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ABSTRACT

In this thesis we study relations between the motion of curves in classical
differential geometry and nonlinear soliton equations. For the planar motion of
curves we found hierarchy of MKdV (Modified Korteweg-de Vries) equations gen-
erated by corresponding recursion operator. By integration of natural equations
of curves, we found soliton curves and their dynamical characteristics. Under
negative power recursive reduction we construct Sine-Gordon hierarchy and cor-
responding soliton curve. For three dimensional motion of curves relation with

NLS (Nonlinear Schrédinger) equation and complex MKdV are constructed.
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Bu tezde klasik diferansiyel geometrideki egrilerin hareketi ile dogrusal ol-
mayan soliton denklemleri arasindaki baglantilar incelendi. Egrilerin diizlemdeki
hareketi icin, ilgili rekursiyon operatorii ile elde edilen MKdV (Modified Korteweg-
de Vries) denklem hiyerargisi bulundu. Egrilerin dogal denklemlerinin integrasy-
onu ile soliton egrileri ile soliton egrileri ve bunlarin hareketsel ozellikleri elde
edildi. Rekursiyon operatoriiniin eksi kuvveti ile Sine-Gordon denklem hiyerarsisi
ve ilgili soliton egrisi olugturuldu. Ug boyutta egri hareketi konusunda NLS (Non-
linear Schrédinger) denklemi ve komplexs MKdV arasindaki baglantilar incelendi.
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Chapter 1

INTRODUCTION

The foundations of differential geometry of curves and surfaces were laid
in the early part of the nineteenth century with the works of Monge (1746 - 1818),
Gauss (1777 - 1855), Liuoville (1809 - 1882), Frenet (1816 - 1888), Serret (1819 -
1885), Bertrand (1822 - 1900) and Saint - Venant (1796 - 1886) [1]. Monge’s ma-
jor contributions were collected in his ” Applications de L’Analyse a la Géometrie
(1807)”. Gauss’ treatise on the geometry of surfaces was the ”Distiquistiones
Generales Circa Superficies Curvas (1828)”. Therein, Gauss set down the system
of equations that bears his name and which time has shown to be fundamen-
tal to the analysis of surfaces. This Gauss’ system establishes the remarkable
connection between classical differential geometry, nonlinear partial differential
equations and modern soliton theory. Nonlinear partial differential equations
have been studied in classical works on differential geometry in 19th century
by Darboux, Bdcklund, Riemann and others [1, 2]. But only after discovering
soliton equations and methos of solving these equations, in second half of XX
century started new systematic approach to study relations between differential
geometry and soliton structure [2]. Soliton equations as an integrable systems
are Hamiltonian systems with infinite number of degrees of freedom {3, 4], related
with symplectic geometrical structure. Manifestation of this infinite dimensional
hamiltonian structure is in the existence of infinite hierarchy of soliton equations
[5, 6]. This hierarchy is generated by integro-differential recursion operator, play-
ing key role in the soliton theory [6].

The origins of the soliton theory are found in the early part of the nine-
teenth century. Thus, it was in 1834 that the Scottish engineer John Scott Russell
recorded the first sighting, along a channel near Edinburg, of the solitary hump-
shaped wave to be rediscovered in 1965 in the context of the celebrated Fermi-
Pasta-Ulam problem by Kruskal and Zabusky and termed a soliton [7]. Scott



Russell observed that his so-called great wave of translation proceeded with a
speed proportional to its height [8].

It was in 1895 that Korteweg and de Vries [9], derived the nonlinear wave
equation for such a wave, which now bears their name and adopts the canonical

form

Ug + Uggy + 6uug, = 0. (1.1)

This equation has been shown to be a canonical model for a rich diver-
sity of large amplitude wave systems arising in the theory of solids, liquids and
gases [10, 11]. In 1965 the KDV equation was rediscovered in the context of
Fermi-Pasta-Ulam problem [7]. In a pioneering study by Kruskal and Zabusky
(7], the KDV equation was obtained from the lattice model. The existence of
solitary waves in this nonlinear model, which possess the remarkable property
that they preserve both their amplitude and speed subsequent upon interaction,

was revealed via a computational study.

In 1968 Miura [12] obtained the transformation which relates KdV equa-
tion and its modified counterpart called Modified Korteweg de Vries (MKdV)

equation:

¢ — 6¢% Py + Puzz = 0. (1.2)

Miura transformation

u(@,t) = ¢(z,1)" + ¢a(2, 1),

connects a solution ¢ of MKdV equation (1.2) with solution u of KdV equation
(1.1). So MKdAV equation shares all the beatiful solitonic properties with the
KdV equation.

It turns out that remarkably, a generic method for the description of
soliton interaction has its roots in a type of transformation originally introduced
by Béicklund in the nineteenth century to generate pseudospherical surfaces, that
is, surfaces of constant negative Gaussian curvature k = —1/p? [12]. The study
of such surfaces goes back at least to Edmond Bour in 1862, who generated the

celebrated Sine-Gordon equation

Wyy = — Sinw, 1.3
" (1.3)



from the Gauss-Mainardi-Codazzi system for pseudospherical surfaces parametri-
sed in terms of asymptotic coordinates. The Sine-Gordon was subsequently red-
erived independently by both Bonnet in 1867 and Enneper in 1868 in a similar
manner [2]. A purely geometric construction for pseudospherical surfaces was
reformulated in mathematical terms as a transformation by Bianchi in 1879. In
1882, Bicklund published details of his celebrated transformation B, which al-
lows the iterative construction of pseudospherical surfaces. In 1892, under the
title ” Sulla Transformazione di Backlund per le Superficie Pseudosferiche ” [13],
Bianchi demonstrated that the Backlund transformation B, admits a commuta-
tivity property B,,B,, = B,,B,, a consequence of which is a nonlinear superpo-

sition principle embodied in what is termed a permutability theorem.

In 1973, Washlquist and Estabrook demonstrated that the KDV equation,
like the Sine-Gordon equation admits invariance under a Bdcklund-type trans-
formation and moreover possesses an associated permutability theorem [12]. In
1974, a Bicklund transformation for the nonlinear Schrédinger (NLS) equation

i + gz + v|gl’g = 0, (1.4)

was constructed by Lamb [14] using a classical method developed by Clairin in
1910. The NLS equation has important applications in fibre optics [15]. In 1968,
Zakharov derived the NLS equation in a study of deep water gravity waves [16].
Hasimoto [17] in 1971 obtained the same equation in an approximation to the
hydrodynamical motion of a thin isolated vortex filament. Implicit was a geo-
metric derivation of the NLS equation wherein it is associated with a motion of
an inextensible curve in R3. This association of an integrable equation with the
spatial motion of an inextensible curve arises naturally in the study of the geom-
etry of solitons. In 1991 Goldstein and Petrich [18] have been related integrable
evolution equations from MKdV hierarchy to motions of closed curves in a plane.
It turns out that being integrable, these motions conserve infinitely many global
invariants. The local curve dynamics has similarity with geometric models of
interface evolution, proposed to study a crystal growth [19]. In fact, a variety of
physical processes can be modeled in terms of the motion of curves, including the
dynamics of vortex filaments in fluid dynamics, and more generally, the planar

motion of interfaces [20].

There exist now several new developed methods to solve soliton equations:
The Inverse Scattering Method [3, 21], Bdclund Transformation [12], Darboux
Transformation [22], Hirota Bilinear Method [23, 24] and the others. These meth-



ods allows one to construct exact N soliton solutions and to study their dynamics.
This achievement of soliton theory [25]-[29] has impact on classical differential
geometry where they have appeared in the first time. In this case, methods of
integration of Soliton Equations provide exact tools to study characteristics of
special kind of curves and surfaces which called soliton curves and soliton sur-

faces.

The goal of the present thesis is to study relations between motion of
curves in plane R? and space R? with the soliton equations [30]-[32], [33]-[47],
[48, 49].

In Chapter 2 we give main definitions and examples related with the curve
theory. In Section 2.1 we introduce basic definitions of the local curve. Serret-
Frenet (S-F) equations in natural parametrisation are studied in Section 2.2 and
integration of natural equations of a curve in Section 2.3. In Section 2.4 we
show that zero torsion curve is the planar curve and then find S-F equations in

arbitrary parametrisation in Section 2.5.

In Chapter 3 we study the motion of a curve confined in the plane (the
planar curve motion). In Section 3.1 we formulate the main idea related with
evolution of a curve with time. Time evolution equations for two dimensional
motion are derived in Section 3.2. In Section 3.3 we find that under the natural
conditions on the evolution of a curve, the curvature is subject to evolution
equation generated by integro-differential operator R. This integro-differential
operator is determined as the recursion operator of so called MKdV hierarchy.

In Section 3.4 nonlinear evolution hierarchy generated by R is defined.

In Chapter 4 we study MKdV equation and characteristics of the corre-
sponding curves. Section 4.1 is devoted to the MKdV hierarchy. By the Hirota
bilinear method we construct exact one soliton solution of MKdV equation in
Section 4.2. In Section 4.3 we integrate the natural equations and find MKdV
one soliton curve as a loop soliton. We determine some time invariant character-
istics of this soliton curve: the area characteristic and the angle characteristic in
Sections 4.4 and 4.5 respectively. In Section 4.6 we construct two soliton solution
of MKdV, describing collision of two loop solitons (Appendix). In the last part
of the chapter, Section 4.7, we discuss complex Miura transformation relating
MKdV and KdV equations.

In Chapter 5 the Sine-Gordon equation and corresponding curve are stud-
ied. In Section 5.1 we consider negative power recursion operator, generating the

Sine-Gordon hierarchy. We construct one soliton solution by Hirota Method in



Section 5.2. Then, integrating equations of motion we construct the soliton curve

corresponding to Sine-Gordon equation in Section 5.3.

Chapter 6 is devoted to the motion of curves in three dimensional space.
In Section 6.1 equations of time evolution are constructed. In this case, under
natural conditions on evolution of curves in Section 6.2, combining curvature and
torsion to the complex function we find Nonlinear Scrodinger Equation (N.L.S)
in Section 6.3. In Section 6.4 integrating N.L.S for one soliton solution we find
motion of a curve as a constant torsion loop soliton. In the last section of this
chapter we find Complex MKdV equation as a time evolution equation.

