
 

 
 

 
 
 
 

 
 

  

 
 

 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ISTANBUL TECHNICAL UNIVERSITY ���� GRADUATE SCHOOL OF SCIENCE 
ENGINEERING AND TECHNOLOGY 

M.Sc. THESIS 

JANUARY 2014 
 

MOTION AND ENERGY TRANSFER THROUGH COUPLED 
MICRO/NANO-SCALE CANTILEVER BEAMS VIA MECHANICAL 

RESONANCE ABSORPTION 

Ünal DEĞİRMENCİ 
 

Department of Mechanical Engineering 
 

Solid Mechanics Programme 



 

  



 

    

JANUARY 2014 
 

ISTANBUL TECHNICAL UNIVERSITY ���� GRADUATE SCHOOL OF SCIENCE 
ENGINEERING AND TECHNOLOGY 

MOTION AND ENERGY TRANSFER THROUGH COUPLED 
MICRO/NANO-SCALE CANTILEVER BEAMS VIA MECHANICAL 

RESONANCE ABSORPTION 
 

M.Sc. THESIS 

Ünal DEĞİRMENCİ 
 (503111519) 

Department of Mechanical Engineering 
 

Solid Mechanics Programme 

Thesis Advisor: Asst. Prof. Erdal BULĞAN 



 

  



 

    

OCAK 2014 

İSTANBUL TEKNİK ÜNİVERSİTESİ ���� FEN BİLİMLERİ ENSTİTÜSÜ 

MİKRO/NANO-BOYUTLU ANKASTRE KİRİŞLERDE 
MEKANİK REZONANS ABSORPSİYONU YARDIMIYLA  

HAREKET VE ENERJİ TRANSFERİ 
 

YÜKSEK LİSANS TEZİ 

Ünal DEĞİRMENCİ 
(503111519) 

Makine Mühendisliği Anabilim Dalı 
 

Katı Cisimlerin Mekaniği Programı 

Tez Danışmanı: Yrd. Doç. Dr. Erdal BULĞAN 



 

 

 



v 
 

  

Thesis Advisor :  Asst. Prof. Dr. Erdal BULĞAN  .............................. 
 İstanbul Technical University  

Jury Members :  Prof. Dr. Ekrem TÜFEKÇİ   ............................. 
İstanbul Technical University 

Asst. Prof. Dr. M. Selçuk ARSLAN .............................. 
Yıldız Technical University 
 

Ünal DEĞİRMENCİ, a M.Sc. student of ITU Graduate School of Science, 
Engineering and Technology student ID 503111519, successfully defended the thesis
entitled “MOTION AND ENERGY TRANSFER THROUGH COUPLED
MICRO/NANO-SCALE CANTILEVER BEAMS VIA MECHANICAL 
RESONANCE ABSORPTION,” which he prepared after fulfilling the requirements 
specified in the associated legislations, before the jury whose signatures are below. 
 

Date of Submission : 16 December 2013 
Date of Defense :  21 January 2014 
 



vi 
 

  



vii 
 

 

 

 

To my family and friends, 

 

 

 

  



viii 
 

  



ix 
 

 

FOREWORD  

Firstly, I would like to thank my advisor Asst. Prof. Erdal BULĞAN for his guidance, 

help and patience during the course of this project. 

My thanks extend to all my colleagues, namely Ender GÜZEL, Jaber SALAMAT, 

Mustafa KAYKISIZ, and Shahab Bakhtiari GORAJOOBI, in the NANOPSYS 

Laboratory at School of Mechanical Engineering, Istanbul Technical University. It 

was a pleasure to be part of the team. 

I would also like to express my gratitude to dear friends, namely Bilal BİLGİLİ, Bilal 

ERVURAL, Emrah DÖNMEZ, and İ. Hakkı TONYALI for their support, help and 

advice. 

I would like to thank my father, mother, brother and sister, namely Cemil 

DEĞİRMENCİ, Aysel DEĞİRMENCİ, Ahmet DEĞİRMENCİ Bircan 

DEĞİRMENCİ, Gamze DEĞİRMENCİ, and Eda ELBİR for prayers and all their 

support at every stage of my personal and academic life, I love them all depth of my 

heart. 

I appreciate kind contribution of the thesis defense committee members, Prof. Dr. 

Ekrem TÜFEKÇİ and Asst. Prof. M. Selçuk ARSLAN for their consideration and 

advises. 

I also want to thank warmly my advisor Asst. Prof. Erdal BULĞAN, who introduced 

me with this thesis topic. I am grateful to “Future Faculty Member Support Program 

(Öğretim Üyesi Yetiştirme programı, ÖYP)” and “ITU Scientific Research Projects 

Program (İTÜ Bilimsel Araştırma Projeleri Programı, İTÜ BAP)” for the financial 

support to this thesis study as well. 

Above all, I owe it all to Almighty ALLAH for granting me the wisdom, health and 

strength to undertake this research task and enabling me to its completion. 

 
January 2014             Ünal DEĞİRMENCİ 

(Industrial and Mechanical Engineer) 
 

 
  



x 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xi 
 

  

TABLE OF CONTENTS 

Page 

FOREWORD ............................................................................................................. ix 

TABLE OF CONTENTS .......................................................................................... xi 
ABBREVIATIONS ................................................................................................. xiii 
LIST OF TABLES ................................................................................................... xv 

LIST OF FIGURES ............................................................................................... xvii 
SUMMARY ............................................................................................................. xix 

ÖZET ........................................................................................................................ xxi 
1. INTRODUCTION .................................................................................................. 1 

1.1 Purpose of Thesis ................................................................................................. 1 

1.2 Literature Review ................................................................................................ 1 

2. BEAM THEORIES .............................................................................................. 11 

2.1 Introduction ........................................................................................................ 11 

2.2 Static Analysis ................................................................................................... 11 

2.2.1 Euler-Bernoulli Theory .............................................................................. 11 

2.2.2 Rayleigh Theory ......................................................................................... 15 

2.2.3 Euler-Bernoulli Modified Theory or Shear Model .................................... 16 

2.2.4 Timoshenko Theory ................................................................................... 17 

2.3 Dynamic Analysis .............................................................................................. 20 

2.3.1 Vibration of a Single Degree-of-Freedom (DOF) System ......................... 20 

2.3.1.1 Free Vibration .................................................................................... 20 

2.3.1.2 Free Vibration Under Harmonic Force .............................................. 22 

2.3.2 Vibration of Multidegree-of-Freedom System .......................................... 24 

2.3.3 Transverse (Bending) Vibration of Beams ................................................ 27 

2.4 Summary ............................................................................................................ 34 

3. FLUID STRUCTURE INTERACTION IN MICRO/NANO-SCALE 
CANTILEVER BEAMS FOR MRA VIA FINITE ELEMENT ANALYSIS .... 35 

3.1 Introduction ........................................................................................................ 35 

3.2 Finite Element Method ...................................................................................... 35 

3.3 Commone Element Types used in FEM ............................................................ 36 

3.3.1 Three-Dimensional (3D) Beam Element ................................................... 36 

3.3.2 Constant Stress Triangular Element ........................................................... 37 

3.3.3 Linear Stress Triangular Element .............................................................. 38 

3.3.4 Double Linear Rectangular Element .......................................................... 38 

3.3.5 Four-node Tetrahedral Element ................................................................. 39 

3.3.6 Eight-node Brick Element .......................................................................... 41 

3.3.7 Ten-Node Tetrahedral Element .................................................................. 42 

3.3.8 Twenty-Node Brick Element ..................................................................... 43 

3.4 Acoustic Fluid-Structure Coupling in FEM ...................................................... 44 

3.4.1 Perfectly Matched Layers, PML (Absorbing Layer) ................................. 51 

3.5 Summary ............................................................................................................ 53 



xii 
 

4. CONCEPT AND MODEL OF THE ENERGY TRANSFER VIA MRA 
BETWEEN THE BEAMS ....................................................................................... 55 

4.1 Introduction ........................................................................................................ 55 

4.2 Concept of Energy Transfer ............................................................................... 55 

4.3 Modeling of Energy Transfer Between Beams in FEM Analysis ..................... 56 

4.3.1 Material identification and geometric model ............................................. 56 

4.3.2 Definition of analysis settings and results .................................................. 58 

4.4 Summary ............................................................................................................ 61 

5. RESULTS .............................................................................................................. 63 

5.1 Introduction ........................................................................................................ 63 

5.2 Energy Transfer  between Beams with Neglected Viscous Damping Ratios .... 63 

5.2.1 Energy transfer between beams with square cross-section at out-of-plane 
alignment ................................................................................................... 63 

5.2.2 Energy transfer between beams with square cross-section at in-plane 
alignment ................................................................................................... 72 

5.2.3 Energy transfer for smaller beams with square cross-section at in-plane 
alignment ................................................................................................... 74 

5.2.4 Energy transfer for beams with rectangular cross-section at in-plane 
alignment ................................................................................................... 77 

5.2.5 Energy transfer in micromachinable and characterizable cantilever beams 
with rectangular cross-section aligned at in-plane orientations ................. 80 

5.3 Effect of Viscous Damping  on Energy Transfer between Micromachinable 
Beams ................................................................................................................ 85 

5.4 Summary ............................................................................................................ 90 

6. CONCLUSION ..................................................................................................... 93 

REFERENCES ......................................................................................................... 99 

APPENDICES ........................................................................................................ 103 

CURRICULUM VITAE ........................................................................................ 153 

 

 
 
  



xiii 
 

 

ABBREVIATIONS 

A : Cross-sectional Area 
APDL : ANSYS Parametric Design Language 
bsys : Viscous Damping Coefficient 
c : Acoustic Wave Speed 
cb : The Longitudinal Wave Velocity 
Cc : Critical Damping Constant 
d : Distance Between Beams 
DOF : Degree-of-Freedom 
DP : Deviation Percentage 
E : The Modulus of Elasticity 
Es : Young’s Modulus of Source Beam 
Et : Young’s Modulus of Target Beam 
ET : Energy Transfer 
ETR : Energy Transfer Rate 
F : Structural Load Vector 
Fpr : Fluid Pressure Load Vector 
FEA : Finite Element Analysis 
FEM : Finite Element Method 
FSI : Fluid Structure Interaction 
G : The shear Modulus 
I : The Moment of Inertia 
Is : The Moment of Inertia of Source Beam 
It : The Moment of Inertia of Target  Beam 
kb : The Longitudinal Wave Number 
k0 : The Wave Number 
kw : Costant Wave Number 
K : Fluid Bulk Modulus 
Kn : Knudsen Number 
Kd : Dielectric Conductivity Matrix 
Kz : Piezoelectric Coupling Matrix 
L : Beam Length 
Ls : Source Beam Length 
Lt : Target Beam Length 
m : Mass 
M : Structural Mass Matrix 
MEMS : Micro-Electro-Mechanical Systems 
MRA : Mechanical Resonance Absorption 
NEMS : Nano-Electro-Mechanical Systems 
PML : Perfectly Matched Layer 
q : Distributed Load 
SAW : Surface Acoustic Waves 
t : Thickness of Beam 
Umax : Maximum Strain Energy 



xiv 
 

Us, max : Maximum Strain Energy of Source Beam 
Ut, max : Maximum Strain Energy of Target Beam 
w : Width 
Wmax : Maximum Deflection of Beam 
Ws, max : Maximum Deflection of Source Beam 
Wt, max : Maximum Deflection of Target Beam 
ωn : Natural Frequency 
ζ : Damping Ratio 

ф : The Phase Angle 
ρ : Density 
λair : Mean Free Path of Air 
Ƞair : Viscousity of Air 
Ƞeff,s : Effective Viscousity of Air 
 

 

 

  



xv 
 

 

LIST OF TABLES 

Page 

Table 2.1 : Boundary conditions of beams. ............................................................... 30 

Table 2.2 : Values of βnL for boundary conditions. .................................................. 34 

Table 4.1 : Material properties of silicon and air. ..................................................... 57 
Table 4.2 : APDL codes for air layers. ...................................................................... 58 

Table 4.3 : APDL codes for Analysis Setting and FSI. ............................................. 60 

Table 5.1 : Numerical natural beam frequencies....................................................... 65 
Table 5.2 : Analytical natural beam frequencies. ...................................................... 66 

Table 5.3 : Frequency-dependent deformation values. ............................................. 68 

Table 5.4 : Natural frequencies of smaller beam by simulation................................ 74 

Table 5.5 : Natural frequencies of smaller beam analytically. .................................. 75 

Table 5.6 : Natural frequencies of the beam with rectangular cross-section studied 
numerically. ............................................................................................. 77 

Table 5.7 : Natural frequencies of the beam with rectangular cross-section studied 
analytically. ............................................................................................. 78 

Table 5.8 : Numerical natural frequency values of the beam.................................... 82 

Table 5.9 : Analytical natural frequency values of the beam. ................................... 82 

Table 5.10 : Viscous damping ratios for various separation distances. .................... 88 

Table A.1 : Deflection and ETR values at 1µm separation distance. ...................... 104 
Table A.2 : Deflection and ETR values at 2µm separation distance. ...................... 105 

Table A.3 : Deflection and ETR values at 3µm separation distance. ...................... 106 

Table A.4 : Deflection and ETR values at 4µm separation distance. ...................... 107 

Table A.5 : Deflection and ETR values at 5µm separation distance. ...................... 108 

Table A.6 : Deflection and ETR values at 6µm separation distance. ...................... 109 

Table A.7 : Deflection and ETR values at 8µm separation distance. ...................... 110 

Table A.8 : Deflection and ETR values at 10µm separation distance. .................... 111 

Table B.1 : Deflection and ETR values at 0.1µm separation distance. ................... 112 

Table B.2 : Deflection and ETR values at 0.5µm separation distance. ................... 113 

Table B.3 : Deflection and ETR values at 1µm separation distance. ...................... 114 

Table B.4 : Deflection and ETR values at 2µm separation distance. ...................... 115 

Table B.5 : Deflection and ETR values at 4µm separation distance. ...................... 116 

Table B.6 : Deflection and ETR values at 5µm separation distance. ...................... 117 

Table B.7 : Deflection and ETR values at 10µm separation distance. .................... 118 

Table C.1 : Deflection and ETR values at 0.2µm separation distance. .................. 119 

Table C.2 : Deflection and ETR values at 0.5µm separation distance. .................. 120 

Table C.3 : Deflection and ETR values at 1µm separation distance. ..................... 121 

Table C.4 : Deflection and ETR values at 2µm separation distance. ..................... 122 

Table C.5 : Deflection and ETR values at 0.2µm separation distance. .................. 123 

Table C.6 : Deflection and ETR values at 0.5µm separation distance. .................. 124 

Table C.7 : Deflection and ETR values at 1µm separation distance. ..................... 125 

Table C.8 : Deflection and ETR values at 2µm separation distance. ..................... 126 

Table D.1 : Deflection and ETR values at 0.1µm separation distance. .................. 127 



xvi 
 

Table D.2 : Deflection and ETR values at 0.2µm separation distance. ................... 128 

Table D.3 : Deflection and ETR values at 0.3µm separation distance. ................... 129 

Table D.4 : Deflection and ETR values at 0.4µm separation distance. ................... 130 

Table D.5 : Deflection and ETR values at 0.5µm separation distance. ................... 131 

Table D.6 : Deflection and ETR values at 1µm separation distance. ...................... 132 

Table D.7 : Deflection and ETR values at 2µm separation distance. ...................... 133 

Table E.1 : Deflection and ETR values at 0.1µm separation distance. ................... 134 

Table E.2 : Deflection and ETR values at 0.5µm separation distance. ................... 135 

Table E.3 : Deflection and ETR values at 0.8µm separation distance. ................... 136 

Table E.4 : Deflection and ETR values at 1µm separation distance. ...................... 137 

Table E.5 : Deflection and ETR values at 2µm separation distance. ...................... 138 

Table E.6 : Deflection and ETR values at 4µm separation distance. ...................... 139 

Table E.7 : Deflection and ETR values at 8µm separation distance. ...................... 140 

Table E.8 : Deflection and ETR values at 10µm separation distance. .................... 141 

Table E.9 : Deflection and ETR values at 12µm separation distance. .................... 142 

Table E.10 : Deflection and ETR values at 15µm separation distance. .................. 143 

Table E.11 : Deflection and ETR values at 18µm separation distance. .................. 144 

Table E.12 : Deflection and ETR values at 20µm separation distance. .................. 145 

Table F.1 : Deflection and ETR values at 0.1µm separation distance. ................... 146 

Table F.2 : Deflection and ETR values at 0.2µm separation distance. ................... 147 

Table F.3 : Deflection and ETR values at 0.3µm separation distance. ................... 148 

Table F.4 : Deflection and ETR values at 0.4µm separation distance. ................... 149 

Table F.5 : Deflection and ETR values at 0.5µm separation distance. ................... 150 

Table F.6 : Deflection and ETR values at 1µm separation distance. ...................... 151 

Table F.7 : Deflection and ETR values at 2µm separation distance. ...................... 152 

 
  



xvii 
 

 

LIST OF FIGURES 

Page 

Figure 1.1 : SEM image of the suspended nanowire device, 1.3 mm long and 43 nm 
in diameter. b) Measurement circuit used for magnetomotive drive and 
detection [35]. ......................................................................................... 5 

Figure 1.2 : Optical micrograph of typical mechanically coupled resonators [36]..... 6 

Figure 1.3 : Electrostatically coupled nanocantilevers [37]. ....................................... 7 

Figure 1.4 : Schematic illustration of the human ear [38]. ......................................... 7 

Figure 1.5 : Basilar membrane diagram showing the locations maximum   
displacement in the different sinusoidal frequency responses basilar 
[38]. ......................................................................................................... 8 

Figure 2.1 : a) Beam in bending. b) Free-body diagram for an element [40]. .......... 12 
Figure 2.2 : Deformation of a typical transverse normal line in various beam 

theories[43]. .......................................................................................... 17 

Figure 2.3 : a) An n-degree-of-freedom system.b) free-body diagrams of the masses 
[44]. ....................................................................................................... 25 

Figure 2.4 : βL values for double-clamped boundary conditions. ............................ 31 

Figure 2.5 : Mode shapes for different boundary conditions. ................................... 32 

Figure 2.6 : Expressions of the vibrating beams with different boundary conditions.
 .............................................................................................................. 33 

Figure 3.1 : Three-dimensional Beam Element. ....................................................... 37 
Figure 3.2 : Constant Stress Triangular Element. ..................................................... 37 

Figure 3.3 : Linear Stress Triangular Element. ......................................................... 38 

Figure 3.4 : Double Linear Quadrilateral Element. .................................................. 39 

Figure 3.5 : Four-node Tetrahedral Element. ............................................................ 39 

Figure 3.6 : Eight-node Brick Element. .................................................................... 41 

Figure 3.7 : Ten-node Tetrahedral Element. ............................................................. 43 

Figure 3.8 : Twenty-node Brick Element.................................................................. 43 

Figure 3.9 : FLUID29 geometry. .............................................................................. 46 

Figure 3.10 : FLUID129 geometry. .......................................................................... 48 

Figure 3.11 : FLUID30 geometry. ............................................................................ 48 

Figure 3.12 : FLUID221 geometry. .......................................................................... 49 

Figure 3.13 : FLUID220 geometry. .......................................................................... 50 

Figure 3.14 : FLUID130 geometry. .......................................................................... 51 

Figure 3.15 : Concept of absorbing layer in 2D models: a) infinite medium, b) semi-
infinite medium, c) plate..................................................................... 52 

Figure 3.16 : Microstrip structure with PML regions [49]. ...................................... 52 

Figure 3.17 : PML region attached to interior region [49]. ...................................... 53 

Figure 4.1 : Conceptual illustration........................................................................... 56 
Figure 4.2 : Geometric model of the beams and air layers. ...................................... 57 

Figure 4.3 : Meshed geometric model with beams and air layers. ........................... 59 

Figure 4.4 : The nodal force illustration on the geometric model............................. 60 

 



xviii 
 

Figure 5.1 : Simulation model utilized in the FEM Analysis. .................................. 64 

Figure 5.2 : Beam deflection values about the fundamental mode frequency. ......... 67 

Figure 5.3 : Coupled vibration responses of beams with square cross-section at out-
of-plane alignment: a) At off-resonant frequencies. b) At on-resonant 
frequency. .............................................................................................. 69 

Figure 5.4 : ETRs depending on distance between beams with square cross-section at 
out of plane alignment. ......................................................................... 71 

Figure 5.5 : Beam geometries with square cross-section at in-plane alignment. ...... 72 

Figure 5.6 : Coupled vibration responses of beams placed at in-plane alignment: a) 
At off-resonant frequencies. b) At on-resonant frequency. .................. 72 

Figure 5.7 : ETRs versus distance results between beams with square cross-section at 
in-plane alignment. ............................................................................... 73 

Figure 5.8 : Smaller beam geometries with square cross-section at in-plane 
alignment. .............................................................................................. 74 

Figure 5.9 : ETRs in the out-of-plane direction as a function of distance between 
smaller beams with square cross-section at in-plane alignment. .......... 75 

Figure 5.10 : ETR in the transverse direction with distance between smaller beams 
with square cross-section at in-plane alignment. ................................ 76 

Figure 5.11 : Beam geometries with rectangular cross-section. ............................... 77 

Figure 5.12 : Coupled vibration responses of beams with rectangular cross-section 
placed at in-plane alignment: a) At off-resonant frequencies. b) At on-
resonant frequency. ............................................................................. 79 

Figure 5.13 : ETR versus distance between beams with rectangular cross-section at 
in-plane alignment. ............................................................................. 79 

Figure 5.14 : Finalized beam geometries at in-plane orientation. ............................. 81 

Figure 5.15 : Coupled vibration responses of micromachinable beams: a) Off-
resonant frequencies. b) On-resonance frequency. ............................. 83 

Figure 5.16 : ETRs as a function of distance for micromachinable beams. .............. 83 

Figure 5.17 : ETRs as a function of greater distances for micromachinable beams at 
narrower frequency ranges. ................................................................ 84 

Figure 5.18 : Spectral ETR response for micromachinable and characterizable beams 
at various viscous damping caused by various separation distances. . 89 

 
 
 
 
  



xix 
 

 

MOTION AND ENERGY TRANSFER THROUGH COUPLED 
MICRO/NANO-SCALE CANTILEVER BEAMS VIA MECHANICAL 

RESONANCE ABSORPTION  

SUMMARY 

The famous physicist Richard Feynman suggested the idea that very small-scale 
apparatus and systems produced by evaporating and collecting materials are possible 
first in 1959 [1]. In this sense, Micro-Electro-Mechanical Systems (MEMS) have 
subsequently emerged and developed confirming the vision provided by Feynman as 
a science investigating small-scale electro-mechanical setup and systems. Research on 
micro/nano-scale structures is indeed spreading day-by-day. Since the volume force in 
micro/nano-scale systems is at significantly low levels compared to that in larger 
systems, micro/nano-systems can move mechanically faster and with high 
acceleration, are compact, and provide energy savings [2]. Hence, MEMS have 
applications in many fields such as ink printers, airbags, bolometers, pressure gauges, 
distance meters, micro/nano-filters and resonators. 

One of the major issues studied by a large number of research groups is conceptual 
and practical mechanical vibration and resonance. A large number of researchers have 
targeted miniaturized structures at micro/nano-scales, which has given rise to 
production of many new mechanical and electronic devices [3-16]. In this thesis, a 
novel technique for non-contact motion and energy transfer between micro/nano-scale 
doubly-clamped cantilever beams at high efficiency via Mechanical Resonance 
Absorption (MRA) is presented. In order to characterize quality of the transfer, 
resonating beam dimensions and distances, in-plane and out-of-plane transmission 
directions, and effect of damping by the environment are comprehensively 
investigated. 

In this study, energy interaction via MRA between two identical micro/nano cantilever 
beams positioned at certain distances relative to each other are examined. In addition, 
creating fields of application in micro/nano-scale structures, such as remote drive and 
selective resonance are targeted by achieving the regular relationship between energy 
transfer values and distance changes. Then, energy transfer is analyzed for various 
distances and geometries. Use of micro/nano-scale beams not only increases the 
efficiency of energy transfer, but also it eases fabrication, testing and characterization, 
particularly at oscillations with high-frequency vibrations. 

In the first chapter of the thesis, brief information on the aim, scope and solution steps 
of the study is given and previous studies associated with the thesis topic such as 
Micro-Electro-Mechanical Systems (MEMS), micro/nano-scale vibration, Surface 
Acoustic Wave (SAW), motion and energy transfer and Mechanical Resonance 
Absorption (MRA) are referred under the scope of literature study. 

The second chapter, first, information about the general forms of Euler Bernoulli, 
Rayleigh and Timoshenko Beam Theories have been introduced. Then, vibration 



xx 
 

equations have been described for single and multi-degrees of freedom systems, and 
derivation of analytical formulations required for the calculation of natural frequencies 
and bending vibrations in beams have been shown. βnL values used in the calculation 
of natural frequencies are listed for different boundary conditions. 

In the third chapter, Finite Element Method (FEM) has been mentioned briefly, and 
after a brief introduction about the element type used in the FEA are given, Acoustic 
Fluid-Structure Coupling in FEM is explained and the expression of acoustic waves is 
presented. Then, mechanical energy transfer between the beams via MRA is simulated. 
Acoustic element types are defined for the air to show acoustic properties in a 
commercial FEM analysis software, namely ANSYS (ANSYS Inc., USA) and 
necessary environment characteristics for the element types are summarized. Finally, 
the absorbing layer (Perfectly Matched Layers, PML) behaving as an infinite medium 
of modeled air environment in order to prevent back-reflection by absorbing the 
acoustic waves created by the target beam are described. 

In the fourth chapter, initially, such concepts as representation of the cross-section of 
the beam geometries used in the investigation of motion and energy transfer between 
the beams, relative positioning, the direction of the applied force, and representation 
of the source and target beam are studied. Then, the interaction model, material 
properties, acoustic element types in air, and the program codes required to define the 
fluid-structure interaction between  air and the beams in FEA software are described. 

In the fifth chapter, energy transfer rates are studied numerically in various beam 
distances for two different cases where first, viscous damping ratio is neglected and, 
then considered. At first, ETR values are studied in a band about resonance frequency 
for two cross-section geometries as in square and rectangular shapes, at two settlement 
status as in-plane and out-of-plane, and with several geometrical dimensions. In the 
second half, ETR values depending on the distance between the beams with 
rectangular cross-section at in-plane alignment are examined under the influence of 
viscous damping, and the results are presented based on the data obtained in the first 
half of the chapter. 

In the sixth chapter, obtained data are evaluated. Then, the effects of distance and the 
beam geometry on the performance are investigated, and the most suitable cross-
sectional geometry and distance between the beams for optimum energy transfer are 
determined. 
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MİKRO/NANO-BOYUTLU ANKASTRE KİRİŞLERDE MEKANİK 
REZONANS ABSORPSİYONU YARDIMIYLA  HAREKET VE ENERJİ 

TRANSFERİ 

ÖZET 

Çok küçük ölçekli düzenek ve sistemlerin malzemeleri buharlaştırarak biriktirme yolu 
ile üretilebileceği fikrini ilk olarak 1959 yılında ünlü fizikçi Richard Feynman ileri 
sürmüştür [1]. Bu anlamda, Mikro-Elektro-Mekanik Sistemler (MEMS) küçük ölçekli 
elektro-mekanik düzeneklerin ve sistemlerin incelendiği bir bilim dalı olarak sonradan 
Feynman’ın öngördüğü vizyonu doğrular biçimde ortaya çıkmış ve gelişmiştir. Mikro 
ve nano sistemlerin bu kadar çok ilgi toplamalarının nedenleri arasında makro 
boyuttaki mekanik sistemlerin mikro ve nano boyutta küçültülerek üretilmesinde 
hacimsel kuvvetlerin (ağırlık/atalet) önemini yitirmelerinden ötürü mekanik bakımdan 
çok hızlı sistemlerin gerçekleştirilebilmesi, yüksek ivmeli hareketlerin mümkün 
olması, daha az yer kaplamaları, enerji tasarrufu sağlamaları, seri üretimlerinin 
mümkün olması gibi pek çok faydayı gösterebiliriz [2]. Belirtilen bu nedenlerden 
dolayı, nano ve mikro mekanik sistemlerin günümüzde mürekkepli yazıcılar, hava 
yastıkları, ışınımölçerler, basınçölçerler, mesafeölçerler, nano ve mikro filtreler, ve 
rezonatörler gibi pek çok alanda uygulamaları bulunmaktadır. 

