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ABSTRACT 

 
The electronic properties of Al-Ta2O5-Si MOS capacitors with oxide layers 

prepared by RF magnetron sputtering with or without a prior nitridation process in N2O 

or NH3 gas environments at temperature ranges between 700 °C to 850 °C were 

investigated using Capacitance-Voltage (C-V) Spectroscopy to determine the quality of 

oxide layer and oxide-silicon interface. The theoretical ideal capacitance-voltage 

calculations were compared with the experimental capacitance-voltage results in order 

to evaluate effective oxide charges, Qeff , present inside Ta2O5 insulating layer and 

density of interface trap states, Dit, present at the Ta2O5-Si interface. In addition, 

dielectric constant, doping concentration, flat band voltage values were determined by 

using the experimental data. Finally, the effects of deposition conditions on Ta2O5 MOS 

capacitors were compared by using a reference sample of a MOS capacitor with native 

oxide SiO2. 

It has been found that dielectric constant value up to 12 have been reached for 

Ta2O5 insulating layers which increases the capacitance value several times than that of 

MOS capacitor with native oxide SiO2. The density of interface trap states, Dit, for 

unnitrided Ta2O5 MOS capacitors, values around 1.6x1012 cm-2 eV-1 have been detected 

which is much higher than that of MOS capacitor with native oxide SiO2. However, 

prior nitridation process enhances the interface properties and Dit values down to 2-

5x1011 cm-2 eV-1 have been reached for the nitrided samples which is in the limits for 

MOS capacitors with high quality insulating layers. In addition, the effective oxide 

charges, Qeff, for unnitrided samples, values as high as 3x1012 cm-2 were detected. Even 

though nitridation process enhances interface properties, the effective oxide charges are 

found to be higher for nitrided samples. Best electrical and interface properties are 

obtained by nitridation process at 800 °C in N2O and NH3. It can be inferred that 

samples nitrided in N2O gas at 800 °C improves the dielectric constant above the level 

of SiO2 and decreases both Qeff and Dit levels to that of native oxide SiO2. 

These results show that a prior nitridation of p-silicon surface is a promising 

approach to improve both oxide and interface properties of Al-Ta2O5-Si MOS devices. 

However, further investigation is necessary to understand the nature of these oxide 

charges and interface properties of MOS devices with high dielectric constant oxide 

layers before integration into large scale fabrication. 
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ÖZET 

 
RF (yüksek frekans) magnetron püskürtme tekniğiyle hazırlanmış, Al-Ta2O5-Si 

metal-oksit-yarıiletken (MOS) sığaların bir kısmı oksit tabakasının büyütülmesinden 

önce N2O ve NH3 gaz ortamlarında 700-850 °C alttaş sıcaklık aralığında nitrürleme 

işlemine maruz bırakılmış, ve nitrürlenmiş ile nitrürlenmemiş örneklerin elektriksel 

özellikleri, oksit tabakasının ve oksit-yarıiletken ara yüzeyinin kalitesi Sığa-Gerilim 

metoduyla incelenmiştir. Teorik ideal kapasite-gerilim hesaplamaları deneysel kapasite-

gerilim ölçümleriyle karşılaştırılmış ve Ta2O5 oksit tabakası içindeki etkin oksit yük 

yoğunluğu, Qeff, ve Ta2O5-Si ara yüzeyindeki tuzak yoğunluğu, Dit, hesaplanmıştır. 

Bunun yanı sıra deneysel veriler kullanılarak, dielektrik sabiti, katkılama yoğunluğu, 

düz bant gerilim değerleri bulunmuştur. Son olarak, oksit büyütme koşullarının Ta2O5 

MOS sığalar üzerindeki etkisi referans örneği olan SiO2 MOS sığayla karşılaştırılmıştır. 

Sonuç olarak, Ta2O5 MOS sığalar için 12 ye varan dielektrik sabitleri elde 

edilmiştir ki bu değer sığa değerini SiO2 MOS sığanın sığa değerinden bir kaç kat 

yukarıya çıkarmıştır. Ara yüzey tuzak yoğunluğu, Dit, nitrürlenmemiş örnekler için 

1.6x1012 cm-2 eV-1 civarında bulunmuştur. Ancak bu değer SiO2 MOS sığanın ara yüzey 

tuzak yoğunluğuyla karşılaştırıldığında yaklaşık olarak beş katlık bir artış 

gözlemlenmiştir. Öte yandan nitrürleme işlemi ara yüzeyin kalitesini arttırmış ve 

nitrürlenmiş örnekler için Dit değeri 2-5x1011 cm-2 eV-1 civarına düşürülmüştür. Etkin 

oksit yükleri açısından, Qeff, nitrürlenmemiş örnekler için 3x1012 cm-2 ye kadar artan 

değerler hesaplanmıştır. Nitrürleme işlemi ara yüzey kalitesini arttırsa bile, Qeff 

değerleri SiO2 MOS sığayla karşılaştırıldığında hala yüksek olduğu gözlemlenmiştir. En 

iyi elektriksel ve ara yüzey özellikleri 800 °C’de yapılan nitrürleme işlemi sonuçunda 

elde edilmiştir. Sonuç olarak, N2O gaz ortamında 800 °C’de yapılan nitürleme işlemi 

dielektrik sabitini arttırmış ve etkin oksit yük yoğunluğu, Qeff, ve ara yüzey tuzak 

yoğunluğu, Dit, değerlerini SiO2 MOS sığanın değerlerine kadar düşürmüştür.    

Bu sonuçlar gösteriyor ki, nitürleme işlemi Al-Ta2O5-Si MOS sığaların oksit ve 

oksit-yarıiletken ara yüzey özelliklerini geliştirmede umut vaad eden bir yaklaşımdır. 

Ancak, büyük ölçeklerde fabrikasyon işlemine geçmeden önce yüksek dielektik sabitine 

sahip MOS sığalardaki oksit yüklerinin ve ara yüzey tuzak yoğunluklarının incelenmesi 

ve iyileştirilmesi gerekmektedir. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

In an article written in 1965, Gordon Moore described exponential growth in the 

number of transistors per integrated circuit and predicted this trend would continue. 

"Moore's Law" states that the number of transistors on integrated circuits doubles 

approximately every 24 months, resulting in higher performance at lower cost. This 

simple but profound statement is the foundation of semiconductor and computing 

industries. Similarly, to achieve 1 G-bit and higher capacity Dynamic Random Access 

Memories (DRAMs), the number of capacitors inside a chip must tremendously 

increase resulting in a miniaturization of device size which causes several different 

problems with the conventionally used gate insulators. 

Native silicon dioxide (SiO2) is a high-quality electrical insulator and it is used 

as a barrier material for electrical isolation of semiconductor devices, as a component in 

Metal- Oxide-Semiconductor (MOS) capacitors of DRAMs. It has been studied in detail 

by many researchers since it was the only insulating material used for the production of 

integrated circuits (Nicollian and Brews 1982). The researchers have focused on 

depositing an electronic grade SiO2 by using different methods to achieve the best 

quality electronic devices. Different pre- and post- deposition methods such as rapid 

thermal annealing (Paskaleva et al. 1995), and nitridation (Croci et al. 2001) were used 

to increase the electrical quality of SiO2 insulating layers. Finally, the quality of these 

devices were examined by using different measurement methods such as Conductance 

Spectroscopy (Nicollian and Goetzberger 1965, Nicollian et al. 1969, Duval et al. 

2001a, Duval et al. 2001b, Duval et al. 2003, De Dios et al. 1990), Capacitance -Voltage 

(C-V) Spectroscopy (Paskaleva et al. 2003, Paskaleva and Atanassova 2000b), Current- 

Voltage (I-V) measurements (Paskaleva and Atanassova 2000a) and noise 

measurements (Fleetwood 1992, Fleetwood et al. 1993). 

 Once the optimum deposition type and conditions are obtained, researchers 

have started to produce thinner and thinner layers of SiO2 in order to increase the 

minimum cell capacitance. Even tough, the perfect conventional SiO2-Si structure is 

used in the production of 256 M-bit and lower capacity DRAMs, for the production of 

higher capacity DRAMs, the minimum cell capacitance must be studied in detail. Up to 

now, most of the strategies to satisfy the minimum cell capacitance have been focused 
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on an increase of the memory cell area as well as on decreasing of the dielectric 

thickness rather than using high dielectric constant materials. In practice, however, there 

is not much room for implementation of high capacitance by scaling down the dielectric 

thickness or expanding the capacitor area for gigabit scale DRAMs. From the thickness 

point of view, as CMOS devices are built with ever smaller features, the thickness of the 

conventional SiO2 gate dielectric must be reduced. Finally, it has been realized that, 

after this long period of geometric scaling, it has been arrived at a point where the 

concomitant scaling of the thickness of the silicon dioxide (SiO2) gate dielectric has left 

it only a few nanometers thick, beyond which the material no longer possesses its 

inherent physical characteristics. As the thickness of silicon dioxide approaches less 

than 1.5 nm, the leakage current becomes higher than 1 A/cm2 and tunneling current 

increases significantly so that increase in power dissipation and heat become critical 

issues. Although great success has been achieved, the current DRAM technology can 

not be extended to the gigabit scale and beyond because the thickness of the 

traditionally used  native oxide SiO2 has approached the physical limits of minimum 

thickness (~1.5 nm). Therefore, finding an alternative to SiO2 is an enormous challenge 

for the materials, device and integration research community. 

Since conventional gate oxide poses problems as device features are scaled 

down, it becomes necessary to develop new gate dielectric materials with properties 

similar to SiO2 and compatible with current complementary metal oxide semiconductor 

technology (Manchanda et al. 2001). These materials should meet the following 

fundamental and practical requirements: 

(a) dielectric constant higher than that of silicon dioxides (K=3.9), 

(b) thermodynamic stability on silicon, 

(c) amorphous after device integration, 

(d) low conduction for low leakage (tunneling current less than 10 mA/cm2) and low 

power consumption, 

(e) high carrier mobility at the dielectric/Si interface. Therefore, low interface state 

density (Dit) (< 2 x 1011 cm-2 eV-1), 

(f) high breakdown strength and acceptable reliability,  

(g) wide band gap, 

(h) negligible hysteresis in capacitance-voltage curves.  

At this point, high dielectric constant insulating layers have become important to 

replace the native silicon dioxide used for the gate dielectric of DRAMS. The use of 
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high-k dielectrics will make it possible to achieve similar charge storage density as 

conventional dielectrics at relatively larger thicknesses. Many high dielectric constant 

materials have been reported that could potentially replace SiO2. These include SiOxNy, 

Ta2O5, TiO2, Y2O3, CeO2, Al2O3, La2O3, SrTiO3, (Ba,Sr) TiO3 and silicates of hafnium 

and zirconium which enable an increase of the packing density of devices without a 

further reduction of insulator thickness (Manchanda et al. 1998, Chin et al. 2000, Wilk 

et al. 2000, Albertin et al. 2003, Dwivedi et al. 1998, Han et al. 2003, Suvorova et al. 

2003, Mikhelashvili and Eisenstein 2000, Atanassova 1999, Chaneliere et al. 1998 and 

references there in (7-14)). These materials exhibit the desired high dielectric constants 

for applications as gate dielectrics in sub 100 nm silicon technology. However, detailed 

studies need to be performed to evaluate the compatibility of these materials with the 

rest of the silicon integrated circuit manufacturing processes.  

Among all the candidates, Ta2O5 layers have received considerable attention 

because of their potential application as dielectric films for storage capacitors in high 

density DRAMs (Kim 2000) ,due to the relatively high dielectric constant (20-40) 

(depending on deposition conditions), high refractive index and adequate dielectric 

breakdown strength (~106 V/cm) (Dimitrova and Atanassova 1998a, Atanassova 1999). 

Historically, Ta2O5 was first studied at 1970’s because of its promising properties as an 

antireflective layer for optical or photovoltaic applications. In the following decades, 

studies have been focused on the ways of obtaining stable oxide layers and their 

potential applications. However, the real emergence of tantalum pentoxide as dielectric 

material happened during the last decade mainly because of an exceptional effort in the 

development of electronics devices using tantalum oxide films as dielectric layers 

(Chaneliere et al. 1998, Ezhilvalavan and Tseng 1999). Also, these studies have been 

motivated by the dramatic scaling down of silicon integrated circuits that has pushed 

conventional dielectric films close to their physical limit in terms of reduction of 

thickness and dielectric strength. 

Tantalum pentoxide (Ta2O5) has useful optical and dielectric properties. It is a 

fairly stable oxide with an orthorhombic or hexagonal structure, a melting point of 1870 

°C and a density of 8.27 g cm-3 (Pierson 1992). It is moderately hard with a Vickers 

hardness of 1400 kg mm-2. It has a refractive index of 2.1-2.2. It is an electrical insulator 

with a high dielectric constant (25-35). In addition, Ta2O5 films find applications in 

various fields such as dielectric for storage capacitors, gate insulators in metal-oxide-

semiconductor (MOS) devices, insulating layer in thin film electroluminescent devices, 
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sensitive layer in biological and chemical sensors, optical coatings, anti-reflection 

coatings and coatings for hot mirrors (Ezhilvalavan and Tseng 1999). 

