Isolation and Characterization of 15115 Bacillus thuringiensis **Strains from Different Grain Habitats** # By Özgür APAYDIN 151981 A Dissertation Submitted to the Graduate School in Partial Fulfillment of the Requirements for the Degree of # **MASTER OF SCIENCE** Department: Biotechnology and Bioengineering Major: Biotechnology **İzmir Institute of Technology** İzmir, Turkey October, 2004 # We approve the thesis of Özgür APAYDIN 15 October 2004 Assoc. Prof. Dr. Hatice GÜNES Supervisor Department of Biology 15 October 2004 Prof. Dr. Şebnem HARSA Co-supervisor Department of Food Engineering 15 October 2004 Asst. Prof. Dr. Ali Fazıl YENİDÜNYA Co-supervisor Department of Biology 15 October 2004 Asst. Prof. Dr. Canan TARI Department of Food Engineering 15 October 2004 Asst. Prof. Dr. Ferda SOYER Department of Biology FBARM MARJA 15 October 2004 Prof. Dr. Şebnem HARSA Head of Interdisciplinary Biotechnology and Bioengineering Program **Date of Signature** #### **ACKNOWLEDGEMENTS** I deeply thank my advisor Assoc. Prof. Dr. HaticeGÜNEŞ for her precious help, contributions, support, encouragement, confidence and endless patience throughout this study. I want to add my thanks to my co-advisor Assist. Prof. Dr. Ali Fazıl YENİDÜNYA for his valuable help, contributions and support. I also would like to thank my co-advisor Prof. Dr. Şebnem HARSA for her advice, support and confidence. I want to thank greatfully my friends F.Tuba ÇETİNKAYA, Çelenk ÇINAR, Z.Seda ELMACI, Mert SUDAĞIDAN, Elif YAVUZ, Güney AKBALIK, Burcu OKUKLU and Seçil CERTEL for their kind support and help. I also want to express my thankfulness to Turan AKBAŞ and Şevket APAYDIN for their help and support in Taşkale / Karaman. Finally, I want to thank specially to my family; my sister Sinem APAYDIN, my mother Nuray APAYDIN and my father Gürses APAYDIN for their endless support, patience, encouragement and love during the preparation of this thesis-work. Anyone else I should have thanked, but have forgotten. #### ABSTRACT Bacillus thuringiensis is a Gram positive, facultative anaerob bacteria that produces proteins toxic against different insect species. This feature makes it the most widely used biological control agent in agriculture. Since B. thuringiensis strains have great genetic diversity, the toxic behaviours of these strains differ from region to region. Native B. thuringiensis strains are isolated from different habitats and characterized to determine their toxic potential all over the world. The aim of this study was to isolate B. thuringiensis strains from different grain habitats in Central Anatolia and Aegean Regions, and to investigate their phenotypic and genotypic characterizations. Total 96 samples containing soil, grain, stored product dust, straw and various residues were collected from wheat farms, grain silos, haylofts and caves in Ereğli/Konya, Taşkale/Karaman, Nikfer/Denizli, and Bozbük/Söke under aseptic conditions. Seven hundred bacteria were isolated from these samples by sodium acetate selection and heat treatment. For phenotypic characterization, 500 of these isolates were grown for 48 h and crystal protein production was observed by phase contrast microscobe during spore formation. One hundred and sixty three of the bacterial colonies were identified as B. thuringiensis. The isolates were divided into 5 different groups based on the shape of the crystals that they produced. Spherical type crystal morphology was mostly observed type among the others. For genotypic characterization, the cry gene content of the isolates were screened by polymerase chain reaction (PCR) analysis. In addition, chromosomal DNA analysis of 34 isolates by Pulsed Field Gel Electrophoresis (PFGE) as well as plasmid DNA profiling for all isolates were also carried out. One hundred and three isolates were positive for 5 different cry genes (cry1, cry2, cry3, cry4, cry9) examined by PCR. Among all cry genes examined, cry1 and cry9 genes were mostly found in the isolates. Morover, plasmid profiling of the isolates indicated that a 15 kb DNA band was present in all the isolates; however, some of them had more than one DNA band at different sizes. Finally, chromosomal DNA profiling by PFGE showed different DNA patterns for isolates containing the same cry gene which suggest a high level of diversity among the B. thuringiensis strains isolated. Further studies related with extensive genetic characterization and toxic activity of each B. thuringiensis strain will give more comprehensive results on biodiversity of B. thuringiensis strains in Anatolia. Bacillus thuringiensis Gram pozitif, fakültatif anaerob bir bakteri olup, sporlanma evresinde ürettiği proteinler ile bir çok böcek türü üzerinde toksik etki gösterir. Bu özelliğinden dolayı, tarımsal mücadelede en yaygın kullanılan biyolojik kontrol ajanıdır. B. thuringiensis suşları geniş bir genetik çeşitliliğe sahip olup, bu suşların toksik davranışları bulundukları coğrafik bölgelere göre farklılık göstermektedir. Dünyanın çeşitli yerlerinde, değişik ortamlardan doğal B. thuringiensis suşları izole edilmekte ve toksik potansiyellerinin belirlenmesi amacıyla karakterizasyonları yapılmaktadır. Bu çalışmanın amacı, İç Anadolu ve Ege Bölgelerindeki çeşitli tahıl ortamlarından *B. thuringiensis* suşları izole ederek, bunların fenotipik ve genotipik olarak karakterizasyonlarını yapmaktır. Ereğli/Konya, Taşkale/Karaman, Nikfer/Denizli, Bozbük/Söke' de bulunan buğday tarlaları, tahıl ambarları, samanlıklar ve mağaralardan aseptik koşullar altında toprak, tahıl, depo tozu, saman ve çeşitli kalıntılardan oluşan toplam 96 adet örnek toplandı. Bu örneklerden, sodyum asetat seleksiyonu ve ısıl işlem uygulanarak 700 civarında bakteri izole edildi. Fenotipik karakterizasyon için, bu izolatların 500 tanesi 48 saat uygun katı besi ortamında büyütüldü ve faz kontrast mikroskobu ile spor oluşumu sırasındaki kristal protein üretimi incelendi. Bakteri kolonilerinin 163 tanesi *B. thuringiensis* olarak tanımlandı. İzolatlar ürettikleri kristal protein şekillerine göre 5 farklı gruba ayrıldılar. Kristal protein ürettiği gözlemlenen izolatlarda, çoğunlukla küresel tipte kristal morfolojisine rastlandı. Genotipik karakterizasyon için, bu izolatların *cry* gen içeriği PCR analiziyle tarandı. Buna ek olarak, izolatların plazmid DNA profilleri çıkarılırken, 34 adet izolatın kromozomal DNA analizleri *Pulsed Field Gel* Elektroforez (PFGE) ile incelendi. Kristal genlerinden cry1, cry2, cry3, cry4 ve cry9 için yapılan PCR analizlerinde, 103 tane izolat pozitif sonuç verdi. Taranan bütün cry genleri arasında en çok cry1 ve cry9 genlerinin varlığına rastlandı. Plazmid profilleri incelendiğinde bir çok izolat için farklı büyüklüklerde bantların yanında, hepsinde 15 kb'lık DNA bantları saptandı. Son olarak, PFGE analizlerinden alınan sonuçlar, izole edilen B. thuringiensis suşları arasında yüksek oranda farklılık olduğunu ifade etmektedir. Gelecek çalışmalarda, her bir B. thuringiensis suşu için yapılacak olan daha geniş genotipik karakterizasyon ve toksik aktivite testleri B. thuringiensis suşlarının Anadolu'daki biyoçeşitliliği hakkında daha detaylı sonuçlar verecektir. # **TABLE OF CONTENTS** | LIST OF | FIGURES | ix | |-----------|--|----| | LIST OF | TABLES | х | | LIST OF | ABBREVIATIONS | xi | | Chanter 1 | . INTRODUCTION | 1 | | _ | Pests in Croplands | | | | 1.1.1. Pesticides | | | 1.2. | History of Bacillus thuringiensis | | | | Commercial Bacillus thuringiensis Products | | | | 1.3.1. Formulations of <i>Bacillus thuringiensis</i> Preparats | | | | 1.3.2. Applications of <i>Bacillus thuringiensis</i> Preparats | | | | 1.3.3. Safety of Bacillus thuringiensis Products | | | 1.4. | | | | 1.5. | General Characteristics of Bacillus thuringiensis | | | | 1.5.1. Morphological Features of Bacillus thuringiensis | 8 | | 1.6. | Ecological Role of Bacillus thuringiensis | 9 | | 1.7. | Insecticidal Crystal Proteins of Bacillus thuringiensis | 9 | | | 1.7.1. Crystal Protein Structure. | | | | 1.7.2. Action Mechanism | 11 | | | 1.7.3. Insect Spectrum of Bacillus thuringiensis | | | | δ-endotoxins | 12 | | 1.8. | Other Pathogenic Features of Bacillus thuringiensis | 13 | | 1.9. | Genetic Features of Bacillus thuringiensis | 13 | | | 1.9.1. Bacillus thuringiensis Genome | 13 | | | 1.9.2. The cry Genes | 14 | | | 1.9.3. The <i>cry</i> Gene Expression | 14 | | 1.10 | Strain Collections of Bacillus thuringiensis | 15 | | 1.11 | . Isolation and Characterization Methods of Bacillus | | | | thuringiensis to Establish Bt Strain Collections | 16 | | | 1.11.1. Isolation Methods of <i>Bacillus thuringiensis</i> | 16 | | | 1.11.2. Characterization Methods of Bacillus thuringiensis | 17 | |------------|--|----| | 1.12 | . Thesis Objectives | 18 | | | | | | Chapter 2 | . MATERIAL AND METHODS | 19 | | 2.1. | Materials | 19 | | 2.2. | Methods | 19 | | | 2.2.1. Sample Collection | 19 | | | 2.2.2. Bacillus thuringiensis Isolation | 19 | | | 2.2.3. Crystal Morphology Analysis | 20 | | | 2.2.4. Bacillus thuringiensis Strains | 21 | | | 2.2.5. DNA Isolation | 21 | | | 2.2.6. Oligonucleotide Primers for Polymerase Chain | | | | Reactions (PCR) | 22 | | | 2.2.7. cry Gene Identification by Polymerase Chain | | | | Reactions (PCR) | | | | 2.2.8. Plasmid Profiling | 23 | | | 2.2.9. Pulsed Field Gel Electrophoresis (PFGE) Analysis | 24 | | | | | | Chapter 3. | RESULTS AND DISCUSSION | 25 | | 3.1. | Isolation of Bacillus thuringiensis | 25 | | 3.2. | Crystal Protein Composition of Bacillus thuringiensis isolates | 30 | | | Characterization of cry Gene Contents of Bacillus | | | | thuringiensis Isolates | 31 | | | 3.3.1. cryl Gene Analysis of Bacillus thuringiensis | 32 | | | 3.3.2. cry2 Gene Analysis of Bacillus thuringiensis | 32 | | | 3.3.3. cry3 Gene Analysis of Bacillus thuringiensis | 34 | | | 3.3.4. cry4 Gene Analysis of Bacillus thuringiensis | | |
| 3.3.5. cry9 Gene Analysis of Bacillus thuringiensis | | | 3.4. | Analysis of <i>cry</i> Gene Distribution | | | 3.5. | Plasmid Profiles of <i>Bacillus thuringiensis</i> Isolates | | | | PFGE Profiles of <i>Bacillus thuringiensis</i> Isolates | | | | | | | Chapter 4. | CONCLUSION AND FUTURE EXPERIMENTS | 43 | | REFERENCES | 45 | |------------|-------------| | | | | APPENDICES | AA | | APPENDIX A | AA | | APPENDIX B | AB | | APPENDIX C | AC | | APPENDIX D | AD | | APPENDIX E | AE | | APPENDIX F | AF 1 | # LIST OF FIGURES | Figure 1.1. | Crystal protein formation of a B. thuringiensis cell | 8 | |-------------|---|----| | Figure 1.2. | The structure of Cry 3A protein | 10 | | Figure 1.3. | The structure of Cyt 2A protein | 11 | | Figure 1.4. | Position of conserved sequence blocks of cry proteins | 12 | | Figure 3.1. | Photomicrograph of spore, crystal and vegetative cells of | | | | cryl positive isolate | 30 | | Figure 3.2. | Crystal shape distribution of B. thuringiensis isolates | | | | based on phase contrast microscopy | 31 | | Figure 3.3. | Agarose gel electrophoresis of PCR products for cryl | | | | genes | 33 | | Figure 3.4. | Agarose gel electrophoresis of PCR products for cry2 | | | | genes | 33 | | Figure 3.5. | Agarose gel electrophoresis of PCR products for cry3 | | | | genes | 35 | | Figure 3.6. | Agarose gel electrophoresis of PCR products for cry4 | | | | genes | 35 | | Figure 3.7. | Agarose gel electrophoresis of PCR products for cry9 | | | | genes | 36 | | Figure 3.8. | cry gene distribution of B. thuringiensis based on PCR | | | | analysis | 38 | | Figure 3.9. | Plasmid profiles of B. thuringiensis isolates | 40 | | Figure 3.10 | PEGE profiles of R thuringionsis isolates | 42 | # LIST OF TABLES | Table 2.1. | Locations, types and numbers of collected samples | 20 | |------------|---|----| | Table 2.2. | Reference strains of B. thuringiensis | 21 | | Table 2.3. | Universal Primers | 22 | | Table 3.1. | Colony morphologies of B. thuringiensis like isolates | 26 | | Table 3.2. | B. thuringiensis isolation analysis according to sample | | | | types | 27 | | Table 3.3. | Distribution of B. thuringiensis based on sample types | | | | and location | 29 | | Table 3.4. | Isolates positive for <i>cry</i> genes | 39 | ### LIST OF ABBREVIATIONS bp : Base pair Bt : Bacillus thuringiensis **CHEF** : Clamped Homogeneous Electrical Field cry : Crystal **DNA** : Deoxyribonucleic Acid dNTP : Deoxynucleotide triphosphate **EDTA** : Ethylenediamine tetra acetic acid h : Hour kb : Kilo base Mb : Mega base μl : Microliter μM : Micromolar $\mathbf{m}\mathbf{M}$: Milimolar **PCM** : Phase Contrast Microscopy **PCR** : Polymerase Chain Reaction **PFGE** : Pulsed Field Gel Electrophoresis **PMSF** : Phenyl Methyl Sulfonyl Floride subsp. : Subspecies sp. : Species TAE : Tris Acetate EDTA **TBE** : Tris Borate EDTA TE : Tris EDTA \mathbf{U} : Unit $\mathbf{U}\mathbf{V}$: Ultra Violet #### Chapter 1 #### INTRODUCTION Insects are the most abundant groups of organisms on earth. They often negatively affect humans in a variety of ways. They cause massive crop damage and act as vectors of both human and animal diseases, such as malaria and yellow fever (Glazer and Nikaido, 1994). Therefore, human have desired to control insects. As being parallel to development of chemistry, chemical substances had been started to be used for controlling of pests in the mid 1800s. The use of inorganic chemicals and organic arsenic compounds were followed by organochlorine compounds, organophosphates, carbomates, pyrethroids and formamidines (Glazer and Nikaido, 1994). These chemicals were very effective in killing and controlling of many species of pests. However, they have many direct and indirect adverse effects on ecosystem including accumulation of toxic residues in nature, leading health problems in mammals and development of insect resistance (Glazer and Nikaido 1994). The problems related with chemical pesticides oriented human to find out safer and natural alternative ways of pest control. In nature, some microorganisms have the potential to produce some biological agents capable of infecting other living organisms including insects. Many of these infectious agents have a narrow host range and, are not toxic to beneficial insects or vertebrates (Glazer and Nikaido 1994). Therefore, the use of these non-pathogenic microorganisms have been developed as the biological way of pest control. Insect viruses (baculoviruses), some fungi, protozoa and bacteria have been used as biological pest control agents. Among all, *Bacillus thuringiensis* is the most important microorganism with entamopathogenic activity against certain insect orders. It is ubiquitous, gram-positive and spore-forming bacterium which produces insecticidal crystal proteins during sporulation. The toxic activity due to proteins produced by plasmid encoded *cry* genes, varies with insect type. The native strains of this bacterium have been used nearly for 50 years safely, as an alternative to chemical pesticides. Bt preparations account for 80-90% of world biopesticide market (Kumar *et al.*, 1997). By contrast, it represents only 2% of the total global pesticide market with \$90 million worlwide sales (Lambert and Peferoen 1992; Schnepf *et al.*, 1998). #### 1.1. Pests in Croplands Human population is estimated to increase to 7.7 billion by the year 2020 (United Nations, 1996). This increased population will cause an increase in the demand for agricultural production. However, the land suitable for agricultural production is limited due to restricted water availability, depletion of land sources and already cultivated highly productive soils. Under these limitations, it is important to develop the yield of agricultural production (Oerke and Dehne 2004). It has been estimated that upto 15% of crops worldwide are lost due to insect damage only (Boulter *et al.*, 1989). Therefore, the need to exterminate insects that are destroying crops becomes urgent. Wheat, rice, maize and barley are the primary source for human nutrition worlwide and cover more than 40% of global cropland (Tilman, 1999). Most of the pests giving damage to these grains belong to Coleoptera and Lepidoptera orders. In addition, some species of Arachnida, Orthoptera, Hymenoptera, Diptera and Psocoptera can also cause damage in stored grain products. #### 1.1.1. Pesticides Early pesticides were the chemical substances. Certain properties made them useful, such as long residual action and effective toxicity to a wide variety of insects. However, the use of them may lead to negative outcomes. The chemical insecticides used today are considered as presumably safer than those used in the past, but there are still some concerns. Long-term exposure to these chemicals can cause cancer, liver damage, immunotoxicity, birth defects and reproductive problems in humans and animals (Kegley and Wise 1998). Also, they can cause accumulation and persistance of toxic residues in soil, water and food; toxicity aganist beneficial insects and development of pest resistance (Marrone and Macintosh 1993; Van Frankhuyzen, 1993; Glazer and Nikaido, 1994). Nevertheless, chemical insecticides have a large market volume, and global sales of them are about \$5 billion a year (Glazer and Nikaido, 1994). By contrast, microbial pesticides are safe for ecosystem. They are non-toxic and non-pathogenic to wildlife and humans. The toxic action of them is often specific to a single group or species of insects, so they do not affect the other insect population in treated areas. Because they have no hazardous residues to humans or animals, they can also be applied when crop is almost ready for harvest (Neppl, 2000). In spite of these attractive features, microbial pesticides represent about 2% of global insecticide sales. *Bacillus thuringiensis* based pesticides account major share of the bioinsecticide market with 80-90% (Glazer and Nikaido, 1994). For several reasons, the use of biopesticides as insecticide has grown slowly when compared with chemicals. Microbial pesticides are generally more expensive to produce than many chemicals. Large quantities of toxins have to be applied to the field to ensure that each larvae will ingest a lethal dose. However, the cost can be decreased by increasing demands. Many chemical pesticides have broad spectrum of toxicity, so pesticide users may consider microbial pesticides with a narrower range to be less convenient. In addition, microbial pesticides kill the insects in a slower speed and thus, this contributes users that they are less effective than the traditional chemical agents (Glazer and Nikaido, 1994). Nevertheless, the use of biological pest control agents have been considered to be much safer than chemical ones for the ecosystem. Moreover, the future prospects of them seem to be positive. It is estimated that, the growth rate of usage of biopesticide use over the next 10 years will be 10-15% compared with 2% for chemical pesticides. Also, the cost of development of Bacillus thuringiensis insecticides is predicted to be \$3-5 million, compared with \$50-80 million for chemical insecticides. In addition, the use of chemical insecticides seems likely to decline in the future, restrictions for their registration will increase resulting in a smaller chemical pesticide market (Navon, 2000). ## 1.2. History of Bacillus thuringiensis The entamopathogenic bacterium *B. thuringiensis* was first isolated by the Japanese scientist S. Ishiwata, in 1901, from silkworm larvae (*Bombyx mori*) exhibiting the sotto disease and named as *Bacillus sotto* (Ishiwata, 1901). In 1911, Berliner formally described the species from a diseased Mediterranean flour moth larvae (*Anagasta kuehniella*) collected in a German town, Thuringia which gave the name to the species (Berliner, 1911). *B.
