 80 °C + 8 min in water at 80 °C
1 16,85 +0,3 19,75 10,4 19,68 £0,4
2 16,91 £0,3 21,69 10,2 20,54 £1,0
3 19,51 £0,3 19,47 10,2 19,49 +0,5

Average 17,8 (70) | Average 20,30 (80) | Average 19,90 (78)

* percentage of remaining PME activity as compared to initial activity of control

When storage period was increased to 5 months and the same textural examinations

were repeated, further softening was determined in samples. In almost 77 % of IM figs
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rehydrated at 30 °C the fruit fleshes were rubbed-off form the peels very easily. On the
other hand, in IM figs rehydrated in water at 80 °C, the percentage of fruits that fleshes
rubbed-off from the peels remained at 60 % (Table 5.7).

As indicated above, in season 2002 the beneficial effect of hot rehydration in water at
80 °C was not observed when IM figs were cold stored for 3.5 months. It seems that
this occurred because of the activation of PME enzyme during cold storage. In season
2001 such an activation was not observed in PME activity at the end of 3 months cold
storage and hot rehydration in water at 80 °C was found beneficial. Thus, it may be
concluded that the partial inactivation of PME by hot rehydration in water at 80 °C may
be beneficial only when IM figs are cold stored for short storage periods.

Table 5.6. The firmnesses of IM sun-dried figs cold stored for different time periods
(Season 2002).

Sample Firmness (kg)
Storage time (months)
35 5
Control / 51 min in water at 30 °C
0,349 £ 0,101 (294)* 0,294 +0,065 (318)

16 min in water at 80 °C

0,308 £0,058 (318) 0,251 £0,041 (288)
4 min in 2.5% H,0; solution at 80 °C + 12 min in water at 80 °C

0,339 £0,051 (288) 0,324 +£0,054 (306)
8 min in 2.5% H,0; solution at 80 °C + 8 min in water at 80 °C

0,446 +0,111 (288) 0,319 £0,047 (306)

*The number of penetrations

During cold storage an apparent browning also occurred in 2002 season IM figs
rehydrated in water at 30 °C or 80 °C. Particularly the IM figs rehydrated at 80 °C were
darker after 3.5 and 5 months cold storage (see photographs A4 and A5 in Appendix).

Thus, it is clear that the use of antibrowning agents is essential for heat-treated IM figs.
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5.7. Effect of H,O, on IM Fig Texture, Color and Residual PME Activity

In season 2001, to search the possibility of increasing the shelf-life and safety of IM figs
during cold storage, the effects of hot rehydration at 80 °C in the presence of 2.5 %
H,0, were also tested. The addition of HyO, to rehydration medium caused the
bleaching of figs and turned the brown color of fruits to golden yellow-light brown (see
photograph A6 in Appendix). The light colored figs were more attractive than the
brown figs rehydrated in water and they maintained this desirable color even after 3

months cold storage.

Table 5.7. Some characteristics of IM figs rehydrated at different conditions and cold

stored for different time periods (Season 2002).

A" (%) Comments

Storage time (months)

35 5 35 5

Control / 51 min in water at 30 °C

51 77 Brown-dark brown, some fruits Dark brown, almost all fruits had
(49)° (53) had sticky and gel like fleshes, very sticky and gel like fleshes and
most fruits lost their volumes, they lost their volumes, became
became disc like and softened disc like and very softened
16 min in water at 80 °C

48 60 Dark brown, some fruits had Dark brown, most fruits had sticky
(48) (49) sticky and gel like fleshes, most and gel like fleshes, and they lost
fruits lost their volumes, became their volumes, became disc like
disc like and softened and softened
4 min in 2.5% H,0, solution at 80 °C + 12 min in water at 80 °C

40 53 Light brown, some fruits had Light brown-brown, some fruits

(48) (51) sticky and gel like fleshes, most had sticky and gel like fleshes,
fruits maintained their volume most fruits maintained their
and shape, only several fruits volume and shape, some fruits
became disc like and softened became disc like and softened