The properties of Ta2O5 layers depend on stoichiometry, microstructure (grain 

size distribution), film thickness, characteristics of electrode and homogeneity of the 

film. Ta2O5 film growth method significantly affects above parameters and consequently 

its dielectric properties. A variety of techniques such as RF magnetron sputtering, 

reactive sputtering, thermal oxidation, Chemical Vapour Deposition (CVD) (excimer 

laser assisted, low temperature, low pressure, photo, plasma, electron cyclotron 

resonance (ECR), Atmospheric Pressure, metal organic (MOCVD), Liquid source), 

vacuum evaporation, atomic layer deposition, sol-gel method and ion assisted 

deposition have been examined and used to deposit best quality Ta2O5 insulating layers 

(Liu et al. 2004, Boughaba et al. 2000, Zhang et al. 1998, Four et al. 1999, Mooney at 

al. 1999, Boyd and Zhang 2000, Duenas at al. 2000, Atanassova and Spassov 1998, 

Atanassova and Spassov 2002, Atanassova 1999, Atanassova and Spassov 1998, 

Atanassova and Spassov 2002, Ezhilvalavan and Tseng 1999, Chaneliere et al. 1998, 

and references there in). Regardless of the method by which they are formed, however, 

the process must be economical and the resultant films must exhibit the following 

characteristics; good thickness uniformity, high purity and density, controlled 

composition stoichiometries, high degree of structural perfection, good electrical 

properties, excellent adhesion and good step converge.  

After deposition, the physical, structural, optical, chemical and electrical 

properties of tantalum pentoxide films on silicon have been studied in detail (Chaneliere 

et al. 1998, Ezhilvalavan and Tseng 1999 and references there in). The characteristics of 

the insulating layers have been examined by using the methods; X-ray diffraction 

(XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), 

secondary ion mass spectrometry (SIMS), Fourier transform infrared (FTIR) 

absorbance, Capacitance-Voltage (C-V) Spectroscopy and Conductance Spectroscopy. 

X-ray diffraction (XRD) and structural analyses show that, tantalum pentoxide 

has a crystalline or an amorphous structure depending on its deposition temperature. It 

is confirmed that the Ta2O5 films annealed below 600 °C do not show any notable 

crystallization and the crystallization temperature of Ta2O5 film grown by reactive 

sputtering lies between 650 °C and 700 °C (Kimura et al. 1983). The results were also 

consistent with other reports for anodically or thermally grown Ta2O5 film (Harvey and 

Wilman 1961). More recently, another study reported similar crystallization behavior of 
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Ta2O5 films deposited by LPCVD process (Chiu et al. 1997). It is therefore clear that 

the crystallization temperature of Ta2O5 film does not depend on the method by which 

the film is grown. Crystalline tantalum pentoxide presents principally two phases; an 

orthorhombic phase and a hexagonal phase.  

The optical properties such as the optical bandgap of tantalum pentoxide were 

determined by transmission and absorption spectroscopy (Burte and Raush 1995). From 

transmittance measurements, the bandgap value was found to be 5.28 eV for amorphous 

films. From absorbance measurements, values ranging from 4.2 to 4.4 eV for 

amorphous films and 3.9 to 4.5 eV for crystalline films were obtained. Tantalum 

pentoxide is transparent in the near UV spectral region (λ > 300 nm), which is an 

important point for optoelectronic devices that operate in the ultraviolet, such as 

astronomical charge-coupled device (CCD) imagers and space based photovoltaic 

devices.  

Electrical characterization results show that, the dielectric constant value 

obtained for tantalum pentoxide depends upon the sample characteristics and the 

experimental preparation method. It has also been demonstrated that the dielectric 

constant of Ta2O5 layers shows thickness dependence, the dielectric constant decreases 

significantly with decreasing the Ta2O5 layer thickness (Atanassova 1999). The 

dielectric permittivity of amorphous Ta2O5 was found to be in the range 22-28 (Kukli et 

al. 1995, Devine et al. 1996). But values up to 40 have been reported for non-

amorphous Ta2O5 films (Nakagawa and Okada 1990). Recent studies have shown that 

the dielectric constant can be as high as ~60 for crystalline Ta2O5 on Si (Chaneliere et 

al.). Crystalline Ta2O5 exhibits a higher dielectric constant than amorphous Ta2O5. 

Moreover, the crystalline phases of tantalum pentoxide show an anisotropic character. 

Depending upon the crystal orientation, the dielectric constant could vary over a wide 

range, which would result in uncertainty in the capacitance per unit area if used to 

produce capacitors. The crystallographic orientation dependence of Si substrates on the 

dielectric constant of Ta2O5 was reported by Seki et al. (Seki et al. 1984). They have 

noticed that for each substrate, the dielectric constant of deposited Ta2O5 increases 

monotically with its thickness and there was a dependence of the dielectric constant on 

the substrate orientation. Therefore, an amorphous structure is needed for 

microelectronics applications, unless the crystal orientation can be controlled in order to 

obtain the same characteristics from one component to another.  
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As another issue, the effect of oxidation on the dielectric constant of the Ta2O5 

films was reported by some researchers (Atanassova et al. 2002a, Atanassova et al. 

2002b, Park and Im et al. 1992). They showed that the dielectric constant obtained from 

an Al-Ta2O5-Si capacitor depends on the thickness of the oxide and increases with 

increasing oxidation temperature.  

Another important parameter that affects the dielectric constant of Ta2O5 is the 

formation of an inevitable thin transition layer (in general SiO2). This thin oxide may 

drastically reduce the dielectric constant of the system since the dielectric constant of 

SiO2 is equal to 3.9, which is about 6 times lower than for amorphous Ta2O5. The global 

dielectric constant of the Ta2O5-SiO2 system can be evaluated by using a simple model 

which supposes that the two dielectric layers are represented by two capacitors in series 

with the dielectric constant of silicon dioxide and tantalum pentoxide respectively. The 

effective dielectric constant of the sandwich (εeff) is then given by the following 

equation: 

                

    (1.1) 
( )d ds t s

e f f d dt s s t

tε ε
ε

ε ε

+
=

+ 

 

where ds and dt are the thicknesses of SiO2 and Ta2O5 respectively, and εs and εt are the 

dielectric constants of SiO2 and Ta2O5 respectively. For example, if we consider 2 nm of 

SiO2 and 15 nm of Ta2O5, the effective dielectric constant will be equal to 15.6, 

substantially lower than the ideal value of εt for pure amorphous Ta2O5 (εt ~26). 

 In addition, the non-ideal effects such as charges localized inside the oxide layer 

and at the silicon-insulator interface are of great importance. In the ideal metal-oxide-

semiconductor (MOS) system, the oxide layer is assumed to be free of charges, and the 

insulator-semiconductor interface is assumed to be perfect. However, the deposition 

conditions, type and the environment causes non-ideal effects in the MOS structure by 

localizing charges inside the oxide layer or by creating interface trap states at the 

insulator-silicon interface. The electrically active defects localized in the insulator or at 

the insulator-semiconductor interface lead to the presence of the following different 

charges: 

(a) oxide trapped charges which are due to electrons and holes trapped in the bulk of 

the insulator, 
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(b) mobile ionic charges which are due to ionic impurities present in the bulk of the 

insulator, 

(c) fixed oxide charges which are due to structural defects localized in the insulator, 

near the insulator-semiconductor interface, and 

(d) interface trapped charges due to holes and electrons captured by trapping centers 

localized at the insulator-semiconductor interface.  

The total of the oxide charges present in the oxide layer (the fixed oxide charges, mobile 

ionic charges and oxide trapped charges) is called as the effective oxide charge and it is 

represented by Qeff, and the density of interface trap states caused by the lattice 

mismatch problem between Ta2O5 and silicon is represented by Dit. The level of Qeff 

and Dit are determining the conduction mechanism through the oxide layer and are 

directly related with the quality of the device. For example, interface trap states captures 

charges from the silicon thus, lowering the total capacitance of the system. For this 

reason, it is crucial to evaluate the number of these charges and  the resultant value must 

be kept as low as possible by optimizing the deposition conditions for the best device 

performance. There are many studies done for the determination of the level of these 

charges (Dimitrova and Atanassova 1998a, Dimitrova and Atanassova 1998b, 

Novkovski et al. 2005, Spassov et al. 2000, Atanassova et al. 2002a, Atanassova and 

Paskaleva 2002, Atanassova 1999, Ozdag et al. 2005). For the as-deposited samples 

values up to ~1012 eV-1cm-2 have been reported. However this level is quite high when 

compared with the level present in the conventional SiO2-Si system (~1010 eV-1cm-2). 

For this reason, researchers are now focused on the pre- and post-deposition methods 

such as rapid thermal annealing or rapid thermal nitridation which can enable a decrease 

on the level of effective oxide charge and interface trap states as low as ~1011 eV-1cm-2.   

 Concerning the leakage current density, common values are below 10-6 and 10-7 

A/cm2 under an applied electric field up to 3MVcm-1 (Atanassova and Paskaleva 2003, 

Paskaleva et al. 2000, Chaneliere et al. 1998). However, these results greatly depend on 

the deposition methods and parameters like temperature, pressure etc., and on the pre- 

and post-deposition annealing treatments like annealing technique, gases employed, 

duration and temperature, presence of an interfacial layer and nature of this layer, which 

strongly influence the level of leakage current by playing an important role on the 

quality of the tantalum pentoxide layer. In addition, two main conduction mechanisms, 

Schottky emission and Poole-Frenkel effect were studied to explain the current transport 
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in tantalum pentoxide thin films (Atanassova and Paskaleva 2002, Chaneliere et al. 

1998). 

 Chemical analyses result in that tantalum pentoxide is highly resistant to many 

chemicals depending upon its preparation technique and can in fact be employed as a 

protective coating material against corrosion. 

 Even tough so much work has been done on Ta2O5, its not completely 

understood yet. Although Ta2O5 is now in the closest position to practical application, 

process optimization and detailed reliability data of this material need to be established 

before it can be confidently accepted into mass production and successfully integrated 

into full fabrication process of microelectronics devices. 

 

1.1  Thesis objective 
 

The objective of this thesis is to examine the electrical characteristics of Ta2O5 

insulating layers in detail because of its promising properties to replace the native 

silicon dioxide used for the gate dielectric of DRAMS. The most fundamental device 

structure for investigation of nearly all the electrical properties of a dielectric material is 

the metal-oxide-semiconductor (MOS) structure. In this thesis, Ta2O5 insulating layer 

deposited under different preparation conditions on a p-type Silicon (Si) substrate are 

used to form metal-oxide-semiconductor (MOS) capacitors. Electrical properties of the 

MOS capacitors are studied in detail using capacitance-voltage (C-V) spectroscopy at 1 

MHz. Conductance-voltage and current-voltage measurements were also performed to 

obtain additional information about the devices. 

Using the theory of ideal MOS capacitors, theoretical capacitance-voltage 

characteristics have been calculated using a computer program. Experimental high 

frequency capacitance-voltage curve of each sample was compared with the ideal curve 

of the same sample. Dielectric constant of insulating layer, doping concentration of 

substrate, flat band voltages, maximum and minimum capacitance values, trapped oxide 

charges and interface trap density present at Si-Ta2O5 interface have been derived from 

the ideal and experimental high frequency C-V curves. Detailed calculations proposed 

in the Terman’s method were used to calculate the interface trap density present in the 

band gap of crystalline silicon. The results of MOS capacitors with different Ta2O5 
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insulating layers were compared with a reference sample, which has a native SiO2 layer 

with a standard electronic property. 

In order to understand the electronic quality of Ta2O5 insulating layers deposited 

on Si substrate and interface quality of Si-Ta2O5, two different approaches have been 

carried out. First, Ta2O5 insulating layers were directly deposited on the polished p-type 

substrate using the magnetron sputtering method with different thickness values. In the 

second approach, rapid thermal nitridation process under N2O and NH3 gas environment 

has been carried out on the polished p-type silicon substrate. Then, 20 nm thick Ta2O5 

insulating layers were deposited on the nitrided surface of p-type silicon substrate. 

Finally, metal (Al) electrodes were evaporated to form the MOS capacitors. Eventually, 

devices were tested and detailed characterization of devices has been carried out using 

capacitance-voltage spectroscopy and results were compared with those obtained from 

the reference MOS capacitor with native oxide SiO2.   
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CHAPTER 2 
 
 

EXPERIMENTAL 
 

  

Si

Ta2O5 – 20 nm
Al

SiOxNy – 1.5-2 nm

Si

SiO2 – 20 nm
Al

Set 1 Set 2 Reference 
Sample

Si

SiO2 – 1-2 nm
Ta2O5 – 15-25 nm

Al

Si

Ta2O5 – 20 nm
Al

SiOxNy – 1.5-2 nm

Si

SiO2 – 20 nm
Al

Set 1 Set 2 Reference 
Sample

Si

SiO2 – 1-2 nm
Ta2O5 – 15-25 nm

Al

2.1  Sample Preparation 
 

The samples that are used in this study are prepared in the form of Al-Ta2O5-Si 

MOS capacitors by using three different deposition methods for each layer present in 

the structure. The substrate is prepared by using Czochralski method, and then the oxide 

layer is formed by using the RF-magnetron sputtering method. Finally metal electrodes 

are formed by using thermal evaporation technique. The samples are deposited at 

Institute of Solid State Physics, Bulgarian Academy of Sciences, in Sofia, Bulgaria. The 

schematic view of three groups of samples that are used in this study can be seen in 

Figure 2.1. 