thuringiensis* first became available as a commercial insecticide, against flour moth, in France in 1938 (Neppl, 2000). In 1956, the main insecticidal activity of *B. thuringiensis* against Lepidopteran insects was found to be due to parasporal crystals by the researchers Hanay and Fitz-James Angus. This discovery increased the interest of other researchers in crystal structure, biochemistry and action mechanism of toxins. In 1950s, *B. thuringiensis* has been started to be used commercially in US. By 1961, *B. thuringiensis* has been registered as biopesticide to the United States Environmental Protection Agency (EPA). Upto 1976, *B. thuringiensis* has been available only for control of Lepidoptera (butterflies and moths), with a highly potent strain *B. thuringiensis* supsp. *kurstaki* (Dulmage, 1970). This strain still forms the basis of many *B. thuringiensis* formulations. In 1976, with the discovery of *B. thuringiensis* supsp. *israelensis* by Margalit and Tahori in Israel, disease causing dipteran insect pests such as mosquitoes and blackflies have been taken under control (Margalit and Dean 1985). In 1980s, developments in biotecnology have stimulated researchers to screen large number of natural *B. thuringiensis* isolates to find different strains toxic against other insect orders. In 1983, *B. thuringiensis* supsp. *tenebrionis* has been described effective against the larvae of coleopteran insects (Krieg *et al.*, 1983). *B. thuringiensis* supsp. *aizawai* active against both Lepidoptera and Diptera orders (Glazer and Nikaido 1994) and *B. thuringiensis* supsp. *sandiego* active against beetles (Hernstadt *et al.*, 1986) has been introduced into markets. At the end of the 1980s, the first report came on the insertion of genes encoding B. thuringiensis toxic proteins into plants. The first transgenic plants expressing B. thuringiensis toxins were tobacco and tomato (Van Frankenhuyzen, 1993). B. thuringiensis field cotton was the first B. thuringiensis plant (Bt plant) pesticide registered by United States EPA (USEPA, 1999). Rapidly developing recombinant DNA technology after 1990 became an important tool to develop genetically manipulated Bt pesticides. Today, major Bt transgenic crops include corn, cotton, potatoes and rice. They have been commercialized and are in use widely in Canada, Japan, Mexico, Argentina, Australia and United States (Frutos et al., 1999). Both B. thuringiensis in the form of transgenic crop and spray formulations are still being widely used (Lui and Tabashnik 1997). Furthermore, many research centers focus on the collection of native strains from different environments to find novel strains with high toxic potential to wider insect spectra. #### 1.3. Commercial Bacillus thuringiensis Products Some representative examples of natural and genetically modified commercial *B. thuringiensis* products used in agriculture were given in Appendix A. #### 1.3.1. Formulations of *Bacillus thuringiensis* Preparats Commercially available *B. thuringiensis* preparats (Bt preparats) contain both spore and toxic crystal protein (δ -endotoxin). In the production, spores and crystals obtained from fermentation are mixed with the additives including wetting agents, stickers, sunscreens and synergists (Burges and Jones, 1999). It is excepted that UV inactivation of the crystal toxin is the major cause for the rapid loss of *B. thuringiensis* activity. Several approaches such as the use of some chromophores to shield Bt preparats against sunlight (Dunkle and Shasha, 1989; Cohen *et al.*, 1991) and enhancing the melanin-producing mutants of the organism, increase UV resistance and insecticidal activity (Patel *et al.*, 1996). Besides, encapsulation of *B. thuringiensis* in biopolymers reduce washing of the product from the plant by rain (Ramos *et al.*, 1998). In the development of new formulations and optimization of the utilization of biopesticides, knowledge of insect feeding behaviour is a fundamental requirement (Navon, 2000). Some formulations used to stimulate feeding, such as the use of a phagostimulant mixture or a yeast extract in a dustable granular form have been proposed to increase residual toxic activity and to attract to the feed selectively on the *B. thuringiensis* product than the feed on the plant (McGuire and Shasha, 1995; Navon et al., 1997). These approaches can help to increase the effectiveness of the new *B. thuringiensis* formulations. #### 1.3.2. Applications of *Bacillus thuringiensis* Preparats In agricultural use, Bt preparats are mostly applied with ground sprayers. Since high volumes of aqueous spray per unit area are needed for adequate coverage of the plant, ground spraying can be impractible in some cases. In recent years, air spraying have been applied from a helicopter have reduced spray volume and made more effective and beter controlling of the droplets (Wysokis, 1989). Also the use of air-assisted sleeve boom have increased spray penetration, plant coverage and reduce the drift (Navon, 2000). Low persistance of the spore-crystal product on the plant is an important problem in *B. thuringiensis* applications. When the products of *B. thuringiensis* were applied to cotton (Fuxa, 1989) and potato (Ferro *et al.*, 1993), persistance was observed as 48 hours. Therefore, timing is the major factor for determining the effectiveness of B. thuringiensis applications. Application early in the season, according to monitoring egg hatching and after sunset instead of in the morning can increase the persistance of Bt preparats (Navon, 2000). Laboratory and field assays have showed that younger larvae are more susceptible to Bt preparats than older ones (Navon *et. al.*, 1990; Ferro and Lyon, 1991). Therefore, larval age is an important aspect in *B. thuringiensis* applications. #### 1.3.3. Safety of Bacillus thuringiensis Products The primary advantage of B. thuringiensis products is their safety resulting from their selectivity which is affected by several factors. The δ -endotoxins are activated by alkaline solutions and different varieties may require different pH values. Also, crystals need to be broken down to toxic elements by certain enzymes that should be present in the insect's gut. In addition, certain cell characteristics in the insect gut encourage binding of the endotoxin and leading to pore formation (Gill et.al., 1992). Therefore, each strain is capable of producing toxic proteins effective on one or few specific groups of insect. Non-target species such as beneficial insects and wildlife pets are not affected by these toxins. According to oral mammalian toxicology and *in vitro* digestibility studies which are demanded by the Environmental Protection Agency (EPA), cry proteins (cry1Ab, cry1Ac, cry3A) have not shown toxicity to mammals and they are rapidly degraded in simulated gastric fluid (EPA, 1998). Additionally, *B. thuringiensis* toxins are biodegradable and do not persist in the environment (Van Frankenhuyzen, 1993). #### 1.4. Development and Management of Pesticide Resistance Insects can develop resistance to nearly every type of insecticides due to genetic variation in large insect population. Besides, there are several other factors increasing the rate of resistance development, which are related to the insect population and insecticide usage. Species with higher reproductive rates, shorter generation times, greater numbers of progeny, and more genetically varied local populations develop a large resistance in the population more quickly (Pimental and Burgess 1985). Also, resistance develops more rapidly against more persistant insecticide due to increasing the time of exposure of susceptible larvae to the toxin Similarly, frequent application of non-persistent insecticides can have the same effect (Wood, 1981). Insecticide resistance is a major problem for agriculture, health and economics. The first reported case of resistance to chemical insecticides has occured over 50 years ago. Since then, pesticide resistance has become one of the world's most serious environmental problems because of the concerns on human nutrition due to crop loss, spread of disease by resistant insects, environmental risks in the application of greater amounts of chemicals to the pests which are already gained resistance (Pimental and Burgess 1985). In 1990s, much evidence on the resistance development of different pests against Bt preparats have been reported from Hawaii, Florida, Newyork, Japan, China, the Philippines, Thailand and Malaysia (Iqbal et al., 1996; Lui and Tabashnik, 1997). As a result, insecticide resistance appeared the negative outcome of insecticide usage. In order to overcome resistance problem against B. thuringiensis based pesticides, different management strategies have been developed. Basically, it has been aimed to slow down resistance development as much as possible and to make resistant populations revert to susceptibility (Croft 1990). Generally, three main approaches are involved in resistance management programs. One approach targets to minimize exposure to toxins and allow for mating between resistant and susceptible insects, thus susceptible traits continue for the next generations. Different strategies based on this approach include tissue-specific and time-specific expression of toxins, mixtures, mosaics, rotations, refuges and occasional release of susceptible males into the field (Wood, 1981). Other approach focuses on combining pest control techniques to provide synergy and improve the efficiency of Bt preparats against pests. This includes the strategies of gene stacking, high doses, combination of toxins with completely different modes of action and combination of low toxin dose, other entomopathogenic microbes, plant allochemicals and natural enemies (Navon, 1993; Trumble and Alvaro-Rodriguez, 1993; Murray et al., 1993). Another approach developed for only transgenic Bt plants, not spray form, uses trap plants
to lure pests away from productive crops (Alstad and Andow 1995). #### 1.5. General Characteristics of *Bacillus thuringiensis* B. thuringiensis, a member of the genus Bacillus, is a rod shaped, motile, Grampositive, facultative anaerob and spore-forming bacterium. In a standard liquid media, the size of the rods varies between 3 and 5 μ m. The endospores of the organism like those of other spore-forming species are more resistant than vegetative cell to heat, drying, disinfection and other destructive agents, thus may remain viable for centrules. B. thuringiensis is characterized by the formation of intracellular parasporal crystal proteins during the sporulation period of stationary phase of its growth cycle (Schnepf et al., 1998) as shown in Figure 1. These parasporal crystal proteins (cry proteins) are synthesized by plasmid encoded cry genes and exhibit toxic activity on certain insect groups (Gonzales and Carlton 1980). Because of this important feature, B. thuringiensis have been widely used as bioinsecticide for nearly 50 years. B. thuringiensis is very closely related to Bacillus cereus and Bacillus anthracis. (Helgason et al., 2000). Formation of crystal proteins is the key feature discriminating B. thuringiensis from related species. However, plasmid encoded genes could be transferred to other related species (e.g. B. cereus, B. anthracis and B. mycoides) by conjugation and it has been observed that these relatives could express the toxin and produce crystal protein (Hu et al., 2004). Also, B. thuringiensis has been observed to produce B. cereus type enterotoxin, suggesting the conjugative transfer of enterotoxin producing genes from B. cereus to B. thuringiensis (Carson and Kolstø, 1993). **Figure 1.1.** Crystal protein formation of a *B. thuringiensis* cell. Phase contrast microscope image of 48 hour-grown *B. thuringiensis* culture, isolated in this current study. #### 1.5.1. Morphological Features of Bacillus thuringiensis *B. thuringiensis* forms white and rough colonies which spread out and can expand over the plate very quickly. The spores of the organism are elipsoidal, unswollen and lie in the subterminal position in the cell (Figure 1). The best criteria to distinguish *B.* thuringiensis from other Bacillus species is the presence of parasporal crystal inclusions which can be easily observed under phase contrast microscobe. Morphology, size and number of crystal inclusions may vary among B. thuringiensis strains. There are five distinct crystal morphologies: bipyramidal crystals, related to Cry1 proteins; cuboidal crystals, related to Cry2 proteins; amorphous and composite inclusions, associated with Cry4 and Cyt proteins; flat-square crystals, typical of Cry3 proteins; and bar-shaped inclusions, related to Cry4D proteins (Lopez-Meza and Ibarra, 1996; Schnepf et al., 1998). #### 1.6. Ecological Role of Bacillus thuringiensis B. thuringiensis is mainly a soil bacterium living as both saprophytic, digesting organic matter derived from dead organism, and parasitic, colonizing within living insects (Glazer and Nikaido, 1994). It can be present naturally in many different habitats such as soil, stored product dust, insect cadavers, grains, agricultural lands, olive tree related habitats, different plants, and aquatic environments (Martin and Travers 1989; Meadows et al., 1992; Ben-Dov et al., 1997; Theunis et al., 1998; Bel et al., 1997; Mizuki et al., 1999; Iriarte et al., 2000). The true ecological role of *B. thuringiensis* is poorly understood. Meadows *et al.*, (1992) has analyzed *B. thuringiensis* as an entomopathogen, as a phyloplane inhabitant and a soil microorganism. Although it is known that *B. thuringiensis* produces different toxic proteins effective against many different insect orders, some strains show no toxicity (Maede *et al.*, 2000). #### 1.7. Insecticidal Crystal Proteins (ICP) #### 1.7.1. Crystal Protein Structure During sporulation, *B. thuringiensis* produces one or more large protein containing crystalline inclusions, delta (δ) endotoxins, which are easily observed under phase contrast microscobe. There are two types of δ -endotoxins; highly specific cry (crystal) toxins which act through specific receptors and the non-specific cyt (cytolytic) toxins with no known receptors (Höfte and Whitely, 1989; de Maagd *et al.*, 2000). Both are classified on the basis of their amino acid sequence identity. Four hierarchical ranks have been defined depending on its place in a phylogenetic tree. Proteins less than 45% sequence identity differ in primary rank, and 78% and 95% identities are the boundaries of secondary and tertiary ranks, respectively (de Maagd *et al.*, 2001). The three dimensional structures of activated forms of toxic proteins cry1A, cry2, cry3A and cyt2A have been solved by X-ray crystallography (Grochulski et al., 1995; Li et al., 1991; Li et al., 1996). Cry proteins are remarkably similar, each has three domains (Figure 1.2). The N-terminal domain I consists of six amphipatic helices around a central core helix and involved in membrane insertion and pore formation. Domain II has three β -sheets with three-fold symmetry in 'Greek key' conformation. The C-terminal domain III consists of two antiparallel β -sheets in a 'jelly-roll' formation. Both domain II and III are involved in receptor recognition and binding. Additionally, pore formation function of domain III has been found recently (de Maagd et al., 2001). **Figure 1.2.**The structure of Cry 3A protein (http://www.bioc.cam.ac.uk/UTOs/Ellar.html) In contrast, cyt2A protein has a single domain in which two outer layers of α -helix wrap around a mixed β -sheet (Schnepf *et al.*, 1998) (Figure 1.3). Unlike cry proteins, cyt proteins do not recognize specific receptors on the epithelium and exhibit hemolytic activity (Crickmore *et al.*, 1998). **Figure 1.3.** The structure of Cyt 2A protein (http://www.bioc.cam.ac.uk/UTOs/Ellar.html) When the sequences of crystal proteins are aligned, five conserved sequence blocks are common in the majority of them (de Maagd *et al.*, 2001). Conserved block 1 is in the central helix of domain I, block 2 is at the domain I-II interface, block 3 is at the boundary between domains II and III, block 4 is in the central β -strand of domain III and block 5 is at the end of domain III (Figure 1.4). #### 1.7.2. Action Mechanism Crystal proteins are synthesized as protoxins which must be converted to active toxins. After ingestion of cry proteins by the susceptible insects, they are solubilized in the alkaline environment (pH 10-12) in the insect midgut, and activated by gut proteases (Höftee and Whitely, 1989). The activated toxin binds to specific receptors located in the apical microvilli of susceptible larval midgut epithelia (Hofmann *et al.*, 1988; Van Rie *et al.*, 1990). After binding, toxin inserts itself into cell plasma membrane and forms pores or ion channels (Van Rie *et al.*, 1989). These pores lead to osmotic shock. At the end, midgut cells lyse, feeding activity is paralysed, and insect dies from starvation (Knowless and Dow, 1993). **Figure 1.4.** Relative lengths of cry protoxins and position of the five conserved sequence blocks (de Maagd *et al.*, 2001). #### 1.7.3. Insect Spectrum of Bacillus thuringiensis δ-endotoxins The toxic proteins of *B. thuringiensis* are classified according to amino acid sequence identity and insect specifity. Each group of toxin shows a wide range of toxicity for different insect orders such as Lepidoptera, Diptera, Coleoptera, Hymenoptera, Homoptera, Mallophage and Acari (Feitelson, 1993). In addition, it was reported that *B. thuringiensis* toxins are also able to control some invertabrates such as Nemathelminthes, Platyhelminthes and Sarcomastigorphora (Feitelson, 1993). The proteins toxic for lepidopteran insects belong to the Cry1 and Cry9 groups. Toxin active against coleopteran insects are the Cry3, Cry7 and Cry8 proteins. Nematocidal toxic proteins are Cry5, Cry12, Cry13, Cry14, and dipteran active toxins are the Cry4, Cry10, Cry11, Cry16, Cry17, Cry19, and Cyt proteins. The Cry2 group proteins are active against both lepidopteran and dipteran insects. Also, the Cry1B and Cry1I proteins which are subgroups of Cry1 proteins have dual activity against lepidopteran and coleopteran insects (Bravo *et al.*, 1998). ## 1.8. Other Pathogenic Features of Bacillus thuringiensis B. thuringiensis produces various virulance factors other than δ-endotoxins. Vegetative insecticidal proteins (VIP) expressed and screeted during vegetative growth and sporulation, were described as toxic against lepidopteran insects (Estruch et al.,1996). Beside VIP, a series of extracellular compounds synthesized and contribute virulence, such as β-exotoxins, phospholipases, proteases, and chitinases (Levinson, 1990; Lövgren et al., 1990; Zhang et al., 1993; Sonngay and Panbangred, 1997). Also, the spores themselves contribute to pathogenity, often synergizing the activity of the crystal proteins (Johnson et al., 1996). #### 1.9. Genetic Features of Bacillus thuringiensis #### 1.9.1. Bacillus thuringiensis Genome B. thuringiensis strains have a genome size of 2.4 to 5.7 million base pairs (Carlson et al., 1994). Physical maps have been constructed for two B. thuringiensis strains and compared with B. cereus chromosomal maps. It has been shown that chromosomes have a similar organization in the half near the replication origin while displaying greater variability in the terminal half (Carlson and Kostø, 1993; Carson et al., 1996). Most B. thuringiensis strains contain several circular and linear extrachromosomal elements (plasmid DNA) ranging from 2 kb to greater than 200 kb (Carlton and Gonzalez 1985). They make up to 20% of the total DNA (Aronson, 2002). The genes (cry genes) encoding crystal proteins are mostly carried on large plasmids (Li et al., 1991). Sequence hybridization studies have shown that these
genes are also found in the *B. thuringiensis* chromosome (Carlson et al., 1994). B. thuringiensis and its subspecies also contain a large variety of transposable elements including insertion sequences and transposons (Mahillon et al., 1994). It is postulated that they are involved in the amplification of the cry genes in the cell. A second possibility for their role is mediating the transfer of plasmid between self-conjugative plasmids and chromosomal DNA or non-conjugative plasmids (Schnepf et al., 1998). ## 1.9.2. The cry Genes The genes coding insecticidal crystal proteins are mostly located on large plasmids (Gonzales *et al.*, 1982). Many toxin genes (*cry* and *cyt*) have been cloned and sequenced. Upto now, more than 200 insecticidal crystal protein (ICP) genes have been described and classified into 32 groups of *cry* genes and 2 groups of *cyt* genes (Crickmore *et al.*, 1998). Many *B. thuringiensis* strains can contain multiple *cry* genes often flanked by transposons or insertion sequences. Therefore, the strains are able to synthesize more than one crystal protein. This diversity in toxin genes are due to plasmid transfer among *B. thuringiensis* strains (Thomas *et al.*, 2001). #### 1.9.3. The cry Gene Expression The expression of *cry* genes occurs during the stationary phase of bacterial growth. The *cry* gene products generally accumulated in the mother cell compartment and form crystal inclusions that forms upto 20 to 30 % of the dry weight of sporulated cell (Schnepf *et al.*, 1998). Sporulation and crystal protein synthesis are syncronic processes. In order to coordinate sporulation with the synthesis of the protoxins and their assembly into inclusions, crystal protein synthesis is controlled by a variety of mechanisms occurring at the transcriptional, posttranscriptional and posttranslational levels (Agaisse and Lereclus, 1995; Baum and Malvar, 1995). The *cry* gene expression can be activated by both sporulation-dependent and sporulation-independent mechanisms. The *cry1Aa* gene is generally expressed during sporulation, as a typical example for sporulation-dependent control. However, *cry3A* gene is expressed during vegetative growth but it can also be expressed in much lower amounts during sporulation (Schnepf *et al.*, 1998). The expression level of a gene may also be influenced by its copy number. In fact, the production of *B. thuringiensis* toxins is not strictly proportional to the *cry* gene copy number. However, it can be decleared that the capacity of *B. thuringiensis* strains to produce crystal proteins may reach maximum at a certain number of *cry* gene copies in the cell (Agaisse and Lereclus, 1995). The stability of mRNA is another important contributor to the high level of toxin production in *B. thuringiensis*. It has been reported that, the mRNAs half-life encoding the crystal proteins are relatively longer than normal mRNAs (Glathorn and Rapoport, 1973). The determinants of mRNA stability are generally part of untranslated regions of the molecule and classified as 3' and 5' terminal structures according to their location in the mRNA. The fusion of 3' terminal fragment acting as positive retroregulator, with the 3' end of heterologous genes increases the half-life of their transcripts and consequently their expression levels (Wong and Chang, 1986). Also, the Shine-Dalgarno (SD) sequence present close to 5' end may be a general determinant of mRNA stability in *Bacillus* species (Agaisse and Lereclus, 1995). The ability of protoxins to crystallize may decrease their susceptibility to premature proteolytic degradation; however, efficient and rapid solubility of the crystals in the larval gut depends on the secondary structure of the protoxin, the energy of the disulfide bonds and the presence of additional *B. thuringiensis* specific components (Schnepf *et al.*, 1998). #### 1.10. Strain Collections of Bacillus thuringiensis Recent developments suggest that biological control with *B. thuringiensis* based products will become increasingly important. This prompts many researchers to focus on the isolations of native strains from different environments. It is also necessary to find out novel *B. thuringiensis* strains with higher toxicity to help coping with the problem of insect resistance especially with regard to transgenic Bt plants (Van Rie *et al.*, 1991). B. thuringiensis has great strain diversity with different toxic potential according to regions where they are isolated (Thomas et al., 2001). Worldwide, many screening programs have been performed to establish *B. thuringiensis* strain collections in different countries such as Antartica (Forsyth and Logan, 2000), China (Hongyu *et al.*, 2000) Colombia (Uribe *et al.*, 2003), Japan (Mizuki *et al.*, 1999), Mexico (Bravo *et al.*, 1998), Philippines (Theunis *et al.*, 1998), Spain (Bel *et al.*, 1997; Iriarte *et al.*, 2000), Taiwan (Chack *et al.*, 1994), United Kingdom (Meadows *et al.*, 1992; Bernhard *et al.*, 1997), United States (Martin and Travers, 1989), and some Asian countries (Ben-Dov *et al.*, 1997). These collections have great importance in analyzing the distribution of toxin producing strains in nature and evaluating their toxic potentials against various insect orders. Moreover, they may help to understand the role of *B. thuringiensis* in the environment. # 1.11. Isolation and Characterization Methods of *Bacillus thuringiensis* to Establish *Bacillus thuringiensis* Strain Collections #### 1.11.1. Isolation Methods of Bacillus thuringiensis B. thuringiensis can be present in many different habitats containing different spore-forming bacterial species. There are some selective techniques to isolate B. thuringiensis from these environments. Acetate selection method developed by Travers et al., 1987 has been widely used by the researchers for B. thuringiensis isolation (Martin and Travers, 1989; Carrozi et al., 1991; Ben-Dov et al., 1997; Bravo et al., 1998; Hongyu et al., 2000). Sodium acetate at 0.25 M concentration inhibits the germination of spores of B. thuringiensis and some relative species. After a period of bacterial growth, the vegetative cells are eliminated by heat treatment and only sporeformers stay alive. They were then plated on nutrient medium without acetate. After an incubation period, B. thuringiensis colonies can be distinguished from the others by colony morphology and microscobic observation. Another method for isolation of *B. thuringiensis* is based on antibiotic selection. Yoo *et al.*, (1996) used the antibiotics polymyxin B sulfate and penicilin G in isolation to eliminate the cells which have not resistance to these antibiotics. This method however is not used as often as the acetate selection. #### 1.11.2. Characterization Methods of *Bacillus thuringiensis* The characterization of *B. thuringiensis* strains has great imprortance. It may help to analyze distribution of *cry* genes and to understand the role of *B. thuringiensis* in nature. Moreover, it is also important in evaluating toxic potential of the strains against insect orders. The main point in establishing B. thuringiensis strain collections is to have a rapid and accurate characterization method. Upto now, many different methods have been developed to characterize B. thuringiensis strains. The toxicity analysis of the proteins against insect orders, so-called biossay, is one of them. It is necessary to test each isolate for all target insects, thus it is a long and exhaustive process in screening large number of natural isolates (Ceron et al., 1994). Southern blot analysis to search for known homologous genes (Kornstad and Whiteley, 1986) and analysis of reactivity to different monoclonal antibodies (Höfte et al., 1988) have been used to characterize novel B. thuringiensis isolates. Flagellar (H) antigen serotyping was established for intraspecific classification of B. thuringiensis strains (de Barjac and Bonnefoi, 1973). However, they are imprecise predictors of insecticidal activity, expensive and timeconsuming methods for the identification of novel toxins. In addition, biochemical tests, DNA fingerprinting, utilization of oligonucleotide probes specific to the B. thuringiensis toxin genes are possible but they are very expensive and time-consuming characterization methods for the identification of new strains from large numbers of environmental samples (Bourque et al., 1993). The use of PCR has been a milestone for the analysis of *B. thuringiensis* strain collections (Carozzi *et al.*, 1991). It is highly sensitive, relatively fast and can be easily used on a routine basis (Ceron *et al.*, 1994). PCR has been used to predict insecticidal activities (Carozzi *et al.*, 1991), to identify *cry*-type genes (Bourque *et al.*, 1993; Glaeve *et al.*, 1993; Ceron *et al.*, 1994, 1995), to determine the distribution of the *cry* genes (Chak *et al.*, 1994) and to detect novel *cry* genes (Kalman *et al.*, 1993; Kuo and Chak, 1996). Recently, PCR based different methods have been developed for further characterization of the strains, such as PCR-RFLP which is a two-step strategy where group specific primers are used first, followed by enzymatic digestion of the produced amplicons (Kuo and Chak, 1996); E-PCR based on the use of two sequencial PCR reactions, using a multiplex PCR with specific and universal primers (Juarez-Perez *et al.*, 1997); and RT-PCR (Shin *et al.*, 1995). Another approach, pulsed field gel electrophoresis of chromosomal DNA digested with an appropriate restriction enzyme recognizing rare sites in the DNA is considered as an accurate typing procedure for closely related bacteria. Thus, it is used for subspecific classification of *B. thuringiensis* strains and provides more discriminative typing of *B. thuringiensis* strains than H-serotyping (Rivera and Priest, 2003). Although bioassay remains as an essential tool to determine insecticidal activity exactly, other methods such as serotyping,