8 min in 2.5% H,O; solution at 80 °C + 8 min in water at 80 °C

31 55 Light brown-yellow, some fruits Light brown, some fruits had
(51) (51) had sticky and gel like fleshes, sticky and gel like fleshes, most
most fruits maintained their fruits maintained their volume and
volume and shape, only several shape, some fruits became disc like
fruits became disc like and and softened
softened

?A: Percentage of fruits that fleshes can easily be rubbed-off from the peels when they
went-over with thumb; ® Number of fruits tested
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Traditionally, the light color of IM or high moisture fruits is maintained by adding O-
150 ppm SO, during their packaging (de Daza et al., 1997). Thus, by the application of

H,0, disinfection the use of sulfites may be minimized or eliminated completely.

At the end of 3 months storage, no apparent softening was detected in IM figs
rehydrated in 2.5 % H,0, at 80 °C. The fruit fleshes maintained their consistency and
their fleshes were not sticky. Also, the PME activities in the homogenates of
disinfected figs were 33 and 5 percent lower than those in the homogenates of figs
rehydrated in water at 30 ° and 80 °C, respectively (Table 5.4). However, in some figs
the O, gas released by the action of residual in-situ catalase caused some physical
defects. For example, tiny gas bubbles formed and trapped within the viscous fruit flesh
and in fruit center caused a substantial increase (blowing) in the volume of some figs
during storage. Also during storage, in some other figs the gas formed exhausted from
the fruit eye and this caused the accumulation of white foam at this location. Thus, to
eliminate these undesirable effects the concentration of H,O, and / or the contact period
of figs with H,O, should be reduced.

In season 2002, to reduce the contact period of figs with H,O, and to eliminate
undesirable physical defects some alternative treatments were tested. In these
treatments, the moisture content of figs was brought to 30 % by rehydrating them first
in 2.5 % H,0, solutions at 80 °C for 4 or 8 min and then in water at 80 °C for 12 or 8
min, respectively. When figs were disinfected and cold stored for 3.5 or 5 months by
using these two stage rehydration procedures, no blowing and foam formation were
observed in IM sun-dried figs during cold storage. Also, at the end of 3.5 months the
IM figs rehydrated for 4 or 8 min in H,O, solution had a light brown and light brown-
yellow color, respectively (see photographs A7 and A8 in Appendix). After 5 months
storage IM figs disinfected 4 min in H,O, showed slight darkening. However, 8 min
disinfected IM figs were still light colored (see photographs A9 and A10 in Appendix).

After rehydration, the PME activities of IM figs rehydrated at two stages were almost
same with those of IM figs rehydrated in water at 80 °C (Table 5.5). During cold
storage a slight PME activation was observed also in disinfected IM figs. However, the
disinfected IM figs maintained their textural properties better than the controls and
samples rehydrated in hot water at 80 °C. As seen in Table 5.6, after 3.5 months cold
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storage the IM figs disinfected 4 min in HyO, had almost the same firmness with control
IM figs. The IM figs disinfected for 8 min in H,O;, on the other hand, were firmer than
both of these IM fig groups. After 5 months cold storage the disinfected IM figs showed
only slight further softening, whereas controls and IM figs rehydrated in water at 80 °C
softened considerably. When fleshes of 4 and 8 min disinfected IM figs were went over
with thumb after 3.5 months cold storage, in almost 60 and 70 % of the fruits the fleshes
were not rubbed off from the peels easily (Table 5.7). Also, after five months cold
storage almost half of the fruits maintained the integrity of their fleshes. This indicates
the additional benefits of HyO, on fig texture. As indicated in Table 5.7 the figs
disinfected with H,O, maintained their volumes and shapes during cold storage. It
appears that the O, gas, formed due to the decomposition of H,O, by in situ catalase, is
responsible from the increased volume of disinfected figs. During cold storage this
probably helped fruits to maintain their original shapes and reduced the deformation of
fruits by their own weight and by the weights of other fruits. It is well known that the
deformation of cells increases the contact of PME and pectic compounds and
accelerates softening. Thus, it is clear that the application of hot rehydration in

combination with H,O, is very beneficial to control PME mediated softening in IM figs.

