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ABSTRACT

In this study we investigate an all-optical switching node which can be
controlled via transient grating formed by interference of two Gaussian beams. This
design considers 3-D architecture of switching fabrics, real profile of Gaussian beams
and nonlinearity for fast switching time requirements. Four Wave Mixing (FWM) is
applied in the evanescent field region of waveguide to estimate the reflection angle and
the efficiency of switching node. The effect of the formed grating on the propagation of
mode is analysed by coupled mode theory and co-directional mode coupling coefficient
is found by using Distributed Feedback Laser approach. A method for overall
diffraction efficiency is proposed and optimization parameters for better efficiency are

described.
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OZET

Bu ¢alismada iki Gauss hiizmesinin girigimi ile olusturulan, gegici kirinim
1zgarasiyla kontrol edilen tamamen optik anahtarlama diigiimii incelenmigtir. Bu
tasarimda 3 boyutlu anahtarlama Orgiisii, Gauss hiizmelerinin gergek profili ve hizh
anahtarlama siireleri i¢in malzemelerin dogrusal olmayan tepkileri diislinlilmiigtiir.
Yansima katsayisini ve anahtarlama diigimiinin verimini bulabilmek i¢in dalga
kilavuzun soniimlii bélgesine dort dalga karisimi metodu uygulanmustir. Olusturulan
1zgaranin yayilma kipi lizerindeki etkisi kuple dalga denklemleri ile incelenmis ve kuple
katsayis1 Dagitik Geri Beslemeli Lazer yaklasimiyla hesaplanmigtir. Toplam krinim
verimliligi i¢in bir ydntem Onerilmis ve daha yiikksek verimlilik i¢in optimizasyon

parametreleri agiklanmistur.
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CHAPTER 1

INTRODUCTION

The needs for processing data in higher rates encourage researchers to
investigate more enhanced information processing devices and systems. Recent
electronic devices have reached their limits and they are being replaced by equivalent
optical components to satisfy the demand for higher speed operations. At present, signal
processing operations like switching and routing are carried out electronically.
Traditional optical fiber network architecture requires optical — electronic — optical
conversion at each node that reduces data processing rates and increases operational
cost. Alternatively, an all optical switches and routers can be designed and implemented
to eliminate that drawbacks of current communication systems. The optical switches
can be used in a wide range of applications for optical circuit or packet switching.
Wavelength selective switches can be used to add and drop specific wavelength from
multi-wavelength signals (add-drop multiplexing) and to monitor the specific signal in
defined wavelength in order to manage the network.

To be useful for all optical switching, materials should have a large nonlinear
refractive index, ultrafast responses to an applied optical field and minimum absorption
loss. Optical Kerr effect in optical materials is one of the fastest phenomenon that can
be exploited in designing an ultrafast all optical switch. Some symmetric and
nonsymmetric Kerr type materials exhibit almost instanteneous response time of 107
that makes them very suitable for ultrafast optical switching. Photorefractive effect is
the another phenomenon-that has been utilized in all optical signal applications for a
long time. When photorefractive material is illuminated with optical field, an electric
charge is produced and carriers migrate due to drift and diffusion. This mobility causes
a strong space - charge field that induces a refractive index change by the Pockels
effect. Because of the charge migration, photorefractivity is rather slow process in the
order of 10 s, which is not good for todays all optical switching requirements of about
100 Gbits/s. Nevertheless, photorefractive materials have large optical nonlinearity and
can hold the information for a long time that is more convenient for volume holography
or neural network applications rather than switching applications.

In this thesis we propose and analyse the design of an all optical switching node



based on the transient grating, which is formed by interference of two Gaussian beams.
For this purpose we utilize third optical nonlinearity [x*] phenomenon exhibited in
nonlinear optical materials. The proposed design aims to extract propagating light from
a waveguide and transfer it into another as fast as possible. In order to achieve that goal,
a transient grating is produced in cladding region of the waveguide, as shown in figure

1.1.

grating forming

beams / /
transient xtracted
gating g — 7 light n, W2
travelling n, WG

light

Figure 1.1 General Switching Node

This grating changes the propagating properties of waveguides by destroying the
requirements of the total internal reflection of the mode. The evanescent field in the
cladding side of the waveguide and the grating forming beams interacts in the grating
region and this event can be mathematically analyzed via Four Wave Mixing.
Combination of Four Wave Mixing process with ray optics method gives us opportunity
to find some parametrs of the reflected mode, such as the new propagation angle and
mode coupling coefficient. Finally, by using second stationary grating, it is possible to
extract the destroyed mode into the second waveguide with a high efficiency.

In this design, the diffraction efficiency of the general purpose switching node
strongly depends on the parameters of transient grating. The structure of the grating is
defined by the interference pattern of two non-collinear waves and this structure can be
easily changed by modifying the Gaussian beam parameters. Nevertheless, the
intensities of grating generating beams must be above of some treshold value.
Otherwise, the interference pattern does not produce any transient grating and the Four
Wave Mixing process reduces to an energy coupling mechanism from the stronger
beam to the weaker one.

This thesis is separeted into four principal chapters describing respectively the third
order optical nonlinearity, optical waveguides, ultrashort pulse witdth measurement and

all optical switching node.



In chapter 2, we establish a backround for materials and phenomena that may be
employed in designing an ultrafast all optical switch. In this section we introduce third
order optical nonlinearity and illustrates how nonlinear media response to an applied
strong optical field. Our aim is to give a comprehensive knowledge about methods for
modulating the refractive index of the medium and interaction of three waves inside a
nonlinear material.

In Chapter 3, we describe the propagation of light in waveguides and analyse it
by using ray and wave optics approach. Also, we explain the standard methods for
studying corrugated waveguides and give a general solution to coupling of forward
modes to backward. We define the coupling coefficient by using Distributed Feedback
Laser model.

In Chapter 4, we show how Two Photon Absorption can be used to measure the
pulsewidth of an ultrashort pulse. In this section we derive a mathematical expression
for the photocurrent resulted from TPA process in photodiode that is illuminated by
pulse signal.

Finally, in Chapter 5, we describe a switching node, that is based on transient
grating formed by interference of two Gaussian beams. The contribution of this thesis
will be to develop a ray optics formalism to estimate the reflection angle, and wave
optics approach to find the overall efficiency of the system by considering the Four
Wave Mixing process during the interaction of grating waves with evanescent waves

in the core-cladding boundary of the waveguide.



CHAPTER 2

OPTICAL MATERIALS FOR PHOTONIC SWITCHING AND
THIRD ORDER NONLINEARITIES

The origin of the optical nonlinearity lies in the nonlinear response of an optical
material to an applied strong optical field ( laser beam ). The properties of a dielectric
medium through which an optical wave propagates can be described by the relation
between the polarization density vector P(r,t) and the electric field vector E(r,t). In
isotropic, homogeneous and dispersionless medium, the relation between P(r,t) and
E(r,t) can be written in the form(Saleh 1991)

P =,yE +2dE? + 4y¥E’ + ... 2.1)

where y is the linear susceptibility, d and ¥® are known as the second order and third
order nonlinear optical coefficient,respectively.

The polarization density P can be written as a sum of linear and nonlinear parts

P=gyxE +Py

where
Py =2dE? + 4y OB} (2.2)

Thus, by using Maxwell’s equation, one can derive the propagation of light in a

nonlinear medium, that may be written in the following form

’E(r,t) 9Py (r,t)
at? O at?

VZE(r,t)——lz- 2.3)
C

Regarding to eq. (2.3), the nonlinear polarization density Py can be considered as the

source of the nonlinearity in the optical materials.



The first term on the right side of eq.(2.2), that is P®(t) = 2dE?, stands for the

second order optical nonlinearity and phenomena like second harmonic generation, sum
and difference frequency mixing, three wave mixing and optical Pockel effect are
related with this term. This nonlinearity can be observed only in noncentrosymmetric
medium and typical values for the second order nonlinear coefficient lie in the ranges
107 to 102 (MKS units,A-s/V?) (Saleh 2001). Although second order nonlinear
materials have a higher nonlinearity constant than third order materials, they are not
very suitable for all optical switching applications. First of all, optical glasses recently
used in optical waveguides are centrosymmetric materials and do not posses second
order nonlinearity. But recently it was shown that a glass, doped with Germanium and
Phosphorus can generate a second harmonic generation(Margulis 1987). On the other
hand, response time of the second order ponlinear material is about 1 ps(Nahata 1996),
which is slow compared with femtosecond time responses of third order materials
(Zhang 2003). Furthermore, refractive index modulation is a key parameter in
estimating the diffraction efficiency of the switching node and Aitchison et.al 1997
demonstrated experimentally about 17% modulation of the second order coefficient,
while the third order coefficient was changed about 50%. In consequence, second order
medium exhibiting efficient switching seems to remain an active area of research.