analyzing of DNA profiles or protein profiles are still necessary for subspecific classification of *B. thuringiensis* strains. PCR analysis of new isolates of *B. thuringiensis* provides valuable prescreening opportunity that is followed by subsequent insect toxicity assays or other subspecific classifications. ### 1.12. Thesis Objectives The genetic diversity and toxic behaviours of *B. thuringiensis* strains vary with the geographical conditions of the regions where the *B. thuringiensis* strains are isolated. Because each habitat may contain novel *B. thuringiensis* isolates with more effective toxic potential to a wide insect spectra, it is important to screen *B. thuringiensis* isolates from diverse geographical regions. Therefore, the main objectives of this study were; - 1) to isolate novel B. thuringiensis strains from different grain related habitats - 2) to characterize isolates phenotypically based on colony morphologies and parasporal crystal protein formation by phase contrast microscopy - 3) to characterize the isolates genotypically based on crystal protein gene content by polymerase chain reaction (PCR) analysis, plasmid profiles, and chromosomal DNA profiles by pulsed field gel electrophoresis (PFGE). #### Chapter 2 #### MATERIALS AND METHODS #### 2.1. Materials See Appendix B for growth medium and chemicals used. #### 2.2. Methods #### 2.2.1. Sample Collection Ninety-six samples including soil, grain, stored product dust, straw, insect cadaver and various residues were collected from grain silos, crop fields, farms, caves, haylofts where Bt preparats have not been applied before, in central Anatolia (Ereğli/Konya, Taşkale/Karaman) and Aegean region (Nikfer/Denizli, Bozbük/Söke). The collected samples were summarized in Table 2.1. Samples were taken from the places not exposed to sunlight or 5 cm below the surface and were placed into plastic bags aseptically. All samples were stored at +4 °C until processed. #### 2.2.2. Bacillus thuringiensis Isolation *B. thuringiensis* strains were isolated from collected samples, based on acetate selection method. First, 0.25 gr of each sample were suspended in 10 ml nutrient broth medium containing 0.12 M and 0.25 M sodium acetate [pH 6.8]. Then, suspensions were vortexed vigorously and incubated overnight for microbial growth at 37 °C in a shaking water bath. Next, heat treatment was applied for 5 min at 80 °C to eliminate vegetative and non-sporeforming cells. After that, they were plated on nutrient agar plates and incubated overnight at 37 °C. Finally, *B. thuringiensis* like colonies which are white, spread out and seems to fried egg on plate (Travers *et al.*1987) were labelled and subcultured. Subculturing from one individual colony was repeated until pure culture obtained. Table 2.1. Locations, types and numbers of collected samples | Location | type of sample | number of sample | | |--|---------------------|------------------|--| | | soil | 3 | | | Ereğli / Konya | grain | 3 | | | | stored product dust | 2 | | | Ayranlı / Konya | soil | 9 | | | İvriz / Konya | soil | 7 | | | Üçharman / Konya | soil | 7 | | | Oçnamlan / Konya | various residues | 1 | | | N-41 C :- C'1- | grain | 9 | | | Natural Grain Silos
Taşkale / Karaman | stored product dust | 16 | | | ruşkare / Karaman | animal faeces | 1 | | | | soil | 9 | | | Manazan Caves | stored product dust | 5 | | | Taşkale / Karaman | animal faeces | 1 | | | | various residues | 5 | | | | soil | 5 | | | D. 1 11 | grain | 1 | | | Bozbük
Söke / Aydın | animal faeces | 1 | | | Soke / Aydın | dead insect | 1 | | | | straw | 1 | | | | soil | 3 | | | Nikfer / Denizli | stored product dust | 4 | | | | straw | 2 | | Total: 96 ### 2.2.3. Crystal Morphology Analysis Each pure culture was grown on T3 agar plates for 48 – 72 h at 37 °C. A colony from each culture was dissolved in sterile distilled water and examined with phase contrast microscope for crystal production and morphology. All isolates were recorded according to presence of crystal protein and crystal shape. Then, each crystal producing isolate was defined as *B. thuringiensis* and stored in stock solution containing 25 % glycerol in nutrient broth medium, at -80 °C for further studies. ## 2.2.4. Bacillus thuringiensis Strains B. thuringiensis reference strains, shown in Table 2.2, were kindly supplied by Bacillus Genetic Stock Center (Ohio, USA). **Table 2.2.** Reference strains of *B. thuringiensis* | Strains | BGSC
Code | Original
Code | Genotype | <i>cry</i>
Genes | |---|--------------|------------------|------------------------|----------------------| | B. thuringiensis subsp. kurstaki | 4D1 | HD1 | serotype
3a3b | cry 1,2 | | B. thuringiensis subsp. aizawai | 4J3 | HD133 | serotype 7 | cry 1,2,9
cry 7,8 | | B. thuringiensis biovar. tenebrionis | 4AA1 | tenebrionis | serovar
tenebrionis | cry 3 | | B. thuringiensis biovar. israelensis ONR60A | 4Q2 | HD500 | serotype 14 | cry 4,11 | #### 2.2.5. DNA Isolation DNA isolation was performed by the method of Bravo *et al.* (1998). Reference *B. thuringiensis* strains, which were used as positive controls, and *B. thuringiensis* isolates were grown overnight on nutrient agar plates at 37 °C. A loopfull of cells were transferred into 0.2 ml of sterile distilled water and mixed. After freezing the mixture for 20 min at -80 °C, it was transferred into boiling water for 10 min. Then the cell lysate was centrifuged (Henttich, Micro 12-24 Eppendorf Model) at 10,000 rpm for 10 s and 15 μl of supernatant was used as DNA template in PCR analysis. ## 2.2.6. Oligonucleotide Primers for Polymerase Chain Reactions (PCR) In this study, 5 pairs of universal primers reported by Bendov *et al.* (1997, 1999), for *cry1*, *cry2*, *cry3*, *cry4* and *cry9* genes were used. Their sequences and the expected sizes of their PCR products were shown in Table 2.2. These primers were synthesized by Integrated DNA Technologies, INC. Table 2.3. Universal Primers | Universal Primers | Expected PCR
Product Size | |---|------------------------------| | for <i>cry 1</i> genes Un1, D ₁ 5'- CATGATTCATGCGGCAGATAAAC -3' R ₁ 5'- TTGTGACACTTCTGCTTCCCATT -3' | 274-277 bp | | for <i>cry 2</i> genes
Un2, D ₂ 5'- GTTATTCTTAATGCAGATGAATGGG -3'
R ₂ 5'- CGGATAAAATAATCTGGGAAATAGT -3' | 689-701 bp | | for <i>cry 3</i> genes
Un3, D ₃ 5'- CGTTATCGCAGAGAGATGACATTAAC -3'
R ₃ 5'- CATCTGTTGTTTCTGGAGGCAAT -3' | 589-604 bp | | for <i>cry 4</i> genes Un4, D ₄ 5'- GCATATGATGTAGCGAAACAAGCC -3' R ₄ 5'- GCGTGACATACCCATTTCCAGGTCC -3' | 439 bp | | for <i>cry 9</i> genes
Un9, D ₆ 5'- CGGTGTTACTATTAGCGAGGGCGG -3'
R ₆ 5'- GTTTGAGCCGCTTCACAGCAATCC -3' | 351-354 bp | ### 2.2.7. cry Gene Identification by Polymerase Chain Reactions (PCR) All PCR reactions were carried out in 50 µl reaction volumes. DNA template, 15 µl, was mixed with reaction buffer containing 200 µM deoxynucleotide triphosphate mix, 0.5 µM each primer, 3 mM MgCl and 2 U of Taq DNA polymerase. Amplifications were carried out in a DNA thermal cycler (Techne Progen). For all *cry* genes, an initial denaturation step was applied for 1 min at 94 °C and followed by denaturation for 1 min at 94 °C, annealing for 1 min at 54 °C (for *cry1*) and 60 °C (for cry2, cry3, cry4 and cry9), then extention for 1 min at 72 °C. Thirty-five cycles were carried out for the amplification of cry gene fragments. Finally, an extra extension step was applied for 10 min at 72 °C. After amplifications, 10 μ l of each PCR product was electrophorased on 1 % agarose-ethidium bromide gel in TAE buffer (0.04 M Tris-Acetate, 0.001 M EDTA [pH 8.0]) at 95 V for 40 min. Gels were visualized in a gel documentation system (Vilber Lourmat, France). ## 2.2.8. Plasmid Profiling Plasmid isolation was performed with minor modifications of the method described by O'Sullivan et al., (1993). Bacterial cultures were grown overnight on nutrient agar plates at 37 °C and transferred into eppendorf tubes by scraping gently with the help of sterile distilled water. After pelleting the cells, they were resuspended in 200 µl of a solution containing 25 % sucrose and 30 mg/ml lysozyme and incubated for 15 min at 37 °C. The sample was mixed with 400 µl alkaline SDS solution (3 % SDS, 0.2 N NaOH) and incubated for 7 min at room temperature. Then, 300 µl ice-cold 3 M sodium acetate (pH 4.8) was added, mixed and spinned at 10,000 rpm for 20 min at 4 °C. Supernatants were transferred into new eppendorf tubes, mixed with 650 ul of isopropanol and centrifuged again at 10,000 rpm for 20 min at 4 °C. After discarding all liquid, pellets were resuspended in 320 µl sterile distilled water. They were mixed with 200 μl 7.5 M ammonium acetate containing 0.5 mg/ml ethidium bromide and 400 μl phenol/chloroform, then centrifuged at 10,000 rpm for 10 min, at room temperature. Upper phases were transferred to new eppendorf tubes and mixed with 1 ml ethanol at -20 °C. After centrifugation at 10,000 rpm for 20 min at 4 °C, pellets were washed with 70 % ethanol. All liquid were discarded and the pellets were dissolved in 25 ul TER solution (TE, pH 7.8 and RNase, 0.1 mg/ml). After incubation at for 20 min 37 °C, plasmid samples were electrophoresed on 0.8 % agarose-ethidium bromide gel in TAE buffer at 80 V for 2 h and visualized with gel documentation system (Vilber Lourmat, France). #### 2.2.9. Pulsed Field Gel Electrophoresis (PFGE) Analysis PFGE analysis of B. thuringiensis isolates was performed according to Rivera and Priest (2003) with some modifications. Bacterial strains were grown overnight in 10 ml NB at 37 °C and cells were harvested by centrifugation at 4,500 rpm for 2 min at 4 °C. Cells were washed once with 500 µl TE (50 mM Tris, 1 mM EDTA, pH 8.0) and SE (10 mM NaCl, 30 mM EDTA, pH 7.5) buffer respectively.
Then, the cells were resuspended in 50 µl SE buffer mixed with 50 µl 2 % agarose (low melt) at 50 °C and dispensed into the slots of plug mold. The plugs were allowed to set at room temperature. The cells embedded into agarose were allowed to lyse in lysis buffer (30 mM Tris, 50 mM NaCl, 5 mM EDTA, pH 8.0) containing 2 mg/ml lysozyme for 18 h at 37 °C. Bacterial plugs then were washed three times with 5 ml of buffer containing 20 mM Tris, 50 mM EDTA, pH 8.0. Proteins were digested with 2 ml of proteinase K solution (0.5 mg proteinase K/ml and 0.1 % N-laurolysarcosine-EDTA, 50 mM, pH 8.0) at 50 °C overnight. Then plugs were washed twice with 5 ml of buffer containing 20 mM Tris, 50 mM EDTA, 1 mM NaCl, pH 8.0; once with buffer containing 20 mM Tris, 50 mM EDTA, 1 mM PMSF, pH 8.0, and once with buffer containing 20 mM Tris, 50 mM EDTA, pH 8.0. After equilibrated the plugs with 1 ml restriction enzyme buffer, the plugs were digested with 40 U of Smal for 20 h at 30 °C. Then the plugs were electrophorased on 1 % agarose in TBE buffer in a CHEF-DRII system for 40 h at 4 V/cm and 14 °C with pulse times of 15 s rising to 60 s. After staining of the gel in ethidium bromide (1 µl/ml) for 45 min and destaining in distilled water for 1h, DNA profiles were recorded in a gel documentation system (Vilber Lourmat, France). #### Chapter 3 #### RESULTS AND DISCUSSION ## 3.1. Isolation of Bacillus thuringiensis Total 96 samples, 78 from Konya and Karaman in Central Anatolia region and 18 from Söke and Denizli in Aegean region were examined in this study. Number, type and locations of samples were summerized in Table 2.1. B. thuringiensis was isolated from collected samples by using acetate selection (Travers et al., 1987) and heat treatment methods. Travers and his colleagues tested the strains of spore-forming bacteria in different sodium acetate concentrations (0.06 M, 0.12 M, 0.25 M, 0.5 M) to determine their ability to germinate in acetate-buffered medium. They have reported that all bacterial strains germinated and grew in the absence of acetate buffer and in the medium with 0.06 M sodium acetate. However, none of the strains germinated in the medium containing 0.5 M sodium acetate. The medium buffered with 0.25 M acetate usually inhibited the germination of B. thuringiensis strains, while allowed the germination of other spore-formers. The medium with 0.12 M sodium acetate allowed several B. thuringiensis isolates to germinate. By considering these isolation data, in this study, two different sodium acetate concentrations (0.12 M and 0.25 M) were used to increase the rate of B. thuringiensis isolation and to eliminate more of other spore-formers. After acetate selection, heat treatment was applied to kill non-spore formers and vegetative cells of other spore-formers which was allowed to germinate with sodium acetate. In the twelve of the samples, no microbial growth was observed after acetate selection and heat treatment procedures. Totally, 700 isolates were obtained from collected samples and checked for their colony morphologies. Fifteen different morphologies were observed for the isolates (Table 3.1). The isolates were named according to the sample number representing the location of isolation, the colony morpology (Table 3.1), and the sodium acetate concentration (a: 0.12 M and b: 0.25 M). For example, in the isolate named as '4Ca'; '4' shows sample number, 'C' represents colony morphology and 'a' represents sodium acetate concentration. **Table 3.1.** The colony morphologies of *B. thuringiensis*-like isolates | Colony Code | Morphological Features | |-------------|--| | A | White, spread and wavy | | В | Yellow, small, round, smooth and bright | | С | White, spread, rough | | D | White, medium size, rough, opaque and round | | F | Spread, dense, dull, rough and round with radiating margin | | Н | Yellow, round, medium size, dull and smooth | | I | White, small, round, bright and runny | | J | White, round, runny, larger and less brighter than colony I | | K | Resembles to colony D, but brighter than D | | L | Resembles to colony H, but has a magrin arround | | N | White, small, smooth, dull and round with a transparent margin | | P | Resembles to colony C, but more transparent | | R | Spread, medium size and transparent | | U | White, medium size, runny iner layer with dry outer layer | | Y | Yellow, medium size, bright and dense | A large number of *B. thuringiensis* were isolated from 81 % of soil samples collected from agricultural lands (Table 3.2). Indeed, Martin and Travers (1989) reported that soil is the normal habitat of *B. thuringiensis*. The occurance of *B. thuringiensis* in all soil samples collected from Konya was found to be relatively high compared to other soil samples. Especially in İvriz, *B. thuringiensis* was isolated from all of the soil samples. Meadows *et al.* (1992) and Hongyu *et al.* (2000) reported that stored product samples are rich in *B. thuringiensis* strains. In present study, the second highest *B. thuringiensis* isolation was made from stored product dusts. Meadows *et al.*, (1992) isolated *B. thuringiensis* from 78 % of the settled grain dust samples. Similar to their study, our isolation represents 70 % (Table 3.2) of stored product samples. Table 3.2. Bacillus thuringiensis isolation analysis according to sample types | sample type | sample | samples
yielded Bt | % of samples yielding Bt | no of
isolates
obtained | no of isolates
produced
crystal
proteins | no of
isolates
cry gene
found | % of isoletes cry gene found | Bt index | |---------------------|----------|-----------------------|--------------------------|-------------------------------|---|--|------------------------------|----------| | soil | 43 | 35 | 81.4 | 287 | 116 | 74 | 63.8 | 0.40 | | grain | 13 | æ | 23.1 | 15 | к | | 33.3 | 0.20 | | stored product dust | 27 | 19 | 70.4 | 149 | 38 | 25 | 65.8 | 0.26 | | animal faeces | κ | | 33.3 | 10 | 2 | - | 50.0 | 0.20 | | various residues | 9 | | 16.7 | 23 | -1 | 0 | 0.0 | 0.04 | | straw | ω | 2 | 2.99 | 16 | К | 2 | 2.99 | 0.19 | | insect cadaver | T | 0 | 0.0 | 1 | ı | 1 | ı | , | | total | 96 | 61 | 63.5 | 200 | 163 | 103 | 63.2 | 0.33 | After acetate selection no growth was observed in 7 of the grain samples. In all regions, percentage of grain samples yielding *B. thuringiensis* was relatively low, 23 % (Table 3.2). This indicates that grain is not as good source as the others for *B. thuringiensis*. Meadows *et al.*, (1992) also suggested that *B. thuringiensis* multiplied in the cadavers of insects that have been killed by the *B. thuringiensis* toxins, and these cadavers were ingested by birds and mammals who spread spores in their feces. Therefore, three animal feces samples were used in this study and one of them yielded two *B. thuringiensis* isolates. B. thuringiensis index (Bt index), representing the ratio of B. thuringiensis isolates in all isolates, is an important measure of success in isolating B. thuringiensis. Distribution of B. thuringiensis according to sample types and location is shown in Table 3.3. Percentage of samples yielding B. thuringiensis from Nikfer was high, 89 %. This is because of the sampled haylofts which had been used for 65 years. In addition, natural grain silos (NGS) have been used for grain storage for more than 500 years and the percent of samples yielding B. thuringiensis was 62 %. In fact, Bt indexes of NGS and Nikfer are very similar with the values of 0.27 and 0.26, respectively. This shows a similar degree of occurance of B. thuringiensis in two places with similar background. An average Bt index was found to be 0.33 for all samples but the index changes according to sample types and origins (Table 3.3). The abundance of *B. thuringiensis* was the highest in all soil samples, with a Bt index of 0.40. It decreased to 0.26 in all stored dust product samples and to 0.20 in all grain and animal faeces. Unlike this study, Bravo *et al.* (1998) collected soil samples from cultivated fields in Mexico and obtained a Bt index of about 0.24, nearly two-fold lower than that of this study. However, Martin & Travers (1989) found the highest Bt index as 0.85 in the soil samples collected from Asia, nearly two-fold greater than the Bt index of this current study. This may be related to climate and geographic conditions. In addition, Hongyu *et. al.* (2000) and Bernhard *et.al.* (1997) reported that *B. thuringiensis* is more abundant in stored product environments than in soil. Taken together, these studies show that the level of Bt index changes from region to region and between types of samples. Table 3.3. Distribution of Bacillus thuringiensis based on sample types and location | Location | Type of sample | No. of sample | No. of sample | No. of isolates | No. of isolates producing | No. of isolates positive for | Bt index | |---|--|--------------------|----------------|---------------------------|---------------------------|------------------------------|--| | soil | | တ | 7 | 70 | crystals
42 | cry genes | 0.60 | | grain
soil
storec | grain
soil
stored product dust | 0 0 0 0
0 0 0 0 | ← to ← | 4 f 9
6 9
26 | 1
13
3
17 | 3 8 0 | 0.25
0.68
0.50
0.59 * | | soil | | 7 | 7 | 22 | 15 | 4 | 0.26 | | soil
vari | soil
various residues | 7 1 8 | 90 | 52
1
53 | 17 0 17 | 7
0
7 | 0.33
0.00
0.32 * | | anir
soil
stor
vari | animal faeces
soil
stored product dust
various residues | 1
5
5
20 | 7 2 5 0 | 0
37
22
23
82 | 0 8 4 t-
£ | 0 % + 0 | -
0.22
0.18
0.04
0.16 * | |
anima
grain
storec | animal faeces
grain
stored product dust | 1
9
16
26 | 13
13
16 | 6
11
101
118 | 2
2
28
32 | 1
18
20 | 0.33
0.18
0.28
0.27 * | | anima
dead
grain
soil
straw | animal faeces
dead insect
grain
soil
straw | ← ← ← ₩ ←
Φ | 00040 | 4
0
25
0
29 | 00070 | 00000 | -
-
0.44
-
0.38* | | soil
store
stra | soil
stored product dust
straw | w 4 v | | 26
20
16 | 5 e e
4 | თ ო <i>ი</i> | 0.38
0.15
0.19 | | | | 96 | 61 | 500 | 163 | 103 | 0.33 | Iotal Isolates were examined with PCM for crystal formation and cry gene content of crystal positive isolates was screened by PCR. CA: Central Anatolia, AR: Aegean Region. Bt index is the ratio of Bt isolates producing crystal to all isolates in each sample group. * indicates the total Bt index in each geographical location. #### 3.2. Crystal Protein Composition of Bacillus thuringiensis Isolates Five hundred isolates were examined with the phase contrast microscope (PCM) for spore formation and crystal production and morphology. Among them, 163 isolates produced crystals (Table 3.3). Even though 99 other isolates had *B. thuringiensis* like spore and colony morphology, they did not show crystal formation. The remaining 238 isolates did not exhibit any morphological similarities to *B. thuringiensis* nor produced crystals. *B. thuringiensis* strains produce parasporal crystal inclusions with different morphologies, sizes and numbers. Based on literature, some distinct morphologies are apparent; bipyramidal crystals, related to Cry 1 proteins (Aranson *et al.*, 1976); cuboidal inclusions, related to Cry 2 proteins (Ohba and Aizawai, 1986); flat and square crystals, related to Cry 3 proteins (Hernstadt *et al.*, 1986); amorphous and composite crystals, related to Cry 4 proteins (Federici *et al.*, 1990). Crystal morphology of *B. thuringiensis* can provide valuable information on target insect spectra (Maeda *et al.* 2000). For example, bipyramidal shaped crystals are related to Cry 1 proteins that are toxic against lepidopteran species. Therefore, in order to determine the crystal morphology of each *B. thuringiensis* isolate, all isolates were grown for 48 h and examined with the PCM (Figure 3.1). **Figure 3.1.** Photomicrograph of spores, crystals and vegetative cells of *cry1* positive *B. thuringiensis* isolate (57Hb). Bar represents 2.5µm. Five different crystal morphology were observed in 163 isolates. Although only one type of crystal morphology was observed in 58% of the isolates, more than one type of crystal morphology was present in other 42% of the isolates (Figure 3.2). Meadows *et al.*,(1992) have obtained isolates producing bipyramidal (53%), irregular pointed (24%) and spherical (9%) crystals. In the present study, the distribution of crystal shapes in 163 isolates was 36% spherical (S), 5% cubic (C), 9% irregular pointed (IP), 2% bipyramidal (B), 19% cubic and spherical (C&S), 22% spherical and irregular pointed (S&IP), 1% cubic and irregular pointed (C&IP), 2% irregular shaped (IS), and 6% not defined (Figure 3.2). Crystal morphologies for all isolates were given in Appendix E. **Figure 3.2.** Crystal shape distribution of *B. thuringiensis* isolates. After growing the isolates for 48 h, crystal protein formation was observed by using a PCM. # 3.3. Characterization of cry Gene Content of Bacillus thuringiensis Isolates Toxic crystal proteins are encoded by *cry* genes and one *B. thuringiensis* strain can contain one or more *cry* genes. The *cry* gene contents of 163 crystal producing isolates were determined by PCR analysis of *cry1*, *cry2*, *cry3*, *cry4* and *cry9* genes. Universal primers designed for these genes and their expected PCR product sizes are shown in Table 2.3. Genomic DNA extracted from each *B. thuringiensis* isolate was used as template in PCR reactions and target gene fragments were amplified by using the universal primers specific to each group of *cry* gene. Each PCR product was checked with the respective reference strains of *B. thuringiensis*, listed in Table 2.2. One hundred and three of 163 isolates were positive for the *cry* genes examined (Table 3.3). PCR analysis of each isolate with five different *cry* gene primers indicated that 63 of the isolates contained only one type of *cry* gene; however, 40 of them contained more than one type of *cry* gene in which 28 isolates containing 2 different *cry* genes, 8 isolates containing 3 different *cry* genes and 4 isolates containing 4 different *cry* genes (Figure 3.8). Results of all PCR reactions were given in Appendix F. Ninety-nine isolates exhibited spore and colony morphology similar to that of *B. thuringiensis*, whereas no crystal formation was observed by phase contrast microscobe. On the other hand, when PCR analysis was performed for 9 of them, 7 isolates were positive for *cry* genes examined. This is also related to the absence of gene expression at the protein level. In fact, crystal protein synthesis in *B. thuringiensis* is controlled by a variety of mechanisms at the transcriptional, post-transcriptional or post-translational levels (Agaisse & Lereclus, 1995). #### 3.3.1. Cryl Gene Analysis of Bacillus thuringiensis Isolates The DNA extracted from 163 *B. thuringiensis* isolates was amplified with *cry1* gene primers and 38 of the isolates were obtained as positive for *cry1* gene. Nineteen of *cry1* positive isolates carried only *cry1* gene; however, the other nineteen isolates had more than one type of *cry* gene in addition to *cry1* gene (Figure 3.8). Universal primers for *cry1* gene produced PCR products of expected size at arround 275 bp (Figure 3.3). As being optimized culture in laboratory conditions, *B. thuringiensis* reference strain, *B. thuringiensis* supsp. *aizawai*, (Figure 3.3., lane 1) produced much more amplification product so, gave brighter DNA band than that of environmental isolates. #### 3.3.2. Cry2 Gene Analysis of Bacillus thuringiensis Isolates All 163 isolates were screened by PCR for the presence of *cry2* gene and 24 isolates were shown to contain this gene. Six of them contained only *cry2* gene, whereas, 18 of them harboured with the other *cry* genes tested (Figure 3.8). PCR products of *cry2* gene gave bands at expected size about 690 bp for the isolates (Figure 3.4). DNA bands obtained from native strains were also as bright as that of B. *thuringiensis* reference strain. **Figure 3.3.** Agarose gel (1%) electrophoresis of PCR products of *cry1* gene from different isolates. Lane M: 1 kb DNA MW marker, Lane 1: *B. thuringiensis* supsp. *aizawai* as *cry1* positive control, Lane 2: 35Pb, Lane 3: 35Kb, Lane 4: 13La, Lane 5: 5Ca, Lane 6: 4Cb, Lane 7: 11Ka, Lane 8: 107Fa, Lane 9: 102Fb **Figure 3.4.** Agarose gel (1%) electrophoresis of PCR products of *cry2* gene from different isolates. Lane M: 1 kb DNA MW marker, Lane 1: *B. thuringiensis* supsp. *kurstaki* as *cry2* positive control, Lane 2: 18Fa, Lane 3: 93Ha, Lane 4: 93Da, Lane 5: 93FFa, Lane 6: 27Fb, Lane 7: 19Rb, Lane 8: 19Hb, Lane 9: 85PPb #### 3.3.3. Cry3 Gene Analysis of Bacillus thuringiensis Isolates By PCR amplification, 26 of the 163 isolates were obtained as positive for *cry3*. Even though 10 of 26 isolates were carrying only cry3 gene, 16 isolates were also carrying some of the other *cry* genes examined (Figure 3.8). The expected size of PCR products for cry3 gene was about 590 bp. Some of the isolates (Figure 3.5., lane 2, 4, 5 and 8) produced PCR products at this expected size, however, the others (Figure 3.5., lane 3, 6, 7 and 9) produced various size of amplification products. This may be due to the genetic diversity of B. thuringiensis strains isolated from different environmental samples. These strains may contain different cry gene subgroups, including cry3, sharing homology with the cry3 gene primer at binding region. An extraordinary PCR profile obtained for the isolate 98Lb (Figure 3.5., lane 9) which exhibited seven different PCR bands changing in size between 260 and 800 bp approximately. These extra bands produced by the isolates 70Bb, 71Lb and 98Lb (Figure 3.5., lane 6, 7 and 9) might indicates that these isolates may contain other cry3 subgroups sharing the homology with the primers designed for cry3 gene amplification. In order to identify such cry gene groups, these isolates should be screened by primers specific for subgroups of each cry genes. The isolates 24Na and 24Ra (Figure 3.5., lane 4 and 5) gave weak bands compared to others. In fact, the amount of DNA, used as template in PCR reaction mixtures, was not quantified exactly. Therefore, the differences in the intensities of the bands may be arised from the different amount of starting DNA material in gene amplifications. In addition, it may also be arised from plasmids with low copy number. #### 3.3.4. Cry4 Gene Analysis of Bacillus thuringiensis Isolates Twenty eight of 163 isolates were found to be positive for *cry4* gene by PCR analysis. Seven of them contained only *cry4*, but the remaining 21 isolates carried some other *cry* genes screened as well (Figure 3.8). PCR products were obtained at expected size about 450 bp for the isolates. The isolate 26Kb (Figure 3.6., lane 4) produced an extra band at arround 650 bp which might indicate that this strain may contain other subgroups of *cry4* gene that might have the homologous sequence with the *cry4* universal primers. **Figure 3.5.** Agarose gel (1%) electrophoresis of PCR products of *cry3* gene from different isolates. Lane M: 1 kb DNA MW marker, Lane 1: *B. thuringiensis* biovar. *tenebrionis* as *cry3* positive control, Lane 2: 4La, Lane 3: 13Hb, Lane 4: 24Na, Lane 5: 24Ra, Lane 6: 70Bb, Lane 7: 71Lb, Lane 8: 86Db, Lane 9: 98Lb **Figure 3.6.** Agarose gel (1%) electrophoresis of PCR products of *cry4* gene from different isolates. Lane M: 1 kb DNA MW marker, Lane 1: *B.