5.8. Effect of Hot Rehydration on Microbial Load

During cold storage, the total mesophilic aerobic count and total yeast and mold count
were monitored for IM figs rehydrated in water at 30 ® and 80 °C. Table 5.8 shows the
microbial counts of 2001 season IM figs immediately after rehydration and after 1 and 3
months cold storage. As seen in this table the initial total mesophilic aerobic counts of
figs rehydrated at 30 °C varied considerably for the first and second trials. At the end of
the first month of cold storage, the total number of mesophilic aerobic counts of IM figs
did not change considerably, except the substantial reduction (almost two decimals) in
the microbial count of IM figs obtained by the first rehydration trial at 30 °C. During
storage period such a considerable drop was observed only in these samples. Thus, the
higher count obtained after the first rehydration trial at 30 °C may be due to the
presence of several spoiled figs in these samples. Considering this observation, it is
unlikely to report that hot rehydration at 80 °C had a substantial effect on total
mesophilic aerobic load of IM figs. Between 1 and 3 months of cold storage, the total
mesophilic aerobic counts of control IM figs did not change considerably. In contrast,

in the same period, the total mesophilic aerobic counts of IM figs rehydrated at 80 °C
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increased almost 2-2.6 folds. Thus, for longer storage periods, further increases may be

expected in the microbial load of IM figs rehydrated in water at 80 °C.

On the other hand, during cold storage of IM figs rehydrated in water at 30 °C or 80 °C,
no mold growth on petri dishes was observed. In literature there are reports related to
the possible negative effects of tartaric acid, used for the acidification of PDA, on mold
growth (Taniwaki et al., 1999). Thus, as suggested by Farber (1997) the 3 months cold
stored IM figs were also tested on PDA supplemented with chloramphenicol antibiotic.
However, no mold growth was observed also in these counts. This shows the effective
washing and separation of contaminated figs under UV light in the factory. On the
other hand, except the figs obtained in the first trial of 30 °C rehydration, the total

number of yeasts had drop continuously during cold storage.

In season 2002, storage tests of IM figs rehydrated in water at 30 °C and 80 °C were
repeated. However, this time IM figs were stored for 3.5 or 5 months. As seen in Table
5.9, in season 2002, the total mesophilic aerobic count of controi IM figs rehydrated
in water at 30 °C varied between 1x10° and 1,9x10° CFU.g". Thus, compared to season
2001 the total mesophilic aerobic counts of IM figs were slightly lower and varied in a
very narrow range. Considering the average of controls (1,6x10° CFU.g"), in two of the
separate rehydration trials conducted in water at 80 °C the total mesophilic aerobic
count of IM figs reduced between 70 and 80 % after rehydration. However, in one of
the trials conducted in water at 80 °C, the number of total mesophilic aerobic count is
slightly higher than those of controls. Most probably this occurred because of the high
microbial count of several figs in hot rehydrated samples. Thus, it is clear that the
application of hot rehydration at 80 °C can not always reduce the microbial load of IM
figs below 10° CFU.g"'. After 3.5 months cold storage, in 2 of the 3 trials of controls
the total mesophilic aerobic counts of IM figs increased slightly over 2.5 x 10° CFU. g},
whereas the total mesophilic aerobic count of the other trial remained in the range of
initial microbial loads. It is interesting to note that in one of the groups (trial 2) of figs
rehydrated in water at 80 °C, a very high total mesophilic aerobic count was determined
after 3.5 months cold storage. As given in Table 5.8, in season 2001, during 3 months
cold storage of IM figs rehydrated in water at 80 °C, an increasing trend was determined
in the total mesophilic aerobic count of IM figs. These increases may be due to the

effect of mild heating. This is because it is reported that mild heat treatments may
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activate some microbial spores (Stumbo, 1965). It is likely that a mild heating and a
following cold storage activated some microbial spores and this caused an increase in
the total microbial load of IM figs rehydrated in water at 80 °C. On the other hand, the
detection of high microbial counts only in some parties of stored IM figs rehydrated in
water at 80 °C indicates the heterogeneous distribution of the microorganism capable to

grow or to restore themselves in cold stored IM figs.