Third order nonlinear effect is the phenomenon that lies under the all optical
switch idea, proposed and analysed in this thesis. Third order nonlinearities lead to
intensity dependencies of refractive index or absorption coefficient that offer a chance
to control the propagation of light beams by purely optical means. There are several
phenomena that are useful to characterize the third order nonlinear processes such as
third harmonic generation, optical Kerr effect, four wave mixing and two photon

absorption.

2.1 Third Harmonic Generation

To understand better third harmonic generation phenomenon, let us consider the second

term of nonlinear polarization density P in eq. (2.2 )

PO =4y DE3 (1) (2.4)



The electric field can be written as E(t) = E(w)cos(wt) . When we place this definition
into eq. ( 2.4 ) we obtain
PO(t) = P(w, t) + P30, t) = 33 PE* (0) cos(wt) + x P E* (o) cos(3ot)
(2.5)
The second term on the right side of the polarization equation indicates the generation

of the third harmonic of the input field. This fact is illustrated better in Figure 2.1.

w

W ........

w —_— 3w
—_—

3w AT

w
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(@) (b

Figure 2.1  Third harmonic generation

a) Geometry of the interaction b) Energy level description
This process can be described bu using quantum optics as three photons of frequency w
are absorbed and one photon of frequency 3w is created. In fact, it is important to note

that the first term of eq.(2.5) is capable of changing the refractive index of the medium,
that is the so-called Optical Kerr Effect.

2.2 Optical Kerr Effect

The nonlinear polarization density can also be defined as(Saleh 2001)
Py (0) = e AxE(w) (2.6)
Let us assume that third order effect is dominant nonlinearity in the medium and then

the polarization component responsible for optical Kerr effect in eq.(2.5) can be

rewritten as



PO =3y |E(0)” E(w) Q2.7)

From eq. (2.6 ) we know that

3

P
=N 3, 2
gAy = S 3y, lE(m) | (2.8)

E()*

If we assume that intensity is defined as I = and plugin into eq. (2.8) , we

obtain

Ay =X Ty 2.9)

where 7 is the impedance of the medium. We know that refractive index of the medium

is defined as n? =1+% and An = %Ax . By using this definitions we obtain refractive

index change as

A (2.10)
2n

When we replace susceptibility change Ay, with that obtained in eq. ( 2.9 ) we find that

refractive index is modulated by the intensity of the input beam

3
An=>M" 2.11)

€ol1
/EQ
Bebo _¥%0 _To

The impedance of the dielectric medium is defined as n = \/E =
e \e&.g ‘/g— n

for p~=1.

Then the refractive index change can be written as

Mg .
An=—0y®] (2.12)
n°g,



According to this equality, Kerr coefficient is defined as

3
n, =5y ® (2.13)
ng,

where % is assumed to be real value.

During the derivation of this coefficient we assume that the medium is
nonresonant i.e the energy of photons of applied optical field is much smaller than
bandgap. This is non-resonant nonlinearity situation and materials that own this
property exhibit a nearly instanteneous response time on the order of femtoseconds.
However, the induced nonlinear index changes are often very small. In table 2.1 the

experimentally measured values of nonlinear susceptibilities are given(Boyd 1992).

Material Y Response Time
Air 1.2x10""
Carbon Disulfide 1.9x10™ 2 ps
GaAs 6.5x 10 20 ns
GaAs / GaAlAs (MQW) 0.04 20 ns
Indium antimonide 0.3 400 ns
Semiconductor doped glass 10*® 30 ps
Optical glasses (1-100)x 10 Very fast
Polydiacetylene 2.5x%10™° Very fast

Table 2.1 Third Order Nonlinear Susceptibilities

2.3 Two Photon Absorption ( TPA )

In general third order nonlinear susceptibility (x**’) has a real part responsible for
the nonlinear refraction and an imaginary part, responsible for the nonlinear absorption
[REZA]. In order to find TPA coefficient B, let us write the wave equation in nonlinear

medium, i.e eq. (2.3) in frequency domain. It is easy to write

2
V2E(r, 0) + - E(r, 0) = 100 Py (1, 0) (2.14)
Cc



Let us assume that we have a wave, propagating in z direction and linearly polarized in

the x direction. Then, we can write electric field vector as
E(r,») = E(z,0) = A(z)e (2.15)

The nonlinear polarization density component responsible for TPA can be written as

that in eq. (2.7), where it is
PO =3y OE(z, )" E(z,0) (2.16)
Substituting eq.(2.15) and eq.(2.16) into eq.(2.14) leads to

’E(z,0) o> 2

P —C—Z-E(z, ®) = -3p,0°x P E(z, 0)[E(z, 0)| 2.17)
Consider that electric field is plane wave, then we can write
E(z,0) = A(z)e (2.18)

By combining eq.(2.18) and eq.(2.17), and assume that second order terms are slowly

varying, we obtain

i o
%=___._3“°;°ij A@IAR) (2.19)

We know that susceptibility consists of real and imaginary parts

(? =12 +inim (2.20)
and the imaginary term will give the TPA coefficient. Thus, we are interested only with
imaginary term. Therefore by substituting eq.(2.20) in eq.(2.19) and by simplifying the

equation we obtain



dA 3 (0] 3)
PRI

2
po— A2)A@)

In previous section we assumed that intensity of light is

_E@) _A@f _A@A'@
2n 2n 2n

where

/&0_
._.\/E= BHo _ VB _Mo
€ €.Eg e n

By using the intensity formula we find

2 im

L. Al

The TPA coefficient is described as

1 dI
P=r &
By using this definition B is
B =10 6710 ¥ o

where 1|9 is the impedance of the free space, n is the refractive index and ¢y is the speed

of light in free space.

Typical values for two photon coefficients are given in table 2.2

'@ L a* ) dA(Z)J= 6 0 © 2

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

Material Bem/ W)
Fused Silica ~2x107
Crystalline Quartz (12+02)x 10
Sapphire (94+1.2)x 10"




Barium Borate Crystal (47+5)x 10" ~ (68 £ 6) x 107"

Liquids ( water, heavy water, ethanol, methanol, | (34+3)x 10" ~(95£11)x 10"
hexane, cyclohexane,1,2-dichloroethane )

Tablo 2.2 Two Photon Absorption Coefficients
2.4 Four Wave Mixing

Four-wave mixing is another essential third order nonlinear effect and this effect
will be used to generate and analyze the transient grating in the proposed switching
node. The effect of four wave mixing can be understood by considering the response of
the nonlinear medium to an optical field that consists of plane waves of frequencies wy,

w; and w3
E(t) = RefB(0,)e™!) + E(0,)e%? + E(w,)e ™}  (2.26)

it is easy to write total electric field as

Et)= X -I-E(coq)e"""“‘) (2.28)

q=t1,£2,432
where electric fields are assumed to be real; ©_q= -, and E(-oq) = E'( ,). By placing

this value into eq. (2.4), we obtain

POM =21 T E(0,)E,)E@)e e (229
27 qrl=t1,#2,33

The resulting polarization density consists of 44 different frequency components. Some

of these frequencies are

0, 02, ®3

30)1, 30)2, 3(1)3

0 T - ©3, O] ~-O2+ 03, -O1 TO2 + ©3, ®1 +O2 T O3
201F 03, 201 03, 207 + ©1, 20,F ©3, 203t O, 203t ©;

and etc.

11



These values are also the frequencies of a generated fourth wave due to polarization
density behavior as source in nonlinear medium, previously described. Let us assume
that we choose a component with frequency w4 = ®; + w; — @3 . In other word, we

preferred the density that have argument ©; + w; — 3
PP (0, +0, -03) =6xPE(0,)E(0,)E" (03) (2.30)

When we put this component into Maxwell equations, it can be considered that four

waves of frequencies w;, Wz, ws and wy are mixed by the medium if
04 =01 + M - W3 (2.31)
This assumption is the basic of the frequency matching condition
O4 Tt O3=0;+0; (2.32)
and phase matching condition
kitki=k;+k; (233)
that must be satisfied in order a new wave with wave vector k4 = k; + ks - k3 to be
generated.

