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ABSTRACT

This thesis deals with the implementation of a numerical method to de-
scribe how electromagnetic waves propagate through a one-dimensional photonic
crystal waveguide. The one-dimensional photonic crystal waveguide is a periodic
arrangement of dielectric slabs of alternating dielectric constant with an impurity
slab introduced as the guiding layer. This impurity guides, and confines light
within a given range of frequencies by producing waveguide modes within the
photonic band gap. These modes are different from those of conventional waveg-
uides that use total internal reflection as the basic guiding mechanism. Photonic
crystal waveguides are expected to lead to compact photonic integrated circuits.

v



OZET

Elektromanyetik dalgalarin bir boyutlu fotonik kristal dalga kilavuzu
icerisinde nasl ilerledigi numerik metotlarin uygulanmasiyla aiklanmaktadir. Bir
boyutlu fotonik kristal dalga kilavuzu, degigen dielektrik sabitine sahip tabakalarin
periyodik olarak siralanmasindan ve igerisinde kilavuz tabaka olarak bilinen safsizlga
sahip bir tabakadan meydana gelmektedir. Bu safsizlik, fotonik yasaklanmg
bant aralinda dalga kilavuzu modlan yaratarak, in verilen belirli bir frekans
aralinda ilerlemesini ve hapsedilmesini saglamaktadir. Elde edilen bu modlar,
basit kilavuzlama mekanizmas olarak i¢ tam yansimayi kullanan geleneksel dalga
kilavuzlarindan farklhidir. Fotonik kristal dalga kilavuzlarinin biitiinlegmis yogun
fotonik devrelerde yol gosterici olacar umulmaktadir.
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Chapter 1

INTRODUCTION

As the world demands ever more of computers and communications we
turn increasingly to optical devices whose bandwidth and speed of execution offer
great potential. However materials science has lagged behind in this rush into the
optical domain : optical properties of materials are not always well matched to the
functions we seek. This is in contrast to the vast range of electronic properties
available to us. In the electronic domain one can almost make materials to
order. The root cause of this richness in electronic properties is the interaction of
electrons with the periodic structure of the materials. It is this interaction that
decides whether a material will be a metal, a semiconductor, or an insulator, and
can be further exploited to fine tune the detailed electronic properties. Change
the structure, change the properties.

It was this concept that led Yablonovitch [1] to propose that we try the
same trick with light. He had in mind that just as a semiconductor has a forbidden
band of energies within which no electron could enter the crystal, so it should be
possible to make a periodic dielectric such that in a forbidden range of frequencies
no photon could enter into or propagate within the crystal. This idea created the
concept of photonic crystal which has a periodically modulated dielectric constant
with a lattice constant that is comparable to desired wavelength. Structure of
a photonic crystal consists of periodically arranged blocks and that is why it
is a “crystal”’. It is said to be “photonic” because these materials affect the
propagation properties of photons.

There is a conceptual analogy between the behavior of electromagnetic
waves in periodic dielectric structures and electron waves in natural crystals.
Photonic crystals are theoretically analyzed by using the solutions of Maxwell’s
equations in a periodic medium, while the electronic structure of natural crystals
are analyzed by the Schrédinger equation. But this is not a complete analogy.
For instance, one important difference between the electronic and photonic band
structures is that the electrons are massive whereas photons have no mass. There-

fore, the dispersion relation, which is the relationship between the wave-vector
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and frequency for electrons in crystals is parabolic while in the photonic case
it is linear. There are a few other differences between electronic and photonic
band structures. The translation vectors for photonic crystals are much larger
then those for the electron systems and the photonic reciprocal space has a Bril-
louin zone much smaller than that for electrons. Electrons have spin 1/2, but
frequently this spin is ignored, and the Schrédinger equation is treated in a scalar
wave approximation. In contrast, photons have spin 1, but for 2D and 3D sys-
tems it is never a good approximation to neglect polarization in photonic crystal

calculations.

In vacuum a well known equation w = ck is valid for free photons known
as dispersion relation of the radiation field, where c is speed of light in vacuum.
If photons are propagating through a homogeneous and isotropic dielectric then
w = ck/n, where n is the refractive index of the dielectric material. As can be
seen, the frequency (and therefore photon energy) depends linearly on the ratio
of the wave-vector and the material refractive index.

1.1 History of Photonic Crystals

The interest of researchers in the field of photonic crystals has been in-
creasingly growing since they were proposed in 1987. The amount of publications
show a spectacular exponential growth. The number of papers published and
number of patents issued each year is so high that it is really hard to keep track
of even the most significant and valuable papers.

In this section a brief summary of the most important and crucial work
related to photonic crystals will be presented.

In 1987, two independent works appeared. The first one was published
by Yablonovitch [1] and dealt with the “inhibition of spontaneous emission of
electromagnetic radiation using a three dimensionally periodic structure”. The
lattice that was proposed should have a photonic band gap and a region of for-
bidden energy states. The second paper was published by John [4] that was titled
“Anderson localization of photons in disordered dielectric superlattices”. These
two works are considered as the starting point of the research field.

The spontaneous emission rate of an excited state of a quantum system
is given, to first order, by Fermi’s Golden Rule:
2n
B2
where M;; is the matrix element of the interaction Hamiltonian, Hiy : < 9 f|Hins|th; >.

MNw) = < |M?* > D(w), (1.1)
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Figure 1.1: Number of published works per year. Data was obtained by searching
for “photonic crystal OR photonic band” at the ISI Web of Science.

The density of states of the radiation field in the volume V' of vacuum, D(w), is
proportional to w? :

WV
72 ¢3

By modifying D(w), one can change the spontaneous emission rate, and thus the

D) = (1.2)

optical properties of materials. For this purpose, photonic crystals can be used
as the density of states can be radically altered within a photonic crystal. It
was this that motivated Yablonovitch to seek a periodic dielectric structure that
possessed a band of “forbidden frequencies.”

In 1990, Satpathy et al. [6] and Leung et al. [7] independently published
a scalar implementation of the plane-wave method to photonic band calculations.
Shortly after, both groups improved the plane-wave method. This time theoret-
ical calculations and experimental data showed almost excellent agreement. But
whereas Yablonovitch had predicted a photonic bandgap between the 24 and the
3 bands for a structure that consisted of slightly overlapping spherical voids ar-
ranged in the periodicity of the face-centered cubic (fcc) lattice, the calculations

showed that there was no such gap, and that the experimental data was in error.

In 1992, Soziier et al [8] further improved the plane-wave method to show
the behavior of higher energy bands. Surprisingly, they showed that between
the 8" and the 9*® bands of the same structure that Yablonovitch had studied,

a complete photonic band gap was formed for a fcc lattice of air holes in a
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Figure 1.2: Number of US patents issued per year related to photonic crystals.
Data was obtained by searching “photonic crystal OR photonic band” at the US
Patent Office website http://www.uspto.gov.

semiconductor when the refractive index contrast was above 2.8. About one
year later Soziler et al. [9] investigated the photonic bands in the simple-cubic
lattice (scaffold structure) and calculated the effective long-wavelength dielectric
constant.

In the beginning of 1994, a new structure with a complete photonic band
gap was proposed by two independent groups [10, 11]. The so-called woodpile
structure has a tetragonal symmetry and a complete photonic band gap between
the 2™ and 3" bands.

In 1995, artificial opals [12] were a method that all research laboratories
could afford to manufacture and soon many other groups were interested. Fur-
thermore, loading the opal voids with a high refractive index material and then
etching away the opal template would result in a structure of air spheres in a
dielectric material matrix. Such a structure was precisely the kind of crystal for
which Soziier et al. [8] had predicted a complete photonic band gap.

In 1996, Lin et al. [13] observed that photons were strongly dispersed in
2D crystals when their frequency was close to the band gap edges. P. St. J.
Russell’s group was the first to demonstrate all-silica single-mode optical fiber
with photonic crystal cladding [14].

One year later, Birks et al. [15] demonstrated early photonic crystal fiber



with some unusual properties. In 1998, Knight et al. [16] actually produced the
first photenic crystal fiber. The first photonic crystal laser working in the near
infrared (NIR) was preser?ed» by Fleming et al. [17] in 1999. In May of 2000, an
inverse opal of silicon was presented by Blanco et al. [18].

By 2004, there have been many publications which are mainly related
with the different kind of photonic crystal optical fibers and electromagnetic

wave guidance.

1.2 Applications of Photonic Crystals

There are many conventional applications of photonic band structures
such as perfect dielectric mirrors, resonant cavities, lasers, photonic crystal waveg-
uides, and photonic crystal fibers. Photonic crystals can be used as perfect di-
electric mirrors because the reflectivity of photonic crystals derives from their
geometry and periodicity, not from a complicated atomic scale property. They
should be essentially lossless. Such materials are widely available all the way from
the ultraviolet regime to the microwave. Using of the materials with nonlinear
properties for construction of photonic crystal lattices open new possibilities for
molding the flow of light.

Photonic band gap materials show potential of changing the whole sce-
nario of light guiding in the near future. In traditional waveguides operated
at optical range, light is guided by total internal reflection at the boundary
of the waveguide. This is quite different from the waveguide operated at mi-
crowave range, where the metallic waveguides are used. Though in some sense,
the propagation of microwaves in such waveguides can also be regarded as inter-
nal reflection, there is no restriction on the reflection angle. For waves at optical
frequencies, the metallic waveguides result in great loss, so the dielectric waveg-
uides are the natural choice. But the reflection is restricted to small incidence
angles with respect to the waveguide surface. The discovery of photonic crystals
put a new alteration on light guiding. When the frequency of the light falls in
the gap of the photonic crystal, it is not able to propagate in the crystal. When
such light is incident on the surface of the crystal, it will be completely reflected
for any incident angle. This provides a great deal of flexibility for the guiding of
light. A prominent example is to guide the light through a sharp bend with very
high efficiency.[2] For photonic waveguides, extensive numerical calculations and
experimental study have been conducted by several groups.[3, 5]



1.3 Overview of the Thesis

In this study we review the optical properties of one-dimensional photonic
crystals and one-dimensional photonic crystal waveguides using two different nu-
merical methods. We also investigated transmission spectra of finite periodic
dielectric layers. We investigated the effects of random perturbations on the pe-
riodic geometry and found that the bandgaps are quite robust to such random
variations that could possibly result during an actual manufacturing process.

In chapter ?7 we outline the plane-wave method in one and three dimen-
sions. We also show E and H methods and give the derivations and comparison
between these two methods.

In chapter 3 the calculation of transmission and reflection coefficients of
periodic dielectric media is shown and information about the used method is
explained.