Table 5.8. The effect of hot rehydration at 80 °C alone or in combination with H,O; on
microbial load of intermediate moisture figs brought to 30 % moisture (Season 2001).

Type of Total mesophilic
hvdrati bi ¢ Total yeast and mold count
re y ration acropic coun (CFU . g_l)
(CFU.g™)
Storage time (months)
0 1 3 0 1 3 3
Control / 65 min in water at 30 °C
1 2,0.10° 3,0.10° 42.100 <13 27 38 64
(£6626)° (£61)  (+405) (£46) (£66) (£44)
2 2,0.10° 1,6.10° 1,7.10° 14 <15 <15 <15

(£296) (£676) (+£985) (+£24)
16 min in water at 80 °C
1 1,0.10° 22.10° 43.10° 44 <12 <16 <16
&177) (£771) (£703) (+44)

2 2,0.10° 45.10° 1,2.10° <14 <13 <13 <13
(*417)  (+£234) (£614)
16 min in 2.5% H,0; solution at 80 °C

1 2,1.100 12.10> 7,0.10>° <14 <13 109 16
(*127)  (£68)  (£203) &71) (27

2 1,5.10> 33.10° 44.10* <15 <13 <14 41°
(67) (£93)  (£85) (71)

b

* Instead of tartaric acid, chloramphenicol antibiotic was added to the PDA agars;
standard deviations of microbial counts obtained from 3 plate counts; ° indicates the

only mold count (all other values were yeast counts)
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Table 5.9. The effect of hot rehydration at 80 °C alone or in combination with H,O, on
total mesophilic aerobic count of intermediate moisture figs brought to 30 % moisture

(Season 2002).

Type of Total mesophilic aerobic count
Rehydration (CFU.g )
Storage time (months)
0 35
Control / 51 min in water at 30 °C
1 1,9.10° 1,4.10°
(£ 401) (£581)
2 1,9.10° 2,8.10°
(£ 469) (+229)
3 1,0.10° 2,6.10°
& 311)° (+1635)
16 min in water at 80 °C
1 0,5.10° 0,4.10°
(+ 80) (£205)
2 0,3 .10° 8,3.10°
(£ 101) (£ 916)
3 2,4 .10° 0,4.10°
(+ 442) (#255)
4 min in 2.5% H,0; solution at 80 °C + 12 min in water at 80 °C
1 1,0.10° 0,4.10°
(£ 289) (*111)
2 1,0.10° 0,8.10°
(& 120) (£195)
3 1,3.10° <8
(£ 289)
8 min in 2.5% H,;0, solution at 80 °C + 8 min in water at 80 °C
1 0,7.10% 0,7.10°
(£ 83) (£ 215)
2 4.4 .10° 0,1.10°
(+212) (£ 73)
3 2,1.10° 0,2.10°
(£ 200) (£91)

” standard deviations of microbial counts obtained from 5 plate counts

The total yeast and mold counts of IM figs rehydrated in water at 30° and 80 °C were
also given in Table 5.10. As seen in this table in most of the counts, the total number of
yeasts and molds was higher when no sucrose was added to isolation medium. This
suggests the presence of small number of osmotrophs in IM figs. The comparison of
results clearly showed that the application of hot rehydration in water at 80 °C reduced
the initial total number of yeasts and molds in IM figs. In controls and in two of the IM
fig groups rehydrated in water at 80 °C the number of total yeasts and molds reduced or
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almost unchanged by cold storage. However, in trial 3 of IM figs rehydrated in water at
80 °C the total yeast and mold count increased considerably by 5 months cold storage.
In season 2001 after 3 months cold storage, slight increases in the number of yeast
counts were determined in one of the control fig groups and in one of the fig groups
disinfected by H,O,. Thus, for IM figs cold stored over 3-3.5 months there may be a
risk of fungal growth.