In Conclusions we discuss main results of application soliton theory to dif-
ferential geometry of curves. In Appendix we analyse MKdV two soliton solution
in asymptotic regions, describing collision of two loop soliton curves.



Chapter 2

LOCAL CURVE THEORY

We will begin our study with an investigation of curves in 3-dimensional
Euclidean space R? [50]. The curve is a geometric set of points in R® parametrized
by some real parameter o and can be considered as a path traced out by a particle

moving in R3, where parameter o has meaning of time.

2.1 Basic Definitions

Definition 2.1.0.1 A regular curve in R3 is a function r: (a,b) — R® which is
of class C* for some k > 1 and for which % # 0 for all ae(a,b).

Definition 2.1.0.2 The velocity vector of a regular curve r{a) at @ = ag is
the derivative ‘% evaluated at o = ag. Then the vector valued function (ﬂ')

da
determines the velocity vector field.

Definition 2.1.0.3 The tangent vector field to a regular curve r(c) is the vector
valued function

_ dr/da
4e) = Gr/dal

(2.1)

It determines t(s) as the unit vector |t| = 1 in the direction of the velocity vector.

Example 1.(Right circular helix)

Let r:R — R3 be given by parametrization r(a) = (a cos , a sin o, ha) where

h > 0 and o > 0 are constants.
Then,

dr .
== (—asina,acosa, h)



so that,

dr

— #0 Va€R.

da 7
So r(a) is a regular curve. At a = ay the tangent vector to the curve is
(a cos ay, asin ayg, ).

1
R
va2 + h?

Definition 2.1.0.4 Let r: (a,b) — R® be a regular curve and let ag € (a,b).
dr

The function
h(a) = L |

is called the arc length along the curve () and will be denoted as h(a) = s.

da, (2.2)

Example 2.(The circle with radius a)
Let r(a) = (acosa,asina,0) is a circle of radius a = constant. Then

2
da

=+vVa?sina +a2cosa =a

and

h(a) =aa, a=s/a.

It provides parametrization of the circle by the arc length in the form

r(a(s)) = (acos(s/a),asin(s/a),0).



2.2 The Serret-Frenet Equations

Definition 2.2.0.5 A regular curve v: (a,b) — R3 is called a unit speed curve
if I%I =1 forVa € (a,b).

Note that for a unit speed curve the arc length is,

(24
s=/ do = a — agp.
ag

If we set op = 0 then, @ = s. It means that the unit speed curve is the curve
which parametrised by the arc length parameter s. The tangent vector for this

unit speed curve is just

dr
=1 - — .
b= t(s) = o (2.9

Definition 2.2.0.6 The curvature of a unit speed curve 7(s) s defined as

dt d (dr
Example 3.
For a straight line it is clear that

dr dt

t(s)—£—a, -(E —-0,

so the curvature k(s) = 0.
Example 4.
Given the circle with parametrization r(s) = (acos(s/a),asin(s/a),0),

the tangent vector for r(s) is

t(s) = % = (—sin(s/a), cos(s/a),0).

Then

dt
;i; - 1/(1,

so for a circle of radius a, the curvature is a constant x(s) = 1/a.




Lemma 1

In Euclidean space R?, the constant speed vector t(s) is orthogonal to the vector
at

.
Proof

Differentiating t2(s) = const according to s, we get:

dt

2t(3)d—s = 0,

and as follows,

dt

t(s)L—.

()L~

From this lemma it follows that for the unit speed curve, the vector %
(the acceleration vector ) is orthogonal to the tangent vector t(s).The length of

this acceleration vector is the curvature k(s) of the unit speed curve.

Definition 2.2.0.7 The unit length acceleration vector

__ dt/ds

n= [dt/ds] (2.5)

18 called the normal vector to the curve.

From the above Lemma 1 it follows that the vector n(s) is orthogonal to the
tangent vector t(s).

Definition 2.2.0.8 The vector b(s) defined as

b(s) = t(s) x n(s), (2.6)

is called the binormal vector to the curve.

Since b®* = 1 then, according to Lemmal we get that b(s)_L% and %g
belongs to the plane (£, n). From Definition 2.2.0.8

db—dtxn+txd—n
ds  ds ds’
and due to
% _ n
ds



we get

%=n(nxn)+tx g—rsl

So we have that

b _,

ds " ds
and as follows,

db

T 4t

Therefore the vector % is directed in n. The coefficient 7(s) of expansion

%? = 7n is called torsion of the unit speed curve.

Definition 2.2.0.9 The torsion of the unit speed curve is defined as

db

-CE . (2-7)

Il =

Then % = 7n. According to Lemma 1 the vector dn/ds is orthogonal to n and
therefore it belongs to the plane (t,b). Then, from Eq. (2.6)

n=D>b x t,
and as follows
dn db dt
= 5 xt+bx I
Therefore
dn
75 = T@x )+ a(b x 1) = (1)(=b) + ()(~t),
so that
dn
— = -5t — .
% kKt —7b

10



From this definitions and explanations it follows that three vectors
(t(s),n(s), b(s)) which represent local basis for the curve at a fixed points, called
the Serret-Frenet basis, are subject to the following theorem:

Theorem 2.2.0.10 (Serret-Frenet Equations)

Let 7(s) be a unit speed curve with the curvature k(s) # 0 and the torsion
7(8). Then, the Serret-Frenet basis t(s), n(s), b(s) satisfies the system.:

dt

== k(s)n(s), (2.8)
dn
= = —#(s)t(s) — 7(s)b(s), (2.9)
2 = r(s)n(s). (2.10)

Example 5.(The unit speed circular helix)
Consider the curve given by the parametrization

r(s) = (acosws, asinws, hws),

where,

w = (a? + h%)12,

The tangent vector is

t(s) = i w(—asinws, a cosws, h),
and
dt
P —w?a(cosws, sinws, 0),
so that
dt
= wza\/cos2 ws + sin®ws = wa.
s

Then by Definition 2.2.0.6 we get for curvature the constant value,

k(s) = w?a,

1



and by Definition 2.2.0.7

he dt/ds
" |dt/ds|
It follows that

n(s) = (— cosws, — sinws, 0),

and by Definition 2.2.0.8 we can find,

b=t xn.

Therefore,

b(s) = w(hsinws, —h cosws, a),

and

% = w?h(cosws, sinws, 0)

Finally by Definition 2.2.0.9, we find that the torsion of circular helix is a con-

stant,

db
T = Igl = w2h/cos? ws + sin® ws = w?h.

From the Serret-Frenet Equations and the theory of the ordinary differ-
ential equations follows the next theorem [50, 51].

Theorem 2.2.0.11 (Fundamental Theorem of The Curve Theory)

Given any two functions of C* class fi(s), f2(s), of which the former is
positive for all values of s within a certain domain; there ezists a one and only
one curve, up to rigid motion in the space, for which the curvature k = fi(s),
the torsion T = fa(s) and s is the arc length parameter ,for all values of s in the
given domain.

So according to this theorem the curvature and torsion as functions of nat-

ural parameter, determines the curve up to rigid motion (translations, rotations)

in three dimensional space.

12



2.3 Integration of Natural Equations of a Curve

Definition 2.3.0.12 Equations k = k(s), 7 = 7(s) determining a curve called
natural (intirinsic) equations of a curve [51].

The problem of finding parametric form of the curve for cartesian coordi-
nates z = z(s), y = y(s), z = 2(s) is called integration of natural equations of
the curve.

Example 6.
Let us consider a curve with zero curvature, x(s) = 0, then for tangent vector

dr
ds’
from Serret-Frenet equation (2.8), follows that

t =

dt
ds
This equation shows that the vector t(s) is a constant vector,

0.

t(s) = to = const.

Then, integrating once equation % =t we get:
r(s) = tos + ro.
where rg is a constant vector.
Three vectors r, rp, to determine three points in R3:

r(z,y,2), ro(zo,¥o0,20), to(a,d,c).

Then, vector equation
r —rg = tps,
in components implies the linear system

T—To _Y—Yo _Z—2 _
a b c

It proves that the zero curvature curve in R3 is a straight line.

13



2.4 The Zero Torsion Curve

Now let us consider a curve with a torsion identically equal to zero

T(s) =0.
Then, from the last Serret-Frenet equation (2.10) we have

db _
ds

and as follows b = by = constant. Let us choose the fixed orthonormal coordi-

0,

nate system with axes (e, ez, e3) such that es = b. Then, vectors ey, e; would
be orthogonal to the binormal vector b. Since the tangent and normal vectors
t, n are orthogonal to the same binormal vector b, they belong to the plane de-
termined by fixed vectors e;,es. If we define by 8 an angle between t and e;,

then we have the following linear representation of our vectors.

t= ejcosf+ epsind, (2.11)

n = —e;sinf + ey cos . (2.12)

It means that our curve completely belongs to the plane and it is a planar curve.
From another side, if we have the planar curve, then vectors t and n belongs to
the curve’s plane so that b is orthogonal to the plane. Thus % = (0 and torsion

7(s) = 0. So we have the next theorem.

Theorem 2.4.0.13 A C3? curve (other than a straight line) is a plane curve if
and only if its torsion vanishes.

Differentiating (2.11),(2.12) respectively we have

dt . do
75 = (—eysinf + ey cosh) 75
dn .

% = (—el cosf — () sm0) %

Then, comparing with the Serret-Frenet equations (2.8), (2.9)

X = w(oIn(s),

14



we find that the curvature

k() = Z—Z' (2.13)

Let us suppose that the natural equation of a curve is given by the equation

K(s) = f(s),

where f(s) a is given function. Then, from the equation (2.13) we have

do
P f(s).

Integrating once we get

00s) = 8(5) + 60, 8(s) = | 16",
0
where 0y = constant is the initial value of the function 8(s): 6(0) = 6,.

If the curve is determined by the equation r = r(s), then

dr_

i t(s) = ey cos(¢(s) + o) + ez sin(¢(s) + 6o),

or

%Z— = e;(cos ¢(s) cos by — sin ¢(s) sinfy) + ey(sin ¢(s) cos Gy + cos P(s) sin bp).

Integrating we have

r(s) — ro = ey (z(s) cos 8y — y(s) sinby) + ea(y(s) cos by + z(s) sin bp),

where

z(s) = /Os cos¢(s)ds', y(s) = /8 sin ¢(s")ds’,

0
and

6o = constant, 1ty = (Xo,Yp) = constant.