In the Randomness in Periodic Layered Media and 1-D Photonic Crystal
chapter, effects of random parameters and importance of randomness in dielectric
layers and one-dimensional photonic crystals are reviewed and also derivation of
the supercell method is given for a disordered one-dimensional photonic crystal.

In the last chapter, derivation of the supercell method is given and prop-
erties of one-dimensional photonic crystal waveguides and some guided modes
both E-polarization (TE) and B-polarization (TM) are shown. Additionally we
have compared analytical and numerical solutions of a single slab symmetric
waveguide at both E (TE) and B (TM) polarizations.

The Plane-wave method, is a straightforward way of solving for
eigenvalues and eigenfunctions of the equation which is obtained from the Maxwell’s
equations. The basic idea is to expand the dielectric constant as well as the peri-
odic part of Bloch function in a discrete Fourier series expressed on the plane-wave
basis [8],[19], [20], [21]. This method can be very versatile when the medium is

periodic.

Unfortunately the plane-wave method does not seem very suitable if the
photonic crystals has defects. However, many structures having a point defect
have already been studied with this method using a supercell method. In section
5.1, we are going to consider the supercell method for photonic crystals with
defects.



1.4 E Method

We start with macroscopic Maxwell’s equations in a lossless, charge-free

region of space:

V-D =0 (1.3)

Vv-B =0 (1.4)
OB

VxE = 5 (1.5)
oD

where E and H are the macroscopic electric and magnetic fields, D is the dis-
placement field, B is the magnetic induction field. The displacement field is
D = epe(z)E where ¢(z) is relative dielectric permittivity and the magnetic in-
duction field B = pouH where u is the relative magnetic permeability. For most
dielectric materials of interest, the relative magnetic permeability is close to unity

and we may set B = pyoH in the Eq. (1.6). Taking the curl of both sides of Eq.
(1.5),
0B _9(VxB)

VX(VXE)‘:—VXat——at—, (1.7)

where we interchange the order of time and space derivatives. We can substitute
Eq. (1.6) in the right hand side of the Eq. (1.7) which yields:

0 (0D 1 2

where we used D = €pe(z)E and 1/¢? = eguo. or

1 62

Eq. (1.9) is the general form of the electromagnetic wave equation in real space.

1.4.1 3-D Wave Equation in G Space

In Eq. (1.9) we can separate out the time dependence using

E(r,t) = E(r)e™*, (1.10)
which yields \
V x (V X E(r))% ¢(r) E(r). (1.11)
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For a dielectric constant that is periodic, ¢(r + R) = ¢(r), where R is a
lattice vector, one can expand e(r) in terms of the reciprocal lattice vectors G.
Thus ¢(r) can be written as:

e(r) = z (@) efCT. (1.12)
G

In general the Fourier transform of the dielectric lattice constant ¢(r) can

be written as
1 —iaer
@ = G / dre-iTe(r) = ;J(q —~ G)e(G) (1.13)

(G) = ! / dre~GTe(r)
Veell Jws cell

1 / i \
= dre™ T e, + Y e(r—R
Veell Jws cen [b ; ol )J

= €&lgo+ / dre "G Re (r — R) (1.14)
cell R WS cell
1 —iG-r
= efgo + dre eo(r)
Veell Jant ¢
= 6(,5@0 + Eo(G)
where 1
6(G) = — dre " GTey(r) (1.15)
Vcell all r

Here the volume of the primitive cell of the lattice is taken as Wigner-Seitz
(WS) cell, G is the reciprocal lattice vector, €, is the dielectric constant of the
background, and q is taken as (k + G).
And also E(r) can be written as

E(r) = lu dq &% " B(q). (1.16)

If we have an integral which is over all q, it can be replaced in the calculations

as an integral dk times summation over reciprocal lattice vectors.

dq= [ dk 1.17
/ a / ; (1.17)
Taking the curl of E(r)

V x E(r) = / dqe'* T iqx E(q). (1.18)
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Retaking the curl of Eq. (1.18)

VxVxE(r)=—/dqeiq'ququ(q). (1.19)
On the right hand side of Eq. (1.11)
- ) " (G)e'ST [ dqe'TE(q) (1.20)
=3 > e(G)e qe q)- .
Using the integral property
2
= % D (G / dk Y e*HEIE(k + G) (1.21)
G G
where q =k + G'.
w2 i }r
=< f dk;;e(G)e (+G+G) TR 1 @) (1.22)

Using G+ G' = G” and G = G” — G’ into Eq. (1.22)

/ dk ) ) e(G" - G E Rk + G). (1.23)

G” G’

Changing summation indices as G” — G’ and G’ — G then
w? i Ner
-2 /deZe(G’ _ Q) CITE(k + G). (1.24)
¢ G
Using the integral property again, which yields:
dqe'®™ Y " e(G' ~ G)E(k + G). (1.25)
G
Writing Eq. (1.19) and Eq. (1.25) into the Eq. (1.11)
/ dqe'®T qx qx E(q =3 /dqe‘qrz Ek+G). (1.26)
We can write

2
—/ dqe*'*~ {q x q x E(q) + %ZE(G,— G)E(k + G)} =0 (1.27)
G
Since e*9 ¥ is linearly independent, the expression in the parenthesis must be

equal to zero to satisfy this equality. According to this reason, we can write,

—q X q X E(q)%j-; Ze(G’ - GQEk+G). (1.28)
G



And using q = k + G’ into Eq. (1.28)

~(k+G)x (k+G) xEk+G) = Z e(G'-G)Ek+G). (1.29)

In more convenient form

2
—(k+G') x (k+G') x E4(G') = % Y «(G' - G)E(G). (1.30)
G
This is the generalized eigenvalue equation and (k+ G’) x (k+ G’) X Ex(G’) and
€(G' — G) must be hermitian and hermitian, positive definite. If we would like
to solve our photonic band gap structure in 3-D using E method we should use
Eq. (1.30).

1.4.2 1-D Wave Equation in G Space

From Eq. (1.9) , one-dimensional time dependent wave equation in a
lossless periodic dielectric structure can be written for p(z) = 1, o(z) = 0 and

the dielectric constant is €(z,y, z) = €(z) in one-dimension,

02 192
pyes E(z,t) - czgﬁe(a:)E(x, t) =0, (1.31)

We consider a linear, isotropic and positive definite medium in a lattice with the

dielectric lattice constant
@) =e(z+a)>0,

where a is the lattice constant. We can separate out the time dependence by
expanding the fields into a set of harmonic modes:

E(z,t) = E(z)e™* (1.32)
After these assumptions we are going to substitute the electric field into

our one-dimensional time dependent wave equation to obtain the wave equation

only in spatial domain.

82 zwt 1 62 —
82 E(x) wt
52 +2 2 (:1:) E(z)e** = 0,
0? E(z)

52t @) Ez) = 0, ‘ (1.33)
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where E(z) is perpendicular to z coordinate. We expand both E(x) and ¢(z) in
terms of Bloch plane-waves. We have a periodic dielectric structure, therefore we

can write e(z) as

e(z) = ;e(G) eiC® (1.34)
E(z) = /;u da B(g) & | (1.35)
(@) = ﬁ (z) e=iC" (1.36)
E(q) = Viu / iz E(z) e (1.37)

and we rewrite the integral over all q as an integral over Brillouin zone (BZ) and
summation over reciprocal lattice vector G.

L . /}; D) (1.38)

where ¢ = k4-G. This integral transformation can be thought as a transformation
between real space and reciprocal lattice space. Substituting e(z) and E(z) into
time independent wave Eq. (1.33)

82 doE iqx w2 iGz qT __
57 /;u . gE(q)e' " + = ;e(G)e dgE(g)e™® =0 (1.39)

all q

w2 ., i
| daepp@es + 3@ [ dm@er=0. (110
all q = all q
Using (1.38) and ¢ =k + G
- / dk Y~ (k+ GV E(k + G)el*+Ee 4
BZ

[ed

2
‘;’—2 D e(G)et" L dk Y E(k+G)el®+e= = g, (1.41)
G

Z lel

Taking @' =G +G

/ dk eika: [_ Z(k +G/)2E(k +Gl)eiGIa:+
BZ

= Z Z (G" —GYE(k+G"e G} = 0. (1.42)

l GII
We can rewrite this equation as

/ dk ™= {— > (k+G)E(k+G)eC+
BZ

G’

%2 Z Z E(G” _ G’)E(k‘ + G/)eiG”a:} = 0. (1043)

G G

11



Now we would like to return first G’ and G. Changing our summation indices as
G' — G and G" — G’ in Eq. (1.43)

2
/ dke'*= !— > (k+G)EEk+ G + % YD @ - OE(k+ G)eiG"”J =0
BZ G G

[eld

/ dke™® Z i [ (k+G)Ek+G)+
BZ

% 3 (@ - G)Ek + G)J =0. (1.44)
G
Using (1.38) again
/ dge'®® { k+G'PPE(k+G)+ Z Ek+ G)} =0. (1.45)
all q G

According to this integral in Eq. (1.45), we can say that the expression in the
parenthesis must be equal to zero.

2
—|k+G'PE(k +G") + “—c; Y (G~ Q)E(k+G) =0 (1.46)
¢
For a given k value Ex(G) = E(k + G) Eq. (1.4.2) becomes:
Ik + G'PEL(G") = = Z (@) (1.47)

or in an easier more convenient notation
2
2 _ w_ e
[k +Gl*Ee = ;E(G )Eg. (1.48)

For simplicity, we have dropped the script k. These equations define an infinite-
dimensional generalized eigenvalue problem of the form

Az = ABz, (1.49)

where Aqq = |k + G2 dgq, Bog' = ¢(G - G'), g = E(G), and /\“’?2. We note
that A and B are Hermitian matrices, and in addition B is positive definite. Be-
cause of real e(z) and e(z) > 0 respectively, B is a Hermitian and positive definite
matrix. Eq. (1.48) can now be solved numerically using standard techniques to
give all the allowed frequencies w for a given wavevector k.

12



To illustrate the matrices, consider a basis that consists of three reciprocal
lattice vectors G, Ga, and G3. One would then obtain, for A, B, and z,

|k + G4|? 0 0
A= 0 Ik + Gaf? 0
0 0 |k + G3|?

e(G1—G1) €(G1—G3) €(G1—Gs)
B=|¢Gy—G1) €(Gy—Gs) €(Gy— Gs)
c(Gs — G1) €(Gs—Ga) €(Gs—Gs)
and z matrix
E(Gy)
z= | E(Gs)
E(Gs)
Of course, a basis of just 3 G points would be inadequate for solving an
actual problem. One would typically need ~ 100 plane waves for band structure

calculations in 1D to obtain reliable results. The band diagram displayed in Fig.
(1.3) was obtained with an expansion using 100 plane waves:

o

w/c in units of 2r/a
1

Figure 1.3: 1-D Photonic Crystal Band Diagram for ¢, = 1, ¢, = 13, filling ratio
B = 0.5, number of plane-waves = 100, where the filling ratio is da‘f‘: s Shaded
regions show the photonic band gaps.