When the FWM is regarded as a quantum optical process, it can be interpreted as

combination of photon photon of frequency w; with a photon of frequency w; to

"N

(@) @)

Figure 2.2  Four wave mixing process

produce photons of frequencies w; and wy.

a) Phase matching condition b) FWM as photon interaction

12



CHAPTER 3

OPTICAL WAVEGUIDES ANALYZES TECHNIQUES
AND GRATING ASSISTED COUPLERS

The main issue of this chapter is to investigate the techniques for transfering the
light from one waveguide to another. The method proposed here depends on formation
of a transient grating in the cladding region of the waveguide by interfering two
Gaussian beams and then deflect the mode outside of this waveguide. To understand the
mechanism of this structure, some basic knowledges about propagating of light inside
the waveguide and about mathematical approaches to corrugated waveguide problem

will be reminded first.
3.1 Propagation of Light in Waveguides

In order to prevent losses, carried energy have to be confined in the core of the
waveguide. Thus, light has to undergo Total Internal Reflection. In fact, even the light is
confined in the core, some amount of radiation extends into the cladding region. If the
evanescent field is strong, so that it extends to the other side boundary, some amount of

energy may radiate. This phenomenon is known as Frustrated Total Internal Reflection

3.1.1 Ray approach: Total Internal Reflection and Frustrated Internal
Reflection

The optimum way of guiding light without loss is total internal reflection that is

illustrated in Figure 3.1

Figure 3.1  Total and Frustrated Internal Reflection

13



In this approach, it is assumed that all of the light is reflected if the incidence angle 8 is

greater than the critical angle 6., which is defined as follows by using Snell’s law
9, =sin™ %2 3.1
1

It is very crucial to note that total internal reflection ( TIR ) produces propagating
evanescent field in core cladding boundary (BC boundary) on the cladding side (B).
This fundamental property will be used in analyzing the transient grating in the
switching node. However, if the evanescent wave extends into the BA boundary, energy
may flow into region A. This is known as Frustrated Total Internal Reflection

(FTIR ) and is widely used in beamsplitters[S.O Kasap]. The energy transmitted in A

carry some of the light intensity and the power of reflected beam is reduced.

3.1.2 Wave Approach : Waveguide Modes in a Slab Waveguide

The ray optics approach does not give a satisfactory information about a number of
effects that occur during light guiding. Thus, wave approach is mandatory to explain
the nature of light propagation in waveguides.

Consider a monochromatic wave of propagation constant {3 in z-direction, wavenumber
. c . w . . .
k =nk, and velocity ¢ =—% , where n is the refractive index of the medium. This wave
n

can be written in following form(Yariv 1997)
E(t.t) = E(x, y)el P (3.2)

If this field is a mode of the dielectric waveguide shown in Figure 3.1, it must satify the

wave equation
V2E(r) + kan? (1)E() = 0 (3.3)

If we assume that electric field have only x component, then wave equation can be

written in the following form

5> [ 2 2 2lE(x,y) =0 3.4
ST+ k2n?(r)—B2 [E(x,y) = (34)
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This equation can be separately writing for regions 1, 2 and 3

2

. é ]

Region 1 —a—XE—E(x, y) + On, - B2 JE&,y)=0 (3.5a)
: 0° 2] b

Region 2 —éx—z—E(x, y)+ k0n2 B E(x,y)=0 (3.5b)
: 8’ 202 7] _

Region 3 —a-x—z—E(x,y) + 0n3 B” JE(x,¥)=0 (3.5¢)

Let us assume that n, >n, >n,. We know that propagation constant B can give an

opinion about the nature of the solution. This situation is illustrated in Figure 3.2.

(7]

(c) b} (a)

Figure 3.2 The Field Distributions Corresponding To The Different Value Of B

For B >k,n,, E(x) is exponential in all three regions 1,2,3 as shown in Figure
3.2a. This is not a physically realizable solution, thus we may decline the existence of

such a wave.

For k,n, <P <k,n,, the solution E(x) is sinosoidal in region 2 and exponential

in 1 and 3. The solutions are shown in in Figure 3.2b and 3.2c, where most of energy of

the wave is carried in region 2, that refers to the guiding mode. As a result, it may be
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concluded that the mode is guiding only if kn,, k,n, <B <kyn, that leads to logical
consequence n, >n,,n,.
The situation kyn, <P <k,n, refers to the Figure 3.2d, where E(x) is

exponential in region 1 and sinosoidal in regions 2 and 3. These are the substrate

radiation modes. However, for 0<p <k n, the solution becomes sinosoidal for all

three regions and theseare the modes called radiation modes of the waveguide and this
is shown in Figure 3.2e.
It is important to note that B is a continuous variable in regimes (d) and (e),

whereas it is in discrete form in k,n, < <k,n, situation. The number of modes

depends on the width of the waveguide, the frequency and the refractive indices nj, n,

and nj.

3.2 Perturbation Analysis of Corrugated Periodic Waveguides

Small periodic perturbations (gratings) in a guided wave devices have broad
applications in optoelectronics. Grating devices have been widely used as optical
couplers, wavelength selective filters, wavelength division multiplexers, dispersion
compensators and Distributed Feedback Lasers. Many of these devices are being
analyzed by Coupled Mode Theory, Rigourous Full Wave Analyses, Transfer Matrix
Method and Floquet theory. Coupled wave method, that uses a mode matching
technique to determine power coupling, is the standart grating analysing method and it
is also the approach that we used in analysing the proposed switch. Coupled wave
method regards grating as.a small perturbation that couples only one forward and one
backward propagating mode of the waveguide, while leaving other modes unexcited.
This model is inaccurate if the grating perturbation is strong or one of the modes is
leaky.

Let us consider the coupling of forward to backward modes that is caused by the
perturbation ( refractive index change ) in one side of the waveguide. We know that

wave equation can be written as follows(Yariv 1997)

O%E(r,t) _

62
Py HggP(ra t) (3.6)

V2E(r,t) — e
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where polarization density is
P(r,t) = Py (r,t) + P, (1, 1) 3.7

PO(r, t) is the polarization induced by E(r,t) in the unperturbed waveguide and can be

defined in the following form
P, (r,t) = (e(r) — &, JE(r,t) (3.8)

where £(r) is the dielectric constant of the unperturbed waveguide. The perturbation
polarization Puen(r,t) refers to deviation of the unperturbed waveguide polarization
density. By using all of this definition, the wave equation can be written in the

following form

0’E(r,t) &

VZE(ra t) - }lS(l') atz - Haz— pert(r’ t) (39)

We may assume that electric field is changing only with respect to x, then the total field

confined in the waveguide can be written as the superposition of all field, that is
E(r,t) = -;—ZAm(Z)E"’ (x)ei@Pnd) 1 ¢ (3.10)
m
where m is number of the discrete mode that satisfy wave equation

(é-xa-z——B;)E(m’(r)erzps(r)Em(r) =0 (3.11)

where £(r) = g,n’(r)

Combining 3.9 and 3.10 gives
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= -1

25 (m) .
A_m(_ Ban(m) + Q_ET_ + mzpa(r)E("’) Je")Bmz +
ijtz +cc

2
m o1 dA, d?A
+—|=2ip. —m = % Ig(Me-iBmz
2[ Bn—g, + 12 ]

- .J

(3.12)
2

0
= p"ét_zppert(ra t)

2=(m)

According to eq.(3.12), the sum [ BIEM™ 4 —— 9 E +w p.e(r)E(m)} is equal to zero.

dA,
dz

2
Furthermore, by assuming slowly varying approximation ( SVA ) d AZ'“

<<PBn

and using eq.(3.12) we obtain

2
Z ij m E(m)ej((!)t —Bmz) +cc= “gat—PPm(r t) (3.13)

When we take the product of 3.13 with E®(x), integrate from - w to c and use the mode
orthogonality property

[BOE™ (x)x = —2;:) £5m

m

we obtain

©) )
dAS” iatBen) _ o J(at-B2)

d; -cc=
2 (3.14)
- _J____ (s)
- i[ o (5D E® (0)dx

The left side of the eq.(3.14) consists of two terms; one for wave travelling in the (-z)
direction and labeled with (-) and one term for wave travelling in the (+2z) direction and

indicated with (+).
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In order to clarify the eq.(3.14), consider a dielectric waveguide with a corrugation in

one side as shown in Figure 3.3.

z=0 z=L
<A—>
; n,
xX=
x=-a
guiding layer n,
x=-t
substrate n,

Figure 3.3 A corrugated periodic waveguide

Let us assume that perturbation is due to a periodic grating, where refractive index

variation is described by the dielectric constant, which can be defined as following

g'(r) = g(r) + Ag(r) (3.15)
where Ag(r) = soAn2 (r). The perturbation polarization density can be written as
Poen (1> 1) = AS(r)E(r, t) = An® ()€, E(5, 1) (3.16)

Substituting eq.(3.10) in eq.(3.16) leads to

2
P (r,t) = én—§%’-ZAmEm(x)el<°’"Bmz) +ec (3.17)
m

By using this equation in eq.(3.14) gives

da®) oi(otBez) _ dAl i) _ o
2 (3.18)
= —J—Si-a—z{Am [An?(x, 2)E™ ()E® (x)dxe" @) 4 c.c

m —0
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We may consider the right side of eq.(3.18) as a source wave term of the forward wave
AMel P and the backward wave Ae/*Ps*) on the left side. In order for a wave
to be driven by a source, both source wave and driven wave must have the same
frequency so that the interaction does not average out to zero with distance of
propagation z. For example, if it is desired that the forward wave A}'e/®P#) pe
excited, it is necessary that at least one term on the right side of eq.(3.18), say the /th
one, vary as ei®P? with B~ B,. This situation is described by saying that the
perturbation An’(x,z) couples the forward (+s) mode to the /th mode(Yariv 1997).