Çok sayıda araştırma grubunun üzerinde çalıştığı önemli konulardan birisi de 
kavramsal ve uygulamalı mekanik titreşim ve rezonanstır, ve bu çabalar pek çok yeni 
mekanik ve elektronik cihaz üretimine yolaçmıştır. Bu alandaki çalışmalar, mikro ve 
nano ölçekteki Mikro-Elektro-Mekanik Sistemler/Nano-Elektro-Mekanik Sistemler 
(MEMS/NEMS)’in mümkün olması ile makro boyuttaki titreşimlerden, bu minyatür 
boyutlu yapıların titreşimlerinin incelenmesine doğru kaymaya başlamıştır [3-16]. 
Makro-boyutlu yapıların mikro/nano-boyutlara küçültülerek üretilmesi, Literatür 
Özeti’nde de bahsedildiği üzere daha küçük ebatlarda ve birbirine daha yakın 
mesafelerde yapılar kullanılacağından, hareket ve enerji transferi esnasında 
gerçekleşecek kayıpların çok daha küçük olmasına ve dolayısıyla da MRA’nın 
minyatür ebatlarda kullanımının çok daha etkin ve işlevsel bir biçimde 
gerçekleştirilebilmesine olanak sağlayacaktır. Bu çalışma ile mikro/nano-boyutlu 
ankastre kirişlerde MRA kullanılarak çok düşük frekanslardan çok yüksek frekanslara 
kadar geniş bir bant aralığında rezone edilebilen mikro/nano-kirişler üzerinden 
temassız ve yüksek hızlı hareket ve mekanik enerji transferinin gerçekleştirilmesi 
çalışılmıştır. 

Bu tezde, mikro/nano-boyutlu iki ucu sabitlenmiş (ankastre, cantilever) kirişler 
üzerinde Mekanik Rezonans Absorpsiyon (Mechanical Resonance Absorption, 
MRA)’u kullanarak titreşim hareketi ve enerjisinin yüksek verimlerde temassız (non-
contact) olarak transferi üzerinde durulmuştur. Aslında, MRA-temelli hareket ve enerji 
transferi makro-boyutlu yapılarda da hâlihazırda gerçekleştirilmekte olup, büyük ebat 
ve mesafeler kullanılmasından dolayı düşük etkinlikte performans gözlenmektedir, bu 
nedenle mühendislik uygulamalarında kullanımı çoğunlukla tercih edilmemektedir. 
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Diğer yandan, MRA, mikro/nano-boyutlu yapılarda kullanılması halinde, hacimsel 
kuvvetlerin gözardı edilebilecek seviyelere düşmesinden dolayı yüksek hız ve yüksek 
tahrik ivmelerine dayanım, daha az yer kaplama, daha az enerji tüketimi, seri üretim 
halinde çok ucuz ve çok daha yüksek performanslarda hareket ve enerji transferi 
sağlayan cihazların gerçeklenmesine yolaçacaktır. 

Bu çalışmada, spesifik olarak nano-boyutlu ankastre bir kirişin rezonans frekansında 
zorlanmış salınımı (titreştirilmesi) ile ortaya çıkan hareket ve mekanik enerjinin 
yakınındaki eşdeğer bir başka ankastre kiriş tarafından Mekanik Rezonans 
Absorpsiyonu (Mechanical Resonance Absorption, MRA) ve bu sayede transferini 
sağlamak, mekanik absorpsiyon ile hareket ve enerjinin düzlem-içi (in-plane) ve 
düzlem-dışı (out-of-plane) doğrultularda iletim performansını gözlemleme ve ölçme 
suretiyle karakterize etmek, bu transferin maksimum seviyede gerçekleştirilebilmesi 
için gerekli optimum mesafe ve boyutları belirlemek, ve sözkonusu hareket ve enerji 
transferinin kontrolünü gerçekleştirebilmek için muhtemel müdahale biçimlerini 
belirlemek hedeflenmiştir. 

Tez kapsamında ankastre kirişlerin birbirlerine göre mesafeleri, ve boyutları 
dolayısıyla rezonans frekansları da değiştirilerek mesafe ve kiriş geometrilerinin 
performans üzerindeki etkileri çalışılmış ve optimum enerji transferi için en uygun 
kesit geometrileri ve kirişler arası mesafeler belirlenmiştir. Büyük oranda düzlem-içi 
hareket aktarımı çalışılması ile birlikte, düzlem-dışı aktarıma dair en temel anlamda 
enerji transferi de incelenmiştir. İlk olarak FEA tabanlı analiz programlarında 
simülasyon yoluyla kirişlerin doğal frekansları ve çalışma parametreleri belirlenmiştir. 
Farklı kiriş geometrisi ve konumlama mesafeleri için FEA analizleri tekrarlanarak bu 
parametrelerin hareket ve enerji transferi üzerindeki etkileri nümerik olarak tespit 
edilmiştir. Bu çalışma ile üzerinde herhangi bir tahrik elemanı yeralmadan tahrik 
edilmek istenen sistemler, fiziksel temas olmadan (non-contact), hava molekülleri 
üzerinden hareket ve enerji transferi sağlanarak tahrik edilebilecektir. Böylelikle 
sistemler üzerinde temaslı tahrikle ilgili problemler ortadan kaldırılmış, üretimlerinde 
ve karakterizasyon testlerinde büyük kolaylıklar sağlayacağı düşünülmektedir. 

Tezin birinci bölümünde, çalışmanın amacı, kapsamı ve çözüm aşamaları hakkında 
kısaca bilgiler verilerek, Literatür Çalışması başlığı altında tez konusu ile ilişkili olan 
Mikro-Elektro-Mekanik Sistemler (MEMS), mikro ve nano boyutta titreşim, yüzey 
akustik dalgalar (Surface Acoustic Wave, SAW), hareket ve enerji transferi ve 
Mekanik Rezonans Absorpsiyonu (Mechanical Resonance Absorption, MRA) 
konularına dair yapılan çalışmalara değinilmiştir.  

İkinci bölümde, ilk olarak Euler Bernoulli, Rayleigh ve Timoshenko Kiriş 
Teorileri’nin genel formları hakkında bilgi verilmiştir. Ardından tek ve çok serbestlik 
dereceli sistemler için titreşim eşitlikleri anlatılarak kirişlerde eğilme titreşiminin ve 
doğal frekans değerlerinin  analitik hesaplanması için gerekli formülasyonların elde 
edilişi gösterilmiş ve farklı sınır şartları için, doğal frekans değerlerinin 
hesaplanmasında kullanılan βnL değerleri sıralanmıştır. 

Üçüncü bölümde, sonlu elemanlar yönteminden kısaca bahsedilerek sonlu elemanlar 
analizinde kullanılan eleman tipleri hakkında kısaca bilgi verilmesinden sonra 
akışkan-katı etkileşimi açıklanarak akustik dalga ifadesi sunulmuştur. Ardından MRA 
yardımı ile ankastre kirişler arasındaki hareket ve enerji transferinin sonlu elemanlarda 
simule edilmesi için yaygın bir sonlu elemanlar yazılımı olan ANSYS Inc., ABD 
programında havanın akustik özellik göstermesi için tanımlanan akustik eleman tipleri 
ve bu eleman tiplerine gerekli ortam özellikleri tanımlanması için kullanılan anahtar 



xxiii 
 

program kodları kısaca açıklanmıştır. Bu bölümde son olarak, oluşturulan hava 
ortamının, sonsuz bir ortam gibi davranması ve hedef kirişin oluşturduğu akustik 
dalgaları sönümleyerek geri-yansımasının engellenmesi için kullanılan absorpsiyon 
katmanı (Perfectly Matched Layers, PML)’nın sönümleme işlemi ve akustik 
elemanlarda özellik olarak tanımlanması anlatılmıştır. 

Dördüncü bölümde, ilk olarak kirişler arasındaki hareket ve enerji transferinin 
incelenmesinde kullanılacak kirişlerin kesit geometrilerinin gösterimi, birbirlerine 
göre konumlandırılmaları, uygulanan kuvvet ve kuvvetin uygulanma doğrultusu ile 
tahrik edilen ve enerjinin aktarıldığı kirişlerin gösterimi gibi çalışmanın ilgili kavramı 
açıklanmıştır. Ardından FEA yazılımında bu etkileşimin modellenmesi malzeme 
değerlerinin girilmesi, hava elemanına akustik eleman tipinin tanımlanması, kirişler 
ve hava arasındaki akışkan-katı etkileşiminin sağlanması için kullanılması gereken 
program kodları açıklanmıştır. 

Beşinci bölümde, enerji transfer oranları, viskoz sönüm oranlarının ihmal edildiği ve 
dahil edildiği durumlar olmak üzere farklı kiriş mesafeleri için sayısal olarak çalışılmış 
ve elde edilen sonuçlar iki kısımda sunulmuştur. İlk kısımda, enerji transfer oranları 
kare ve dikdötrtgen şekilli olmak üzere iki farklı kesit geometrisi üzerinde, düzlem-içi 
ve düzlem-dışı olmak üzere iki farklı yerleşim durumunda ve farklı geometrik boyutlar 
için farklı mesafe değerlerinde rezonans frekansı bölgesi etrafındaki bir bantta 
çalışılmıştır. İkinci kısımda ise ilk kısımda elde edilen bilgiler doğrultusunda sadece 
düzlem-içi yerleştirilmiş dikdörtgen kesitli kirişler arasındaki mesafeye bağlı enerji 
transfer oranları viskoz sönüm etkisi altında incelenmiş ve elde edilen sonuçlar 
sunulmuştur. 

Tezin altıncı bölümünde ise yapılan çalışmalar sonucunda elde edilen veriler 
değerlendirilerek mesafe ve kiriş geometrilerinin performans üzerindeki etkileri ve 
optimum enerji transferi için en uygun kesit geometrileri ve kirişler arası mesafeler 
belirlenmiştir. 
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1.  INTRODUCTION 

1.1 Purpose of Thesis 

In this thesis, a novel technique for non-contact motion and energy transfer between 

micro/nano-scale both end-fixed cantilever beams at high efficiency via Mechanical 

Resonance Absorption (MRA) is presented. MRA-based motion and energy transfer 

has already been carried out on macro-scale structures, however, low transfer 

performance due to large size and distance uses is observed. Despite low performance 

levels at macro-scale, cost-effective devices transferring motion and energy at high-

efficiency when MRA on micro/nano-scale structures is used are achievable. Those at 

micro/nano-scale dimensions have such advantageous properties as high-speed and 

high actuation acceleration strength, less space, less energy consumption, and mass 

production due to negligible levels of volumetric forces. Towards the aforementioned 

goal, forced oscillations at resonance between two doubly-clamped micro/nano-scale 

identical beams located in the vicinity using Mechanical Resonance Absorption 

(MRA) is utilized for enabling remote mechanical energy transfer in air. In order to 

characterize quality of the transfer, resonating beam dimensions and distances, in-

plane and out-of-plane transmission directions, and effect of damping by the 

environment are comprehensively investigated. 

1.2 Literature Review 

The famous physicist Richard Feynman suggested the idea that very small-scale 

apparatus and systems produced by evaporating and collecting materials are possible 

first in 1959 [1]. In this sense, Micro-Electro-Mechanical Systems (MEMS) have 

subsequently emerged and developed confirming the vision provided by Feynman as 

a science investigating small-scale electro-mechanical setup and systems. Research on 

micro/nano-scale structures is indeed spreading day-by-day. Since the volume force in 

micro/nano-scale systems is at significantly low levels compared to that in larger 

systems, micro/nano-systems can move mechanically faster and with high 
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acceleration, are compact, and provide energy savings [2]. Hence, MEMS has 

applications in many fields such as ink printers, airbags, bolometers, pressure gauges, 

distance meters, micro/nano-filters and resonators. 

One of the major issues studied by a large number of research groups is conceptual 

and practical mechanical vibration and resonance. A large number of researchers have 

targeted miniaturized structures at micro/nano-scales, which has given rise to 

production of many new mechanical and electronic devices [3-16]. Among such 

studies are those focusing on micro/nano-scale resonators, filters and sensors working 

based on the principle of spectral response change [4-9]. 

Since they can resonate at very high frequency resulting mass sensitivities, 

micro/nano-scale cantilever beams are frequently used in the design of miniature 

resonators. In addition, the fact that classical theory for macro-scale is insufficient to 

identify the mechanical performance of beams is understood [10]. Therefore, 

researchers have sought such other issues as the effect of the geometric boundary 

conditions and material [5], and non-linear effect on frequency in their studies [11]. A 

number of research groups also investigated the effects on the frequencies of nano-

scale systems of change in the geometry of the structure and heat changes [12,13]. 

Another research group have explained vibration and stability analysis of fluid passing 

through the tubular micro/nano-beams by the theory of non-domestic elasticity [14]. 

Furthermore, they have observed the behavior of vibration and the fundamental 

frequency of single-layer grapheme structures with the theory of non-domestic 

elasticity, and they have demonstrated that it is possible the use of grapheme-based 

structures as a resonator [15]. In addition to these studies, some studies are continued 

such as, characterization of an electrostatically coupled oscillator MEM filter [7], 

measurement and vibration analysis in plane and out-of-plane of MEMS resonators 

[6], dynamics of mechanically and electrostatically coupled microcantilevers [16]. 

Another important issue is Surface Acoustic Waves (SAW) when we consider in the 

vibrations and waves topics. For over thirty years, the effects of surface acoustic wave 

devices is used for electrical signal processing as the basic principle [17]. The surface 

acoustic wave devices are not only used in the signal processing but also many areas 

such as telecommunications industry due to their properties as high performance, small 

size and high reproducibility, and also are used as pressure sensor, temperature sensor, 
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sensor applications such as biosensors and mass sensors due to the high accuracy with 

time and crystal-stability [17, 18, 19]. 

Working principle of Surface Acoustic Wave devices is very simple as scope. An 

acoustic wave confined on the surfaces of the bottom layer materials, is generated and 

spread. If any object is located on the same surface, this object will cause change on 

the wave properties. SAW devices work by ground on this change on wave properties 

[20]. Surface acoustic waves are affected sensitively from change in physical and 

chemical properties of the active layer on the crystal surface [21]. Surface molecules 

also affects the propagation of surface acoustic waves. Their circuit elements are 

formed to measure these effects depending on change in the resonance frequency, 

amplitudes, or change in phase angles of the surface acoustic wave [20].  

When we investigate studies done on surface acoustic wave issue, Wixforth and 

Kothaus have examined between two dimensional electron system and surface 

acoustic wave on the heterogeneous mixture at high magnetic field and low 

temperature. They have demonstrated that strong quantum oscillations formed when 

the sound velocity and sound described quantitatively the interaction between two-

dimensional electron system and the surface acoustic waves was examined [22]. Walsh 

et al. have developed immunity sensor using a surface acoustic wave device with two 

orbits [23].  

Jakubik et al. have presented a double-layer structure in a surface acoustic wave sensor 

system for the detection of hydrogen. They have also reported that sensibility is 

influenced from changes in temperature and decrease with the increase of the 

temperature [24]. A group of researcher has tried identifying wave phase velocities 

and electromechanical coupling constant by developing a model to describe the wave 

propagation of surface acoustic, and they have demonstrated that wave velocities can 

reach up to 9500 m/s [19]. Springer et al. have expressed surface acoustic wave sensors 

can be used as completely passive and wireless questionable in many enemies 

(harmful) environment [18].  

Another widely studied field is macro-dimensional structures of energy conversion 

and energy transfer between the structures. In this regard, energy transfer may be 

carried out to several methods. One of these methods is the mechanical energy 

coupling based on the mechanical resonance absorption. Hollweg has presented a 



4 

mechanical model for resonance absorption, and shown sound waves collected in the 

same direction when the system is running [25]. 

Powell et al. have investigated the dielectric and mechanical absorption mechanisms 

for time and frequency domain transformation models [26]. Kerschen et al. have 

studied energy transfer between the two-coupled oscillators for two nonlinear 

connection status, such as the temporary orbital bridge and reproduction of resonance, 

and expressed that the energy is always transferred irreversibley from linear oscillator 

to the nonlinear-coupled oscillator [27]. 

In another study, Carcaterra and Akay have observed that an important part of the 

energy in start oscillator may be transferred to other groups without having to turn 

back to the starting oscillator, and energy will remain there [28]. Likewise, they have 

studied smaller sized resonator placed on the main body in a specific frequency band 

in macro-dimensional structures in order to ensure energy equipartition but it is still 

macro-scale [29, 30 and 31]. In this study, motion and energy transfer are limited with 

the magnitude of natural frequency and the distribution patterns of resonators mounted 

on the main body. Motion and energy are transferred by tally with natural frequencies 

of used a certain number of resonators and discrete from the main body. The results of 

these studies are used in order to absorb vibration in different transportation vehicles 

[30, 31]. 

Understanding and controlling nonlinear coupling between vibrational modes is 

critical for the development of advanced nanomechanical devices; it has important 

implications for applications ranging from quantitative sensing to fundamental 

research. However, achieving accurate experimental characterization of nonlinearities 

in nanomechanical systems (NEMS) is problematic. Matheny et al. have described an 

experimental protocol and a highly linear transduction scheme, specifically designed 

for NEMS, that enables accurate, in situ characterization of device nonlinearities. By 

comparing predictions from Euler−Bernoulli theory for the intra- and intermodal 

nonlinearities of a doubly clamped beam, we assess the validity of our approach and 

find excellent agreement [32]. 
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Villanueva et al. have presented the first highly controlled measurements of the 

nonlinear response of nanomechanical cantilevers using an ultralinear detection 

system. This is performed for an extensive range of devices to probe the validity of 

Euler-Bernoulli theory in the nonlinear regime. They found that its predictions deviate 

strongly from their measurements for the nonlinearity of the fundamental flexural 

mode, which show a systematic dependence on aspect ratio (length/width) together 

with random scatter. This contrasts with the second mode, which is always found to 

be in good agreement with theory. These findings underscore the delicate balance 

between inertial and geometric nonlinear effects in the fundamental mode, and 

strongly motivate further work to develop theories beyond the Euler-Bernoulli 

approximation [33]. 

Karabalin et al. have reported the first controlled measurements of stress-induced 

change in cantilever stiffness with commensurate theoretical quantification. 

Simultaneous measurements are also performed on equivalent clamped-clamped 

beams. All experimental results are quantitatively and accurately predicted using 

elasticity theory. They have also presented conclusive experimental evidence for 

invalidity of the longstanding and unphysical axial force model, which has been widely 

applied to interpret measurements using cantilever beams [34]. 

Husain et al. have presented the fabrication and measurement of a platinum nanowire 

resonator, 43 nm in diameter and 1.3µm in length as seen in Fig. 1.1. This device, 

among the smallest NEMS reported, has a fundamental vibration frequency of 105.3 

MHz, with a quality factor of 8500 at 4 K. Its resonant motion is converted by a 

technique that is well suited to ultra-small mechanical structures [35]. 

 

Figure 1.1 : SEM image of the suspended nanowire device, 1.3 mm long and 43 nm 
in diameter. b) Measurement circuit used for magnetomotive drive and 
detection [35]. 
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Feng et al. have studied the characteristic of the synchronization of mechanically 

coupled microcantilevers for increasing the sensitivity of the resonant sensors based 

on synchronization. Synchronizations of coupled cantilever structures by piezoceramic 

actuation were observed and the phase noise of the cantilever could be decreased. The 

frequency response signal was doubled from the low-frequency cantilever to the high-

frequency cantilever by synchronization while the frequency fluctuation was almost 

the same, and the frequency fluctuation in coupled cantilevers can be decreased under 

synchronization. It is possible to enlarge the frequency response signal from the low-

frequency cantilever to the high-frequency cantilever based on this kind of 

superharmonic synchronization while the frequency fluctuation was not amplified for 

resonant sensing applications. The resonant frequency shift measurement under 

magnetic force was achieved. The frequency shift of the low-frequency cantilever 

under external force can be enlarged by the coupled high-frequency cantilever based 

on synchronization [36]. 

 

Figure 1.2 : Optical micrograph of typical mechanically coupled resonators [36]. 

Perisanu et al. have presented an experimental study of the electrostatic coupling 

between the mechanical resonances of two nanowires or two nanotubes as shown in 

Fig. 1.3. This coupling occurs when the Eigen frequencies of the two resonators are 

matched by electrostatic tuning and it changes from a weak coupling to a strong 

coupling regime as the distance between the cantilevers is decreased. Linear coupling 

theory is shown to be in excellent agreement with the experimental data [37]. 
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Figure 1.3 : Electrostatically coupled nanocantilevers [37]. 

We are also observed the movement and energy transfer with Mechanical Resonance 

Absorption (MRA) in mechanisms in the hearing of humans and animals. If we 

examine in some detail the human ear and the hearing system. Vibration waves in 

particular frequencies, which make up sounds emerging from any source are moved 

up to our ears by air molecules. Waves of sprawling vibration   goes the external ear 

and the way of the ear and vibrate eardrum as seen in figure1.4. Vibrating the eardrum 

transfer these vibration waves to perilymph fluid in cochlear situated in the inner ear 

by means of the hammer, Anvıl and stirrup, which acts as amplifier and located in the 

middle ear. Waves of vibration occurring in the fluid moves through the cochlear and 

vibrates the basilar membrane located in the cochlear [38]. 

 

Figure 1.4 : Schematic illustration of the human ear [38]. 



8 

Frequency coding takes place in organ of the cochlear. As shown the basal membrane 

diagram in Figure 1.5, coming vibrations of different frequencies cause the maximum 

amplitude vibrations at different points along the basal membrane with MRA. 

Vibration waves, generated by low frequency sounds in the cochlea fluid, will lead to 

displacement with the largest amplitude at the top of basal membrane (apex, Figure 

1.5). High-frequency sounds constitute vibration waves madding displacement with 

the largest amplitude in the bottom of the basement membrane (base, see Figure 1.5). 

If signals consists of multiple frequencies, these moving waves will form the 

maximum displacement at different points along the membrane with MRA. 

Cochlear behaves as a frequency encoding mechanism of hearing system by 

decomposing the complex frequency of sound waves. Each location or place of over 

the basilar membrane gives the best answer for a specific frequency between 20-20000 

Hz. A certain position on the basal membrane vibrates with maximum amplitude 

depending on the frequency of the drive. Hair cells bent by displacement occurring in 

the membrane incentives to neighboring nerve fibers arranged according to very 

sensitive frequencies. Thus, messages are converted into electric signals and 

transmitted to the brain. Understanding of sound is provided by processing these 

signals in the brain [38]. 

 

Figure 1.5 : Basilar membrane diagram showing the locations maximum   
displacement in the different sinusoidal frequency responses basilar [38]. 

All of the abovementioned methods focus on the macro-scale mechanical structures, 

but there is not any studies about motion and energy transfer between nano-scale 

structures (e.g. nano-scale cantilever beams). Actually, in case of using MRA in the 
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micro / nano-sized structures, motion and energy losses taking place during the transfer 

will be much smaller depending on small dimensions compared to the macro-scale 

structure and to use structures in close proximity to each other. Therefore, the use of 

MRA in miniature sizes can occur much more effective and functional way. Based on 

this motivation, the first time in this project, study of energy transfer between nano-

scale cantilever beams with the help of the resonance frequency is recommended. This 

proposed project will be carried out numerical. Thereby, energy transfer between 

nano-scale cantilever beams will be observed with the mechanical energy coupling 

without contact.  

In this study, it are attempted to give a new technique to literature by studying on basic 

descriptive parameters of the movement and the energy and controlling of the 

efficiency or making adjustable.   
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2.  BEAM THEORIES 

2.1 Introduction 

In this chapter, first, static and dynamic behavior of beams are explained by the general 

forms of Euler Bernoulli, Rayleigh and Timoshenko Beam Theories, and their 

distinction and reasons for preference are described. Then, free and forced vibration 

equations and formulations used for calculation of the transverse vibrations of beams 

are mentioned to examine their dynamic behavior. Calculation of analytical natural 

frequencies is presented. The obtainment of βnL values utilized in the calculation of 

natural frequency are shown for doubly-clamped beams in detail, and these values 

achieved under different boundary conditions are also submitted in the table. 

2.2 Static Analysis 

2.2.1 Euler-Bernoulli Theory 

The Euler-Bernoulli beam model includes the strain energy due to bending and kinetic 

energy due to lateral displacement. In this theory, the inertial force due to transverse 

translation is taken into account, and those due to shear deflection and rotation are 

neglected. Since shear is neglected, rotation of the differential element becomes small 

compared to both its translation and the angular distortion. The cross-sections remain 

in the plane and orthogonal to the mid-plane of the beam after deformation.  

Newton’s Second Law is used to derive the equation of motion. The equation of 

motion can also be obtained using Hamilton’s variational principle [39] based on the 

beam and its differential element as shown in Figs. 2.1a and 2.1b, respectively. 

In Fig. 2.1, M(x,t), Q(x,t), f(x,t), m(x), E denote the bending moment, the shear force, 

the transverse force density, the mass per unit length, and the modulus of elasticity, 

respectively. 
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Figure 2.1 : a) Beam in bending. b) Free-body diagram for an element [40]. 

The equilibrium equation for the forces in the vertical direction of the beam in bending, 

hence, can be expressed as: 
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Moreover, assuming the mass moment of inertia and the angular acceleration of the 

element are negligible, the equilibrium equation for the moments of the beam element 

in bending is given by: 
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By ignoring the second-order dx terms in Eq. (2.2), inserting it in Eq. (2.1), dividing 

Eq. (2.1) by dx, and canceling all appropriate terms we end up with the following 

equation: 
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Equation (2.3) relates the bending moment M(x,t) and transverse force density f(x,t) to 

the bending deflection of w(x,t). M(x,t) can also be written as a function of w(x,t) in 

the form of: 
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∂

∂
−=   (2.4) 

where I(x) is the moment of inertia along the length of the beam. By placing Eq. (2.4) 

in Eq. (2.3), we can obtain a relationship between the displacement and transverse 

force density alone, expressed as: 

2

2

2

2

2

2 ),(
)(),(

),(
)(

t

txw
xmtxf

x

txw
xEI

x ∂

∂
=+









∂

∂

∂

∂
−  ,  0<x<L (2.5) 

Equation (2.5) is a fourth-order partial differential equation governing the bending 

vibrations of beams. The equation of motion with boundary conditions form a 

boundary value problem solvable by the method of separation of variables. To 

complete the boundary value problem, two boundary conditions for each end of the 

beam have to be specified. These boundary conditions can be classified as essential 

and natural ones. For a beam governed by a fourth-order differential equation, essential 

boundary conditions consist of equations containing the displacement function and its 

first derivative, whereas the natural boundary conditions consist of the second and 

third derivative. 

For fixed ends, the deflection and its slope are zero causing the essential boundary 

conditions to be: 

0),( =txw ,    at  0=x  and Lx =  (2.6) 

0=
∂

∂

x

y
,    at  0=x  and Lx =  (2.7) 
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The constrained equations satisfying these classical boundary conditions are 

homogenous. There are several other types of beam-ends for which various boundary 

conditions can be written. For those with sliding ends, restrained by translational or 

rotational springs, and beams resting on elastic foundations, other boundary equations 

arise. 