13



1.5 H Method

In the previous section, the B field was eliminated from Maxwell’s equa-
tions and a second order equation for E was obtained. Alternatively, one could
eliminate the E field from the equations and find an equation for B:

0B
E = —— 1.
V x e (1.50)
oD
Using two of the Maxwell’s equations and taking the curl of Eq. (1.51),
oD JE
VxH EEO E( E
(1.52)
Dividing by €(r) and taking the curl, one obtains
d(V x E)
V x (—r)V xH = €0 T
(1.53)
Using Eq. (1.50), one obtains
1 o°H

For most dielectric materials of interest, the relative magnetic permeability is
close to unity and we may set B = yoH in Eq. (1.50). As before, we are looking

for harmonic solutions of the form

H(r,t) = H(r)e™", (1.55)
which, upon substitution into Eq.(1.54) yields
2
w
V x L(r) V x H] = = H. (1.56)
Eq. (1.56) is the wave equation for H which can also be written as
2
V x [p(r) V x H] % H (1.57)

where 7(r) = (r)

For the H method we have two choices. The first one is choosing —— ( )

n(r) and the other one is doing our calculation with e~1. In some of the problems
second one converges very well. Of course it depends on the structure that you
would like to solve.

14



1.5.1 3-D Wave Equation in G Space

Since the dielectric constant is periodic, we can expand 7(r) in terms
of reciprocal lattice vector G. 7(r) can be written as an summation over all

reciprocal lattice vectors

nx) = Y n(G)esr. (1.58)

G

And also H(r) can be written as
H(r) = / dq ¢ H(q). (1.59)
all q

If we have an integral which is over all q, it can be replaced in the calculations
as an integral dk times summation over reciprocal lattice vectors.

dq dk 1.60
LzZq BZ ; (1.60)

Taking the curl of H(r)
VxH(r)=/ dqe'?Tiqx H(q). (1.61)

Multiplying Eq. (1.61) with 5(r) and using the identity q = k + G, Eq. (1.61)

can be written as:

10 VxHE) = 3 0@ ¢S [ dadriaxHa

G
= i3 G ee / di 3 ¢SO+ @) x Hike+ @)

Taking the curl of 7(r) V x H(r) one more time Eq. (1.61) becomes:

V x n(r)V x H(r)

=Y. n(G / dke! CFEFEIT(k + G+ G) x (k+ G) x H((k + G'))
G @

/dk {ZZ<1<+G+ G') x n(G)(k + G’) x H(k-l—G’)} i+ GG T

G G

Changing the index of summations as G" = G' + G
V x n(r) V x H(r)
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) —/dk { Z Z(k +G") xn(G" - G)(k+ G') x H(k + G,)} ilkHG)r

G'-G @’

= —/dk {Z Z(k +G) xn(G'-G)k+G) x Hk + G)} ilk+G)r
¢ G

= _/dkze"(k“’")" {Z(k +G) x (G’ - G)(k+G) x H(k + G)}
ey

G

where the substitution G” — G’ and G’ — G was used in the second step.

Using the integration property again,
V x (n(r)V x H(r))
= —/dqeiq'r {Z(k +G)xn(G -G)k+G)x Hk+ G)} . (1.62)
G

Substituting Eq. (1.62) into Eq. (1.57) and rearranging

/dqeiq-r {Z(k +G) x (G - G)(k+G) x Hk + G) + ‘;’—;H(k + G’)} =0.
G

In order to satisfy this equality, the expression in the curly braces must vanish
2
=Y (k+G) x7(G' - G)(k+G) x Hk + G) = %H(k +G).  (1.63)
G
The equation above is an ordinary eigenvalue problem in the form

w2
AH = = H. (1.64)

In Eq. (1.63) we have 3N x 3N matrix equation and we can reduce in 2N x
2N eigenvalue problem (see Appendix A) by similarity transformation choosing

appropriate bases vectors as in the form

, L ey-e —ep-e || Hi(G) _w?| Hu(G)
%:lk+GlIk+Gln(G G)[_e'z-el o e Hﬂz(c;)] Cz{Hz(G)}

1.5.2 1-D Wave Equation in G Space

In this section we derive H method in one-dimension. We start with the
Eq. (1.63) and writing it in one-dimension by settingk = ki, G =G i, G' = G i,
and H = H, k, where H is perpendicular to x coordinate. For a given G,

2
(k+Gix {n(G' — G)(k+Q)ix H, k}‘i—zﬁz k. (1.65)
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Taking the first curl, we have

2

k+GixnG —G)k+G)H,j= ‘:—2Hz k.

Taking the second curl, we have

(k+ GG - G)(k+G)H, k = %Hz k.

Eq. (1.67) can be written for all G

w2

—> (k+G)mG —G)(k+G)H, = —H..
G

This is the ordinary eigenvalue problem in the from

AH, = AH,

17
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Chapter 2

ONE-DIMENSIONAL PERFECT PHOTONIC CRYSTAL

One-dimensional photonic crystals are the simplest photonic crystals and
serve as a “textbook” case to understand the fundamental properties of the prob-
lem. Furthermore the convergence of the plane-wave method is excellent for these
structures, making them ideal as a starting point for studying various compli-
cations such as randomness, point defects etc. without having to worry about
computational resources. In this chapter we are going to show the band struc-
tures of one-dimensional perfect photonic crystal calculated with the plane-wave
and supercell methods.

2.1 Plane-wave Method

1st Five Gaps of Perfect Photonic Crystal

-
*
AR
-
£ -
*>
o6 2
>
r 4 .
=3 0.5 ; > * st gap
(=] & - = 2nd gap
E f 4 3rd gap
> —»—4th gap
£ ™ *_5th gap

Filling Ratio

Figure 2.1: Filling ratio vs k(wave vector) for ¢(a) = 1, ¢(b) = 13.
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In this section we show the band diagrams of one-dimensional photonic
crystal calculated by using the plane-wave method. First of all we start with the

filling ratio factor which is da(-l: &

In our calculations we have used the quarter wave stack which gives the

maximum band gap for the lowest gap and higher odd numbered gaps. The even
numbered gaps 2,4, 6, .. are zero for this choices of d,,dp. In the Fig. (2.1), the
first five band gaps are shown and according to the figure we have chosen the
filling ratio as 0.78 that means d../¢; and dy = /&;.

2.2 Supercell Method

In this section, we show the band diagrams of a one-dimensional pho-
tonic crystal calculated by using the supercell method and compare two band
diagrams. In this method, we have chosen the big unit cell (supercell) and calcu-
lated photonic band gaps. This method allows the inclusion impurities into the
photonic crystal.
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w/c in units of 2x/a
1

Figure 2.3: Band structure of 1D photonic crystal with plane-wave method and
supercell method, where ¢, = 13, ¢, = 1, d, = 1, dy = 3.6055, number of plane-
waves = 3000 for both method and supercell size = 101 for supercell method.

In Fig. (2.3), comparison between plane-wave and supercell methods is
given for the same medium parameters. In Fig. (2.2)
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Chapter 3

ONE-DIMENSIONAL DIELECTRIC LAYER’S REFLECTION
AND TRANSMISSION CALCULATION

In this chapter, we are going to show and derive the reflection and trans-
mission coefficients for one-dimensional dielectric layers. This method is used for
finite structures, where one con not speak of a “band gap”, as the concept of a
band gap is meaningful only for perfectly periodic structures of infinite extent. Of
course for finite structures, we should be able to see the “band gaps” as regions
where the transmission coefficient is extremely small.

3.1 One-dimensional Dielectric Layer

VA

Eo E: Es Es
/ \;o V: Va2 V3

Bo B: B. Bs
Xo= 0 X1 >
X

E: Es Es
B Bs Bs
Vo Vi V2
N1 N2 N3 Ng

Figure 3.1: Illustration of 1D Dielectric Layer.
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A plane-wave of frequency w,travelling in the z direction and polarized in

the y direction is represented

E(z,t) = Epye'®>—tg (3.1)

1.
B(z,t) = ;Eoez(’“”""t)?. (3.2)
In our problem we have reflected and transmitted waves and we take ¢ = 0.

Writing E and B for each region,

Eo(z,t) = FEyeto® (3.3)
Bo(z,t) = B gitos (3.4)
Up
Ei(z,t) = Eje *° (3.5)
Bi(z,t) = —ﬂe~i’°°x, (3.6)
Vo
Ey(z,t) = E,e™” (3.7)
By(s,t) = L2 (3.8)
(41
Es(z,t) = Eze ™1® (3.9)
By _,
Bs(z,t) = —— ¢tz (3.10)
U1
Ey(z,t) = FEye*® (3.11)
E, .
By(z,t) = — 2, (3.12)
U2
Boundary conditions for our system are ;
€1E1"L = EzEzl
BlJ. — B2J.
Bl = E)
gl = Lpi
H1 L2

Applying boundary conditions at £ =0 and z = d then At z =0 ;

1+ E, = E,+ F; (3.13)
1-— E1 = nlEz - n1E3. (314)
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Atz =d;

ik1d —ikid __ tkad
Ez e -+ E3 € = E4 €

n1Ey €198 — n By e7% 14 = p,E, etF2d,

Multiplying Eq. (3.15) by ns and subtracting Eq. (3.16) we obtain

(ng —n1) By €% 4 (ny +ny) Bz e =0
Multiplying Eq. (3.13) by n; and adding Eq. (3.14) then

(n1 + 1) + (n1 - 1)E1 = 2n1E1

(n1 + 1) + (TL1 — 1)E1
E, = .
277,1

Multiplying Eq. (3.13) by n; and subtracting Eq. (3.14)

(n1 — 1) + (7?4 + 1)E1 = 2n1E3

= (’fll — 1) -+ (n1 + l)El

E.
3 27’11

(From Eq. (3.17) we can write
1
(n2 = nl)sz + (n2 -+ n1)E3—X— =0,

where X = e**19, Substituting Fy and Ej3 into Eq. (3.22)