 

 

 

 

 

 

 

Figure 2.1 Schematic view of MOS structures that are used in this study 

  

Czochralski method is a technique that is used in making single crystal silicon. 

A 2-3 mm diameter silicon seed crystal is rotated and lowered into a bath of molten 

Silicon (T> 1400 °C). Because of the temperature difference, some of the melt freezes 

onto the seed. Finally, the solid seed crystal is rotated and slowly extracted from the 

pool of molten Si. This method requires a careful control to give crystals desired purity 

and dimensions. The seed can be sliced into hundreds of smaller pieces that are called 

wafers and each wafer yields hundreds or thousands of integrated circuits. Depending 

on the purpose, silicon can be doped during the deposition. In this study, p type 
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crystalline Si that is formed by doping Si with Boron atoms is used as the substrate part 

of the MOS structure. 

For sample Set 1, tantalum pentoxide films with thicknesses of 15 – 25 nm were 

deposited on p-type (100), 15 Ωcm Si, by RF magnetron sputtering from a tantalum 

target in an Ar atmosphere. The system base pressure was 6x10-4 Pa, the working gas 

pressure 3 Pa, the RF power density 2.2 W/cm2, the deposition rate, ν = 9.3 nm/min, 

and the substrate temperature Ts = 300K. After the deposition, the Ta films were 

oxidized in dry oxygen at atmospheric pressure at 873 K with an O2 flow rate of 5.1 

min-1. The thickness tox of the Ta2O5 layers was measured by ellipsometry (λ = 632.8 

nm) and layers with tox = 15, 20 and 25 nm were investigated. For the electrical 

characterization, MOS capacitors were fabricated by evaporation of Al dots with a 

thickness of 500 nm, through a shadow mask with a gate electrode area of 1.96x10-3 

cm2. For this group, post metallization annealing was carried out in H2 at 723 K for 1h. 

For sample Set 2, tantalum pentoxide layers of 20 nm were deposited on p-type 

(100), 3-5Ωcm Si wafer by using RF magnetron sputtering in O2 gas environment. 

Before the deposition of Ta2O5, a rapid thermal nitridation (RTN) process is applied for 

10 seconds in a clean room of class 10 in Germany by using N2O and NH3 gases in the 

temperature range between 700-850 °C. After RTN, a silicon oxynitride layer of 

thickness ~1.5 nm was detected at the Si surface. The deposition of Ta2O5 insulating 

layer is carried out by using RF-magnetron sputtering technique. However, in this case 

formation of Ta2O5 is directly obtained during sputtering process with a Ta target in an 

oxygen rich environment. Hence, sputtered Ta atoms react with oxygen and form Ta2O5 

insulating layer on the substrate.   The substrate temperature is held at 220 °C. Lastly, 

Al electrodes are evaporated with four different gate areas such as S1= 2.5x10-3 cm2, 

S2= 6.25x10-4 cm2, S3= 2.25x10-4 cm2 and S4= 1x10-4 cm2, for the examination of the 

changes in the capacitance and the dielectric constant depending on the capacitor area. 

Finally, a reference sample of Al-SiO2-Si is prepared by thermal oxidation of 

SiO2 on p-silicon to compare electrical properties of high dielectric constant insulators 

with that of conventional oxides.   

There are mainly two sets of Ta2O5 MOS capacitors with or without nitridation 

process and a sample of SiO2 MOS capacitor as a reference conventional oxide that are 

used in this study. The detailed information about the process conditions of the samples 

are given in the Table 2.1. 
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Table 2.1 Deposition parameters of MOS structures used in this thesis 

Set 1- Rf Magnetron Sputtered Ta2O5 Without Nitridation 

Sample Name Composition RTN Process tox (nm) Area (cm2) 

N 3 Al- Ta2O5-(SiO2)-Si - 15 1.96x10-3

N 6 Al- Ta2O5-(SiO2)-Si - 20 1.96x10-3

N11 Al- Ta2O5-(SiO2)-Si - 25 1.96x10-3

Set 2- Rf Magnetron Sputtered Ta2O5 With Nitridation 

Sample Name Composition RTN Process tox (nm) Area (cm2) 

RN 1 Al-Ta2O5-(SiOxNy)-Si N2O 700 °C 20 2.5x10-3-1x10-4

RN 2 Al-Ta2O5-(SiOxNy)-Si N2O 800 °C 20 2.5x10-3-1x10-4

RN 3 Al-Ta2O5-(SiOxNy)-Si N2O 850 °C 20 2.5x10-3-1x10-4

RN 4 Al-Ta2O5-(SiOxNy)-Si NH3 700 °C 20 2.5x10-3-1x10-4

RN 5 Al-Ta2O5-(SiOxNy)-Si NH3 800 °C 20 2.5x10-3-1x10-4

Reference Sample – Thermal SiO2

Sample Name Composition RTN Process tox (nm) Area (cm2) 

SiO2 Al-SiO2-Si - 20 1.96x10-3
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2.1  Characterization Techniques 

 
In this section, the experimental method of Capacitance-Voltage Spectroscopy 

used for the electrical characterization of MOS devices will be explained in detail. 

 

2.2.1 Capacitance Voltage (C-V) Spectroscopy 
 

This method is a fast and accurate method in the determination of electronic 

quality of MOS devices. It is the first time that this experimental setup, Model 82-DOS 

Simultaneous C-V System, is established as one of the main goal of this thesis. The 

experimental setup is shown in Figure 2.2. Model 82-DOS is a computer controlled 

system of instruments designed to make simultaneous C-V, quasistatic C-V and high 

frequency (1 MHz) C-V measurements on MOS capacitors. The system includes a 

Keithley 590 C-V Analyzer for high frequency C-V measurements, and a Keithley 595 

Quasistatic C-V Meter for low frequency C-V measurements. Additionally, Keithley 

230 Programmable Voltage Source and Keithley 5951 Remote Input Coupler are used 

to apply voltage and control the communication between the instruments and the 

computer. A Keithley IEEE 488 Interface card is used to provide General Purpose 

Interface Bus (GPIB) communication between the instruments and the computer. 

Software package called Model 82-DOS is used for the control of the experimental 

setup, data collection and acquisition.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Simultaneous Capacitance-Voltage (C-V) Setup 
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After making necessary connections between the instruments and the computer 

by using the system block diagram provided in the users’ manual, the software is 

installed by using the disks provided by Keithley. If the system is newly established or a 

new system configuration is present, there are some necessary steps that have to be done 

before beginning to the measurement. First of all, leakage current, stray capacitance 

detection and cable correction by using correction capacitors supplied by Keithley 

should be performed according to the steps explained in the manual. Later, the 

necessary modifications must be done on “Material.con” file for the constants defined 

for the sample studied, because the software is prepared for Al-SiO2-Si MOS structure. 

For example, the dielectric permittivity of Ta2O5 is rewritten in the file for the place of 

dielectric permittivity of SiO2 etc.         

 For the measurement, the sample is placed in a homemade sample box which is 

made up of aluminum metal to constitute a Faraday cage. It is important to place the 

sample in a Faraday Cage where the electric field vanishes inside, because of the 

sensitiveness of the measurement method which is based on the measurement of the 

charge or the capacitance versus applied voltage. In addition, the Faraday Cage must be 

lightproof, since the high quality MOS capacitors are excellent light detectors. The 

connections (gate and substrate) of the sample to the system are provided by using a 

homemade and designed probe station with micro manipulators to permit precise 

motion of the probe wire in two mutually perpendicular directions on the wafer. The 

probe wire used for the connection of gate is chosen to be gold to provide a good 

contact. The gold wire is sharpened by the process of electrolysis and sanding to be able 

to use it for smaller gate contact areas. This design with micro manipulators allows the 

measurement of different dots on the same wafer which is necessary for the reliable data 

collection. The contacts are placed on the sample under the optical microscope, which 

allows the choice of a good contact area. Finally, the sample holder is placed into the 

Faraday Cage for the measurement.  

After placing the sample inside the Faraday Cage, the first step is to run a 

diagnostic C-V sweep to determine device parameters and to check to see that proper 

start and stop voltages have been programmed for the accumulation and inversion of the 

curve. The main menu of the software is shown in Figure 2.3.  

By selecting option 3 in the main menu, it is possible to reach the sub menu for 

the diagnostic C-V measurement which is shown in Figure 2.4.  
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  Keithley Capacitance Measurement System 
  (c) copyright Keithley Instruments 1991 
             Version V2.0 
 ----------------------------------------- 
       ** MODEL 82 MAIN MENU ** 
 
 1. Reset Model 82 CV System 
 2. Test and Correct for System Leakages and Strays 
 3. Compensate for Rseries and Determine Device Parameters 
 4. Make CV Measurements 
 5. Analyze CV Data 
 6. Return to DOS 
 
 
NOTE: ESC always returns user back one MENU level.

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Model 82 Main Menu 

 

 
 
    ** Characterization of Device Parameters ** 
 
     OPEN CIRCUIT SUPPRESS SHOULD PRECEDE EACH MEASUREMENT 
 
 1. Set Measurement Parameters 
 2. Run Diagnostic CV Sweep 
 3. Graph Diagnostic Sweep Data to Determine INVERSION & ACCUMULATION   
Voltages. 
 4. ACCUMULATION: Determine Rseries, Cox, Tox, and/or Area. 
 5. INVERSION: Determine Cmin and Equilibrium Delay Time. 
 6. Return to Main Menu 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Characterization of device Parameters Menu  

 

Before starting the measurement, the most important thing is to set measurement 

parameters, such as start and stop voltages, delay time, step voltage etc. by selecting 

option 1 in Figure 2.4. Measurement parameter list is shown in Figure 2.5. 

After setting the measurement parameters, it is possible to start the diagnostic C-

V sweep. At the end of the sweep, a graph of capacitance versus voltage is plotted. A 

typical C-V graph can be seen in Figure 2.6. If the sample shows desired capacitance 

voltage characteristics, then by biasing the sample into accumulation and inversion, 

important device parameters such as series resistance, oxide capacitance, area or 
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thickness, minimum capacitance and optimum delay time can be determined using 

options 4 and 5 in parameters menu shown in Figure 2.4. 

 
 
                       ** Measurement Parameter List ** 
 
 Range:       2        Enter R1 for 200pF, R2 for 2nF 
 Freq :         2        Enter F1 for 100KHZ, F2 for 1MHZ 
 Model:       1        Enter M1 for parallel, M2 for series 
 Start V:      2.00 V.     Enter An, -120 <= n <= 120 
 Stop  V:    -2.00 V.     Enter On, -120 <= n <= 120 
 Bias  V:     0.00 V.     Enter Bn, -120 <= n <= 120 
 TDelay:     0.07 sec.   Enter Tn, 0.07 <= n <= 199.99 
 Step V:      20 mV.    Enter S10, S20, S50 or S100 
 CCap:        1        Enter C1 for leakage correction off, C2 for on 
 Filter:        2        Enter I1 for filter off, I2 for on 
 
Number of samples =    93               Sweep will take =     0.4 minutes. 
 
NOTE:  1)  Keep start V and stop V within 40 volts of each other. 
             2)  Keep number of samples within 4 and 1000 points with filter off. 
             3)  Keep number of samples within 50 and 1000 points with filter on. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Measurement parameter List Menu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 High and Low frequency C-V graphics of a MOS device. 
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Once the optimum device parameters are obtained, it is possible to run a real C-

V sweep by selecting option 4 in Figure 2.3. In this case the sub menu for the C-V 

measurement is shown in Figure 2.7. By selecting option 2 in Figure 2.7, a C-V sweep 

can be started manually.  

 
 
    ** Device Measurement and Analysis ** 
 
     OPEN CIRCUIT SUPPRESS SHOULD PRECEDE EACH MEASUREMENT 
 
 1. Set Measurement Parameters 
 2. Manual Start CV Sweep 
 3. Auto Start CV Sweep 
 4. Analyze Sweep Data 
 5. Return to Main Menu 

 

 

 

 

 

 

 

 
Figure 2.7 Device Measurement and Analysis Menu.  
 

Before starting the measurement, again measurement parameters can be 

redefined depending on the purpose. For example, step voltage can be chosen as small 

as possible (10 mV) in order for the program to take as many data points as possible for 

the reliability of the analysis. At the end of the sweep, option 4 in Figure 2.7 can be 

chosen for the analysis of the sweep data. The graphs that the software can plot are seen 

in Figure 2.8 and the analyses are explained in detail in the users’ manual. 

By using menu in Figure 2.8, the data array can be saved to a file and the graphs 

can be plotted. However, there is an important point to be careful about the analysis. 