15



If we define X (s),Y (s) as follows

X (s) = z(s) cos by + y(s) sin Gy + Xo,

Y (s) = y(s) cosp — z(s) sin by + Yo,

or in the matrix form

X(s) cosfy sinby z(s) Xo

f
+

Y(s) —sinfy cosb y(s) Yo

then

r(s) = X(s)e1 + Y (s)es.

It is easy to see that new coordinates correspond to a new coordinate
system, rotated on the angle 6, and with beginning of coordinates at the point
ro = Xge; + Ype,. So, it can be considered as following rigid transformation of

the plane with the curve:
(a) Translation on vector ro = Xge; + Yoes,

(b) Rotation on the angle 6.
This is just an illustiration of Theorem 2.2.0.11.

2.5 Serret-Frenet Equations in Arbitrary Parametrization

In section 2.1 we have considered the Serret-Frenet equations in terms of natural
parametrization of a curve (unit speed curve). In this section we will determine
the Serret-Frenet equations for a curve given by an arbitrary parametrization.
Let r(a) be a regular curve parametrized by a and let s(a) denote the arc length

parameter. Then,

r(a) = r(s(a)), where .;1’2=

dr

We wish to determine the Serret-Frenet equations in terms of the variable a.

Then the derivatives with respect to @ we denote by primes:

16



& & L _dr

~ do’ ~ da?’ ~ dad

Theorem 2.5.0.14 If r{a) is a reqular curve in R3, then The Serret-Frenet basis
in this parametrization is given by:

t=1/|r| (2.14)
b=1[r x /|r x | (2.15)
n=>bxt (2.16)

The curvature k() and the torsion T(a) for the curve are defined as follows:

k= x |/|7]}, (2.17)

7= [, 7, ")) x ]2 (2.18)

where [7, 7", 7] is the triple product of vectors.

Since r(a) = r(a(s)), we have r' = rs’ = s't, where we have used the
definition (2.3) So we get the relation (2.14).

We know that r’ = s"t + s't’ = s”t + k(s')?n where we have applied the Serret-
Frenet Eq. (2.8). Hence r’xr” = k(s)®b, and x(s')® = |’ xx”|. So, (2.17) is valid.

Since for & # 0, b = EXE1 and k(s')3 = |1’ x |, we find (2.15).

K(sl)s

Eq. (2.16) is obvious by orthogonality condition of Serret-Frenet vectors.

To prove formula for torsion (2.18) we have

r//I — s”t + s//tl + (n(s')z)'n—l—n(s')zn’.

Simplifying this expression by Serret-Frenet Egs. (2.8)-(2.10), we get:
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r" = (s" — k*(s")*)t + (ks's” + (k(s")?))n + k7 (s')°D.

Hence [r', r”,r"] = 7|v/ x r"|2. Thus we get the relation (2.18).

In Theorem (2.2.0.10) we formulated Serret-Frenet equations in natural
parametrization s. To define these equations in arbitrary parametrization a, we
use the chain rule such that:

d() _d0ds _ d(

d) _d0ds _ 40,

da  dsda ds
where v = ds/da = |dr/dal.

Applying this formula to vectors t,n,b in Serret-Frenet Egs. (2.8)-(2.10) we
have the next theorem.

Theorem 2.5.0.15 (Serret-Frenet Equations in Arbitrary Parametriza-
tion) Let v(c) be a regular curve in R3, and let v(a) = |7|. Then,

dt

2o = m (2.19)
dn
o= —kvt+ TUb, (2.20)
db
oo = TR (2.21)
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Chapter 3

THE PLANAR CURVE MOTION

3.1 Evolution of a Curve with Time

In this chapter we consider the motion of a curve according to the time
variable ¢ [52]. Let the vector function r(a,t) for any fixed time ¢ denotes the
smooth curve in R, which is parametrized by aeR. Then, the Riemannian metric

of a one dimensional space on the curve is defined as:

or or

5&5&, (3.1)

g(a’ t) =

and the arc length parameter s along the curve is given as follows

s, ) = /; * ol Do’ = /(; ’ 1%1(10/. (3.2)

Then, we will consider the pair (a,t) or (s,t), as coordinates of a point on the
curve at time ¢. From equations (2.3) and (3.2) we have tangent vector to the

curve in the form:

_ or . _1/2@

t‘&“g Ooa

(3.3)

Let (t(s,t),n(s,t), b(s,t)) is Serret-Frenet basis for our curve at the fixed
time t. Then, it satisfies the Serret-Frenet equations (2.8), (2.9), (2.10),

o _
ds

b = —7Tn, on = —kt 4+ 7hb,
0s

0s

Kn,



where k = k(s,t) is the curvature and 7 = 7(s, t) is the torsion of the curve at
the time ¢. The motion of a point on the curve, that is the time evolution of

r(a,t), can be specified in the form

%:i‘:Un+Vb+Wt, (3.4)
where U, V, W as functions of s and ¢, correspond to the normal, binormal and
tangent projections of the velocity. Below we restrict our attention to a purely
local form for these velocities, U = U(k, Ksy .o Ty Tsy -e)y V. =V (K, Ky ooy Ty Tsy o-0),s
W = W(k,Ks,..., T, Ts,...). Evolution in time according to Eq. (3.4) must be
compatible with equations of curve (Serret-Frenet equations). We will require

compatibility conditions which are given below:

0 0r(a,t) _ 0 0r(ai)

da 6t Ot Oa ’ (3:5)
0 ot(a,t) 0 Ot(a,t)
da 8t Ot da ’ (36)
d On(a,t) _ 0 On(a,t)
da Ot Ot Oa ’ (37)
0 0b(a,t) _ 0 0b(a,t) (3.8)

da Ot Ot Oa

To have equation in natural parametrization in the above formulas we can use

Eq. (3.3), relating differentiating parameters by following equality:

20 =g"2() (39

where parenthesis we can apply to the vectors, r,t,n, b.
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3.2 Two Dimensional Motion

Now we specify the time evolution. As it was shown in Theorem (2.3.1.1),
if we restrict our planar curve to be bounded on the plane for any time ¢ then,
7(s,t) = 0 and as follows in Eq. (3.4) V = 0. In this case the Serret-Frenet
equations reduce to the following system:

ot
% = K1, (310)
on
ob
%= O (3.12)

For the planar case the motion of a point on the curve can be specified in the
form:

or .
E—r—Un+Wt. (3.13)

Now we want to find the evolution in time for variables t,n, g, x, s. By applying
(3.9) to & and then using (3.13) we have:

e o 9 ms\a) =9 g UntWH),

Using Leibnitz rule for differentiation and substituting equations (3.10), (3.11),

0 0r(ayt) _ 1pf(dU . aw
% g =Y E+Wn n+ T Uklt). (3.14)

From another side by using Eq. (3.9) we have

dor(at) 0 ( 10T
ot Oa Ot 0s)’

or applying Eq. (3.3) we get:
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o0r(et) 1109, 10t
5t oo  2./g0t Bt

By using the compatibility condition (3.5) and Egs. (3.14), (3.15) projected in

direction of t, we find:

(3.15)

5 =2 (E" ~ Un) . (3.16)

Then, differentiating Eq. (3.3) according ¢ and using (3.13) we have:

ot

0
ot g(Un-l—Wt),

or

ot oUu ow
"a—t— (-a‘;""WKl)n-l‘ (-a—s—Ulﬁ) t.

Since %% and t are orthogonal vectors, the last term has to be vanishing,

-5;— —UK',=0, (317)

and after integration we have for W the next form
W = / Ukds'. (3.18)

Then, the time evolution equation for t is as follows:

ot oUu
5; = (5; -+ Wlﬁ?) n. (3.19)

Applying (3.9) to this expression,

0 Ot(ont) _ 420 Ot
9o ot 9 Bsor

and substituting equations (3.11) and (3.19) we get:
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B Bt(ayt) [ (OPU | W Ok au .,
e =9 5 T 5o +Wa n+t(goh+RW)t). (3:20)

From another side, according to Eq. (3.9),

0 0t(a,t) D [ 1550t
ot oa _ot\J bs

By using equations (3.9), (3.10) and (3.16) we get:

0 ot(a,t) 12 [ (W 2, oK 8_n
% B =g P —Kk—-Uk 8t +n6t (3.21)

Compatibility condition (3.6) with Egs. (3.20), (3.21) projected on n direction

results in evolution equations:

K o*U oK
—52 (6 0} W—a— K U) )

and

on oU
?9‘{‘"(6 * W)

In Eq. (3.2) we defined the arc length function. Now, the time evolution of s by
using (3.16) and (3.17) is:

ds _ [“ aw , [*adWw /3 ,
a—/(;g (ds Un)da— | da'da OUnds,

Then we get:

83_ 8 ,
E?—W /OUkods.

As a result, time evolution equations for variables t, n, g, x, s are given below:

Os

5t =W - /Un,ds (3.22)
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g—i- =2g (ég — Uh;) , (3-23)
‘2—’: = (%—g + W% + nZU) : (3.24)
g; = (%—Z + Wn) n, (3:25)
L 520

3.3 Relation with Nonlinear Evolution Equations

Serret-Frenet equations (3.10), (3.11)and time evolution equations (3.25),
(3.26) can be written as a couple of matrix linear systems:

o t 0 k& t
n —x 0 n
U
6 t 0 Bs + Wli t
= A . (3.28)
n ~ (& + Wk) 0 n
or
t t
gg = 09K , (3.29)
n n
ot . t
5 = zoz(a + Wk) , (3.30)
n n

where o4 is the Pauli matrix
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09 =

The compatibility condition of these matrix systems is

9|t 8ot
n n
Then
Ok ., 0U oUW Ok . oU
_67 + Iizo’z(g + WK}) = (Ez— + 'ES—K, + Wg) + Ii’LO'z(—a—s— + WK?)
By the above equation and (3.17) we get that:
ok _ (9°U s Ok [* P,
5% (—a?-i-U/i —I—g/ n(s)U(s)ds), (3.32)

or

Ok 02 9o Ok [° .,
5{—((—9;54—/% +E/ n(s)ds)U.

If we fix U = U(k, Ks, ...) then, it provides closed nonlinear evolution equation

for the curvature k(s,t). Integro-differential operator in paranthesis:

is called the recursion operator of the mKdV hierarchy [5].