[(n1 + 1) + (n1 - I)El]X
2n1

(n2 —m1)

g + ) 2= 1) J2rn(1n1 il I)El]% =0

(ng - nl)[(nl + 1) -+ (n1 — l)El]Xz
27’L1X

=0

(n2 +n1)[(n1 — 1) + (1 + 1) By
+ 2n1X

(n2 — nq)(n1 + 1) X% + (ng — nq) (g — 1) E1 X2 n

2n1X

(ne +n1)(ny — 1) + (n2 +n1)(ny + 1) By _
2’TL1X
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(3.15)
(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)



Eil(n2 — n1)(ny — 1) X% + (n2 +n1)(n1 + 1))

27’L1X
(3.26)
L2 =m)(m A DX2+ (e + )= 1)
2n1X
B = (na —ny)(n1 + X%+ (ng +n3)(ng — 1) (3.27)

" (2 +n1)(ny — DX + (ng+n1)(ng + 1)
where X2 = e%%14 and taking 2ik;d = y we can write that X2 = cosy + isiny
then substituting this into F4

(ng — n1)(n1 + 1)(cosy + isiny) + (ng +n1)(n1 — 1)
(n2 +n1)(n1 — 1)(cosy + isiny) + (ng +n1)(n1 + 1)
We assume that there is no reflection,according to this assumption we can take
E; = 0 then right part of equation (3.28) is

By =-— (3.28)

_(n2 —n1)(n1 + 1)(cosy +isiny) + (n2 + ne)(m — 1) _
(n2 +n1)(n1 — 1)(cosy +isiny) + (na +n1)(ng + 1)

(ng — n1)(ny + 1)(cosy + isiny) + (ng +n1)(n; — 1) =0 (3.30)

0 (3.29)

For the imaginary part ;

siny = sin2k;d =0
2kid=mm,m=1,35...

For the real part ,cosy = cos2k;d = —1 using this in Eq. (3.30) we can find

For 2kid =7 ;
A N
T

Eq. (3.31) and Eq. (3.32) are known as antireflection coating conditions. If

(3.32)

the refractive index of second region is square root of third region and width
of slab is a quarter wavelength, we do not have any reflected wave. These two
conditions are not related with incident region and also refractive index and
dielectric constant. We can write this problem in matrix form. Rewriting Eq.
(3.13), Eq. (3.14), Eq. (3.15) and Eq. (3.16).

Ey—Ey—E; = —1 (3.33)

B +mEy—mE; = 1 (3.34)

Ep e*d 4 Eye ¢ — Ey ™! = 0 (3.35)

n1Fs €% — p Fyem® 8 _ n,F, ed = 0 (3.36)
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This linear system can be written as AX = B. Here A,B and X matrixes are
defined as

1 -1 -1 0
1 n -n 0
A : ' (3.37)
0 eikld e——ik1d _6ik2d
0 npetfd —pemikid g gikd
B T B T
-1 B
1 E
B= x=|"7 1. (3.38)
0 Es
| 0] | Ba

The calculations above are performed for one dielectric layer. Now we
are going to investigate two dielectric layers. Our purpose is to generalize this

problem to N dielectric layers, solving this linear system of equations.

First media ;

Eo(z,t) = FEye” (3.39)
By(z,t) = %ei’m (3.40)
Ei(z,t) = E,e ™ (3.41)
Bi(z,t) = BL gitos (3.42)
Vg
Second media ;
Ey(z,t) = Eye™® (3.43)
By(z,t) = —'vEfeikw (3.44)
Es(z,t) = Eze ™ (3.45)
Bs(z,t) = fjﬁe-iklx (3.46)
U1
Third media ;
Ei(z,t) = E ée** (3.47)
By(z,t) = %ei’fﬂ (3.48)
Es(z,t) = Ej5e t® (3.49)
Bs(z,t) = %—e—i’m (3.50)



Fourth media ;

EG (1:, t) = Es Bikaz

Es .
Bﬁ(x’ t) = v_:ezksl‘

Using boundary conditions for each media At z =0

1+E1 = E2+E3
1—E1 = nlEz—nlE?,

Atz =
E2 eikl-’ﬂl + E3 e—Zkl-’Bl — E4 ezkg:zzl + E5 e—-zk2a:1
ik1xy E —iki®1 E ikoz1 E —ikox1
TL1E28 —nNnilig € = Tgliy € Nolig €
At z =z,
E4 ezkg:cg + E5 e—zkg:vz r E6 ezksa:z
ikoza —ikozo __ iksa
TL2E4 e r TZ2E5 € = 1’L3E6 e

Rearranging these equations we obtain

Ei-E,—-E; = -1

Ei+nE;—n By =

Ez eikl:cl +E3 e—ikl:q . E4 eik2$1 _ E5 e—ikg:q —

’I’LlEz ezk1:c1 _ n1E3 e—zklxl _ n2E4 ezkzzl + n2E5 e—zkz:cl —
E4 ez’kg:z:g + E5 e—ikg:cz _ E6 eikszz

n2E4 ezkg:z:z bt n2E5 E_zkzz‘" —_ n3E6 ezkaa:z =

In matrix form

( 1 -1 —1 0 0 0

1 n -1 0 0 0

0 6ili71:1¢1 e—iklzl _eikzml _.e—ikz-’vl 0

A= 0 nleiklml __nle—ik1a:1 _nzeikz:cl nge“ikﬂl 0
00 0 gtkatz e~ ikam2 _eikaza

00 0 Ny etk2z2 —Ty e—tkaz2  _ na eikaes
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X = : (3.60)

o O O O =
&

3.2 Calculation of Transmission and Reflection Coefficients

In this section we are going to examine the energy density of electro-
magnetic waves which is important to understand the behavior of the incident
wave. Before doing this, we should calculate the reflection and transmission co-
efficients. They measure the fraction of the incident energy that is reflected and
transmitted. In order to obtain these two coefficients, we need to consider the
poynting vectors of reflected, transmitted, and incident waves. The formula of
the poynting vector is

SiExB. (3.61)

For yt = 1 reflection and transmission coefficients are

R:— T::

- = (3.62)

where S, S5;, S; are respectively poynting vectors of reflected, incident,
and transmitted waves. These are calculated below

&:ExB:%&&:%&2 (3.63)
S, = 2E.E,=F? (3.64)

C C
&:%aa:%aZ (3.65)
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S, _%E’ [E]?
R=F=2_7= [F] (3.66)

n g 2 2
c —t f’—‘[l—gf} . (3.67)

%"Ef n; | E;

In this problem we take the coefficient of electric field of incident wave E; = 1.

Substituting this into R and T we obtain reflection and transmission coefficients

as
R = E? (3.68)
T = %Eﬁ. (3.69)

According to equations above, we can say that the reflection coefficient only
depends on the electric field coeflicient of reflected wave but the transmission
coefficient also depends on the electric field coefficient of transmitted wave and
refractive index of transmitted and incident regions.

At the beginning of our calculations we have illustrated our medium and problem.
Using the parameters of each medium we have calculated transmission coefficients
of dielectric layers using Eq. (3.69). In order to see first three band gap clearly,
we have taken natural logarithm of the transmission coefficient.

o s T r

In (Transmission)

o
Lr)lllllllll]llll|llll
™

0.0 0.5 1.0 1.5 2.0

~_ w/cin units of 2n/a
Figure 3.2: In(Transmission) versus frequency for ¢; = 1, €2 = 13, d; = 3.6055,

do = 1.

In this graph we have taken number of slab as 500 that means 250 unit cells.
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Chapter 4

RANDOMNESS IN PERIODIC LAYERED MEDIA AND
ONE-DIMENSIONAL PHOTONIC CRYSTAL

Bandgaps in photonic crystals depend on two crucial properties: an in-
finite and perfect translational symmetry. In real life no crystal is infinite in
size or perfect. When one introduces randomness, one has to give up the idea
of a complete bandgap, i.e. a region where the density of states is exactly zero.
Instead one needs to look for bands of frequencies for which the density of states
is very small. Similarly when the crystal is finite, a quantity of interest would be
the transmission coeflicient vs frequency. In this chapter, we will consider both
approaches, and demonstrate that the bandgaps for the infinite perfect lattice
show up as large depressions in the transmission coeflicient and the density of

states.

4.1 Supercell Method

To calculate the density of states, we use a supercell which contains many unit
cells, but the geometrical parameters in each unit cell are randomly perturbed.
This unit cell, however is repeated in space so the Bloch formalism still applies to
the supercell. Clearly, the larger the supercell size, the better. The supercell is
illustrated in Fig. (4.1). There are n layers in the supercell each with a dielectric

constant ¢;. The Fourier transform of €(z) can be written as

(G) = — i:L e 6% d

cell

A

— 1
1 n m _ a
_ L ¢ i z d
Veel mZ__l " A 1 ¢
1 n m
— € cos(G z) — isin(G z)) dz
Vool n; " L 1( ()
1 < 1
— T €m [ (sin(G z) + i cos(G x))|5m 1
cell

3
‘[‘
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1] €2 &Ei En-1] En

adir |d2...| di|. . ..]dn1] dn

Xo=0 X Xz Xi-1 X Xnz XKni Xn=2n X

Figure 4.1: General Picture of the Supercell Method where ¢; is dielectric constant
of each medium, d; is the thickness of each medium,and supercell size is taken
2.

— Vjeu Z €m [—(1? {(sin(G ) + i cos(G z,,)) — (sin(G Tm—1) + i cos(G Tpm—-1))}]
e(G) = Vélen Z €m [21;— (sin(G zp,) — sin(G Tm_1)) + é (€08(G Tpm) = 0S(G Zm-1))]-

Up to now now we have derived the general Fourier transform of ¢(G)
including both cosine and sine terms without any assumption. For a perfectly

periodic medium

€4, foriodd,
€p, fori even,

d,, fori odd,
dy, for i even.

Now we are going to write Fourier transform of dielectric constant for a given
lattice parameters According to the Fig. (4.1),

«(G) = — /dxe"G"’e(:c

de +Lz__12(da+db) i (da+dy) ’
E(G) = Z €q —zG:cdx + Z fb/ —zG:cdx
2“ i=1,3,5... CoD (dat+ds) i=2.4.6... G2 (dg+dp)+da

To consider the effect of randomness, we added a random variation to the thick-
ness of each layer in the unit cell.

d=dy [1 + (r—0.5) ( 1252))} (4.3)
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where dy is unperturbed thickness, r is uniformly distributed random number
between 0 and 1, and p is percentage of randomness.