In the absence of external excitations, the beam is vibrating freely and the term 

corresponding to the transverse force density f(x, t) in the governing partial differential 

equation is set to zero, so that Eq. (2.5) reduces to: 

( ) 0
),(

)(
),(

2

2

2

2

2

2

=








∂

∂

∂

∂
+

∂

∂

x

txw
xEI

xt

txw
xm   

Lx <<0  

(2.8) 

By taking the terms m(x) and EI(x) as constants for uniform beams, Eq. (2.8) is 

reduced to: 

0
),(),(

2

2

4

4

=
∂

∂
+

∂

∂

t

txw

EI

m

x

txw
     Lx <<0  (2.9) 

Equation (2.9) can be rewritten as: 

0
),(1),(

2

2

4
0

4

4

=
∂

∂
+

∂

∂

t

txw

Dx

txw
      (2.10) 

 
m

EI
D =4

0      (2.11) 

The next step is to apply separation of variables to the term w(x,t) in the spatial variable 

x and time t. Because the beam is assumed to do a synchronous motion during 

vibration, its shape or profile remains, same except the profile amplitude change with 

time under vibration. 

If we assume that the displacement changes as � = ��(��	
��
), where wk  is constant 

wave number ( wk =2π/wavelength), and ωn is the natural frequency of vibration, then 

the dispersive relationship between wk and ωn may be given as follows [40]: 
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4
04

0

2
4

k
D

k n
w ==

ω
      (2.12) 

where 0k  is the wave number for Euler-Bernoulli rod. 

The degree of accuracy of the theory may be evaluated by its dispersive curve wk

versus nw , and its comparison with the exact dispersive curve. The corresponding 

curve to a dispersive equation is also referred to as propagation constant-frequency 

curve. The elementary Euler-Bernoulli Beam Theory is valid if the ratio between the 

length of the beam and its depth is relatively large [39]. This theory, however, tends to 

slightly overestimate the natural frequencies [41]. 

2.2.2 Rayleigh Theory 

This theory includes the effect of rotary inertia of the beam cross-section, and provides 

an improvement to Euler-Bernoulli Beam Theory [40]. It is assumed that the cross-

sections of the beam remain planar and orthogonal to the neutral axis (midplane) of 

the beam. 

The governing differential equation of transverse vibration according to Rayleigh 

Theory is given as follows: 

0
),(1),(1),(

22

4

22

2

4
0

4

4

=
∂∂

∂
−

∂

∂
+

∂

∂

tx

txw

ct

txw

Dx

txw

b

 (2.13) 

ρ

E
cb =2

 
(2.14) 

Where �� is the longitudinal wave velocity in the Euler-Bernoulli rod and ρ is density. 

The third term of the left side of Eq. (2.14) represents the effect of rotary inertia. The 

dispersive equation is given as follows [40]: 

4
0

422
2/ 42 kkkk bbw +±=  (2.15) 

2

2

b

n
b

c
k

ω
=  

(2.16) 
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where bk  is the longitudinal wave number and 0k is the wave number for Euler-

Bernoulli beam as aforementioned. 

2.2.3 Euler-Bernoulli Modified Theory or Shear Model 

In Euler-Bernoulli Modified Theory, also called as Shear Model, the effect of shear 

distortion is taken into account but the effect of rotational inertia is neglected. In this 

case, as seen in Fig. 2.2, the cross-sections of the beam remain planar but not 

orthogonal to the neutral axis because of the shear deformation. 

The governing differential equation for transverse vibration of the beam is given by: 

0
),(1),(1),(

22

4

22

2

4
0

4

4

=
∂∂

∂
−

∂

∂
+

∂

∂

tx

txw

ct

txw

Dx

txw

t

 (2.17) 

ρ

G
ct =2

 
(2.18) 

where G is the shear modulus, which replaces the elasticity modulus E in the 

differential equation of Rayleigh Theory, tc is the velocity of the shear waves in the 

thin rod.  

The dispersive relationship is given by: 

4
0

422
2/ 42 kkkk ttw +±=  (2.19) 

 

2

2

t

n
t

c
k

ω
=  (2.20) 
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Figure 2.2 : Deformation of a typical transverse normal line in various beam 
theories[43]. 

2.2.4 Timoshenko Theory 

In elementary Euler-Bernoulli Beam Model, the cross-sectional dimensions of the 

beam are assumed to be small compared to its length so that the rotary inertia and shear 

deflection are neglected. 

However, the effect of cross-sectional dimensions on the vibration frequency becomes 

important when studying higher frequencies vibrations, if the beam is subdivided into 

shorter portions. Therefore, in Timoshenko Theory, the effect of shearing force, rotary 

inertia and their combined effects are added to the Euler-Bernoulli Beam Model [42]. 

Because the beam element does not only undergo translational motion during 

vibration, but also the effect of rotation is taken into account by modification of the 

corresponding terms. The moment exerted by inertial forces about the axis through the 

center of gravity of the beam element in Fig. 2.1b, is given by: 
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dx
tx

w
I

2

3

∂∂

∂
ρ       (2.21) 

such that the first derivative of bending moment is given by: 










∂∂

∂
−−=

∂

∂
dx

tx

w
IQ

x

txM
2

3),(
ρ       (2.22) 

If we differentiate Eq. (2.4) twice with respect to x, then: 

4

4

2

2 ),(
)(

),(

t

txw
xEI

x

txM

∂

∂
=

∂

∂
 (2.23) 

By inserting Eq. (2.22) into Eq. (2.23): 

22

4

2

2

4

4 ),(),(),(
)(

tx

txw
I

t

txw
m

x

txw
xEI

∂∂

∂
+

∂

∂
−=

∂

∂
ρ  (2.24) 

Because the slope of the deflection curve depends on the rotation of the cross-section 

as well as on the shear, more accurate results for vibration are obtained if the deflection 

due to shear is also taken into account. If the angle of beam rotation, when the shear 

force is neglected, is denoted by ψ and the shear angle of the cross-section of the beam 

is φ, then the total angle is expressed as: 

ϕψ +=
∂

∂

x

txw ),(
      (2.25) 

The bending moment and shear force are: 

x

tx
xEItxM

∂

∂
=

),(
)(),(

ψ
  (2.26) 

AGtx
x

txw
kAGkQ 








−

∂

∂
== ),(

),('' ψψ   (2.27) 

In the equations, k ′  represents a numerical factor that depends on the shape of the 

cross-section and also called as shear coefficient.  
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For a rectangular cross-section, it is taken as k ′ = 2/3 [42]. The final form of the 

governing differential equation of Timoshenko Theory for translational vibration of 

the beam is given by: 

0
),(

'

),(
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),(),(
)(

4

4

22
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2
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∂
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+

∂∂
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xEI

ρ
ρ
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ρρ

 (2.28) 

In another formulation, Eq. (2.28) can be rewritten as: 
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 (2.29) 

The fundamental difference between Bress and Volterra Theories on one hand and the 

Timoshenko Theory on the other is that in Timoshenko Theory the correction factor is 

introduced in the initial equations, whereas in other theories it appears as a result of 

shear and rotary effects. In Timoshenko Theory, constant state of transverse shear 

strain and thus constant shear stress with respect to the thickness coordinate is 

included. Therefore, the Timoshenko Beam Theory requires shear correction factor 'k  

to compensate the error due to the constant shear stress assumption. The dispersive 

relationship, then, can be stated as: 

4
0

22
2

2
22

2/1 4
''

2 k
k

k
k

k

k
kk t

b
t

bw +







−±+=  (2.30) 

Timoshenko Model describes the vibration of short beams or high modes of a thin 

beam with high precision [41]. 
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2.3 Dynamic Analysis 

2.3.1 Vibration of a Single Degree-of-Freedom (DOF) System 

The number of degrees of freedom of a vibrating system is defined by the minimum 

number of displacement components required to describe the configuration of the 

system during vibration. The essential features of vibrating system include (1) a mass 

m producing an inertial force ��� , (2) stiffness of a spring k producing a restoring force 

kx, and (3) a damping mechanism that dissipates the energy. If the equivalent viscous 

damping coefficient is denoted as c, the damping force produced is ��� [44]. 

2.3.1.1 Free Vibration 

In the absence of damping, the equation of motion of a single degree-of-freedom 

system is given by; 

)(tfkxxm =+&&  (2.31) 

where f(t) is the force acting on the mass and x(t) is the displacement of the mass m. 

The free vibration of system, in the absence of forcing function f(t), is governed by the 

equation; 

0=+ kxxm &&  (2.32) 

The solution of Eq. (2.32) is; 

t
x

txtx n

n

n ω
ω

ω sincos)( 0
0

&
+=  (2.33) 

where �� is the natural frequency of the system, and is given by; 

m

k
n =ω  (2.34) 

�� = �(� = 0) is the initial displacement and ��� = �	(
��)

�

is the initial velocity of the 

system. Eq. (2.34) can also be expressed as; 

)cos()( φω −= tAtx n  (2.35) 

)sin()( 0φω += tAtx n  (2.36) 
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where; 

2/12
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0



















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ω

&
 (2.37) 

nx

x

ω
φ

0

01tan
&−=  

(2.38) 

0

01
0 tan

x

x n

&

ω
φ −=  

(2.39) 

The equation of motion for the vibration of a viscously damped system is given by; 

)(tfkxxcxm =++ &&&  (2.40) 

By dividing throughout by m, Eq. (2.40) can be rewritten as; 

)(2 2
tFxxx nn =++ ωζω &&&  (2.41) 

where ζ is the damping ratio, given by; 

cn c

c

m

c
==

ω
ζ

2  (2.42) 

where cc  is known as the critical damping constant :  

kmmc nc 22 == ω  (2.43) 

and 

m

tf
tF

)(
)( =  (2.44) 

The system is considered to be underdamped, critically damped, and overdamped if 

the value of the damping ratio is less than 1, equal to 1, and greater than 1, respectively. 

The free vibration of a damped system is governed by the equation, 

02 2 =++ xxx nn ωζω &&&  (2.45) 
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The free vibration response of the system [i.e., the solution of Eq. (2.45)], with 

different levels of the damping can be expressed as follows: 

1. Underdamped system (ζ < 1): 








 +
+= −

t
xx

txetx d

d

n
d

tn ω
ω

ζω
ωζω sincos)( 00

0

&
 (2.46) 

where )0(0 == txx is the initial displacement and dttdxx /)0(0 ==&

is the initial velocity, and dω  is the frequency of damped vibration given by; 

 ( )21 ζωω −= nd  (2.47) 

2. Critically damped system (ζ = 1): 

( )[ ] t

n
netxxxtx

ωω −++= 000)( &  (2.48) 

3. Overdamped system (ζ >1): 

( ) ( ) tt nn
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where 

( )( )
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2
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n xx
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 (2.50) 
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n xx
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(2.51) 

2.3.1.2 Free Vibration Under Harmonic Force 

For an undamped system subjected to the harmonic force tftf ωcos.)( 0= , the 

equation of motion is [44]; 

tfkxxm ωcos.0=+&&  (2.52) 
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where 0f  is the magnitude and  ω  is the frequency of the applied force. The steady-

state solution or the particular integral of Eq. (2.52) is; 

tXtx p ωcos)( =  (2.53) 

where 

22
0

)/(1 n

st

mk

f
X

ωω

δ

ω −
=

−
=  (2.54) 

Denotes the maximum amplitude of the steady-state response and  

k

f
st

0=δ  (2.55) 

Indicates the static deflection of the mass under the force 0f . The ratio  

2)/(1

1

nst

X

ωωδ −
=  (2.56) 

Represents the ratio of the dynamic to static amplitude of motion, and is called the 

amplification factor, magnification factor, or amplitude ratio. The general solution of 

Eq. (2.52) including the homogeneous solution and the particular integral becomes; 
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 (2.57) 

At resonance, 1/ =nωω , and the solution given by Eq. (2.57) can be expressed as; 

t
t

t
x

txtx n
nst

n

n

n ω
ωδ

ω
ω

ω sin
2

sincos)( 0
0 ++=

&
 (2.58) 

When a viscously damped system is subjected to the harmonic force,

tftf ωcos.)( 0= , the equation of motion becomes; 

tfkxxcxm ωcos.0=++ &&&  (2.59) 
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The particular solution of Eq. (2.59) can be expressed as; 

( )φω −= tXtx p cos)(  (2.60) 

where X is the amplitude and φ  is the phase  angle denoted by; 

( )[ ] ( )[ ] 2/1
222

2/1
2222
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(2.62) 

where 

k

f
st

0=δ              
n

r
ω

ω
=  (2.63) 

Indicates the frequency ratio, and 

nc m

c

mk

c

c

c

ω
ζ

22
===  (2.64) 

Represents the damping ratio. The variations of the amplitude ratio or magnification 

factor, 

( ) 222 )2(1

1

rr

X

st ζδ +−
=  (2.65) 

and the phase angle ratio, φ , given by Eq. (2.29), with the frequency ratio, r. 

The general solution of Eq. (2.59) including the homogeneous solution and the 

particular integral, in the case of an underdamped system, can be expressed as; 

)cos()cos()( 00 φωφωζω −+−= −
tXteXtx d

tn
 (2.66) 

2.3.2 Vibration of Multidegree-of-Freedom System 

A typical n-degree-of-freedom system is shown in Fig. 2.3a. For multidegree of 

freedom systems, it is more convenient to use matrix notation in expression of the 

equations of motion and describe the vibrational response. Let �� denote the 

displacement of mass mi measured from its static equilibrium position for i = 1,2,…,n. 
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The equation of motion of the n-degree-of-freedom system shown in Fig. 2.3a can be 

derived from the free-body diagram of the masses shown in Fig. 2.3b, and can be 

expressed in the matrix form as [44]; 

 

Figure 2.3 : a) An n-degree-of-freedom system.b) free-body diagrams of the masses 
[44]. 

[ ] [ ] [ ] fxkxcxm
rr&r&&r =++  (2.67) 

where���,���, and ���denote the mass, damping, and stiffness matrices, respectively: 
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The vectors��, ���  and ���  indicate, respectively, the vectors of displacements, velocities, 

and accelerations of the various masses, and f
r

 represents the vector of forces acting 

on the masses: 
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(2.71) 

where a dot over �� represents its time derivative. 

Note that the spring-mass-damper system shown in Fig. 2.3 is a particular case of a 

general n-degree-of-freedom system. In their general form, the mass, damping, and 

stiffness matrices in Eq. (2.67) are fully populated and can be expressed as; 
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Equation (2.67) denotes a system with n-coupled second-order ordinary differential 

equations. These equations can be decoupled using a procedure called modal analysis, 

which requires the natural frequencies and normal modes or natural modes of the 

system. To determine the natural frequencies and normal modes, the Eigen value 

problem corresponding to the vibration of the undamped system is to be solved [44]. 

2.3.3  Transverse (Bending) Vibration of Beams  

The equations of motion of a beam can be derived according to the Euler-Bernoulli, 

Rayleigh, and Timoshenko Theories. The Euler-Bernoulli Theory neglects the effects 

of rotary inertia and shear deformation, and is applicable to an analysis of thin beams. 

The Rayleigh Theory considers the effect of rotary inertia, and the Timoshenko Theory 

considers the effects of both rotary inertia and shear deformation. The Timoshenko 

Theory can be used for thick beams. The equations of motion for the transverse 

vibration of beams are in the form of fourth-order partial differential equations with 

two boundary conditions at each end. Possible boundary of the beam can involve 

spatial derivatives up to third order. In this section, the free vibration, including the 

determination of natural frequencies and mode shapes, is considered according to the 

Euler-Bernoulli Theory. When the deflection w(x,t) is assumed to be due to the 

bending moment only. Newton’s Second Law is applied to the free body diagram of 

an element of the beam shown in Fig. 2.3. The dynamic force equation in the lateral 

direction is [44]; 
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where m is the mass per unit length, and Q is the shear force. From strength of 

materials, it is known that the relation between bending moment and the shear force 

is; 

Q
x

M
=

∂

∂
 (2.77) 

also the beam curvature and the bending moment is related by; 

( )
M

x
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∂

∂
2

2 ,
 (2.78) 

where EI is the flexural stiffness of the beam. Combining the above relations, the beam 

equation for its lateral vibration is; 
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Solution of the fourth order partial differential equation will give deflection w(x,t) as 

a function of x and t. The vibration solution can be found by separation of variables 

as; 

( ) )().(, tqxtxw φ=  (2.81) 

Using Eq. (2.81) in Eq. (2.80) and rearranging yields, 
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Left side of the equation is only a function of x and the right side is only a function of 

t. Letting each side of the equation be - 2ω , where ω , natural frequency, is constant.  

Part dependent on x will give the following equation; 
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Similarly, from the t dependent part; 
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It can be shown from linear differential equations theory that the general solution will 

be in the following form; 

( ) )sincossinhcosh( 4321 xCxCxCxCx ββββφ +++=          (2.86) 

 (�) = (! cos �� + & sin ��) (2.87) 

The natural frequencies of the beam can be determined from Eq. (2.88) as,  

4
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ρ
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(2.88) 

The function ∅(�)is known as the normal mode or characteristic function of the beam 

and � is called as the natural frequency of vibrating beam. For any beam, there will 

be an infinite number of normal modes each with an associated natural frequency. The 

unknown constants, C1 to C4 in Eq. (2.86), and the value of β in Eq. (2.89) can be 

calculated by boundary conditions, and A and B can be calculated by initial conditions. 

If the natural frequencies and mode shapes of beams with a uniform cross section with 

different boundary conditions are examined, the common boundary conditions for the 

vibrating beam will be as given in Table 2.1. 

If the natural frequency of lateral vibration of a both-end-fixed uniform beam is 

determined, general solution for lateral vibration of a beam is; 

( ) )sincossinhcosh(, 4321 xCxCxCxCtxw ββββ +++=          (2.89) 

 *(! cos �� + & sin ��)  from Eq.(2.86)  

At the fixed end, the transverse displacement and the slope of the displacement are 

zero. Hence, the boundary conditions are; 
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0=x          ( ) 0,0 =tw           and            
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= 0     (2.90) 

Table 2.1 : Boundary conditions of beams. 

Boundary 
Conditions 

Deflection Slope Moment Shear 
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 When Eq. (2.89) is used, the boundary conditions in Eq.  (2.90) lead to, 

         31 CC −=           and                42 CC −=  (2.90) 

Rewriting the deflection with these relations, 
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At right end boundary conditions; 
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From these conditions, we get  
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Equations (2.96) and (2.97) denote a system of two homogeneous algebraic equations 

with C1 and C2 as unknowns. For a nontrivial solution of C1 and C2, we set the 

determinant of the coefficients of C1 and C2 in Eqs. (2.96) and (2.97) to zero in order 

to obtain, 

0
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)sin(sinh)cos(cosh
=

−+

−−

LLLL
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ββββ

ββββ
 

(2.95) 

or 

0)sin(sinh)cos(cosh 222 =−+− LLLL ββββ           (2.96) 

Equation (2.96) can be simplified to obtain the frequency e quation as, 

1coscosh =LL ββ           (2.97) 

This is a transcendental equation. If we let cos -. = �/ and 1 cosh -.⁄ = �3 the 

equation is satisfied at k1=k2. From the intersections as shown in Fig. 2.4. 

 

Figure 2.4 : βL values for double-clamped boundary conditions. 

Equation (2.93) gives, 
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If βnL denotes the n th root of the transcendental Eq. (2.97), the corresponding mode 

shape can be obtained by substituting Eqs. (2.90) and (2.98) into Eq. (2.89), 
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(2.99) 

The first four natural frequencies and the corresponding mode shapes for different 

boundary conditions are as shown in Fig. 2.5. 

 

Figure 2.5 : Mode shapes for different boundary conditions. 

Expressions of the vibrating beams with different boundary conditions are obtained by 

applying the same process as shown Fig.2.6. 
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Figure 2.6 : Expressions of the vibrating beams with different boundary conditions. 

The natural frequency of beams is calculated by the following formula below, in 

agreement with Eq. (2.88) as discussed before, when n is 1. 
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βnL values must be achieved in order to calculate the natural frequencies of systems. 

The necessary βnL values for beams with different boundary counditions are obtained 

through the equation number 2’s in Fig. 2.6, and they are listed in Table 2.2. 

Table 2.2 : Values of βnL for boundary conditions. 

End Conditions β1L β2L β3L β4L 

Both end fixed 4,73004 7,8532 10,9956 14,1372 

Both end free 4,73004 7,8532 10,9956 14,1372 

Left end fixed, right end 
simple support 

3,9266 7,0686 10,2102 13,5518 

Left end simple support, 
right end free 

3,9266 7,0686 10,2102 13,5518 

Both end simple 
supports 

3,1416 6,2832 9,4248 12,5664 

 Left end fixed, right end 
free 

1,8751 4,6941 7,8548 10,9955 

The natural frequencies of beams can be calculated using βnL values given in Table 

2.2, and density, cross-sectional area, Young's modulus and the moment of inertia of 

the beams in Eq. (2.100). 

2.4 Summary 

In this chapter, Bending Equation of Euler Bernoulli, Rayleigh and Timoshenko Beam 

Theories are discussed first. Then, vibration equations are described for single and 

multi-degrees of freedom systems, and derivation of analytical formulations required 

for the calculation of natural frequencies and bending vibrations in beams are shown. 

βnL values used in the analytical expression of natural frequencies are listed for 

various beam boundary conditions. 
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3.  FLUID STRUCTURE INTERACTION IN MICRO/NANO-SCALE 

CANTILEVER BEAMS FOR MRA VIA FINITE ELEMENT ANALYSIS 

3.1 Introduction 

Definitions required for numerical study of vibrational motion and energy transfer 

between micro/nano-scale doubly-clamped beams via MRA are presented in this 

section of the thesis. Finite Element Analysis and standard element types widely used 

in ANSYS FEA Software are briefly introduced first. Then, meticulous description of 

Acoustic Fluid-Structure Coupling in FEA is provided. Interaction processes in 

ANSYS are carried out in the Harmonic Analysis Module. Therefore, certain element 

types identified in ANSYS database for fluid-structure interaction in air depicting the 

acoustic feature are discussed. Finally, Perfectly Matched Layers, PML (Absorbing 

Layer) used to prevent return of vibration waves from outer-most surface of the model 

such that they behave as infinite air medium is presented. 

3.2 Finite Element Method 

Richard Courant used first the Finite Element Method (FEM) by separating system 

into triangular pieces in 1943. Over the years, and with the invention and advancement 

of computers, FEM has developed into a key and indispensable technology in the 

modelling and simulation of advanced engineering systems in various fields like 

housing, transportation, communications, and so on. In building such advanced 

engineering systems, engineers and designers go through a sophisticated process of 

modelling, simulation, visualization, analysis, design, prototyping, testing, and lastly, 

fabrication. It is important to note that much work is involved before the fabrication of 

the final product or system. This is to ensure the workability of the finished product, 

as well as cost effectiveness [45]. 
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FEM examines structures as compositions of a large number of small finite elements 

instead of use of large-scale solid objects where traditional methods require continuous 

mathematical equations. Therefore, FEM as a discrete approach also finds applications 

in such areas as structural analysis, fluid mechanics, vibration analysis, and so on. 

There are many benefits of FEM such as [46]; 

� Easy examination of complex shape geometries, 

� Suitability for various material characteristics, 

� Functionality in continuous, discontinuous and variable loads, 

� Simple definition of the boundary conditions in equations. 

Despite these benefits, there are some restrictions of FEM; 

� In general, large computational loads are of concern both in primary memory 

and processing time needs, 

� Reliable results cannot be achieved, unless proper decomposition of 

continuous media, or accurate definition of material parameters and all other 

input parameters are not realized. 

3.3 Commone Element Types used in FEM 

3.3.1 Three-Dimensional (3D) Beam Element 

3D Beam Element, as illustrated in Fig. 3.1, is a general-purpose 1D-like finite element 

type utilized in three-dimensional analysis, which is represented by two nodes in the 

space. Hence, it is also referred to as the Space Beam Element. On the other hand, the 

third node, coordinate system of the element, does not have a degree of freedom. 

Including both the translational and rotational axes systems at the two nodes, 12 

degrees of freedom exist. Element has the capacity to resist against forces from any 

direction or moment of rotation about any axis. Node coordinates, modulus of 

elasticity, shear modulus, cross-sectional area, moment of inertia, torsional constant 

and deformation factors perpendicular to the axis of the beam direction are needed to 

describe the elements [46]. 
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Figure 3.1 : Three-dimensional Beam Element. 

3.3.2 Constant Stress Triangular Element 

As shown in Fig. 3.2, Constant Stress Triangular Element is defined as having a 

constant thickness, and a total of six degrees of freedom, connecting the three-point 

nodes.  Its displacement field is linear along the edges and within the element. As the 

name refers already, the stress values are constant within its boundaries. Forces in the 

element are reduced as acting on the node points alone. Constant Stress Triangular 

Element type is most suitable when investigating small areas with stress gradient in 

finite element models. 

 

Figure 3.2 : Constant Stress Triangular Element. 
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Element displacement field is described as follows; 

yaxaav

yaxaau

654

321

++=

++=
          

(3.1) 

3.3.3 Linear Stress Triangular Element 

Unlike Constant Stress Triangular Element, as depicted in Fig. 3.3, Linear Stress 

Triangular Element has an additional node to the midpoints of the edges as well as the 

points of vertices. Thus, each Linear Stress Triangle Element has a total of six node 

points and 12 nodal degrees of freedom. Stress intensity varies linearly with the x and 

y coordinates in Linear Stress Triangular Element. This particular element type is very 

well suited to the analysis of the deflection and stress fields in models when structures 

exposed to bending. 

 

Figure 3.3 : Linear Stress Triangular Element. 

Element displacement field is described as follows; 

2
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+++++=

+++++=
          

(3.2) 

3.3.4 Double Linear Rectangular Element 

As shown in Fig. 3.4, another element type towards analysis of two-dimensional 

problems is Double Linear Quadrilateral Element. There are four nodes in the vertices 

of the element corresponding to a total of eight nodal degrees of freedom. The element 

has also four nodes in the midpoints of the edges. 
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The element is named as being double linear due to the multiplication two linear 

polynomials with u and v displacement equations. 

 

Figure 3.4 : Double Linear Quadrilateral Element. 

The displacement field for the four- node element is described as follows; 

xyayaxaav

xyayaxaau
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(3.3) 

3.3.5 Four-node Tetrahedral Element 

The Four-node Tetrahedral Element is the simplest three-dimensional element used in 

the analysis of solid mechanics applications. This element has four nodes each with 

only translational degrees of freedom in the nodal X, Y, and Z directions. A typical 

Four-node Tetrahedral Element is as shown in Fig. 3.5. 

 

Figure 3.5 : Four-node Tetrahedral Element. 
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The displacement fields for the Four-node Tetrahedral Element are provided in the 

following equations [47]; 

ZCYCXCCw

ZCYCXCCv

ZCYCXCCu
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(3.4) 

Solving for the unknown C-coefficients, substituting the result back into Eq. (3.4), and 

regrouping the parameters, we obtain; 

LKJI

LKJI

LKJI

wSwSwSwSw

vSvSvSvSv

uSuSuSuSu

4321

4321

4321

+++=

+++=

+++=

          

(3.5) 

The shape functions are; 
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where V, the volume of the tetrahedral element, is computed as; 
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The ,,,, IIII dcba … and 
Ld -terms are; 
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,,,, IIII dcba … and 
Ld -terms via similar determinants by rotating through the I, J, K, 

and L subscripts using the right-hand rule. 

3.3.6 Eight-node Brick Element 

The Eight-node Brick Element is three-dimensional used in the analysis of solid 

mechanics applications. There are eight nodes in the element each of which has only 

translational degrees of freedom in the nodal X, Y, and Z directions. Eight-node Brick 

Element is shown in Fig. 3.6. 