The software uses both high and low frequency C-V results for the determination of 

some parameters such as density of Interface trap states (Dit). Nevertheless, low 

frequency C-V measurements of high dielectric constant insulators are a rather difficult 

task. It should be noted that low frequency C-V characteristics obtained by the ramp 

voltage or the feedback charge-voltage method have not been successfully investigated 

for Ta2O5 capacitors. This can be explained by the fact that the leakage current is higher 

than the displacement current for most gate voltages. For this reason, by using the data 

file obtained at the end of the C-V measurement and by using Terman’s method defined 

for MOS devices, interface trap density value can be analyzed manually. The detailed 

information about the analysis and the physics of MOS devices will be explained in the 

next chapter.     
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       ** SWEEP DATA ANALYSIS ** 
  1. Save Measurement Data Array to File 
  2. Load Measurement Data Array from File 
  3. Display Data Arrays 
  4. Display Analysis Constants 
  5. Graph Quasistatic C vs. Gate Voltage 
  6. Graph High Frequency C vs. Gate Voltage 
  7. Graph Both Cq and Ch vs. Gate Voltage 
  8. Graph Q/t Current vs. Gate Voltage 
  9. Graph Conductance vs. Gate Voltage 
 10. Graph Doping Profile vs. Depth 
 11. Graph Ziegler Doping Profile vs. Depth 
 12. Graph Depth vs. Gate Voltage 
 13. Graph 1/Ch^2 vs. Gate Voltage 
 14. Graph Dit vs. Energy 
 15. Graph Band Bending vs. Gate Voltage 
 16. Graph Quasistatic C vs. Band Bending 
 17. Graph High Frequency C vs. Band Bending 
 18. Return to Previous Menu 
 
 
Enter number to select from menu : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Sweep Data Analysis Menu.   

  

The dielectric constant, doping concentration and flat band voltage values were 

determined from the experimental high frequency C-V curves. Theoretical ideal C-V 

characteristics were calculated using a computer program and equations defined for 

MOS devices. The effective oxide charge density, Neff, and the density of interface 

defect states, Dit, were calculated from the high frequency C-V curves using Terman’s 

method.  
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CHAPTER 3 

 
PHYSICS OF MOS DEVICES AND ANALYSIS 

 

3.1    Ideal Metal-Oxide-Semiconductor (MOS) Energy Band Diagrams 
 

Metal-oxide-semiconductor (MOS) capacitor is one of the important solid state 

devices. It is constructed using a p-type or n-type single crystalline semiconductor wafer 

as substrate. An oxide layer is formed using different deposition methods and finally 

metal electrode is evaporated on top of the device, which is also called gate electrode. 

Other end of the substrate has an ohmic contact. In general, a silicon wafer is used for 

the substrate and native oxide SiO2 is formed by using dry or wet oxidation process. 

Finally, aluminum gate electrode is evaporated to complete device fabrication. Cross-

section of Metal-Oxide-Semiconductor structure is shown in Figure 3.1, where VG is the 

applied gate voltage. For the ideal MOS capacitor, both the oxide and the oxide-

semiconductor interface are assumed to be free of charges and defect states. Depending 

on the polarity and magnitude of the applied gate voltage, the carrier concentration and 

band structure of semiconductor changes resulting in different electrical characteristics 

of the MOS capacitor. In general MOS capacitor operates at three different bias 

conditions. 
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Semiconductor

Oxide
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Figure 3.1 Ideal MOS Structure with applied gate voltage VG 

 

When VG = 0, the structure is in thermal equilibrium. At this condition, the energy band 

diagram of a MOS structure with a p-type substrate is shown in Figure 3.2, where mφ  is 
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the metal work function, iχ is the electron affinity of insulator, χ  is the electron affinity 

of semiconductor, Eg is the energy gap of semiconductor, Bφ  is the potential difference 

between the metal Fermi level and conduction band of the insulator, Bψ  is the potential 

difference between the intrinsic Fermi level (Ei) and Fermi level (EF) inside the bulk, EC 

is the conduction band and EV is the valance band of the semiconductor. The 

importance of these energy barriers is that they prevent the free flow of carriers from the 

metal to the silicon or vice versa. Thus the application of a bias across the MOS 

capacitor does not result in current flow. Rather, an electric field is established in the 

oxide by surface charge layers that form in the metal and on the silicon-oxide interface. 

        

 

 

 

 

 

 

 

 
Figure 3.2 Energy-Band diagram of ideal MOS structure in thermal equilibrium 

constructed from a p-type semiconductor substrate 

 

Depending on the parameters defined above, an ideal MOS structure can be 

explained as follows: 

( )
2

g
ms m s m B

E
q

φ φ φ φ χ ψ= − = − + + = 0

(a) When the applied gate voltage VG = 0, then the work function difference smφ , 

between the semiconductor sφ   and the metal mφ  becomes zero, which means the 

energy bands are flat. Then from Figure 3.2, the work function difference can be written 

as follows: 

 

 (3.1) 

 

                                                                                              20



(b) When a gate voltage VG≠ 0 is applied to an ideal MOS structure, the charges are 

distributed at the semiconductor-insulator or metal-insulator interface with equal 

amount and opposite polarities, 

(c) It is assumed that under applied gate voltage VG, there is no charge transfer 

throughout the insulator, which means that it has an infinite resistance. 

When a positive or negative gate voltage is applied to an ideal MOS structure, 

there are mainly three working conditions present in the semiconductor: 

(1) Accumulation: When a negative voltage VG is applied to metal terminal of MOS 

structure, the metal part becomes negatively charged and the semiconductor part 

becomes positively charged, then there occurs an internal electric field in the direction 

of upwards from semiconductor to metal. This electric field piles up holes of p-type 

semiconductor to the semiconductor-oxide interface, where an accumulation region of 

holes is obtained. The change in the free carrier concentration at the interface also 

changes the band diagram of semiconductor at the interface as shown in Figure 3.3. Free 

electron, n, and hole, p, concentrations of semiconductor at the oxide-semiconductor 

interface are explained as:  

  exp[ ( ) / ]
exp[ ( ) / ]

V F V

C C F

p N E E kT
n N E E kT
= − −

= − −        (3.2)  

 

where EF is the Fermi level energy, EV is the valance band energy and EC is the 

conduction band energy. As the hole concentration (p) increases at the interface, EF-EV 

term must decrease. Therefore, the valance band, conduction band and intrinsic Fermi 

level bends up at the interface. The resulting band diagram and MOS structure in 

accumulation are shown in Figure 3.3. Then, MOS capacitor in this condition behaves 

like a parallel plate capacitor and system capacitance becomes equal to that of oxide 

capacitance, Cox. 

(2) Depletion: When a positive voltage VG is applied to metal terminal of MOS 

structure, the metal part becomes positively charged and the semiconductor part 

becomes negatively charged. Then, there occurs an internal electric field in the direction 

of downwards from metal to semiconductor. Under the influence of the electric field 

holes at the interface of semiconductor are pushed towards the bulk silicon. At the 

oxide-semiconductor interface, majority carrier hole density decreases. This surface 

region is called “depletion region” or “space charge region”. Only ionized acceptor 

atoms fixed to the silicon network remain in the depletion region. They are negatively 
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charged. Similarly from Equation 3.2, the decrease of hole concentration at the interface 

causes an increase in (EF-EV), which results in the bands to bend down at the 

semiconductor-oxide interface. At this condition, cross section and energy band diagram 

of MOS capacitor are exhibited on Figure 3.4. 

 

 

 

 

 

 

 
Figure 3.3  Cross-section and energy band diagram of MOS capacitor in 

accumulation region 
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Figure 3.4 Cross-section and energy band diagram of MOS capacitor in depletion 

region 

 

As we continue to apply positive gate voltages, bands continue bending down 

and conduction band EC is getting closer and closer to the Fermi level EF. At a certain 

point, electron concentration at the surface of the semiconductor becomes equal to the 

hole concentration inside the bulk of semiconductor, where intrinsic Fermi level Eİ 

reaches to the Fermi level EF. At this voltage value of VG=VT, surface of semiconductor 

behaves like an intrinsic semiconductor with equal electron and hole concentrations. 

This condition is called the threshold condition.  
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(3) Inversion: When voltages VG higher than positive gate voltages, VG>VT, are 

applied to the metal terminal, minority carrier electrons in the bulk of p-type silicon are 

accelerated towards the semiconductor surface under strong electric field. In this case 

electron concentration at the surface becomes higher than the hole concentration in the 

bulk. As a result, energy bands continue bending down. Energy difference between EC 

and EF decreases and semiconductor surface behaves like n-type semiconductor 

according to Equation 3.2. 

   

 

 

 

 

 
 

Figure 3.5 Cross-section and energy band diagram of MOS capacitor in inversion 

region 

  

In order to describe three different cases defined above, two important 

controlling parameters in this structure are defined. These are  the bulk potential Bψ  and 

the surface potential Sψ  respectively as given in Equation 3.3. Bulk potential is the 

potential difference between the intrinsic Fermi level and Fermi level inside the bulk, 

where surface potential is the potential difference between the intrinsic Fermi level 

inside the bulk and at the interface.  

 

 
F i

B
E E

q
ψ −

= b ib is
S

E E
q

ψ −
= (3.3) 

 

where the internal parameter Sψ  can be controlled by the external parameter VG as 

given in Equation 3.4. By applying a varying gate voltages VG, the charge concentration 

at the surface of semiconductor is changed and hence the surface potential and the total 

capacitance of the system are changed accordingly. Similarly depending on the polarity 

of the applied gate voltage, the polarity of the surface potential changes. 
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G OXV V Sψ= + (3.4) 

 

When applied voltage VG changes from negative values to zero and to positive 

values, the sign and magnitude of charge on the silicon surface will change. Then this 

additional change will introduce a capacitance series with the oxide capacitance. The 

calculation of the total capacitance of the MOS system under different bias conditions 

will be explained in detail the following section of this chapter in detail.  

 

3.2 Theoretical Capacitance of Ideal MOS Structure 
 

Analysis of the behavior of small signal capacitance variation with bias voltage 

of a MOS capacitor provides further understanding of the electrical characteristics of the 

MOS system. The static and differential capacitances differ for the MOS capacitor 

because the charge on the MOS capacitor varies nonlinearly with the gate voltage. The 

differential capacitance per unit area can be written as: 

 

'' Si
diff

G

dQC
dV

=
      (3.5) 

 

 
Similarly, the oxide potential can be written as: 

 

 
' '

'
Si OX Si

OX OX OX
OX OX

Q t Q
V E t

Cε
= = =    (3.6) 

 

                               

Writing the oxide capacitance given in Equation 3.6 back in Equation 3.4, and 

rearranging for Equation 3.5 results in the following Equation;  

 

 
   (3.7)

  

1 1 1
' 'diff ox Si'C

= +
C C
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with 

  (3.8) 
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( ) ( ( ) ( ))D Ax q N N p x n xρ + −= − + −

C ox   Oxide

C Si     Si

 Gate

2

2

( )

si

d x
dx
ψ ρ

ε
= −

 

 

Equation 3.7 represents the total differential capacitance of the system as the 

series combination of a constant oxide capacitance caused by the insulating layer and a 

variable silicon capacitance due to the depletion region which depends on the applied 

gate voltage through  Sψ   as it is seen in Figure 3.6.   

 

 

 

 

 

 
Figure 3.6 Capacitance equivalent circuit of a MOS capacitor, where total 

capacitance is a series combination of Cox and CSi

 

The evaluation of C'Si as given by Equation 3.8 requires the expression of 

depletion region charge Q'Si as a function of  Sψ  . The electric field ESi, hence the 

charge in silicon Q'Si can be obtained from one-dimensional Poisson equation 

 

     (3.9) 
 

 

where ρ(x) is the total space-charge density in the depletion region as: 

  

   (3.10) 

 

where NA
- is density of ionized acceptors, ND

+ is density of ionized donors, p is the free 

holes, n is the free electrons and q is the electric charge. Free carrier concentrations p(x) 

and n (x) are expressed as: 

 

'' dQC Si
Si

Sdψ
=' OXC OX

OXt
ε

=



  
             (3.11) 

  

( ( ) ) ( ( ) )

 
where, 

 

  (3.12) 

 

Equation 3.12 together with Equation 3.11 gives 

 

    (3.13) 

 

 
similarly 

 

 (3.14) 

 

 

Then replace Equation 3.14 and Equation 3.13 back in Equation 3.10 with ND
+ 

<< NA
-  for p-type semiconductor. ρ (x) becomes  

 (3.15) 

 

 

 

 

(3.16) 

 

 

By replacing Equation 3.16 back in Equation 3.9 and by using mathematical 

simplifications, the electric field can be evaluated as follows 

 
(3.17) 
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solving Equation 3.17 for ESi gives  

 

 

  (3.18) 
2

2 1 1
s s

B B

q q
k T k Ts i sB

Si
D B A B

q n qk T

 
E e e

qL k T N k T

ψ ψψ ψ−

−

⎛ ⎞ ⎛ ⎞⎛ ⎞
= ± ⋅ + − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

 

where  

2
B Si

D
A

k TL
N q

ε
−=

  

(3.19) 

 

is the Debye length. The Debye length LD appears frequently in the following 

expressions and represents the screening of the potential of ionized acceptors by the 

mobile free holes. The carrier concentration appears in the denominator of Equation 

3.19, therefore for high carrier concentrations, the Debye length is small and the 

shielding is strong. Then by using the electric field expression given in Equation 3.18, 

the charge in semiconductor can be found as follows  

 

 (3.20) 

 

 

 

Si

2

Si

Q'

2Q' 1 1
s s
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qψ q
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E
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ε
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ψ ⎞
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⎠

 

where the positive (+) sign applies for accumulation and the negative (-) sign applies for 

depletion. As it is clearly seen from Equation 3.20, semiconductor charge density 

changes as a function of surface potential. A plot of Q'Si vs. Sψ  is shown in Figure 3.7 

for a p-type Si at room temperature with NA= 1.5x1015 cm-3. It is clearly seen from 

Figure 3.7 that for negative values of surface potential Sψ , Q'Si becomes positive which 

corresponds to the accumulation region. For this region, the first term in Equation 3.20 

becomes dominant and so silicon charge becomes Q'Si ~ exp( / 2 )Sq kψ T .For Sψ =0 flat 

band condition results in Q'Si = 0. For the depletion region, where Bψ > Sψ >0, Q'Si 

becomes negative. In this case, second term in Equation 3.20 becomes dominant and 

silicon charge becomes Q'Si ~ Sψ . Finally, for the inversion region where Sψ >> Bψ  
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Figure 3.7 Variation of the magnitude of the charge density Q'Si in the 

semiconductor as a function of the surface potential Sψ  for p-type Si 

with NA=1.5x1015 cm-3 at room T. 