4.2 Randomness in 1-D Photonic Crystal

In disordered one-dimensional photonic crystal, we deal with the density
of states and sketch the density of states vs normalized frequency graph. We are
interested in the first three band gaps and the effect of uniform random numbers
on the band gaps. The density of states graph in Fig. (4.2) is for p = 0, i.e.
a perfect structure. The medium parameters that we have used are €, = 13,
€, = 1, the thicknesses of a and b layers are d, = 1, dp = 3.6055 and the supercell
contains 250 unit cells. We have taken 500 layers for our calculations because
size of structure is important. If we take small number of layer for example 8
layer,the result can be a little bit different from the real one. This difference

appears because of the interaction between the neighboring unit cells.

Density of States

U U

T T T T T T T T F T T T [T 1 T

i
@/c in units of 2n/a

0

Figure 4.2: Density of States graph of periodic structure for ¢, = 13, € = 1,
d, = 1, d, = 3.6055, number of plane-waves = 10000, and number of layers
= 500.

All figures are sketched for ¢, = 13, ¢,1, the thicknesses of a and b layers
are d, = 1, d33.6055 and the number of layer is 500. In Fig. (4.3), there is no
change in the band gap size but we can see the fluctuations according to random
thickness. When we increase the percentage of uniform random numbers we see
the third band gap is starting to get smaller but there is no damage in the first
band gap even the randomness percentage is 10. In Fig. (4.5), second and third
band gaps disappeared according to 50% percentage. For 100% randomness,
there is no band gap and periodicity and the structure is completely random. In
order to observe and find where these three band gaps will disappear, we have
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Density of States

J

T T T T T 1T | T T T 77T TT
0 o1 2
@/c in units of 2n/a

Figure 4.3: Density of States graph for 1% randomness where €, = 13, ¢, = 1,
de = 1, dy = 3.6055, number of plane-waves = 10000, and number of layers
= 500.

Density of States

LN S I T A Y [ O N B B B

|
0 | 2
@/c in units of 2n/a

Figure 4.4: Density of States graph for 10% randomness where €, = 13, ¢, = 1,
d, = 1, dy = 3.6055, number of plane-waves = 10000, and number of layers
= 500.

made an animation and sketched the change of first three band gaps with the
increasing percentage.

(From Fig. (4.7) we have found the disappearing percentages of each band gaps.
According to this figure, it is clear that the damages are beginning from the high
frequencies and finally first band gap disappeared. Third, second, and first band
gaps disappeared when the randomness is %11, %21, and 68% respectively.
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Density of States

T T T T T T T 171 [ T T T T T T TT1
o] o1 2
/¢ in units of 2r/a

Figure 4.5: Density of States graph for 50% randomness where ¢, = 13, ¢, = 1,
d, = 1, d = 3.6055, number of plane-waves = 10000, and number of layers

= 500.

Density of States

lIII||Ill|lllI|lIll

0 oA 2
/¢ in units of 2n/a

Figure 4.6: Density of States graph for 100% randommness where ¢, = 13, ¢, = 1,
dy = 1, dp = 3.6055, number of plane-waves = 10000, and number of layers

= 500.

In Fig. (4.8), Fig. (4.9), and Fig. (4.10) we have shown first three
band gaps of one-dimensional photonic crystal with 10% randomness and band
structure of one-dimensional perfectly periodic photonic crystal. Band structure
of photonic crystal is calculated for ¢, = 13, ¢, = 1, filling ratio = 0.22, and
3000 plane-waves. Using the same parameters we have calculated band gap
widths with 10% randomness in the thickness of each medium and sketched the
graph normalized frequency vs number of layers. These three figures are also
calculated for different sample size. We have taken different number of samples
and looked at the fact that how much sample we need to take for accurate result.
In figures we have seen that 100 samples is sufficient but taking only 1 sample is
not good enough. When we have taken less number of samples we come across
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Figure 4.7: Frequency vs % Randomness where ¢, = 13, ¢, = 1, d, = 1, dp =
3.6055, number of plane-waves = 10000, and number of layers = 500.

o~ mber of Samples= 1

L I
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w/c in units of 2x/a
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=

Figure 4.8: Band structure of 1D photonic crystal and 1st three band gaps of
the same structure with 10% randomness for (1 sample) where €, = 13, € = 1,
d, =1, dp = 3.6055, number of plane-waves = 10000.

with virtual band gaps. Taking enough number of sample we can get rid of these
kind of virtual band gaps. There is also another fact about the number of layer
parameter because if we have increase the number of layers we have approached

the real band gap width and obstructed the interaction between the unit cells.

4.3 Randomness in Periodic Layered Media

In this section we have investigated how transmission is influenced from
the randomness. Uniform random numbers are added or subtracted to thicknesses
of each slabs after that transmission coefficients are calculated and In(transmission)
versus frequency graphs are sketched. While we are studying this problem we
have searched the importance of sample and structure sizes as in the case of ran-
domness in one-dimensional photonic crystal section. We have also calculated
the standard deviation of transmission coefficients for each frequencies. We have
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et

Figure 4.9: Band structure of 1D photonic crystal and 1st three band gaps of the
same structure with 10% randomness (for 50 sample) where ¢, = 13, €, = 1, d,1,
dp = 3.6055, number of plane-waves = 10000.

~ Number of Samples= 100
g |
[4V] N
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Figure 4.10: Band structure of 1D photonic crystal and 1st three band gaps of
the same structure with 10% randomness (for 100 sample) where ¢, = 13, ¢, = 1,
d,1, dp = 3.6055, number of plane-waves = 10000.

looked at the standard deviations because we would like to see and understand
how the change in size of the structure influences the fluctuations in the trans-

mission. Now we are giving graphs for different number of slabs and percent
randomness.
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Figure 4.11: In(Transmission) of periodic layered structure where ¢, = 13, ¢, = 1,
d, =1, dp = 3.6055.
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Chapter 5

ONE-DIMENSIONAL PHOTONIC CRYSTAL WAVEGUIDE

5.1 Supercell Method: Derivation and Illustration

This method is the second method which we used for band structure
calculations. The plane-wave method is always valid for band gap calculation of
periodic dielectric structures such as perfect photonic crystals. If we would like
to produce a defect into the periodic dielectric structure we have to change our
method. The plane-wave method based supercell approach allows us to model
the combined photonic crystals defects by a periodic system with a large unit
cell centered around the defect. If the unit cell is made sufficiently large, the
probability of reciprocal influence between the unit cells is going to be low and
you can not observe the virtual defect modes associated with the overlap between
neighboring unit cells in the photonic band gap. The figure below represent our
supercell which has a small unit cell size.

Now we are going to show our derivations of supercell approach and obtain
the Fourier transform of dielectric constant €(r) using similar procedure for the
supercell as in the case of plane-wave method. Before writing the general formula

of €(G), we are going to take the Fourier transform of it.

1 - ™ i Gz
e(G) = = Z[/ 1emeG dz]

m-l

Vgell Z em / sz d

m—l

= Vl Z €m / (cos(G z) + isin(G z)) dz
cell

1 - 1
= o m2=:1 €m [5 (sin(G z) — icos(G z))]7™_,
= Vjen ngl €m [é {(sin(G z) — icos(G zp,)) — (5I0(G Zpy—1) — 7 ¢08(G Zm—1))}]
() = K‘iﬂ 3 e % (Sin(G T) — SI(G £_1)) — é— (008(G ) — 008(G Tm_1))].
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Figure 5.1: Illustration of Supercell, where ¢; dielectric constant of impurity
layer, d; thickness of impurity layer, ¢, dielectric constant of b type material, dp
thickness of b type material, ¢, dielectric constant of a type material, d, thickness
of a type material, n.,, number of epsilon of a type material, a = d, + d; lattice
constant, A superlattice constant (Taken 27).

Up to now now we have derived the general Fourier transform of ¢(G)
including both cosine and sine terms without any assumption. Now we are going
to assume that €, has an even symmetry. That means, the complex part of
the integral is zero and we have only cosine part as an integrant. As a result
¢(G) depends only on sine function. According to figure 5.1 substituting the
parameters and keeping it in mind, we are going to take Fourier transform of

e(G).

Starting point of derivation of €(G) for a supercell structure is rewriting
the general Fourier transform of e(r).

1 )
(@) = 7 / dr e * ST ¢(r)
cell JWScell
Teg %4 (m—1)(da+dy)+dy

(@) = T/% [/(;2 €; cos(G z) dx + Z {e» / cos(G z) dz

1 % (m—1)(da+dp)

% m(dg-+-dp) G +nic, (da-tHdp)+ds /2
+ € / cos(G z) dz} + € / cos(G z) dz]
ﬁ+(m—1)(da+db)+db G+ neq (da-+dy)

2 sm(Gx sm Gx z+( —1)(da+dy)+d
— Z{E'[ Z( m—1)(da-t+dp)+ds

% +(m—1)(da-+dy)
m=1
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sin(G a:)]%i+m(da+d,,) ) [sm(G :U)]_.z.+n€a(da+db)+ £y

€ [ G % (m—1)(da+dy)+ds G % 4 11eq (datd)
(@) = _fz sin G ) gi{ o sin(G(% + (m -é)(da, +dp) + dp))
sin(G(% + (m — 1)(dy + db))) sin(G(% + m(d, + db)))
_ 5 ] +e G
sin(G(% + (m — 1)(ds + dp) + db))]} sin(G(% + ne, (da + dp)) + 2)
— G €p [ G
 sin(G(% + ré (da + db)))]}_ (5.1)

For simplification we define xl% + (m — 1)(d, + dp) + dp and
:132% +ne, (dy +dp). Substituting these two new variables into the above equation

and multiplying each side by the argument of sine functions yields:

(@) = E{z%sm L+ Y el B - (o - ) T

sin(G z1+d,)  sin(G m) d sin(G (z2 + 42&))
Claitd) ' G [} e l(zz+ 5 G (z2+%2)

1} (5.2)

+ o [(z1+da)

sin(G zs)
G T

The thickness values of each layer are given in units of 27“. As mentioned before,

the unit cell size A has a value of 27.

A = 2(‘; + e, (do + d3) + ‘;"
4 2 %
2 27rAd
d, = 1 2
4y = 27;1 dp

To obtain comparable results with the outputs of the 1-D photonic crystal, we

rmalize the frequency as w = ————
norma. e frequency as w 2n€a+1

5.2 H Method in One-Dimensional Photonic Crystal Waveguide

If we have decided to solve one-dimensional photonic crystal by using H method
we can follow different way for this method. We start on the left hand side of
Eq. (1.63) for a given G

(k+G') x 7(G' — G)(k + G) x Hk + G) (5.3)
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At the beginning of our derivation , we have chosen (k + G’) as q. Again

using q into matrix element ,we are going to obtain the matrix A. This is not

the only way to calculate matrix elements but it is an easy way to do it.

iFrom Eq. (5.3)

q = (k+G)
q = k+G)

dxngxH=nq xqxH.