 

Figure 3.6 : Eight-node Brick Element. 

The element’s displacement field in terms of the nodal displacements and the shape 

functions can be written as; 
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3.3.7 Ten-Node Tetrahedral Element 

The Ten-node Tetrahedral Element, as shown in Fig. 3.7, is a higher order version of 

the three-dimensional linear Four-node Tetrahedral Element, providing more accurate 

results in applications with curved boundaries. 
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Figure 3.7 : Ten-node Tetrahedral Element. 

For applications of solids, the displacement field is represented by; 
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3.3.8 Twenty-Node Brick Element 

The Twenty-node Brick Element, as depicted in Fig. 3.8, is a higher order version of 

the three-dimensional Eight-node Brick Element, which is more capable and accurate 

in models with curved boundaries. 

 

Figure 3.8 : Twenty-node Brick Element. 
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The v and w-components of the displacement are similar to the u-component; 
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3.4 Acoustic Fluid-Structure Coupling in FEM 

For the coupled fluid-structure interaction problem, when the fluid pressure at the 

interface is added to the structure’s equation of motion, the following expression is 

obtained. 
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where M is structural mass matrix, C is structural damping matrix, K is structural 

stiffness matrix, Kd is dielectric conductivity matrix, KZ is piezoelectric coupling 

matrix, F is structural load vector (vector of nodal forces, surface forces and body 

forces), L is electric load vector (applied nodal charge vector), Fpr is fluid pressure 

load vector.  

The fluid pressure load vector at the interface, S, is obtained by integrating the pressure 

over the surface of the fluid/structure interface. 

{ } { }dSnPNF
pr

∫∫ ′=           (3.16) 

where members of { }N ′  are the shape functions employed to discretize the 

displacement components obtained from the structural element,  u, v, w, {n} is the unit 

normal to the fluid/structure boundary.  

Theoretical model underlying all mathematical representations of the acoustic 

propagation is the wave equation. The wave equation is derived from the more 

fundamental equation of state, continuity and motion. The assumptions made in 

acoustics and fluid-structure analyses are that the fluid behaves as an ideal acoustic 

medium. This implies that; (i) the fluid is isotropic and homogeneous, (ii) 

thermodynamic processes are adiabatic, (iii) the fluid is inviscid (no viscous damping), 

and (iv) acoustic pressure and displacement amplitudes are small relative to the fluid’s 

ambient state. 

The acoustic wave equation is given by; 
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(3.17) 

where c is the acoustic wave speed, expressed in c2 = K/ρ, ρ is the density of fluid, and 

K is the fluid bulk modulus. 
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Motion and energy transfer between the beams utilizing MRA is an acousto-

mechanical multiphysics problem modeled as Fluid-Structure Interaction problem. In 

this thesis, mechanical energy transfer between the beams via MRA is simulated in a 

commercial FEM analysis software, namely ANSYS (ANSYS Inc., USA). Acoustic 

and Fluid-Structure Interaction processes in ANSYS are carried out in the harmonic 

analysis module. Certain element types identified in ANSYS database for fluid-

structure interaction in the air show the acoustic feature. These element types are 

referred to FLUID29, FLUID30, FLUID129, FLUID130, FLUID220 and FLUID221. 

FLUID29 and FLUID129 are used to represent two-dimensional (2D) structures, while 

FLUID30, FLUID130, FLUID220 and FLUID221 are used towards three-dimensional 

(3D) ones. Below are detailed information about the acoustic element types [49]; 

FLUID29 is used to model both the fluid medium and the interface in fluid/structure 

interaction applications. Typical uses include sound wave propagation and submerged 

structure dynamics. The governing equation for acoustics, namely the 2D wave 

representation, has been discretized taking into account the coupling of acoustic 

pressure and structural motion at the interface.  

The element has four corner nodes each with three degrees of freedom, namely 

pressure and translations in the nodal x and y directions. The translations, however, are 

applicable only at the nodes on the interface. Acceleration effects, such as in sloshing 

problems, may be included into the nodes. The element has the capability to include 

damping effects of sound absorbing material at the interface. It can be employed with 

other 2D structural elements to perform asymmetric or damped modal, full harmonic 

and full transient method analyses. 

 

Figure 3.9 : FLUID29 geometry. 
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The geometry, node locations, and the coordinate system for this element are as shown 

in Fig. 3.9. The element is defined by such four nodes under the MODE command as 

the number of harmonic waves (MODE), the symmetry condition (ISYM), a reference 

pressure (PREF), and the isotropic material properties (MU). The reference pressure 

is deployed to calculate sound pressure level of the element for which the default is 

20×10-6 N/m2. The speed of sound in the fluid (SONC), 4� 5�⁄ , is accessed, where k 

is the bulk modulus of the fluid, and 5� is the mean fluid density (DENS). The 

dissipative effect due to viscosity of fluid is neglected, but absorption of sound at the 

interface is accounted for by generating a damping matrix using the surface area and 

boundary admittance at the interface. Experimental values of the boundary admittance 

for the sound absorbing material may be input as material property. MU values are 

recommended to be in the range from 0.0 to 1.0. However, values greater than 1.0 are 

also allowed. While MU being 0.0 indicates no sound absorption, MU being 1.0 

indicates full sound absorption. DENS, SONC and MU values are evaluated at the 

average temperatures of the nodes. 

FLUID129, as illustrated in Fig. 3.10, has been developed as a companion element to 

FLUID29. It is intended to be used as an envelope to a model made of FLUID29 finite 

elements. It simulates the absorbing effects of a fluid domain that extends to infinity 

beyond the boundary of FLUID29 finite element domain. FLUID129 realizes a 

second-order absorbing boundary condition so that an outgoing pressure wave 

reaching the boundary of the model is "absorbed" with minimal reflections back into 

the fluid domain. The element can be used to model the boundary of 2D (planar or 

axisymmetric) fluid regions and as such, it is a line element; it has two nodes with one 

pressure degree of freedom per node. FLUID129 may be used in transient, harmonic, 

and modal analyses. Typical applications include structural acoustics, noise control, 

underwater acoustics, and others. 
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Figure 3.10 : FLUID129 geometry. 

FLUID30 element is used to model both the fluid medium and the interface in 

fluid/structure interactions. Typical applications include sound wave propagation and 

submerged structure dynamics. The governing equation for acoustics, namely the 3D 

wave representation, has been discretized taking into account the coupling of acoustic 

pressure and structural motion at the interface. The element has eight corner nodes 

each with such four degrees of freedom as pressure and translations in the nodal x, y 

and z directions as depicted in Fig. 3.11. The translations, however, are applicable only 

at the nodes on the interface. Acceleration effects, such as in sloshing problems, may 

also be included in the element. The element has the capability to include damping 

effects of sound absorbing material at the interface as well as that within the fluid. It 

can be used with other 3D structural elements to perform asymmetric or damped 

modal, full harmonic and full transient method analyses. 

 

Figure 3.11 : FLUID30 geometry. 
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FLUID221 is a higher order 3D 10-node solid element that exhibits quadratic pressure 

behavior, and is used to model both the fluid medium and the interface in fluid-

structure interactions. Typical uses include sound wave propagation and submerged 

structure dynamics. The governing equation for acoustics, namely the 3D wave 

representation, has been discretized, taking into account the coupling of acoustic 

pressure and structural motion at the interface. The element has four degrees of 

freedom per node: pressure and translations in the nodal x, y and z direction as shown 

in Fig. 3.12. The translations are applicable only at the nodes on the interface. It has 

the capability to include damping effects of sound absorbing material at the interface 

as well as that within the fluid. It can be used with other 3D structural elements to 

perform asymmetric or damped modal, full harmonic and full transient method 

analyses. When there is no structural motion, the element is also applicable to modal 

analyses. 

 

Figure 3.12 : FLUID221 geometry. 

FLUID220 is similar to element FLUID221 in its use and properties except that it has 

20-nodes. The geometry, node locations, and the coordinate system are as shown in 

Figure 3.13. The element is defined by 20 nodes, a reference pressure, and the isotropic 

material properties. The reference pressure is utilized to calculate sound pressure level 

for which default value is 20×10-6 N/m2. The speed of sound in the fluid needs to be 

accessed as an input parameter. 
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Figure 3.13 : FLUID220 geometry. 

Node and element loads are accessible. Fluid-structure interfaces (FSI) may be flagged 

by surface loads at the element faces as shown by the circled numbers in Figure 3.13. 

Specifying the FSI label without a value (SF, SFA and SFE) will couple the structural 

motion and fluid pressure at the interface.  

When FLUID30, FLUID220, and FLUID221 are employed in acoustic analysis, 

existence of Fluid-Structure Interaction between selected elements is defined by the 

particular value of KEYOPT(2). In the case of absence of a structure at the interface 

and coupling between the fluid and structure, a value of 1 is assigned to KEYOPT(2). 

Since the absence of coupling produces symmetric element matrices, a symmetric 

eigensolver may be used within the modal analysis. KEYOPT(2) having a value of 0, 

the default, specifies a coupled (asymmetric) situation requiring a corresponding 

unsymmetric eigensolver. In the presence of FSI coupling, KEYOPT(2) is set to 2 or 

3,  where a symmetric eigensolver may also be used for modal analysis and a 

symmetric linear equation solver may be used for full harmonic analysis. 

FLUID130 has been developed as a companion element to FLUID30, FLUID220, and 

FLUID221. It is intended to be used as an envelope to a model made of FLUID30, 

FLUID220, and FLUID221 finite elements. It simulates the absorbing effects of a fluid 

domain extending to infinity beyond the boundary of the finite element domain made 

of FLUID30, FLUID220, and FLUID221. FLUID130 realizes a second-order 

absorbing boundary condition so that an outgoing pressure wave reaching the 
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boundary of the model is "absorbed" with minimal reflections back into the fluid 

domain. The element can be used to model the boundary of 3D fluid regions and as 

such, it is a plane surface element composed of four nodes each with one-pressure 

degrees of freedom. FLUID130 may be used in transient, harmonic, and modal 

analyses. Typical applications include structural acoustics, noise control, underwater 

acoustics, and others. 

 

Figure 3.14 : FLUID130 geometry. 

The geometry, node locations, and the coordinate system for this element are shown 

in Figure 3.14. The element is defined by four nodes as I, J, K, L, or eight nodes as I, 

J, K, L, M, N, O, P, the material property, speed of sound, and the real constants. A 

triangular element may be formed by defining duplicate K and L node numbers. The 

element must be at the spherical boundary of an acoustic fluid domain meshed via 

FLUID30, FLUID220, and FLUID221 elements, with a radius of RAD centered at or 

near the core of the structure. The radius should be described through the real 

constants. 

3.4.1 Perfectly Matched Layers, PML (Absorbing Layer) 

Absorbing layers are finite regions attached at the extremities of a model as seen in 

Fig. 3.15. They are targeted to approximate an unbounded problem case with 

absorbing waves directed inwards. Small reflections from the absorbing region exist, 

but they can be made negligible by correct definition of the layer parameters [50]. 
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Figure 3.15 : Concept of absorbing layer in 2D models: a) infinite medium, b) semi-
infinite medium, c) plate. 

Use of PML was created in 1994 by Berenger for electromagnetism, and has been 

extended to such other fields as acoustics, and seismological and other elastic waves 

[50]. As its name indicates, a PML matches perfectly the impedance of the area of 

study meaning that, in theory, a wave enters a PML without reflection. Inside the PML, 

wave decays exponentially with location. A PML can, therefore, be used to achieve 

total radiation of a wave at the outer boundary of the simulation volume. 

The purpose of an absorbing boundary condition is to eliminate reflections of the 

outgoing electromagnetic wave back into the FEA computational domain. PML layers 

are absorbing electromagnetic wave elements designed for the mesh truncation of an 

open FEA domain in a harmonic or modal analysis. It is at the same time an artificial 

anisotropic material transparent and heavily lossy to incoming electromagnetic waves. 

PML can reduce the size of the computational domain significantly with very small 

numerical reflections. A PML region is backed by a PEC boundary condition. If the 

electromagnetic wave needs to be absorbed in only one direction, as in the case of a 

traditional waveguide port, a 1D PML region in the global Cartesian coordinate system 

or a local Cartesian coordinate system as shown in the following figure of Fig. 3.16 

must be constructed. 

 

Figure 3.16 : Microstrip structure with PML regions [49]. 
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A 3D PML region consists of element layers extending from the interior volume 

towards the open domain as shown in Fig. 3.17. A block about the origin of the global 

Cartesian coordinate system or a local Cartesian coordinate system is constructed. The 

edges of the 3D PML region with the axes of the Cartesian coordinate system is 

aligned. 

 

Figure 3.17 : PML region attached to interior region [49]. 

PML must be created at the outside of the air layer in order for the acoustic waves 

spread without any back-reflection from the air boundary. The aforementioned 

acoustic element types of FLUID30, FLUID220 and FLUID221 are assigned to this 

specific layer in the FEA software. KEYOPT(4) is used to describe PML feature.  

Pressure on the exterior enclosure of PML must be constrained to zero, unless it is on 

the symmetric planes. 

3.5 Summary 

In this chapter, Finite Element Analysis (FEA) is introduced and common element 

types used in FEA are mentioned shortly. Acoustic Fluid-Structure Coupling and the 

expression of acoustic waves in FEA are presented towards investigation of numerical 

mechanical energy transfer interaction between doubly-clamped beams via MRA. 

Then, acoustic element types are defined such that air will resemble acoustic properties 

in the commercial FEM analysis software at hand. Later, necessary environment 

characteristics for the element types are also summarized. Finally, the absorbing layer 

(Perfectly Matched Layers, PML) behaving as an infinite medium of modeled air 

environment in order to prevent back-reflection by absorption of acoustic waves 

created by the target beam are described. 
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4.  CONCEPT AND MODEL OF THE ENERGY TRANSFER VIA MRA 

BETWEEN THE BEAMS 

4.1 Introduction 

In this section of the thesis, energy transfer with the help of MRA based on the widely 

known absorbance example between two identical tuning forks in the literature is 

discussed first. Energy interaction via MRA is inefficient in conventional tuning forks 

due to their large size and distances in between. Novelty of this thesis is to improve 

the insufficient performance of MRA taking place on macro-scaled structures by 

deploying micro/nano-scale structured beams. Main purpose of the energy transfer 

concept between micro/nano-scale doubly-clamped beams is explained. Then, 

modeling energy transfer between such beams is described in Harmonic Analysis 

Module. Herein, respective definition of material properties, geometry creation of 

beams and air medium, identification of element types, separate mesh processes, 

application of the boundary conditions and force values and identification of FSI 

interaction with the help of APDL codes are stated in detail. 

4.2 Concept of Energy Transfer  

In this study, energy interaction via MRA between two identical micro/nano cantilever 

beams positioned at certain distances relative to each other are examined. In addition, 

creating fields of application in micro / nano-scale structures, such as remote drive and 

selective resonance are targeted by achieving the regular relationship between energy 

transfer values and distance changes. 

Concept investigated in this study is as given in Fig. 4.1. Herein, the first and second 

beams are called as source and target beams, respectively. The source beam gets 

mechanically excited by sinusoidal dynamic load exerted on its top surface in a 

distributed manner. Vibrations on the source beam bring about pressure change in air 

molecules causing propagate acoustic waves towards the target beam. The target beam 

in return absorbs those at the resonant frequency and start to vibrate, as a consequence, 
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the energy interaction is realized. The interaction of beams is scaled in the squared-

deflections ratio. Then, those rates are analyzed for various distances and geometries. 

Use of micro/nano-scale beams not only increases the efficiency of energy transfer, 

but also it eases fabrication, testing and characterization, particularly at oscillations 

with high-frequency vibrations. In the following section, numerical study of energy 

transfer between beams via MRA in FEM Software is presented.

 

Figure 4.1 : Conceptual illustration. 

4.3 Modeling of Energy Transfer Between Beams in FEM Analysis 

Motion and energy transfer between micro/nano-scale beams via MRA are analyzed 

with the help of both modal and harmonic analysis modules in FEM Software. Both 

the natural frequencies and mode shapes of beams are obtained in the modal analysis 

section. Energy transition from the source to target beam is examined as an acoustic-

feature in the harmonic analysis module. After the natural frequency of beams are 

determined through modal analysis, harmonic analysis is conducted at the frequency 

range in the vicinity of the first natural frequency of beams. 

4.3.1 Material identification and geometric model 

In the harmonic analysis, first, materials must be selected from the list of available 

materials or their properties must be specified manually in so-called Engineering Data 

section of the harmonic analysis. In this thesis, silicon is used as beam material, and 

air as the medium of energy transfer. Therefore, such material properties of silicon and 

air as density, Young's Modulus and Poisson's Ratio must be defined in the module. 
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Material properties of silicon and air are as given in Table 4.1. Density, Young’s 

Modulus and Poisson Ratio for silicon are respectively 2330 kg/m3, 165 GPa and 0.27. 

Density, Young’s Modulus and Poisson Ratio for air are respectively 1.2 kg/m3, 150 

kPa and 0.49. 

Table 4.1 : Material properties of silicon and air. 

 Silicon Air 

Density 2330 kg/m3 1.2 kg/m3 

Young’s Modulus 165 GPa 150 kPa 

Poisson’s Ratio 0.27 0.49 

Bulk Modulus 119.57 GPa 2.5 MPa 

Shear Modulus 64.961  GPa 50.336 kPa 

In addition to the material properties, the beam and air layer geometries are defined in 

so-called Geometry Module of the FEM Software. As shown in Fig. 4.2, air medium 

is subdivided into three layers using Boolean function. Each air layer is defined as a 

separate region. Finally, all elements are selected and defined as a single piece with 

the help of so-called Form New Part command. 

 

Figure 4.2 : Geometric model of the beams and air layers. 
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4.3.2 Definition of analysis settings and results 

In this section, both beam and air layer elements are assigned with the corresponding 

type of material defined as standard or custom in the Engineering Data. FLUID220 

and FLUID221 element types showing the acoustic properties are assigned to air layers 

via access to Commands (APDL) File. 

First, the speed of sound, air density and contact constraints are entered to the inner 

layer of air via the codes given in Table 4.2. While FLUID220 element type is assigned 

to air region in contact with beam surfaces, FLUID221, on the other hand, is utilized 

in remote regions. Hence, FLUID221 element type is considered suitable for the 

intermediate air layer. As with the inner air layer, the velocity of sound and density 

values are entered. Unlike the inner air layer, the KEYOPT(2) value for FLUID221 

element type is set as "1" to indicate direct non-contact with the solid in the 

intermediate air layer. Codes used for the intermediate layer of air are as listed in Table 

4.2. This layer simplifies the mesh process, and it provides a better quality mesh 

operation with smaller number of nodes and elements. Thus, computer constraints are 

avoided and simulation results are obtained in a shorter period. 

Table 4.2 : APDL codes for air layers. 

Inner Air Layer Intermediate Air Layer Outer Air Layer 

et,MATID,221 

et,MATID+1,220 

mpdele,all,MATID 

mpdele,all,MATID+1 

mp,dens,MATID,1.2 

mp,sonc,MATID,343 

mpcopy,,MATID,MATID+1 

et,MATID,221,,1 

mpdele,all,MATID 

mp,dens,MATID,1.2 

mp,sonc,MATID,343 

et,MATID,221,,1,,1 

mpdele,all,MATID 

mp,dens,MATID,1.2 

mp,sonc,MATID,343 

The outer layer is created to absorb acoustic waves emitted from the source and to 

prevent their back-reflection. The modeled air medium acts as an infinite ambient. In 

addition, element type used in this layer, FLUID221, is defined with KEYOPT(4) 

being “1” to demonstrate their absorption feature. Thus, acoustic element acts as 
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Perfect Matching Layer (PML). The velocity of sound and density values are also 

specified for this layer. Related codes are also noted in Table 4.2. After element types 

are assigned, the selected regions are created in Named Selections to define boundary 

conditions of the system and create suitable mesh for each element. In this section, the 

external surfaces of the air model are selected and called as PML. The surfaces of 

beams are individually selected and source beam is referred to as BEAM1, target beam 

is called as BEAM2. Finally, in order to apply force on the upper surface of the source 

beam, nodes on the same surface are selected, and a new Named Selections is created.  

Separate mesh processes with different element sizes for each air layer and beams are 

deployed. Meshed model is as given in Fig. 4.3. Then, the desired frequency range and 

the solution step are entered into the system under Analysis Setting. Moreover, Full is 

selected. Then, the boundary conditions for the system are set. 

 

Figure 4.3 : Meshed geometric model with beams and air layers. 

Once both ends of the beams in the model are fixed as boundary conditions, the load 

is applied. Load can be applied in the system in one of such options as the surface 

force, body force, pressure or nodal force. Here, as illustrated in Fig. 4.4, the nodal 

force is applied to the top surface of the source beam.  
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The Commands (APDL) File is created in order to set the pressure value on boundaries 

to zero and to ensure interaction between the beams and air. Commands employed in 

this section are as provided in Table 4.3. 

 

Figure 4.4 : The nodal force illustration on the geometric model.  

Zero pressure is given to the outer air surface described as PML in the Named 

Selections with the first line of code in order to absorb the waves from the source beam. 

The interaction between the source beam and air, and the target beam and air is defined 

by the following codes. Furthermore, if desired, operating frequency range and the 

solution step can be defined in this section as well. The model gets established at this 

stage. 

Table 4.3 : APDL codes for Analysis Setting and FSI. 

d,PML,pres,0 

esel,s,ename,,220,221 

esel,a,ename,,30 

sf,BEAM1,fsi 

sf,BEAM2,fsi 

allsel,all 

outres,m'sc,all 

harfrg,ARG1,ARG2 

nsubst,20 
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To calculate the energy transfer rate, frequency-dependent deformation values should 

be calculated for each beam. In this process, first, Solution is right-clicked with the 

mouse. Then, Frequency Response-Deformation is selected from Insert. After the top 

surface of the beam is selected as geometry in Detail window of Frequency Response, 

the direction of desired deformation is choosen under Orientation. This operation is 

carried out separately for both beam surfaces. If required, deformation values can be 

extracted at a single frequency by right-clicking Solution and choosing Total 

Deformation under Insert. Besides, for single frequency deformations, the beam needs 

to be defined as Geometry, and deformation distribution of the beams is calculated at 

the desired frequency. 

4.4 Summary 

In this chapter, initially, such concepts as representation of the cross-section of beam 

geometries used in the investigation of motion and energy transfer between the beams, 

relative positioning, the direction of the applied dynamic force, and representation of 

the source and target beams are studied. Then, the interaction model, material 

properties, acoustic element types in air, and the program codes required to define the 

fluid-structure interaction between  air and the beams in FEA software are described 

one-by-one before reporting on the study results. 
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5.   RESULTS 

5.1 Introduction 

In this section, results of doubly-clamped source and target beams placed in parallel 

both in and out-of-plane directions are presented. The source beam is excited 

mechanically by the distributed harmonic force. Generated mechanical vibrations on 

the source beam create pressure difference so called  acoustic waves in air. The target 

beam absorbs acoustic waves at its resonance frequency and starts vibration with large 

gain in deflection magnitudes. While the motion and energy transition between the 

beams are nearly zero at off-resonant frequency band, they increase as approached to 

the vicinity of resonant frequency. Motion and energy transfer is studied separately for 

several beam geometries, various separation distances, relative positioning of the 

beams, and the viscous-damping ratios. For each condition simulated in ANSYS Inc., 

as described in Chapter 4, deformation values are numerically calculated via harmonic 

analysis. Energy transfer rates are obtained based on the obtained deformation values. 

Numerical results are as provided in the following sections of this chapter. 

5.2 Energy Transfer  between Beams with Neglected Viscous Damping Ratios 

Energy transfer rates are investigated in case of neglected viscous damping ratios at 

different separation values between beams, cross-section beam geometries, and 

relative positioning (alignment). 

5.2.1 Energy transfer between beams with square cross-section at out-of-plane 

alignment   

Doubly-clamped beams with square cross-sections are located in the out of plane 

direction. Harmonic oscillation is generated by exciting the source beam located on 

top. The acoustic effect of the vibration motion of the source beam on the target beam’s 

vibration through the air is examined. Conceptual structure is as given in Fig. 5.1. 
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The beams are identical, and they are 20µm-long, and have a square cross-sectional 

area of 4µm2. 

 

Figure 5.1 : Simulation model utilized in the FEM Analysis. 

First, natural frequencies of beams are calculated, and mode shapes are obtained in the 

Modal Analysis Module. As mentioned in Chapter 4, silicon is used as the beam 

material. After its natural frequencies are found numerically, they are verified 

analytically as well. Equation (2.100) in Chapter 2 is used in the analytical 

calculations. Equation (2.100) can be rewritten; 
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where E is Young’s Modulus, ρ is the density, L is the length of the beam with their 

respective values of 165Gpa, 2330kg/m3, 20µm. In addition, A is the cross-sectional 

area, and I is the moment of inertia of the beam as well. Cross-sectional area is 

calculated using Eq. (5.2);  

twA .=           (5.2) 

21266 10.410.2*10.2 mmmA
−−− ==           (5.3) 

where w is width, and t is thickness with the values of m
610.2 − and m

610.2 − in order. 

With the help of Eq. (5.4), moment of inertia is calculated as given Eq. (5.5). 

12

. 3tw
I =           

(5.4) 



65 

424
366

10.3333,1
12

)10.2.(10.2
mII

−
−−

=⇒=           
(5.5) 

-. is taken as 4,73 from Table 2.2, and used together with E, I, A, L and ρ in Eq. (5.1). 

First natural frequency of the beam is calculated as given in Eq. (5.6); 
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(5.6) 

MHzfsnrad 25,43/271747600 11 =⇒=ω   

Natural frequencies of the beam in the vertical and horizontal directions, f1 and f2, 

respectively, are same, 43,25MHz, due to square cross-section. The other natural 

frequencies of the beams can be calculated using Eq. (5.1) with corresponding values 

for density, cross-sectional area, Young's modulus, moment of beam inertias, and βnL 

values as extracted from Table 2.2. 12 natural frequencies in different directions 

obtained numerically are as provided in Table 5.1.  

Table 5.1 : Numerical natural beam frequencies. 

  Natural Frequency (MHz) Mode 

1. 40,944 1st Mode in Y direction 

2. 40,944 1st Mode in Z direction 

3. 105,15 2nd Mode in Y direction 

4. 105,15 2nd  Mode in Z direction 

5. 121,66 1st Torsional Mode 

6. 190,45 3rd Mode in Y direction 

7. 190,45 3rd  Mode in Z direction 

8. 211,33 1st Mode in X direction 

9. 243,31 2nd Torsional Mode 

10. 289,79 4th Mode in Y direction 

11. 289,79 4th Mode in Z direction 

12. 364,94 3rd Torsional Mode 
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Five natural frequencies obtained analytically per horizontal and vertical directions are 

listed in Table 5.2 both in units of radian per second and Hertz. 

Table 5.2 :  Analytical natural beam frequencies. 

  βnL Natural Frequency 

(rad/sec) 

Natural 

Frequency (MHz) 

Mode 

1 4,7304 271747600 43,25 
1st Mode both in Y 

and Z directions 

2 7,8532 749094700 119,22 
2nd Mode both in Y 

and Z directions 

3 10,9956 1468525000 233,72 
3rd Mode both in Y 

and Z directions 

4 14,1372 2427561000 386,36 
4th Mode both in Y 

and Z directions 

5 17,2800 3626861000 577,23 
5th Mode both in Y 

and Z directions 

Comparison of numerical and analytical natural frequency results yields Deviation 

Percentage (DP) as defined in Eq. (5.7); 

100*
analytical

numericalanalytical

f

ff
DP

−
=        

DP = 100*
43250000

4094400043250000 − =5,3% 

(5.7) 

Having found the DP value as 5,3%, next maximum static deformations are calculated 

from; 
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where w(x) is deflection of the beam as a function of position in x direction, and q is 

the distributed load. Both sides of the equation are then integrated four consecutive 

times to find w(x) as 
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In Eq. (5.9), a, b, c, and d are constants found from the boundary conditions. Deflection 

and slope are zero at x=0 and x=L for doubly-clamped beams. Therefore; 
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Provided that a, b, c, and d are constants obtained from the boundary counditions as 

written in Eq. (5.9), w(x) can be rewritten as depicted in Eq. (5.12); 
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Maximum deflection, calculated for the distributed load of 5.10-11N/m through Eq. 