The permittivity function is periodical along z only in the grating region, that is
refractive index change An’(x,z) can be written according to Fourier series expansion as

.(2qm
An(x,z) = An(x) iaqej(_:—)Z

q=—®

(3.19)

where q denotes the qth harmonic and A is the period of the square wave grating.
Wave coupling is the resonant process and the grating period is an important
parameter to obtain high efficient power transfer between the modes and this efficiency

strongly depends on the grating index change. The rezonance condition is

2w
';\_- Bs % Bs

. C g In s .
so that the grating period is so chosen that "N = B, . From resonance condition equation,

it is obvious that conventional coupled mode theory determines the grating period in an
approximated form.

By assuming the forward wave as the source of the backward wave (m=s) and

combining eq.(3.19) with eq.(3.18) we can write

o . w R
B e Tawt ol oPaxacl s (3:20)

Thus, by considering eq.(3.20), the general form of the coupling between the backward

wave Ag‘) and the forward wave A§+) by the grating can be described as
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dAg—) _ KA§+)e—jZ(AB)z (3.21)
dz

and similarly

a” K AP (3.22)
dz
where
K= l‘—”-zﬂa—' [an2(0E® (o Jix (3.23)
and
In
AB =B N Bs —Bo (3.24)

Let us assume that A" = A,A") = B and substitute them in eq.(3.21) and (3.22)

= K, Be 24Pz (3.253)

= Kk, Aei2(AP)2 (3.25b)

Rl& &8

Consider a waveguide with a perturbation of length L as that in Figure 3.3. Let us
suppose that the forward wave with an amplitude B(0) is entering on the corrugated
region and the amplitude of the backward wave at z=L, A(L) =0. Also, assume that

total power is conserved, that is
d 2 2
& {a@f e’ )=o (3.26)
z

J/By using all of this condition, one can obtain the following equations

AT LN | g‘)ﬁo" 21



jk e P

A(2)e™ = B(0)——— .
~ ABsinhSL + jScoshSL

sinh[S(z ~ L)]

¢~ 1Poz
— ABsinh SL + jScosh SL
x{ABsinh[S(z - L)]+ jScosh[S(z - L)J}

B(z)e ** = B(0)

where
S =42 -Ap>
K =[]

Under the matching condition AP = 0, we obtain

K sinhfk(z—L)]
coshkL

A(z) = B(0)

K coshfi(z—L)]

B(z) = B(0
@ © K coshxL
Z= z=
n |
X= 1

X=-a

n, -
guiding layer

x=-t

n, substrate

.
.

BO)*:

(3.272)

(3.27b)

(3.28)

(3.29)

(3.30a)

(3.30b)

Figure 3.4 The incident and reflected intensities in the corrugated section



From eq.3.30 it is obvious that coupling coefficient k. is the key factor to find the
exchanged power. Nevertheless, €q.(3.23) shows the standart technique to determine «,
where the grating perturbation and the unperturbed mode is integrated to find the
coupling coefficient. However, this technique works well for weak perturbations, but
for the strong perturbations the choice of the unperturbed waveguide geometry is crucial
and have a great influence over the coupling coefficient. In order to discard this problem
in Distributed Feedback Lasers, the ray optics method was proposed to find the

coupling coefficient in coupled mode equations(Luo and Zory 1990).

3.3 Distributed Feedback Laser Approach

The idea of the distributed feedback lasers is to put a grating(corrugation) into cavity of
the laser. Here, grating refers to a periodic variation in refractive index of the gain
region, along its length. The presence of the grating causes small reflections at each
perturbation and when the period of the corrugation is a multiple of the incident light
wavelength, constructive interference between reflections occur and the proportion of
the light is reflected. Other wavelengths destructively interfere, therefore they can not
be reflected.

The reflection of forward waves into backward waves, and vice versa, can be
defined by using the coupled mode equations, that we derived in previous section. Luo
and Zory derived an analytical solution for the coupling coefficients for both weak and
strong coupling DFB waveguide structures by using the ray-optics method. In this
method, the unperturbed waveguide geometry was choosen arbitrarily and assumed that
the first order mode of diffraction is dominant and all higher modes are neglected. This
is a reasonable approach, because laterly we will show that by rearranging the grating
structure, the first diffraction order could be approximated as dominant.

Figure 3.5 is a grating waveguide structure, that can be assumed as a rough
approximation to a transient grating , analysed in this thesis.

The waveguide consists of cladding, guiding and substrate layers that have refractive
indices of n,, m, n., respectively . The grating is on the cladding — guiding layer
boundary and its depth is defined as d.
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cladding region n, »  d
) 3
guiding layer n, \ 0, / t W,
substrate  n, \ /
-1 i
Brn

Figure3.5  Typical Grating Waveguide Device

The coupling coefficient of the corrugated waveguide can be written as following(Luo
and Zory 1994).

k=B, ' (3.31)
where By, is bounce rate for mode m and 7 is the diffraction efficiency of the mode

propagating at angle O,

The bounce rate By, is defined by the following expression
B, =(2w_ tan6_)" (3.32)

where wy, is the effective waveguide thickness.
The effective waveguide thickness for the mth mode is (PARK S. et al. 2001)

Wy =t (3.33)
Om Pnm
where
1
0 =kofn2 —n2)2 (3.34)
1
P =kolnZ ~n2 ] (3.35)

ko is the wavenumber of light in vacuum and n_, =n, sin@_ is the effective index of
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the guiding layer for mth mode.
Although, it is possible to find an analytic expression for the diffraction
efficiency, in our calculations we will obtain it from the computer simulation results.

Therefore, I will not derive any formula for diffraction efficiency here.

3.4 Photonic Crystal

From the analyzes carried out in sections 3.2 and 3.3, it can be understood that the main
purpose of using a grating structure is to control and manipulate the light. Another
solution to this problem is employing a photonic crystal instead of a grating.

Photonic crystals are periodic structure that have photonic band gaps. These gaps are
ranges of frequency in which light can not propagate through the structure. Figure 3.6

illustrates one dimensional photonic crystal.

periodicin
one direction

Figure3.6  One Dimensional Photonic Crystal

Let us suppose that an ele'ctromagnetic wave, perpendicular to the surface, is incident

on the periodic structure shown in Figure 3.6. We assume that wave is travelling in the

x direction and polarized along y axis. Electric field E(x,t) must satisfy the wave
equation, which in a nonmagnetic material can be written as (Sakoda 2001)

¢®> 0°E O’E

g,(x) ox? a2

-0 (3.36)

where £(x) is the relative dielectric constant of the crystal and it is. pozition dependent
due to tne nature of the crystal. Dielectric constant is a periodic function and it can be

written as
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g (x+a)=¢.(x) (3.37)
£~} (x) is also periodic and can be written as the sum of Fourier components
j—x

g;l(x)z ixme( :

m=-w

0 ) (3.38)

where xn, are Fourier coefficients.