(5.4)

Here q, ¢/, and H have been chosen for one-dimensional photonic crystal waveg-
uide as ' = Gi + kj, q = G'i + kj, and H = H,i + H,j + H,k. Using the

appropriate vector identity

(@-d)H =
(H-q)q =

dxqgqxH=(q-q)H- (H-q)q,

(k* + GG H,i+ (K* + GG)H,j + (K* + GG')H k
(G'H, + kHy)(kj + Gi)
(G’'H, + kHy)kj + (G'H, + kH,)Gi.

;From Eq. (5.5) and Eq. (5.6)

qdxgxH

+

+

kK’H,i+ GG H,i+Kk*H,j+ GG'H,j+ k*H.k
GG'H Xk — kG'H,j — k*H,j — GG'H,i — kGH,i
i(k’H, — kGH,) + j(—kG'H, + GG'H,)

k(k? + GG")H,.

If we write this equation in matrix form

kK* —kG 0

dxqgxH = | -k¢ 6@ 0

0 0 (K+GG)

Our eigenvalue problem is going to be

K2  —kG 0 H, H,
w2

n| kG GG 0 Hy | =— | Hy

0 (k* + GG") H, H,
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(From Eq. (5.9) , matrix A can be written for two reciprocal lattice vectors G1

and G2
K  —kGimm 0 kKms  —kGima 0
—kGin1 G? 0 —kGaniz G1Gama 0
A= (k* + G2y 0 0 (k% + G1Ga)m2
Ko —kGanu 0 K*nae  —kGang 0
—kGaona1  G2G1na 0 —kGaonae G212 0
| (kz + GZG1)7721 0 0 (k'z + G%)'f]zz i
Ha:(Gl)
Hy(Gl)
A H,(G)
H:c(G2)
Hy(G2)

We can reduce this 3NV x 3N system into 2N x 2N and N x IV systems by
doing some column and row operations. After solving N X N eigenvalue problem

, we obtain information about dispersion relation of H, and guided modes for

a given system. Now we are going to apply column and row operations to our

system step by step. Exchanging column 3 < 4 and row 3 < 4 in matrix A

k2
—kGim
k1
0
—kG1721
0

kG1nu
Ginm
—kGanzn
0
G2G1m21
0

k12 0
—kGame 0
k*1ga 0

0 (k* + G1)nu
—kGana 0

0 (k? + G2G1)na
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—kG1m12
G1Gamz
—kGangg
0
Gima
0

0
0
0
(k% + G1G2)ma
0
(k% + GZ)naz




Exchanging column 4 < 5 and row 4 < 5

k27711

k27721

0
0

—kG17711

—kGina

—kG1m1

G%nll

~—ng7721

GG
0
0

k212
—kGamna
k1122
—kG2noz
0
0

—kG1m2
G1Gama
—kGanze
Gz
0
0

o o© O O

(K + G3)nu
(k% + G2G1)na

0
0
0
0

(k* + G1G2)ma
(* + Go)mez |

These operations show us that we have two different ordinary eigenvalue prob-
lems. As in the form

Aley

A2Hz

A Hoy
AoH,.

If we write the separated eigenvalue equations in matrix form

[ FPmi  —kGumi  mek?  —kGime 1l H(Gh) ] | H,(G1) -
—kGim1  Gimi  —kGama G1Gama Hy(G1) ~ n Hy(G1)
Ko —kGomar  k?nee —kGamz H,(G>) H,(G»)
| —kGann  GaGimyr —kGamez  Gimas j i Hy(G>) i | Hy(Gs) ]
and
(k? + G2 (k2+G102)n12} [Hz(Gl) } o [HZ(Gl)
(k* + G2G1)nar (K2 + G2)nae H.(Gs) H,(G5)

We are going to solve N X N eigenvalue problem as in the case of E-
polarization. As an analogy we are going to use another notation in our cal-
culations and results is B-polarization. Transverse electric (TE) and transverse
magnetic (TM) polarization are equivalent to E-polarization and B-polarization.
We will sometimes use TE and TM polarizations instead of E and B-polarizations.

5.3 1-D Photonic Crystal Waveguide

We are beginning this section by considering a photonic crystal waveguide
as illustrated in Fig.(5.2). Guiding direction will be taken as the y axis, the time
variation of the modes is of the form e**, and 3 represents the propagation vector
in the y direction. In this medium px = 1 and ¢ is the dielectric constant of the

dielectric structure and is a function of z.
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Figure 5.2: 1D Waveguide, where d; thickness of impurity layer, d, = thickness
of a type material, d, = thickness of b type material, ¢; = dielectric constant
of impurity layer, ¢, = dielectric constant of a type material, ¢, = dielectric
constant of b type material and em waves moving in y direction.

B = 0j

Since the whole dielectric structure is homogeneous along the y axis, solutions to

the wave equation can be taken as

E(z,y,1)
B(z,y,t)

where E(z) and B(z) are

E(z,y,t) =
B(z,y,t) =

Maxwell’s equations ;

i

E(z) e'Py—)

= En(z)i+ Eyp(z)j+ Ex(z) k
= Byo(z) i+ By(z) j+ Bo(z) k

[ Exo(2) i+ Eyo(z) j + Exo(z) k| ¢! Py=)

[ Beo(z) i+ Byo(z) j + Bu(z) k | 04—,

<
vl
i

[en]
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(5.10)
(5.11)

(5.12)
(5.13)

(5.14)



V-B = 0 (5.15)

1 0B
1 0D

(From Eq. (5.14) we obtain
V-(e(z) E(x)) = 0

or similarly

9(e(z) Exo) + O(e(z) Eyo) + A(e(z) Exo)

oz Ay Bz =0

Since ¢ is not a function of y and z, we can take e outside of derivatives with
respect to the y and z.

O(e(z) Exp)
oz

dEy0
Oy

OE,
+ €(z) 620 =0

+ ¢(z)

(From Eq. (5.15) we obtain

0By 0By 0By
oz + Oy + 0z

=0 (5.18)

(From Eq. (5.16) ;

VXE =
Ey(z,y) Ey(z,y) E.(z,y)

= i[8y(Bu(z) €Pv) - 8,(Ey(z) Pv=7) |
— j[0z(Es0(x) ei(ﬁy~wt)) — 8,(Exo(z) iBy—wt) )]
+ k[ 85(Byo(z) €69 — 8, (Epo(z) €Bv—9) ]
= i (iBEw(z) &4 _ 0)

— 5 (Bly(z) Byt _ )

+ k (Ejy(z) P — iBE(z) ' Pr-1) (5.19)
0B(z,y) _ .
= w(Byo(z) i+ Byo(x) j + Bao(z) k) Py (5.20)
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(From Eq. (5.17) ;

VxB =

VxB =

I(e(z)E(z,y))
ot

€e— (5.21)

i j k
B d, 3,
Ba:(xay) By(l'ay) Bz(x7y)

i]8,(Bao(z) D) — 8,(B,o(z) e/P¥—0) ]
j [ 85(Bso(x) €Bv=D) — 8,(Bo(x) P49 ]

k [ 8:(Byo(z) €/V=D) — 8, (Bao(z) V=0 |

i (i8B.o(z) - — 0)

§ (Blo(z) = — 0)

k (Bjo(z) e"Pv=D — iBB,q(z) ePr=+1)) (5.22)

¢(z)(~iw)E(z,y)
—iw(Egol + Eyoj + Exok) (5.23)

where E,,,(z,y) and By, (z,y) denote Eo(z) ¥4~ and B,(z) e*#¥~—" respec-

tively and m = z, y, 2.

In Eq. (5.16) and Eq. (5.17) comparing both left and right sides we

obtain;

BE,, = wBgy (5.24)
Ely = —iwBy (5.25)
Ely = iBEgw+iwBs (5.26)
BB,y = —weEy (5.27)
B, = iweEy (5.28)
B;;o = 1By — iweE, (5.29)

If we rewrite the above equations in terms of F,y and B,y after obtaining F,g

and B, we can find other components of electric and magnetic fields,

By = -@-Ez0 (5.30)
w
1

ByO = _—i(;Ezo (531)
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Eyp = léBz0 (5.32)

we
1
Eyg = EBZO (5.33)

Now we are going to rewrite the electric and magnetic field components in terms

of F,y and B, using the equations above.

5.3.1 Solution of One-dimensional Photonic Crystal Waveguide for
E-polarization

If we set B,y = 0 we have only E,y component of electric field and the
solution of the wave equation gives only E,. If we know F,5 we can find B, and
By components of the magnetic field. In this case we have E polarized waves or
transverse electric modes (TE). We are going to first derive the wave equation of
electric field in real space, next take the Fourier transform of it and then obtain
ordinary eigenvalue equation of electric field in reciprocal lattice space. ;From
Eq. (5.25) and Eq. (5.28)

E,
By = —== (5.34)
B,
Ep = WT:' (5.35)
Taking derivative of Eq. (5.34) with respect to z ;
'El/
By = ° L (5.36)
JFrom Eq. (5.29)
il
8By — iweEyy = Z—w—‘)
BwBg — w?eEn = EJ (5.37)
Substituting By into equation Eq. (5.37)
/ngEzo - w2EEz0 = ;,0
El + (wPe—B8*)Ep = 0
E' — BB, = —wE,. (5.38)

We know that €(z) is periodic and we can represent €(z) as a summation over

reciprocal lattice vectors G and E,(z) as follows :
e(r) = Z (G) e'%®

G
Ex(z) = ) En(G)ec
G
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Taking second derivative of E,o(z) with respect to z then,

= =) GEx(G)e',
G
(5.39)
and plugging ¢(z) and E,(z) into Eq. (5.38) then
_ ZGZEZO(G)eiGz _ ﬂz Z EzO(G) G — 2 G(G) pRic Z E (Gl) ciG'T
G G G G’
Z(ﬁz + Gz)Ezo(G)eiGz = ? Z Z E(G) e EzO(G,) G’z
G G
Z(ﬂZ + Gz)Ezo(G)eiGz = 2 Z Z E 0 Gl i(G’l—l-G):z:.
G

Changing indices as G’ + G = G” and G = G” — G’ on the right hand side then
D (B +GCHER(G)e® = «?) D (G - G') Ex(G) €% (5.40)
G G" G
Then defining G" = G and G' =G
D (B2 +GHEL(G)e ™ = WP ZZ Ex(G) €% (5.41)

G

Following this equation we can obtain matrix equation for a given G as
B2+ GHEH(G) = w?e(G' — G) Ex(Q). (5.42)