thuringiensis* biovar. *israelensis* as *cry4* positive control, Lane 2: 19Pb, Lane 3: 24La, Lane 4: 26Kb, Lane 5: 27Ba, Lane 6: 27Pa, Lane 7: 93FFa, Lane 8: 93Fa, Lane 9: 94YYb # 3.3.5. Cry9 Gene Analysis of Bacillus thuringiensis Isolates PCR analysis of 163 isolates with primers for *cry9* gene indicated that 44 isolates were positive for *cry9* gene. Although, half of these 44 isolates were positive only for *cry9*, the other half were also positive for some other *cry* genes examined (Figure 3.8). The expected size of PCR products for *cry9* gene was 350 bp. Although a single band obtained for some isolates (Figure 3.7., lanes 2,3,6,8 and 9), some isolates such as 25Ca, 94YYb and 93Da (Figure 3.7., lanes 4, 5 and 7) also produced extra amplification products at different sizes. Similar to extra bands observed with other *cry* genes, extra bands obtained with *cry9* gene is most probably due to *cry9* gene subgroups which have homology with the *cry9* gene universal primer. **Figure 3.7.** Agarose gel (1%) electrophoresis of PCR products of *cry 9* gene from different isolates. Lane M: 1 kb DNA MW marker, Lane 1: *B. thuringiensis* supsp. *aizawai* as *cry9* positive control, Lane 2: 82YYb, Lane 3: 24Ca, Lane 4: 25Ca, Lane 5: 94YYb, Lane 6: 24Nb, Lane7: 93Da, Lane 8: 25Aa, Lane 9: 29Fa # 3.4. Analysis of cry Gene Distribution The high number of different *cry* gene profiles are closely related with the environmental diversity of the geographic area surveyed. In this study, the isolates containing *cry9* gene were the most abundant group (28 %) compared to others. However, Bravo *et al.* (1998) have found that *cry9* gene was less abundant (2.6 %) in Mexican soil. Ben-Dov *et al.* (1999) have detected cry genes in 10.2 % of *B. thuringiensis* strains isolated from Israel, Kazakhstan and Uzbekistan. The most common *cry* genes found in nature belong to *cry1* gene group (Porcar and Juarez-Perez 2002). Bravo *et al.* (1998), Ben-Dov *et al.* (1997) and Wang *et al.* (2003) have reported *cry1* genes were the most frequent in their collections. Similarly, the isolates containing *cry1* gene were the second most abundant group (23 %) in this current study. In Mexican strain collection (Bravo *et al.*, 1998), *cry3* gene abundance has been quite high (21.7 %), whereas in Taiwan (Chak *et al.*, 1994) and Israel, Kazakhstan and Uzbekistan (Ben-Dov *et al.*, 1997) *B. thuringiensis* collections did not harbor *cry3* gene. These two studies might suggest that *cry3* genes were absent in *B. thuringiensis* strains collected from Asia. However, in the present study, the isolates carrying *cry3* gene were detected as 16 %. The percentage of *cry4* gene in our *B. thuringiensis* isolates were 18. Bravo *et al.* (1998) have detected *cry4* gene as about 8 % in Mexican soil; however, Chack *et al.* (1994) detected this gene only in 4 of 536 isolates in Taiwan soil. It has been reported that *cry2* gene was found more commonly in isolates from Asia (Ben-Dov *et al.*, 1997; Chak *et al.*, 1994; Kim *et al.*, 2000; Zhang *et al.*, 2000) than those from Latin America (Bravo *et al.*, 1998). Wang *et al.* (2003) found that 70 % of the isolates obtained from different regions in China contained *cry2* gene. By contrast, 15 % of the isolates were defined as *cry2* gene positive in the present study. Many studies have reported that *cry1* and *cry2* genes were most often present together (Wang *et al.*, 2003; Ben-Dov *et al.*, 1997; Zhang *et al.*, 2000). Wang *et al.* (2003) have found that among the *cry1* gene containing isolates, 90.7 % strains also harbored a *cry2* gene. Ben-Dov *et al.* (1997) have reported that most of the isolates containing *cry1* gene were also positive for *cry2* gene. The PCR results of the present study showed that only about 10 % of the *cry1* gene positive isolates contained *cry2* gene. In addition, other *cry* genes examined in this study were present with different combinations in the isolates (Figure 3.8). For example, 17 % of *cry2* gene positive isolates contained *cry4* gene. The reported *cry* gene distribution among the collections is quite variable. Even collections of *B. thuringiensis* strains isolated from the same country may vary in the frequency of observed genes. This shows how different geographic regions affect diversity of *cry* gene content of *B. thuringiensis* strains. As a result, number of the isolates containing *cry9* and *cry1* genes were the most abundant compared to isolates containing other cry genes. In addition, some of the isolates contained 2, 3 or 4 different *cry* genes (Figure 3.8). Name of the isolates containing *cry* genes are in Table 3.4. Figure 3.8. Cry gene distribution of B. thuringiensis isolates based on PCR analysis When the *cry* gene distribution was examined through sample types, it was found that samples from stored product dust and soil contained *cry* genes at high percentages, 65.8 % and 63,8 % respectively (Table 3.2). When it was examined through sampling locations, almost all screened *cry* genes were present in İvriz/ Ereğli-Konya (Table 3.2). Sixty of the isolates were negative for *cry* genes examined. In literature, 32 different *cry* gene groups and many subgroups have been defined (Schnepf *et al.*, 1998; Crickmore *et al.*, 1998); therefore, the remaining 60 isolates may contain different *cry* genes from the ones examined in this study. **Table 3.4.** Isolates positive for *cry* genes | type of <i>cry</i> gene | name of isolate | |-------------------------|--| | cry1 | 48Ra, 39Ya, 35Pb, 39Yb, 43Db, 71Na, 35Kb, 13La, 5Ca, 4Cb, 11Ka, 107Fa, 102Fb, 1Ab, 1Cb, 60Na, 57Hb, 58Kb | | cry2 | 70Ka, 93Ha, 27Fb, 19Hb, 94Da, 31Fa | | cry3 | 43Ra, 70Bb, 61Kb, 4La, 24Ra, 24Na, 24La, 25Fa, 98Lb, 13Hb, 1Fa | | cry4 | 19Pb, 26Kb, 27Ba, 28Da, 113Ha, 27Pa, 113Ya | | cry9 | 34Bb, 24Nb, 25Aa, 25Ca, 36Ba, 87Fb, 43Fa, 18FFa, 20Rb, 13Nb, 94YYb, 27Cb, 24Pb, 53Yb, 1CCb, 24Ca, 24Fb, 27Fa, 62PPa, 2Ib, 27Ka, 26Ba | | cry1, cry2 | 59Ya, 33Yb, 7Fa, 85PPb | | cry1, cry3 | 71Lb, 55Ka | | cry1, cry4 | 25Ua, 24Fa, 28Ca | | cry1, cry9 | 7Bb, 28Aa, 28Lb | | cry2, cry3 | 1Bb, 24Lb | | cry2, cry4 | 27Kb | | cry2, cry9 | 82YYb, 23Ba, 19Rb, 93Da | | cry3, cry4 | 2Ja, 25Ab, 26Fb, 29Db, 31Na | | cry3, cry9 | 86Db, 2Jb | | cry4, cry9 | 29Fa, 26Pb | | cry1, cry2, cry9 | 25Fb | | cry1, cry4, cry9 | 27Pb | | cry2, cry3, cry9 | 18Fa, 56Kb | | cry2, cry4, cry9 | 93FFa, 8Ba | | cry3, cry4, cry9 | 19Ka, 29Ab | | cry1, cry2, cry4, cry9 | 25Pb, 93Fa | | cry1, cry3, cry4, cry9 | 24La, 1Aa | #### 3.5. Plasmid Profiles of Bacillus thuringiensis Isolates Most *B. thuringiensis* isolates have several extra-chromosomal elements (plasmids) ranging in size from 2 to 200 kb. Some of these plasmids are circular and some are linear, and *cry* genes are generally carried on these plasmids (Carlson *et al.*, 1996). Within *B. thuringiensis* species, a large variation of plasmid patterns has been found, reflecting a high strain diversity. Therefore, in this study, plasmids were isolated from *B. thuringiensis* isolates, positive for *cry* genes screened, as well as 4 different *B. thuringiensis* reference strains and differences in plasmid patterns of the isolates in each *cry* gene group were investigated. In addition to different bands varying in size between 15 kb to 22 kb for some isolates, a major DNA band at 15 kb in size was obtained in all isolates (Figure 3.9). Almost all *cry1* gene positive isolates exhibited different plasmid profiles from each other (Figure 3.9., lane 1 to lane 13). Also, some of *cry2* (data not **Figure 3.9.** Agarose gel (0,8 %) electrophoresis of plasmid preperations of cry1 (lane1-lane14), cry9 (lane 16-29), and cry3 (lane 31-38) positive Bt isolates. LaneM: 1 kb DNA MW marker, Lane 1: 35Pb, Lane 2: 35Kb, Lane 3: 13La, Lane 4: 5Ca, Lane 5: 4Cb, Lane 6: 11Ka, Lane 7: 107Fa, Lane 8: 1Ab, Lane 9: 1Cb, Lane 10: 1Cb, Lane 11: 60Na, Lane 12: 57Hb, Lane 13: 58Kb, Lane 14: *B. thuringiensis* supsp. *aizawai*, Lane 15: 34Bb, Lane 16: 87Fb, Lane 17: 43Fa, Lane 18: 18FFa, Lane 19: 20Rb, Lane 20: 13Nb, Lane 21: 27Cb, Lane 22: 24 Pb, Lane 23: 1CCb, Lane 24: 24Fb, Lane 25: 27Fa, Lane 26: 86Db, Lane 27: 27Ka, Lane 28: 26Ba, Lane 29: *B. thuringiensis* biovar. *tenebrionis*, Lane 30: 43Ra, Lane 31: 70Bb, Lane 32: 61Kb, Lane 33: 4 La, Lane 34: 24Ra, Lane 35: 24Na, Lane 36: 25Fa, Lane 37: 13Hb, Lane 38: 1Fa shown), *cry4* (data not shown), *cry3* (Figure 3.9., lane 30 to lane 38) and *cry9* (Figure 3.9., lane 15 to lane 28) positive isolates exhibited different plasmid profiles. This may reflect the strain diversity in our isolates. Iriarte *et al.* (2000) have characterized two novel strains isolated from Spain and reported that these two strains contained two (205 and 160 kb) and three (210, 160 and 80 kb) large plasmids. They have considered the absence of small plasmids as the characteristics of these two strains. However, in our profiles the largest plasmid band was obtained arround 27kb. This may be due to the protocol used for plasmid isolation that was not sufficient for large plasmids. ### 3.6. PFGE Profiles of Bacillus thuringiensis Isolates Pulsed field gel electrophoresis (PFGE) of chromosomal DNA digested with a restriction enzyme is known to be an accurate and reproducible typing method for closely related bacterial strains (Tenover et al., 1995; Bygraves and Maiden 1992). In a recent study, Rivera and Priest (2003) have examined 70 B. thuringiensis strains using PFGE procedure, and investigated the correlation between PFGE type and cry gene composition. In this study, PFGE analysis were carried out for 34 environmental B. thuringiensis isolates and 4 B. thuringiensis reference strains, in order to see if the isolates carrying the same cry gene show similar PFGE patterns. Chromosomal DNA from 6 cry1, 8 cry2, 5 cry3, 4 cry4 and 11 cry9
gene positive isolates were subjected to PFGE analysis. Although there were some similarities among PFGE patterns of the isolates (data not shown except for cry9), mostly no identical patterns were obtained within each of the *cry* gene groups (Figure 3.10). Based on Rivera and Priest (2003), if PFGE patterns differed by changes up to 3 bands and more than three bands, strains are described as closely related and unrelated, respectively. Therefore, results of this study showed that isolates in each group of cry1, cry2, cry3, and cry4 genes could be unrelated strains. However, two patterns in cry9 positive isolates, 53Yb and 29Fa (Figure 3.10., lane 4 and lane 7) produced the same PFGE profile, indicating that these two were the same strains. The rest of the isolates carrying cry9 gene were not idendical. Similar to the results of Rivera and Priest (2003), our findings also showed that there is no exact correlation between cry gene content and PFGE patterns. This is possible because cry genes are often carried on plasmids and plasmid exchange between strains as well as recombination between *cry* genes from different backgrounds occur in *B. thuringiensis* strains (De Maagd *et al.* 2001). **Figure 3.10.** PFGE patterns of cry9 positive isolates. Lane M: 5 kb DNA MW marker, Lane 1: 62PPa, Lane 2: 24Ca, Lane 3: 28Aa, Lane 4: 53Yb, Lane 5: 94YYb, Lane 6: 93Da, Lane 7: 29Fa, Lane 8: 25Aa, Lane 9: 82YYb, Lane 10: *B. thuringiensis* supsp. *aizawai* #### Chapter 4 #### CONCLUSION AND FUTURE EXPERIMENTS B. thuringiensis is a ubiquitous, Gram-positive, spore-forming bacterium that produces intracellular toxic proteins which are active against certain insect species. Because of its insecticidal activity, B. thuringiensis has been widely used as biopesticide for more than 40 years, as an alternative to chemical pesticides. The genetic diversity and toxic potential of B. thuringiensis strains are closely related to geographic conditions of the regions where the strains are isolated. Many researchers and research centers focus on to isolate and characterize environmental B. thuringiensis strains to find novel strains with better toxic activity. Therefore, the objective of this study was to isolate and characterize native B. thuringiensis strains in grain related habitats, providing a base to establish a Turkish B. thuringiensis culture collection. Four approaches were taken; analysis of crystal protein production with phase contrast microscopy, detection of *cry* gene content by PCR, plasmid profiling and chromosomal DNA profiling by PFGE. In total 96 samples were collected from certain parts of Central Anatolia and Aegean region. *B. thuringiensis* was isolated from 61 of 96 samples (63.5%). In total 700 bacterial colonies were isolated and defined on the basis of colony morphology. Five hundred of the isolates were examined under phase contrast microscobe and 163 of them (33%) were identified as *B. thuringiensis* based on crystal production. Five different crystal morphologies, spherical (S), cubic (C), irregular pointed (IP), bipyramidal (B), irregular shaped (IS), were determined and spherical type crystals were mostly observed (36%). It was found that 42% of the isolates had more than one crystal morphology, while 58 % of them had only one. In PCR screening, 103 of 163 crystal producing isolates were found to be positive for 5 different *cry* genes (*cry1*, *cry2*, *cry3*, *cry4*, *cry9*) examined. Plasmid and chromosomal DNA profiling resulted in different patterns of the isolates carrying the same *cry* gene, indicating wide range of diversity among *B. thuringiensis* strains found in Anatolia. All the data obtained from this study have great importance for the future works. The biological activities of crystal proteins purified from *B. thuringiensis* isolates will be examined on different insects. Protein profiling studies for the strains with high toxic activity will be performed. Serological tests of *B. thuringiensis* isolates will be carried out in order to identify them according to known serotypes, and search for new and unknown serotypes in our isolates, if present. Identification at subspecies level by detailed genetic characterization such as screening with specific primers and DNA sequencing may be another part of future works. Also, studies on culture conditions of *B. thuringiensis* isolates with higher insecticidal activities will be carried out to large scale crystal protein production. Toxin producing genes, *cry* genes, may also be cloned from plasmids into *E. coli* with a suitable vector in order to produce more target proteins rapidly and economically. #### REFERENCES - Agaisse, H. and Lereclus, D., How does *Bacillus thuringiensis* produce so much insecticidal crystal protein?, *Journal of Bacteriology*, **177**, (1995), 6027-6032. - Alstad, D.N. and Andow, D.A., Managing the evolution of insect resistance to transgenic plants, *Science*, **268**, (1995), 1894-1896. - Aronson, A., Sporulation and δ -endotoxin synthesis by *Bacillus thuringiensis*, *Cellular* and *Molecular Life Sciences*, **59**, (2002), 417-425. - Baum, J.A. and Malvar, T., Regulation of insecticidal crystal protein production in *Bacillus thuringiensis*, *Mol. Microbiol.*, **18**, (1995), 1-12. - Baum, J.A., Johnson, T.B., Carlton, B.C., *Bacillus thuringiensis*: Natural and recombinant biopesticide products, in *Biopesticides: Use and Delivery*, edited by F.R. Hall and J.J. Menn, (Humana Press, Totowa, NJ, 1999), p. 189-210. - Bel, Y., Granero, F., Alberola, T.M., Martinez-Sebastian, M.J., Ferre, J., Distribution, frequency and diversity of *Bacillus thuringiensis* in olive tree environments in Spain, *Systematic Applied Microbiology*, **20**, (1997) 652-658. - Ben-Dov, E., Zaritsky, A., Dahan, E., Barak, Z., Sınal, R., Manasherob, R., Khamraev, A., Troitskaya, E., Dubitsky, A., Berezina, N., Margalith, Y., Extended screening by PCR for seven *cry*-group genes from field- collected strains of *Bacillus thuringiensis*, *Applied and Environmental Microbiology*, **63**, (1997), 4883-4890. - Ben-Dov, E., Wang, Q., Zaritsky, A., Manasherob, R., Barak, Z., Schneider, B., Khamraev, A., Baizhanov, M., Glupov, V., Margalith, Y., Multiplex PCR screening to detect *cry9* genes in *Bacillus thuringiensis* strains, *Applied and Environmental Microbiology*, **65**, (1999), 3714-3716. - Berliner, E., Über die Schlaffsucht der Mehlmottenraupe, Z. Gesamte Getreidewes, 3, (1911), 63-70. - Bernhard, K., Jarrett, P., Meadows, M., Butt, J., Ellis, J., Roberts, G.M., Pauli, S., Rodgers, P., Burges, H.D., 1997 Natural isolates of *Bacillus thuringiensis*: worldwide distribution, characterization and activity against insect pests, *Journal of Invertebrate Pathology*, **70**, (1997), 59-68. - Boulter, D., Gatehouse, A. M. R., Hilder, V., Use of crowpea trypsin inhibitor (CPTI) to protect plants against insect predation, *Biotechnol. Adv.*, 7, (1989), 489-497. - Bourque, S.N., Valero, J.R., Mercier, J., Lavoie, M.C., Levesque, R.C., Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide *Bacillus thuringiensis*, *Applied and Environmental Microbiology*, **59**, (1993), 523-527. - Bravo, A., Sarabia, S., Lopez, L., Ontiveros, H., Abarca, C., Ortiz, A., Ortiz, M., Lina, L., Villalobos, V., Pena, G., Nunez-Valdez, M., Soberon, M., Quintero, R., Characterization of *cry* genes in a Mexican *Bacillus thuringiensis* strain Collection, *Applied and Environmental Microbiology*, **64**, (1998), 4965-4972. - Burges, H.D. and Jones, K.A., Formulation of bacteria, viruses, and protozoa to control insects, in *Formulation of Microbial Biopesticides*, edited by H.D. Burges (Kluwer Academic Publisher, Dordrecht, The Netherlands, 1999) p. 34-127. - Bygraves, J., Maiden, M.C., Analysis of the clonal relationships between strains of *Neisseria meningitidis* by pulsed field gel electrophoresis, *Journal of Genomic Microbiology*, **138**, (1992), 523-531. - Carlson, C.R. and Kolstø, A.-B., A complete physical map of *Bacillus thuringiensis* chromosome, *Journal of Bacteriology*, **175**, (1993), 1053-1060. - Carlson, C.R., Caugant, D.A., Kolstø A.-B., Genotypic diversity among *Bacillus* cereus and *Bacillus thuringiensis* strains, *Applied and Environmental Microbiology*, **60**, (1994), 1719-1725. - Carlson C.R., Johenson T., Lecadet M.-M., Kolstø A.-B., Genomic organization of the entomopathogenic bacterium *Bacillus thuringiensis* subsp. *berliner* 1715, *Microbiology*, **142**, (1996), 1625-1634 - Carlton, B.C. and Gonzalez, J.M., The genetics and molecular biology of *Bacillus* thuringiensis, in *The Molecular Biology of the Bacilli*, edited by D.A. Dubnau, (Academic Pres, New York, 1985), p. 211-249. - Carrozi, N.B., Kramer, V.C., Warren, G.W., Evola, S., Koziel, M.G., Prediction of insecticidal activity of *Bacillus thuringiensis* strains by polymerase chain reaction product profiles, *Applied and Environmental Microbiology*, **57**, (1991), 3057-3061. - Ceron, J., Covarrubias, L., Quintero, R., Ortiz, A., Ortiz, M., Aranda, E., Lina, L., Bravo, A., PCR analysis of the cry1 insecticidal crystal family genes from *Bacillus thuringiensis*, *Applied and Environmental Microbiology*, **60**, (1994), 353-356. - Ceron, J., Ortiz, A., Quintero, R., Güereca, L., Bravo, A., Specific PCR primers directed to identify *cryI* and *cryIII* genes within a *Bacillus thuringiensis* strain collection, *Applied and Environmental Microbiology*, **61**, (1995), 3826-3831. - Chak, K.F., Chao, D.C., Tseng, M.Y., Kao, S.S., Tuan, S.J., Feng, T.Y., Determination and distribution of *cry* type genes of *Bacillus thuringiensis* isolates from Taiwan, *Applied and Environmental Microbiology* **60**, (1994), 2415-2420. - Cohen, E., Rozen, H., Joseph, T., Margulis, L., Photoprotection of *Bacillus thuringiensis* var. *kurstaki* from ultra-violet irradiation, *Journal of Invertabrate Pathology*, **57**, (1991), 343-351. - Crickmore, N.,