In order to define the electric field in the crystals, we may use the Floquet-Bloch
for the nature of an electromagnetic wave travelling in a medium with periodic layers.
This theorem states that electric and magnetic fields in periodic medium also have
periodic forms with the wavevector k, called Bloch wave vector. Thus, electric field can

be expressed in a general form as following
E(x,t) = E, (%, 1) = u, (x)e*oxt) (3.39)

where k is the Bloch wavenumber and wy express the angular frequency that depends on
Bloch wavenumber. ux(x) is a periodic function such that

u(x+a)=u,(x) (3.40)
Hence, w(x) can be expended in a Fourier series and electric field can be written in

following form

j(k+—2—am—n-]x—imkt

E,(x,t)= iEme (3.41)

m=~c0

where E,, are the Fourier coefficients.
Let us assume that components with m = 0 and m = +1 are dominant, then we rewrite

€q.(3.38)

e71(x) = kg + Kle(jg”ﬁx) + K_le(—j%x) (3.42)

Combining eq.(3.42), eq.(3.41) and eq.(3.36) leads to
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a a
(3.43)
2 2
~ I:m—Z—KO(k+ zan JEm
c a
Form=0,
2 2
0y — Kok a a
Form=-1,
2 2
E ~ ¢ - [Kl(k—ﬂ) E. +1<_1k2E0} (3.45)
a
o} —Kocz(k—gf)
a

If kzzr- and mﬁ zlcoczk2 , then then E, and E, are dominant and eq.(3.44) and
a

€g.(3.45) can be written as two coupled equations

2
(2 —Koczkz)Eo—Kl(k—--z—ﬂ—) E_ =0 (3.46)
a
2,2 2 2(, 2n 2
—K_4C k E0+ o ~K4C k-—a— E, =0 (3.47)

In order to find the frequency range, where there exist no field, we must look for the
nontrivial solution of the above equations (3.46) and (3.47), that is when the

determinant of coefficients is zero:

) 2
(mi —Koczkzl —Kl(k——zf-)
=0 (3.48)
2
2 2 2n
- x_c’k? O —K4C (k ——a—)

. T . T,
If we introduce h = k — =, the solution |h| << s
a
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This indicates that there is no mode in the interval

mc ne
— Ko —[ky] <@ < =[x +]x|
a a

This situation is illustrated better in Figure 3.7

w
A
RSN . w = vk
- BAND GAP
» k
= 0 n
a a

(3.49)

(3.50)

Figure 3.7  Dispersion Relation For a 1D Photonic Crystal
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CHAPTER 4
ALL OPTICAL SWITCHING NODE

4.1 Introduction

An optical packet switch is a device which is used for distribuitng signals from
input ports into output ports. It may consists of a few components or it may contain
complex controlling blocks, delay line buffers, filters, wavelength converters and simple
switches. In this chapter we will consider a switch fabric concept and after that we will
introduce an all optical switching node that relies on a transient grating mechanism and
coupling structure. '

The structure of a single line switch fabric is shown in figure 4.1. This fabric
consists of a number of switching nodes which are active only in existence of a grating
pattern. However, on the lack of grating the information carrying optical signal is

transmitted to next node without any manipulation.

switching node  grating forming

unswitched
output

waveguide
input

grating .
Y-waveguxd :

L J
N

switched
outputs

Figure 4.1 Nodes in Single Line All Optical Switch Fabric

When there is a packet to be switched or routed at the input of the switch fabric, the
relavent switching node is activated by forming the transient grating. This grating is
formed by interference of two Gaussian beams, that travel at a very small angles with
respect to normal of the cladding — guiding medium boundary of the waveguide. The

mode travelling in the guiding layer interacts with the generated transient grating and
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this leads to the well known Four Wave Mixing process in the third order nonlinear
(x*’) material. This interaction destroys the lateral resonance or total internal reflection.
In order to complete the switching procedure, the destroyed mode have to be transfered
to another waveguide. Placing periodic grating structure between two waveguides is one
of the most common way to transfer the energy between the waveguides. As far as the
best efficiency known is obtained in (Masanovic et. al.2003) and it is about 90% for
non-transient grating, while the other reported coupling efficiency is about 40% in
(Butler et. al 1998). It is obvious that all optical switching is a mode coupling process
which ocurrs between two waveguides and its efficient implementation is the main issue

of this chapter.

4.2 The Switching Node Model

In this work, two laser beams are interfered inside the cladding region of the
waveguide to form a transient grating index. This structure is too close to the core-
cladding boundary to destroy the guiding properties of the waveguide. In other words,
transient grating changes the angle of reflectance of the guided light at this side of the
waveguide. This problem might be studied by a number of techniques. First, four wave
mixing (FWM) technique might be applied to the core-cladding boundary by
considering the evanescent behavior of the waveguides mode that exist in the cladding
region. In other method reflected waves from stationary grating may be used as that in
many experimental works occurs when quasi stationary grating exist. In this case the
grating might be considered as a perturbation. Another approach might be placing one
dimensional photonic crystal with some forbidden band gap property in the cladding. In
this structure, photonic crystal will not allow some of the waveguide modes to
propagate, as explained in chapter 3.4.

The switching node, proposed in this thesis is shown in figure 4.2. In this
structure, switching process occurs in two stages. In the first step, a transient grating is
formed by interference of waves k; and k. Hereafter, the propagating wave k3 interacts
with the created grating that deflects the mode from total internal reflection. This is the
consequence of the Four Wave Mixing, described previously in chapter 2 and shortly,

we may assume that the effect of this process is a generation of new wave with

wavevector kj.
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1 N WG2
travelling
light n, WGH1

Figure 4.2  The transient grating formation on the side of a

waveguide and grating assisted directional coupler

The wave properties can be calculated regarding to the phase matching and
frequency matching conditions of the FWM approach. In addition, the angle between k4
wavevector and the grating normal, that is ¢', is an important parameter and it is needed
for determining the coupling structure in the next stage. The second part is designed
with an appropriate permanent grating for coupling maximum light energy from
waveguide WG1 to waveguide WG2.

As a prerequisite, we would like to have grating forming laser that have different
wavelength than the propagation light modes. Reflection from the permanent grating
and FWM processes may be only differentiated due to grating strength and stationarity.
This points needs to be investigated experimentally, too, as in our list of experimental

work.

4.3 Deflection Angle Calculation

In order to clarify the transient grating and propagating mode interaction, consider the
geometry shown in Figure 4.3. In this structure, two waves with wavevectors ky, k; are
interfered in the cladding region of a waveguide to form a refractive index
modulation(grating) and the propagating mode that have wavevector kj is influenced by

the modulated area.
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Figure4.3  FWM at the core — cladding boundary

This effect may be investigated by using the Four Wave Mixing process, that was
explained in general in Chapter 2. Four Wave Mixing matching requirements were

depicted in eq.(2.31) and eq.(2.32). According to the structure shown in Figure 4.3, the
evanescent field with wavevector k, in cladding region interacts with the grating

forming beams with wavevectors k; and k,. Thus, the matching conditions can be

rewritten as

(04 = (Dl _0)2 ‘+’0)3 (4.1)

where ki, k,,k},k/ are given as follows

k; =k, |sin(®)2 — |k, |cos(@) 4.3)
k, = |k, |sin(8)2 - |k, |cos(8)% (4.4)
k3 =[k|sin(§)2 + |k |cos(9)z (4.5)
k4 =|k4|sin®") 2 —|k,|cos(@) % (4.6)
kY =[ks|sin($)z - jo & 4.7
Ky =[k,|sin(@)2 - jo, & (4.8)
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2% ’ nl2
a=<"n, | —Lsin? 4.9

where « is the attenuation coefficient of the evanescent field in the cladding region

(Saleh).

if= 2=, kaf=22n, (4.10a)
Ao 0
2n
ks = _—nl )k4| = Tn, (4.10b)
Co
0)=21w=21t—}:— (4.11a)
n
o
0)1 =(02 =27tx 2 (4.11b)
otz
o
m3=m4=2nx " (4.11¢)
ofl2

In this equations Ao is the wavelength of the grating forming beams, while A is the
wavelength of the guided light .

The importance of the matching equations (4.1) and (4.2) arises from the terms
k'3 and k'4 which show that FWM process occurs in the cladding region close to the
core-cladding boundary where the waveguide mode shows evanescent property.

After applying phase matching conditions, we obtain
|k, sin(@’) =—2 |k, |sin(B)+| k;|sin(0) 4.12)

From eq.(4.11) it is obvious that |k ,|= [k ,| and |k ;|=|k,|. In addition it can be

assumed that the attenuation coefficients in the x direction are equal, that is o; = a.
After some algebraic manipulation and using defined assumptions given above,

following equation can be obtained easily
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2 2
R o sin@)=-22"n, sin®) +—"n, sin@) (4.13)
x Ao N

From the eq. (4.13) it is evident that ¢’ can be slightly different from ¢ due to the
designed grating.

The switching mechanism can be investigated either the modes are propagating
when grating exist or vice versa. Let’s consider the latter case, i.e assume that the
switching occurs when grating is present. Otherwise the mode is propagating through
the grating region without any deviation. If the mode exists and propagates in the core
region, then evanescent field extension does exist in the cladding and this field interacts

with the grating. In this situation reflection angle can be computed from eq. (4.13)

sind’' = sin¢—2-2-—}—”—2 sin O (4.14)
Ny Ap

According to this equation 6 and A, can be used as design parameters. Let’s assume

that the period of the grating in the z direction is defined by A for plane waves, where

Aq

A=——"7T"7— 4.15
2n, sin(0) (4.13)
then, from eq.(4.14) we can write reflection angle
sing’ = sin(¢)—-z"——l— (4.16)
n; A

If grating exist, then the internal reflection angle is different from incident angle as
defined in eq.(4.16). This situation can be best explained by an example of normal
propagating modes in slab waveguide with refractive indices of n; = 1.4801 and n;

=1.465 for the configuration shown in figure 4.3. If the propagation constant along z

direction is denoted as B, then

B=n, k, sin(¢) 4.17)
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By using the Snell’s law, the critical incident angle can be shown by

R |
¢, =sin” % (4.18)
n,

With the values given above critical angle is ¢, = 81.8°.