Table 5.10. The effect of hot rehydration at 80 °C alone or in combination with H,O, on
total yeast and mold count of intermediate moisture figs brought to 30 % moisture
(Season 2002).

Type of Total yeast and mold count
rehydration (CFU.g™
Storage time (months)
0 35 5 0* 35° 5"
Control / 51 min in water at 30 °C
1 333 40 27 13 <13 <13
(*115)° (£40) (+23) (£23)
2 160 27 27 67 27 <13
(£ 69) (x46) (£23) (346) (£23)
3 13 27 <13 <13 27 <13
(£23) (£46) (+46)
16 min in water at 80 °C
1 <13 13 <13 <13 27 <13
(#23) (£23)
2 <13 <13 27 <13 13 <13
(£23) (#23)
3 <13 <13 49.100 <13 67 1,1.10°
&+ 266) (#23) (*61)
4 min in 2.5% H,0; solution at 80 °C + 12 min in water at 80 °C
1 <13 13 <13 13 <13 <13
(*23) (*23)
2 <13 13 <13 <13 <13 13
(£23) (#+23)
3 53 13 13 53 80 13

(x61) (£23) (£23) (x61) (£40) (£23)
8 min in 2.5% H,0; solution at 80 °C + 8 min in water at 80 °C

1 <13 27 <13 <13 <13 <13
(146)
2 <13 <13 <13 13 <13 13
(£23) (23)
3 26 13 13 53 <13 13
(x£23) (£23) (£23) (x61) (+23)

# 20 % sucrose was added to medium during isolations and dilutions; ° standard
deviations of microbial counts obtained from 3 plate counts
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5.9. Effect of H,O; on Microbial Load

In season 2001, compared with IM figs rehydrated in water at 30 ° or 80 °C, rehydration
at 80 °C for 16 min in the presence of 2.5 % H,0, reduced the initial total mesophilic
aerobic count of IM figs almost 1 decimal (90 %). At the end of 3 months cold storage,
the total mesophilic aerobic counts of disinfected IM figs increased almost 3-3.5 folds
(Table 5.8). However, the counts were still below 10 > CFU. g . After rehydration and
at the end of 1 month storage, the total yeast and mold count of disinfected IM figs was
very low, but at the end of 3 months storage, it increased slightly for the IM figs
obtained in the first rehydration trial conducted in H>O, solution. However, this
increase was not observed clearly on the PDA plates supplemented with
chloramphenicol antibiotic. For the microbiological studies carried out in 2001 season,
the only mold count was obtained for one of the three plates of 3 months cold stored IM
figs of second H,0, rehydration trial. In literature, the effectiveness of vapor-phase
H,0, disinfection on fungi was reported for the dried plums (Sapers and Simmons,
1998), raisins (Simmons et al., 1997) and table grapes (Forney et al., 1991). However,
because of the very low number of fungi in figs used in 2001 season, the effect of H,O,
disinfection and hot rehydration on these microorganisms could not have been

determined clearly.

Although, rehydration at 80 °C for 16 min in 2.5% H,0, solution reduced the microbial
load of IM figs, as indicated before it causes blowing or foam formation in some figs
during cold storage. Thus, in season 2002, we determined the effectiveness of two stage
rehydration procedures conducted first in 2.5 % H,O, solutions at 80 °C for 4 or 8 min
and then in water at 80 °C for 12 or 8 min, respectively. As seen in Table 5.9 to reduce
the initial total mesophilic aerobic load of figs, 4 or 8 min disinfection in %2.5 H,O, are
not more effective than hot rehydration in water at 80 °C. However, after 3.5 months
cold storage, comparison of total mesophilic aerobic counts of disinfected IM figs with
those of control figs and figs rehydrated in water at 80 °C, clearly showed the beneficial
effect of H,O, to suppress microbial growth. In both 4 and 8 min disinfected IM figs
the total mesophilic aerobic counts were below 10° after 3.5 months cold storage. This
result showed that for 3-3.5 months cold storage there is almost no difference among the
effects of 4, 8 or 16 min H,0, disinfections on total mesophilic aerobic load of IM figs.
It seems that disinfection with H,O, gives an extra damage to microorganisms and

prevents their growth under refrigerated conditions.
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The effects of two stage rehydration procedures on total yeast and mold counts of IM
figs were also determined. As seen in Table 5.10 the initial total yeast and mold counts
of 4 and 8 min disinfected IM figs were low and they were almost unchanged during
cold storage. These results proved the microbial safety of cold stored IM figs
disinfected with H,O,.