 

Finally by taking the derivative of Q'Si with respect to Sψ  , the variable silicon 

capacitance C'Si can be evaluated as follows 

 

  

 

 

 

 

 

 (3.21) 

 



As it is clearly seen from Equation 3.21, the variable silicon capacitance is 

strongly depended on the surface potential Sψ . Finally, the total capacitance of MOS 

system is found by series combination of variable silicon capacitance as given in 

Equation 3.21 and constant oxide capacitance as given in Equation 3.8. The result is 

found by Equation 3.22. 

 ' . ''
' '

OX Si
dif

OX Si

C CC
C C

=
+      (3.22) 

           

One special condition both for the voltage and the capacitance is the flat band 

condition. In an ideal MOS capacitor, when the applied gate voltage VG=0, then surface 

potential Sψ  also becomes zero, which means there is no bending occurred in the 

energy band diagrams of Si substrate that is bands are flat. The capacitance value in this 

case is called as flat band capacitance CFB, and the voltage applied to obtain flat band 

condition is called flat band voltage VFB. In the ideal case the flat band voltage is zero, 

however, it might take different values other than zero as a result of non-ideal effects 

which will be explained in detail in the next section. For the calculation of flat band 

capacitance CFB it is necessary to simplify Equation 3.21. For the flat band condition, 

Q'Si is zero, but as Sψ  changes from Sψ =0 at flat band, there will be a change in charge, 

and hence a value for C'Si . To evaluate Equation 3.21 for small Sψ , the exponential 

terms in the denominator require a three term series expansion to prevent the 

denominator from going to zero if only two terms are used. Therefore, exp (- Sψ /kBT) 

becomes, [1-(q Sψ /kBT)+(1/2)(q Sψ /kBT)2] and exp ( Sψ /kBT) becomes, 

[1+(q Sψ /kBT)+(1/2)(q Sψ /kBT)2]. The exponentials in the numerator may be 

represented by the first two terms of the series expansion. The differential capacitance 

per unit area for Sψ ≅0 is the flat band capacitance C'FB and is given by Equation 3.23 as 

        

 

(3.23) 
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For p-type Si, (ni/N-
A)2<<1, and Equation 3.23 becomes 

  2'
2

Si Si
FB

DD

C
LL

ε ε
= = (3.24) 

 

Equation 3.24 represents the silicon capacitance in the flat band condition. Then 

the total capacitance at flat band condition can be calculated by using Equation 3.24 and 

Equation 3.22, which gives  

 

( 0)
( )

OX
FB S

OX
OX D

Si

C
t L

εψ ε
ε

= =
+

(3.25) 

 

 

As it is previously explained, capacitance characteristics of a MOS device is 

mainly controlled by the internal parameter surface potential Sψ  by applying an 

external parameter VG as given in Equation 3.4. During the measurement of C-V 

characteristics of a MOS device a constant gate voltage VG is applied together with a 

small signal (15 mV peak value) ac voltage Vac. Depending on the frequency of this 

small signal ac voltage capacitance of the MOS structure in the inversion region can be 

changed. Figure 3.8 shows the theoretical ideal MOS capacitance versus voltage curves 

both for low frequency and high frequency calculated by using the theoretical 

explanation given above. In Figure 3.8, the regions for accumulation, depletion and 

inversion are shown clearly. For the accumulation region the normalized capacitance 

value is maximum and equal to oxide capacitance Cox for a given oxide thickness tox. 

For the depletion region, as the silicon capacitance increases by the formation of the 

depletion layer, the total capacitance decreases as given in Equation 3.15. Finally, for 

the inversion region depending on the frequency of the ac voltage applied it is possible 

to observe two different behaviors. First, if the frequency is low enough, minority 

carrier electrons in p-Si can follow the signal so that they form an inversion layer at the 

oxide-silicon interface. Therefore, the total capacitance increases and reaches back to its 

maximum value for positive gate voltages. Second, if the applied frequency is high 

enough (1MHz), then electrons can not follow the signal and can not form an inversion 

layer at the oxide-silicon interface. In this case, the capacitance reaches its minimum 

value and stays constant even if the applied gate voltage is increased to higher positive 

voltages.  
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Figure 3.8 Theoretical ideal MOS Capacitance-Voltage curves for a) low frequency, 

and b) high frequency. 

 

3.3 Non-ideal Effects 

 
In actual MOS capacitors, there are several non-ideal effects and they show their 

effects on measured capacitance-voltage curves. First non-ideal effect arises from the 

difference between the work functions of metal and semiconductor due to variation in 

the doping level of semiconductor material. In order to overcome this difference in the 

work functions, an external voltage should be applied to the MOS structure. For this 

bias condition, the energy bands in the energy band diagram are flat and do not vary 

with distance. This applied voltage to achieve flat bands is called the flat band voltage 

and is represented by V°FB for the MOS capacitor without oxide or interface charge as 

given below 

( ( ( )) / )V q E E E qφ φ φ φ χ° = = − = − + − −                                                                                                                        (3.26) 
FB ms m s m g F V

 



where q mφ  is the metal gate work function, q sφ  is the semiconductor work function, qχ  

is the semiconductor electron affinity, gE  is the semiconductor energy gap, and  

 is the position of the semiconductor Fermi level above the valance band in 

the neutral semiconductor bulk. 

( F VE E− )

For example if the gate material is Aluminum and the semiconductor material is 

silicon with a doping level of NA=1x1015 cm-3, the flat band voltage can be calculated as 

given in Equation 3.27. 

         (3.27) 
4.1 (4.05 1.125 0.269) 0.806 eVFB ms Al SiV φ φ φ° = = − = − + − = −           

The difference in work functions, -0.806 eV represents the amount of band bending. 

The sign of the difference of the metal and semiconductor work functions gives the 

polarity connected to the metal to obtain the flat band condition.  

Other non-ideal effects are due to charges present in the oxide and at the 

semiconductor-oxide interface. It has been established that four general types of charges 

are associated with the oxide/Si system (Casey 1999) as summarized in Figure 3.9. 

Here, total charge per unit area is represented by Q (C/cm2) and the number of charges 

per unit area (the number density) is represented by the symbol N (number/cm2) 

 
Al

Mobile Ionic 
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Oxide Trapped Charge  

Fixed Oxide Charge 

Interface Trapped Charge

 K+

 Na+ 
 
 
 

Ta2O5 
 
 
 
 
 p-Si  
 
 
 
Figure 3.9 Terminology for the names and location of charges in a non-ideal MOS 

structure 
 

The first type of charge is named as the fixed oxide charge Qf (and its number 

density Nf), which is due primarily to the structural defects (such as ionized silicon) in 

the oxide layer. The density of this type of charge is related to the oxidation process. 

The second type of charges is the oxide trapped charge, Qot (and its number density Not). 
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These are due to holes or electrons trapped in the bulk of the oxide layer and can arise 

from the  ionizing radiation or avalanche injection. Thus, Qot can have a positive or a 

negative value. Third type of charge is called mobile ionic charge, Qm (and its number 

density Nm), which is mainly due to ionic impurities such as Li+, Na+, and K+ etc. The 

sum of these three different charges in the oxide layer is represented by the effective 

oxide charge Qeff (and its number density Neff) as given in Equation 3.28. 

 

eff f m otQ Q Q Q= + +                                                                                                                        (3.28) 

 

Finally, the fourth type of charge causing the non-ideal effects is known as 

interface trapped charge  Qit (and its density per unit area per unit energy Dit) located at 

the oxide-semiconductor interface. It can have a positive or a negative value depending 

on the location with respect to the Fermi level. They originate from structural disorder, 

oxidation-induced defects, metal impurities and defects caused by radiation or similar 

bond-breaking processes. They play a major role in the operation of MOS devices 

causing an increased recombination of the free carriers in the conduction and valance 

bands. The levels of the Qeff and Dit are the controlling parameters for the device before 

its application in the microelectronic industry.  

In this thesis, main goal is to evaluate the level of these charges present inside 

the oxide and at the oxide-semiconductor interface to get information about the 

electronic quality of the oxide layer and oxide-semiconductor interface. For this 

purpose, high frequency (1 MHz) capacitance-voltage technique together with Terman’s 

Method and Simultaneous C-V method have been used and explained in detail in the 

following sections. 

 

3.4 Analysis of Non-ideal Effects 

 

3.4.1 Calculation of Flat Band Voltage and Doping Concentration  
 

In the previous section, effective oxide charges causing the non-ideal effect has 

been described in detail. The effect of these effective oxide charges causes an additional 

shift of experimental high frequency capacitance-voltage curve along the voltage axis. 

Therefore, the flat band voltage VFB will be due to these effective oxide charges and the 
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work function difference between metal and semiconductor as represented in Equation 

3.29. In addition, to maintain continuity with common terminology, we continue to call 

this shift the flat band voltage, VFB:   

(due to effective oxide charges)FB FBV V V°= + ∆
                                                                                                            (3.29) 

 

 

VG

 

VFB can be directly obtained from two different analyses, from the comparison 

of experimental and theoretical C-V curves and also from the intercept of experimental 

1/C2 versus VG curve. The common method is to obtain flat band voltage VFB, by 

comparing a measured high frequency C-V curve with the ideal theoretical C-V curve. 

The theoretical curve is calculated for a device without oxide charges or work function 

difference, but with the same oxide thickness and doping profile as the experimental 

device. An example of high frequency experimental and theoretical (ideal) capacitance-

voltage curves for a p-type silicon substrate is shown in Figure 3.10. The voltage shift 

VFB from the ideal C-V curve is shown in the figure at the value of theoretical flat band 

capacitance which can be calculated by using Equation 3.25. 
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Figure 3.10 Theoretical (ideal) and experimental high frequency capacitance-voltage 

curves of a MOS capacitor with a p-type silicon substrate 
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The second method to determine VFB is to plot experimental 1/C2 versus VG 

curve. 1/C2 graph can yield important information about the flat band voltage as well as 

the doping profile of the sample. An example 1/C2 versus VG graph obtained from high 

frequency C-V measurement is shown in Figure 3.11 where the intercept point in the 

voltage axis gives the value of flat band voltage VFB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 1/C2 versus gate voltage VG graph of a MOS capacitor 

 

and also the doping profile is calculated by using the following equation. 

1
2

12( ( ))A Si
G

dN q
dV C

ε− −= −
     (3.30) 

 

 

which shows that NA
- is related reciprocally to the slope of a 1/C2 versus VG curve. A 

positive slope will give a negative NA
-  from Equation 3.30 indicating the acceptors as 

doping impurities for acceptors, whereas the negative slope gives a positive N for 

donors. The value of doping level is important and it is used for the calculation of 

theoretical capacitance of a MOS capacitor. 
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3.4.2 Calculation of Effective Oxide Charges 

 
The measure of VFB by using high frequency C-V method gives us information 

about the level of charges present inside the oxide layer and VFB is directly obtained 

from the experimental and theoretical C-V curves and from the intercept of 

experimental 1/C2 vs. VG curve as explained in the previous section. Once, the flat band 

voltage VFB is determined by using one of the methods explained, its value is used to 

calculate the effective oxide charge Qeff and its number density Neff by using the 

following equation. 
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eff

Q C V VN −
= =                                                                                                                        (3.31) 

°
  

q q 

 

where C'ox is the oxide capacitance per unit area measured at strong accumulation. 

In this thesis, effective oxide charge calculation is carried out both for Al-SiO2-

Si and Al-Ta2O5-Si MOS capacitors by using the procedure explained above and the 

results will be presented in the following chapter. 

 

3.4.3 Derivation of Density of Interface Trap States (Dit) 

 
In this section, the calculation of density of interface trap states, Dit, with both 

high frequency C-V method (Terman’s Method) and combined high-low frequency C-V 

(Simultaneous C-V) method will be explained in detail. 

  

3.4.3.1 High Frequency Capacitance-Voltage Method (Terman’s 

Method) 

 
Terman developed and used the high frequency capacitance method for 

determining interface trap capacitance. In this method, capacitance is measured as a 

function of gate bias with frequency fixed at a high enough value so that interface traps 

do not respond to the frequency of small signal ac voltage embedded on dc gate voltage 

VG.  
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 Terman’s method uses the comparison of an experimental and theoretical 

capacitance-voltage curve to extract the density of interface trap states. For this reason, 

a theoretical curve of C/Cox vs. surface potential Sψ  is calculated and plotted by using 

the procedure explained in the previous section. Then, an experimental high frequency 

C-V measurement is performed. Finally, experimental C/Cox vs. VG curve is obtained. 

Theoretical C/Cox vs. Sψ  and experimental C/Cox vs. VG plots are exhibited in Figure 

3.12 (a) and Figure 3.12 (b) respectively. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.12 A theoretical C versus Sψ  plot compared with a hypothetical C versus 

VG plot for a MOS capacitor 
 

For any given high frequency C/Cox value, the same band bending occurs so that 

Sψ  from the C/Cox versus Sψ  curve corresponds to VG from the C/Cox versus VG graph. 