Let us consider a mode which has incident angle ¢ = 81.8° and wavelength
A =1.55um. For the values given above, propagation constant f3 is equal to 5.94x10°
rad/m and the mode can be diffracted out from the waveguide by choosing ¢’'<¢, . If the
incident angle of grating forming plane waves is 6=1° with wavelength Ao = 1pm, then
grating period A is equal to 19.55 pm. For these values, reflection angle ¢’ of beam
diffracted from grating is 69.42°. Therefore, the permanent grating in the second stage
should be designed to couple the mode with angle 69.42° as high efficient as possible.

44 Three Dimensional Grating Formation

In the previous section we carried out a simple analysis by using ray optics
approach to understand the grating effects on the propagating mode. In this analysis we
assumed that the grating is a purely sinosoidal and found that it deflects the propagating
mode from the total internal reflection. Now, let us assume that the grating is formed by
interference of two Gaussian beams and analyze the influence of this type grating on the

overall efficiency of the switching node.

4.4.1 General Expression For a Gaussian Beam

A general expression for the complex amplitude U(r) of the Gaussian beam

travelling in z-direction can be written as[Saleh]

W, p? . . Pl .
U =A, W@ exp| — o exp| — jkz - jk R +j&(z) 4.19)
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where

W is the minimum waist value at z = 0 and it is defined as

1

W, = (-’“—;l)i (4.20)

W(z) is the waist value at z and can be written as following

Zg

2|2
W(z)=wo{1+(—z—) } (4.21)

R(z) is the radius of curvature and its expression is given by

2
R(z) = z[1+(fz°-) } (4.22)

¢(z) is the excess phase

t(z) = arctan;z—- (4.23)
0

7o is the Rayleigh range, and the radial distance is defined as p* =x* +y? .

4.4.2 Grating Formation by Interference of Two Gaussian Beams

Travelling in Arbitrary Direction

Let us suppose that two Gaussian beams travelling in arbitrary directions are

being interfered at z =0 plane as shown in figure 4.4
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Figure 4.4 Interference Geometry of Gaussian Beams

According to the geometry, shown in figure 4.4, the Gaussian beams can be defined as

following

2 2 2 2
UI(X,Y’Z;eltez) =Al exp[— xl -Z'-yl Jexp(jk xl +yl Jx

W2 (2) ' 2R, (2)
) Y (4.24)
x exp(jk; (z, — zb,) - jk,5,(2))

2, .2 2, .2
X5 +Y5 . X5 +Y3

U,(x,v,2,0,,0,) = A, exp(—=2 exp| jk x
2 (X, y 3.94) 2 exp( sz(z)) P(J 22R2(Z)J

(4.25)

x exp(jk ,(z; — zb,) - jk,6,(2))

where

1-) 0; and 6, are incident angles of the beams U(r) and Us(r) with respect to z axis

2-) 03 and 0,4 are angles between x axis and projections of incident beams U;(r) and

Us(r), respectively.

3-) A; and A, are constants, which can be defined as
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where Aj; and A, are constants, too.

4-) [x1,¥1,21] and [X,y»,2;] are the new coordinate systems, obtained after the rotation of
[x,y,z] coordinate system in order to coincide the propagation direction of beams U,(r)
and Uy(r) with z axis, respectively. According to this transformation, the new coordinate

systems can be written as

X, =xcos0, cosO, + ycos0, sinf, —zsinB, (4.26a)

y, =—xsin6, + ycos6, (4.26b)

z, =Xsin0B, cosO, +ysin0, sin6, +zcos6, (4.26¢)
and

X, =Xxcos0, cos0, + ycos0, sin6, —zsin0, (4.27a)

y, =—xsinf, +ycos6, : (4.27b)

z, =xsin6, cos6, + ysinB, sin@, +zcos6, (4.27¢)

The Gaussian beam parameters must be also modified. This leads to

202
Z4 —2Zb
W,2(2) = Wy | 1+ (l—}i) (4.28)
Zp1,02
. 2
Rl’z (Z) = I Z],2 - Zbl’z l l + [——MI;—J (4.29)
Zyy —120y;
ol
}\, x 2
Woro2 =( -2 == ZOI’OZ) (4.30)
T
Z,, —Zb
§,2(z) = arctan 212 (4.31)
Zo1,02

where zb; , are initial points of Gaussian beams in transformed coordinate system and

Zo1,Zo2 are the Rayleigh range of each beam.

Let assume that Gaussian beams, shown in figure 4.4 have frequencies w; and

wy. Thus, they can be written in the following form
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U, (r,t) = U, (1)e"™Y 4 cc

U, (r,t) = U, (r)et™2) 4 ce.

It is obvious that Gaussian beam is an even function, thus any Gaussian wave can be

defined in the form

U, t) = %(U(r, H+U (1)

(4.322)
(4.32b)

(4.33)

By using the eq.(4.33) the interference equation can be written as

I(X, Y2, t) = IU] (r, t) + U2 (I‘, t),z =

(4.34)

= U, (r, YU (r,t) + U, (6, YU (r, ) + U, (1, YUS (1, £) + U, (1, ) U, (1, 1)

I(x,y,z,t)-—-%[z“
01

2
2\ zy,

2

é——J exp(—2

5 %3 +Y§]
)

Wi(z

By substituting eq.(4.32) into eq.(4.34), we obtain the total interference equation

2, .2 2, 2
-)-(IT-l-y—l— 1-Lcos 2k, | 2L i +2z, —2zb, +¢; |- 20t ||+
W (2) 2 2R,(z)

2,2
1-Lcos 2k, ﬁ--2’—2--+zz—zb2 +G, [—2m,t
2 IR, (z)

2, .2
X, +Y>

T 2R, (2)

2, .2
X3 +Y;

2,2
+
-—cos[kl S TN

2R,(2)

’ 2R, (2)

exp _(Xf+y12+X§+Y§J y
Wi(z) Wi(2)

+kl(zl -zb,)+k2 (Zz “sz)‘*' (k1€1 +k2€2)‘(°)1 +°°2)"L

(4.35)

+k(z, -zb;)~k, (z, 'sz)"‘(lel -k,6,)+ (0, _m[)t}
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The pattern, shown by eq.(4.35) consists of stationary part and travelling part that
contains components of ©,; +®, and ®, -, frequencies. In our case, the Gaussian

beams originates from the same laser source, thatis ®, = ;= ©.
On the other hand, the relation between refractive index modulation and

intensity was defined in Chapter 2 as

An = —-——3:]0 x(3) 1
n’g,

where I represents the stationary intensity pattern
By taking into account the frequency and grating formation conditions, grating

producing stationary interference pattern can be written as following
1A, Y x2+y?
Ling = | —— | exp| =251 |+
2\ zy Wi (2
1{A,Y x2 +y2
+—| =2 exp —22—2 |+
2\ zqy W, (@)
I AjAy exp _[xlz :‘)ﬁz s X3 ;F)@] 9
ZoZgy Wiz W, (@

X +YL X3 +Y;
R,(z) " 2R,(2)

(4.36)

xcos[kl +kl(zl ‘Zbl)"kz (Zz "sz)"'(k@x "kzgz):]

The structure of the grating for different Gaussian beam parameters is shown in Figure
45
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4.4.3 First Order Approximation

In the previous section, grating forming interference pattern were obtained for
Gaussian beams travelling in arbitrary directions. But this definition is too complex to
be used in analytical expressions and should be simplified.

The form of the complex amplitude of Gaussian beam travelling in the z

direction was defined in eq. (4.1).1t it can be simplified and written as

E(z)= A—ezpq((—zi)kz—)exp[- jk—;:(zz—)] (4.37)
where
1 1 . A
4@ REG wW (@)
and
p? =x*+y?
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W(z) and R(z) are beam width and wavefront radius of curvature, respectively. We may
use eq.(4.37) to represent a Gaussian beam propagating at an angle 6 with respect to the

x-axis in xz plane, i.e beam propagating in the x* direction.

12
E(x’) = A, exp[jk (x' ~L)] exp[jk P } (4.38)
2q(x)

where L is the axial distance measured between minimum waist point and origin of the
interference plane, radial distance p'?=(2) + y2 and q(x")=(x'-L)-jxp. After

coordinate transformation complex amplitude of the Gaussian beam takes the following

form
U@r)= A explj [k|((z - Lsin8)sin6 + (x — Lcos6) cost)]ex jM (4.39)
q(x,0) 2q(x,0)
where

q(x,0) = xv1+tan? 0 — L — jxj.