(5.12), occurs at the beam midpoint. 

mxw
12

max 10.095,0)( −−=   (5.13) 

After analytical calculation, a numerical maximum deflection value of 

−0,10495.10
/3m is also obtained. Both values agree very well. The beam is studied 

numerically at the natural frequency range of the first mode in the Harmonic Analysis 

Module and deflection values obtained are as given in Table 5.3. Deflection results 

provided in Table 5.3 are plotted and illustrated in the chart Fig. 5.2. Both indicate a 

maximum deflection of 2,30nm at the natural frequency of the fundamental mode. 

 

Figure 5.2 : Beam deflection values about the fundamental mode frequency. 
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Table 5.3 : Frequency-dependent deformation values. 

Frequency (MHz) Deflection (nm) 
(cont’d) 

Frequency (MHz) 

(cont’d) 

Deflection (nm) 

40,862 0,014 40,932 0,0991 

40,864 0,0144 40,934 0,12 

40,866 0,0147 40,936 0,152 

40,868 0,0151 40,938 0,207 

40,87 0,0155 40,94 0,325 

40,872 0,016 40,942 0,758 

40,874 0,0164 40,944 2,3 

40,876 0,0169 40,946 0,457 

40,878 0,0174 40,948 0,254 

40,88 0,018 40,95 0,176 

40,882 0,0186 40,952 0,134 

40,884 0,0192 40,954 0,109 

40,886 0,0198 40,956 0,0913 

40,888 0,0206 40,958 0,0787 

40,89 0,0213 40,96 0,0691 

40,892 0,0222 40,962 0,616 

40,894 0,0231 40,964 0,0556 

40,896 0,024 40,966 0,0507 

40,898 0,0251 40,968 0,0465 

40,9 0,0262 40,97 0,0430 

40,902 0,0275 40,972 0,04 

40,904 0,0289 40,974 0,0374 

40,906 0,0304 40,976 0,0351 

40,908 0,0321 40,978 0,033 

40,91 0,0341 40,98 0,0312 

40,912 0,0362 40,982 0,0296 

40,914 0,0387 40,984 0,0281 

40,916 0,0415 40,986 0,0268 

40,918 0,0447 40,988 0,0256 

40,92 0,0485 40,99 0,0245 

40,922 0,053 40,992 0,0235 

40,924 0,0585 40,994 0,0226 

40,926 0,0652 40,996 0,0217 

40,928 0,0736 40,998 0,0209 

40,93 0,0845 41 0,0202 
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Then, beam deflections are calculated in air at the existence of a pair of beams, namely 

source and target beams. Effect of source beam on target beam is examined at the 

resonant and off-resonant frequencies. While there is no energy transition from source 

to target at off-resonant frequencies, significant transition at the resonant frequency is 

observed as evidenced in Figs. 5.3a and 5.3b. 

 

Figure 5.3 : Coupled vibration responses of beams with square cross-section at out-
of-plane alignment: a) At off-resonant frequencies. b) At on-resonant 
frequency. 

The model is simulated around the first natural frequency. When efficiency of energy 

interaction between the beams are investigated, strain energies of source and target 

beams are used for quantitative comparison. 

 A ratio called as Energy Transfer Rate (ETR) is employed to characterize changes in 

the energy interaction as a function of   distance. As given in Eq. (5.14), percent ETR 

values are calculated as a fraction of strain energy of target beam over that of the source 

beam. 

100*
max,

max,

S

T

U

U
ETR =   

(5.14) 

where US,max and UT,max are strain energies of source and target beams, respectively. 

Strain energy formulation is given in Eq. (5.15); 

maxmax 2

1
qwU =   

(5.15) 

where wmax is the maximum deflection of beams, q is the distributed load. The 

expression of energy in Eq. (5.15) is an equation dependent on the force and deflection. 
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The expression of the force dependency on deflection for both-end-fixed beam can be 

written as Eq. (5.16); 

max4

384
w

L

EI
q =   

(5.16) 

Equation (5.15) is inserted in Eq. (5.16) in order to achieve energy-only expression 

dependent on the deformations as obtained in Eq. (5.17); 

2
max4max

192
w

L

EI
U =   

(5.17) 

As indicated in Eq. (5.17), strain energy is proportional to the square of beam 

deflections. If Eq. (5.17) is inserted into Eq. (5.14), ETR can be rewritten as; 

100*
192

192

2
max,4

2
max,4

S

S

SS

T

T

TT

w
L

IE

w
L

IE

ETR =
  (5.18) 

where ES, IS, LS and wS,max are Young’s modulus, moment of inertia, length and 

maximum deflection of the source beam, respectively. 

ET, IT, LT and wT, max are Young’s modulus, moment of inertia, length and maximum 

deflection of the target beam, respectively. Since the dimensions and material of the 

source and target beams are same, ES and ET, IS and IT, and LS and LT parameters also 

become identical. Therefore, E, I and L values cancel each other in Eq. (5.18) yielding; 

100*
2

max,

2
max,

S

T

w

w
ETR =   (5.19) 

Energy transfer between beams with square cross-section at out of plane alignment has 

been simulated for various distances. Deflection and ETR results are as  listed in Tables 

A.1-7 in Appendix A. ETRs are calculated using those deflections in Eq. (5.19) also 

given in Fig. 5.4. 
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Figure 5.4 : ETRs depending on distance between beams with square cross-section at 
out of plane alignment. 

As indicated in Figure 5.4, ETRs dependency on the distance are calculated utilizing 

seven distance values between 1 and 10µm, and 20-frequency values between 40920 

and 40940kHz. Minimum ETR is obtained to be 21% at 40933kHz at the 10µm 

distance. Maximum ETR, on the other hand, is 82% at 40933kHz at 4µm distance. 

However, a steady increase in ETR is not observed with the decrease in distance. 

Reasons why ETRs show an irregular behavior of increase with the distance are 

investigated, two possible causes are considered. The first reason is that distances 

constantly change during oscillations since the beams are placed at out of plane 

alignment. The second reason is the use of square cross-section beams, where provided 

that natural frequencies in both directions are equal, target beam gets coupled in both 

directions without any direction selectivity. This situation adversely affects the energy 

transferred from source beam to target beam. Hence, developing a steady relationship 

between ETR with the distance by eliminating these problems in the following sections 

is aimed. 
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5.2.2 Energy transfer between beams with square cross-section at in-plane 

alignment 

In this section, the problem mentioned in the previous section is aimed to be 

eliminated. Hence, beams placed vertically are studied at in-plane alignment. Both 

beams are considered to move in parallel relatively by electrostatic force exerted to the 

upper surface of the source beam. Thus, the first problem would be eliminated. The 

beam dimensions do not change, and the relevant model concept evolves to what is 

seen in Fig. 5.5. 

 

Figure 5.5 : Beam geometries with square cross-section at in-plane alignment. 

First, beams placed in-plane are simulated for off and on resonant frequencies, and 

vibration responses as given in Figs. 5.6a and 5.6b are obtained. While energy transfer 

between beams is not observed at off-resonant frequencies, it is observed at on-

resonant frequency band. 

 

Figure 5.6 : Coupled vibration responses of beams placed at in-plane alignment: a) At 
off-resonant frequencies. b) At on-resonant frequency. 
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Simulations are repeated for seven distance values between 0.1µm and 10µm. 

Obtained deflection values are listed in Tables B.1-7 in Appendix B. Then, as 

illustrated in Fig. 5.7, ETRs as a function of distance are calculated in a band from 

40920kHz to 40940kHz. When distance value is decreased from 10µm to 0.1µm, ETR 

shows a steady increase. Maximum energy transfer rate is found as 53% for 0.1µm. 

ETR decreases with the increase of distance, and is about 41% for 0.5µm, 24% for 

1µm, 12.5% for 2µm, 4.6% for 4µm, 3% for 5µm, 0.35% for 10µm. ETR is nearly zero 

for values less than 10µm. 

 

Figure 5.7 : ETRs versus distance results between beams with square cross-section at 
in-plane alignment. 

Although ETR properly increases with decreasing distance, these values are even 

insufficient at very small distances about 0.1µm. Energy transfer between beams with 

smaller geometries is investigated to increase ETR. Hence, as discussed in the next 

section, beam sizes are reduced by three-folds, and change in ETR is examined. 
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5.2.3 Energy transfer for smaller beams with square cross-section at in-plane 

alignment   

In this section, beams three times smaller are utilized, because ETRs obtained in the 

previous section are at insufficient levels. As demonstrated in Fig. 5.8, the new beams 

are 8µm-long, and have a square cross-sectional area of 0.75×0.75µm2. 

 

Figure 5.8 : Smaller beam geometries with square cross-section at in-plane alignment. 

Beams are arranged in parallel within the same horizontal plane. First, beam natural 

frequencies are calculated by Modal Analysis in ANSYS FEA software. Natural 

frequencies are confirmed analytically as well as listed in Tables 5.4 and 5.5. 

Table 5.4 : Natural frequencies of smaller beam by simulation. 

  Natural Frequency(MHz) Mode 

1. 96,634 1st Mode in Y direction 

2. 96,634 1st Mode in Z direction 

3. 249,67 2nd Mode in Y direction 

4. 249,67 2nd  Mode in Z direction 

5. 303,99 1st Torsional Mode 

6. 455,28 3rd Mode in Y direction 

7. 455,29 3rd  Mode in Z direction 

8. 528,04 1st Mode in X direction 

9. 607,95 2nd Torsional Mode 

10. 696,87 4th Mode in Y direction 

11. 696,87 4th Mode in Z direction 

12. 911,87 3rd Torsional Mode 
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Table 5.5 : Natural frequencies of smaller beam analytically. 

 <nL 
Natural 

Frequency(rad/sec) 

Natural 

Frequency(MHz) 
Mode 

1 4,73 636908400 101,37 
1st Mode both in Y 

and Z directions 

2 7,8532 1755691000 279,43 
2nd Mode both in Y 

and Z directions 

3 10,9956 3441855000 547,79 
3rd Mode both in Y 

and Z directions 

4 14,1372 5689597000 905,53 
4th Mode both in Y 

and Z directions 

5 17,28 8500455000 1352,9 
5th Mode both in Y 

and Z directions 

Natural frequency of the first mode in Y direction obtained from simulations, 

96533kHz, is smaller approximately by 4% than that from the analytical solution, 

which is attributed to the minimum mesh size achievable with available computational 

resources at hand. ETRs for a certain distance are numerically studied at every 10kHz 

from 96470kHz to 96670kHz. Corresponding deflection and ETR values are listed in 

Tables C.1-8 in Appendix C. The study is recurred for a total of four distances as 

0.2µm, 0.5µm, 1µm and 2µm. ETRs calculated are as depicted in Fig. 5.9. ETRs 

presented herein are calculated considering beam deflection values in the out-of-plane 

direction. 

 

Figure 5.9 : ETRs in the out-of-plane direction as a function of distance between 
smaller beams with square cross-section at in-plane alignment. 
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As seen in Figure 5.9, ETR increases with decreasing distances.  Maximum ETR is 

obtained to be approximately 65% at 0.2µm at 96580kHz. While The ETR is slightly 

larger with respect to the energy transfer between the larger size beams at 0.2µm, it is 

slightly less at greater than 0.5µm. ETRs decrease down to almost zero in distances 

greater than 2µm. 

After ETRs are examined in the out-of-plane direction, they are investigated also in the 

in-plane direction. Obtained values  are as shared in Fig. 5.10. A regular change is not 

observed with the change in the distance in ETR. Maximum energy transfer rate is 

obtained at 0.5µm about 96560kHz. Although, consistent increase in ETR with 

decreasing distance is expected, results yielded indicate an irregular order. This 

particular phenomenon of the disorders are thought to arise from the use of square-

sectioned beams, where natural frequencies of the beams become equal inducing 

shared mechanical  coupling in both Y and Z directions. Therefore, target beam may 

be adversely affected in energy transfer with MRA because of identical natural 

frequencies in both directions. The issue, as presented in the next section, is addressed 

via utilization of beams with rectangular cross-section rather than those with square 

cross-section in order to obtain a regular change in ETRs in both directions as a 

function of distance. 

 

Figure 5.10 : ETR in the transverse direction with distance between smaller beams 
with square cross-section at in-plane alignment. 
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5.2.4 Energy transfer for beams with rectangular cross-section at in-plane 

alignment 

In order to achieve regularly ordered change with distance and maximum ETR, MRA 

between beams with rectangular cross-section at in-plane alignment using out-of-plane 

vibration directions is investigated in this section as shown in Fig. 5.11. Beams 

employed herein are 8µm-long, 0.75µm-wide and 0.34µm-thick. 

 

Figure 5.11 : Beam geometries with rectangular cross-section. 

Natural frequencies are numerically calculated with Modal Analysis for new beam 

geometry in ANSYS FEA software as provided in Table 5.6. Then, the natural 

frequencies are validated analytically, whose results are as listed in Table 5.7. 

Table 5.6 : Natural frequencies of the beam with rectangular cross-section studied 
numerically. 

  Natural Frequency(MHz) Mode 

1 45,716 1st Mode in Y direction 

2 96,309 1st Mode in Z direction 

3 124,09 2nd Mode in Y direction 

4 235,78 1st Torsional Mode 

5 238,59 3rd Mode in Y direction 

6 249,17 2nd Mode in Z direction 

7 385,29 4th Mode in Y direction 

8 454,49 3rd Mode in Z direction 

9 472,58 2nd Torsional Mode 

10 527,47 1st Mode in X direction 

11 560,44 5th Mode in Y direction 

12 695,85 4th Mode in Z direction 



78 

Table 5.7 : Natural frequencies of the beam with rectangular cross-section studied 
analytically. 

  
<nL 

Natural 

Frequency(rad/sec) 

Natural 

Frequency(MHz) 
Mode 

1 4,73 288731797 45,953093 1st Mode in Y direction 

2 4,73 636908375 101,367116 1st Mode in Z direction 

3 7,8532 795913090 126,673503 2nd Mode in Y direction 

4 10,9956 1560307503 248,330652 3rd Mode in Y direction 

5 7,8532 1755690640 279,426844 2nd Mode in Z direction 

6 14,1372 2579283831 410,505771 4th Mode in Y direction 

7 10,9956 3441854786 547,788203 3rd Mode in Z direction 

8 17,28 3853539437 613,309850 5th Mode in Y direction 

9 14,1372 5689596687 905,527437 4th Mode in Z direction 

10 17,28 8500454641 1352,889375 5th Mode in Z direction 

When numerical and analytical natural frequencies are compared, it is seen that these 

values are in very good agreement, where the difference is only 0.5%, the former being 

smaller. Disagreement between the numerical and analytical solutions is understood 

to decrease from 4% to 0.5% when beams with rectangular cross-sections compared 

to those with square ones are utilized provided that mesh sizes are identical. 

After the calculation of natural frequencies, energy transfer with MRA between the 

beams with rectangular cross-section are investigated at off-resonant and on-resonant 

frequencies in Harmonic Analysis Module. Dynamic response is obtained from the 

numerical results are as given in Figs. 5.12a and 5.12b for both cases, respectively. As 

can be seen in Fig. 5.12, while there is no energy transfer from source to target beam 

at off-resonant frequencies, there is remarkable energy transfer at on-resonant 

frequency band. 
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Figure 5.12 : Coupled vibration responses of beams with rectangular cross-section 
placed at in-plane alignment: a) At off-resonant frequencies. b) At on-
resonant frequency. 

ETR at rectangular cross-sections are studied for distances in the range from 100nm to 

2µm, and results are as presented in Fig. 5.13, and the deflection results are as listed 

in Tables D.1-7 in Appendix D. ETRs are increasing meaningfully with the decreasing 

distance. While ETR is 29.3% at 2µm, it reaches upto 117% at 1µm. Energy transfer 

rates are over 100% in the distance values smaller than 1µm. ETRs over 100% are 

obtained owing to the fact that target beam may deform greater than the source beam 

at resonance in a beam structure as stated in Strain Energy Formulations. 

 

Figure 5.13 : ETR versus distance between beams with rectangular cross-section at 
in-plane alignment. 
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ETRs are not only examined in the out-of-plane vibration direction, but they are also 

studied in the transverse direction. Results prove that ETRs in the vertical direction are 

understood to be identical with those in the transverse direction. The conflict of having 

identical natural frequencies in both Y and Z directions is prevented by use of beams 

with rectangular cross-sections instead of those with square cross-section. As a result, 

deployment of beams with rectangular cross-section provides two important benefits. 

First, ETRs become equal in both directions, and change regularly with the separation 

distance. Second, ETRs become larger than those with square cross-sections. 

Another remarkable aspect in utilization of such a system configuration is that for 

distance values definitely less than or equal to 430nm, redshift in the system’s 

resonance frequency takes place. The effect is thought to be due to the change in the 

damping ratio at very small distances, or probably fast return of acoustic waves from 

the target beam located in very close proximity of the source beam, or interaction due 

to such surface molecular forces as Van der Waals or Casimir, or a combination of 

those. Exact reasoning of the cause of the particular effect is intended to be clarified 

after experimental study. However, it is certain that the results obtained in this section 

show how important use of beams with rectangular cross-section is. 

5.2.5 Energy transfer in micromachinable and characterizable cantilever beams 

with rectangular cross-section aligned at in-plane orientations 

In this part of the study, beam geometries are reconsidered by taking constraints of 

manufacturing and measurement into account in order for confirmation of 

experimental energy transfer rates obtained in the simulations. Any unsuitability 

noticed is to be corrected such that beams we will experimentally investigate are also 

going to satisfy requirements of micro/nano-fabrication and characterization. In case 

of any geometry modification in the beams, ETRs need to be recalculated for update 

purposes while all of the previously understood concepts remain applicable and 

unchanged. For instance, as discussed in the previous sections, use of beams with 

rectangular cross-section still remains advantageous. In the selection of geometrical 

dimensions of beams, such facts as that wafers with not all thicknesses are available 

to us, only thicknesses as 500nm and 340nm at device silicon layer are available, play 

an important role. Characteristics of measurement equipment are also critical as other 

constraints so as to properly characterize micromachined devices exist. For example, 
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beam thickness should be about 340nm in order to perform optical measurements of 

mechanical oscillations of beams precisely and in real-time for embedded accurate 

characterization on single-mode 340 nm-thick waveguides as Optical Directional 

Coupler (ODC) sensors. 

The beam length has been determined according to constraints of characterization 

equipment. For example, operating ranges of signal generator and piezoelectric 

voltage amplifier are used to actuate source beam electrostatically. Hence, maximum 

frequency studiable is 10MHz for non-sinusoidal excitation waves used to apply 

electrostatic forces over a wide range. Beam widths are selected as to be 1µm so that 

the beam thickness is different in order to achieve rectangular cross-section for 

effective energy transfer as aforementioned. Because the operating frequency is less 

than 10MHz, natural frequencies of the beams with different lengths are calculated, 

and the length of beam is optimized as 20µm. Therefore, the beams are 20µm-long, 

1µm-wide and 0.34µm-thick, and they are placed at in-plane orientation. Conceptual 

illustration is as given in Fig. 5.14.  

 

Figure 5.14 : Finalized beam geometries at in-plane orientation. 

After determination of beam size, natural frequencies and mode shapes are 

recalculated in Modal Analysis in ANSYS FEA software. Natural frequencies obtained 

numerically are as listed in Table 5.8. Then, natural frequencies are analytically 

calculated, and given in Table 5.9. 
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Table 5.8 : Numerical natural frequency values of the beam. 

  Natural Frequency(MHz) Mode 

1 7,3665 1st Mode in Y direction 

2 20,256 2nd Mode in Y direction 

3 21,314 1st Mode in Z direction 

4 39,580 3rd Mode in Y direction 

5 57,554 2nd Mode in Z direction 

6 65,165 4th Mode in Y direction 

7 76,588 1st Torsional Mode 

8 96,877 5th Mode in Y direction 

  9 109,910 3rd Mode in Z direction 

10 134,560 6th Mode in Y direction 

11 153,350 2nd Torsional Mode 

12 176,130 4th Mode in Z direction 

Table 5.9 : Analytical natural frequency values of the beam. 

  <nL 
Natural 

Frequency(rad/sec) 

Natural 

Frequency(MHz) 
Mode 

1 4,73 46197087 7,352495 1st Mode in Y direction 

2 7,8532 127346094 20,267760 2nd Mode in Y direction 

1 4,73 135873787 21,624985 1st Mode in Z direction 

3 10,9956 249649200 39,732904 3rd Mode in Y direction 

2 7,8532 374547337 59,611060 2nd Mode in Z direction 

4 14,1372 412685413 65,680923 4th Mode in Y direction 

5 17,28 616566310 98,129576 5th Mode in Y direction 

3 10,9956 734262354 116,861483 3rd Mode in Z direction 

4 14,1372 1213780627 193,179187 4th Mode in Z direction 

5 17,28 1813430323 288,616400 5th Mode in Z direction 

Analytical and numerical natural frequencies obtained are compared. The 

disagreement is as small as 0.19%. 
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As mentioned in the previous sections, beams are analyzed at off-resonant and on-

resonant frequencies. Energy transfer has not been observed at off-resonant 

frequencies. Coupled vibration responses are as given in Fig. 5.15. 

 

Figure 5.15 : Coupled vibration responses of micromachinable beams: a) Off-
resonant frequencies. b) On-resonance frequency. 

After calculation of natural frequencies, ETR between the beams are calculated in 

Harmonic Analysis around the fundamental natural frequency. ETRs are obtained by 

repeatitive simulations at the resonance frequency for various distances. ETRs 

obtained are given in Fig. 5.16. Corresponding deflection values are listed in Tables 

E.1-6 in Appendix E. 

 

Figure 5.16 : ETRs as a function of distance for micromachinable beams. 
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As shown in Fig. 5.16, the simulations are performed for six different distances 

between 0.1µm and 4µm. ETR is about 5% at 4µm, 42% at 2µm, 286% at 1µm, 513% 

at 0.8µm, and 2210% at 0.5µm. When distance is reduced down to 0.1µm, ETR reaches 

its maximum, 2925%. ETRs quickly increase with decreasing distance from 2µm to 

1µm. ETR values in the vertical direction increase in an ordered manner depending on 

the distance. In addition, ETRs in vertical and transverse directions are at similar levels. 

ETRs calculated for micromachinable beams are at higher levels compared to those in 

the previous sections. Increase in both the length and width of the beam from 8µm to 

20µm, and from 0.75µm to 1µm, respectively, ensure both reduction in excitation 

frequency and obtaining higher ETRs. Therefore, the ultimate geometry is understood 

to be better than previously studied. Results of ETRs obtained at 1kHz frequency 

intervals are as presented in Fig.5.16. They are almost zero at distances greater than 

4µm, and this is attributed to the fact that intervals of 1kHz in the study is relatively 

wide in range such that results may indeed be belonging to frequencies far from the 

resonance. Thus, simulations are repeated by narrowing the frequency range under 

investigation for greater distances. ETRs obtained from the numerical study are as 

presented in Fig. 5.17. Corresponding deflection values are listed meticulously in 

Tables E.7-12 in Appendix E. 

 

Figure 5.17 : ETRs as a function of greater distances for micromachinable beams at 
narrower frequency ranges. 
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As shown in Fig. 5.17, ETRs are calculated for six different distances between 8µm 

and 20µm in the frequency band of 20Hz. While ETR is 5% at 4µm distance in the 

frequency band of 1000 Hz, energy is thought to be transferrable from the source beam 

to the target beam at distances even greater than 20µm in very narrow frequency 

ranges. ETR at 7364280Hz is about 11.7% at 20µm, 13% at 18µm, 36.3% at 15µm, 

81.8% at 12µm, 137.4% at 10µm, and 355% at 8µm distances. Increase in ETRs at 

narrow bands is due to being very close to the resonance frequency. While wide bands 

as 1 kHz are suitable for applications at distances less than 4µm, such narrow bands as 

20 Hz are useful for those with distances greater than 4µm. ETR is almost zero at below 

7364,20kHz and above 7364,36kHz in the range from 8µm to 20µm, and is zero at 

below 7363,00kHz and above 7365,00kHz in the range from 0.1µm to 4µm. As 

depicted in Fig. 5.17, another noteworthy feature is that while changes in ETR in the  

range from 18µm to 20µm is as small as 1.3%, exchange in the ETR is a far greater 

value as 217%.  

Very large ETR values are achieved at distances less than 1µm. achieving such high 

ETRs may be due to neglecting viscous damping. Because viscous damping ratio has 

a remarkable influence on the system’s dynamic behavior provided submicron beam 

dimensions and separation distances are in use. Therefore, effect of viscous damping 

ratio on ETR is investigated for the same beam geometry in the following section.  

5.3 Effect of Viscous Damping  on Energy Transfer between Micromachinable 

Beams 

In the previous sections, ETRs between micro/nano-scale beams are investigated by 

neglecting viscous damping effect. While viscous damping effect between macro-

scale structures are very small owing to large distances between structures and low 

natural frequencies, it does affect mechanical behavior significantly between 

micro/nano-scale structures. When viscous effects are not taken into account, as in the 

previous sections, ETRs are found to be large in value at small separation distances. 

Therefore, in this section, effect of viscous damping on ETR is examined for small 

distances. Alike the previous sections, micromachinable and characterizable beams 

20µm-long, 1µm-wide and 0.34µm-thick are deployed. Viscous damping ratios are 

calculated for 10 distances in the range from 0.1µm to 2µm, and damping coefficients 
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are calculated with the help of following formulations.  When a viscously damped 

system is subjected to an external force of  f,  the equation of motion is; 

fkx
t

x
b

t

x
m sys =+

∂

∂
+

∂

∂
2

2

  (5.20) 

where m is mass, bsys is viscous damping coefficient, k is spring constant. bsys can be 

found by Eq. (5.21); 

d

A
b seffsys ,η=   (5.21) 

where Ƞeff,s is effective viscousity  of air, A is beam-air contact surface area of and d is 

separation distance between beams. Ƞeff,s is obtained  by Eq. (5.22); 

n

air
seff

K21,
+

=
η

η   (5.22) 

where Ƞair is viscousity of air, Kn is Knudsen Number given in Eq. (5.23); 

d
K air

n

λ
=   (5.23) 

where Ƞair is equal to 0.0000179kg/(m/sec) and λair , mean free path of air, is equal to 

6.404 × 10
?m.  