Zeigler, D.R., Feitelson, J., Schnepf, E., Van-Rie, J., Lereclus, D., Baum, J., Dean, D.H., Revision of nomenclature for the *Bacillus thuringiensis* pesticidal crystal proteins, *Microbiology and Molecular Biology Review.*, **62**, (1998), 807-813. - Croft, B.A., Developing a philosophy and program of pesticide resistance management, in *Pesticide resistance in Artropods*, edited by R.T. Roush and B.E. Tabashnik, (Chapman and Hall, New York, 1990), p. 277-296. - De Barjac, H. and Bonnefoi, A., Mise au point sur la classification des *Bacillus* thuringiensis, Entomophage, **18**, (1973), 5-17 - De Maagd, R.A., Bravo, A., Crickmore, N., How *Bacillus thuringiensis* has evolved specific toxins to colonize the insect world, *Trends in Genetics*, **17**, (2001), 193-199. - Dulmage, H.D., Insecticidal activity of HD-1, a new isolate of Bacillus *thuringiensis* var. *alesti*, *Journal of Invertabrate Pathology*, **15**, (1970), 232-239. - Dunkle, R.L. and Shasha, B.S, Response of starch encapsulated *Bacillus thuringiensis* containing UV screens to sunlight, *Environ. Entomol.*, **18**, (1989), 1035-1041. - EPA Guidance for the registration of pesticide products containing *Bacillus* thuringiensis as the active ingredient, (Registration Standard 540/RS-89-023, December, 1998). - Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A., Koziel, M.G., Vip3A, a novel *Bacillus thuringiensis* vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects, *Proc. Natl. Acad. Sci.*, **93**, (1996), 5389-5394. - Federici, B.A., Lüthy, P., Ibarra, J.E., The parasporal body of *Bacillus thuringiensis* subsp. *israelensis*: structure, protein composition and toxicity, in *Bacterial* Control of Mosquitos and Blackflies: Biochemistry, Genetics and Applications of Bacillus thuringiensis and Bacillus sphaericus, edited by H. de Barjac and S. Sutherland, (Rutgers University Pres, New Brunswick, N.J., 1990). - Feitelson, J.S., Payne, J., Kim, L., *Bacillus thuringiensis*: insects and beyond. *Bio/Technology*, **10**, (1992), 271-275. - Feitelson, J.S., The *Bacillus thuringiensis* family tree, in *Advanced Engineered Pesticides*, edited by L. Kim, (Marcel Dekker, Inc., New York, NY, 1993), p. 6372. - Ferro, D.H., Lyon, S.M., Colorado potato beetle (Coleoptera: Chrysomelidae) larval mortality: operative effects of *Bacillus thuringiensis* subsp. *san diego*, *J. Econ.Entomol.*, **84**, (1991), 806-809. - Ferro, D.H., Yuan, Q.C., Slocombe, A., Tutle, A., Residual activity of insecticides under field conditions for controlling the Colorado potato beetle (Coleoptera: Chrysomelidae), *J. Econ. Entomol.*, **86**, (1993), 511-516. - Forsyth, G. and Logan, N.A,. Isolation of *Bacillus thuringiensis* from Northern Victoria Land, Antarctica, *Letters in Applied Microbiology*, **30**, (2000), 263-266. - Frutos, R., Rang, C., Royer, M., Managing insect resistance to plants producing *Bacillus* thuringiensis toxins. *Critical Rewievs in Biotechnology*, **19**, (1999), 227-276. - Fuxa, J., Fate of released entomopathogens with reference to risk assessment of genetically engineered microorganisms, *Bull. Entomol. Soc. Am.*, **35**, (1989), 12-24. - Gill, S.S., Cowles, E.A., Pietranto, P.V., The mode of action of *Bacillus thuringiensis* endotoxins, *Annu. Rev. Entomol.*, **37**, (1992), 615-636. - Glaeve, A.P., Williams, R., Hedges, R.J., Screening by polymerase chain reaction of *Bacillus thuringiensis* serotypes for the presence of *cryV*-like insecticidal protein genes and characterization of a *cryV* gene cloned from *B. thuringiensis* subsp. *kurstaki, Applied and Environmental Microbiology*, **59**, (1993), 1683-1687. - Glathorn, M.F. and Rapoport, G., Biosynthesis of the parasporal inclusions of *Bacillus thuringiensis*: half-life of its corresponding Messenger RNA, *Biochimie*, **54**, (1973), 1291-1301. - Glazer, A. N. and Nikaido, H., Microbial insecticides, in <u>Microbial Biotechnology</u> <u>Fundamentals of Applied Microbiology</u>, (W.H. Freeman and Company, New York, 1995), p. 209-229. - Gonzales, J.M. and Carlton, B.C., Patterns of plasmid DNA in crystalliferous strains of *B. thuringiensis, Plasmid*, **3**, (1980), 92-98. - Gonzales, J.M., Brown, B.J., Carlton, B.C., The transfer of *Bacillus thuringiensis* plasmid coding for δ-endotoxin among the strains of *Bacillus thuringiensis* and *Bacillus cereus*, *Proceedings of National Acad. Sci.* USA, **79**, (1982), 6951-6955. - Grachulski, P., Mason, L., Borisova, S., Puzstai-Carey, M., Schwartz, J.-L., Brousseau, R., Cygler, M., *Bacillus thuringiensis* CryIA(a) insecticidal toxin: crystal structure and channel formation, *J. Mol. Biol.*, **254**, (1995), 447-464. - Helgason, E., Økstad, O.A., Caugant, D.A., Johansen, H.A., Fouet, A., Mock, M., Hegna, I., Kolstø, A.-B., *Bacillus anthracis, Bacillus cereus*, and *Bacillus thuringiensis* one species on the basis of genetic events, *Applied and Environmental Microbiology*, **66**, (2000), 2627-2630. - Hernstand, C., Soares, G. G., Wilcox, E. R., Edwards, D. I., A new strain of *Bacillus thuringiensis* with activity against coleopteran insects, *Bio/Technology*, **4**, (1986), 305-308. - Hofmann, C., Lüthy, P., Pliska, V., Binding of the delta endotoxin from *Bacillus thuringiensis* to brush border membrane vesicles of cabbage butterfly (*Pieris brassicae*), Eur. J. Biochem., 173, (1998), 85-91. - Hongyu, Z., Ziniu, Y., Wangxi, D., Isolation, distribution and toxicity of *Bacillus* thuringiensis from warehouses in China, *Crop Protection*, **19**, (2000), 449-454. - Höfte, H., Van-Rie, J., Jansens, S., Van Houtven, A., Vanderbruggen, H., Vaeck, M., Monoclonal antibody analysis and insecticidal spectrum of three types of - lepidopteran-specific insecticidal crystal proteins of *Bacillus thuringiensis*, *Appied and Environmental Microbiology*, **54**, (1988), 2010-2017. - Höfte, H. and Whiteley, H.R., Insecticidal crystal proteins of *Bacillus thuringiensis*, *Microbiol. Rev.*, **53**, (1989), 242-255. - Hu, X., Hansen, B.M., Eilenberg, J., Hendriksen, B. N., Smidt, L., Yuan, Z., Jensen, G.B., Conjugative transfer, stability and expression of plasmid encoding a cry1Ac gene in *Bacillus cereus* group strains, **231**, (2004), 45-52. - Iqbal, M., Verkerk, R.H.J., Furlong, M.J., Ong, P.C., Rahman, S.A., Wright, D.J., Evidence for resistance to *Bacillus thuringiensis* subsp. *kurstaki* HD-1, *Bacillus thuringiensis* subsp. *aizawai* and Abamectin in field populations of *Plutella xylostella* from Malaysia, *Pestic. Sci.*, **48**, (1996), 89-97. - Iriarte, J., Porcar, M., Lecadet, M.M., Caballero, P., Isolation and characterization of *Bacillus thuringiensis* strains from aquatic environments in Spain, *Current Microbiology*, **40**, (2000), 402-408. - Ishiwata, S., On a kind of severe flacherine(sotto disease), *Dainihon Sanshi Kaiho*, **114**, (1901), 1-5. - Johnson, D.E. and McGaughey, H., Contribution of *Bacillus thuringiensis* spores to toxicity of purified Cry proteins towards Indeanmeal moth larvae, *Current Microbiology*, **33**, (1996), 54-59. - Juarez-Perez, V.M., Ferrandis, M.D., Frutos R., PCR-based approach for detection of novel *Bacillus thuringiensis cry* genes *Appied and Environmental Microbiology*, **63**, (1997), 2997-3002. - Kalman, S., Kiehne, K.L., Libs, J.L., Yamamoto, T., Cloning of a novel *cry1C*-type gene from a strain of *Bacillus thuringiensis* subsp. *galleriae*, *Appied and Environmental Microbiology*, 59, (1993), 1131-1137. - Kegley, S. E. and Wise, L. J., *Pesticides in Fruit and Vegetables*, (Sausalito, CA: University Science Books, 1998). - Kim, H.S., Comperative study of the frequency, flagellar serotype, crystal shape, toxicity and cry gene contents of *Bacillus thuringiensis* from three environments, *Journal of Invertabrate Pathology*, 41, (2000), 250-256. - Knowless, B.H. and Dow, J.A.T., The crystal δ-endotoxin of *Bacillus* thuringiensis: models for their mechanism of action on the insect gut, *Bioassays*, **15**, (1993), 469-476. - Kornstad, J.W. and Whiteley, H.R., Three classes of homologous *Bacillus thuringiensis* crystal protein genes, *Gene*, **43**, (1986), 29-40. - Krieg, A., Huger, A. M., Langenbruch, G. A., Schnetter, W., *Bacillus thuringiensis* var. *tenebrionis*: Ein neuer, gegenüber Glarven von Coleoptaran Wirksamer Pathotype. Z. angew. *Entomology*, **96**, (1983), 500-508. - Kumar, P. A., Sharma, R. P., Malik, V. S., The insecticidal proteins of *Bacillus thuringiensis*, *Advances in Applied Microbiology*, **42**, (1997), 1-43 - Kuo, W.-S. and Chak, K.-F., Identification of novel *cry*-type genes from *Bacillus thuringiensis* strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA, *Appied and Environmental Microbiology*, **62**, (1996), 1369-1377. - Lambert, B., Peferoen, M., Insecticidal promise of *Bacillus thuringiensis*. Facts and mysteries about a succesful biopesticide, *Bioscience*, **42**, (1992), 112-122. - Levinson, B.L., High performance liquid chromatography analysis of two β-exotoxin produced by some *Bacillus thuringiensis* strains, in *Analytical Chemistry of Bacillus thuringiensis*, edited by L.A. Hickle and W.L. Fitch, (American Society, Washington, D.C.,1990), p. 115-136. - Li, J., Carroll, J., Ellar, D.J., Crystal structure of insecticidal δ-endotoxin from *Bacillus* thuringiensis at 2.5 A° resolution, *Nature*, **353**, (1991), 81-821. - Li, J., Koni, P.A., Ellar, D.J., Structure of the mosquitocidal δ-endotoxin *cyt B* from *acillus thuringiensis*, *Journal of Molecular Biology*, **257**, (1996), 129-152. - Lopez-Meza, J.E., Ibarra, J.E., Characterization of a novel strain of *Bacillus* thuringiensis, Appied and Environmental Microbiology, **62**, (1996), 1306-1310. - Lövgren, A., Zang, M.-Y., Engstöm, A., Dalhammar, G., Landen, R., Molecular characterization of immune inhibitor A, a secreted virulence protease from *Bacillus thuringiensis*, *Molecular Microbiology*, **4**, (1990),
2137-2146. - Lui, Y.B. and Tabashnik, B.E., Experimental evidence that refuges delay insect adaptation to *Bacillus thuringiensis*, *Proc. R. Soc. Lond B*, **400**, (1997), 519. - Maeda, M., Mizuki, E., Nakamura, Y., Hatano, T., Ohba, M., Recovery of *Bacillus huringiensis* from marine sediments of Japan, *Current Microbiology*, **40**, (2000), 413-422. - Mahillon, J., Rezsöhazy, R., Balet, B., Delcour, J., *IS231* and other *Bacillus* thuringiensis transposable elements: a review, *Genetica*, **93**, (1994), 13-26. - Margalit, J. and Dean, D., The story of *Bacillus thuringiensis* var. *israelensis* (*B.t.i.*), *J. Am. Mosq. Control Assoc.*, **1**, (1985), 1-7. - Marrone, P. G. and Machintosh, S.C., Resistance to *Bacillus thuringiensis* and resistance management, in *Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice*, edited by P. F. Entwistle, J. S. Cory, M. J. Bailey, S. Higgs, (John Wiley & Sons, Chichester, UK, 1993), p. 221-235. - Martin, P.A.W. and Travers, R.S., Worlwide abundance and distribution of *Bacillus* thuringiensis isolates, *Appied and Environmental Microbiology*, **55**, (1989), 2437-2442. - McGuire, M.R. and Shasha, B.S., Starch encapsulation of microbial pesticide, in *Biorational Pest Control Agents Formulation and Delivery*, edited by F.R. Hall and J.W. Barry, (ACS Symposium Series 595, London, UK, 1995), p. 229-237. - Meadows, M.P., Ellis, D.J., Butt, J., Jarrett, P., Burges, D., Distribution, frequency and diversity of *Bacillus thuringiensis* in an animal feed mill, *Appied and Environmental Microbiology*, **58**, (1992), 1344-1350. - Mizuki, E., Ichimatsu, T., Hwang, S.H., Park, Y.S., Saitoh, H., Higuchi, K., Ohba, M., Ubiquity of *Bacillus thuringiensis* on phylloplanes of arboreous and herbaceous plants in Japan, *Journal of Applied Microbiology*, **86**, (1999), 979-984. - Murray, K.D., Alford, A.R., Groden, E., Interactive effects of an antifeedant used with *Bacillus thuringiensis* subsp. *san Diego* delta endotoxin on Colorado potato beetle (Coleoptera: Chrysomelidae), *J. Econ. Entomol.*, 86, (1993), 1793-1801. - Navon, A., Klein, M., Braun, S., *Bacillus thuringiensis* potency bioassay against Heliotis armigera, Earias insulana, and spodoptera littoralis larvae based on standardized diets, *Journal of Invertabrate Pathology*, **55**, (1990), 387-393. - Navon, A., Control of lepidopteran pests with *Bacillus thuringiensis*, in *Bacillus thuringiensis*, *An Environmental Biopesticide: Theory and Practice*, edited by P. F. Entwistle, J. S. Cory, M. J. Bailey, S. Higgs, (Wiley New York, USA, 1993), p. 125-146. - Navon, A., Keren, S., Levski, S., Grinstein, A., Riven, J., Granular feeding baits based on *Bacillus thuringiensis* products for the control of lepidopterous pests, *Phytoparasitica*, **25**, (1997), 101S-110S. - Navon, A., *Bacillus thuringiensis* insecticides in crop protection-reality and prospects, *Crop Protection*, **19**, (2000), 669-676. - Neppl, C. C., Management of Resistance to *Bacillus thuringiensis* toxins, Thesis in The Environmental Studies Program (University of Chicago, 2000). - Oerke, E. C., Dehne, H. W., Safeguarding production-losses in major crops and the role of crop protection, *Crop Protection*, **23**, (2004), 275-285. - Ohba, M. and Aizawai, K., Distribution of *Bacillus thuringiensis* in soils of Japan, *Journal of Invertabrate Pathology*, **47**, (1986), 277-282. - O'Sullivan, D.J. and Klaenhammer, T.R., Rapid mini-prep. isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp., *Appied and Environmental Microbiology*, **59**, (1993), 2730-2733. - Patel, K.R., Wyman, J.A., Patel K.A., Burden, B.J., A mutant of *Bacillus thuringiensis* producing a dark-brown pigment with increased UV resistance and insecticidal activity, *Journal of Invertabrate Pathology*, **67**, (1996), 120-124. - Pimentel, D. and Burgess., Effects of single versus combinations of insecticides on the development of resistance, *Environ. Entomol.*, **14**, (1985), 582-589. - Porcar, M. and Juarez-Perez, V., PCR-based identification of *Bacillus thuringiensis* pesticidal crystal genes, *FEMS Microbiology Reviews*, **757**, (2002), 1-4. - Ramos, L.M., McGuire, M.R., Galan Wong, L.J., Utilization of several biopolymers for granular formulations of *Bacillus thuringiensis*, *J. of Econ. Entomol.*, **91**, (1998), 1109-1113. - Rivera, A.M.G. and Priest, F.G., Pulsed field gel electrophoresis of chromosomal DNA reveals a clonal population structure to *Bacillus thuringiensis* that relates in general to crystal protein gene content, *FEMS Microbiology Letters*, **223**, (2003), 61-66 - Schnepf, E., Crickmore, N., Van-Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R., Dean, D.H., *Bacillus thuringiensis* and its insecticidal proteins, *Microbiology and Molecular Biology Reviews*, **62**, (1998), 774-806. - Shah, P.A. and Goettel, M.S., *Directory of Microbial Control Products and Services*, edited by P.A. Shah and M.S. Goettel, (Society of Inveretbrate Pathology, Gainesville, FL 32614-7050, USA, 1999), p. 31. - Shin, B.-S., Park, S.-H., Choi, S.-K., Koo, B.-T., Lee, S.-T., Kim, J.-I., Distribution of cryV-type insecticidal protein genes in *Bacillus thuringiensis* and cloning of cryV-type genes from *Bacillus thuringiensis* subsp. kurstaki and Bacillus thuringiensis subsp. entomocidus, Appied and Environmental Microbiology, 61, (1995), 2402-2407. - Sonngay, S. and Panbangred, W., Unpublished observation, (1997) - Tenover, F.C., Arbeit, R.D., Goering, R.V., Mickelson, P.A., Murray, B.E., Persing, D.H., Swaminathan, B.A., Interpreting chromosomal DNA restriction patterns produced by pulse-field gel electrophoresis: criteria for bacterial typing, *Journal of Clinical Microbiology*, **33**, (1995), 2233-2239. - Theunis, W., Aguda, R.M., Cruz, W.T., Decock, C., Peferoen, M., Lambert, B., Bottrell, D.G., Gould, F.L., Litsinger, J.A., Cohen, M.B., *Bacillus thuringiensis* isolates from the Philippines: habitat distribution, δ-endotoxin diversity and toxicity to rice stem borers (Lepidoptera: Pyralidae), *Bulletin of Entomological Research*, **88**, (1998), 335-342. - Thomas, D.J.I., Morgan, A.W., Whipps, J.M., Saunders, J.R., Plasmid transfer between *Bacillus thuringiensis* subsp. *israelensis* strains in laboratory culture, river water and dipteran larvae, *Appied and Environmental Microbiology*, **67**, (2001), 330-338. - Travers, R.S., Martin, P.A.W., Reichelderfer, C.F., Selective process for efficient isolation of soil *Bacillus spp.*, *Appied and Environmental Microbiology*, **53**, (1987), 1263-1266. - Tilman, D., Global environmental impacts of agricultural expansions: the need for sustainable and efficient practices, *Proc. Natl. Acad. Sci.*, **96**, (1999), 5995-6000. - Trumble, J., Alvaro-Rodrigez, B., Development of economic evaluation of an IPM program for fresh market tomato production in Mexico, *Agric. Ecosys. Environ.*, **43**, (1993), 267-284. - United Nations, World population prospects: the 1996 revisions, (United Nations, New York, 1996). - USEPA, Meeting summary: EPA-USDA Bt crop insect resistance management workshop, 1999b. (http://www.epa.gov/oppbppd1/biopesticides/summary 826.htm) - Uribe, D., Martinez, W., Ceron, J., Distribution and diversity of *cry* genes in native strains of *Bacillus thuringiensis* obtained from different ecosystems from Colombia, *Journal of Invertebrate Pathology*, **82**, (2003), 119-127. - Van Frankenhuyzen, K., The challenge of *Bacillus thuringiensis*, in *Bacillus thuringiensis*, An Environmental Biopesticide: Theory and Practice, edited by P. F. Entwistle, J. S. Cory, M. J. Bailey, S. Higgs, (John Wiley & Sons, Chichester, UK, 1993), p. 1-35. - Van Rie, J., Jansens, S., Höfte, H., Degheele, D., Van Mellaert, H., Specificity of *Bacillus thuringiensis* δ-endotoxin: importance of specific receptors on the brush border membrane of the mid-gut of target insects, *Eur. J. Biochem.*, **186**, (1989), 239-247. - Van Rie, J., Jansens, S., Höfte, H., Degheele, D., Van Mellaert, H., Receptors on the brush border membrane of the insect midgut as determinants of the specificity of *Bacillus thuringiensis* delta-endotoxins, *Appied and Environmental Microbiology*, **57**, (1990), 1650-1655. - Van Rie, J., Insect control with transgenic plants: resistance proof?, *Trends in Microbiology*, **9**, (1991), 177-179. - Wang, J., Boets, A., Van Rie, J., Ren, G., Characterization of cry1, cry2 and cry9 genes in Bacillus thuringiensis isolates from China, Journal of Invertebrate Pathology, 82, (2003), 63-71. - Wong, H.C. and Chang, S., Identification of positive retroregulator that stabilizes mRNAs in bacteria, *Proc. Natl. Acad. Sci.* USA, **83**, (1986), 3233-3237. - Wood, R. J., Strategies for conserving susceptibility to insecticides, *Parasitlogy*, **82**, (1981), 69-80. - Wysoki, M., *Bacillus thuringiensis* preparations as a means for the control of lepidopterous pests in Israel, *Isr. J. Entomol.*, **23**, (1989), 119-129. - Yoo, K.-H., Kim, S.-Y., Kang, M.-H., Cho, M.-H., Lee, H.-H., Characterization of *Bacillus thuringiensis* isolates from soil in Wonju area, *The Jour. of Microbiol.*, **34**, (1996), 370-373. - Zhang, M.-Y., Lövgren, A., Low, M.G., Landen, R., Characterization of a virulent pleiotropic mutant of the insect pathogen *Bacillus thuringiensis*: reduced expression of flagellin and phospholipases, *Infections and Immunity*, **61**, (1993), 4947-4954. APPENDIX A Natural and Genetically Modified Bt Products Registered for Agricultural Use | Bt strain | Company | Product | Target | insect | Crop | |---------------|---|---------------------------------------|--|---|--------------------------| | a) Natural | | | | | | | kurstaki HD-1 | Abbott Laboratories
Chicago IL, US | Biobit, Dipel,
Foray |
Lepidoptera | Field and veget
greenhouse, or
and nuts, ornal
foresty, stored | chard fruits
mentals, | | kurstaki HD-1 | Thermo Trilogy Crop
Columbia MD, US | Javelin, Steward,
Thuricide, Vault | Lepidoptera | • | • | | kurstaki | Abbott | Bactospeine, Futura | Lepidoptera | | | | kurstaki | Thermo Trilogy | Able, Costar | Lepidoptera | | | | aizawai | Abbott | Florbac | Lepidoptera | Row crops | | | | | Xentari | armyworms | | | | tenebrionis | Abbott | Novodor | Colorado Pota
Beetle,
Elm Bark
Beetle | to Potato, tomat Ornamentals, si | | | tenebrionis 🥖 | Thermal Trilogy | Trident | Coleoptera | Potato, tomato, | eggplant | | kurstaki | Bio Dalia, Dalia, Israel | Bio-Ti | Lepidoptera | Avocado, tomas vineyards, pine | to, | | kurstaki | Rimi, Tel Aviv,
Israel | Bitayon (granular feeding baits) | Btrachedra
amydraula | Date palms | | | galleriae | Tuticorin Alkali
Chemicals &
Fertilizers Ltd. India | Spicturin | Lepidoptera | Cruciferous cro | p plants | | YB-1520 | Huazhong Agric.
University, China | Mainfeng pesticide | Lepidoptera | Row crops, frui | t trees | | - | Scient.& Thechnol. Develop., China | Bt 8010 Rijin | Lepidoptera | Row crops, rice
maize, fruit tree
ornamentals | | | CT-43 | Huazhong Agric.