Since 0 is very small due to 3D structure of the node, it is appropriate to use first order

approximation that yields the result below:

sineae-%eﬁ ~0 (4.40)

cosOx1-~02 w1 (4.41)
2!

tan? 0=6% ~0 (4.42)

By substituting these equations into eq.(4.39), we obtain

U(r)=

A . ke
=y e)exp[Jlkl((Z-Le) 8+(x —L))]exr{ oy 9)} (4.43)

43



where

q(x,0) =x-L~ jx (4.442)

p'? =(z~x0)’ (4.44b)

Then, the general Gaussian beam expression travelling at an small angle with respect to

the x axis can be defined as follows

A . ()
U(x,z,6) —-ix—)-cxp[JlkI [ﬂ(x, z,0)+ 2q(x)]] (4.45)

where

N, (x,2,0)=z0+x-L, 0>0
nexz0) = (4.46)
n.(x,2,0)=-z0+x-L,0<0

@, =z(z-2x60),0>0
d = (4.47)
O_=2(z+2x0), 6<0

q=x-L-jxp,6>0
q(x)= (4.48)

q"=x-~L+jxp, 0<0

As shown in figure 4.5, the grating is created by the interference of the waves

with wavenumbers k; and k,. The interference equation consists of IE l|2 , lEzlz, E,- E;



and E] -E, terms as defined in eq.(4.34), where the first two terms |E,|*and |E,|* are

DC components, and last two terms have the same pattern. Thus, we may assume that
E..E, represents the grating pattern in the FWM equations. By using equations (4.33)
and (4.45) the electric field of grating forming beams can be written in the following

form

E = % ex;{jlk[ n, + ipzqi) + coot] + 21:1‘ ex{— jkl[n + +-§;7:‘ + coot:l (4.49)

E§ = ;q{ ex{- Jlkj (ﬂ- +Z:]+coot] +-1§2§— expEj |l<| (n_ +%)+m0t;] (4.50)

Assuming that A;=A,=A and phase delay as 9, it is evident that

. 2A? xozz} { 2zx0(x —1) ﬂ
E.E, ="—expg - cog K| 226 -——5—)+8 | |+
o ‘{ ' o

-
+A? ex;{— T;’Z; }co{lkl x-L) +32— (x- L):l +2wyt + S}

(4.51)

i

The first term of this equation is a standing wave in the z direction and modified at the
various X planes. At x = 0 plane first term produces a plane wave grating [k|.2z as
expected. The grating will be built up due to intensity of this term in the z-direction

which cause the Floquet-Bloch wave propagation. The second term of this equation is a
travelling wave in the —x direction, modified with z> / ]2q] term and it does not

contribute to the grating forming process, so it will not be considered here.

Let us eliminate the travelling wave part of €q.(4.51), that leads to

. oA? xozz} [ 226(x1) H
E E, ==—exq - coq [k|| 220 -—5—=) +3 (4.52)
T { 9’ o
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In figure 4.6 the grating fronts are obtained for x ¢=5pm, A¢=1.0pum, L=14um (distance
from the minimum waist location) and drawn on the xz plane. The slopes (slanted) of
the grating fronts approaching 80 degree after a few grating period which are critical to
explain the operation of the switching property. If the beams were plane waves the
grating fronts would be transmission grating with a zero degree slope (horizontal line).
However, the slope can be manipulated by Gaussian beam parameters xo and L as
indicated in the eq.(4.51). Here, xq is defined by the laser output, but L can be adjusted

by a simple lenslet to make slanted reflection grating as shown in figure 4.6.

200

160

R

.0, xX .10,

Figure 4.6 Grating Fronts
4.5 Coupled Wave Equations

In order the waves to be coupled, they must satisfy the matching conditions, that
was defined by eq.(4.1) and eq.(4.2). Thus, this coupling waves can be written in terms

of Helmoltz equation(Saleh 1991)

(V2 +k2)E, = -CE,E;E; - v,E, (4.532)

(V2 +k2)E, = —(E,E,E| - 1;E; (4.53b)

where
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E=6pw’y®

¥3 =3p, WP (I -1;)

Y4 = 3H0W2X(3) (Ir -14)
Combining eq.(4.52) and eq.(4.54) gives

(V2 +k3 )E 5 = —£Cos(K (8, x)z)exp(— oz’ )E4 -v;E;

(Vz +k2 )E + =—-(Cos(K (8, x)z)exp(— az? )E 3—Y4E4

where

_ . _ x(x- L)
K(0,x) =2k sm(G)[l —-————(x TN Xg }

D
(x-L)* +X?

(4.543)
(4.54b)

(4.54¢)

(4.552)

(4.55b)

(4.56)

(4.57)

The total field in the perturbed waveguide can be written as the superposition of the

modes as defined in eq.(3.10)

E; = ;AI(Z)EI(Xa y)exp(=iBz)

E,= %Bk (@E (x, ) exp(-jBy2) y

(4.582)

(4.59b)

Introducing eq.(4.58) into eq.(4.55) and using slowly varying approximations, we obtain

the coupled mode equations

%A‘Zi =— jg%rC]kBke‘“zz g IABz g 101
where

(4.602)

(4.60b)
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8, =3uw2y® dr-L) (4.61)

AB =By ~B, (4.62)
Cy = [E} cos(K(8,x)2)E,dx (4.63)

The coupling equation parameters & and Cy are very important in describing the
efficiency of the switching node. & depends on total power of incident waves, that by
arranging the laser power it can be used as a tuning parameter of the coupling. Whereas,
coupling coefficient can be calculated by using eq.(4.63), but it is obvious that the result
will strongly depend on the geometry of the grating pattern. In order to overcome this
drawback, coupling coefficient can be found by using Distributed Feedback Laser
model defined in chapter 3.3 .

4.6 Overall Efficiency Using DFB Approach

Let us find a solution to the coupling equations near z = 0 point, shown in Figure

4.6 . At that interval, we may posses a slowly varying envelop approximation, that leads

to
aAl _ cw P _'A'B-z
= —J§|_p:_|clkBke P24 64a
B . ABz
_é_zk_ - _Jg_lg_:l_cklAleJAB (4.64b)

By using power conservation condition %QA,F +|Bk|2)=0and A(2)=0, we can

find the fraction of power that is coupled from A to B in a distance z, that is output of
the transient grating

lBk(Z)IZ _ ICkl|2 sinz( ”Ckllz +ABzz) (4.65)

A,  [Cu[* + 8

where
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AB =B, -B,+3+tmK=0 (4.66)

The coupling equation parameters 8 and Cy are very important in describing the
efficiency of the switching node. § depends on total power of incident waves, that by
arranging the laser power it can be used as a tuning parameter of the coupling. Whereas,
coupling coefficient can be calculated by using eq.(4.63), but it is obvious that the result
will strongly depend on the geometry of the grating pattern. In order to overcome this
drawback, coupling coefficient can be found by using Distributed Feedback Laser
model defined in chapter 3.3 .

Let us consider that the matching condition is satisfied, i.e AP =0. Thus, the
power ratio can be written as

B _ (e, (467)

A, (0)
In order to find the overall efficincy of the system, let us divide the nonperiodic grating
shown in figure 4.6 into parts so that the length of each segment is Az as shown in
figure 4.7 .

0¢l=
0s1

0T

Figure 4.7 Gaussian Grating Structure

Then, then the total power transfer ratio can be written by using the transfer ratio of

each layer
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B 2
II—A—“%II—Z = [Tsin®|Cy, Az; (4.68)
1 1

where [Ckl Ii is the coupling coefficient of each segment. By using the identity
sin? A = %(1 —cos(2A))

eq. (4.68) can be written in the following form

B,z 1
-:X]:(_;)fl?= i E(I—Cés(2|ckl|iAzi))=
I1 (4.69)

=(%(l—cos(2C1Azl))x%(l—cos(2C2A22 ))x%(l—cos(2C3Az3))...)

We defined coupling coefficient in eq. (4.31) as C = \/:n-Bm, thus placing it in
€q.(4.69) leads to

lBk_(z)Ii = (%(1 - cos(2\/ﬁlB1Azl ))x %(1 - cos(2‘/n_2B2Az2 ))x %(l - cos(2ﬁ3B3Az3 )) . )

A,
(4.70)

where 1); is the diffraction efficiency of each grating segment and B; is the bounce rate
defined by eq. (3.32).