Knowing Sψ  corresponding to a given high frequency C in the ideal MOS capacitor and 

measuring VG corresponding to the same high frequency capacitance in the real MOS 

capacitor, it is possible to construct a Sψ   versus VG curve for the MOS capacitor with 

interface trap states as given in Figure 3.13. It is this  Sψ   versus VG relationship that 

contains all the information about the density of interface trap states in high frequency 

C-V measurements.  

 
 
 

                                                                                              37



VG (V)
-2.0 -1.5 -1.0 -0.5

Ψ
S
 (V

)

-0.4

-0.2

0.0

0.2

0.4

0.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.13 The surface potential  Sψ   versus gate voltage VG obtained from the 

theoretical and experimental high frequency C/Cox curves of a MOS 

capacitor shown in Figure 3.12. 

 

Using the data presented in Figure 3.12(a) and (b), corresponding  Sψ   versus 

VG values are obtained carefully for each value of the C/Cox data. The resulting surface 

potential  Sψ   versus gate voltage VG is presented in Figure 3.13 for the same MOS 

capacitor. In fact, the amount of stretch out, as measured by d Sψ /dVG, determines Dit 

level. Thus, by graphical or numerical differentiation of the Sψ   versus VG curve, the 

derivative d Sψ /dVG is found. In addition, variable silicon capacitance CSi is calculated 

for each value of surface potential Sψ  by using the procedure given in the previous 

sections. Then interface trap state capacitance (Cit) is calculated using the Equation 

3.32.         

 
 1

( ) 1 ( )s
it s ox Si s

G

dC C C
dV
ψψ ψ

−⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

(3.32) 
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Once Cit is found from Equation 3.32, Dit ordinarily is inferred using Equation 3.33. 

 
( )( ) it s

it s
CD

q
ψψ =

 
  (3.33) 
      
 

In this thesis, Al-Ta2O5-Si MOS capacitors are investigated by using the high 

frequency capacitance-voltage method  and Dit levels are evaluated as explained in this 

section.   

 

3.4.3.2 Combined High-Low Frequency Capacitance Method 

(Simultaneous C-V Method) 

 
The package software supplied by Keithly for Model 82 DOS simultaneous C-V 

system uses the combination of measured low and high frequency C-V curves for the 

evaluation of Dit levels of a MOS structure. Castagne and Vapaille (Nicollian and Brews 

1982) were the first to combine high and low frequency C-V curves to obtain a 

measured CSi. The step eliminates the need for a theoretical computation of CSi, and for 

the measurement of the doping profile of the device. Then silicon capacitance can be 

found by Equation 3.34. 

    1
1 1

Si
HF oxC C

C
−

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

     (3.34) 
  
 
where CHF is the measured high frequency capacitance and Cox is the oxide capacitance 

measured in strong accumulation. Then Equation 3.34 is combined with Equation 3.35 

to get interface trap sate capacitance as given in equation 3.36.  

1−
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1 1
it Si

LF ox

C C
C C

⎛ ⎞
= − −⎜ ⎟
⎝ ⎠

                                                                                                            (3.35) 
 
 
 
 
where CLF is the measured low frequency capacitance. 
 
 

1 1
1 1 1 1

it
LF ox HF ox

C
C C C C

− −
⎛ ⎞ ⎛
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⎟
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(3.36) 
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In this way Cit is obtained directly from the measured C-V curves without the 

uncertainty introduced by a theoretical CSi and without uncertainty as to whether CSi has 

been calculated for the correct band bending. An example measured CHF and CLF versus 

VG graph for native SiO2 is shown in Figure 3.14.     

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.14        Measured CHF and CLF versus VG curves for native SiO2 sample 
 

However this method requires a careful measurement of low frequency 

capacitance which is a rather difficult task for high dielectric constant insulators because 

of their leaky behavior. Low frequency capacitance is measured by using a charge 

feedback method which is based on the determination of capacitance with a change in 

charge with applied voltage and a frequency low enough is needed for the formation of 

inversion layer by the minority electrons.  

In this thesis, only the interface trap states of Al-SiO2-Si MOS capacitors are 

evaluated by using both Terman’s method and combined high and low frequency 

method. For the determination of interface trap levels of Al-Ta2O5-Si MOS capacitors 

only Terman’s method is used. The details about the results will be given in the next 

chapter.   
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CHAPTER 4 

 
EXPERIMENTAL RESULTS 

 

4.1 Introduction 

 
 Ta2O5 insulating layers are important candidate for high dielectric constant 

applications and especially for Gbit DRAM applications. Therefore, its electronic 

properties must be appropriately characterized in order to understand its physics. In this 

thesis, Al-Ta2O5-Si MOS structures prepared with RF magnetron sputtering method 

with or without a nitridation process of silicon surface prior to oxidation were 

characterized by using the Capacitance-Voltage Spectroscopy. Finally, important device 

parameters such as doping concentration, flat band voltage, dielectric constant, effective 

oxide charge and density of interface trap states were derived. The effect of nitridation 

(with different gas ambient and temperature ranges) on these parameters is studied in 

detail in order to enhance the electronic quality of Al-Ta2O5-Si MOS devices. Finally, 

the results are compared with the results of the Al-SiO2-Si MOS capacitors as reference 

sample.   

 

4.2 Results of Al-SiO2-Si MOS Capacitors (Reference Sample)  
 

The experimental low and high frequency C-V characteristics of Al- SiO2-Si 

(MOS) capacitors constructed on a p-type silicon substrate are shown in Figure 4.1. 

Native oxide SiO2 clearly shows the expected characteristics of a MOS device for both 

low and high frequency conditions. The maximum capacitance value, oxide capacitance 

Cox, measured at the accumulation region is 350pF, which yields to a dielectric constant 

of 3.9 calculated by using the oxide thickness given in the Table 2.1. For accumulation 

and the depletion regions device show the same characteristics independent of the 

frequency of the small signal ac voltage applied. But for the inversion region, the 

capacitance value goes back to maximum capacitance Cox for the low frequency and it 

stays constant at minimum capacitance for the high frequency measurements. 
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Figure 4.1 Low and High frequency (1 MHz) capacitance-voltage curves of Al-

SiO2-Si MOS capacitors 
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For the determination of non-ideal effects, it is necessary to calculate theoretical 

capacitance-voltage behavior of MOS capacitor. For this reason, doping concentration, 

NA and flat band voltage values of Al- SiO2-Si MOS capacitor are extracted by using 

the experimental high frequency 1/C2 versus VG graph as it is shown in Figure 4.2. The 

measurements are performed for different dots on the same wafer for the reliable and 

reproducible data collection. Therefore, the results here represent an average of six 

different measurements. Finally, the doping concentration is calculated from the slope 

of the curve as 1.17x1015 cm-3 and the flat band voltage value is found to be -1.31 V 

from the intercept on the voltage axis. 

After obtaining the doping concentration of p-type substrate, theoretical 

capacitance-voltage behavior of the MOS device is calculated by using the equations 

defined in the previous chapter. Figure 4.3 represents the theoretical and experimental 

normalized capacitance-voltage curves plotted for the same Al-SiO2-Si structure. The 

flat band voltage shift of -1.31 V is also observed in this graph consistent with that 

obtained from the intercept of 1/C2 versus VG graph. This voltage shift is caused by the 

non-ideal effects. Using this voltage shift, the effective oxide charge level is evaluated 

as Neff=3.4x1011 number/cm2 using Equation 3.31, which is in the limit of good quality 

oxide layer reported for native SiO2 layers (Paskaleva et al. 1995, Paskaleva et al. 

2000). 

Effective oxide charges are not the only non-ideal effects present in MOS 

capacitors. There is additional non-ideal effect due to interface trap states present at 

oxide-silicon interface. For the evaluation of density of interface trap levels both 

Terman’s method and simultaneous C-V method are used in order to check the accuracy 

of the measurement system and software. For this reason, theoretical C/Cox versus 

surface potential Sψ  and experimental C/Cox versus gate voltage VG graphs are plotted 

together as shown in Figure 4.4 (a) and (b) respectively. For each value of C/Cox , 

corresponding surface potential Sψ  versus gate voltage VG values are obtained and 

represented in Figure 4.5. Finally, by using the procedures and equations explained in 

chapter 3, the density of interface trap states, Dit, is evaluated. Figure 4.6 represents the 

density of interface trap state level as a function of energy in the band gap of cryatalline 

silicon. The average value of Dit level for Al-SiO2-Si capacitors is found to be 2.5x1011 

eV-1cm-2. It is clearly seen that both the software that uses the simultaneous C-V method 

and Terman’s method gives the same level of Dit as shown in the graph. As seen from  
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Figure 4.2 Experimental high frequency 1/C2 versus gate voltage VG graph of the 

Al-SiO2-Si reference sample for the determination of doping     

concentration and flat band voltage 
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Figure 4.3  Theoretical (ideal) and experimental high frequency (1 MHz) 

Capacitance-Voltage Curves of an Al-SiO2-Si MOS capacitor. 
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Figure 4.5  Surface Potential Sψ  versus gate voltage VG graph of an Al-SiO2-Si 

MOS capacitor obtained from the theoretical and experimental high 

frequency C/Cox curves 
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Figure 4.6  Density of Interface trap states as a function of energy in the bandgap of 

c-Si for Al-SiO2-Si MOS capacitor calculated both by Terman’s method 

and by simultaneous C-V software. 
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Figure 4.6, both techniques give almost the same level of Dit. However, Terman’s 

method results in little bit noisy data due to human error involved in the calculation 

process. The values of effective oxide charge and density of interface trap states for Al-

SiO2-Si MOS capacitors will be used as a reference for the results of Set 1 and Set 2 

samples prepared using Ta2O5 insulating layers. 
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4.3 Results of Al-Ta2O5-(SiO2)-Si MOS Capacitors (Set 1): The Effect 

of Oxide Thickness 

 
In order to replace SiO2 insulating layer by using higher dielectric constant 

Ta2O5 insulating layers, oxide layers were prepared on a similar p-type silicon substrate 

as described in Chapter 2 and film thicknesses were kept below 50 nm. It is certain that 

there exist an inevitable SiO2 layer of (1-2 nm) between Si and Ta2O5 as strongly 

indicated in the literature (Chaneliere et al. 1998, Ezhilvalavan and Tseng 1999). 

Therefore, resulting films have Ta2O5 insulating layer on top of native SiO2 with 1 nm-

2 nm thickness. The experimental high frequency (1 MHz) C-V characteristics of Al-

Ta2O5-Si (MOS) capacitors with different oxide thicknesses are shown in Figure 4.7 

together with that of reference sample with SiO2 oxide layer. The effect of the oxide 

thickness is clearly reflected in the magnitude of the oxide capacitance dominating in 

the accumulation region since the areas of the devices are equal and the dielectric 

constant did not change significantly at these oxide thicknesses (Atanassova 1999). In 

addition, experimental high frequency C-V curve of the reference sample Al-SiO2-Si 

MOS capacitor is shown as a comparison. It is clearly seen that the effect of dielectric 

constant for 20 nm thick Ta2O5 layer increases the oxide capacitance in the 

accumulation region more than factor of four. The areas of the dots are kept the same 

for all the samples shown in Figure 4.7. These results indicate that replacing SiO2 with 

Ta2O5 increases the dielectric constant above the level of SiO2.  

The values of oxide capacitance Cox, and other parameters derived from the 

high frequency C-V measurements are summarized in Table 4.1, where the dielectric 

constant, εox, of Ta2O5 is 11.7 ± 0.9, in agreement with recent reports (Dimitrova and 

Atanassova 1998a, Ezhilvalavan and Tseng 1999, Paskaleva et al. 2000, Atanassova 

1999). Doping concentration of the p-type Si substrate is obtained from the slope of 

experimental 1/C2 versus gate voltage VG curve of each sample. These curves are 

shown in Figure 4.8 for three different MOS capacitors. The doping concentrations of 

the devices are almost identical and equal to (2.05±0.1) x1011 cm-3. In addition, flat 

band voltage values extracted from the intercept of the slope on the VG axis are -1.74 

V, -1.77 V, and -1.63 V for oxide thicknesses of 15 nm, 20 nm, and 25 nm respectively. 