5.10. Residual H,O,

After 16 min rehydration of sun-dried figs in 2.5 % H,0, at 80 °C, considerable amount
of residual H,O, was determined in IM figs (Table 5.11). Almost 70 % and 99 % of the
residual H,O, in IM figs decomposed in 7 and 30 days, respectively. However, these
long decomposition periods indicate the stability of residual H,O, in IM figs. Also,
because of the indicated physical defects occurred, it is not suitable to apply 16 min .
rehydration in 2.5 % H,O, at 80 °C to whole figs.

Table 5.11. The amounts of residual HyO, in filtered homogenates of IM figs rehydrated

at different conditions.
Type of Residual H,O; (ppm)
rehydration
Storage time (days)

0 7 15 30 50
4 min in 2.5% H,0; solution at 80 °C + 12 min in water at 80 °C

10 1 1 < 1(nd)* -
8 min in 2.5% H,0, solution at 80 °C + 8 min in water at 80 °C

30-100 10-30 3 <1 (nd) -
16 min in 2.5% H;0; solution at 80 °C
300 100 30-100 3 < 1(nd)

*no residual H,O, was detected by the qualitative enzymatic method (nd: not detected)

In qualitative tests to detect catalase activity in IM figs rehydrated in water at 80 °C,
considerable amount of gas release was observed and this last continuously almost half
an hour. The gas release in [M figs rehydrated in water at 30 °C occurred much more
extensively and last almost 3 hours. This observation showed that the enzyme catalase

was partially inactivated during hot rehydration. Most probably the inactivation
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occurred at the outer tissues of figs that received more heat and this prevented or
slowed down the decomposition of residual H,O, at these locations. However, the in-
situ catalase still exists in heat-treated figs and disintegration of fruit tissues may enable
the contact of HyO, with remaining enzyme. Thus, IM figs rehydrated in 2.5 % H,O,
may still be used in the production SO, free light colored fig purees. To see the stability
of residual H,0, in fig puree, following disinfection in 2,5 % H,0, for 16 min, IM figs
were pureed with a manual meat grinder. In pureed disinfected IM figs the residual
H,O, in filtered homogenates drop to 100 ppm. Also, 70 % of this residual H,O,
degraded when puree was stored at room temperature for 2 hours (Table 5.12). Further
storage of fig puree at 4 °C for 3 and 22 hours, on the other hand, degraded almost 90
and 99 % of residual H,O, in fig puree. Also, the total number of mesophilic aerobic

counts and total yeast and mold counts of fig puree were very low.

Table 5.12. The amounts of residual H,O, in filtered homogenates of fig purees
obtained from IM sun-dried figs rehydrated for 16 min in 2.5 % H»0, at 80 °C.

Time at different storage Residual H,O,

conditions after pureeing (hours) (ppm)

Room temperature

0 100
0.5 30-100
1 30-100
2 30
Cold storage
3(5)* 10
22 (24) 1
27 (29) <1

Total mesophilic aerobic count: 56 = 60 CFU . g -
Total yeast and mold count: 13°+23 CFU. g -

*Numbers in brackets indicate the hours elapsed after homogenization
® there is only mold growth