Univ., China | Shuangdu | Lepidoptera,
Coleoptera,
Diptera | Row crops, gar forests | den plants, | # b) Genetically modified | aizawai recipient | Thermo Trilogy | Agree, Design | Lepidoptera | Row crops | |--------------------|------------------|------------------|---------------|----------------------------| | kurstaki donor | | (transconjugant) | (Resistant | | | | | | P.xylostella) | | | kurstaki recipient | Ecogen, Inc. | Condor, Cutlass | Lepidoptera | Row crops | | aizawai donor | Langhorne PA, US | (transconjugant) | | | | kurstaki | Ecogen | CRYMAX, | Lepidoptera | Vegetables, horticultural, | | | | Leptinox | | ornamental | | kurstaki | Ecogen | Leptinox | Lepidoptera | Truf, hay, row crops, | | | | (recombinant) | armyworms | sweet corn | | kurstaki recipient | Ecogen | Raven | Lepidoptera | Row crops | | | | (recombinant) | Coleoptera | Potato, tomato, eggplant | | δ-endotoxin | Mycogen, Crop. | MVP | Lepidoptera | Row crops-armyworms | | encapsulated in | San Diego, | MATTCH | Lepidoptera | | | Pseudomonas | CA, US | MTRACK | Coleoptera | Potato, tomato, eggplant | | fluorescens | | (CellCap®) | | | | | | | | | Based on Baum et al., (1999), Shah and Goettel (1999). # APPENDIX B # **Chemicals Used in the Experiments** | Nutrient Broth | Merck 1.05443 | | |--|------------------|--| | Sodium Acetate | Sigma S2889 | | | Agar Agar | Merck 1.01613 | | | Yeast Extract | Merck 1.03753 | | | Bacteriological peptone | Oxoid LP037 | | | Sodium Chloride (NaCl) | Applichem A2942 | | | Tryptone | Oxoid L42 | | | Tryptose | Oxoid L47 | | | di-Sodium Hydrogen Phosphate (Na ₂ HPO ₄) | Applichem A2943 | | | Sodium di-Hydrogen Phosphate (NaH ₂ PO ₄) | Merck 1.06346 | | | Magnessium Chloride Hexahydrate (MgCl ₂ .6H ₂ O) | Merck 1.05832 | | | Mineral Oil | Sigma M5904 | | | Glycerol | Applichem A2926 | | | Agarose (Standard) | Applichem A2114 | | | Agarose (Low Melt) | Appplichem A3762 | | | Agarose (Molecular Biology Certified) | Bio-Rad 162-0134 | | | Trizma Base | Sigma T6066 | | | EDTA | Applichem A2937 | | | Ethidium Bromide | Applichem A1151 | | | D(+)-Sucrose | Applichem A2211 | | | Sodium Dodecyl Sulphate (SDS) | Applichem A2263 | | | Sodium Hydroxide (NaOH) | Merck 1.06498 | |--|-----------------------| | Ammonium Acetate | Applichem A2936 | | Hydrochloric Acid (HCl) | Merck. 1.00317 | | Phenol | Applichem A1594 | | Chloroform | Applichem A3633 | | Lysozyme | Applichem A3711 | | Isopropanol | Applichem A3928 | | Ethanol | Applichem A3678 | | N-laurylsarcosine | Applichem A1163 | | Boric Acid | Applichem A2940 | | Isoamylalcohol | Applichem A2610 | | Oil Immersion | Applichem A0699 | | Proteinase K | Applichem A3830 | | Ribonuclease A | Applichem A3832 | | Taq DNA Polymerase | MBI, Fermentas EP0401 | | dNTP Set | MBI, Fermentas R0181 | | Gene Ruler TM 1 kb DNA Ladder | Fermentas, SM0313 | | SmaI (Restriction enzyme) | Fermentas, ER0662 | # APPENDIX C #### **MEDIA** # C.1. Nutrient Agar Medium Used for B. thuringiensis Isolation | | g/1 | |----------------|-----| | Nutrient broth | 13 | | Agar agar | 15 | Ingredients are dissolved in 800 ml distilled water by stirring with gentle heating and completed to 1000 ml. Medium is sterilised by autoclaving at 121°C for 15 minutes. # C.2. T3 Agar Medium Used for Sporulation | | g/l | |------------------|--------| | Tryptone | 3 | | Tryptose | 2 | | Yeast extract | 1.5 | | Mangane chloride | 0.005 | | Agar agar | 15 | | and | | | Sodium phosphate | 0.05 M | All ingredients are dissolved in 800 ml distilled water by stirring with gentle heating and completed to 1000 ml. Medium is sterilized by autoclaving at 121°C for 15 minutes. #### APPENDIX D #### **BUFFERS AND STOCK SOLUTIONS** #### D.1. 50 X TAE 242 g Tris base is dissolved in deionized water, 57.1 ml glacial acetic acid and 100ml 0.5 M EDTA (pH 8.0) are added. Volume is adjusted to 1000 ml with deionized water. #### **D.2. 1 X TAE** 20 ml of 50X TAE buffer is taken and the volume is adjusted to 1000 ml with deionized water to obtain 1000 ml 1X TAE buffer. #### D.3. 5 X TBE 54 g Tris Base and 27.5 g boric acid are weighed and dissolved in nearly 800 ml of deionized water. And 20 ml 0.5 M EDTA pH 8.0 is added. The volume is brought to 1000 ml with deionized water. #### **D.4. 1X TBE** 200 ml 5X TBE is taken and the volume is brought to 1000 ml with deionized water. #### D.5. 1X TE (pH 8.0) 10 mM Tris (pH 8.0), 1mM EDTA # D.6. Tris-HCl (1 M, pH 8.0) 121.1 g Tris base is dissolved in 800 ml of deionized water. pH is adjusted to 8.0 with concentrated HCl. Volume is adjusted to 1000 ml with deionized water. The solution is sterilized by autoclaving. # D.7. EDTA (0.5 M, pH 7.5, 8.0 and 9.5) 186.1 g of EDTA is dissolved in 800 ml of deionized water and pH is adjusted to desired value with 10 N NaOH. Volume is brought to 1000 ml with deionized water. The solution is sterilized by autoclaving. #### D.8. Sodium Acetate (3M, pH 5.2) 408.1 g sodium acetate (3 H₂O) is dissolved in 800 ml deionized water and pH is adjusted to 5.2 by glacial acetic acid. Volume is brought to 1000 ml. The solution is sterilized by autoclaving. ### D.9. Ammonium Acetate (10M) 770 g of ammonium acetate is dissolved in 800 ml of distilled water. Volume is adjusted to 1000ml. The solution is sterilized by filtration. #### D.10. Ethidium Bromide (10 mg/ml) 1 g of ethidium bromide is dissolved in 100 ml of deionized water by strring for several hours. The solution is stored in a dark bottle at room temperature. #### D.11. Phenol Phenol should be allowed to warm at room temperature, and it is melted at 68 °C. Equal volume of buffer (usually 0.5 M Tris.Cl, pH 8.0, at room temperature) are added to the melted phenol. The mixture is stirred for 15 minutes and allowed to settle. When the two phases have separated, the aqueous (upper) phase is removed using a separation funnel. Then equal volume of 0.1 M Tris.Cl, pH 8.0, is added to the phenol. The mixture is again stirred for 15 minutes and allowed to settle. The aqueous phase is removed as described before. The extractions are repeated until the pH of the phenolic phase reached to > 7.8. The pH is measured by using pH paper slips. After the phenol is equilibrated, the mixture is divided into aliquots. They are stored under 100 mM Tris.Cl (pH 8.0) at -20°C. Before use, the phenol is melted at room temperature. Hydroxyquinoline and β -mercaptoethanol are added to a final concentration of 0.1% and 0.2%, respectively. The phenol solution can be stored in this form at 4°C. # D.12. Phenol: Chloroform: Isoamyl Alcohol (25:24:1) Equal volume of phenol and chloroform isoamyl alcohol (24:1) solutions are mixed. The solution is stored in a light-tight bottle at +4°C for periods up to 1 month. # D.14. Phenyl Methyl Sulfonyl Floride (PMSF) Solution (100Mm) 17.4 mg PMSF is dissolved in 1 ml isopropanol. The solution is divided into aliquots and stored at - 20°C. # D.15. 6X Gel Loading Buffer (20 ml) 2 ml of 10x TBE, 6 ml of glycerol and 12 ml deionized water are mixed. Bromophenol blue is added with toothpick until obtaining sufficient color of the solution. APPENDIX E # Crystal morphologies of the isolates according to phase contrast microscope | No | Origin of Sample | Isolate
Name | Presence of
Cry Protein | Shape of Cry Protein | |----|---------------------------------------|-----------------|----------------------------|---------------------------------| | 1 | free farm soil / Ereğli | 1Fa | present | Bipyramidal | | 2 | free farm soil / Ereğli | 1Ab | present | Spherical | | 3 | free farm soil / Ereğli | 1Cb | present | Spherical | | 4 | free farm soil / Ereğli | 1Aa | present | Spherical | | 5 | free farm soil / Ereğli | 1Bb | present | Spherical | | 6 | free farm soil / Ereğli | 1Db | present | Spherical and Irregular Pointed | | 7 | free farm soil / Ereğli | 1CCb | present | Spherical and Irregular Pointed | | 8 | soil from Ayranlı / Ereğli | 2Ib | present | Spherical | | 9 | soil from Ayranlı / Ereğli | 2ЈЬ | present | Spherical | | 10 | soil from Ayranlı / Ereğli | 2Aa | present | Spherical | | 11 | soil from Ayranlı / Ereğli | 2Ja | present | Cubic and Spherical | | 12 | soil from Ayranlı / Ereğli | 2Da | present | Spherical | | 13 | soil from Ayranlı / Ereğli | 2Cb | present | Cubic and Spherical | | 14 | soil from Ayranlı / Ereğli | 2Ca | present | Spherical | | 15 | free farm soil / Ereğli | 4La | present | Spherical and Irregular Pointed | | 16 | free farm soil / Ereğli | 4Lb | present | Cubic and Spherical | | 17 | free farm soil / Ereğli | 4Fa | present | Spherical and Irregular Pointed | | 18 | free farm soil / Ereğli
| 4Cb | present | Cubic and Spherical | | 19 | free farm soil btw Ayranlı and Ereğli | 5Ca | present | Spherical and Irregular Pointed | | 20 | soil under nut trees / İvriz | · 7Fa | present | Cubic and Spherical | | 21 | soil under nut trees / İvriz | 7Bb | present | Cubic and Spherical | | 22 | soil from cave mouth (kaynaklar) | 8Ba | present | Spherical | | 23 | soil from spring water out / İvriz | 9Ka | present | Cubic and Spherical | | 24 | soil from Obruk Cave mouth / Ereğli | 10Kb | present | Irregular Shaped | | 25 | soil from Obruk Cave mouth / Ereğli | 10Lb | present | Irregular Shaped | | 26 | wheat farm soil / Üçharman | 11La | present | Spherical | | 27 | wheat farm soil / Üçharman | 11Kb | present | Spherical | | 28 | wheat farm soil / Üçharman | 11Ka | present | Cubic and Spherical | | 29 | wheat from silo / Ereğli | 12Fb | present | Cubic and Spherical | | wheat from silo / Eregli 13Nb present Spherical and Irregular Pointed wheat from silo / Eregli 13Nb present Spherical and Irregular Pointed wheat from silo / Eregli 13Hb present Spherical and Irregular Pointed wheat farm soil / Ucharman 17Ca present Irregular Pointed wheat farm soil / Ucharman 18Fa not decided Spherical and Irregular Pointed wheat farm soil / Ucharman 18Fa not decided Spherical and Irregular Pointed wheat farm soil / Ucharman 18Fa not decided Cubic and Spherical wheat farm soil / Ucharman 18Fa not decided Spherical and Irregular Pointed soil from spring water out / Ivriz 19Ab present Spherical soil from spring water out / Ivriz 19Hb present Spherical soil from spring water out / Ivriz 19Ca present Spherical and Irregular Pointed soil from spring water out / Ivriz 19Ca present Spherical and Irregular Pointed soil from spring water out / Ivriz 19Cb not decided not determined wheat farm soil / Ucharman 20Rb present Spherical and Irregular Pointed free farm soil bw Ayranlı and Eregli 24Lb present Spherical free farm soil bw Ayranlı and Eregli 24Lb present Spherical and Irregular Pointed free farm soil bw Ayranlı and Eregli 24Pb present Spherical and Irregular Pointed free farm soil bw Ayranlı and Eregli 24Pb present Cubic and Spherical free farm soil bw Ayranlı and Eregli 24Pb present Spherical and Irregular Pointed free farm soil bw Ayranlı and Eregli 24Pb present Cubic and Spherical free farm soil bw Ayranlı and Eregli 24Pb present Spherical and Irregular Pointed free farm soil bw Ayranlı and Eregli 24Pb present Spherical and Irregular Pointed free farm soil bw Ayranlı and Eregli 24Pb present Spherical and Irregular Pointed free farm soil bw Ayranlı and Eregli 24Pb present Spherical and Irregular Pointed free farm soil bw Ayranlı and Eregli 25Pa present Spherical and Irregular Pointed free farm soil bw Ayranlı and Eregli 25Pa present Spherical Spherical free farm soil bw Ayranlı and Eregli 25Pa present Spherical Fointed free farm soil bw Ayranlı and Eregli 25Pa present | 20 | | | | | |--|----|---------------------------------------|-------|-------------|---------------------------------| | wheat farm soil / Eregli 1516 present Spherical 33 | 30 | wheat from silo / Ereğli | 13La | present | Spherical | | wheat farm soil / Eregli-Ivriz 33 wheat farm soil / Departman 34 wheat farm soil / Ücharman 35 wheat farm soil / Ücharman 36 wheat farm soil / Ücharman 37 wheat farm soil / Ücharman 38 soil from spring water out / Ivriz 39 soil from spring water out / Ivriz 40 soil from spring water out / Ivriz 41 soil from spring water out / Ivriz 42 soil from spring water out / Ivriz 43 soil from spring water out / Ivriz 44 wheat farm soil / Ücharman 45 soil from spring water out / Ivriz 46 wheat farm soil / Ücharman 47 present 48 soil from spring water out / Ivriz 49 soil from spring water out / Ivriz 40 soil from spring water out / Ivriz 41 soil from spring water out / Ivriz 42 soil from spring water out / Ivriz 43 soil from spring water out / Ivriz 44 wheat farm soil / Ücharman 45 free farm soil btw Ayranlı and Eregli 46 free farm soil btw Ayranlı and Eregli 47 free farm soil btw Ayranlı and Eregli 48 free farm soil btw Ayranlı and Eregli 49 free farm soil btw Ayranlı and Eregli 50 free farm soil btw Ayranlı and Eregli 51 free farm soil btw Ayranlı and Eregli 52 free farm soil btw Ayranlı and Eregli 53 free farm soil btw Ayranlı and Eregli 54 free farm soil btw Ayranlı and Eregli 55 free farm soil btw Ayranlı and Eregli 56 free farm soil btw Ayranlı and Eregli 57 free farm soil btw Ayranlı and Eregli 58 free farm soil btw Ayranlı and Eregli 59 free farm soil btw Ayranlı and Eregli 50 free farm soil btw Ayranlı and Eregli 51 free farm soil btw Ayranlı and Eregli 52 free farm soil btw Ayranlı and Eregli 53 free farm soil btw Ayranlı and Eregli 54 free farm soil btw Ayranlı and Eregli 55 free farm soil btw Ayranlı and Eregli 56 free farm soil btw Ayranlı and Eregli 57 free farm soil btw Ayranlı and Eregli 58 free farm soil btw Ayranlı and Eregli 59 free farm soil btw Ayranlı and Eregli 50 free farm soil btw Ayranlı and Eregli 50 free farm soil btw Ayranlı and Eregli 50 free farm soil btw Ayranlı and Eregli 51 free farm soil btw Ayranlı and Eregli 52 free farm soil btw Ayranl | | wheat from silo / Ereğli | 13Nb | present | Spherical and Irregular Pointed | | wheat farm soil / Uçharman 34 wheat farm soil / Uçharman 35 wheat farm soil / Uçharman 36 wheat farm soil / Uçharman 37 wheat farm soil / Uçharman 38 soil from spring water out / Ivriz 39 soil from spring water out / Ivriz 40 soil from spring water out / Ivriz 41 soil from spring water out / Ivriz 42 soil from spring water out / Ivriz 43 soil from spring water out / Ivriz 44 soil from spring water out / Ivriz 45 soil from spring water out / Ivriz 46 soil from spring water out / Ivriz 47 soil from spring water out / Ivriz 48 wheat farm soil / Uçharman 49 soil from spring water out / Ivriz 40 soil from spring water out / Ivriz 41 soil from spring water out / Ivriz 42 soil from spring water out / Ivriz 43 soil from spring water out / Ivriz 44 wheat farm soil / Uçharman 45 free farm soil btw Ayranlı and Ereğli 46 free farm soil btw Ayranlı and Ereğli 47 free farm soil btw Ayranlı and Ereğli 48 free farm soil btw Ayranlı and Ereğli 49 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 free farm soil btw Ayranlı and Ereğli 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayranlı and Ereğli 57 free farm soil btw Ayranlı and Ereğli 58 free farm soil btw Ayranlı and Ereğli 59 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 free farm soil btw Ayranlı and Ereğli 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayranlı and Ereğli 57 free farm soil btw Ayranlı and Ereğli 58 free farm soil btw Ayranlı and Ereğli 59 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 free farm soil btw Ayranlı and Ereğli 53 free farm soil btw Ayranlı | 32 | wheat from silo / Ereğli | 13Hb | present | Spherical | | wheat farm soil / Üçharman 36 wheat farm soil / Üçharman 37 wheat farm soil / Üçharman 38 soil from spring water out / Ivriz 39 soil from spring water out / Ivriz 40 soil from spring water out / Ivriz 40 soil from spring water out / Ivriz 41 soil from spring water out / Ivriz 42 soil from spring water out / Ivriz 43 soil from spring water out / Ivriz 44 soil from spring water out / Ivriz 45 soil from spring water out / Ivriz 46 soil from spring water out / Ivriz 47 soil from spring water out / Ivriz 48 wheat farm soil / Üçharman 49 wheat farm soil btw Ayranlı and Ereğli 49 free farm soil btw Ayranlı and Ereğli 40 soil from spring water out / Ivriz 41 soil from
spring water out / Ivriz 42 soil from spring water out / Ivriz 43 soil from spring water out / Ivriz 44 wheat farm soil / Üçharman 45 free farm soil btw Ayranlı and Ereğli 46 free farm soil btw Ayranlı and Ereğli 47 free farm soil btw Ayranlı and Ereğli 48 free farm soil btw Ayranlı and Ereğli 49 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 free farm soil btw Ayranlı and Ereğli 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayranlı and Ereğli 57 free farm soil btw Ayranlı and Ereğli 58 free farm soil btw Ayranlı and Ereğli 59 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 free farm soil btw Ayranlı and Ereğli 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayranlı and Ereğli 57 free farm soil btw Ayranlı and Ereğli 58 free farm soil btw Ayranlı and Ereğli 59 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 free farm soil btw Ayranlı and Ereğli 53 free farm soil btw Ayranlı and Ereğli 54 fre | 33 | wheat farm soil / Ereğli-İvriz | 15La | present | Cubic and Spherical | | wheat farm soil / Ûçharman 36 wheat farm soil / Ûçharman 37 wheat farm soil / Ûçharman 38 soil from spring water out / İvriz 39 soil from spring water out / İvriz 40 soil from spring water out / İvriz 41 soil from spring water out / İvriz 42 soil from spring water out / İvriz 43 soil from spring water out / İvriz 44 wheat farm soil / Ûçharman 45 soil from spring water out / İvriz 46 soil from spring water out / İvriz 47 wheat farm soil btw Ayranlı and Ereğli 48 free farm soil btw Ayranlı and Ereğli 49 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 da present 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayranlı and Ereğli 57 free farm soil btw Ayranlı and Ereğli 58 free farm soil btw Ayranlı and Ereğli 59 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 da present 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayranlı and Ereğli 57 free farm soil btw Ayranlı and Ereğli 58 free farm soil btw Ayranlı and Ereğli 59 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 free farm soil btw Ayranlı and Ereğli 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayranlı and Ereğli 57 free farm soil btw Ayranlı and Ereğli 58 free farm soil btw Ayranlı and Ereğli 59 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 free farm soil btw Ayranlı and Ereğli 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayranl | 34 | wheat farm soil / Üçharman | 17Ca | present | Irregular Pointed | | wheat farm soil / Ücharman 37 wheat farm soil / Ücharman 38 soil from spring water out / İvriz 39 soil from spring water out / İvriz 40 soil from spring water out / İvriz 41 soil from spring water out / İvriz 42 soil from spring water out / İvriz 43 soil from spring water out / İvriz 44 soil from spring water out / İvriz 45 soil from spring water out / İvriz 46 soil from spring water out / İvriz 47 soil from spring water out / İvriz 48 soil from spring water out / İvriz 49 soil from spring water out / İvriz 49 soil from spring water out / İvriz 40 soil from spring water out / İvriz 41 soil from spring water out / İvriz 42 soil from spring water out / İvriz 43 soil from spring water out / İvriz 44 wheat farm soil / Ücharman 45 free farm soil btw Ayranlı and Ereğli 46 free farm soil btw Ayranlı and Ereğli 47 free farm soil btw Ayranlı and Ereğli 48 free farm soil btw Ayranlı and Ereğli 49 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 free farm soil btw Ayranlı and Ereğli 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayranlı and Ereğli 57 free farm soil btw Ayranlı and Ereğli 58 free farm soil btw Ayranlı and Ereğli 59 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 free farm soil btw Ayranlı and Ereğli 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayranlı and Ereğli 57 free farm soil btw Ayranlı and Ereğli 58 free farm soil btw Ayranlı and Ereğli 59 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 Fra 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayr | 35 | wheat farm soil / Üçharman | 17Ka | present | Irregular Pointed | | soil from spring water out / Ivriz 19Ab present Spherical soil from spring water out / Ivriz 19Hb present Spherical soil from spring water out / Ivriz 19Ka present Spherical and Irregular Pointed soil from spring water out / Ivriz 19Ca present Spherical and Irregular Pointed soil from spring water out / Ivriz 19Ca present Spherical and Irregular Pointed not determined wheat farm soil / Ucharman 20Rb present Spherical wheat farm soil / Ucharman 20Rb present Spherical free farm soil btw Ayranlı and Ereğli 24Lb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24La present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Ra present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Fa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free f | 36 | wheat farm soil / Üçharman | 18FFa | not decided | Spherical and Irregular Pointed | | soil from spring water out / İvriz 19Hb present Spherical soil from spring water out / İvriz 19Ka present Spherical Mort determined soil from spring water out / İvriz 19Ca present Spherical and Irregular Pointed soil from spring water out / İvriz 19Rb not decided not determined soil from spring water out / İvriz 19Pb not decided not determined wheat farm soil / Üçharman 20Rb present Spherical free farm soil btw Ayranlı and Ereğli 23Ba present Spherical free farm soil btw Ayranlı and Ereğli 24Lb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Ra present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Da present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Da present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Da present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Da present Spherical and Irregular Pointed free farm soil btw A | 37 | wheat farm soil / Üçharman | 18Fa | not decided | Cubic and Spherical | | soil from spring water out / Ivriz 19Ka present Spherical soil from spring water out / Ivriz 19Ca present Spherical and Irregular Pointed not decided not determined soil from spring water out / Ivriz 19Pb not decided not determined