Towards calculation of viscous damping ratio at 2µm separation of beams, first, Kn 

must be retracted from Eq. (5.23) as; 
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Then, Ƞeff,s is obtained from Eq.(5.22); 

)03202.0(21

sec)//(0000179.0
,

+
=

mkg
seffη   (5.25) 

sec)//(1068227.1 5
, mkgseff

−×=η   
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Next, bsys is calculated by writing Ƞeff,s in Eq. (5.21); 

m

m
mkgbsys 6

212
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108.6
*sec)//(1068227.1
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×=   (5.26) 

mNbsys /sec).(1071971.5 11−×=    

Herein, when Laplace Transformation is applied to Eq. (5.20) with all initial 

conditionals being zero, it can be rewritten as given in Eq. (5.27);  

( ) ( ) ( ) ( )sFskXssXbsXms sys =++2
  (5.27) 

X(s) is left alone; 

( ) ( )sF
ksbms

sX
sys ++

=
2

1
  (5.28) 

After Eq. (5.28) is put in bracket by m; 

( ) ( )sF
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b
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(5.29) 

Equation (5.28) is rewritten as in Eq. (5.30); 

( ) ( )
22 2

1
.

nnssm

sF
sX

ωζω ++
=   (5.30) 

By comparison of Eq. (5.29) and Eq. (5.30); 

m

bsys

n =ζω2  and
m

k
n =ω  (5.31) 

where ζ , damping ratio, is equal to ; 

m

b

n

sys

ω
ζ

2
=   (5.32) 

where ωn is known to be 46197087rad/sec (7352,495kHz) from Table 5.9, m is 

calculated as 0.15844 × 10
/Akg, and bsys from Eq. (5.26) is 

mN /sec).(1071971.5 11−× . Hence, ζ  from Eq. (5.32) at 2µm distance becomes; 
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1015844.0*46197087*2
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−

×

×
=ζ   (5.33) 

5109072.3 −×=ζ   

Then, viscous damping ratios are calculated for the other distances similarly, results 

are given in Table 5.10. 

Table 5.10 : Viscous damping ratios for various separation distances. 

Distance 
(d), (µm) 

Knudsen 
Number (Kn) 

Effective Viscosity 
of Air 

(Ƞeff, s), Kg/(m.sec) 

Viscous 
Damping 

Coefficient 
(bsys), (N.sec)/m 

Damping 
Ratio (ζ ) 

2 0,03202 1,68227E-05 0,571971E-10 3,90719E-05 

1 0,06404 1,58677E-05 1,079E-10 7,37077E-05 

0,50 0,12808 1,42498E-05 1,93797E-10 13,2385E-05 

0,45 0,14231 1,39341E-05 2,10559E-10 14,3835E-05 

0,40 0,16010 1,35586E-05 2,30495E-10 15,7454E-05 

0,35 0,18297 1,31045E-05 2,54602E-10 17,3921E-05 

0,30 0,21347 1,25444E-05 2,84339E-10 19,4235E-05 

0,25 0,25616 1,18361E-05 3,21942E-10 21,9922E-05 

0,20 0,32020 1,0912E-05 3,71007E-10 25,3439E-05 

0,10 0,64040 0,784812E-05 5,33672E-10 36,4557E-05 

As seen in Table 5.10, when the distance between the beams decreases, viscous 

damping ratios increase. While it is 0.3907×10
B at 2µm, it increases up to 

3.646×10
B at 0.1µm distance. Since viscous damping ratios increase with the 

decreasing distance, its effect on the ETR will increase. After viscous damping ratios 

are found for various distances, ETRs are updated by performing simulations for each 

calculated viscous damping ratio. While obtained ETRs are partially presented in Fig. 

5.18, both deflection and ETR values are provided in full in Appendix F. 
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Figure 5.18 : Spectral ETR response for micromachinable and characterizable beams 
at various viscous damping caused by various separation distances. 

As can be seen in Fig. 5.18, although ETRs are observed to increase as separation 

distance decreases from 2µm down to 0.4µm, they start to decrease for distances 

smaller than 0.4µm, indicating its maximum at 0.4µm at on-resonant frequencies. 

Hence, we can consider 0.4µm as the ideal distance within resonance region. On the 

other hand, change in ETR is different at frequency bands below 7363kHz and above 

7366kHz. At these off-resonant frequency bands, ETRs increase regularly with the 

decreasing distances. Results of simulations with neglected viscous damping are 

compared to those with calculated viscous damping in order to understand effect of 

damping on ETR at micro/nano-scale beams. Results indicate that effect of 

disagreement between neglected and manually calculated viscous damping ratios on 

ETR is highest at 0.1µm distance, and that it decays with increasing distance. Having 

figured out significance of viscous damping ratio on ETR, and the fact that its accurate 

calculation theoretically can not be guaranteed, experimental characterization of 

viscous damping as future work of this study will play an important role for in-depth 

understanding of the concept. 
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5.4 Summary 

In this chapter, Energy Transfer Rates (ETR) are studied numerically in various beam 

distances for two different cases where viscous damping ratios are first neglected and, 

then considered. Initially, ETR values are studied in a band about resonance frequency 

for two cross-sectional geometries, namely, square and rectangular shapes, at two-

settlement options as in-plane and out-of-plane alignments, and for several beam 

geometries. Then, ETR depending on the distance between beams with rectangular 

cross-section at in-plane alignment is examined under the influence of viscous 

damping.  

First, ETR values between 20µm-long beams with 2×2µm2 square cross-section at out-

of-plane alignment are investigated. it shows an irregular behavior depending on the 

distance between beams. There exist two reasons underneath the concept. The first 

reason is that distances constantly change when beams are placed out-of-plane 

directions vibrate towards each other. The second reason is the use of square cross-

sectioned beams, where natural frequencies in both directions become equal. The latter 

situation adversely affects the energy transferred from the source beam to the target 

beam. Therefore, ETR between beams with square cross-sectinal area at in-plane 

alignment is investigated between 40920kHz and 40940kHz. When distance is 

decreased from 10µm to 0.1µm, ETR values show a steady increase, but these values 

are even insufficient at a very small distance about 0.1µm. 

Second, energy transfer between beams having smaller geometries is investigated to 

extend ETR levels. Thus, beam sizes are reduced by three-folds, and change in ETR 

values depending on the distance are examined. ETR is slightly less compared to the 

energy transfer between the larger size beams. After their examination in the vertical 

direction, beam ETRs are investigated in the horizontal direction as well. Nevertheless, 

a regular change in ETR are not observed with the distance change. The cause of these 

disorders are thought to arise from the use of square-section beams, where natural 

frequencies of the beams become equal in both transverse directions. Hence, target 

beam may be adversely affected in energy transfer with MRA due to use of beams with 

identical natural frequencies in both directions causing coupling at inter-directional 

resonance. 
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Then, ETR are studied by use of beams with rectangular cross-sections instead of 

square cross-section and ETR values increase meaningfully both in vertical and 

transverse directions with decreasing distance. ETR values in the vertical direction are 

found to be identical with those in the transverse direction. The conflict of the natural 

frequencies in both directions is prevented by use of beams with rectangular cross-

section instead of square cross-sections. Thus, use of beams with rectangular cross-

section provides two important benefits. The first advantage is that ETR values become 

equal in both directions, and they change regularly as a function of the distance. The 

second advantage is that ETR values get larger. Another remarkable aspect of this 

section is that shift in the resonance frequency of the system takes place for distances 

less than 430nm. Such an  interesting effect is thought to be caused by the change in 

the damping ratio in very small distances, or by quick return of acoustic waves hitting 

the target beam since source  and target beams are very close, or by interaction due to 

such surface molecular forces as Van der Waals or Casimir, or a combination of those. 

The results obtained in this section show that beam use with rectangular cross-section 

is important. Then, ETR between beams 20µm-long, 1µm-wide and 0.34µm-thick at 

in-plane aligment are investigated. It is found that ETRs in the vertical direction 

change in a regular manner with distance, and the transfer rates are high. When ETR 

in transverse direction is studied, identical levels of transfer rates comparable to those 

in the vertical direction are observed. Relatively very large ETRs are achieved 

particularly at distances less than 1µm, which is attributed to neglected value of 

viscous damping ratios. However, influence of viscous damping on the system 

performance becomes significant at small separation distances. Thus, viscous damping 

must be considered at submicron distances for correct characterization. Towards the 

goal, viscous damping is considered, and viscous damping ratios are calculated for 

separation distances between 0.1µm and 2µm. Results show that when the distance 

decreases down until 0.4µm, ETR increases. However, it start to decrease distances 

smaller than 0.4µm. In other words, an ideal maximum is achieved at 0.4µm distance. 

While the largest effect is obtained at 0.1µm, the smallest effect is observed at 2µm 

distance when viscous damping is not neglected.  
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6.  CONCLUSION 

In this thesis, a novel technique for non-contact motion and energy transfer between 

micro/nano-scale doubly-clamped cantilever beams at high efficiency via Mechanical 

Resonance Absorption (MRA) is presented. In order to characterize quality of the 

transfer, resonating beam dimensions and distances, in-plane and out-of-plane 

transmission directions, and effect of damping by the environment are 

comprehensively investigated. In addition, fields of application in micro/nano-scale 

structures, such as remote actuation and selective resonance are targeted by achieving 

the regular relationship between energy transfer values and distance changes. ETR 

values investigated for various distances, geometries and position, and results obtained 

by the analysis are presented in this thesis report. 

In the first chapter, brief information on the aim, scope and solution steps of the study 

is given and such previous studies associated with the thesis topic as Micro-Electro-

Mechanical Systems (MEMS), micro/nano-scale vibration, Surface Acoustic Waves 

(SAW), motion and energy transfer and Mechanical Resonance Absorption (MRA) 

referred in literature are investigated. The movement and energy transfer based on 

Mechanical Resonance Absorption (MRA) observed in human and animal hearing 

mechanisms are also mentioned. In biological hearing, cochlear behaves as a 

frequency encoding mechanism by decomposing the complex frequency band of 

sound waves. 

In the second chapter, Bending Equation of Euler Bernoulli, Rayleigh and Timoshenko 

Beam Theories are discussed first. Then, vibration equations are described for single 

and multi-degrees of freedom systems and derivation of analytical formulations 

required for the calculation of natural frequencies and bending vibrations in beams are 

shown. βnL values used in the analytical calculation of natural frequencies are listed 

for various beam boundary conditions. 

In the third chapter, Finite Element Analysis (FEA) is introduced and common element 

types used in FEA are mentioned shortly. Acoustic Fluid-Structure Coupling and the 
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expression of acoustic waves in FEA are presented towards investigation of numerical 

mechanical energy transfer interaction between doubly-clamped beams via MRA. 

Then, acoustic element types are defined such that air will resemble acoustic properties 

in the commercial FEM analysis software at hand, namely ANSYS (ANSYS Inc., 

USA). Later, necessary environment characteristics for the element types are also 

summarized. Finally, the absorbing layer (Perfectly Matched Layers, PML) behaving 

as an infinite medium of modeled air environment in order to prevent back-reflection 

by absorption of acoustic waves created by the target beam are described. 

In the fourth chapter, initially, such concepts as representation of the cross-section of 

beam geometries used in the investigation of motion and energy transfer between the 

beams, relative positioning, the direction of the applied dynamic force, and 

representation of the source and target beams are studied. Then, the interaction model, 

material properties, acoustic element types in air, and the program codes required to 

define the fluid-structure interaction between  air and the beams in FEA software are 

described. 

In the fifth chapter, Energy Transfer Rates (ETR) are studied numerically in various 

beam distances for two different cases where first, viscous damping ratio is neglected 

and, then considered. At first, ETR values are studied in a band about resonance 

frequency for two cross-sectional geometries, namely, square and rectangular shapes, 

at two-settlement options as in-plane and out-of-plane alignments, and for several 

beam geometries. In the second half, ETR values depending on the distance between 

the beams with rectangular cross-section at in-plane alignment are examined under the 

influence of viscous damping. 

To be specific, first, ETR values between 20µm-long beams with 2×2µm2 square cross-

section at out-of-plane alignment are investigated. While there is almost no energy 

transition from source beam to target beam at off-resonant band, significant is 

observed at on-resonant frequencies, but it shows an irregular behavior depending on 

the distance between beams. There exist two reasons underneath the concept. The first 

reason is that distances constantly change when beams are placed out-of-plane 

directions vibrate towards each other. The second reason is the use of square cross-

sectioned beams, where natural frequencies in both directions become equal. The latter 

situation adversely affects the energy transferred from the source beam to the target 
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beam. Therefore, ETR between beams with square cross-sectinal area at in-plane 

aligment is investigated between 40920kHz and 40940kHz. While energy transfer 

between beams is not observed at off-resonant frequencies, efficient energy transfer at 

on-resonant frequencies takes place. When distance is decreased from 10µm to 

0.1µm, ETR values show a steady increase, but these values are even insufficient at a 

very small distance about 0.1µm. 

Second, energy transfer between beams having smaller geometries is investigated to 

extend ETR levels. Thus, beam sizes are reduced by three-folds, and change in ETR 

values depending on the distance are examined. ETR is slightly less compared to the 

energy transfer between the larger size beams. After their examination in the vertical 

direction, beam ETRs are investigated in the horizontal direction as well. Nevertheless, 

a regular change in ETR are not observed with the distance change. The cause of these 

disorders are thought to arise from the use of square-section beams, where natural 

frequencies of the beams become equal in both transverse directions. Hence, target 

beam may be adversely affected in energy transfer with MRA due to use of beams with 

identical natural frequencies in both directions causing coupling at inter-directional 

resonance. 

Afterwards, in order to eliminate irregularities existing in the square cross-section, 

utilization of beams with rectangular cross-sections are considered. ETR values 

increase meaningfully both in vertical and transverse directions with decreasing 

distance. ETR values in the vertical direction are found to be identical with those in 

the transverse direction. The conflict of the natural frequencies in both directions is 

prevented by use of beams with rectangular cross-section instead of square cross-

sections. Thus, use of beams with rectangular cross-section provides two important 

benefits. The first advantage is that ETR values become equal in both directions, and 

they change regularly as a function of the distance. The second advantage is that ETR 

values get larger. Another remarkable aspect of this section is that shift in the 

resonance frequency of the system takes place for distances less than 430nm. Such an  

interesting effect is thought to be caused by the change in the damping ratio in very 

small distances, or by quick return of acoustic waves hitting the target beam since 

source  and target beams are very close, or by interaction due to such surface molecular 

forces as Van der Waals or Casimir, or a combination of those. The results obtained in 

this section show that beam use with rectangular cross-section is important. 
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Then, ETR between beams 20µm-long, 1µm-wide and 0.34µm-thick at in-plane 

aligment are investigated. It is found that ETRs in the vertical direction change in a 

regular manner with distance, and the transfer rates are high. When ETR in transverse 

direction is studied, identical levels of transfer rates comparable to those in the vertical 

direction are observed. Relatively very large ETRs are achieved particularly at 

distances less than 1µm, which is attributed to neglected value of viscous damping 

ratios. However, influence of viscous damping on the system performance becomes 

significant at small separation distances. Thus, viscous damping must be considered at 

submicron distances for correct characterization. Towards the goal, viscous damping 

is considered, and viscous damping ratios are calculated for separation distances of 

0.1µm, 0.2µm, 0.25µm, 0.3µm, 0.35µm, 0.4µm, 0.45µm, 0.5µm, 1µm, and 2µm. 

Results show that when the distance decreases down until 0.4µm, ETR increases. 

However, it start to decrease distances smaller than 0.4µm. In other words, an ideal 

maximum is achieved at 0.4µm distance. While the largest effect is obtained at 0.1µm, 

the smallest effect is observed at 2µm distance when viscous damping is not neglected.  

As a result, in-plane orientation between beams should be used in order to establish a 

stable energy transfer relation with the distance. ETR increases slightly when beam 

dimensions are reduced by three-folds. Natural frequency overlap can be prevented by 

use of rectangular cross-sectioned beams instead of the square-sectioned ones. 

Increasing the chord length provides higher ETR and possibility to work at lower 

frequencies. The viscous damping effect has a significant impact on energy transfer at 

small distances. Such micro/nano-scale structure beam designs with rectangular cross-

sections at in-plane alignment can create application fields in remote actuation by 

selective resonance with their stable relationship between energy transfer and distance. 

In the future, numerical studies are to be experimentally confirmed. In the 

experimental section, first, an electrostatically driven single beam will be 

micromachined on silicon wafers, and dynamic mechanical behavior of the beam will 

be examined at on and off-resonant frequencies. Next, doubly-clamped beams of two 

located at various distances will be produced again on silicon wafers, and 

characterization of ETR via MRA as a function of the distance will be conducted. The 

effect of viscous damping ratio on micro/nano-scale structures will be investigated as 

well. In the mechanical characterization, ODC-based sensors developed already in our 

laboratory will be embedded into the test devices for precise and real-time ETR 
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measurements. Then, deviation between the numerical and experimental results, if 

any, and its sources will be understood. Finally, we plan to investigate effect of 

ambient environment parameters on the viscous damping, and indirectly on the energy 

transfer. 
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APPENDICES 

APPENDIX A: Deflection and ETR values for 20µm-long, 2µm-wide, and 2µm-thick 
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APPENDIX A: 

Deflection and ETR values for 20µm-long, 2µm-wide, and 2µm-thick 

beams at out-of-plane alignment under 1nN (nanonewton) dynamic force. 

Table A.1 : Deflection and ETR values at 1µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Energy 

40921 0,08777 0,06490 0,74 73,94 54,67 

40922 0,09058 0,06927 0,76 76,47 58,48 

40923 0,09383 0,07409 0,79 78,96 62,35 

40924 0,09766 0,07945 0,81 81,35 66,19 

40925 0,10222 0,08545 0,84 83,59 69,88 

40926 0,10773 0,09224 0,86 85,62 73,32 

40927 0,11447 0,10002 0,87 87,38 76,35 

40928 0,12282 0,10903 0,89 88,77 78,81 

40929 0,13324 0,11961 0,90 89,77 80,59 

40930 0,14638 0,13221 0,90 90,32 81,58 

40931 0,16307 0,14742 0,90 90,40 81,73 

40932 0,18440 0,16598 0,90 90,01 81,02 

40933 0,21161 0,18867 0,89 89,16 79,49 

40934 0,24565 0,21589 0,88 87,89 77,24 

40935 0,28565 0,24637 0,86 86,25 74,39 

40936 0,32549 0,27440 0,84 84,30 71,07 

40937 0,35102 0,28828 0,82 82,13 67,45 

40938 0,34867 0,27815 0,80 79,77 63,64 

40939 0,32149 0,24855 0,77 77,31 59,77 

40940 0,28454 0,21282 0,75 74,79 55,94 
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Table A.2 : Deflection and ETR values at 2µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Energy 

Frequncy 

(kHz) 

First Beam 

Amplitude 

(nm) 

Second Beam 

Amplitude 

(nm) 

Transfer 

Rate of 

Deflection 

Transfer 

Rate (%) of 

Deflection 

Transfer 

Rate (%) of 

Energy 

40921 0,1115 0,0482 0,43 43,21 18,68 

40922 0,1175 0,0531 0,45 45,15 20,38 

40923 0,1244 0,0587 0,47 47,21 22,29 

40924 0,1324 0,0654 0,49 49,41 24,41 

40925 0,1416 0,0732 0,52 51,73 26,76 

40926 0,1525 0,0826 0,54 54,18 29,35 

40927 0,1657 0,0940 0,57 56,73 32,19 

40928 0,1819 0,1080 0,59 59,37 35,25 

40929 0,2022 0,1255 0,62 62,06 38,52 

40930 0,2281 0,1477 0,65 64,74 41,91 

40931 0,2618 0,1763 0,67 67,34 45,34 

40932 0,3052 0,2129 0,70 69,76 48,67 

40933 0,3581 0,2575 0,72 71,91 51,72 

40934 0,4104 0,3023 0,74 73,67 54,27 

40935 0,4353 0,3261 0,75 74,92 56,14 

40936 0,4121 0,3115 0,76 75,59 57,14 

40937 0,3589 0,2714 0,76 75,63 57,19 

40938 0,3042 0,2282 0,75 75,02 56,28 

40939 0,2594 0,1915 0,74 73,83 54,51 

40940 0,2252 0,1624 0,72 72,12 52,01 
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Table A.3 : Deflection and ETR values at 3µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

40921 0,1424 0,0533 0,37 37,45 14,03 

40922 0,1533 0,0607 0,40 39,60 15,68 

40923 0,1662 0,0698 0,42 41,97 17,61 

40924 0,1818 0,0810 0,45 44,58 19,87 

40925 0,2008 0,0953 0,47 47,45 22,52 

40926 0,2245 0,1137 0,51 50,62 25,63 

40927 0,2549 0,1379 0,54 54,10 29,27 

40928 0,2942 0,1703 0,58 57,90 33,52 

40929 0,3446 0,2136 0,62 61,97 38,40 

40930 0,4046 0,2681 0,66 66,26 43,90 

40931 0,4574 0,3230 0,71 70,63 49,88 

40932 0,4636 0,3491 0,75 75,30 56,70 

40933 0,4194 0,3297 0,79 78,62 61,81 

40934 0,3525 0,2874 0,82 81,53 66,48 

40935 0,2947 0,2453 0,83 83,23 69,27 

40936 0,2623 0,2105 0,80 80,27 64,43 

40937 0,2225 0,1828 0,82 82,16 67,49 

40938 0,2019 0,1606 0,80 79,55 63,28 

40939 0,1873 0,1423 0,76 75,99 57,74 

40940 0,1766 0,1269 0,72 71,86 51,64 
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Table A.4 : Deflection and ETR values at 4µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

40921 0,1850 0,0793 0,43 42,85 18,36 

40922 0,2013 0,0920 0,46 45,71 20,90 

40923 0,2195 0,1073 0,49 48,91 23,92 

40924 0,2390 0,1254 0,52 52,47 27,53 

40925 0,2581 0,1457 0,56 56,44 31,85 

40926 0,2736 0,1664 0,61 60,82 36,99 

40927 0,2812 0,1845 0,66 65,61 43,04 

40928 0,2775 0,1963 0,71 70,73 50,02 

40929 0,2632 0,2000 0,76 76,01 57,77 

40930 0,2427 0,1969 0,81 81,14 65,83 

40931 0,2215 0,1897 0,86 85,65 73,36 

40932 0,2032 0,1808 0,89 88,98 79,17 

40933 0,1895 0,1716 0,91 90,57 82,03 

40934 0,1807 0,1628 0,90 90,13 81,23 

40935 0,1760 0,1544 0,88 87,74 76,97 

40936 0,1743 0,1461 0,84 83,83 70,28 

40937 0,1744 0,1378 0,79 78,98 62,38 

40938 0,1751 0,1291 0,74 73,75 54,39 

40939 0,1753 0,1201 0,69 68,51 46,94 

40940 0,1744 0,1108 0,64 63,53 40,36 

 
  



108 

Table A.5 : Deflection and ETR values at 5µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Deflection 

Percent 

Transfer Rate 

of Energy 

40921 0,1309 0,0553 0,42 42,24 17,84 

40922 0,1350 0,0604 0,45 44,70 19,98 

40923 0,1390 0,0658 0,47 47,35 22,42 

40924 0,1426 0,0716 0,50 50,19 25,19 

40925 0,1460 0,0776 0,53 53,18 28,28 

40926 0,1491 0,0839 0,56 56,29 31,69 

40927 0,1521 0,0904 0,59 59,43 35,32 

40928 0,1552 0,0970 0,62 62,47 39,03 

40929 0,1588 0,1037 0,65 65,25 42,58 

40930 0,1634 0,1104 0,68 67,56 45,65 

40931 0,1693 0,1171 0,69 69,21 47,90 

40932 0,1769 0,1238 0,70 70,01 49,01 

40933 0,1865 0,1303 0,70 69,86 48,81 

40934 0,1977 0,1360 0,69 68,80 47,34 

40935 0,2097 0,1404 0,67 66,93 44,80 

40936 0,2210 0,1424 0,64 64,46 41,55 

40937 0,2294 0,1412 0,62 61,57 37,91 

40938 0,2329 0,1362 0,58 58,49 34,21 

40939 0,2309 0,1278 0,55 55,34 30,63 

40940 0,2238 0,1170 0,52 52,25 27,30 
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Table A.6 : Deflection and ETR values at 6µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Energy 

40921 0,1183 0,0398 0,34 33,63 11,31 

40922 0,1238 0,0409 0,33 33,05 10,92 

40923 0,1299 0,0418 0,32 32,20 10,37 

40924 0,1365 0,0532 0,39 38,97 15,19 

40925 0,1439 0,0589 0,41 40,97 16,78 

40926 0,1522 0,0655 0,43 43,05 18,53 

40927 0,1617 0,0731 0,45 45,19 20,42 

40928 0,1723 0,0817 0,47 47,43 22,50 

40929 0,1852 0,0916 0,49 49,46 24,46 

40930 0,2000 0,1029 0,51 51,45 26,47 

40931 0,2173 0,1156 0,53 53,21 28,31 

40932 0,2368 0,1294 0,55 54,63 29,85 

40933 0,2577 0,1434 0,56 55,65 30,97 

40934 0,2773 0,1556 0,56 56,12 31,49 

40935 0,2913 0,1633 0,56 56,05 31,42 

40936 0,2952 0,1636 0,55 55,43 30,73 

40937 0,2816 0,1562 0,55 55,48 30,78 

40938 0,2712 0,1432 0,53 52,80 27,88 

40939 0,2507 0,1278 0,51 50,97 25,98 

40940 0,2297 0,1125 0,49 48,95 23,96 
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Table A.7 : Deflection and ETR values at 8µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Energy 

40921 0,1570 0,0475 0,30 30,25 9,15 

40922 0,1686 0,0541 0,32 32,08 10,29 

40923 0,1817 0,0619 0,34 34,09 11,62 

40924 0,1964 0,0713 0,36 36,31 13,18 

40925 0,2128 0,0824 0,39 38,73 15,00 

40926 0,2303 0,0953 0,41 41,36 17,11 

40927 0,2481 0,1096 0,44 44,19 19,53 

40928 0,2641 0,1246 0,47 47,17 22,25 

40929 0,2754 0,1383 0,50 50,23 25,23 

40930 0,2793 0,1487 0,53 53,23 28,34 

40931 0,2748 0,1538 0,56 55,97 31,32 

40932 0,2637 0,1535 0,58 58,20 33,87 

40933 0,2494 0,1488 0,60 59,66 35,59 

40934 0,2350 0,1414 0,60 60,15 36,18 

40935 0,2224 0,1326 0,60 59,61 35,53 

40936 0,2119 0,1231 0,58 58,10 33,76 

40937 0,2034 0,1136 0,56 55,84 31,18 

40938 0,1961 0,1041 0,53 53,09 28,18 

40939 0,1895 0,0949 0,50 50,08 25,08 

40940 0,1830 0,0861 0,47 47,03 22,12 
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Table A.8 : Deflection and ETR values at 10µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

40921 0,1262 0,0343 0,27 27,19 7,39 

40922 0,1320 0,0377 0,29 28,59 8,18 

40923 0,1382 0,0416 0,30 30,09 9,06 

40924 0,1449 0,0459 0,32 31,69 10,05 

40925 0,1521 0,0508 0,33 33,38 11,14 

40926 0,1599 0,0562 0,35 35,14 12,35 

40927 0,1683 0,0622 0,37 36,95 13,65 

40928 0,1776 0,0688 0,39 38,75 15,02 

40929 0,1877 0,0760 0,40 40,50 16,40 

40930 0,1989 0,0837 0,42 42,10 17,72 

40931 0,2110 0,0918 0,43 43,48 18,90 

40932 0,2239 0,0997 0,45 44,52 19,82 

40933 0,2366 0,1068 0,45 45,15 20,39 

40934 0,2478 0,1123 0,45 45,32 20,54 

40935 0,2554 0,1149 0,45 44,99 20,24 

40936 0,2578 0,1140 0,44 44,21 19,54 

40937 0,2540 0,1093 0,43 43,04 18,52 

40938 0,2448 0,1018 0,42 41,57 17,28 

40939 0,2321 0,0926 0,40 39,90 15,92 

40940 0,2178 0,0830 0,38 38,12 14,53 
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APPENDIX B: 

Deflection and ETR values for 20µm-long, 2µm-wide, and 2µm-thick 

beams at in-plane alignment under 1nN (nanonewton) dynamic force. 