So as we can see our general nonlinear evolution equation appears as the
compatibility condition of linear systems. These linear systems are considered as
an auxilary linear problem corresponding to the nonlinear evolution equation for

the curvature.
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3.4 The Nonlinear Evolution Hierarchy

Let us consider the hierarchy of functions [18],
2

0 Ok s "
U =R"U —(682+K‘, +as/ﬁ(8)d8) U

=R"UW = ... = RUMD,

and let us call corresponding time evolution parameters as ti,%s,...,1,. Then

evolution of the curvature according to ¢, is,

gTE —RUO® n=1,2,.. (3.33)

Evolution equations for Vn evaluated with respect to (3.33) with fixed U, we
call the evolution hierarchy.
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Chapter 4

THE MODIFIED KORTEWEG-DE VRIES EQUATION

4.1 The Modified Korteweg-de Vries Hierarchy

The simplest choice for the hierarchy is,

U® = .
Then,

UD = RU© = —% X const.
Os

Fixing inessential constant to one we have for the first member of the hierarchy:

It determines the linear wave equation

ke, + K =0.
Then, applying recursion operator we will have for the next member of

the hierarchy:

3
U(2) = '_(K'sss -+ 5/4,2,“&5),

and

!
K, = —(Ksss + K2Ks + s / Kkgds'),



or after simplification,

3
Kty + Kggs + EK,ZK,S = 0.

This equation is known as Modified Korteweg-de Vries (MKdV) equation [11, 21].
When we apply the recursion operator R on U® we get,

3 3 3
Kty + (Ksss + -2-Ii2l€s)ss + l-’-‘,z(h',sss + —2%2&3) + K, / K(Ksss + §n2r.:s)ds' =0,

or

5 15 3
Kty + Kss + 3K + rkighss + Emznm + §n4ns + 55 / Kk gssds' = O.

Integrating by parts we evaluate the integral,

KessdS =AU Kgs =0 K=1u K;=du,

then ;
/ KhgssdS = Kesk — 5&3,
so that
5 5 15
Kts + Kss + 10KK K5 + Enznm + Eng + §n4ms =0.

This equation represents the next member of MKdV hierarchy. Then we find
U®d,

5 5 15
U® = —(kss + 10Kk kg + 5525333 + 553 + §1€4f€s)~

When we apply recursion operator R on U®, we get the next member

91 63 7 105
Ky, + Kos + —2%35?3 + ?nﬁnsss + 35Kk Kes + 21 KK gKs + '2%2/%53 + Tnzn‘:’
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35 35
3 4 6
+35K°KsKgs T+ 3 K Kgss + 6 6/4& ks =0.

As we can see all functions U™ are local functions of &, K, .... Substituting
U™ to the evolution hierarchy we obtain the so called MKdV hierarchy.

Below we give the first four members of the hierarchy,

Kty + Ky = 0. (41)
3 o
Kty + Kess + S s = 0. (4.2)
5 5 15
Kig + Kss + 10KKsKss + §nznm + 5&3 + §I€4K‘,3 =0. (4.3)
1 105
Kty + K7 + %nsnﬁs + %éngmsss + 35Kk skes + 21 KK sKas + 252558 + %n%g
35 35
+35k3 Kk ks + 3&4/4333 i Iénﬁms =0. (4.4)

As we can see every member of the hierarchy contains highest derivative
power 2n — 1. The MKAV hierarchy is an example of integrable hierarchy of
evolution equations [61]. These equations can be integrated by several exact
techniques as the inverse scattering method [3, 11, 21}, Backlund transformation
[2, 12] and others [22]. For our purpose, it is convinient to use rather simple
direct method called Hirota bilinearization [23, 24, 53, 54].

4.2 Hirota Bilinear Method and MKdV Equation

In 1971 Hirota introduced a new direct method for constructing soliton
solutions to integrable nonlinear evolution equations [24]. The idea is to make
transformation to new variables, so that in these variables a nonlinear evolution
equation become represented in the bilinear form, and multisoliton solutions ap-
pear in particularly simple form. Multisoliton solutions can of course be derived
by many other methods, by the inverse scattering transform [3], dressing method
[3], Bicklund [55]and Darboux transformations [22], and so on. Particularly, the
Inverse Scattering Method (ISM) [21] is very powerful, but at the same time it is
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most complicated and needs information about analytic behaviour of scattering
data. Comparing with this, the advantage of Hirota’s method is its algebraic
rather than analytic structure. It allows one to construct soliton solution in a

simple algebraic form avoiding analytic difficulties of ISM.
Basic ideas in this method are as follows:

(1) Introduce a dependent variable transformation. The transformation
should reduce the nonlinear evolution equation to the quadratic one in the de-
pendent variables. Hirota has developed a novel differential calculus and it is

convenient to use it at this stage.

(2) Introduce a formal perturbation expansion into this bilinear equation.

In the case of soliton solutions this expansion truncates.

(3) Use mathematical induction to prove that the suggested soliton form
is indeed correct for arbitrary number of solitons.

4.2.1 Hirota derivatives and its properties

In this subsection we list some properties of the Hirota derivative operators
D;,D,, 23] defined by equation

Dz(f - 9) = (02 — 0z,)" f(%1)9(%2) | zp=21 == (4.5)

or in more general form

5 a\"[8 o\" .,
DD (f-g) = (E - @) (55 - Ec_’) f@z)g{t ') t=trz=r.  (4.6)

From the definition above we can find the general expression for n-th Hirota

derivative
DZ(f - 9) = (Oay — 0z,)" f(21)9(22) | 2=01=2
= 3 0% 0L £ (21)g(22) oy =ra=s (4.7)
k=0 | L
or
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n

=" | P@e® @ -1k (48)

k=0 k

For the first few derivatives we have explicitly

Di(f-9)=f'9-9Ff,
D¥f-g)=f"9-2fg+49"f,
D3(f-g) = f"g—3f"g' +3¢"f' — g"f , (4.9)

D?(f ,g) — f(IV)g _ 4f”’g’ 4 6f"g" _ 4f/g/// +fg(IV) ,

The following properties are easily seen from the definition
L DP(f-1) = (Z)"f
2. DR(f-g) = (-1)"D7(g.f)
3. D™(f- f) =0 for 0dd m.
4. DX(f- f) = 2f"f — 2*
5. DPf-9)=D7 ' (forg—f9:)
6. D.Dy(f - f) = 2D5(fi - ) = 2Dy(fs - f) for even m.

7. DIM(eP*® . eP2%) = (p; — py)mePripa)e

8. D;n(eﬂ1t+p1z . 692t+p2z) = (p; — pz)me(91+92)t+(m+:02)z
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. D?(eﬂlt+p1z . eta+p2:c) — (Ql . Qz)ne(91+92)t+(}71+132)$
. Let P(Dy, D,) be a polynomial of D; and D,, we have

P(Dt, Dz)(emtﬂnz . eta+p2a:) = P(Ql — Q9,01 — p2)6(91+92)t+(p1+p2)z

. eEP(f(z) - g(z)) = Yope SD2(f - 9)

n
= e S Y (—1)¥ " £ (2)g*= (z)

12.

13.

14.

15.

16.

17.

18.

19.

(n) (m)
= 2, L5 i, £

n=0

where k = m+n. As a result we get that

k

e)™

e (f(z) - g(z)) = f(z +e)g(z —€)

Dy(fg-h) = (%)gh+ fD.(g- k)
D2(fg-h) = (Z4)gh +2(Z)D,(g - h) + fD2(g - h)
D ((er*f) - (e**g)) = e®*D(f - g)

The following formulas are useful for transforming nonlinear differential

equations into bilinear forms.

D2
az2( )_ (gf)

aDi(g-f)
.f f?

D3 D2(f.
( )_ (gf [ (gf) }gf)]
2 (logf) = 2554)
407, 2(f.
2 (logf) = 250 — 6| 2=lL0]2
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4.2.2 MKdAV One Soliton Solution by Hirota Method

In this section we determine the Hirota bilinear representation for MKdV

equation (4.2). The solution of equation we suppose in the form

I€=—F—1,

where G and F are real functions of s and ¢. Then first we write (4.2) in terms

of Hirota derivatives,

1 3 3G?
E(Dt(G -F)+D¥G-F)) - ﬁDs(G .F)D*(F - F) + 2—F—2DS(G -F)=0.

Since we have freedom to choose one of our functions we separate terms of
the equation multiplied by 1/F? and 1/F*. Thus we obtain the bilinear systems

of equations:
(D; + D3)(G- F) =0, (4.10)

D*(F-F) = —;—Gz. (4.11)

Now we write the formal expansions of F' and G in powers of some pa-

rameter e such that:

F=1+ 62F2 + €4F4 + EGFs...,

G= 6G1 + €3G3 + €5G5....

When we substitute expansions of F and G to (4.10), (4.11) we get:

(Dt + Dg)(E(Gl . 1) + 63(G1 . Fz + G3 . 1) + 65(F2 . G3 + G1 . F4)) = 0,

D2(1-1+426*Fy - 1+ *(Fy - Fo + 2(Fy - 1)) + 8 (2F, - Fy + 2(Fg - 1))...)

= %(eZGi + €4(2G1G3) + 4 (2G1Gs + G2)...).
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From this system at € order zero we have identically,
D?(1-1)=0.
For € order one we find the equation,

(Dy+D3)(G:-1) =0,

or
(6,5 + Bg)Gl = (.

The simplest nontrivial solution of this equation we search in the form,

Gi=e", m=ks+uwt+ nfo).
where dispersion must be fixed as w = —k3. Then it gives,
Gi=e™, m=ks—kt+ 77%0).
For € order two we have,
DX(F; 1) = 3G}

or

1
Bsz = Zezm .

(4.12)

Integrating above equation twice and neglecting integration constants we get:

1
B= 16k2

For € order three we have,
(Di+D3(G3-1+ G- F) =0.

By explicit calculation we have:
1

(D:+ D3)(Gy - Fy) = €™ 16k2

34
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(1-6+12—-8+ 1)) =0.

(4.13)



We can see that contribution of the last term is zero, so that

(D; + D)(G, - Fy) = 0.

Then, we conclude that,
(Dy+D3)(Gs 1) =0.

or

(8t + 63)6’3 =0.