wheat farm soil / Üçharman 20Rb present Spherical wheat farm soil btw Ayranlı and Ereğli 24Lb present Spherical free farm soil btw Ayranlı and Ereğli 24Lb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Ra present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 25Fa present Spherical free farm soil btw Ayranlı and Ereğli 25Fa present Spherical free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ab present Spherical and Irregular Pointed | 38 | soil from spring water out / İvriz | 19Ab | present | Spherical | | soil from spring water out / Ivriz 19Ca present Spherical and Irregular Pointed not decided not determined not decided soil from spring water out / Ivriz 19Pb not decided not determined not determined wheat farm soil / Üçharman 20Rb present Spherical Spherical free farm soil btw Ayranlı and Ereğli 24Lb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Lb present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ra present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ab present Spherical and Irregular Pointed Spherical and Irregu | 39 | soil from spring water out / İvriz | 19Hb | present | Spherical | | soil from spring water out / Ivriz 19Rb not decided not determined 42 soil from spring water out / Ivriz 19Pb not decided not determined 43 soil from spring water out / Ivriz 19Pb not decided not determined 44 wheat farm soil / Üçharman 20Rb present Spherical 45 free farm soil btw Ayranlı and Ereğli 23Ba present Cubic and Spherical 46 free farm soil btw Ayranlı and Ereğli 24Lb present Spherical and Irregular Pointed 47 free farm soil btw Ayranlı and Ereğli 24Ra present Cubic and Spherical 48 free farm soil btw Ayranlı and Ereğli 24Pb present Spherical and Irregular Pointed 50 free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical 51 free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical 52 free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical 53 free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical 54 free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical 55 free farm soil btw Ayranlı and Ereğli 24Ca present Spherical and Irregular Pointed 56 free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical 57 free farm soil btw Ayranlı and Ereğli 25Ra present Spherical 58 free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed 58 free farm soil btw Ayranlı and Ereğli 25Ca present Spherical 59 free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed 60 free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed 61 free farm soil btw Ayranlı and Ereğli 25Da present Spherical 62 free farm soil btw Ayranlı and Ereğli 25Da present Spherical 63 free farm soil btw Ayranlı and Ereğli 25Da present Spherical 64 free farm soil btw Ayranlı and Ereğli 25Da present Spherical 65 free farm soil btw Ayranlı and Ereğli 25Da present Spherical 66 free farm soil btw Ayranlı and Ereğli 25Da present Spherical and Irregular Pointed | 40 | soil from spring water out / İvriz | 19Ka | present | Spherical | | soil from spring water out / Ivriz 19Pb not decided not determined 44 wheat farm soil / Üçharman 20Rb present Spherical 45 free farm soil btw Ayranlı and Ereğli 23Ba present Spherical 46 free farm soil btw Ayranlı and Ereğli 24Lb present Spherical Cubic and Spherical 47 free farm soil btw Ayranlı and Ereğli 24La present Spherical and Irregular Pointed 48 free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical 49 free farm soil btw Ayranlı and Ereğli 24Pb present Spherical and Irregular Pointed 50 free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical 51 free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical 52 free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical 53 free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed 54 free farm soil btw Ayranlı and Ereğli 24Ca present Cubic and Spherical 55 free farm soil btw Ayranlı and Ereğli 24Ca present Spherical 56 free farm soil btw Ayranlı and Ereğli 25Ra present Spherical 57 free farm soil btw Ayranlı and Ereğli 25Fa present Spherical 58 free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed 58 free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed 59 free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed 60 free farm soil btw Ayranlı and Ereğli 25Da present Spherical 61 free farm soil btw Ayranlı and Ereğli 25Da present Spherical 62 free farm soil btw Ayranlı and Ereğli 25Da present Spherical 63 free farm soil btw Ayranlı and Ereğli 25Da present Spherical 64 free farm soil btw Ayranlı and Ereğli 25Da present Spherical | 41 | soil from spring water out / İvriz | 19Ca | present | Spherical and Irregular Pointed | | soil from spring water out / İvriz wheat farm soil / Üçharman 20Rb present Spherical free farm soil btw Ayranlı and Ereğli 45 free farm soil btw Ayranlı and Ereğli 46 free farm soil btw Ayranlı and Ereğli 47 free farm soil btw Ayranlı and Ereğli 48 free farm soil btw Ayranlı and Ereğli 49 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 free farm soil btw Ayranlı and Ereğli 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayranlı and Ereğli 57 free farm soil btw Ayranlı and Ereğli 58 free farm soil btw Ayranlı and Ereğli 59 free farm soil btw Ayranlı and Ereğli 50 free farm soil btw Ayranlı and Ereğli 51 free farm soil btw Ayranlı and Ereğli 52 free farm soil btw Ayranlı and Ereğli 53 free farm soil btw Ayranlı and Ereğli 54 free farm soil btw Ayranlı and Ereğli 55 free farm soil btw Ayranlı and Ereğli 56 free farm soil btw Ayranlı and Ereğli 57 free farm soil btw Ayranlı and Ereğli 58 free farm soil btw Ayranlı and Ereğli 59 free farm soil btw Ayranlı and Ereğli 250 present Spherical 59 free farm soil btw Ayranlı and Ereğli 250 present Spherical and Irregular Pointed 60 free farm soil btw Ayranlı and Ereğli 250 present Spherical and Irregular Pointed 60 free farm soil btw Ayranlı and Ereğli 250 present Spherical and Irregular Pointed 61 free farm soil btw Ayranlı and Ereğli 250 present Spherical and Irregular Pointed 62 free farm soil btw Ayranlı and Ereğli 250 present Spherical and Irregular Pointed 63 free farm soil btw Ayranlı and Ereğli 250 present Spherical and Irregular Pointed 64 free farm soil btw Ayranlı and Ereğli 250 present Spherical and Irregular Pointed 65 free farm soil btw Ayranlı and Ereğli 250 present Spherical and Irregular Pointed | 42 | soil from spring water out / İvriz | 19Rb | not decided | not determined | | wheat farm soil / Üçharman 20Rb present Spherical free farm soil btw Ayranlı and Ereğli 23Ba present Spherical free farm soil btw Ayranlı and Ereğli 24Lb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24La present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Ra present Cubic and Spherical free farm soil btw
Ayranlı and Ereğli 24Pb present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Fa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Ca present Spherical free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed | 43 | | 19Pb | not decided | not determined | | free farm soil btw Ayranlı and Ereğli 24Lb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24La present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Ra present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Na present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Na present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Fa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Ca present Spherical free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed | 44 | wheat farm soil / Üçharman | 20Rb | present | Spherical | | free farm soil btw Ayranlı and Ereğli 24La present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Ra present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Ra present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pb present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Fb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Na present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Fa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Ca present Spherical free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical free farm soil btw Ayranlı and Ereğli 25Aa present Spherical free farm soil btw Ayranlı and Ereğli 25Aa present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical | 45 | free farm soil btw Ayranlı and Ereğli | 23Ba | present | Spherical | | free farm soil btw Ayranlı and Ereğli 24Ra present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Rb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pb present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Na present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Ca present Spherical free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Da present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical | 46 | free farm soil btw Ayranlı and Ereğli | 24Lb | present | Cubic and Spherical | | free farm soil btw Ayranlı and Ereğli 24Pb present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Pb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Na present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Fa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Fa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Ca present Spherical free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical free farm soil btw Ayranlı and Ereğli 25Aa present Spherical free farm soil btw Ayranlı and Ereğli 25Aa present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical | 47 | free farm soil btw Ayranlı and Ereğli | 24La | present | | | free farm soil btw Ayranlı and Ereğli 24Fb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Na present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Fa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Fa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Ca present Spherical free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical | 48 | free farm soil btw Ayranlı and Ereğli | 24Ra | present | Cubic and Spherical | | free farm soil btw Ayranlı and Ereğli 24Na present Cubic and Spherical 52 free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed 53 free farm soil btw Ayranlı and Ereğli 24Fa present Cubic and Spherical 54 free farm soil btw Ayranlı and Ereğli 24Ca present Spherical 55 free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical 56 free farm soil btw Ayranlı and Ereğli 25Ra present Spherical 57 free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed 58 free farm soil btw Ayranlı and Ereğli 25Ca present Spherical and Irregular Pointed 59 free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed 60 free farm soil btw Ayranlı and Ereğli 25Ua present Spherical 61 free farm soil btw Ayranlı and Ereğli 25Pa present Spherical 62 free farm soil btw Ayranlı and Ereğli 25Ab present Cubic 63 Spherical and Irregular Pointed 64 free farm soil btw Ayranlı and Ereğli 25Ab present Cubic 65 Spherical and Irregular Pointed | 49
| free farm soil btw Ayranlı and Ereğli | 24Pb | present | Spherical and Irregular Pointed | | free farm soil btw Ayranlı and Ereğli 24Pa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 24Fa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Ca present Spherical free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ua present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical Spherical and Irregular Pointed | 50 | free farm soil btw Ayranlı and Ereğli | 24Fb | present | Cubic and Spherical | | free farm soil btw Ayranlı and Ereğli 24Fa present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 24Ca present Spherical free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ua present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical Spherical and Irregular Pointed | 51 | free farm soil btw Ayranlı and Ereğli | 24Na | present | Cubic and Spherical | | free farm soil btw Ayranlı and Ereğli 24Ca present Spherical 54 free farm soil btw Ayranlı and Ereğli 24Cb present Cubic and Spherical 55 free farm soil btw Ayranlı and Ereğli 25Ra present Spherical 56 free farm soil btw Ayranlı and Ereğli 25Ra present Spherical and Irregular Pointed 57 free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed 58 free farm soil btw Ayranlı and Ereğli 25Ca present Spherical 59 free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed 60 free farm soil btw Ayranlı and Ereğli 25Ua present Spherical 61 free farm soil btw Ayranlı and Ereğli 25Pa present Spherical 62 free farm soil btw Ayranlı and Ereğli 25Ab present Cubic 63 Spherical and Irregular Pointed | 52 | free farm soil btw Ayranlı and Ereğli | 24Pa | present | Spherical and Irregular Pointed | | free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical free farm soil btw Ayranlı and Ereğli 25Ca present Spherical free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ua present Spherical free farm soil btw Ayranlı and Ereğli 25Ua present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Ab present Spherical Spherical Spherical | 53 | free farm soil btw Ayranlı and Ereğli | 24Fa | present | Cubic and Spherical | | free farm soil btw Ayranlı and Ereğli 24Nb present Cubic and Spherical free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ua present Spherical free farm soil btw Ayranlı and Ereğli 25Ua present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Ab present Cubic Spherical and Irregular Pointed | 54 | free farm soil btw Ayranlı and Ereğli | 24Ca | present | | | free farm soil btw Ayranlı and Ereğli 25Ra present Spherical free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ua present Spherical free farm soil btw Ayranlı and Ereğli 25Ua present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Ab present Cubic Spherical and Irregular Pointed | 55 | free farm soil btw Ayranlı and Ereğli | 24Nb | present | | | free farm soil btw Ayranlı and Ereğli 25Fa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ca present Spherical free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ua present Spherical free farm soil btw Ayranlı and Ereğli 25Da present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Ab present Cubic Spherical and Irregular Pointed | 56 | | 25Ra | | | | free farm soil btw Ayranlı and Ereğli 25Ca present Spherical free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ua present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Ab present Cubic Spherical and Irregular Pointed | 57 | free farm soil btw Ayranlı and Ereğli | | | | | free farm soil btw Ayranlı and Ereğli 25Aa present Spherical and Irregular Pointed free farm soil btw Ayranlı and Ereğli 25Ua present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Ab present Cubic free farm soil btw Ayranlı and Ereğli 25Ab present Spherical and Irregular Pointed | 58 | | | | | | free farm soil btw Ayranlı and Ereğli 25Ua present Spherical free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Ab present Cubic Spherical and Irregular Pointed | 59 | | | | | | free farm soil btw Ayranlı and Ereğli 25Pa present Spherical free farm soil btw Ayranlı and Ereğli 25Ab present Cubic Spherical and Irregular Pointed | 60 | | | | | | free farm soil btw Ayranlı and Ereğli 25Ab present Cubic Spherical and Irregular Pointed | 61 | | | | | | Spherical and Irregular Pointed | 62 | | | | | | | 63 | | | | | | 64 | free farm soil btw Ayranlı and Ereğli | 25Fb | present | Cubic and Spherical | |----|--|------|-------------|--| | 65 | free farm soil btw Ayranlı and Ereğli | 26Ba | present | Cubic and Spherical | | 66 | free farm soil btw Ayranlı and Ereğli | 26Kb | present | Spherical and Irregular Pointed | | 67 | free farm soil btw Ayranlı and Ereğli | 26Pb | present | Irregular Pointed | | 68 | free farm soil btw Ayranlı and Ereğli | 26Fb | present | Spherical | | 69 | free farm soil btw Ayranlı and Ereğli | 26Pa | present | Irregular Pointed | | 70 | free farm soil btw Ayranlı and Ereğli | 27Pb | present | Cubic and Spherical | | 71 | free farm soil btw Ayranlı and Ereğli | 27Fa | present | Cubic and Spherical | | 72 | free farm soil btw Ayranlı and Ereğli | 27Kb | present | Spherical and Irregular Pointed | | 73 | free farm soil btw Ayranlı and Ereğli | 27Db | present | Spherical and Irregular Pointed | | 74 | free farm soil btw Ayranlı and Ereğli | 27Pa | present | Cubic and Spherical | | 75 | free farm soil btw Ayranlı and Ereğli | 27Ba | present | Spherical and Irregular Pointed | | 76 | free farm soil btw Ayranlı and Ereğli | 27Fb | not decided | not determined | | 77 | free farm soil btw Ayranlı and Ereğli | 27Cb | not decided | not determined | | 78 | free farm soil btw Ayranlı and Ereğli | 27Ka | present | Spherical and Irregular Pointed | | 79 | soil under Perçe tree / İvriz | 28Bb | present | Spherical and Irregular Pointed | | 80 | soil under Perçe tree / İvriz | 28Lb | present | Cubic and Spherical | | 81 | soil under Perçe tree / İvriz | 28Da | present | Spherical | | 82 | soil under Perçe tree / İvriz | 28Ca | present | Spherical | | 83 | soil under Perçe tree / İvriz | 28Ib | not decided | not determined | | 84 | soil under Perçe tree / İvriz | 28Aa | present | Spherical | | 85 | soil under willow tree / Üçharman | 29Fa | present | Spherical and Irregular Pointed | | 86 | soil under willow tree / Üçharman | 29Db | present | Spherical and Irregular Pointed | | 87 | soil under willow tree / Üçharman | 29Ab | present | Cubic and Spherical | | 88 | soil under willow tree / Üçharman | 29Ca | present | Spherical | | 89 | soil under willow tree / Üçharman | 31Na | present | Cubic | | 90 | soil under willow tree / Üçharman | 31Rb | present | Irregular Pointed | | 91 | soil under willow tree / Üçharman | 31Ca | present | Cubic and Spherical | | 92 | soil under willow tree / Üçharman | 31Fa | present |
Spherical | | 93 | soil under willow tree / Üçharman | 32Fb | present | Irregular Pointed | | 94 | soil under willow tree / Üçharman | 32Aa | present | Spherical | | 95 | soil under willow tree / Üçharman | 32Fa | present | Spherical | | 96 | dust,grain from grain silos / Taşkale | 33Yb | present | Spherical and Irregular Pointed | | 97 | dust, grain from grain silos / Taşkale | 34Bb | present | Cubic and Spherical | | | , , | | | ······································ | | | | | T | T | |-----|--|-------|-------------|---------------------------------| | 98 | residues from grain silos / Taşkale | 35Pb | present | Spherical | | 99 | residues from grain silos / Taşkale | 35Kb | present | Spherical | | 100 | dust from grain silos / Taşkale | 36Ba | present | Cubic | | 101 | dust,grain from grain silos / Taşkale | 39Ya | present | Spherical | | 102 | dust,grain from grain silos / Taşkale | 39Yb | present | Spherical and Irregular Pointed | | 103 | dust,grain from grain silos / Taşkale | 42Ba | present | Irregular Pointed | | 104 | dust,grain from grain silos / Taşkale | 42Ha | present | Irregular Pointed | | 105 | soil from crop field / Bozbük | 43Hb | present | Spherical and Irregular Pointed | | 106 | soil from crop field / Bozbük | 43Db | present | Spherical and Irregular Pointed | | 107 | soil from crop field / Bozbük | 43Ra | present | Spherical | | 108 | soil from crop field / Bozbük | 43Fa | present | Irregular Pointed | | 109 | soil from crop field / Bozbük | 43Aa | present | Irregular Pointed | | 110 | soil from crop field / Bozbük | 48Ra | present | Spherical | | 111 | soil from crop field / Bozbük | 48Na | present | Irregular Pointed | | 112 | straw from hyloft / Nikfer | 53Yb | present | Irregular Pointed | | 113 | soil from wheet farm / Nikfer | 55Ka | present | Irregular Pointed | | 114 | straw from hyloft / Nikfer | 56Kb | present | Spherical | | 115 | straw from hyloft / Nikfer | 56Hb | present | Spherical | | 116 | straw from hyloft / Nikfer | 57Hb | present | Bipyramidal | | 117 | grain from grain silo / Nikfer | 58Kb | present | Spherical | | 118 | soil from wheat farm / Nikfer | 59Fa | present | cubic | | 119 | soil from wheat farm / Nikfer | 59Ra | present | Spherical | | 120 | soil from wheat farm / Nikfer | 59Db | not decided | not determined | | 121 | soil from wheat farm / Nikfer | 59Ya | present | Spherical | | 122 | soil from wheat farm / Nikfer | 59PPa | present | Spherical | | 123 | soil from wheat farm / Nikfer | 60Pa | present | Spherical | | 124 | soil from wheat farm / Nikfer | 60Na | present | Spherical | | 125 | soil from wheat farm / Nikfer | 60Ra | present | Spherical | | 126 | straw from hyloft / Nikfer | 61Kb | present | Cubic and Spherical | | 127 | soil from wheat farm / Nikfer | 62Lb | present | Spherical | | 128 | soil from wheat farm / Nikfer | 62PPa | present | Spherical and Irregular Pointed | | 129 | dust,wheat from grain silos / Taşkale | 70Ka | present | Spherical | | 130 | dust, wheat from grain silos / Taşkale | 70Yb | present | Spherical and Irregular Pointed | | 131 | dust, wheat from grain silos / Taşkale | 70Bb | present | Spherical | | | | | | | | 132 | | | | | |-------------|--|-------|-------------|---------------------------------| | | dust, wheat from grain silos / Taşkale | 71Lb | present | Spherical | | 133 | dust, wheat from grain silos / Taşkale | 71Na | present | Irregular Shaped | | 134 | dust, wheat from grain silos / Taşkale | 71Fa | not decided | not determined | | 135 | soil from grain silos / Taşkale | 82FFa | present | Cubic and Spherical | | 136 | soil from grain silos / Taşkale | 82YYb | present | Cubic | | 137 | dust,insect from grain silos / Taşkale | 85PPb | present | Bipyramidal | | 138 | faces from arround of silos / Taşkale | 86Fb | present | Cubic | | 139 | faces from arround of silos / Taşkale | 86Db | present | Spherical | | 140 | potato farm soil / Bozbük | 87Fb | present | Spherical and Irregular Pointed | | 141 | dust,wheat from grain silos / Taşkale | 91Fb | present | Spherical | | 142 | dust from grain silos mouth / Taşkale | 93Ha | present | Spherical | | 143 | dust from grain silos mouth / Taşkale | 93FFa | not decided | not determined | | 144 | dust from grain silos mouth / Taşkale | 93Da | not decided | not determined | | 145 | dust from grain silos mouth / Taşkale | 93Fa | present | Spherical | | 146 | dust from grain silos mouth / Taşkale | 94Da | present | Spherical and Irregular Pointed | | 147 | dust from grain silos mouth / Taşkale | 94YYb | present | Cubic | | 148 | dust from grain silos mouth / Taşkale | 94Ab | present | Cubic and Irregular Pointed | | 149 | soil from grain silos / Taşkale | 98Fa | present | Spherical | | 150 | soil from grain silos / Taşkale | 98Lb | present | Cubic | | 151 | wheat from grain silos / Taşkale | 100Aa | present | Spherical | | 152 | dust,residues from Manazan Caves | 102Fb | present | Spherical and Irregular Pointed | | 153 | dust,residues from Manazan Caves | 102Cb | present | Spherical and Irregular Pointed | | 154 | dust,residues from Manazan Caves | 102Da | present | Spherical and Irregular Pointed | | 155 | soil from Manazan Caves | 104Db | present | Irregular Pointed | | 156 | soil from Manazan Caves | 105Fb | present | Irregular Pointed | | 157 | soil from Manazan Caves | 106Da | present | Spherical | | 158 | soil from Manazan Caves | 107Fa | present | Spherical and Irregular Pointed | | 159 | dust,residues from Manazan Caves | 109Da | present | Spherical and Irregular Pointed | | 160 | soil from Manazan Caves | 113Ya | present | Cubic and Spherical | | 161 | soil from Manazan Caves | 113Pa | present | Spherical | | 162 | soil from Manazan Caves | 113Ha | present | Cubic and Spherical | | 163 | soil, residues from Manazan Caves | 114Ya | present | Irregular Shaped | | | <u> </u> | | | | AF1 # APPENDIX F Analysis of cry gene amplification products | Isolate Name Noof Appearence of Bands Noof Bands Strong, near over and 1 normal | | | | | 1 | | 6 | | 2 | | , | | 9 | |--|------------|----------------------------|---------|----------------|---|----------------|---------------------------------|----------------|---------------------|----------------|-------------------------------------|----------------|--| | Sample Name Noods Bands Appearence of Bands Bnood Bands Bnood Bands Nood Bands Nood Bands Nood Bands Nood Bands Appearence of Bands Nood | | Origin of | Isolate | | Cry 1 | | 27.2 | | cry 3 | | cry 4 | | cry y | | soil btw 25Fb 2 strong, near over and soil btw 1 normal Ayranlu/Eregli 25Fb 2 strong ones, near strong ones, near strong ones, near over and far below in Taşkale 1 normal soil in silo 82YYb few normal, one in ref.line 1 weak soil in silo 82YYb few normal, one in ref.line 1 very strong soil in wilo 25Aa - - - - soil btw Ayranlu/Eregli 25Ca - - - soil btw Ayranlu/Eregli 25Ca - - - soil btw Ayranlu/Eregli 25Ca - - - soil fix Ayranlu/Eregli 25Ca - - - soil fix Ayranlu/Eregli 25Ca - - - soil (grain 53O 36Ba - - - - soil (grain 59O 1 normal 2 normal ones near | | Sample | Name | No.of