This equation is generalized eigenvalue problem for E-polarization as in the form

of AX = ABX. We can reduce this generalized equation in ordinary eigenvalue
equation because we do not want to store two different matrices. In the ordinary
eigenvalue problem we should only have one matrix and therefore we can reach
results in shorter time than the generalized case. Now we are going to reduce
generalized problem multiplying both sides of Eq. (5.3.1) by ¢ (G’ — G), from
the left then

eHG - G) (B2 +GHEH(G) = w? Ex(G) (5.43)

In this case we have A’X = AX where Agrg = ¢ H(G' — G) (6% + G?) and
XG = EZO(G)

Solving this ordinary eigenvalue equation we are going to obtain solution
of one-dimensional photonic crystal waveguide for E-polarization.
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5.3.2 Solution of One-dimensional Photonic Crystal Waveguide for
B-polarization

If we set E,o = 0 we have only B,; component of magnetic field and wave
equation of the magnetic field. This case is known as B-polarization or transverse
magnetic (TM). The solution of the wave equation gives us B, and using it we
can find E. and Ey. In order to find B polarized solutions of the wave equation
we write the wave equation of magnetic field and following the same procedure
as in the case of E-polarization we can obtain eigenvalue equation. First of all
we are going to derive wave equation in real space. Now we are going to rewrite
Eq. (5.35) by setting n(z) = ¢ !(z) in order to simplify our calculations.
n(z) By

w

Epn = (5.44)

We want to find and solve second order differential equation with respect to B.q.
In order to derive the equation, we are going to take the derivative of equation
Eq. (5.44).

Epy = o (n' By +1 By) (5.45)
Substituting Eq. (5.26)
8 Fao(o) +iw Balz) = = (1(2) Bla(e) +n(z) Bla(®))
—Bw Euo(a) +—u? Boo®) = 1'(z) Blo(s) +n(z) Blp(a)
6w BT p() 4 Baoe) = 1(2) Blo(@) + () Blaz)

(—w)

B n(z) Bu(z) + —w® Bwo(z) = n'(z) By(z) +n(z) By(z).  (5.46)
n(z) Bjy(z) +1'(z) Bio(x) + (w* — A*n(z)) Buo(z) =0 (5.47)

Equation Eq. (5.47) can be written in the form
(n(e) Blo(@) + (55 — 5 n(@)) Bala) =0, (5.48

Since n(z) is periodic it can be represented as a summation over reciprocal lattice

vectors G.

Z n(G) eiGa:

G

n(z) =
(5.49)
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Bal) = / dgBiolg) €4°

o0

= / dk Bxo(k +G) €
BZ

Jasaoe] e
BZ Q

In our calculations we can use two different ways for obtaining B,o(z) in super-
cell method. First one is taking different & values and for each value taking G
values, second one is taking k = 0 and different G values for this k£ value. In the
second method, for instance if we define our superlattice size as AlOOa in terms
of lattice constant we have reciprocal lattice vector as G = %”n = “i.8. That
means we have divided our reciprocal lattice vector in 100 pieces and we have 100
different lattice vectors. The second method brings us scanning reciprocal lat-
tice space with small lattice vectors for k = 0. That is why we can write B,o(z) as

Bo(z) = Y Buw(G)ec
G

Taking derivative of B,o(x) with respect to « and then multiplying by n(z) we
obtain

Bly(z) = Y iG Bx(G) %

G
) Bole) = 3 n(@) e Z G B @) £
G’
— Z Z ZG, B 0 G/) ez(G’+G)3:
G ¢

Changing the summation indices as G + G’ = G” and G = G” — G’ then

n(z) Byy(z) = . n(G"—Ge"") iG'B.o(G)

GII GI GI
= D 3 n(G" - G")iG Bo(G') "
GII GI

(n() Bo@)) = Y. > n(G"—G)iG" iG' By(G') &'

(e ed

Substituting the above equation into equation Eq. (5.48)

_ZZ G// G/) G'G" B, (G/) iz + (cz _ﬂz Z (G) eiGa:) Z BzO(G,) 6T —

G" G G G’
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Using the same procedure for 7 B,o term as in the case of n B, ,

2
_Zz n(G" — G') G'G” B,o(G") iG"T 4 “C)_Z Z B,o(G) ¢iG'z
GII GI Gl

-6 Y 0(G"~ @) Ba(G) €77 = 0
GII’GI
. ” N e | W e
;;W(G”—G) (8% + G'G") Bo(G") €77 = 5 D" Buo(G) €. (5.51)
1 7 G,

Again changing indices as G’ =G’ and G' =G

2
! iG'z d iG'z
DY 0@ - G) (B2 +GG) Ba(G) €% =25 3 Buo(G) €
¢ G JeZ

w2

D e {Zn(a' —G) (B> +GG") B»o(G) — = Bzo(G')} =0 (5.52)
G’ G

If this equation is equal to zero, the part which is in the parenthesis must be
equal to zero. From this equality,

3" 0(G' - G) (B2 +GG) Bu(G) = “ci,j Py (5.53)
G

We have reduced our second order differential equation into eigenvalue problem
as;

AX = AX (Ordinary Eigenvalue problem)

Where matrix element A, B,q, and A are

Aee=n(G' ~G) (B +GG") , By=X and A = 4.

5.4 Results and Discussion on 1-D Photonic Crystal Waveguide
5.4.1 Analytical Solution of Single Slab Symmetric Waveguide

In this section the analytical solution of the single slab symmetric waveg-
uide will be compared with the numerical solutions. We have done this com-
parison because we would like to be sure about our method and calculations.
The analytical solutions are obtained from [22] and [23]. Some of the procedures,
mathematical operations, and figure of single slab symmetric waveguide are given
below .

Maxwell’s equations can be written in the form

VXE = —jwuH (5.54)
VxH = iwen’E (5.55)
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€(x)

&

&

Figure 5.3: Figure of Single Slab Symmetric Waveguide, where ¢; = dielectric
constant of guiding layer, €5 = dielectric constant of outside.

Since the whole structure is homogeneous along the z axis, solutions to the wave
equations Eq. (5.54) and Eq. (5.55) can be taken as;

E(z,t) = Ep(z)e@tF?) (5.56)
H(z,t) = Hp(z) @42 (5.57)

The wave equation can be obtained by eliminating H from Eq. (5.55):

[dd_; + (_‘;’. n)2 - ﬁz} En(z) = 0. (5.58)

The electric field amplitude of the guided E polarized modes can be written in
the form '

Ey(z,2,t) = Ep(z)el@F2), (5.59)
The mode function E,,(z) is taken as
Asinhz + Beoshz, |z] < id,
En(z) = Ce %, id <z, (5.60)
De%®, r < —3d,

where A, B, C, and D are constants, and parameters h and ¢ are related to the

propagation constant by

h o= [(?2—“’)2— ﬂz]l/z, (5.61)

c

%)



c

g = [ﬁz—(ﬁlﬂ)z]m. (5.62)

The parameter A may be considered as the transverse component of the wave vec-
tor in the guiding layer. To have acceptable solutions, the tangential component
of the electric and magnetic fields E,, H, must be continuous at the interfaces.
After some mathematical operations, the solutions of E polarized modes may be

divided into two classes: for the first class (for even solutions)

A=0, C=D, htan(%hd) = g, (5.63)

and for the second class (for odd solutions)
B=0, C=-D, hcot (% h d) = —q. (5.64)

The continuity of H, and E, at the two interfaces z = :I:% leads to the solutions of
B polarized modes that may be divided into two groups as even and odd solutions

respectively
1 n2
1 _ n3
h cot (5 h d) = Tw g. (5.66)

We have taken both E and B polarized solutions of single slab symmetric
waveguide and written a small program for analytical solutions. After giving
the parameters of the medium which we want to solve, we have sketched the
frequency versus propagation constant graph. At the same time for the same
physical medium we have obtained the same graph as a result of our photonic
crystal waveguide program.
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For exact solution of single slab symmetric waveguide, modes are calcu-
lated for dielectric constant of guiding layer e¢; = 13 and dielectric constant of
outside region €2 = 1. Numerical solutions of single slab symmetric waveguide
is obtained for dielectric constant of guiding (impurity) layer €; = 13, dielectric
constants of outside region ¢, = 1 and ¢, = 1 by using supercell method and
10000 plane-waves are taken. In Fig. (5.4), straight and dashed lines are denoted
respectively even and odd solutions of single slab symmetric waveguide. When we
compare these two solutions for E-polarization we can easily see that the guided
modes exactly match with each other. In Fig. (5.5), the region where there is no
guidance is keeping radiation modes inside. In this region the modes can have a
phase velocity that is greater than the speed of light and the boundary of this
region is known as a light cone. If the phase velocity of modes is less than the
slope of this line the modes can be guided modes and the phase velocity of these
modes is less than the speed of light. For B-polarization, the solutions of single
slab symmetric waveguide is

For exact solution of single slab symmetric waveguide, modes are calcu-
lated for dielectric constant of guiding layer e; = 13 and dielectric constant of
outside region €3 = 1. Numerical solutions of single slab symmetric waveguide
is obtained for dielectric constant of guiding (impurity) layer €; = 13, dielectric
constants of outside region ¢, = 1 and ¢, = 1 by using supercell method and
10000 plane-waves are taken. In Fig. (5.4), straight and dashed lines are denoted
respectively even and odd solutions of single slab symmetric waveguide. When
we compare these two solutions for B-polarization we can easily see that the
guided modes exactly match with each other. The concept about phase velocity
which we have mentioned that in the E polarized solutions is valid for B polarized

solutions.

When we look at the electric fields of analytical and numerical solutions of
single slab symmetric waveguide for making comparison between them we have
seen that the modes are matched. This calculations are performed for § = 1.57.
In Fig. (5.5), we have seen that frequencies of the first even, first odd, and second
even modes are 0.45995, 0.58414, and 0.76683 respectively.

5.4.2 1-D Photonic Crystal Waveguide

Light propagation in photonic crystal waveguide is a topic under intense
investigation. It is expected that the control of photons in photonic crystal
structure can be realized by introducing artificial defects that have the way for
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propagating modes confined within the defect. Because of that reason we have
constituted impurity into our structures by using supercell method. This impu-
rity can be constituted by using two ways. One of them dedends on changing the
dielectric constant and the other depends on changing the thickness of impurity
layer. In our calculations we use both of them. Now we will show two dispersion

diagram for periodic structure and the structure with defect.