Table B.1 : Deflection and ETR values at 0.1µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Energy 

40921 0,1312 0,0488 0,37 37,22 13,85 

40922 0,1397 0,0548 0,39 39,22 15,38 

40923 0,1496 0,0619 0,41 41,40 17,14 

40924 0,1611 0,0705 0,44 43,78 19,17 

40925 0,1748 0,0810 0,46 46,35 21,48 

40926 0,1915 0,0941 0,49 49,13 24,13 

40927 0,2122 0,1105 0,52 52,09 27,14 

40928 0,2384 0,1317 0,55 55,23 30,51 

40929 0,2724 0,1593 0,58 58,49 34,22 

40930 0,3165 0,1956 0,62 61,78 38,17 

40931 0,3720 0,2417 0,65 64,98 42,22 

40932 0,4312 0,2928 0,68 67,89 46,09 

40933 0,4667 0,3281 0,70 70,31 49,44 

40934 0,4480 0,3226 0,72 72,02 51,86 

40935 0,3901 0,2841 0,73 72,83 53,04 

40936 0,3288 0,2389 0,73 72,65 52,78 

40937 0,2795 0,1998 0,71 71,50 51,12 

40938 0,2427 0,1688 0,70 69,53 48,34 

40939 0,2156 0,1444 0,67 66,99 44,87 

40940 0,1951 0,1250 0,6407 64,0664 41,0451 
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Table B.2 : Deflection and ETR values at 0.5µm separation distance. 

Frequency 

(kHz) 

Amplitude 

of First 

Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Energy 

40921 0,1470 0,0448 0,30 30,46 9,28 

40922 0,1577 0,0508 0,32 32,22 10,38 

40923 0,1701 0,0581 0,34 34,15 11,66 

40924 0,1846 0,0669 0,36 36,26 13,15 

40925 0,2017 0,0778 0,39 38,56 14,87 

40926 0,2219 0,0911 0,41 41,05 16,85 

40927 0,2459 0,1075 0,44 43,72 19,12 

40928 0,2737 0,1274 0,47 46,55 21,67 

40929 0,3043 0,1505 0,49 49,45 24,45 

40930 0,3335 0,1746 0,52 52,33 27,39 

40931 0,3536 0,1946 0,55 55,03 30,28 

40932 0,3559 0,2040 0,57 57,33 32,87 

40933 0,3391 0,2001 0,59 59,01 34,83 

40934 0,3112 0,1864 0,60 59,88 35,86 

40935 0,2815 0,1684 0,60 59,81 35,77 

40936 0,2551 0,1500 0,59 58,81 34,59 

40937 0,2333 0,1331 0,57 57,03 32,52 

40938 0,2158 0,1180 0,55 54,67 29,89 

40939 0,2014 0,1046 0,52 51,96 27,00 

40940 0,1893 0,0929 0,49 49,09 24,10 

  



114 

Table B.3 : Deflection and ETR values at 1µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

40921 
0,1539 0,0401 0,26 26,06 6,79 

40922 
0,1649 0,0455 0,28 27,58 7,61 

40923 
0,1774 0,0519 0,29 29,24 8,55 

40924 
0,1915 0,0595 0,31 31,05 9,64 

40925 
0,2072 0,0684 0,33 33,01 10,90 

40926 
0,2246 0,0789 0,35 35,12 12,33 

40927 
0,2430 0,0907 0,37 37,35 13,95 

40928 
0,2612 0,1036 0,40 39,66 15,73 

40929 
0,2770 0,1162 0,42 41,97 17,61 

40930 
0,2875 0,1270 0,44 44,17 19,51 

40931 
0,2904 0,1339 0,46 46,12 21,27 

40932 
0,2853 0,1359 0,48 47,64 22,70 

40933 
0,2741 0,1331 0,49 48,57 23,59 

40934 
0,2601 0,1269 0,49 48,79 23,80 

40935 
0,2456 0,1186 0,48 48,27 23,30 

40936 
0,2321 0,1093 0,47 47,08 22,17 

40937 
0,2199 0,0997 0,45 45,37 20,58 

40938 
0,2089 0,0904 0,43 43,30 18,74 

40939 
0,1988 0,0816 0,41 41,03 16,84 

40940 
0,1893 0,0733 0,39 38,71 14,98 
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Table B.4 : Deflection and ETR values at 2µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

40921 0,1446 0,0281 0,19 19,40 3,76 

40922 0,1528 0,0314 0,21 20,54 4,22 

40923 0,1616 0,0352 0,22 21,79 4,75 

40924 0,1708 0,0395 0,23 23,15 5,36 

40925 0,1804 0,0444 0,25 24,62 6,06 

40926 0,1901 0,0498 0,26 26,18 6,86 

40927 0,1997 0,0556 0,28 27,82 7,74 

40928 0,2087 0,0616 0,29 29,50 8,70 

40929 0,2169 0,0675 0,31 31,14 9,70 

40930 0,2238 0,0731 0,33 32,66 10,67 

40931 0,2293 0,0779 0,34 33,95 11,52 

40932 0,2335 0,0814 0,35 34,86 12,15 

40933 0,2363 0,0834 0,35 35,30 12,46 

40934 0,2378 0,0837 0,35 35,19 12,39 

40935 0,2378 0,0821 0,35 34,54 11,93 

40936 0,2360 0,0789 0,33 33,44 11,18 

40937 0,2319 0,0743 0,32 32,05 10,27 

40938 0,2257 0,0688 0,30 30,47 9,29 

40939 0,2175 0,0627 0,29 28,82 8,30 

40940 0,2079 0,0565 0,27 27,16 7,37 

  



116 

Table B.5 : Deflection and ETR values at 4µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

40921 0,1394 0,1645 1,18 118,01 139,27 

40922 0,1473 0,1838 1,25 124,76 155,66 

40923 0,1559 0,2060 1,32 132,11 174,52 

40924 0,1654 0,2316 1,40 140,06 196,17 

40925 0,1756 0,2610 1,49 148,62 220,88 

40926 0,1866 0,2945 1,58 157,77 248,91 

40927 0,1985 0,3322 1,67 167,39 280,21 

40928 0,2109 0,3739 1,77 177,29 314,32 

40929 0,2237 0,4185 1,87 187,11 350,12 

40930 0,2362 0,4639 1,96 196,40 385,72 

40931 0,2478 0,5066 2,04 204,49 418,17 

40932 0,2572 0,5419 2,11 210,72 444,03 

40933 0,2633 0,5645 2,14 214,42 459,77 

40934 0,2650 0,5702 2,15 215,18 463,03 

40935 0,2620 0,5578 2,13 212,90 453,25 

40936 0,2548 0,5295 2,08 207,84 431,97 

40937 0,2444 0,4903 2,01 200,57 402,28 

40938 0,2322 0,4453 1,92 191,79 367,82 

40939 0,2192 0,3993 1,82 182,16 331,83 

40940 0,2062 0,3551 1,72 172,23 296,65 
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Table B.6 : Deflection and ETR values at 5µm separation distance. 

Frequenc

y (kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

40921 0,1422 0,0125 0,09 8,75 0,77 

40922 0,1508 0,0140 0,09 9,27 0,86 

40923 0,1603 0,0158 0,10 9,83 0,97 

40924 0,1708 0,0178 0,10 10,44 1,09 

40925 0,1823 0,0202 0,11 11,10 1,23 

40926 0,1948 0,0230 0,12 11,82 1,40 

40927 0,2084 0,0262 0,13 12,58 1,58 

40928 0,2228 0,0298 0,13 13,38 1,79 

40929 0,2376 0,0337 0,14 14,18 2,01 

40930 0,2522 0,0377 0,15 14,96 2,24 

40931 0,2653 0,0415 0,16 15,66 2,45 

40932 0,2757 0,0447 0,16 16,22 2,63 

40933 0,2819 0,0468 0,17 16,59 2,75 

40934 0,2830 0,0473 0,17 16,71 2,79 

40935 0,2788 0,0462 0,17 16,58 2,75 

40936 0,2702 0,0438 0,16 16,20 2,63 

40937 0,2585 0,0404 0,16 15,63 2,44 

40938 0,2450 0,0366 0,15 14,93 2,23 

40939 0,2308 0,0327 0,14 14,15 2,00 

40940 0,2166 0,0289 0,13 13,35 1,78 
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Table B.7 : Deflection and ETR values at 10µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Energy 

40921 0,140 0,002 0,018 1,782 0,032 

40922 0,148 0,003 0,019 1,886 0,036 

40923 0,157 0,003 0,020 1,999 0,040 

40924 0,167 0,004 0,021 2,122 0,045 

40925 0,178 0,004 0,023 2,255 0,051 

40926 0,189 0,005 0,024 2,398 0,058 

40927 0,202 0,005 0,025 2,549 0,065 

40928 0,215 0,006 0,027 2,706 0,073 

40929 0,229 0,007 0,029 2,863 0,082 

40930 0,242 0,007 0,030 3,013 0,091 

40931 0,254 0,008 0,031 3,146 0,099 

40932 0,264 0,009 0,033 3,252 0,106 

40933 0,271 0,009 0,033 3,319 0,110 

40934 0,274 0,009 0,033 3,339 0,111 

40935 0,272 0,009 0,033 3,309 0,109 

40936 0,267 0,009 0,032 3,233 0,105 

40937 0,258 0,008 0,031 3,120 0,097 

40938 0,246 0,007 0,030 2,981 0,089 

40939 0,233 0,007 0,028 2,828 0,080 

40940 0,220 0,006 0,027 2,671 0,071 
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APPENDIX C: 

Deflection and ETR values at Y direction for 8µm-long, 0.75µm-wide, and 

0.75µm-thick beams at in-plane alignment under 1nN (nanonewton) 

dynamic force. 

Table C.1 : Deflection and ETR values at 0.2µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

96480 0,1571 0,0229 0,15 14,59 2,13 

96490 0,1734 0,0280 0,16 16,16 2,61 

96500 0,1933 0,0350 0,18 18,10 3,28 

96510 0,2182 0,0448 0,21 20,52 4,21 

96520 0,2504 0,0592 0,24 23,62 5,58 

96530 0,2936 0,0814 0,28 27,73 7,69 

96540 0,3549 0,1186 0,33 33,42 11,17 

96550 0,4509 0,1876 0,42 41,61 17,32 

96560 0,6334 0,3397 0,54 53,63 28,76 

96570 1,1138 0,7752 0,70 69,60 48,44 

96580 1,1285 0,9101 0,81 80,65 65,04 

96590 0,6072 0,4421 0,73 72,80 53,00 

96600 0,4531 0,2558 0,56 56,45 31,87 

96610 0,3744 0,1628 0,43 43,49 18,92 

96620 0,3178 0,1103 0,35 34,69 12,04 

96630 0,2738 0,0784 0,29 28,62 8,19 

96640 0,2390 0,0580 0,24 24,26 5,89 

96650 0,2112 0,0444 0,21 21,02 4,42 

96660 0,1887 0,0349 0,19 18,52 3,43 

96670 0,1702 0,0281 0,17 16,54 2,74 
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Table C.2 : Deflection and ETR values at 0.5µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Energy 

96480 0,1607 0,0149 0,09 9,30 0,86 

96490 0,1781 0,0183 0,10 10,30 1,06 

96500 0,1998 0,0230 0,12 11,53 1,33 

96510 0,2275 0,0298 0,13 13,09 1,71 

96520 0,2638 0,0399 0,15 15,12 2,29 

96530 0,3137 0,0559 0,18 17,83 3,18 

96540 0,3863 0,0835 0,22 21,62 4,68 

96550 0,5005 0,1358 0,27 27,13 7,36 

96560 0,6961 0,2456 0,35 35,28 12,44 

96570 0,9637 0,4437 0,46 46,04 21,20 

96580 0,8689 0,4568 0,53 52,57 27,63 

96590 0,6570 0,3031 0,46 46,14 21,29 

96600 0,5248 0,1849 0,35 35,24 12,42 

96610 0,4252 0,1153 0,27 27,12 7,36 

96620 0,3497 0,0758 0,22 21,67 4,70 

96630 0,2936 0,0526 0,18 17,92 3,21 

96640 0,2515 0,0383 0,15 15,23 2,32 

96650 0,2193 0,0290 0,13 13,23 1,75 

96660 0,1941 0,0227 0,12 11,68 1,36 

96670 0,1739 0,0182 0,10 10,46 1,09 
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Table C.3 : Deflection and ETR values at 1µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

96480 0,1605 0,0092 0,06 5,74 0,33 

96490 0,1777 0,0113 0,06 6,35 0,40 

96500 0,1990 0,0141 0,07 7,10 0,50 

96510 0,2258 0,0182 0,08 8,05 0,65 

96520 0,2605 0,0242 0,09 9,30 0,86 

96530 0,3068 0,0337 0,11 10,97 1,20 

96540 0,3705 0,0493 0,13 13,32 1,77 

96550 0,4602 0,0769 0,17 16,71 2,79 

96560 0,5844 0,1262 0,22 21,59 4,66 

96570 0,7373 0,2012 0,27 27,29 7,45 

96580 0,8621 0,2539 0,29 29,45 8,68 

96590 0,7845 0,1933 0,25 24,64 6,07 

96600 0,6007 0,1124 0,19 18,71 3,50 

96610 0,4595 0,0668 0,15 14,54 2,11 

96620 0,3657 0,0429 0,12 11,72 1,37 

96630 0,3018 0,0294 0,10 9,74 0,95 

96640 0,2561 0,0213 0,08 8,30 0,69 

96650 0,2221 0,0160 0,07 7,21 0,52 

96660 0,1959 0,0125 0,06 6,37 0,41 

96670 0,1751 0,0100 0,06 5,69 0,32 
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Table C.4 : Deflection and ETR values at 2µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

96480 0,1617 0,0003 0,002 0,210 0,000 

96490 0,1793 0,0004 0,002 0,219 0,000 

96500 0,2011 0,0005 0,002 0,232 0,001 

96510 0,2286 0,0006 0,003 0,253 0,001 

96520 0,2644 0,0008 0,003 0,285 0,001 

96530 0,3126 0,0010 0,003 0,334 0,001 

96540 0,3799 0,0015 0,004 0,408 0,002 

96550 0,4773 0,0025 0,005 0,514 0,003 

96560 0,6184 0,0042 0,007 0,681 0,005 

96570 0,7894 0,0078 0,010 0,993 0,010 

96580 0,8584 0,0104 0,012 1,212 0,015 

96590 0,7315 0,0083 0,011 1,134 0,013 

96600 0,5634 0,0054 0,010 0,956 0,009 

96610 0,4383 0,0035 0,008 0,800 0,006 

96620 0,3530 0,0024 0,007 0,689 0,005 

96630 0,2935 0,0018 0,006 0,611 0,004 

96640 0,2503 0,0014 0,006 0,556 0,003 

96650 0,2178 0,0011 0,005 0,516 0,003 

96660 0,1926 0,0009 0,005 0,485 0,002 

96670 0,1725 0,0008 0,005 0,461 0,002 
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Deflection and ETR values at Z direction for 8µm-long, 0.75µm-wide, and 

0.75µm-thick beams at in-plane alignment under 1nN (nanonewton) 

dynamic force. 

Table C.5 : Deflection and ETR values at 0.2µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Energy 

96480 0,0055 0,0043 0,77 77,23 59,65 

96490 0,0072 0,0057 0,80 79,55 63,28 

96500 0,0094 0,0076 0,81 81,40 66,26 

96510 0,0116 0,0097 0,84 83,82 70,25 

96520 0,0133 0,0116 0,87 86,92 75,56 

96530 0,0143 0,0130 0,91 90,77 82,40 

96540 0,0152 0,0145 0,95 95,22 90,68 

96550 0,0169 0,0168 0,99 99,41 98,83 

96560 0,0212 0,0214 1,01 100,94 101,88 

96570 0,0326 0,0320 0,98 98,00 96,05 

96580 0,0193 0,0300 1,55 155,04 240,36 

96590 0,0188 0,0314 1,67 166,92 278,61 

96600 0,0235 0,0209 0,89 89,16 79,49 

96610 0,0161 0,0087 0,54 53,98 29,14 

96620 0,0113 0,0040 0,36 35,64 12,70 

96630 0,0084 0,0021 0,25 25,10 6,30 

96640 0,0066 0,0012 0,18 17,81 3,17 

96650 0,0053 0,0007 0,13 12,67 1,61 

96660 0,0044 0,0004 0,09 9,14 0,83 

96670 0,0037 0,0003 0,09 8,62 0,74 
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Table C.6 : Deflection and ETR values at 0.5µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Energy 

96480 0,0024 0,0020 0,86 85,76 73,55 

96490 0,0027 0,0025 0,92 92,02 84,67 

96500 0,0032 0,0031 0,99 99,48 98,96 

96510 0,0037 0,0040 1,09 108,52 117,77 

96520 0,0045 0,0053 1,20 119,59 143,02 

96530 0,0055 0,0074 1,33 133,11 177,19 

96540 0,0072 0,0108 1,49 149,03 222,10 

96550 0,0103 0,0170 1,65 165,41 273,59 

96560 0,0170 0,0299 1,76 175,93 309,51 

96570 0,0318 0,0540 1,70 169,71 288,00 

96580 0,0462 0,0649 1,40 140,49 197,38 

96590 0,0597 0,0638 1,07 106,93 114,35 

96600 0,0321 0,0299 0,93 93,34 87,13 

96610 0,0177 0,0145 0,82 81,81 66,94 

96620 0,0115 0,0082 0,72 71,58 51,23 

96630 0,0082 0,0052 0,63 63,23 39,97 

96640 0,0061 0,0035 0,57 56,63 32,07 

96650 0,0048 0,0025 0,51 51,42 26,44 

96660 0,0039 0,0019 0,47 47,26 22,33 

96670 0,0033 0,0014 0,44 43,85 19,23 
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Table C.7 : Deflection and ETR values at 1µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

96480 0,0043 0,0010 0,24 23,71 5,62 

96490 0,0052 0,0013 0,25 24,57 6,04 

96500 0,0062 0,0016 0,25 25,50 6,50 

96510 0,0077 0,0020 0,26 26,49 7,02 

96520 0,0098 0,0027 0,28 27,57 7,60 

96530 0,0130 0,0037 0,29 28,75 8,26 

96540 0,0179 0,0054 0,30 30,04 9,03 

96550 0,0261 0,0082 0,31 31,50 9,92 

96560 0,0405 0,0135 0,33 33,36 11,13 

96570 0,0666 0,0249 0,37 37,30 13,91 

96580 0,1265 0,0583 0,46 46,08 21,24 

96590 0,0800 0,0336 0,42 41,99 17,63 

96600 0,0424 0,0148 0,35 34,93 12,20 

96610 0,0264 0,0085 0,32 32,41 10,50 

96620 0,0179 0,0056 0,31 31,47 9,90 

96630 0,0132 0,0040 0,30 30,37 9,22 

96640 0,0101 0,0030 0,30 29,53 8,72 

96650 0,0080 0,0023 0,29 28,80 8,29 

96660 0,0065 0,0018 0,28 28,13 7,91 

96670 0,0054 0,0015 0,28 27,50 7,56 

 

  



126 

Table C.8 : Deflection and ETR values at 2µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

96480 0,0023 0,0009 0,39 39,14 15,32 

96490 0,0027 0,0011 0,41 40,76 16,61 

96500 0,0032 0,0013 0,42 42,42 18,00 

96510 0,0038 0,0017 0,44 44,07 19,42 

96520 0,0047 0,0021 0,46 45,54 20,74 

96530 0,0060 0,0028 0,46 46,49 21,62 

96540 0,0081 0,0038 0,46 46,34 21,47 

96550 0,0116 0,0054 0,46 46,38 21,51 

96560 0,0159 0,0105 0,66 65,99 43,55 

96570 0,0235 0,0203 0,87 86,50 74,83 

96580 0,0350 0,0299 0,85 85,39 72,92 

96590 0,0383 0,0304 0,79 79,38 63,02 

96600 0,0271 0,0197 0,73 72,83 53,04 

96610 0,0165 0,0110 0,67 66,62 44,39 

96620 0,0106 0,0065 0,61 61,02 37,24 

96630 0,0074 0,0041 0,56 56,04 31,41 

96640 0,0055 0,0028 0,52 51,64 26,67 

96650 0,0043 0,0021 0,48 47,74 22,79 

96660 0,0035 0,0015 0,44 44,28 19,61 

96670 0,0029 0,0012 0,41 41,20 16,98 
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APPENDIX D: 

Deflection and ETR values for 8µm-long, 0.75µm-wide, and 0.34µm-thick 

beams at in-plane alignment under 1nN (nanonewton) dynamic force. 

Table D.1 : Deflection and ETR values at 0.1µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

45701 2,8081 5,0089 1,78 178,37 318,17 

45702 2,5381 5,0443 1,99 198,74 394,99 

45703 2,303 5,0918 2,21 221,09 488,83 

45704 2,1176 5,1594 2,44 243,64 593,62 

45705 2,0001 5,2548 2,63 262,73 690,25 

45706 1,9702 5,3866 2,73 273,40 747,50 

45707 2,0461 5,5647 2,72 271,97 739,66 

45708 2,2406 5,8021 2,59 258,95 670,57 

45709 2,5628 6,1168 2,39 238,68 569,66 

45710 3,0263 6,5351 2,16 215,94 466,32 

45711 3,6597 7,0978 1,94 193,94 376,15 

45712 4,5203 7,872 1,74 174,15 303,27 

45713 5,7201 8,9761 1,57 156,92 246,25 

45714 7,4867 10,642 1,42 142,15 202,05 

45715 10,338 13,389 1,30 129,51 167,73 

45716 15,738 18,676 1,19 118,67 140,82 

45717 29,961 32,761 1,09 109,35 119,56 

45718 166,63 168,74 1,01 101,27 102,55 

45719 49,188 46,348 0,94 94,23 88,79 

45720 22,549 19,854 0,88 88,05 77,52 
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Table D.2 : Deflection and ETR values at 0.2µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Energy 

45701 5,0726 5,893 1,16 116,17 134,96 

45702 4,6791 6,0864 1,30 130,08 169,20 

45703 4,2456 6,2351 1,47 146,86 215,68 

45704 3,8101 6,3611 1,67 166,95 278,74 

45705 3,4113 6,4889 1,90 190,22 361,83 

45706 3,091 6,6433 2,15 214,92 461,92 

45707 2,8986 6,8493 2,36 236,30 558,36 

45708 2,891 7,1348 2,47 246,79 609,07 

45709 3,1228 7,5353 2,41 241,30 582,25 

45710 3,6396 8,102 2,23 222,61 495,54 

45711 4,4974 8,9182 1,98 198,30 393,22 

45712 5,815 10,134 1,74 174,27 303,71 

45713 7,873 12,052 1,53 153,08 234,34 

45714 11,389 15,404 1,35 135,25 182,93 

45715 18,671 22,495 1,20 120,48 145,16 

45716 42,794 46,315 1,08 108,23 117,13 

45717 199,99 196,02 0,98 98,01 96,07 

45718 34,602 30,942 0,89 89,42 79,96 

45719 19,357 15,897 0,82 82,13 67,45 

45720 13,707 10,4 0,76 75,87 57,57 
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Table D.3 : Deflection and ETR values at 0.3µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

45701 6,6467 5,7524 0,87 86,55 74,90 

45702 6,4842 6,2719 0,97 96,73 93,56 

45703 6,1527 6,7206 1,09 109,23 119,31 

45704 5,6847 7,0892 1,25 124,71 155,52 

45705 5,1419 7,3947 1,44 143,81 206,82 

45706 4,6021 7,6749 1,67 166,77 278,12 

45707 4,155 7,979 1,92 192,03 368,77 

45708 3,9083 8,3641 2,14 214,01 458,00 

45709 3,9904 8,8992 2,23 223,02 497,36 

45710 4,534 9,6816 2,14 213,53 455,96 

45711 5,6828 10,874 1,91 191,35 366,15 

45712 7,7068 12,802 1,66 166,11 275,94 

45713 11,341 16,248 1,43 143,27 205,26 

45714 19,1 23,736 1,24 124,27 154,44 

45715 46,248 50,362 1,09 108,90 118,58 

45716 143,71 138,63 0,96 96,47 93,06 

45717 33,051 28,538 0,86 86,35 74,56 

45718 19,164 14,949 0,78 78,01 60,85 

45719 13,788 9,7961 0,71 71,05 50,48 

45720 10,914 7,1129 0,65 65,17 42,47 
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Table D.4 : Deflection and ETR values at 0.4µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

45701 7,2701 4,9667 0,68 68,32 46,67 

45702 7,4486 5,6739 0,76 76,17 58,02 

45703 7,4509 6,3966 0,86 85,85 73,70 

45704 7,2374 7,0868 0,98 97,92 95,88 

45705 6,8167 7,7097 1,13 113,10 127,92 

45706 6,2586 8,2662 1,32 132,08 174,44 

45707 5,6856 8,8006 1,55 154,79 239,59 

45708 5,2657 9,3947 1,78 178,41 318,31 

45709 5,2189 10,166 1,95 194,79 379,44 

45710 5,8178 11,289 1,94 194,04 376,52 

45711 7,4018 13,08 1,77 176,71 312,28 

45712 10,627 16,255 1,53 152,96 233,97 

45713 17,627 23,002 1,30 130,49 170,28 

45714 40,285 45,051 1,12 111,83 125,06 

45715 174,9 169,52 0,97 96,92 93,94 

45716 35,986 30,612 0,85 85,07 72,36 

45717 20,304 15,34 0,76 75,55 57,08 

45718 14,493 9,8287 0,68 67,82 45,99 

45719 11,438 7,0271 0,61 61,44 37,74 

45720 9,5358 5,3502 0,56 56,11 31,48 
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Table D.5 : Deflection and ETR values at 0.5µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

45701 7,4955 4,2797 0,57 57,10 32,60 

45702 7,8895 5,0195 0,64 63,62 40,48 

45703 8,169 5,8551 0,72 71,67 51,37 

45704 8,2548 6,75 0,82 81,77 66,86 

45705 8,0872 7,65 0,95 94,59 89,48 

45706 7,6722 8,5115 1,11 110,94 123,08 

45707 7,1157 9,3405 1,31 131,27 172,31 

45708 6,6297 10,217 1,54 154,11 237,50 

45709 6,5385 11,302 1,73 172,85 298,78 

45710 7,2992 12,879 1,76 176,44 311,32 

45711 9,5743 15,522 1,62 162,12 262,83 

45712 14,865 20,762 1,40 139,67 195,08 

45713 29,75 35,122 1,18 118,06 139,37 

45714 141,78 142,12 1,00 100,24 100,48 

45715 46,82 40,362 0,86 86,21 74,32 

45716 23,393 17,589 0,75 75,19 56,53 

45717 16,056 10,669 0,66 66,45 44,15 

45718 12,442 7,392 0,59 59,41 35,30 

45719 10,266 5,5078 0,54 53,65 28,78 

45720 8,7983 4,2991 0,49 48,86 23,88 
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Table D.6 : Deflection and ETR values at 1µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

45701 7,5962 2,2412 0,30 29,50 8,70 

45702 8,3019 2,7247 0,33 32,82 10,77 

45703 9,1034 3,3611 0,37 36,92 13,63 

45704 9,9948 4,2074 0,42 42,10 17,72 

45705 10,946 5,3368 0,49 48,76 23,77 

45706 11,891 6,8364 0,57 57,49 33,05 

45707 12,759 8,8045 0,69 69,01 47,62 

45708 13,624 11,393 0,84 83,62 69,93 

45709 15,152 15,036 0,99 99,23 98,47 

45710 19,721 21,313 1,08 108,07 116,80 

45711 36,485 37,387 1,02 102,47 105,01 

45712 87,316 76,471 0,88 87,58 76,70 

45713 38,261 27,683 0,72 72,35 52,35 

45714 22,69 13,628 0,60 60,06 36,07 

45715 16,545 8,3901 0,51 50,71 25,72 

45716 13,22 5,7643 0,44 43,60 19,01 

45717 11,098 4,2291 0,38 38,11 14,52 

45718 9,6051 3,2437 0,34 33,77 11,40 

45719 8,4868 2,5701 0,30 30,28 9,17 

45720 7,6125 2,0878 0,27 27,43 7,52 
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Table D.7 : Deflection and ETR values at 2µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Energy 

45701 7,9368 1,079 0,14 13,59 1,85 

45702 8,8113 1,3347 0,15 15,15 2,29 

45703 9,8887 1,689 0,17 17,08 2,92 

45704 11,244 2,1966 0,20 19,54 3,82 

45705 12,993 2,9539 0,23 22,73 5,17 

45706 15,325 4,1381 0,27 27,00 7,29 

45707 18,6 6,0969 0,33 32,78 10,74 

45708 23,644 9,5568 0,40 40,42 16,34 

45709 32,593 15,986 0,49 49,05 24,06 

45710 44,716 24,201 0,54 54,12 29,29 

45711 37,388 18,951 0,51 50,69 25,69 

45712 26,218 11,088 0,42 42,29 17,89 

45713 19,996 6,8548 0,34 34,28 11,75 

45714 16,184 4,5507 0,28 28,12 7,91 

45715 13,572 3,1985 0,24 23,57 5,55 

45716 11,66 2,3519 0,20 20,17 4,07 

45717 10,202 1,793 0,18 17,57 3,09 

45718 9,0549 1,4075 0,16 15,54 2,42 

45719 8,1316 1,1319 0,14 13,92 1,94 

45720 7,3737 0,92857 0,13 12,59 1,59 
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APPENDIX E: 

Deflection and ETR values for 20µm-long, 1µm-wide, and 0.34µm-thick 

beams at in-plane alignment under 0.1nN (nanonewton) dynamic force. 