The simplest choice for the solution of this equation is
G3 =0.

This choice with conditions:

Fi=0, i>4, G,=0, j>3,

truncates infinite series and provides exact one soliton solution of MKdV equa-

tion:

em
k(s,t) = T con /162"
or
k(s,t) = 1k,

- 4ke—m + 6771/4161 '
This expression is invariant under the change of sign of parameter k,. This is
why it is sufficient to choose k; > 0. Let ﬁ = e?, then

2k,
K,(S, t) = W

Adding ¢ term to the constant part of the 7y,
h+ ¢ = kys — k3t + 18 + ¢,

finally we obtain the one soliton solution of MKdV equation (curvature soliton),

2k;
cosh(n)

k(s,t) = (4.14)
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4.3 Recovering MKdV One Soliton Curve

Explicit form of (4.14) for curvature is the traveling wave,

2a
cosha(s — a%t — sq)’

k(s t) = (4.15)

(where a = ki), with velocity v = a? and amplitude 2a. Now we are going to
recover the curve corresponding to the one soliton solution (4.15) by the equation
(2.13),

15./) 2a

8s  cosha(s — a2t — s)’

Integrating once we get,

$ 2a ,
6(s,1) = / cosha(s’ — a?t — sg) ds’ + bo.

Then, choosing

a(s — a’t — o) = z

so that
ads = dz,

the integral turns into the next form:

1
0(s,t) = 2 / ——dz+ 6o

or
z

0(s,t) = 4 / ;—Z%dz + 6.

Changing variables,

e =u, €°dz=du,

we get the expression,

1
0(s,t) =4/md’u+00,

so that after integration, the angle 6 has the form,

6(s,t) = 4arctan e®*~9"t=%) 4 g
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Now we fix the constant @y from the boundary conditions. Let

6=60—06, = tan- =-¢c"

and

where

0<8<or

Then the solution can be written as:

0(s, t) = 4 arctan e®(~2"t-%0), (4.16)

As the next step we will find the explicit form of the curve corresponding to our
solution. By definitions (2.11) and (3.3),

_(?I = e; cosf(s) + ez sin 0(8).

0s

Integrating once we get the parametric form of our curve,
r(s,t) = e1/ cos(s')ds’ + ez/ sin §(s")ds’. (4.17)
To take the above integrals explicitly we will proceed as below: Let

a2t
4 arctan e®(5~%t=%0) =
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Then by identity
cosf = 1 — 2sin? 2a,

or
cosf = 1 — (8tan® a/(1 + tan® a)?)

= cos@=1-— (862z/(1 + e2z)2)
= cos@=1—(8/(e*+¢*)?)
= cosf = 1— (2/(cosh? 2)).

Then by explicit integration,
/cos 6(s")ds’ = %/1 — (2/(cosh? 2)dz = %(z — 2tanh 2),

or
N 2 2 2
/cos@(s )ds' = (s — a’t — sp) — Etanha(s—a t — sp)-

For the second integral we use identity
sin @ = sin4a = 2 sin 2a cos 2a,

or
sinf = 4tan (1 — tan® a)/(1 + tan® a)?

= sinf = (4€*/1 + 4e*)(1 — €**/1 + %)

= sinf = —2sinh z/ cosh® 2.

Then we have explicit form for the integral,
/sin 6(s")ds' = 2/—2 sinh 2/ cosh® zdz = %(2/ cosh z),
or

/sin@(s’)ds’ _2 !

a cosha(s— a2t — sp)

38
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Substituting to (4.17) we get:

r(z) = elé(z — 2tanhz) + ezé(z/ cosh z). (4.20)

where z = a(s — a®t — sp),

or

2 2 1
r(s’ t) = el((s—azt—SO)—a tanh a(s_a2t_so))+ez—a—COSha(3 _ a2t _ 30) .

(4.21)

The curve corresponding to the one soliton solution of MKdV is called the soliton

curve. Parametric form of this curve is:

2 1
z= 1(z— 2tanhz), y=

= - - ) 4.22
a a cosh 2’ 0 <z<00 (4.22)

Combining these equations as

z—az\? 1 ay\ 2
tanh z = = (—)
y ( 2 ) " cosh®z 2/

and adding together we have relation

(m_g)uyzz(g)z.

To exclude parameter z from this equation we use the second Eq. of (4.22)

2
2 =cosh™ ! =,
ay

As a result we get equation of one soliton curve in the form

2 2
(x _1 cosh™! 3) +y? = (g) . (4.23)
a ay a

This equation shows that the soliton curve is not the algebraic curve but the
transcendental one. It has a simple geometrical interpretation. Let
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2
zo(y) = %cosh"1 e (4.24)

Then Eq. (4.23) describes the set of points (z,y) equidistant 7o = 2 from the
points (zo(y),0): the last set of points is determined from Eq. (4.24) by the

curve,

To
cosh 2~
To

Y

Constructing this curve we find that, it represents a loop in the plane. If in Eq.
(4.20) we change z — —z then z — —z, y — y. This means that our curve
is symmetrical under axis y. The maximum of the loop is determined by the
solution of the equation,

dy dy/dz sinh 2z

dr  dz/dz  “cosh®z—2’

and corresponds to the value z = 0. At this point z(0) = 0 and the maximum of
the curve is,

2
y(0) = r =To.
The curve has other intersection points with axis y, determined by equation

z(z) = 0.

Except z = 0, another couple of roots of this equation is given by sym-
metrical pairs zp and —zy as solutions of transcendental equation,

tanh zp = %.

Approximate value of z5 = 0.93. Then, these roots determine intersection point
on the soliton curve with coordinates (0,y(20)). The soliton loop is illustrated in
Figure 4.1.
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Figure 4.1: Loop soliton

Since coordinates of curve in parametric form are dependent only of size
of curve a and parameter z, but not of time ¢ explicitly, the shape and position
of curve at any time ¢ is the same. In this case the time evolution is realized by

reparametrization of curve’s parameter z:
- z2— Z=2z—a.
So that the motion of curve is just uniform motion with velocity v = a? along

the shape fixed loop soliton curve.

4.4 The Area Characteristic of MKdV One Soliton Curve

As we have seen in (4.20) the parametric form of the MKdV one soliton

curve is,

T = %(z —2tanhz), y= —61;(2/Coshz),

where —o0 < z < o0.

Since shape of curve is fixed under time evolution, the area enclosed by the loop
is integral of motion.

The integral below will give the area enclosed by the loop our curve:

Yo
Area = A = 2/ zdy,
y(0)
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where
-2 )
dy = — (sinh 2/ cosh” 2)dz,
and
—4 [
A= - / (z — 2tanh z)(sinh 2/ cosh? 2)dz.
0
Splitting this integral in two parts we have,
A=I+11="2 inhz/cosh®2) dz + - inh? h3z) d
=1+ =5 /= (sinh z/ cosh” 2) z+;§ (sinh® z/ cosh® z) dz,

where

I: z=u = dz=du, (sinhz/cosh’z)dz=dv = (—1/coshz)=v,

and
I= = h 4 hz)d
== 2(1/ cos Z)—ﬁ (1/ cosh z)dz,

while

IT: ;82-/(1/ cosh z)dz — %/(l/ cosh® 2)dz.

Then we obtain

4 4 8
A= - 2(1/ cosh z) + = /(1/ cosh z)dz — = /(1/ cosh® 2)dz.

By changing variable z to [,

sinhz =1 coshzdz=adl, cosh’?z=1+1
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we have

a?

A=l 2(1/ cosh z) + % /(1/(1 +1%))dl — %/(1/(1 +12))dl,

The second integral in this expression is of the table one, while to calculate the

last one we will use the transformation below:

| =tanu, dl=(1+ tan®u)du.

Taking integrals and changing all variables back to z, we have:

4 4
A= = z(1/ cosh z)+z:—12- arctan(sinh z) —% arctan(sinh z)— ;(Sinh z/ cosh? 2),

After simplification it gives

A=2 L tanha). (4.25)

a? cosh z

where we take the boundary of the integral from 0 to zp.Since at the point zg

coordinate z(2g) = 0 then from (4.22) we have constraint
2
tanh 25 = 50,

After substituting to (4.25) finally we obtain the area enclosed by the loop of the
soliton curve:

or with the approximated value of the zg,

1.93

As easy to see this area is completely determined by parameter a representing

amplitude of soliton.
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4.5 The Angle Characteristic of MKdV One Soliton Curve

Since shape of the soliton curve is fixed, the angle at intersection point
is also integral of the motion. In this section, we will find the angle o be-
tween tangent lines to the loop soliton at the intersection point. We will use the
parametrization of the loop curve (4.22). The slope of the tangent line to the

curve at point z is:

dy _dy/dz _ y'(2)

dr  dz/dz z'(z) = tana(z).
so that at point 2,
_ ¥'(20)
tan a(zg) = 7(z0)

Using parametric equations (4.22) we get the angle between tangent line and axis

z at point 2p:

—2sinh 20

—_— 4.26
cosh?azg — 2 ( )

a(zg) = arctan
When zp changes into —zy we get:

2sinh 20

a(—z2p) = arctan ————.
(=20) cosh?zg — 2

Then, the angle between the tangent lines at the intersection point zg is

4 sinh 4

al—z2y) — alzg) = —arctan ————.
(=20) (z0) cosh? zy — 2

Approximate value of this angle is 110°. It is worth to note that the angle
is independent of amplitude of soliton a.

44



4.6 MKdV Two Soliton Solution by Hirota Method

By the similar procedure used in Section 4.2.2 we can obtain two soliton

solution for MKdV equation. In the equation of order €?
(0, +83G3=0
instead of trivial solution we choose:

G3 = 6772,

where,
e = kos — k3t + 0. (4.27)
Continuing the procedure we find truncation of the series in the form,

G =e™ + €™ + ;7M1 4 qye? i

e"ll 1 67]1+7’2 62772
F=1+ db = + + Be?mtam,
16k°  2(ky +ko)®  16k;° &
where
_ (= h)? _ (ki —k9)?
a3 = 2 29 Qg = 92 2
16k:1°(k1 + ko) 16k2* (k1 + k2)
po— k)
256k;%ky” (k1 + ko )*
It gives 2-soliton solution of MKdV equation in the form
G M 72 2n1-+n2 m+2m
k= F = 1 (ee%:'- : 1+egifz e::zaze 2711-)kz7;2’ (4.28)
16k? T 2 (k1+k2)? T 1682 + Be

or after some transformations

2k1ka|k? — k2|[k2 cosh(m + 9 + é1) + k1 cosh(nz + ¥ + ¢9)]
(ky — k2)” cosh(my +m2 + 20 + ¢1 + ba) + (k1 + k2)® cosh(m — 12 + ¢1 (—4 ¢2)) + 4k ks
29
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where
m+v¥+d=ki(z — kit — Xg), Xg= k_ll[ﬂl(o) +1nlii+l;:§|l — 3 In1643)],

M+ v +da=la(w—kr — X3), XZ=EmO +In{g2 - 1in16k).