These values are also summarized in Table 4.1. 
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Figure 4.7 High frequency capacitance versus gate voltage characteristics of Al-

Ta2O5-Si MOS capacitors with different oxide thicknesses and that of 

the reference MOS sample. 
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Figure 4.8  Experimental 1/C2 versus gate voltage VG graph of Al-Ta2O5-Si MOS 

capacitors for the determination of doping concentration and flat band 

voltages for oxide thicknesses 15 nm, 20 nm and 25 nm.  
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Table 4.1  Summary of the parameters extracted from the high frequency C-V 
measurements for MOS capacitors with Ta2O5 insulating layers. Data 
presented here are the average of six device characteristics measured 
from different parts of the substrate wafer 

 

Sample 

 
tox (nm) εox Cox (pF) 

 

NA(cm3) 

x1015 

 

VFB 

(volt) 

Neff (cm-2) 

X1012

15 10.1 1165 2.04 -1.74 3.11 

20 12.6 1093 1.95 -1.77 3.02 Ta2O5

25 11.8 818 2.15 -1.63 1.90 

 

SiO2 20 3.9 250 1.17 -1.31 0.34 

 

By using the experimental values of doping concentration NA of p-type silicon 

substrate, oxide thickness tox, dielectric constant εox of oxide and metal gate area A, 

theoretical capacitance-voltage curves for each sample have been calculated. Finally, 

theoretical C-V curve is normalized to oxide capacitance Cox and shown together with 

normalized experimental C-V curve in Figure 4.9, Figure 4.10 and Figure 4.11 for 

MOS capacitors with oxide layers of 15 nm, 20 nm, and 25 nm respectively. It is 

clearly seen that the experimental normalized C-V curve shifts from the ideal one due 

to non-ideal effects present in the MOS devices. The flat-band voltage, VFB, values 

obtained for each sample are also indicated on the normalized capacitance curves. The 

flat-band voltage, VFB, is a voltage shift from the flat band capacitance CFB of ideal 

curve at VG=0 V. The values of VFB are -1.74 V, -1.77 V and -1.63 V for oxide 

thicknesses of 15 nm, 20 nm, and 25 nm respectively. Using these voltage shifts, the 

effective oxide charge density, Qeff, and effective number of charges per unit area, Neff, 

are calculated using Equation 3.31 defined in chapter 3. These are also summarized in 

Table 4.1. For oxide layers of thickness 15 and 20 nm, Neff is 3.0x1012 cm-2 and 

decreases to 1.90x1012 cm-2 for a 25 nm thick Ta2O5 layer. However the values of Neff 

are still higher than the native oxide SiO2 and the proposed level of the metal-oxides 

which are considered to be an alternative for the native oxide SiO2 as gate dielectric 

(Manchanda et al. 2001).   
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Figure 4.9  Theoretical and experimental high frequency normalized capacitance-

voltage curves of Al-Ta2O5-Si MOS capacitor with 15 nm Ta2O5 

insulating layer.  
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Figure 4.10  Theoretical and experimental high frequency normalized capacitance-

voltage curves of Al-Ta2O5-Si MOS capacitor with 20 nm Ta2O5 

insulating layer.  
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Figure 4.11  Theoretical and experimental high frequency normalized capacitance-

voltage curves of Al-Ta2O5-Si MOS capacitor with 25 nm Ta2O5 

insulating layer. 
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In addition, the shifts between the theoretical and experimental curves are not 

only due to effective oxide charges but also to states at the oxide-si interface. Using the 

theoretical and experimental normalized capacitance curves, the surface potential Sψ  

versus gate voltage VG curve was obtained for each sample as described in chapter 3 

and in previous section for reference MOS sample. These curves are shown in Figure 

4.12 (a) and (b) together with that of the reference sample. Using these curves, the 

density of interface trap states, Dit, was calculated as described in detail in Terman’s 

method (Nicollian and Brews 1982) given in the previous chapter. The resulting 

distribution of Dit levels of Ta2O5 insulating layers are plotted as a function of energy in 

the band gap of the crystalline silicon in Figure 4.13 together with the Dit level of 

reference sample. It is well known that those interface trap levels occupy the energy 

levels in the band gap of the crystalline silicon and cause an important recombination 

path through these levels. For each oxide thickness, an average of six MOS capacitors 

are shown in Figure 4.13. The value of Dit for Ta2O5 is significantly higher than that of 

native oxide SiO2 and shows a variation around 1.6±0.5x 1012 cm-2 eV-1. There is no 

clear functional dependence on the oxide thickness for the thickness levels studied in 

this thesis. Dit levels of MOS capacitors with Ta2O5 layers are still above the limit for 

the requirement of Dit (<2x1011 cm-2 eV-1), as specified by a detailed investigation  of 

the possibilities for the replacement of the gate dielectric in technological applications, 

for device dimensions of less than 50 nm (Manchanda et al. 2001). 
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Figure 4.13 Density of interface trap states as a function of energy in the bandgap of 

c-Si for MOS capacitors with Ta2O5 insulating layer of different oxide 

thicknesses and that of the reference sample with native oxide SiO2. 
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4.4 Results of Al-Ta2O5-(SiOxNy)-Si MOS Capacitors (Set 2): The 

Effect of Nitridation Process 

 
As explained in the previous section, the electronic quality of Ta2O5 oxide layer 

and Ta2O5-Si interface are not in the desired level for the microelectronic industry 

requirements. In order to improve the quality of Ta2O5 oxide layer and Ta2O5-Si 

interface, an alternative nitridation process have been proposed on the p-type silicon 

substrate prior to the oxidation of p-type substrate (Novkovski et al. 2005). There are 

two types of nitridation processes have been carried out in this thesis. First one is in 

N2O gas environment and the second one is in the NH3 gas environment. After 

nitridation process, a 20 nm thick Ta2O5 oxide layer has been grown on the nitrided p-

type  silicon surface. The thickness of the silicon oxynitride (SiOxNy) layer formed as a 

result of nitridation process is about 1.5 nm to 2 nm and grown at different substrate 

temperatures from 700 °C to 850 °C. Finally, metal gates with different areas were 

evaporated to form Al-Ta2O5-(SiOxNy)-Si MOS capacitors. The results will be 

presented separately and compared together.   

 

4.4.1 Nitridation of Si Surface by N2O Gas 

 
 Nitridation of p-type silicon substrate in N2O gas was performed at substrate 

temperatures of  700°C, 800°C, and 850°C. After this process, 20 nm thick Ta2O5 layers 

were deposited as described in chapter 2. Experimental high frequency capacitance-

voltage curves of Al-Ta2O5-(SiOxNy)-Si MOS capacitors are presented in Figure 4.14 

for three different nitridation temperatures. For each sample with respective nitridation 

temperatures, detailed analysis of C-V curves has been performed for at least six MOS 

devices and rough C-V measurements of MOS devices were performed for at least ten 

different MOS devices on different parts of the same substrate in order to confirm the 

reproducibility of the results. From the strong accumulation region, oxide capacitance 

Cox, and dielectric constant εox are directly evaluated using the known thickness values. 

For all devices, oxide thickness and gate area are kept the same. As seen from Figure 

4.14,  oxide capacitance value is 350 pF for nitridation process of 700 °C. It increases to 

400 pF for 800°C and finally decreases back to 350 pF for nitridation process of 850°C.   
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Figure 4.14 High frequency capacitance versus gate voltage curves of Al-Ta2O5-

(SiOxNy)-Si MOS capacitors for nitridation temperatures of 700°C, 

800°C, and 850°C in N2O gas environment. 
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For these three temperatures, the highest Cox and correspondingly the highest dielectric 

constant is obtained for the nitridation temperature of 800°C. 

 After determining the fundamental characteristics of MOS capacitors using the 

capacitance values in the accumulation region, experimental 1/C2 versus gate voltage 

VG graphs were generated in order to determine the doping concentration of p-type 

substrate used for each nitridation processes and the flat band voltage VFB of each 

device due to non-ideal effects present in MOS capacitors. 1/C2 versus VG graphs are 

shown in Figure 4.15 and doping concentration NA derived from the slope is almost 

equal to 1.50x1015 cm-3 for three different samples nitrided at temperatures of 700°C, 

800°C, and 850°C. However, the flat band voltages are -1.68 V, -1.42 V, and -1.63 V 

for nitridation temperatures of 700°C, 800°C, and 850°C respectively. 

 By using the experimentally determined parameters of εox, tox, gate area A,  

doping concentration NA of p-type silicon substrate, theoretical capacitance versus 

surface potential Sψ  and correspondingly theoretical capacitance versus gate voltage VG 

curves were calculated for each MOS device. Finally, the curves were normalized to the 

oxide capacitance Cox and plotted together with normalized experimental high 

frequency capacitance-voltage curves of each device. These are shown in Figure 4.16, 

Figure 4.17, and Figure 4.18 for nitridation temperatures of 700°C, 800°C, and 850°C 

respectively. It is clearly seen that there exists an almost parallel shift of experimental 

C-V curve from the theoretical ideal curve indicating the non-ideal effects. In addition, 

the flat band voltages VFB are also indicated on each figure. It is drawn as a voltage shift 

from ideal curve to experimental curve at flat band capacitance value when VG=0 for 

ideal curve. The flat-band voltages, VFB were found to be -1.68 V, -1.42 V and -1.63 V 

for nitridation temperatures 700°C, 800°C, and 850°C respectively. These values are 

also consistent with those found from the intercept of 1/C2 versus gate voltage VG in 

Figure 4.15.  

 The shifts of experimental C-V curves from the ideal one indicate the degree of 

the non-ideal effects reflected in experimental results. Using the flat band voltage shifts 

of each MOS device, the effective oxide charge density, Qeff, and effective number of 

charges per unit area, Neff, are calculated using Equation 3.31 defined in the previous 

chapter. These are also summarized in Table 4.2. For oxide layer nitrided at 700°C, Neff 

is about 9x1011 cm-2 and decreases to 4x1011 cm-2 for oxide layer nitrided at 800°C. Neff 

value again increases to 6x1011 cm-2 as nitridation temperature increases to 850°C.   
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Figure 4.15 Experimental 1/C2 versus gate voltage VG graph of Al-Ta2O5-(SiOxNy)-

Si MOS capacitors for nitridation processes in N2O at 700°C, 800°C, and 

850°C. 
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Figure 4.16 Theoretical and experimental high frequency normalized capacitance-

voltage curves of Al-Ta2O5-(SiOxNy)-Si MOS capacitor  prepared after 

nitridation process in N2O at 700°C. 
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Figure 4.17  Theoretical and experimental high frequency normalized capacitance-

voltage curves of Al-Ta2O5-(SiOxNy)-Si MOS capacitor  prepared after 

nitridation process in N2O at 800°C. 
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Figure 4.18  Theoretical and experimental high frequency normalized capacitance-

voltage curves of Al-Ta2O5-(SiOxNy)-Si MOS capacitor  prepared after 

nitridation process in N2O at 850°C. 
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As a result, nitridation at 800°C gives the lowest result in terms of the effective 

oxide charges. As we compare, the level of Neff found here for the nitridation at 800°C, 

it is almost equal to that found for MOS capacitors with native oxide SiO2, which was 

3.4x1011 cm-2 as given in the previous section. These results indicate that nitridation in 

N2O gas at 800°C gives similar electronic quality oxide layer with higher dielectric 

constant,εox, than the native SiO2. 

 

Table 4.2  Summary of the parameters extracted from the high frequency C-V 
measurements for MOS capacitors with nitrided Ta2O5 insulating layers. 
Data presented here are the average of six device characteristics 
measured from different parts of the substrate wafer 

 

 
Nitridation in N2O 

Nitridation in 

NH3

SiO2

Nitridation Temperature (°C) 700  800  850 700 800 - 

Dielectric constant (εox) 

 
3.7 4.5 3.2 3.4 6 3.9 

Flat Band Voltage (VFB) (volt) -1.68 -1.42 -1.63 -1.56 -2 -1.31 

Effective oxide charge (Neff) 

x1011 (cm-2)  

 

9 4 6 6 10 3.4 

Density of Interface Trap 

States (Dit) x1011  

(eV-1 cm-2) 

2-4 3-5 2.5 

 

Furthermore, the shifts between the theoretical and experimental curves are not 

only due to oxide charges but also to states at the oxide-Si interface. Using the 

theoretical and experimental normalized capacitance, C/Cox, curves, the surface 

potential Sψ  versus gate voltage VG curve was obtained for each sample. These are 

shown in Figure 4.19. Using Figure 4.19, Equation 3.32 and Equation 3.33 the density 

of interface trap states, Dit, was calculated using Terman’s method as described in 

Chapter 3.The distribution of Dit levels obtained for the Al-Ta2O5-(SiOxNy)-Si and 

unnitrided Al-Ta2O5-(SiO2)-Si MOS capacitors are shown in Figure 4.20 , as a function 

of the energy in the bandgap of the silicon. The level of Dit for nitrided sample changes  
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between 2x1011 cm-2 eV-1 and 4x1011 cm-2 eV-1 and gives the lowest level for the sample 

nitrided at 800 °C. When compared to Dit level of Set1 samples without nitridation 

process applied, it can be inferred that nitridation process enhances the quality of oxide-

semiconductor interface and lowers the value of Dit for high dielectric constant 

insulators to the level of native SiO2 as shown in Figure 4.21,which is an important 

program for the mass production of these devices. 
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Figure 4.19  Surface Potential Sψ  versus gate voltage VG curves of Al-Ta2O5-

(SiOxNy)-Si MOS capacitors prepared with a prior nitridation process in 

N2O at 700°C, 800°C, and 850°C.  
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Figure 4.20  Density of Interface trap states as a function of energy in the band gap of 

c-Si for Al-Ta2O5-(SiOxNy)-Si MOS capacitors prepared with prior 

nitridation process in N2O at temperatures 700°C, 800°C, and 850°C and 

that of unnitrided Al-Ta2O5-(SiO2)-Si MOS capacitor with 20 nm thick 

Ta2O5 layer. 
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Figure 4.21 Density of Interface trap states as a function of energy in the band gap of 

c-Si for Al-Ta2O5-(SiOxNy)-Si MOS capacitors prepared with prior 

nitridation process in N2O at temperatures 700°C, 800°C, and 850°C and 

that of reference MOS sample with native SiO2 layer. 
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4.4.2 Nitridation of Si Surface by NH3 Gas 

 
As presented in previous section a prior nitridation in N2O gas improved the 

oxide and oxide-si interface properties substantially. Second nitridation process of p-

type silicon substrate was performed in NH3 gas at substrate temperatures of 700 °C, 

and 800 °C. The thickness of the SiOxNy layer is around 1.5 nm to 2 nm as 

experimentally determined after nitridation process. After the nitridation process, a 20 

nm thick Ta2O5 insulating layer is deposited on top of the nitrided silicon substrate. 