We computed the reflection efficiency of the grating for n;=1.4801, n,=1.465
and An=0.01, shown in figure 4.8 by using standard grating solving software package
GSOLVER. Rg and R.; correspond to zero order and first order reflection coefficients,
respectively. If grating exist, the guided mode of the waveguide having incident angle
81 degree at the core-cladding boundary will be deflected by the grating into R,
reflection order, otherwise the mode will be total internal reflected with coefficient Ry

as normal.
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Figure 4.8 Dependence of diffraction efficiency on the incidence angle ¢.

)

For the reflection efficiencies of ;= 90%, n2= 88% and bounce rates of B;=99 cm™
and B,=105 cm’', we calculated the overall efficiency as 2% by using equation 4.75.

This value value was obtained by assuming Az,, =40umand effective thickhness of

the waveguide is w = 8um.
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CHAPTER S

MEASUREMENTS AND EXPERIMENTAL STUDIES
5.1 Autocorrelation Principles

The invention of ultrashort pulse lasers has introduced a new problem of direct
measurement of pico and femtosecond pulses due to relatively slow response time of the
detectors with respect to the pulse duration. To overcome this difficulty, an
autocorrelator method was proposed and this technique have been widely used in
ultrashort pulse detection applications. Figure 5.1 show a basic autocorrelator circuit

-]

17

mirror

Figure 5.1  Basic Michelson Interferometer

In this technique the laser output pulse is divided into two halves and after being
reflected from the mirrors, they are correlated with each other. The temporal delay of
one of the pulses is obtained by changing the distance (by moving mirror on translation
stage) it travels in the arm of the interferometer.

There are two types of autocorrelation, intensity and interferometric autocorrelation,
called slow and fast respectively. Let us consider the Michelson interferometer, shown

in figure 5.1 and assume that the real electric field at the input of the detector is

E=E,(t-1)+E,(t) (5.1)

where 1 is the temporal delay obtained by moving the mirror. The signal at the input of
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the detector is a second order interferometric correlation, which is defined as(Diels

1996]

G,(1) = [{[E,(t-7)+E,(v)*} dt (5.2)

The electric field E can be described as

E = E(t)e'(™¢®) (5.3)
Putting this field into eq. (5.2) leads to

G, (t) = A(t) +Re{4B(1) €™} + Re{2C(1)e*""} (5.4)

where

A() = T{E‘: (t—7)+E3 (t)+4E] (t-1)E3(t)}dt (5.5)

-0

B(0)= [{E,(t- DB, (O[EX(t-7)+ BAOI@4W)ae  (5.6)

~0

Cl= [EEE-DR3@I 00 67)

If the response of the autocorrelator is slow compared to the duration of one
optical cycle, then the ‘information in the interferometric correlation will be time
average of Gy(t), that is A(r). This is the intensity autocorrelation. Unlike the
interferometric,no phase information is contained within intensity autocorrelations.
Previously, nonlinear crystal and photomultiplier was the most common combination to
detect autocorrelated signal. Recently, it was discovered that photodiodes which exhibit
nonlinear power dependent response can be used to detect and to characterise ultrashort
pulses. The mechanism for the nonlinear effect in photodiodes is two photon absorption

(TPA).
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5.2 Two Photon Absorption In Semiconductor Photodiodes

Two photon absorption ( TPA ) is a nonresonant nonlinear process that occurs
for photons with energy hv less than the semiconductor energy gap E,, but greater than
E, / 2. For this range of photon energies, there is very little absorption of light due to
absorption of single photon. However, when a semiconductor is illuminated by an
intense beam, an electron can be excited from the valence band to the conduction band
by the absorption of two photons. Due to need of high intensity light, TPA was not
observed until the invention of the laser, but its existence has been predicted
earlier(Laughton 1994)

For photon energies less than Eg, but greater than E; / 2, the main carriers will be
generated by TPA process and this can be measured as a photocurrent. Because of the
two photon nature of the interaction, the photocurrent will be a quadratic function of the
light intensity(Laughton 1994)

In order to be able to use a nonlinear optical effect for pulsewidth measurements,
the response time of the nonlinearity must be much less than the pulswidth to be
measured. Consider the configuration in Figure 5.2 and assume that the laser output is

continuous wave beam.

microscopic oscilloscop
lens

D

laser objective detector
lens

Figure 5.2  Two photon absorption experiment setup

For a single CW beam, the carrier photogeneration rate isfLAUGHTON]

[iN—] oy LBp (5.8)

dt hv ™ hv *°
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where I, is the average intensity of the beam, hv is the photon energy, B is the two
photon absorption coefficient and « is the one photon absorption coefficient.

The average photocurrent can be written as

o p
(Jph )CW = eQ(KV"Iave hv Izve) 5.9

where ¢ is the electronic charge and Q is the volume in which the carriers are created.

If we consider the pulse laser, we can assume that Gaussian intensity profile is given by

a2t

I(t)=1e E (5.10)

where I, is the peak intensity of the pulse and its relation with the average intensty is
defined as

7t
I, =1m\[; ?" (5.11)

Then, the average photocurrent for the pulsed beam is

eQ le
( Ph)pulse =Tp— I dt U (5.12)
a pt
J,=eQ —I  +—=2—T12, 5.13
s (hv 24/rhvT J s

where t;, is the time between laser pulses.
In order to calculate the output current of the detector in autocorrelator as shown in
figure 5.3, let us consider a two pulses having Gaussian profile and travelling in the

arms of the interferometer with time delay t with respect to each other.

mirror,mounted on
translation stage

microscopic osciloscop

[\ lens

> \ > 0 _or———
U beam photo

laser  lens splitter detector
_
mirror
Figure 5.3 Autocorrelator experiment setup
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Let us assume that beams are orthogonally polarized that will prevent interference
effect. By using these assumptions, the instanteneous intensity just in front of

photodiode can be written as

2 _pt=0?

2 2
I(t)=Ipe T +Ipe T (5.14)

The average carrier generation rate is written as

aNY (2, B
[ " Le . _£ (hv I(t) + 2th (t)) (5.15)

and the average photodiode current as a function of the time delay t between pulses is

given by

2

2 pt -4
Iph(c)=en[—31 +——‘-°—I§vej l+e T (5.16)

hV ave \/'E th

In order to obtain the true pulsewidth, the photocurrent value must be divided by V2

due to Gaussian nature of the pulse.
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CHAPTER 6

CONCLUSION

The analysis carried out here are based on FWM and ray approach to identify
the reflection angle and efficiency of the node system. For a transient grating formed by
the plane waves, a mode incident at an angle 81.9° is reflected from grating at an angle
69.9°, that is obtained for a sinosoidal spatial period of 19.55um. Furthermore, to find
the efficiency of the proposed model, the transient grating is assumed to be formed in
the core-cladding and considered that it is purely slanted reflection grating, that is a
rough approximation to real shape. Although the grating period and slant angle change
with x and in the z-direction, it converges quickly a stable angle value of about 80
degree in our case. The grating strength degrades with exp(-az”) in the z-direction as
given in eq.(4.52). Therefore, the effective grating is in fact formed in a limited area,
which may dramatically affects the total reflected power.

By performing a coupled wave analysis of proposed model, a nearly 2% overall
efficiency is calculated for the switching node. This efficiency may be increased
considerably by applying some optimization on the designed node. First of all, the
coupling coefficient described in eq.(4.63) depends strongly on the geometry chosen for
the unperturbed waveguide and transient grating structure. In the standard coupled wave
analysis, the grating is defined in term of Fourier series and the solution is obtained by
neglecting higher order terms. To obtain a more compact solution to coupling effciency,
we used a geometry independent method to find the coupling coefficient. In this
method, the nonpgriodic grating was divided into layers vﬁth width Az so that strength
of the grating remains unchanged within the selected segment. In this layer, instead of
solving the overlap integral, DFB approach is used to obtain the coupling coefficient of
the related segment. Thus, the overall efficiency is the multiplication of the efficiency of
the each layer.

The results obtained in this thesis show a great correspondence between the
Gaussian beam parameters L, X, incidence angle 0, the intensities of grating forming
beams and overall efficiency. All of these vaues are tuning parameters, that can be used

to improve the diffraction efficiency. For example, the choice of the layer width Az
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depends on grating strength, which is completely determined by Gaussian beam
parameters. Regarding to eq.(4.70), more efficient results is obtained by increasing the
interaction length Az. Furthermore, the efficiency equation described in eq. (4.70) is
obtained for a constant spatial fraquency through x axis. In fact, the nonperiodic grating
consists of a number of components and one can write the coupling equations for each
component and obtain more efficient result. Nevertheless, other parameters that have
influence on the efficiency of the system like reflection of the grating forming beams,
scattering and absorption of the nonlinear material surface are not considered at all.
Finally, a detailed experimental study should be carried on to verify the
theoretical results obtained in this thesis and this verification will ensure the

applicability of the method to develop an all optical switch.
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