When we analyse asymptotic behaviour of this solution we get two inter-
acting solitons, preserving their shapes under collision [Appendix]. But as it was
shown in Section 4.3 to every soliton corresponds the loop curve. Therefore our
solution (4.28) describes elastic scattering of two loops with parameters (ampli-
tudes) 2/k; and 2/ky, where ky, k; are real numbers. It illustrated in figures (4.3)
and (4.4).

Figure 4.2: MKdV two soliton solution curve at time ¢t; — —o0
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Figure 4.3: MKdV two soliton solution curve at time ¢; — 400

4.7 Complex Miura Transformation Between MKdV and KdV

In this section we show that a combination of MKdV-squared curvature
and its derivative satisfies the Korteweg de-Vries (KdV) equation. Let MKdV
equation be in the general form,

Kt + aK'ZK's + Kgss = 07
and let KdV equation be in the general form,
U + buty + Uggs = 0.

Miura’s fundamental discovery is [12, 56] that if k(s, t) satisfies the MKdV equa-
tion, then

u(s, t) = ak(s, t)* + Br,(s, 1), (4.30)

satisfies the KdV equation. Furthermore, this transformation relates these two

equations according to expression:

KdV(u) = (2ax + ,B—a%)(mKdV(n)). (4.31)

where parameters a and b are related with o and 3 as
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b2 ,32 o b ,32
6 ' 6
From these formulas we have several choices for parameters a and b.

b>0 , B=iyv , a>0,
b>0 , £>0,8<0 , a<0,

b<0 , fB=iy , a>0,
b<0 , >0,8<0 , a<0,

where o, (3,7, a, b are real numbers. To reproduce MKdV equation (4.2) we need
a = % Let b = 3, then we find that corresponding values of o = % and 8 = i.
So, for this special case,

u(s,t) = %nz + ik,

and

KdV(u) = (k+ z%)(mKdV(n))

For the one loop solution (4.15) the related complex solution of KAV equation is,

20* 4
= 5— (1 — isinh7n). (4.32)
cosh®n

Indeed, for partial derivatives we have,

5

=3 - (2sinh7; + i(1 — sinh?n,)),

243 . s
U= —3 - (—2sinhn; + i(sinh®n; — 1)),

2 4
Ugs = cos];ﬁn ((—2 + 4sinh®n,) + i(5sinh® r; — sinh3 7)),
1

2a°

g ((16sinh#; — 8sinh® ;) +4(5 + sinh*7; — 18sinh? 7)),
1

Usss =
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then
Us + Uy + Uges =
2a°

cosh® 7

((—2sinh 7 cosh®n; 4+ 2sinhn; cosh?7) + i(cosh® n; — 1 — sinh? ;).
So this solution satisfies the KdV equation in the form

Uy + Uty + Ugss = 0.

The real part of the solution (4.32) is the one soliton solution of KdV

equation:

2a2

u= .
cosh?
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Chapter 5

SINE-GORDON EQUATION

5.1 Negative Power Reduction and Sine-Gordon Hierarchy

In previous section we have considered MKdV hierarchy generated by the

recursion operator R. Since R is integro-differential operator this is why it is

natural to consider not only positive powers but also negative powers of it [18].

This is why let us choose in Eq. (3.32) U = R2k,. Then,
RU=k; = rk=R'k, = Rk:=k,.

In explicit form,

8

REs = Kggt + K%Ky + K / Kkeds',

—0o0

or due to (5.1),

8
Ks = Ksgt + (n / Kkds' ) .
o0 s

Integrating the above equation once with respect to s we get,

8
K= Kt + n/ kkds' + C,

—0Q

where C is constant of integration. For simplicity we choose C = 0.

(5.1)

(5.2)



Then we define,

9(s,t)=/ kds',

—~00

(5.3)

which means k = % and 6 has meaning of angle for curvature similar to Eq.

(2.13). It is convenient to introduce new function F(s,t) according to formula,

Ky =sing + F(s,t).
From (5.3) and (5.4) it yields that,
kst = (cos0)0; + F; , 6,=k.
Then, if we substitute these into (5.2), we get:
(cos0)0s + Fs + 6, /:s 0,(sinf + F)ds' = 0,

or

(cos8)8, + Fy, — 05 cosb(s,t) + 05 cos (—o0,t) + / 0,Fds’ = 65,

and

8

(cos)bs+ Fs — O5co86 + 65 + / 0. Fds = 6,.

—00

Then we obtain the equality:
F, +/ 6,Fds' = 0.

By the chain rule,

OF _090F _ OF
9s 09500 "99°
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then,

oF ?
s—=— +06, | 0.Fds' =0,
0 50 +9/0 JFds' =0
and finally we get:
oF

o0
Differentiating this equation in 6 we find:

g
+ / Fdf’ =0. (5.6)
0

Fog+ F =0.

Solving this equation we have:
F = Acosf + Bsin, (5.7)
where A, B are arbitrary constants. The equation (5.4) implies:

93,5 =sm9+F

When we substitute (5.7) into the above equation we get,

0st = (1+ B)sinf + Acos#.

Let us choose

1+B=cosfy , A=sinby,
then,

Gst = Sill(e + 60)

Combining
0 + 00 =@,
we finally get the Sine-Gordon Equation:

st = sin . (5.8)
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5.2 One Soliton Solution of Sine-Gordon Equation by Hirota Method

We consider a solution of Eq. (5.8) as the dependent variable transforma-

tion,

%

¢ =2iln FF (5.9)

where F is a complex function and F™ is complex conjugate of F'. Then we use,

e — et
23 ’

sing = o ((F£)2 - (%-) 2) . (5.10)

Now, we write Eq. (5.8) in terms of F', F* and s,t derivatives:

sing =

to rewrite

F2[2(2F%F* — 2F*F} + F?) + F? — (F*)?[2(2FF — 2F,F;, + (F*)?] = 0, (5.11)
to simplify this equation let us suppose that,
DsDy(F - F) = 2F%F* — 2F:F;} = o(F? — (F*)?),
where a € R. Then substituting to (5.11), we get:
20 ((F*)? — F*)F? — 2a(F? — (F*)F*)? + F* — (F*)* =,

which is valid only if

Now with this result we obtain the bilinear representation of Sine-Gordon equa-
tion: )
D,Dy(F-F) = §(F2 — F*). (5.12)
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Writing the formal expansion of F' and F™* in powers of ¢ such that:

F=1+4¢F +&FR+F;..,
F* =1+ ¢F} + éF; + F5...,

and substituting this expansions to (5.12), we have

D,Dy(1-1+2(Fy - 1) + (Fy - Fy + 2F, - 1) + ..)= 1(2e(Fy — F}) + (F2 —

(FI)? +2(F2 - F3)) + ),

For € order zero we have identically,

DyDy(1-1) =0.

For € order one we get,

D;D;(2F; - 1) = (Fy — FY),

or
20,04(F1) = (F1 — FY),

and

20,0:(F7) = (Fy — F).
Then from this couple of equations we have,

(Fy — F})st = F; — FY.
Let us choose,

Fy — F} = 2(ie™,

so that substituting this to (5.13) we find:

1
Py =ife™, Ff = —ife™, m=kis+—t+n,

ky

where k1, n&o), [ are real numbers.
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For ¢ order two,
D,D,(Fy-Fy +2F,-1) = %(Ff — (F})? + 2(Fy — F})).
Since
D,Dy(Fy-F1)=0
Fy + FT =0,
the above equation reduces to the form:

1
D,Di(F5-1) = §(F2 - F}),
or

1
636t(F2) = §(F2 - F;)

We will choose Fy = Fy = 0. This choice with following conditions,

truncates infinite series and provides exact one soliton solution of the Sine-Gordon

equation in the form:

F=1+ifem, F*=1-iBem,

(5.14)
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5.3 Recovering Sine-Gordon One Soliton Curve

In previous section we found one soliton solution of Eq. (5.8) in the form:

1—ifem

=2{ln——
p=2 1+iBem’

where m; = k1s + kllt + 77&0) and k;, n&"), [ are real numbers.

Now we are going to recover the curve corresponding to the one soliton

solution. The parametric form of the curve is given by Eq. (4.17) such that

8

r(s,t) = e1/ cos p(s')ds’ + e2/ sin p(s')ds’.
By Eq. (5.8), the second projection after integration is
/ sin p(s")ds’ = ¢4,

and for the one soliton solution (5.13), we have

S . 0 ol 4_@ eﬂl
/ sinp(s')ds’ = 5 \T5 e )

Using identity,

cosp = et
(JD - 2 ?
and definition of ¢ (5.9) we have,
1(F*+ (F*)%)
08P =

Then,

ngo = L [TEEEDY
/cosgo(s)ds =—2—/ T(F;)—Z——ds,

and substituting F, F* from Eq. (5.14) we have,
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1 — 603%™ + Bleim
N !
/coscp(s Yds' = / 1+ 28%¢2n + Bletn ds

Simplifying, this expression

8,3262"1

’ 1 _ ’
/cos p(s)ds' = /(1 A+ o) ﬁzean)z)ds ,
after changing of variable, in the second integral

fZe®™ L1=u , 26%*Mkids = du,

we have,

so that

s 4 1
, / — —— ———eee
/ cosp(s’)ds' = s+ ki P 1

Then we find the parametric form of the Sine-Gordon one soliton curve as,

4 1 403 "
I‘(S,t) =€ [S + k—lm] + e l:_]:!—l_ (I_B—Z—e—jmﬁ)] . (515)

where 77 = ks + -,glzt + n§°’ and ky, 77&0), [ are real numbers.