For the application of H,O, disinfection in whole figs, the residual H,O, was also tested
in IM figs disinfected by two stage rehydration procedures. As seen in Table 5.11 two
stage rehydration procedures reduced the level of residual H,O, in IM figs considerably.
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In these methods, further reduction of the residual level of H,O, may also be achieved
by the addition of very low dosages of H,O, reducing chemicals such as sulfites (Ozkan
and Cemeroglu, 2002) or ascorbic acid and its derivatives (Sapers and Simmons, 1998)
to water used at the second stage of rehydrations. Also, the addition of FeSOy to second
stage of rehydration may accelerate the decomposition of H,O, in IM figs by causing
Fenton reaction (see section 3.1). These results are very promising for the application of
H,0; to reduce the microbial load of IM figs or purees and to obtain light colored SO,

free products.
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Chapter 6

CONCLUSIONS

Sun dried figs contained considerable amount of PME activity and during cold storage
this caused softening and loss of desired gummy texture of IM figs brought to 30 %
moisture content. The enzyme was not heat stable but it showed activation by heating.
Thus, it seems difficult to inactivate the enzyme by hot rehydrations conducted between
70 © and 90 °C. The partial inactivation of enzyme by hot rehydration at 80 °C and cold
storage may only be used to delay PME catalyzed textural changes in IM figs when
storage time is not longer than 3 months. For longer storage periods, partial inactivation
of enzyme by hot rehydration alone has no benefits on maintaining desired textural

properties.

The application of hot rehydration in water at 80 °C alone caused the activation of some
microorganisms during cold storage. Thus, cold storage and hot rehydration in water
may not be sufficient to obtain a shelf-life grater than 3 months. The rehydration of figs
in 2.5 % H,0, solution at 80 °C for 16 min reduced the microbial load of IM figs and
suppressed microbial development during cold storage. Also, the light colored figs
obtained by H,0, disinfection were very attractive and needed no SO, treatment.
However, this treatment left unacceptable levels of residual H,O, in whole fig tissues
and this causes formation of some physical defects in IM figs. The physical defects,
appeared as blowing and foam formation at the eyes of some fruits, occurred due to the
accumulation of O, gas released by in situ catalase. However, when figs are pureed the
residual H,O, was decomposed by the same mechanism. Thus, disinfection of sun-
dried figs in 2.5 % H,0, at 80 °C for 16 min can be suggested for the production of SO,
free light colored fig purees.

By applying rehydrations first in 2.5 % H,O, solutions at 80 °C for 4 or 8 min and then
in water at 80 °C for 12 or 8 min, respectively, it is possible to reduce the residual
amount of H,O, in IM figs considerably. This eliminated the physical defects occurred
in IM figs. Also, in these procedures further reduction of residual level of H;O, may
also be achieved by the addition of very low dosages of H,O, reducing chemicals at the

second stage of rehydrations. The two stage disinfections did not reduce the initial



microbial load of IM figs considerably. However, they effectively suppressed microbial
development in IM figs during cold storage. The figs obtained by two stage
rehydrations were also light colored and needed no SO, treatment.
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APPENDIX

Al. Standard curve for protein determination
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A2. A photograph of IM figs rehydrated at 30 °C for 65 min and cold stored for 40 days.

A3. A photograph of IM figs rehydrated at 80 °C for 16 min and cold stored for 40 days.
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A4. A photograph of IM figs rehydrated at 30 °C for 51 min and cold stored for 3.5
months.

AS. A photograph of IM figs rehydrated at 80 °C for 16 min and cold stored for 3.5

months.
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A6. A photograph of IM figs rehydrated at 80 °C for 16 min in 2.5 % H,0O, solution and
cold stored for 40 days.

A7. A photograph of IM figs rehydrated first in 2.5 % H,O, solution at 80 °C for 4 min

and then in water at 80 °C for 12 min and cold stored for 3.5 months.
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A8. A photograph of IM figs rehydrated ﬁLst in 2.5 % 1,0, solution at 80 °C for § min

and then in water at 80 °C for 8 min and cold stored for 3.5 months.

A9. A photograph of IM figs rehydrated first in 2.5 % H»O; solution at 80 °C for 4 min

and then in water at 80 °C for 12 min and cold stored for 5 months.
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A10. A photograph of IM figs rehydrated first in 2.5 % H>O, solution at 80 °C for 8 min

and then in water at 80 °C for 8 min and cold stored for 5 months.