Bands | Appearence of Bands | No.of
Bands | Appearence of Bands | No.of
Bands | Appearence of Bands | No.of
Bands | Appearence of Bands | No.of
Bands | Appearence of Bands | | soil btw
Ayranlı/Ereğli 25Pb 2 over and far below
the ref.line 1 normal
weak soil in silo
Taşkale 82YYb few
ref.line 1 weak soil btw
Ayranlı/Ereğli 25Aa - - - soil btw
Ayranlı/Ereğli 25Ca - - - soil btw
Ayranlı/Ereğli 25Ca - - - soil btw
Ayranlı/Ereğli 25Ca - - - soil btw
Ayranlı/Ereğli 25Ca - - - soil btw
Ayranlı/Ereğli 25Fa - - - soil btw
Ayranlı/Ereğli 29Fa - - - soil btw
Ayranlı/Ereğli 25Ca - - - soil btw
Ayranlı/Ereğli 25Fa - - - soil btw
Ayranlı/Ereğli 25Va 1 normal ones
near
ref.line soil btw
Ayranlı/Ereğli 7Bb 1 normal ones near
ref.line soil (nut tree) 7Bb 1 - soil (wit tree) | Ay | soil btw
ranlı/Ereğli | 25Fb | 2 | strong, near over and below the ref.line | 1 | normal | 1 | - | few | weak bands,one in ref.line | 2 | strong ones, one in ref.line | | insect.grain 34Bb - - | Ay | soil btw
ranlı/Ereğli | 25Pb | 2 | strong ones, near over and far below the ref.line | 1 | normal | | - | - | normal | 2 | strong ones, one in
ref.line | | soil btw S2YYb few normal, one in refline 1 very strong Ayranl/Eregli 24Nb few normal, one in refline - - Soil btw 25Aa - - - Ayranl/Eregli 25Ca - - - soil btw Soil btw - - - - Ayranl/Eregli 25Ra - - - - Soil btw Soil btw - - - - - Soil grain (silo) 36Ba - - - - - Cyharman 29Fa - - - - - Soil (grain fam) Nikler 59Ya 1 normal 2 ref.line Soil btw - - - - - - Ayranl/Eregli 25Ba - - - - - Soil btw - - - - - - | · = | ısect, grain
Taşkale | 34Bb | ı | , | - | weak | | ī | 1 | 1 | 2 | strong ones, one in ref.line | | soil btw 24Nb few normal, one in ref. line - - AyranlvEregii 25Aa - - - soil btw 25Ca - - - AyranlvEregii 25Ra - - - soil btw 25Ra - - - soil btw 36Ba - - - soil btw 36Ba - - - grain (silo) 36Ba - - - soil (grain farm) Nikfer 59Ya 1 normal ones near ref. line soil (grain farm) Nikfer 23Ba - - soil btw - - - - AyranlvEregii 25Ua 1 normal ones near ref. line soil btw - - - - soil btw - - - - AyranlvEregii 25Ua 1 - - soil btw - - - | S. | oil in silo
Tașkale | 82YYb | few | normal, one in
ref.line | - | very strong | • | • | few | normal, one in
ref.line | | very strong | | soil btw 25Aa - <th< td=""><td>Ay</td><td>soil btw
ranlı/Ereğli</td><td>24Nb</td><td>few</td><td>normal, one in
ref.line</td><td>ŧ</td><td>1</td><td>1</td><td>•</td><td>-</td><td>very weak one near
over ref.line</td><td>-</td><td>normal</td></th<> | Ay | soil btw
ranlı/Ereğli | 24Nb | few | normal, one in
ref.line | ŧ | 1 | 1 | • | - | very weak one near
over ref.line | - | normal | | soil btw 25Ca - - 2 weak ones very near ref.line soil btw 25Ra - - - - - grain (silo) 36Ba - - - - - - grain (silo) 36Ba - | Ay | soil btw
ranlı/Ereğli | 25Aa | ı | • | ı | | • | • | ı | ı | | normal | | soil btw 25Ra - <th< td=""><td>Ay</td><td>soil btw
ranlı/Ereğli</td><td>25Ca</td><td>,</td><td>ı</td><td>2</td><td>weak ones very near
ref.line</td><td>ı</td><td>-</td><td>'</td><td>,</td><td>-</td><td>one strong in ref.line, one weak at 1000bp</td></th<> | Ay | soil btw
ranlı/Ereğli | 25Ca | , | ı | 2 | weak ones very near
ref.line | ı | - | ' | , | - | one strong in ref.line, one weak at 1000bp | | grain (silo) 36Ba - - - soil Úçharman 29Fa - - - Uçharman 59Ya 1 normal ones near ref.line soil (grain farm) Nikfer 59Ya 1 normal ones near ref.line soil btw 23Ba - - ref.line soil btw 25Ua 1 normal ones near ref.line soil (mut tree) 7Bb 1 normal - soil (wheet lariz 7Bb 1 normal - soil (wheet lariz) 7Bb - - - | Ay | soil btw
ranlı/Ereğli | 25Ra | ı | , | . 1 | 1 | • | • | ı | , | ı | • | | soil Grain farm) Nikfer 29Fa - </td <td>50</td> <td>rain (silo)
Taşkale</td> <td>36Ba</td> <td>ı</td> <td></td> <td>ı</td> <td></td> <td>1</td> <td>-</td> <td>_</td> <td>very weak</td> <td>-</td> <td>very strong</td> | 50 | rain (silo)
Taşkale | 36Ba | ı | | ı | | 1 | - | _ | very weak | - | very strong | | soil (grain farm) Nikfer 59Ya 1 normal 2 normal ones near ref.line soil btw - - 2 normal ones near ref.line soil btw 25Ua 1 normal - ref.line soil btw 25Ua 1 normal - - soil (mut tree) fixiz 7Bb 1 normal - - soil (wheet soil (wheet fixed fix | | soil
Jçharman | 29Fa | ı | , | ı | ı | 1 | • | - | strong one near over
ref.line | - | normal | | soil btw 23Ba - 2 normal ones near ref.line soil btw 25Ua 1 normal - - soil (nut tree) | | soil (grain
rm) Nikfer | 59Ya | | normal | 2 | normal ones near
ref.line | ı | • | ı | 1 | 1 | 1 | | soil btw 25Ua 1 normal - - soil (nut tree) | | soil btw
ranlı/Ereğli | 23Ba | • | ı | 2 | normal ones near ref.line | | ı | 1 | 1 | - | normal one near
over ref.line | | soil (wheet soil (wheet 15La - | | soil btw
ranlı/Ereğli | 25Ua | _ | normal | ı | 1 | ı | • | 2 | normal ones near
over ref.line | • | 1 | | soil (wheet 15La - 15La - | | il (nut tree)
İvriz | 7Bb | _ | normal | • | | | | 1 | | - | very strong | | Iarm) Ivriz | | soil (wheet
farm) İvriz | 15La | ı | 1 | : | 1 | r | 1 | 1 | 1 | ı | • | | | Origin of | Isolate | | cry I | | cry 2 | | cry 3 | | cry 4 | | cry 9 | |----|------------------------------|---------|----------------|---------------------------------|----------------|---|----------------|-----------------------------------|----------------|----------------------------|----------------|------------------------------| | Š | Sample | Name | No.of
Bands | Appearence of Bands | No.of
Bands | Appearence of Bands | No.of
Bands | Appearence of Bands | No.of
Bands | Appearence of Bands | No.of
Bands | Appearence of Bands | | 16 | soil
Üçharman | 29Ca | 1 | | ı | 1 | ı | 1 | | | ı | 1 | | 17 | soil (potato
farm) Bozbük | 87Fb | 1 | • | ı | , | - | 1 | few | normal, one in ref.line | 3 | strong ones, one in ref.line | | 18 | soil (grain
farm) Nikfer | 59Db | _ | weak | 2 | weak ones near
ref.line | , | ŧ | ı | ŧ | ı | 1 | | 19 | soil (crop
field) Bozbük | 48Ra | | normal | . • | - | • | t | few | normal, one in ref.line | 1 | 1 | | 20 | soil (crop
field) Bozbük | 43Fa | few | normal ones, one in
ref.line | few | normal, one in
ref.line | - | weak | few | normal, one in ref.line | few | normal, one in ref.line | | 21 | dust, grain
Taşkale | 70Ka | few | normal ones, one in
ref.line | | normal | 1 | weak | few | normal, one in ref.line | ı | 1 | | 22 | dust, grain
Taşkale | 71Fa | | weak | ı | · | ı | 2 | ı | ŧ | ı | 1 | | 23 | soil
Üçharman | 32Fb | few | normal ones, one in
ref.line | few | normal, one in
ref.line | ı | | few | normal, one in ref.line | ı | 1 | | 24 | dust, grain
Taşkale | 39Ya | 1 | normal | ı | , | - | weak | 1 | • | | 3 | | 25 | dust, grain
Taşkale | 42Ha | , | 1 | ı | - | t | • | 1 | | 1 | £ | | 26 | soil (crop
field) Bozbük | 43Ra | 1 | ı | r | ı | 1 | normal | few | normal, one in
ref.line | , | 1 | | 27 | soil (crop
field) Bozbük | 43Hb | 1 | • | few | normal, one in
ref.line | ı | 1 | I | weak one near
ref.line | t | | | 28 | grain residue
Taşkale | 35Pb | 2 | normal | 1 | , | - | • | 1 | • | ı | * | | 29 | dust, grain
Taşkale | 71Lb | 2 | normal, one in
ref.line | few | normal, one in
ref.line | 1 | normal one near
below ref.line | 1 | ı | ı | 1 | | 30 | straw
(hayloft)Nikfer | 56Hb | • | ı | few | n <mark>orm</mark> al, one in
ref.line | ı | • | ı | 1 | ı | 1 | | cry 9 | Appearence of Bands | | | • | | ı | normal, below and
over near the ref.line | normal, near over
the ref.line | strong ones, one in ref.line | ŧ | normal, one in
ref.line | normal | 1 | strong, one in ref.line, one at nearly 800bp | weak ones, one in ref.line | | |-----------|---------------------|-----------------------------|------------------------|-----------------------------|----------------------------|------------------------|--|-----------------------------------|------------------------------|--|------------------------------|---------------|----------------|--|----------------------------|---------------------| | | No.of
Bands | | | | ı | | 2 0 | _ | few | 1 | few | _ | , | 2 | few | | | cry 4 | Appearence of Bands | | | | r | | 1 | • | normal | normal ones below
and over the ref.line | weak bands near
ref.line | ı | | ı | τ | 1 | | | No.of
Bands | 1 | ı | ı | | | 1 | , | 1 | few | 2 | | ı | ŧ | ı | ı | | cry 3 | Appearence of Bands | | | • | 1 | 1 | strong one in
ref.line, weak ones
in different lines | - | ı | • | • | - | • | 1 | • | t | | | No.of
Bands | \$ | ı | t | 1 | , | few | 1 | | ı | ı | | ı | ı | 1 | | | cry 2 | Appearence of Bands | 1 | 1 | 1 | | _ | very strong | normal, one in ref.line | very strong | very strong | ı | very strong | very strong | very strong | very strong | 1 | | | No.of
Bands | , | • | , | ı | | - | few | - | | ı | _ | | - | . — | 1 | | cry I | Appearence of Bands | ı | very strong | very strong | normal, one in
ref.line | very strong | weak | weak | weak | weak | very weak | • | ı | | weak | weak | | | No.of
Bands | 1 | 1 | Ţ | few | - | _ | | - | _ | _ | ı | 1 | ı | | _ | | Isolate | Name | 43Aa | 39Yb | 43Db | 42Ba | 71Na | 18Fa | 18FFа | 93FFа | 93На | 20Rb | 19Rb | 27Fb | 93Da | 19Hb | 281b | | Origin of | Sample | soil (crop
field) Bozbük | dust, grain
Taşkale | soil (crop
field) Bozbük | dust, grain
Taşkale | dust, grain
Tașkale | soil
Ìvriz | soil
İvriz | dust,grain
Taşkale | dust,grain
Taşkale | soil (wheat
farm)Üçharman | soil
İvriz | soil
Ereğli | dust, grain
Taşkale | soil
Ivriz | Perçe tree
İvriz | | | Š | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | | | Origin of
Icoloto		cry I		cry 2		crv 3		crv 4		0 vr. 9		----	-----------------------------	---------	----------------	----------------------------------	----------------	----------------------------------	----------------	---	----------------	-------------------------------	----------------	---		Ž	.	Name	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Αp	No.of Bands	Appearence of Bands		46	wheat(wheat silo)Eregli	13Nb	1	•	ı	•	1	ı		very weak	few	normal, one in ref.line		47	soil İvriz	19Ab	ı	•	ı	•	1	r	1	1				48	wheat,grain Taşkale	100Aa		weak	ı	•	•	-	•	1	-	weak		46	dust,grain Taşkale	94YYb	few	normal, one in ref.line	few	weak ones, one in ref.line	few	weak ones,one in ref.line	-	normal	few	strong one in ref.line, weak ones at 1000bp		50	soil Ereğli	27Cb	1	ı	-	weak one	ı	ı	few	very weak, one in ref.line	few	normal, one in ref.line		51	dust,grain Taşkale	94Ab	ı	U	few	one weak in ref.line	-	weak	-			weak, near over ref.line		52	dust,grain Taşkale	93Fa		normal	few	two stronger ones near ref.line	ı		П	normal	few	stronger one is in ref.line		53	soil İvriz	19Ca	1		-	weak one	ı	1	ı	1	'			54	soil İvriz	19Pb	ı	•	-	weak one	ı	1	-	normal		1		55	dust, grain Taşkale	70-Bb	_	weak	1	1	co.	normal, one in ref.line, two below, over ref.line	1	1				56	grain residue Taşkale	35Kb		normal	ı	,	ı	•		weak	1			57	dust, grain Taşkale	70Yb	-	very weak	ı		1	normal one about 1000 bp	1		1	very weak		58	straw (hayloft)Nikfer	56Kb	-	strong near 400 bp		normal	-	normal	few	weak, one in ref.line	3	normal ones, one in ref.line		59	soil (crop field) Bozbük	48Na	1	1	1	r	1	t	few	normal, one in ref.line				09	dust, grain Taşkale	33Yb	-	normal one near over ref.line	-	normal one near oner ref.line	ŧ	ı	_	very weak	,	1		= 5 1 5	Origin of	Isolate		cry I		cry 2		cry 3		cry 4		cry 9			--	-----------------------------------	---------	----------------	----------------------------	----------------	----------------------------------	----------------	-----------------------------------	----------------	----------------------------	----------------	---------------------------	--		24Pb - - - - - 4	Sample	Name	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands			61Kb -	 soil btw Ayranlı/Ereğli	24Pb	1	,		-	1	strong one about 500 bp	few	normal, one in ref.line	4	strongest one in ref.line			53Ka 1 very strong - 2 normal ones near over ref.line - <td> straw hayloft)Nikfer</td> <td>61Kb</td> <td>•</td> <td>1</td> <td>-</td> <td>•</td> <td>2</td> <td>normal ones near over ref.line</td> <td>-</td> <td>very weak</td> <td>,</td> <td></td> <td></td>	 straw hayloft)Nikfer	61Kb	•	1	-	•	2	normal ones near over ref.line	-	very weak	,				33Yb - - 1 weak few normal, one in ref. line - 1 1 weak - - 1 1 ref. line - - 3 2Da 1 weak - - - - - - 3 4La - <t< td=""><td> soil (wheat farm) Nikfer</td><td>55Ka</td><td>1</td><td>very strong</td><td>ı</td><td>•</td><td>2</td><td>normal ones near over ref.line</td><td>1</td><td>1</td><td>,</td><td></td><td></td></t<>	 soil (wheat farm) Nikfer	55Ka	1	very strong	ı	•	2	normal ones near over ref.line	1	1	,				LCCb 3 normal, one in ref.line 1 weak - - - 3 4La - weak - - - - - - - 4La - - - - - - - - - - 4La -	 straw hayloft)Nikfer	53Yb	t			weak	few	normal, one in ref.line				normal			4La -	 soil (farm) Ereğli	1CCb	ω.	normal, one in ref.line	1	weak			1	1	3	strongest one in ref.line			4La -	 soil Ayranlı	2Da		weak	t		ı	-		3	ı				1Bb - 1 normal one near over ref.line 1 strong one near over ref.line 1 strong one near over ref.line - <th< td=""><td> soil (farm) Ereğli</td><td>4La</td><td>-</td><td>r</td><td>ı</td><td></td><td></td><td>strong</td><td>•</td><td>3</td><td></td><td>1</td><td></td></th<>	 soil (farm) Ereğli	4La	-	r	ı			strong	•	3		1			2Ca -	 soil (farm) Ereğli	1Bb	ı	1	_	normal one near over ref.line		strong one near over ref.line		1		•			24Ra -	 soil Ayranlı	2Ca	1	ı	1					1	,	ı			24Pa -	 soil btw Ayranlı/Ereğli	24Ra		ı	1	1	-	normal		1		ı			24Lb - - 1 normal, near over leftline 1 normal, one in ref. line 1 91Fb - - - - - - - - 4Lb - - - - - - - - 1Db - - - - - - - -	 soil btw Ayranlı/Ereğli	24Pa	ı	ı		1	1	1	,	1		ı			91Fb -	 soil btw Ayranlı/Ereğli	24Lb	ı	ı	_	normal, near over ref.line		normal,nice,near over ref.line	few	normal, one in ref.line	_	weak			4Lb	 dust,wheet in silo/Taşkale	91Fb	1	ı	ı	1	ı	1			ı				1Db	 soil (farm) Ereğli	4Lb	1 .	t .	i .	1	1				1					 soil (farm) Ereğli	1Db	ı		•	1		1	•	ı		•				T		T	0	T	T		T			T	T	T		T			-----------	---------------------	-----------------	------------------------------	------------------------------	---------------------------	-------------------------------	-----------------	----------------------------	----------------------------	----------------------------	----------------------------	----------------------------	------------------------------------	----------------------------	----------------------------	-------------------------------		cry 9	Appearence of Bands			strong, one in ref.line	•	normal	very weak	very strong	weak	1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
	normal	normal	1	1			No.of Bands			few	ı		-	-	-				-	-		ı		cry 4	Appearence of Bands		normal, one in ref.line	normal,near over ref.line	1	weak		,	normal, one in ref.line	weak,near over ref.line		normal	normal	1	1	1			No.of Bands	ı	few	-	ı				2	-		_	_			1		cry 3	Appearence of Bands	J	1	•	1		ı	1	1	•	normal	normal	normal ones, one in ref., one over			normal, near over ref.line			No.of Bands			1	,	1			1	1	-	_	7			-		cry 2	Appearence of Bands		normal, one in ref.line	strongest one in ref.line	normal,one in ref.line		•		1	1	1	nice band near 400 bp	ı	nice band near 400	a	•			No.of Bands		few	few	few	1	ı		ı	ı	t		1			ı		cry I	Appearence of Bands	•	1	strong one btw 500-750 bp	normal	strong, one in ref.line	normal	1	normal, near over ref.line	strong	ı	normal, one in ref.line	normal	weak,near over ref.line	weak	ı			No.of Bands	ı	1	-	1	2	_	ı	1	1	ı	few	1	-	_			Isolate	Name	2Cb	94Da	8Ba	13La	28Aa	5Ca	24Ca	24Fa	4Cb	24Na	2Ja	24La	24Fb	25Pa	25Fa		Origin of	Sample	soil Ayranlı	dust,wheat (silo) Taşkale	soil (cave) Kaynaklar	wheat (silo) Taşkale	soil (Perçe tree) İvriz	soil Ayranlı	soil btw Ayranlı/Ereğli	soil btw Ayranlı/Ereğli	(soil) farm Ereğli	soil btw Ayranlı/Ereğli	soil Ayranlı	soil btw Ayranlı/Ereğli	soil btw Ayranl/Ereğli	soil btw Ayranlı/Ereğli	soil btw Ayranlı/Ereğli			00	92	77	78	79	80	81	82	83	84	85	98	87	88	68	06		Origin of		Isolate		cry I		cry 2		cry 3		cry 4		cry 9			----------------------------------	--------------	---------	----------------	------------------------------	----------------	---------------------	----------------	-------------------------------------	----------------	--	----------------	---	--		Sample		Name	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands			soil btw Ayrancı/Ereğli		25Ab	ı		1	,	2	normal, one at 600 bp one at 300 bp	-	normal one near below ref.line	1	1			soil İvriz		19Ka	,	,		r		normal, near over ref.line	_	normal one near below ref.line	3	normal, one in ref.line			soil from Obruk cave mouth		9T01	ı		ı	ı	,	1	1	1	ı	1			soil (wheat farm)Üçharman	п	11Kb	,		t	1	1	ı	ı		,				wheat (silo) Ereğli		12Fb	1	ž.	1	1	1	•	1						soil, farm btw Ereğli/Ayranlı	\ <u>-</u>	26Pb	ı	1	1	ı	1	•	-	normal one near below ref.line	2	one normal in 200bp one normal in ref.			soil, farm btw Ereğli/Ayranlı	> .=	26Fb	ı	1	ı	1	7	one normal	_	normal		¥			soil, farm btw Eregli/Ayranlı	> =	26Kb		weak		1		·	few	strong one in ref.line, weak ones over 500bp		weak			soil, farm btw Ereğli/Ayranlı	> =	27Pb	<u> </u>	normal,near 250 bp	ı		1	•	_	normal	-	normal			soil, farm btw sreğli/Ayranlı	^ <u>-</u> 1	27Fa	1	ı	E	1		•	ı		-	normal			soil, farm btw Eregli/Ayranlı	v 11	27Kb	few	strong bands,one in ref.line		normal		•	2	normal, one in ref., one below	_	weak			soil, farm btw Ereğli/Ayranlı	» □	27Ba	•	ı	ı		ı	h	_	normal					soil (Perçe tree) İvriz	e)	28Lb	-	normal	1	1	1	1		•	-	normal			soil (Perçe tree) İvriz	(e)	28Da	•	ı	1	•	ı	1	-	normal	ı	1			soil (Perçe tree) İvriz	(e)	28Ca	_	normal		ı	ı	•	-	normal		1																			Origin of	Isolate		cry I		cry 2		cry 3		cry 4		cry 9		------	----------------------------------	---------	----------------	---------------------	----------------	--	----------------	---	----------------	---	----------------	---------------------		Ž	Sample	Name	No.of Bands	Appearence of Bands	No.of Bands	ce of Bands	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands		106	soil (willow tree) Úçharman	29Db	ı	ı	•	-	2	normal,one below one over near ref.line	2	normal, one over and one below near ref.		1		107	soil (willow tree) Üçharman	29Ab	1	weak	1	1	1	normal near over ref.line	1	normal near over ref.	_	normal		108	soil (willow tree) Üçharman	31Na	ı		ı	-	7	one weak near over, one normal in ref. line	2	one weak near over, one in ref.line	1			109	soil (willow tree) Üçharman	31Ca	ı	•	ı	-	-	•	ı		I	•		110	soil (willow tree) Üçharman	31Fa	1	•	3	normal, one at 300bp, one at 500bp, one in ref.line	-	•	_	normal at 300bp		weak		1111	soil Manazan Caves	113Ha	1		-	-	1	1	_	strong at 400bp				112	soil Manazan Caves	113Pa	1	1	3	normal,one at 300bp, one over, one below near ref.line	-		_	strong at 300bp		weak		113	soil (Perçe tree) İvriz	28Bb	1		lots	one normal at 300bp, one in ref line	-	.•				normal at 500bp		114	soil, farm btw Ereğli/Ayrancı	27Pa	ı	1	1	1	•	•		normal	_	weak		115	soil from Obruk cave mouth	10Kb	ı	,	•	ı	1	,	1	1	ı	•		116	soil (wheat farm)Üçharman	11Ka	-	very strong	-		-	•	•		ı	•		117	soil, farm btw Ereğli/Ayrancı	26Pa	-	weak	-	-	1	•	ı	·	,	•		118	soil Manazan Caves	104Db	-	weak	1	-		1	ı	1	-	weak		119	soil Manazan Caves	107Fa		normal	ı	1	ı	•	1	1	ı	•		120	dust,residues Manazan Caves	102Cb	•	-	ı			•		1		weak			Origin of	Teoloto		cry 1		cry 2		cry 3		cry 4		crv 9		----------------	----------------------------------	---------	----------------	---------------------	----------------	---------------------------------	----------------	--	----------------	--------	----------------	-------------		S _o	Sample	Name	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Αp	No.of Bands	Αp	No.of Bands	Αp		121	dust,residues Manazan Caves	102Fb	1	normal	1	1	1	1		ı	,			122	soil Manazan Caves	113Ya	1	•	2	1	ı		-	normal	•			123	soil, residues Manazan Caves	114Ya	ı	•	•	,	ı	,	,	5	ı			124	dust,residues Manazan Caves	109Da	,	•	•	1	1	•	ı					125	dust,residues Manazan Caves	102Da		•	4	normal btw 250- 500bp			1		1	•		126	soil Manazan Caves	105Fb	ı	4	1	1	ı	1	ı		ı			127	soil Manazan Caves	106Da	ı	•	ı	1	ı	1	1	•	ı	2		128	soil (grain farm) Nikfer	62РРа	ı	•	1	1	1	1	1	7	-	normal		129	soil (grain farm) Nikfer	59РРа	ı	•	-	1	•	1	1	•	-			130	soil (silo) Taşkale	9786	ı	1	•	-	many	one normal in ref.line	,	•		T		131	soil (silo) Taşkale	98Fа	•	•	-	,	*	ı	1	•	ı	1		132	soil (spring water out) İvriz	9Ка	ı	•	1	very weak near over ref.line	1	r	ı		'			133	soil (under nut trees) İvriz	7Fa		very strong	1	normal near over ref.line	r	1	1	1		ı		134	dust,insect (silo) Taşkale	85PPb	_	normal		normal	ı	•	ı		_	very strong		135	wheat (silo) Taşkale	13Hb		•	ı	1	3	normal, one in ref.line, two at 400, 1000 bp	ı	1	ı	ı			Origin of	Isolate		cry I		cry 2		cry 3		cry 4		cry 9		-----	----------------------------------	---------	----------------	---	----------------	---------------------	----------------	---	----------------	---	----------------	--		oZ	Sample	Name	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Αp		136	faces (arround silos) Taşkale	86Fb	<i>w</i>	one weak in ref, one normal at 450bp, one nice at 700bp		•	•	ı	ı	1	ı	t		137	faces (arround silos) Taşkale	86Db	. 3	one weak in ref, one normal at 450bp, one normal at 700bp	•		1	very strong, near below ref.line	t	1	4	three strong at 275, 500, 600 and normal one in ref.line		138	soil (willow tree) Üçharman	32Aa	1	•	I ·	1	-	•	1	ı		ı		139	(soil) farm Ereğli	4Fа	1	normal at 700bp	ı		ı	t	ı	•	ı	ı		140	soil (farm) Ayranlı	21b	ı	I	ı	1	ı	•		,	2	one strong at 275bp, one normal in ref.		141	soil (farm) Ayranlı	2Jb	2	one normal near ref., one normal at 500bp	ı		-	normal	2	one weak at 700bp, one strong at 275bp	1	normal, nice, very near to ref.line
142	Soil from Eregli/Ayrancı	27Ka	2	one normal at 500bp, one weak at 600bp	ı		-	normal near about 500bp	-	weak at 700bp		normal, very near to ref.line		143	soil, farm btw Ereğli/Ayrancı	27Db	ı	•	ı		•	-	ı	1	ı			144	soil, farm btw Eregli/Ayrancı	26Ba	2	one weak at 500bp, one normal at 600bp	•	•	_	weak at 500 bp	_	normal at 700bp	1	normal, very near to ref.line		145	soil (wheat farm)Üçharman	11La	ı	,	ı		1	1	1	•	ı	g g		146	soil (willow tree) Üçharman	31Rb	ı	1	ı	•	1	T	,		1	ı		147	(soil) farm Ereğli	1Ab	-	very strong	•	1	ı	•		r	•			148	(soil) farm Ereğli	1Aa		very strong	ı	•	2	one normal at 600bp one strong at 300 bp	-	normal	-	normal			Origin of	Isolate		cry I		cry 2		cry 3		cry 4		crv 9		-----	--------------------------------	---------	----------------	---------------------	----------------	---------------------	----------------	--	----------------	---------------------	----------------	--------------------		Ž	Sample	Name	No.of Bands	Appearence of Bands	No.of Bands	Appearence of Bands	No.of Bands	Αp	No.of Bands	Appearence of Bands	No.of Bands	dγ		149	(soil) farm Ereğli	1Cb		normal	ı	1		ı	1	•	,			150	(soil) farm Ereğli	1Fa	ı	,	ı	1	2	one strong at 600bp one normal at 300 bp	-	weak	-	very strong at 275		151	soil (farm) Ayranlı	2Aa	ı		1	ı	1	•	1	1	ı	a		152	soil (wheat farm)Üçharman	17Ka	ı	1		ı	ı	1	•	5	1			153	soil (willow tree) Üçharman	32Fa	1	weak		1	1		•	•	ı			154	soil (grain farm) Nikfer	60Pa	•	•	ı	ſ	ı	1	ı	5	-	very strong at 275		155	soil (grain farm) Nikfer	60Na	1	normal	1	1	t		1	1	_	weak		156	soil (grain farm) Nikfer	60Ra	-	ı	1	weak	1	·	1	E .				157	soil (wheat farm)Üçharman	17Ca	ı	ī	1	weak	5	ı		ı	1	1		158	straw (hayloft)Nikfer	57Hb	1	normal		weak	,	,	1		,	1		159	grain (silo) Nikfer	58Kb	_	normal	•	•	ı	,	ı					160	soil (grain farm) Nikfer	59Fа	•	ı	ı	-	ı	,	1	ı	ı	1		161	soil (grain farm) Nikfer	59Ra	1	ı	5	•	1	5	ı		ı	1		162	soil (grain farm) Nikfer	62Lb	ı	•	1	ľ	ı	1	t			7		163	soil (silo) Taşkale	82FFa	1	•	1		ı			1	ı	1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			