Let 8 = e%, so that Be™ = e?, choosing 3 > 0. (The negative value of
B gives the same curve reflected under axis z), where parameter of the curve is

z =n1 + ¢o.
For z projection we have

z(s,t) = s+ : 1
T k‘1622+1.

Using the definition of tanh function, from the last expression we get:

z(z,t) =s+ Ez—(l — tanh z),
1

After simplifications and changing variable to z we obtain

_1 1, 2-1"~4
x(z,t)—kl(z tanh z) k%t+ I ,
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Shifting coordinate system in z direction by constant term, we find
1 1
z(z,t) = -—(z — tanh z) — —5t.

From another side for y coordinate we have parametric form

2 e*
y(s,t) = T

Using the definition of cosh function and changing variable to z, we get:

(2,8) = 2 1
y\sth = kicoshz’

Finally, the parametric form of the Sine-Gordon curve can be written as,

1 1 2 1
r(z,t) = e [k—l(z — tanh z) — k?t] +e; [k‘T coshz] ’ (5.16)

where z = ks + f;t = 7750) + ¢

From this expression we can see that at any fixed time ¢ our curve represent
the loop soliton. But in contrast with MKdV case, now our curve in addition
is moving in negative direction with constant speed 1/k?. In Figure 5.1 we

reproduce the motion of one-soliton curve.

15

-1 0 1

Figure 5.1: Sine-Gordon one soliton curve
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Chapter 6

THREE DIMENSIONAL CURVE MOTION

In the present chapter we study the general motion of curve in three
dimensional space [17, 52, 30]. In this case we have to use the full set of Serret-
Frenet equations (2.8)-(2.10).

6.1 Equations of Time Evolution

Now we will specify time evolution equations for the vectors t(s, t), n(s, t), b(s, t)
and for curvature and torsion (s, t) and 7(s, t) respectively. As we know from Eq.
(3.4) the time evolution of r(a,t) for three dimensional motion is characterized

by equation:

or .
E-—r—Un+Vb+Wt.

From equations (3.4) and (3.9),

0 Or(a,t) _ 1,0 0r(at) 150
da ot 9 85 ot 9 g, UntVbHWY).

Then, using Serret-Frenet equations (2.8)-(2.10) we get

0 0r (W ou ov
505t =Y (63 Un)t+(as+Wn Vr)n-i-(as—l—U'r)b. (6.1)

From another side using again (3.9),



Otda Ot Os
and using equation (3.3) we get,

2x_ 2 (i)

dor 11 dg 1/20t
3160 2ysot 9 Bt

(6.2)

Compatibility condition (3.5) for projection of Egs. (6.1) and (6.2) in direction
of t gives the time evolution of the metric g:

Then,

ot ou ov
5}:— ((—g—VT’FWH)n"F <g+UT> b) .

Taking a derivative and applying (3.9) to this expression,

O0t(at) O [ 120t _ 0 ( 1
3t da —6t< 2s) a0 )

and using above time evolution equation for g, we find,

O 0t(a,t) _ 1 (OW Ok ~ On
5 oa Y ((63 ~ Uk +6t) +"E) (6:3)

From another side,

8 Bt(ant) 4,0 (Bt
oa ot 9 as\at

and by using the Serret-Frenet equations we get,

9 t(a,t) U ow ok oV or
% o =9 (az+a W BT VBZ"UT)

oU a4 BU or
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By using Egs. (3.6) and (3.17), projected (6.5) on direction of n, we find evolution

equation for curvature &:

ok _0°U

E—ﬁ+U(I€2—T2)+%/I€Uds’—27‘a—v-—a—7—v

0s Os Os

Then, the time evolution of vector n is as follows:

on oU 110 [oV oUu
5{— (—-a—s-l'TV—K,W)t-i-; [% (g-FTU) +T(E—TV+KZW):| b.

The vector n also satisfies the compatibility condition such that:

0 on(a,t) _ 0 0n(a,)
oa Ot Ot Oa

From this condition we get evolution equations for torsion 7 and binormal

(6.5)

vector b:

87’_3 10 [oV T (OU " ov
5{—&(;6—3 ('6—S+TU) +E(5_.S——TV> -I-T/K:Uds) +I€TU-|-K,&-.

@=— a—V+TU t— —1-2 a—V-I-TU —I—I B—U—TV-H%W n.
ot 0s K
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As a result, time evolution equations for variables g, s, t,n, b, x, 7 in three

dimension are given below:

dg . (OW
ds § ,
ot ou ov
E = (E -Vr+ WK;) (g + U’T) b, (68)

£9-1—1=(——6£+7-V—HW) (6 (a—V+TU)+T<a—U—TV+nW))b,

ot 0 0s \ Os Os
(6.9)
ob ov o [0V T (OU
5{ (~6—8+TU)t—<—a (g‘l‘ U)'FE('S—S—TV'FHW
(6.10)
ok 8°U o Ok , oV or
= tU =T )+6s/ RUds' =212 = 2TV, (6.11)

or _ 8 (18 (v oU , oy
(18 () £ (8o f ) ool

(6.12)

It is easy to see that these formulas are 3-dimensional generalizations of
equations (3.22)-(3.26) and reduce to them when 7 =0 and V = 0.
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6.2 Relation With Nonlinear Evolution Equations

To establish relation of above equations with nonlinear evolution equations
like in section 3.3, we first reformulate our problem as 2 x 2 matrix problem. We
show that the Serret-Frenet equations, (2.8), (2.9), (2.10) are equivalent to the

matrix system of equations:

%91' ZC q(S, t) w1
= , (6.13)
%2 T'(.S', t) _iC Wa

*

at ¢ = 0, with reduction r = —¢*.
The last system is called the Zakharov-Shabat problem [3] According to the

Serret-Frenet equations each set of components of t, n, b satisfies,

ot .
! = anJ = —K,tj +Tbj,

Ob; .
E = mnj, E— Bt —Tnj s (] = 1, 2, 3) (614)

0s

If we multiply the first equation with t; (j. component), the second one with n;
and the third one with b; then sum all of them, we obtain as a result that these

equations admit an integral, which we normalize to one,
tZ+n?+bi=1 (j=1,23)
We define complex function,
&(s,t) = Kk(s, t)e, (6.15)

such that the modulus of function is given by curvature of the curve and the
phase is given by integral of the torsion.

€ =exp (z/ 7(s',t)ds"),

Let us denote the phase

(i /8 7(s',t)ds’) = a.
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Then introduce complex vector
N; = (n; +1ibj)e, (j =1,2,3).

For derivative we have equation

aNj . . 36 8nj 6bJ
ds (n7+2b'7)5‘s * ( 5s ' Bs ) ©

or

N
% = (n; + ib;)iTe + (=kt; +Tb; — in;)e,

and after simplification

Since combination

¢N; + ¢*N; = ke(n; — ib;)exp(—ia) + ke(n; +ib;)exp(—ia) = 2kn;,

is given by the normal vector n, from Eq. (6.14) we obtain relation

ot; _ 1 . .
e §(¢Nj + ¢*N;).

So Egs. (6.14) turns into the form,

ON; ot; 1 . x

=gty , =N +4N)). (6.16)
Then we introduce new functions w,ws by the additional transformation,

s N*
wy =N; ezp (—;-/ (1¢—i~) ds’),
j
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we = (1 —t;)exp (% /8 <1¢iv’;) ds') ,

For simplicity we denote
s N*
L / o ds') = a.
2 1-—t;

Then, we have equation

Bwl . GNJ +N1 ¢N;

- J a

—5‘?_ Bse JEl—tje,

Ouwn 1N N;
_— = — ot -rra-J a.
Bs ( titaT g, )¢

Since N} N; = n2 + b}, it simplifies to the form

or

6(.01 1
> §¢w2,

For the second function w, we have

6w2

0s

(4

o atja e”.

PN, 1
6———-‘6—]'5

; 8N
1-— tj 6.5'

1—t;

L
2

Excluding 0t;/0s by the second Eq.(6.16) we have

6&)2 1 * o
35~ 27 N
or simply
Ows _ —lqb*w
9s 27t

Finally, under this transformations the Serret-Frenet equations (6.14) turns into

the below system,

Ow; 1 Owy 1,
Bs 2% 0 s T gt er
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These equations are equivalent to the system (6.13) at { = 0 with ¢ = —¢/2,

r=—q*:

& 0 —¢/2 wr

(6.17)

8er —¢*/2 0 Wy

Under the same transformations time evolution of the Serret-Frenet basis turns

into the below linear system,

Owr _ 1 _ _l.(a — ias)
at 4a1w1 7\92 tag )wa,
% = l( +1 ) _ 3

ot = 4 ag + 143 )1 4a1w2.

These are equivalent to (6.13) at ¢ = a1/4 with ¢ = —3(ag — 4a3), r = —¢ and

matrix representation is:

Our tay —1(ay — ia3) wi
o | _ 4 4 , (6.18)
Oua 1(az +ias) —iay wo
where,
a1=§g——V7'+Wn , a2=i‘£+U7,
ds ds
19 (oV T (OU
as—gg (5;'!‘7’[]) +; (E—TV-FK)W) .
Now we will substitute (6.15) into evolution equations (6.11),
—ia 0 . °
e (G_(f - z¢/ Ttd.s'>
*U 2,2 _ 2 —ia (09 . * o iapr gl v or
—w-l-(qﬁe -7 +e ($—z¢7>/¢e Uds_QTg—é_s'V’
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Then multiplying both sides with €@, substituting Eq. (6.12) into the integral
and using the definition ¢* = ke~%, we get equation for the time evolution

8¢ [ &
a—f=( +|¢|2+z¢/ ds're + ¢/d ¢)(Ue)

(2 v ipp +ip /Sds'rqﬁ*—itb /sds'% Vo) (6.19)
Os? os’' ' '
6.3 Nonlinear Schrodinger Equation

Let U = 0 and V = &, then applying these to (6.19) we get
0 0?
a_f=( +|¢|2+z¢/ ds're* + ¢/ dsq&)(ne)

By definition (6.15) this equation can be written in terms of function ¢ only

2 %
%?+22+|¢| ¢+¢/ ds’ (zr¢¢ +3¢ ¢) =0,

or

2
6 [(as (iros+ 50) = 50 [ as T2l = Zop.