/¢ inunits of 2r/a
v/ in units of 2r/a

Figure 5.6: Perfect Periodic Structure for ¢, = 2.43, ¢, = 12.25, ¢; = 2.43,
dg :dy =1:2,d; =dg, = 0.32786 and Structure with defect for ¢, = 2.43,
e =1225,¢1,d,:dp=1:2,d; = %(da +dyp), B = 0.32786 for E-Polarization.

Here is the first even and odd modes of Fig. (5.6). Both even and odd
modes have fluctuations out side the impurity layer and this modes are not per-
fectly localized modes. The phase velocity of these modes are greater than the
speed of light.
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In the dispersion relation of perfect periodic structure that we have given
in Fig. (5.6) the medium parameters are ¢; = 2.43, €,2.43, ¢, = 12.25 for periodic
structure and for structure with defect parameters are ¢; = 1, €, = 2.43, ¢, =
12.25. From the parameters we can easily see that the impurity is constituted by
changing the ¢;. Because of this defect we obtained the modes that is different
from the modes from Fig. (5.6). When we investigate these modes we find out
that these are guided modes and that means we have photonic crystal waveguide.

In order to check our results with the literature we have obtained band
diagram of one-dimensional photonic crystal waveguide structure with different
parameters and compared our guided modes with [25]. In Fig. (5.8) we have
seen that five guided modes are matched for E-polarization but the other modes
do not match. We think the way what we have used is different from this paper
or they could not catch these guided modes.

175

165

-
§5 s
5= g
£ Lk
£
3 =
o 2
- @«
o 3
5 g

' as 18 18
wavevector § {2a/A)

Figure 5.8: Comparison of guided modes [25] for ¢, = 2.43, ¢, = 12.25, ¢; = 1,
de :dp=1:2,d; = %(da-l-db).
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In Fig. (5.9), we have shown the band diagram of first even guided mode
and electric fields in real spaces for B-polarization. All the calculations are done
for propagation constant value 1.94 and 10000 plane-waves. We use this propa-
gation constant 8 value because we need to look all the guided modes clearly that
we have seen in the figures. we can easily see that electric field of first even modes
is localized and confined into guided layer. The thing that we have considered
both localization and confinement in it. The frequency value of this mode for
this g value is 0.55529. Therefore we have single mode one-dimensional photonic
crystal waveguide up to this frequency. After this frequency we are going to have
multi mode waveguide. In Fig. (5.10) and Fig. (5.11), we have first odd guided
mode and second even guided mode. The localization is also valid for these two
modes. Frequency values are 0.60404 and 0.6775 of these modes respectively.
From these values we can say that this waveguide is still a single mode up to the
frequency value 0.60404 because there is no other mode between first even and
odd modes.

There is an interesting thing that we have to mention here. When we com-
pare the band diagrams of single slab symmetric waveguide and one-dimensional
photonic crystal waveguide we see that there is a perfect matching between guided
modes. That means our photonic crystal waveguide behaves like single slab sym-

metric waveguide.

When we come to guided modes of E-polarization we should look at Fig.
(5.12), Fig. (5.13), and Fig. (5.14). As in the case of B-polarization on the left
hand side there are band diagrams of one-dimensional photonic crystal and on
the right side electric fields in real spaces. The frequency values of first even, first
odd and second even guided modes are 0.551, 0.58869, and 0.64815 respectively.
Until 0.58869 frequency value we have single mode waveguide. There is also a
correspondence between guided modes of single slab symmetric waveguide and
one-dimensional photonic crystal waveguide for E-polarization.
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Chapter 6

DISCUSSION AND CONCLUSIONS

In this thesis, one-dimensional photonic crystals and photonic crystal
waveguides are investigated by using different methods. We have begun to study
our research with the plane-wave method and then calculated reflection and trans-
mission coefficients of layered structure. Since we have obtained the band dia-
gram of one-dimensional photonic crystal for a certain medium and the structure
parameters, we have found transmission coefficients of layered structure for the
same parameters and compared the photonic band gaps with the frequency re-
gion where the transmission was zero. After compared the results, we would like
to observe the impurities in the band structure of one-dimensional photonic crys-
tal. Using the transmission and reflection coefficients method, we could observe
the impurities by changing the thickness of layers, but the impurities can not
be obtained by using the plane-wave method. This method is valid only for the
periodic photonic band gap structures. Because of this reason we have decided to
use another method to create impurity into the structure. This method is known
as the supercell method. By using this method, we have observed impurity in
the middle of the supercell and chosen the convenient parameters, geometry, and
the direction of electromagnetic waves, we have obtained the one-dimensional

photonic crystal waveguide.

In the photonic crystal waveguide part of this thesis, we have calculated
our modes for two polarizations E (TE) and B (TM). In order to check our
results whether they are true or not, we have found the modes of single slab
symmetric waveguide and compared it with the analytical solutions for E and B
polarizations. We have seen that there is a good harmony between analytical and
numerical results. After this check, we have constituted one-dimensional photonic
crystal waveguide that has a different guiding mechanism than the conventional
waveguide. This guiding mechanism is called photonic crystal guidance. The
occurrence of this guidance is the reason of periodic photonic crystal which is
placed outside of the guiding layer. In the calculation process of the modes of

one-dimensional photonic crystal waveguide, the importance of structure size and
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the number of plane-waves investigated for obtaining a good results. If we have
taken small supercell size, the supercells are influenced with each other. Because
of the fact that we have to take big supercell size to have reliable results. The
second important parameter is the number of plane-waves which we have to take

enough number of plane-waves for convergence [8].

As the second part of this research, we have tried to observe randomness
in one-dimensional photonic crystal. In this study, we have used uniform random
numbers which were added or subtracted to the thickness of each layer as a
percentage. We have also calculated the same structure for a different percentages
and looked at the variation of the first three band gaps of it. We have seen that
how the randomness is important in the fabrication process of photonic crystals
and how it affects the band gaps and the characteristics of the structure.

6.1 FUTURE WORKS

There are many possibilities for future work to extend and build upon the
ideas put forward here. Specifically there a several key directions we would like
to follow up.

e Design different photonic crystal waveguides which have different modes, con-
finements etc.

e Doing this research in 2-D structures for investigating the photonic crystal op-
tical fibers.

e Randomness in 2-D or 3-D structures.

¢ Randomness in Supercell Method.

e Randomness in 1-D Photonic Crystal Waveguide.

We hope that these ideas will be attempted in the near future.
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APPENDIX A

DERIVATION OF EIGENVALUE EQUATION OF H METHOD

First of all we are going to write general form of our equation,

N

w

- k+G)xn(G' -G)k+G)x Hk+G) = = Hk+G')(A1)
G

c?

The equation above is an ordinary eigenvalue problem in the form

2
AH=2H.
C

(A.2)

In Eq. (A.1) we have 3N x 3N matrix equation and we can reduce in 2N x 2N

eigenvalue problem. From the left hand side

i1 —d-q 9592 %391 H,
dxgxHg = 0192 G —d-q 9392 H,
0193 9393 950 —q - q H,

We can write our equation in the form
ZAGG'HG = —Hg
G

Multiplying both sides from left by Sg then

w2
Z S¢AceHe = —SeHg
G ¢

Using identity matrix as [ = SL,SG then
W2
> Se¢AceShScHe = —SaHe
GG c?

79

(A.3)

(A4)

(A5)

(A.6)



Now we have another eigenvalue problem

t w?
> ScAcarSLHG = —H

G,G’
where
( €1z
Eh? = €25
\ ¢
’
( €1z
T ’
Sy = €1y
'
\ €1,
’ 7
€1z €1y €1z @91 —9 -q
1 — !
A - €ox e2y €2z 7192
!
€3z €3y €3 9193

ely
Czy

63y

€oyp

ezy

7
€y

€1z
€22

€3z

€3y

7
€3y

’
€3,

4592

9392 —q' - q

023

Q:'afh
Q§Q2
93 —4q' -q

(A.8)

(A.9)

7 ! /
€1z Coz €3y
A ! '
€1y €2y €3y

7 ' 7
€1, €2, €3,

Where A = SGAG@SE;,. Using q = qge3 and ' = qg’3 into equation above,

€1z €1y €1z
_ ’
= 49 | egr ey €2,

€3x €3y €3,

In order to simplify our calculations we denote that

Qij

E!.

Y

!

€3:€3z
'

€3,C3y

'
€3,€32

€z €1y €12

€ar €2y €32,

€3z 63y €3z

el €h €3, €h e
3763z  €3y€3y €3,€32
’ e !
€353y €3,€3y €3,€3y
e el es e
3632 €363 €3,€3;
’ 7 ’

€1z €9z €3z

’ ’ '

€y €2y €3y

' '
€1, €3,
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We can write E;; =€;-u;, Q;; = (93 - u;)(€; - u;), and E;=u;- g’j into above
equation. As we can see from the equation we have two part. For the first part
we can write,

~

Ay = qq'ZEikazEfj
kol

= QCI'Z@ : uk)(gs - ug) (€3 - ) (ug - g’j)
kl

= qq'(& - €s)(Ee’y)
(e1-e5)(es-€}) (e1-es)(es-ey) (er-ey)(es-ep)
= 49 | (e-€h)(es-€]) (e2-ef)(es-e}) (ez-eh)(es-ef) |(A.10)

! 7 7 U J 7
(e3-e3)(es-€]) (es-e3)(es-ey) (es-eh)(es- eh)
For the second part of our equation,
! !
€-€ €e;-e, € ey
P S ’ ’
- ggecs-€e3 | ex-€ €3-€ ey-eg
e3-€] eg-e, e3-e}

) (e5-es)(er-ey) (ej-es)(er-€f)
) (eh-es)(ez-€) (e}-es)(ex-ef) | (A1)
) (e

es)(es-e) (e} -es)(es - €})

Combining Eq. (A.10) and Eq. (A.11) and arranging some terms then

1 [(es- €})ef — (e} - ex)el] e - [(ea - eh)e — (€ - es)ef] O
A = qd | e;-[(es-€f)es — (e - es)ef] ez [(es- e))el — (e} - es)e] O
0 0 0

Using (B.A)C — (C.A)B rule for each matrix element, we have obtain
Sl ASg as

—e,-e; € -e; 0

’

SGAGG'Séu = ¢'q e,-e; —e€j-e 0 (A.12)
0 0 0

Using this matrix into Eq. (A.1) and substituting ¢’ = [k + G’| and q = |k + G|
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we have

> k+ G|k +Gln(G’ - G)

€6y —ejre || Hy(G) | o?| Hi(G)
—ejrer efrer || Hy(G) | €| H(G) |

Here we have reduced 3N x 3N problem in 2N x 2N problem.
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