Table E.1 : Deflection and ETR values at 0.1µm separation distance. 

Frequency 

(kHz) 

Amplitude 

of First 

Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Energy 

7356 1,9989 0,51737 0,26 25,88 6,70 

7357 2,3549 0,70155 0,30 29,79 8,88 

7358 2,8812 1,0109 0,35 35,09 12,31 

7359 3,755 1,6021 0,43 42,67 18,20 

7360 5,5632 3,0272 0,54 54,41 29,61 

7361 12,373 9,2904 0,75 75,09 56,38 

7362 18,638 22,561 1,21 121,05 146,53 

7363 2,5696 8,0135 3,12 311,86 972,55 

7364 1,3762 7,4433 5,41 540,86 2925,28 

7365 9,4597 13,713 1,45 144,96 210,14 

7366 20,091 16,817 0,84 83,70 70,06 

7367 6,4666 3,8054 0,59 58,85 34,63 

7368 4,1038 1,8622 0,45 45,38 20,59 

7369 3,0699 1,1337 0,37 36,93 13,64 

7370 2,4745 0,77039 0,31 31,13 9,69 

7371 2,0819 0,56029 0,27 26,91 7,24 

7372 1,8014 0,42693 0,24 23,70 5,62 

7373 1,5898 0,33663 0,21 21,17 4,48 

7374 1,4241 0,27251 0,19 19,14 3,66 

7375 1,2905 0,22526 0,17 17,46 3,05 
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Table E.2 : Deflection and ETR values at 0.5µm separation distance. 

Frequency 

(kHz) 

Amplitude 

of First 

Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

7356 1,7604 0,1756 0,10 9,98 1,00 

7357 2,0119 0,2288 0,11 11,37 1,29 

7358 2,3486 0,3104 0,13 13,21 1,75 

7359 2,824 0,4454 0,16 15,77 2,49 

7360 3,5497 0,6942 0,20 19,56 3,82 

7361 4,8089 1,237 0,26 25,72 6,62 

7362 7,6385 2,8695 0,38 37,57 14,11 

7363 23,615 16,435 0,70 69,60 48,44 

7364 3,876 18,222 4,70 470,12 2210,16 

7365 628,2 620,88 0,99 98,83 97,68 

7366 9,7165 4,3469 0,45 44,74 20,01 

7367 5,486 1,5864 0,29 28,92 8,36 

7368 3,8924 0,8316 0,21 21,36 4,56 

7369 3,0326 0,5138 0,17 16,94 2,87 

7370 2,4892 0,3494 0,14 14,04 1,97 

7371 2,1131 0,2532 0,12 11,98 1,44 

7372 1,8368 0,192 0,10 10,45 1,09 

7373 1,6248 0,1507 0,09 9,27 0,86 

7374 1,457 0,1214 0,08 8,33 0,69 

7375 1,3208 0,0999 0,08 7,56 0,57 
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Table E.3 : Deflection and ETR values at 0.8µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

7356 1,7368 0,11178 0,06 6,44 0,41 

7357 1,9793 0,14502 0,07 7,33 0,54 

7358 2,301 0,19568 0,09 8,50 0,72 

7359 2,749 0,2785 0,10 10,13 1,03 

7360 3,4169 0,42803 0,13 12,53 1,57 

7361 4,5252 0,74229 0,16 16,40 2,69 

7362 6,7562 1,6047 0,24 23,75 5,64 

7363 14,164 6,0916 0,43 43,01 18,50 

7364 14,637 33,176 2,27 226,66 513,74 

7365 35,631 24,696 0,69 69,31 48,04 

7366 8,8515 2,6618 0,30 30,07 9,04 

7367 5,3387 1,0252 0,19 19,20 3,69 

7368 3,8535 0,54364 0,14 14,11 1,99 

7369 3,022 0,33695 0,11 11,15 1,24 

7370 2,4879 0,22935 0,09 9,22 0,85 

7371 2,1152 0,1662 0,08 7,86 0,62 

7372 1,84 0,12599 0,07 6,85 0,47 

7373 1,6284 0,0988 0,06 6,07 0,37 

7374 1,4605 0,07956 0,05 5,45 0,30 

7375 1,3241 0,06544 0,05 4,94 0,24 
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Table E.4 : Deflection and ETR values at 1µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

7356 1,7312 0,08777 0,05 5,07 0,26 

7357 1,9715 0,11376 0,06 5,77 0,33 

7358 2,2896 0,1533 0,07 6,70 0,45 

7359 2,731 0,21775 0,08 7,97 0,64 

7360 3,3853 0,33354 0,10 9,85 0,97 

7361 4,4589 0,57472 0,13 12,89 1,66 

7362 6,5639 1,2228 0,19 18,63 3,47 

7363 12,867 4,3198 0,34 33,57 11,27 

7364 30,602 51,797 1,69 169,26 286,49 

7365 27,337 15,213 0,56 55,65 30,97 

7366 8,6063 2,0574 0,24 23,91 5,71 

7367 5,2901 0,80541 0,15 15,22 2,32 

7368 3,8385 0,42878 0,11 11,17 1,25 

7369 3,0165 0,26612 0,09 8,82 0,78 

7370 2,4859 0,18122 0,07 7,29 0,53 

7371 2,1146 0,13135 0,06 6,21 0,39 

7372 1,84 0,09958 0,05 5,41 0,29 

7373 1,6287 0,07809 0,05 4,79 0,23 

7374 1,461 0,06288 0,04 4,30 0,19 

7375 1,3246 0,05172 0,04 3,90 0,15 
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Table E.5 : Deflection and ETR values at 2µm separation distance. 

Frequenc

y (kHz) 

Amplitude 

of First 

Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer Rate 

of Deflection 

Percent 

Transfer Rate 

of Energy 

7356 1,7223 0,03628 0,021 2,107 0,044 

7357 1,9593 0,04696 0,024 2,397 0,057 

7358 2,272 0,06316 0,028 2,780 0,077 

7359 2,7037 0,08945 0,033 3,308 0,109 

7360 3,3383 0,13634 0,041 4,084 0,167 

7361 4,3635 0,23278 0,053 5,335 0,285 

7362 6,3032 0,48454 0,077 7,687 0,591 

7363 11,407 1,568 0,137 13,746 1,890 

7364 88,278 57,18 0,648 64,773 41,955 

7365 20,719 4,9494 0,239 23,888 5,706 

7366 8,3176 0,83914 0,101 10,089 1,018 

7367 5,2367 0,33492 0,064 6,396 0,409 

7368 3,8247 0,17909 0,047 4,682 0,219 

7369 3,0131 0,11129 0,037 3,694 0,136 

7370 2,4859 0,07581 0,030 3,050 0,093 

7371 2,1157 0,05495 0,026 2,597 0,067 

7372 1,8416 0,04165 0,023 2,262 0,051 

7373 1,6303 0,03266 0,020 2,003 0,040 

7374 1,4625 0,02629 0,018 1,798 0,032 

7375 1,326 0,021622 0,016 1,631 0,027 
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Table E.6 : Deflection and ETR values at 4µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

7356 1,7209 0,0125 0,007 0,728 0,005 

7357 1,9573 0,0162 0,008 0,828 0,007 

7358 2,2692 0,02179 0,010 0,960 0,009 

7359 2,6992 0,03084 0,011 1,142 0,013 

7360 3,3306 0,04697 0,014 1,410 0,020 

7361 4,3479 0,08008 0,018 1,842 0,034 

7362 6,2607 0,16609 0,027 2,653 0,070 

7363 11,186 0,53013 0,047 4,739 0,225 

7364 54,181 11,996 0,221 22,141 4,902 

7365 19,764 1,6383 0,083 8,289 0,687 

7366 8,26 0,28849 0,035 3,493 0,122 

7367 5,2246 0,11561 0,022 2,213 0,049 

7368 3,8209 0,06188 0,016 1,620 0,026 

7369 3,0118 0,03847 0,013 1,277 0,016 

7370 2,4854 0,02621 0,011 1,055 0,011 

7371 2,1156 0,019 0,009 0,898 0,008 

7372 1,8416 0,0144 0,008 0,782 0,006 

7373 1,6304 0,01129 0,007 0,693 0,005 

7374 1,4626 0,00909 0,006 0,622 0,004 

7375 1,3262 0,00748 0,006 0,564 0,003 
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Deflection and ETR values for 20µm-long, 1µm-wide, and 0.34µm-thick 

beams at in-plane alignment under 0.01nN (nanonewton) dynamic force. 

Table E.7 : Deflection and ETR values at 8µm separation distance. 

Frequency 

(kHz) 

Amplitude 

of First 

Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Energy 

7364,12 9,3943 1,1045 0,12 11,76 1,38 

7364,14 10,833 1,4614 0,13 13,49 1,82 

7364,16 12,795 2,0242 0,16 15,82 2,50 

7364,18 15,627 2,9882 0,19 19,12 3,66 

7364,2 20,071 4,8476 0,24 24,15 5,83 

7364,22 27,949 9,149 0,33 32,73 10,72 

7364,24 43,913 22,184 0,51 50,52 25,52 

7364,26 50,548 53,219 1,05 105,28 110,85 

7364,28 46,14 86,929 1,88 188,40 354,96 

7364,3 86,951 60,614 0,70 69,71 48,60 

7364,32 34,113 13,667 0,40 40,06 16,05 

7364,34 22,344 6,2457 0,28 27,95 7,81 

7364,36 16,806 3,6026 0,21 21,44 4,60 

7364,38 13,519 2,349 0,17 17,38 3,02 

7364,4 11,326 1,6542 0,15 14,61 2,13 

7364,42 9,7529 1,2284 0,13 12,60 1,59 

7364,44 8,567 0,9485 0,11 11,07 1,23 

7364,46 7,6401 0,7546 0,10 9,88 0,98 

7364,48 6,8952 0,6146 0,09 8,91 0,79 

7364,5 6,2833 0,51032 0,08 8,12 0,66 
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Table E.8 : Deflection and ETR values at 10µm separation distance. 

Frequency 

(kHz) 

Amplitude 

of First 

Beam (nm) 

Amplitude of 

Second 

Beam (nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Energy 

7364,12 9,1544 0,7256 0,08 7,93 0,63 

7364,14 10,505 0,9567 0,09 9,11 0,83 

7364,16 12,323 1,3184 0,11 10,70 1,14 

7364,18 14,897 1,931 0,13 12,96 1,68 

7364,2 18,817 3,0923 0,16 16,43 2,70 

7364,22 25,453 5,7049 0,22 22,41 5,02 

7364,24 38,473 13,479 0,35 35,03 12,27 

7364,26 58,786 44,362 0,75 75,46 56,95 

7364,28 129,53 151,81 1,17 117,20 137,36 

7364,3 66,878 29,718 0,44 44,44 19,75 

7364,32 33,061 8,6041 0,26 26,02 6,77 

7364,34 22,369 4,0956 0,18 18,31 3,35 

7364,36 16,966 2,3932 0,14 14,11 1,99 

7364,38 13,68 1,5687 0,11 11,47 1,31 

7364,4 11,466 1,1074 0,10 9,66 0,93 

7364,42 9,8708 0,8234 0,08 8,34 0,70 

7364,44 8,6662 0,6361 0,07 7,34 0,54 

7364,46 7,724 0,5062 0,07 6,55 0,43 

7364,48 6,9668 0,4124 0,06 5,92 0,35 

7364,5 6,345 0,3424 0,05 5,40 0,29 
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Table E.9 : Deflection and ETR values at 12µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Energy 

7364,12 9,052 0,505 0,06 5,57 0,31 

7364,14 10,368 0,663 0,06 6,39 0,41 

7364,16 12,130 0,909 0,07 7,50 0,56 

7364,18 14,607 1,323 0,09 9,06 0,82 

7364,2 18,340 2,097 0,11 11,43 1,31 

7364,22 24,568 3,803 0,15 15,48 2,40 

7364,24 36,700 8,750 0,24 23,84 5,68 

7364,26 63,294 31,291 0,49 49,44 24,44 

7364,28 221,700 200,460 0,90 90,42 81,76 

7364,3 62,702 20,915 0,33 33,36 11,13 

7364,32 32,956 6,298 0,19 19,11 3,65 

7364,34 22,502 2,996 0,13 13,31 1,77 

7364,36 17,097 1,744 0,10 10,20 1,04 

7364,38 13,787 1,140 0,08 8,27 0,68 

7364,4 11,551 0,802 0,07 6,95 0,48 

7364,42 9,939 0,595 0,06 5,99 0,36 

7364,44 8,722 0,459 0,05 5,26 0,28 

7364,46 7,770 0,365 0,05 4,69 0,22 

7364,48 7,005 0,297 0,04 4,24 0,18 

7364,5 6,378 0,246 0,04 3,86 0,15 
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Table E.10 : Deflection and ETR values at 15µm separation distance. 

Frequency 

(kHz) 

Amplitude 

of First 

Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

7364,12 9,271 0,344 0,037 3,71 0,14 

7364,14 10,656 0,454 0,043 4,26 0,18 

7364,16 12,523 0,625 0,050 4,99 0,25 

7364,18 15,179 0,915 0,060 6,03 0,36 

7364,2 19,248 1,464 0,076 7,61 0,58 

7364,22 26,226 2,700 0,103 10,30 1,06 

7364,24 40,665 6,440 0,158 15,84 2,51 

7364,26 81,294 26,591 0,327 32,71 10,70 

7364,28 190,550 114,830 0,603 60,26 36,32 

7364,3 50,648 11,297 0,223 22,30 4,98 

7364,32 29,793 3,803 0,128 12,76 1,63 

7364,34 21,068 1,872 0,089 8,89 0,79 

7364,36 16,282 1,108 0,068 6,81 0,46 

7364,38 13,261 0,731 0,055 5,51 0,30 

7364,4 11,184 0,518 0,046 4,63 0,21 

7364,42 9,668 0,386 0,040 3,99 0,16 

7364,44 8,514 0,299 0,035 3,51 0,12 

7364,46 7,605 0,238 0,031 3,13 0,10 

7364,48 6,872 0,194 0,028 2,82 0,08 

7364,5 6,267 0,161 0,026 2,57 0,07 
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Table E.11 : Deflection and ETR values at 18µm separation distance. 

Frequency 

(kHz) 

Amplitude 

of First 

Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer Rate 

of Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Energy 

7364,12 9,238 0,244 0,026 2,64 0,07 

7364,14 10,612 0,323 0,030 3,04 0,09 

7364,16 12,465 0,446 0,036 3,58 0,13 

7364,18 15,095 0,656 0,043 4,34 0,19 

7364,2 19,121 1,057 0,055 5,53 0,31 

7364,22 26,023 1,972 0,076 7,58 0,57 

7364,24 40,381 4,834 0,120 11,97 1,43 

7364,26 84,172 22,315 0,265 26,51 7,03 

7364,28 146,560 53,420 0,364 36,45 13,29 

7364,3 51,028 7,239 0,142 14,19 2,01 

7364,32 30,106 2,538 0,084 8,43 0,71 

7364,34 21,245 1,268 0,060 5,97 0,36 

7364,36 16,391 0,757 0,046 4,62 0,21 

7364,38 13,335 0,502 0,038 3,76 0,14 

7364,4 11,237 0,357 0,032 3,17 0,10 

7364,42 9,708 0,266 0,027 2,74 0,08 

7364,44 8,545 0,207 0,024 2,42 0,06 

7364,46 7,630 0,165 0,022 2,16 0,05 

7364,48 6,892 0,134 0,020 1,95 0,04 

7364,5 6,284 0,112 0,018 1,78 0,03 

  



145 

Table E.12 : Deflection and ETR values at 20µm separation distance. 

Frequency 

(kHz) 

Amplitude 

of First 

Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer Rate 

of Deflection 

Percent 

Transfer Rate 

of Energy 

7364,12 9,113 0,197 0,022 2,16 0,05 

7364,14 10,448 0,259 0,025 2,48 0,06 

7364,16 12,239 0,355 0,029 2,90 0,08 

7364,18 14,769 0,518 0,035 3,51 0,12 

7364,2 18,606 0,825 0,044 4,43 0,20 

7364,22 25,101 1,509 0,060 6,01 0,36 

7364,24 38,340 3,557 0,093 9,28 0,86 

7364,26 77,850 15,050 0,193 19,33 3,74 

7364,28 160,660 55,001 0,342 34,23 11,72 

7364,3 54,959 7,007 0,127 12,75 1,63 

7364,32 31,526 2,313 0,073 7,34 0,54 

7364,34 21,953 1,125 0,051 5,12 0,26 

7364,36 16,810 0,661 0,039 3,93 0,15 

7364,38 13,612 0,434 0,032 3,19 0,10 

7364,4 11,433 0,306 0,027 2,68 0,07 

7364,42 9,854 0,228 0,023 2,31 0,05 

7364,44 8,657 0,176 0,020 2,03 0,04 

7364,46 7,720 0,140 0,018 1,81 0,03 

7364,48 6,965 0,114 0,016 1,63 0,03 

7364,5 6,345 0,095 0,015 1,49 0,02 
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APPENDIX F:  

Deflection and ETR values under viscous damping for 20µm-long, 1µm-

wide, and 0.34µm-thick beams at in-plane alignment under 1nN 

(nanonewton) dynamic force. 

Table F.1 : Deflection and ETR values at 0.1µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

7356 18,407 4,491 0,24 24,40 5,95 

7357 20,966 5,784 0,28 27,59 7,61 

7358 24,188 7,652 0,32 31,63 10,01 

7359 28,157 10,378 0,37 36,86 13,58 

7360 32,561 14,220 0,44 43,67 19,07 

7361 36,009 18,879 0,52 52,43 27,49 

7362 36,461 22,853 0,63 62,68 39,29 

7363 34,774 24,808 0,71 71,34 50,89 

7364 34,506 25,067 0,73 72,65 52,77 

7365 36,290 23,746 0,65 65,43 42,82 

7366 36,760 20,278 0,55 55,16 30,43 

7367 33,900 15,561 0,46 45,90 21,07 

7368 29,469 11,373 0,39 38,59 14,89 

7369 25,260 8,333 0,33 32,99 10,88 

7370 21,802 6,249 0,29 28,66 8,21 

7371 19,059 4,816 0,25 25,27 6,38 

7372 16,879 3,807 0,23 22,55 5,09 

7373 15,125 3,077 0,20 20,34 4,14 

7374 13,690 2,535 0,19 18,52 3,43 

7375 12,498 2,122 0,17 16,98 2,88 
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Table F.2 : Deflection and ETR values at 0.2µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

7356 18,02 3,2794 0,18 18,20 3,31 

7357 20,604 4,2574 0,21 20,66 4,27 

7358 24,013 5,7299 0,24 23,86 5,69 

7359 28,655 8,066 0,28 28,15 7,92 

7360 35,09 11,97 0,34 34,11 11,64 

7361 43,503 18,584 0,43 42,72 18,25 

7362 50,726 28,016 0,55 55,23 30,50 

7363 49,556 35,146 0,71 70,92 50,30 

7364 46,714 36,836 0,79 78,85 62,18 

7365 50,727 34,699 0,68 68,40 46,79 

7366 50,469 26,695 0,53 52,89 27,98 

7367 42,311 17,393 0,41 41,11 16,90 

7368 34,01 11,233 0,33 33,03 10,91 

7369 27,84 7,6279 0,27 27,40 7,51 

7370 23,405 5,4596 0,23 23,33 5,44 

7371 20,139 4,0823 0,20 20,27 4,11 

7372 17,655 3,161 0,18 17,90 3,21 

7373 15,71 2,517 0,16 16,02 2,57 

7374 14,148 2,0503 0,14 14,49 2,10 

7375 12,867 1,7017 0,13 13,23 1,75 
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Table F.3 : Deflection and ETR values at 0.3µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

7356 17,751 2,5606 0,14 14,43 2,08 

7357 20,277 3,325 0,16 16,40 2,69 

7358 23,633 4,4848 0,19 18,98 3,60 

7359 28,285 6,3579 0,22 22,48 5,05 

7360 35,071 9,6326 0,27 27,47 7,54 

7361 45,385 15,889 0,35 35,01 12,26 

7362 59,572 28,079 0,47 47,13 22,22 

7363 65,59 43,448 0,66 66,24 43,88 

7364 59,055 48,361 0,82 81,89 67,06 

7365 65,76 44,996 0,68 68,42 46,82 

7366 61,606 30,021 0,49 48,73 23,75 

7367 46,932 16,896 0,36 36,00 12,96 

7368 36,019 10,128 0,28 28,12 7,91 

7369 28,892 6,6278 0,23 22,94 5,26 

7370 24,047 4,6466 0,19 19,32 3,73 

7371 20,574 3,4298 0,17 16,67 2,78 

7372 17,972 2,6326 0,15 14,65 2,15 

7373 15,953 2,0831 0,13 13,06 1,71 

7374 14,341 1,6889 0,12 11,78 1,39 

7375 13,024 1,3966 0,11 10,72 1,15 
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Table F.4 : Deflection and ETR values at 0.4µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam (nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

7356 18,407 4,491 0,24 24,40 5,95 

7357 20,966 5,784 0,28 27,59 7,61 

7358 24,188 7,652 0,32 31,63 10,01 

7359 28,157 10,378 0,37 36,86 13,58 

7360 32,561 14,220 0,44 43,67 19,07 

7361 36,009 18,879 0,52 52,43 27,49 

7362 36,461 22,853 0,63 62,68 39,29 

7363 34,774 24,808 0,71 71,34 50,89 

7364 34,506 25,067 0,73 72,65 52,77 

7365 36,290 23,746 0,65 65,43 42,82 

7366 36,760 20,278 0,55 55,16 30,43 

7367 33,900 15,561 0,46 45,90 21,07 

7368 29,469 11,373 0,39 38,59 14,89 

7369 25,260 8,333 0,33 32,99 10,88 

7370 21,802 6,249 0,29 28,66 8,21 

7371 19,059 4,816 0,25 25,27 6,38 

7372 16,879 3,807 0,23 22,55 5,09 

7373 15,125 3,077 0,20 20,34 4,14 

7374 13,690 2,535 0,19 18,52 3,43 

7375 12,498 2,122 0,17 16,98 2,88 
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Table F.5 : Deflection and ETR values at 0.5µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

7356 17,467 1,730 0,10 9,91 0,98 

7357 19,912 2,244 0,11 11,27 1,27 

7358 23,154 3,022 0,13 13,05 1,70 

7359 27,654 4,286 0,16 15,50 2,40 

7360 34,307 6,533 0,19 19,04 3,63 

7361 45,037 11,072 0,25 24,58 6,04 

7362 64,222 21,995 0,34 34,25 11,73 

7363 93,049 49,657 0,53 53,37 28,48 

7364 86,405 70,551 0,82 81,65 66,67 

7365 97,728 61,965 0,63 63,41 40,20 

7366 74,419 29,257 0,39 39,31 15,46 

7367 50,448 13,759 0,27 27,27 7,44 

7368 37,400 7,731 0,21 20,67 4,27 

7369 29,625 4,914 0,17 16,59 2,75 

7370 24,512 3,390 0,14 13,83 1,91 

7371 20,902 2,478 0,12 11,85 1,40 

7372 18,218 1,889 0,10 10,37 1,07 

7373 16,146 1,487 0,09 9,21 0,85 

7374 14,496 1,201 0,08 8,29 0,69 

7375 13,153 0,990 0,08 7,53 0,57 
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Table F.6 : Deflection and ETR values at 1µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

7356 17,271 0,874 0,051 5,06 0,26 

7357 19,654 1,131 0,058 5,75 0,33 

7358 22,801 1,521 0,067 6,67 0,44 

7359 27,149 2,153 0,079 7,93 0,63 

7360 33,544 3,278 0,098 9,77 0,95 

7361 43,874 5,576 0,127 12,71 1,62 

7362 63,294 11,452 0,181 18,09 3,27 

7363 110,700 33,990 0,307 30,70 9,43 

7364 170,680 118,180 0,692 69,24 47,94 

7365 160,470 72,014 0,449 44,88 20,14 

7366 80,959 18,461 0,228 22,80 5,20 

7367 51,764 7,728 0,149 14,93 2,23 

7368 37,961 4,196 0,111 11,05 1,22 

7369 29,962 2,626 0,088 8,76 0,77 

7370 24,746 1,796 0,073 7,26 0,53 

7371 21,077 1,305 0,062 6,19 0,38 

7372 18,355 0,991 0,054 5,40 0,29 

7373 16,256 0,778 0,048 4,79 0,23 

7374 14,587 0,627 0,043 4,30 0,18 

7375 13,229 0,516 0,039 3,90 0,15 
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Table F.7 : Deflection and ETR values at 2µm separation distance. 

Frequency 

(kHz) 

Amplitude of 

First Beam 

(nm) 

Amplitude of 

Second Beam 

(nm) 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Deflection 

Percent 

Transfer 

Rate of 

Energy 

7356 17,216 0,362 0,02 2,10 0,04 

7357 19,581 0,469 0,02 2,39 0,06 

7358 22,701 0,630 0,03 2,77 0,08 

7359 27,003 0,891 0,03 3,30 0,11 

7360 33,316 1,356 0,04 4,07 0,17 

7361 43,477 2,308 0,05 5,31 0,28 

7362 62,526 4,761 0,08 7,61 0,58 

7363 110,840 14,817 0,13 13,37 1,79 

7364 337,380 146,660 0,43 43,47 18,90 

7365 187,670 41,573 0,22 22,15 4,91 

7366 81,848 8,139 0,10 9,94 0,99 

7367 52,022 3,307 0,06 6,36 0,40 

7368 38,107 1,778 0,05 4,67 0,22 

7369 30,060 1,108 0,04 3,68 0,14 

7370 24,817 0,756 0,03 3,04 0,09 

7371 21,131 0,548 0,03 2,59 0,07 

7372 18,398 0,416 0,02 2,26 0,05 

7373 16,290 0,326 0,02 2,00 0,04 

7374 14,615 0,263 0,02 1,80 0,03 

7375 13,253 0,216 0,02 1,63 0,03 
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