Finally we get the Nonlinear Schrédinger Equation for complex function ¢:

0¢ L2,
ZB{ + ¢ss + §|¢l ¢ =0. (620)

6.4 One Soliton Solution by Hirota Method

To find a solution of equation (6.20) we suppose

G
¢—Fa

where G is complex function while F' is real function. Then we write (6.20) in

terms of Hirota derivatives,
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1., G 1
- [iD(G-F) + DG F)) - & [Df(F F)-1ac] =0

Since instead of one complex function ¢ we introduced one complex function
G and one real function F' we have freedom to fix the real one by additional
constraints. Thus separating terms multiplied by 1/F?, G/F3, we obtain the
bilinear equations below:

(iD; + D?)(G - F) =0, (6.21)
D*(F-F) = %GG*. (6.22)

Now following the same Hirota strategy as before we expand:

F=1+4éF +e'Fy+8F...
G = 6G1 + 63G3 + €5G5... 9
G* = €G; + €6Ga* + €Gh...

Substituting expansions to Egs. (6.21), (6.22) we get:

(iDi+ D*)(eG1-1+€(Gs- 1+ G- F) + ¥ (Fy - G1+ F - G3)...) = 0,

1
Df(l.1+252F2.1+e4(F3-F3+2F4-1)+...)=§(e2G1 1+e4(G1G3+GIG3) +...).

From this system at € order zero we have identically

D%(1-1)=0.

At € order one we have equation:

(D + D?)(G; - 1) =0,
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or

(8; + 082G, = 0.

The simplest nontrivial solution of this equation is,

Gi=e", m =kis+ikit+n. (6.23)

where k; and 77{0) are complex constants.

At € order two we have

_1

DE(FZ'I) 4

%
Gl 13

or
2 1 %
(03)Fy = ZGlGl-
To integrate this equation we expand complex parameters
ki=¢+i¢, ni” =a+ib,
in terms of real numbers &, {, a,b. Then,
m 15 = (k1 + ks + (6 — k)t + 07 + ()",
or using above definitions,
m +ni = 28s — 4(t + 2a.
Then,
2 1 *
0s’F, = Ze’71+’71.

Integrating this equation twice we get:

1
F=——e®nn= - :
2 16526 ,Me = 2€s — 4£(T + 2a, (6.24)
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At ¢ order three, we have:

(iD;+ D3)(Gy - F2+ G5+ 1) =0,

By direct calculations, we find
(iDy + D*)(G; - F») =0,
then we conclude that,
(iD; + D?)(G3-1) = 0.
The simplest choice is if we suppose G3 = 0 and truncate the series:
EF.=0, n=24,. , G,=0, m=3,5,..

Then we obtain a one soliton solution of NLS equation:

emn
¢(87 t) = (1 + e2§s—4§§t+2a.)/16§27

where
= (€ +1i¢)s + (i(&? — ¢?) — 26(Q)t + a + ib.

To simplify this expression we denote = e~? and multiply numerator and

1
%
dominator with 4£e~%5+%¢t=¢ then we get

eiEs+(E2—C?)t+b)
N 25cosh({s —2lt+a—@)

(s,1)
or finally
¢ilEs+E2—¢)t—p0)

#(s,t) = 2§COSh§(S — 2t — s0)’

where sg, o are real numbers. This expression describes envelope soliton of NLS

(6.25)

equation.
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Now we can derive curvature « and the torsion 7 of a curve. Corresponding

to this soliton solution, according to definition (6.15) is

é(s,t) = K(s,t)exp(i /s'r(s’, t)ds").

Then for our solution (6.25) curvature of a curve is travelling wave

_ 2€
r(s,t) = cosh&(s — 2(t — sp)° (6.26)

This is exactly curvature of the one loop soliton curve like MKdV case (4.15).
But in contrast to the planar character of MKdV loop curve, now

1. the velocity of the loop is arbitrary constant parameter,

2. the torsion of curve is nonzero in general.

For torsion of the curve we have
i = 12, (6.27)

As we can see this curve has constant torsion proportional to the soliton’s am-
plitude.

6.5 The Complex Modified Korteweg-de Vries Equation

Let in evolution (6.18) U = —k,; and V = —kr, then we obtain,

0 __ 0
ot 0s?

—¢ / ds’ (msm'gb od T 8¢* ) / ds'¢* k€

—=(Kks€ +iTP) — |0|2 (K€ + iT)

since

o¢*
os'

ike€TP* — pd* 12 — i=—¢7 = 0,
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and
¢ 1 gk 1 2
ds'esse = 510I2

Then the time evolution is described by the Complex Modified Korteweg-de Vries

Equation:

9¢

3 2.
5? + ¢sss + §I¢| ¢s =0. (628)

So as we see the motion of curve in three dimension is related with two
important equations from soliton theory, The Nonlinear Schrodinger Equation
and complex MKdV Equation. In both cases since natural equations of curve
include two real functions, curvature and torsion, the resulting wave function is

complex function.
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Chapter 7

CONCLUSIONS

The simple idea of a smooth curve moving in space, recently becomes one
of the basic objects in understanding of fundamental physical laws and applied
science. Developments of the high energy physics in the second half of twenty
century, attempting to unify all fundamentals forces of nature, including gravity,
lead to the new concept of the space-time. Instead of collection of points, the
space of modern unifying theories consists of fundamental strings. The different
motions of the string, taking place in multi-dimensional space, lead to the spec-
trum of elementary particles-the building blocks of the Nature. Development of
this, so called string theory, takes the origin from simple mathematical concepts
of nineteenth century, describing curve in terms of curvature and torsion. But
the recent progress mainly is related with quantization of this curve motions. To
have consistent quantization one has to use the hidden symmetries in the motion
of string. These symmetries are infinite dimensional and can be systematically
treated by theory of integrable systems with infinite hierarchy of soliton equa-
tions. This is why in the modern fundamental physics the mathematical theory
of solitons become the crucial topic. From another site, strings also appear in
description of strong interaction of nucleons, in relativistic formulation of point
particle motion, in the theory of magnetic monopoles. More generally, we can
speak about motion of line defects in condensed matter and cosmology, consid-
ered as an dynamical interface problem with many applications. Remarkably
these problems are connected with results of classical differential geometry and

the soliton theory of modern times.

In the present thesis we analyzed some of these deep relations between
geometry and solitons. Starting from basic curve theory and studying problem
of motion of the curve in plane we found that natural evolution of curve is de-

scribed by infinite MKdV hierarchy of soliton equations with infinite number of



integrals of motion. Solving MKdV equation and recovering curve from natural
equations we found geometrical image of one soliton solution as a loop curve.
We found geometrical characteristics of this curve, as the area characteristic and
the angle characteristic representing integrals of motion of the system. By using
direct Hirota method, we constructed two soliton solution of MKdV and found
that asymptotically it describes elastic scattering of two solitons. The corre-
sponding curve dynamics consists from collision of two loop curves, preserving
they geometrical characteristics. By the negative powers of the recursion opera-
tor we found description of the curve motion in terms the Sine-Gordon equation.
From the one soliton solution of this equation, we recovered the loop curve mov-
ing with constant speed. Considering more general motion of curve in three
dimensional space, we found relations with Nonlinear Schrédinger equation and
complex MKdV equations. We showed that the loop soliton in this case has fixed
torsion during the motion. We expect that the rich variety of soliton equations,
their exact solvability and relations with different fields of mathematics will have
deep impact on understanding of curves as a fundamental objects of fundamental
and applied sciences.
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APPENDIX A

MKdV Two Soliton Solution and Asymptotic Analysis

In the Hirota bilinear representation for MKdV equation (4.2), the solu-
tion of equation supposed in the form:

A
Il
Q)

where F' and G are real functions of s and ¢. The second Eq. (4.11) gives

201 . 2
2&@:1&_%5

F2 2F2

2

Then, we have expression for curvature, directly in terms of function F' only,

DZ(FF) FF, — F?
2 s 88 s
K°=2 2 =4 7

= 4(In F)s. (A1)

For our two soliton solution,

em 1 emtm e2n 9
+5 + — + fe’mtm,
4k® 2 (k) + ky)®  4ky? B

F=1+

where .
(k1 = k2)

b= 256k 2ky? (ky + ka)*




We choose
O<ki< kz,

N = kis - k,?t -+ le(O) = k,(s - 'Uit) = szz,l = 1, 2,

where v; = k2. To analyse asymptotic behaviour of this solution we will choose
two frames.

1) In the first frame, let £&; = s — v;t = constant, then

N2 = koo = koby + ka[(vy — v2)t + (S0, — 80,)],  (v1 —1v2) <O0.

(a) When s — +o00, t— 400 we have e — 0 then

e2"71
16k,*’
and one soliton solution due to the (A.1) is

Fel+

2k,

" Ccoshk (s — k2t — so, — l“,flkl).

(b) When s — —o0, t— —oo we have e” — 400 then

62772
F = — (1 + 16k, Be’™
lﬁk% (1 + 2 :86 ),

and one soliton solution is

2k;
K= .
cosh k(s — k2t — so, + %@)

2) In the second frame, let £ = s — vt = constant, then

m = ki = k1o + k1 [(v2 — v1)t + (S0, — 80,)], (02— 1) > 0.

(a) When s — 400, t— +0o0 we have e — 400 then

P 16k, 202
~ Fk%(l + 1 ,66 ),
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and one soliton solution

2k,
cosh ka(s — k2t — so, + __@mu;; )

(b) When s — —oo0, t-— —oco we have e™ — 0 then

Frleon
ST
finally one soliton solution due to the (A.1) is

= 2k
cosh kz(s — k2t — so, — 1nl:12k2)-

Phase shift for the first solution is

—2In2 +Inkik; +1n+/B
k1

+ —_
801 - 301 -

Phase shift for the second solution is

+  _ _ 2In2+Inkk+InyB
S0, — S0, = ko

Then

klAS()l = —kgASoz.

(A.2)

Analysis above shows that two soliton solution of (4.2) describes collision
of two solitons with phase shift. By Eq. (A.2) we conclude that the solitons have
phase shift in opposite directions. Since for single soliton we have obtained one

soliton curve as a loop curve, for every asymptotic solution we will have a loop

soliton curve. Since solitons preserve shape and size after collision, geometrically

we have collision of two loops with parameter k; and k.
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