Finally, metal contacts are evaporated on top of Ta2O5 oxide layer to complete the MOS 

structure. Experimental high frequency capacitance-voltage curves are shown in Figure 

4.22 for nitridation temperatures of 700 °C and 800 °C. The gate area and oxide 

thickness are the same for both devices. It is clearly seen from Figure 4.22 that 

nitridation process in NH3 at 800 °C results in higher oxide capacitance and 

correspondingly higher dielectric constant as derived from the accumulation region. The 

parameters obtained for these two MOS devices are also summarized in Table 4.2. In 

order to determine the doping profile and flat band voltages, experimental 1/C2 versus 

gate potential VG graphs are plotted together in Figure 4.23 for two different nitridation 

temperatures. The doping concentrations are 1.7x1015 cm-3 and 2x1015 cm-3 and 

corresponding flat band voltages are -1.56 V and -2 V for nitridation temperatures of 

700 °C, and 800 °C respectively. 

After determining experimental parameters such as oxide capacitance Cox, 

dielectric constant εox and doping concentration NA, theoretical capacitance versus 

surface potential Sψ  and correspondingly theoretical capacitance versus gate voltage VG 

curves were calculated for each device. Then these curves are normalized to the oxide 

capacitance of each device and both theoretical and experimental C/Cox versus gate 

voltage VG curves are obtained. These curves are shown in Figure 4.24 and Figure 4.25 

for the nitridation temperatures of 700 °C and 800 °C, respectively. The flat band 

voltages are indicated in each figure and they are in agreement with the values obtained 

from the 1/C2 versus VG graphs as shown in Figure 4.23. Using the flat band voltage 

values caused by the non-ideal effects, the effective oxide charge density, Qeff, and 

effective number of charges per unit area, Neff, are calculated for each MOS capacitor. 

For the oxide layer nitrided at 700 °C, Neff is about 6x1011 cm-2 and it increases to 

1x1012 cm-2 for nitrided sample at 800 °C, which shows a significant increase in Neff due  
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Figure 4.22  Experimental high frequency ( 1 MHz) capacitance versus gate voltage 

curves of  Al-Ta2O5-(SiOxNy)-Si MOS capacitors prepared after a 

nitridation process in NH3 gas at 700°C and 800°C. 
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Figure 4.23 Experimental 1/C2 versus gate voltage VG graph of Al-Ta2O5-(SiOxNy)-

Si MOS capacitors prepared after nitridation process in NH3 at 700°C  

and 800°C. 
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Figure 4.24  Theoretical and experimental high frequency normalized capacitance-

voltage curves of Al-Ta2O5-(SiOxNy)-Si MOS capacitors prepared after 

nitridation process in NH3 at 700°C.   
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Figure 4.25  Theoretical and experimental high frequency normalized capacitance-

voltage curves of Al-Ta2O5-(SiOxNy)-Si MOS capacitors prepared after 

nitridation process in NH3 at 800°C.   
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to increasing nitridation temperature.  

Furthermore, for the determination of density of Interface trap states, surface 

potential versus gate voltage VG graph is obtained by using the ideal normalized C/Cox 

versus Sψ  and experimental C/Cox versus VG curves. The resulting surface potential Sψ  

versus gate voltage VG curves are shown in Figure 4.26 for MOS capacitors nitrided at 

700°C, and 800°C. Finally, Dit levels are obtained for two different nitridation 

temperatures by using the data in Figure 4.26 and equations given in Terman’s method. 

The distribution of Dit levels are shown in Figure 4.27 as a function of energy. It is 

clearly seen that there is no clear dependence of the density of interface trap levels on 

the nitridation temperature in NH3 gas environment. However, the level of Dit is quite 

low for both devices and almost at the same level with that obtained for the MOS device 

with SiO2 native oxide layer. These results indicate that nitridation of p-type substrate in 

NH3 gas strongly improves the Ta2O5-Si interface but effective oxide charges are still 

higher than that present in the native oxide SiO2. 

When the results of MOS devices are compared after two different nitridation 

process conditions, it is found that nitridation temperature at 800°C results in the best 

oxide and interface properties. Therefore, characteristics of MOS devices prepared with 

two different nitridation at 800°C are compared in Figure 4.28. Experimental high 

frequency C-V curves of both devices indicate that nitrided sample in NH3 gas gives the 

highest oxide capacitance and correspondingly the highest dielectric constant. The 

values of εox are 4 and 6 for N2O and NH3 nitrided samples respectively. The levels of 

Dit are almost comparable for both processes, which is around 2-3x1011 cm-2 eV-1. 

however, nitridation process in NH3 at 800 °C results in the highest Neff, which is at the 

level of 1x1012 cm-2.     

  In order to understand the effect of oxide uniformity and electronic quality 

distribution of oxide layers and Ta2O5-Si interface, MOS devices with different gate 

areas on the same substrate were investigated in detail. Experimental high frequency C-

V curves of MOS capacitors prepared with nitridation process of 800 °C in N2O gas 

with two different gate areas are shown in Figure 4.29.  It is seen that normalized 

capacitance to the device area for two MOS devices with different areas do not overlap. 

The difference in the accumulation region indicate that dielectric constants εox are not 

the same for these two devices even though they have the same oxide layer. For 

example, dielectric constant measured from bigger area is found to be 4.61, where the  
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Figure 4.26  Surface potential Sψ  versus gate voltage VG curves of Al-Ta2O5-

(SiOxNy)-Si MOS capacitors prepared after a nitridation process in NH3 

at 700°C and 800°C.  
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Figure 4.27  Density of interface trap states as a function of energy in the band gap of 

c-Si for Al-Ta2O5-(SiOxNy)-Si MOS capacitors prepared after a 

nitridation process in NH3 at 700°C and 800°C and with that of reference 

sample with native oxide SiO2.
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Figure 4.28  Comparison of high frequency capacitance versus gate voltage VG curves 

of Al-Ta2O5-(SiOxNy)-Si MOS capacitors prepared at nitridation 

temperature TN=800°C in NH3 and N2O gas ambient.  
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Figure 4.29  Comparison of experimental high frequency C-V curves of Al-Ta2O5-

(SiOxNy)-Si MOS capacitors with two different gate area on the same 

substrate prepared after nitridation process in N2O gas at 800 C. 
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dielectric constant measured from smaller area leads to higher values of εox which is 

found to be 9.58. As a result, it can be inferred that oxide quality is not uniform 

throughout the substrate due to deposition type and conditions.  

On the other hand, both conduction versus gate voltage and leakage current 

characteristics of samples are also checked. The graphs are shown in Figure 4.30 and 

Figure 4.31, respectively. The conduction graph again gives information about the flat 

band voltage, where the peak value of conductance corresponds to the flat band voltage 

value on the gate voltage VG axis. In terms of leakage currents, the values obtained are 

above the limits of insulating layers that are used for MOS capacitors, which is a main 

problem of high dielectric constant insulators.   

Finally, hysteresis character of high frequency capacitance-voltage curves of 

each MOS device studied in this thesis has been carried out by measuring the C-V from 

accumulation to inversion and back from inversion to the accumulation region. For most 

devices, no hysteresis behavior is observed indicating that both curves overlap and 

insignificant number of mobile ions are present in the oxide layer. However, for a few 

sample, a hysteresis behavior with a few mV shift in C-V curve along the voltage axis 

has been observed. This situation is presented in Figure 4.32 for Al-Ta2O5-(SiOxNy)-Si 

MOS capacitor nitrided in N2O at 850 °C. 
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Figure 4.30 Normalized Capacitance C/Cox versus gate voltage VG and conductance 

versus gate voltage VG graphs for the sample nitrided in N2O at 700°C.  
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Figure 4.31  Leakage current measurements of MOS devices 
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Figure 4.32  Hysteresis curve of MOS device measured from accumulation to 

inversion and from inversion to accumulation 
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4.5      Conclusions 

 
In this thesis, capacitance voltage spectroscopy system has been established and 

tested by using calibration capacitors provided by the manufacturer. Then three different 

group of metal-oxide-semiconductor (MOS) devices have been used to investigate the 

capacitance-voltage characteristics of devices. First group of  samples is the Al-SiO2-Si 

MO>S capacitors used as a reference sample. Second group of samples is Al-Ta2O5-

(SiOxNy)-Si MOS capacitors with high dielectric constant Ta2O5 insulating layers. Third 

group of samples involves a prior nitridation process in N2O and NH3 gas environment 

before depositing Ta2O5 oxide layers. By using experimental high frequency 

capacitance-voltage curves and theoretical (ideal) capacitance-voltage characteristics, 

electronic properties of Ta2O5 oxide layers and that of Ta2O5-Si interface have been 

investigated in detail. 

It has been found that MOS capacitors with native oxide SiO2 has effective 

oxide charges in the level of 3.4x1011 cm-2 and interface trap density Dit, level is around 

2.5x1011 cm-2 eV-1. These levels are indicating the good electronic quality oxide and 

interface property in MOS devices. When native oxide SiO2 is replaced by Ta2O5 

insulating layers, the results showed that dielectric constant increased by several factors 

above the SiO2 level. However, effective oxide charge and interface trap density, Dit, 

values are substantially higher than those of SiO2. The levels of these parameters result 

in poor device performance in MOS operation. As an alternative procedure, a prior 

nitridation of p-type silicon substrate applied before growth of high dielectric constant 

Ta2O5 layers in N2O and NH3 gas ambient at different substrate temperatures. It was 

found that nitridation in both cases improved the oxide-silicon interface that Dit levels 

decreased to the level of reference sample with native oxide SiO2. Best results were 

obtained for nitridation at 800 °C in both cases. However, the effective oxide charges in 

Ta2O5 layers are still higher than that of native oxide for both nitridation processes.      
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CHAPTER 5 
 

DISCUSSIONS AND CONCLUSIONS 
 
 

Tantalum pentoxide (Ta2O5) insulating layers are a potential candidate for the 

replacement of native oxide SiO2, which reached to the physical limits in device 

miniaturization. It is a high dielectric constant material with high electrical breakdown 

strength. It may stay in the amorphous form after device integration, which is an 

important property for gate insulators. For such kind of candidates, dielectric constant 

value and defect levels present in the oxide or at the oxide-silicon interface are of the 

most important fundamental properties and they strongly depend on the deposition type 

and conditions. In this thesis, capacitance-voltage (C-V) spectroscopy was used in order 

to investigate electronic quality of Ta2O5 oxide layer and Ta2O5-Si interface of Al-

Ta2O5-Si MOS capacitors.  

One of the main goals of this thesis was to establish the capacitance-voltage 

spectroscopy system, which is a fundamental tool for the characterization of MOS 

devices. After gathering necessary instruments of Keithley 590 c-v analyzer for high 

frequency (1 MHz) measurements, Keithley 595 quasistatic c-v meter for low frequency 

measurements, Keithley 230 programmable voltage source and Keithly 5951 remote 

input coupler, the system setup is established by using proper BNC connections. Then, 

the software package is installed and modified for Ta2O5 insulating layers. For the 

measurement setup to be completed a sample box as a Faraday Cage made up of 

aluminium and a sample holder with a probe station by using micromanipulators and a 

gold tip for the gate contact are designed and manufactured in our institute. Later, the 

system is calibrated by using the model 5909 calibration capacitor set supplied by 

Keithley. C-V spectroscopy can work in three different modes, measurement of high 

frequency C-V, measurement of low frequency C-V or measurement of both high and 

low frequency C-V as simultaneous C-V technique. For most of the measurements 

performed in this thesis, a simultaneous C-V measurement sequence is used. The 

parameters that are measured during a simultaneous C-V sweep are high frequency 

capacitance, low frequency capacitance, conductance, leakage current and voltage. By 

using the capacitance value measured in strong accumulation which is the oxide 

capacitance Cox, and by using the measured oxide thickness and gate area, it is possible 

to determine the dielectric constant of the oxide layer. Other device parameters 
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calculated as a result of simultaneous C-V sweep are, doping concentration and doping 

profile, flat band voltage and flat band capacitance, threshold voltage, depletion depth or 

thickness, density of interface trap states as a function of energy, Dit, effective oxide 

charges Neff, silicon surface potential, work function difference, and series resistance. 

However, it should be noted that simultaneous c-v method uses both the high frequency 

and low frequency measurements for the analysis of these parameters as it is described 

in detail in chapter 3. For this reason, it is important to be careful about the low 

frequency measurement which is a mainly hard task for high dielectric constant 

insulators because of their leaky behaviour. In this thesis, simultaneous c-v analysis 

results are only used for native oxide SiO2 and the analysis of Ta2O5 samples are 

performed by using Terman’s method which uses the comparison of measured high 

frequency c-v results and theoretical ideal c-v calculations.      

In this study, there are mainly three groups of samples. The first one is reference 

sample of Al-SiO2-Si MOS capacitor. The second group is Al-Ta2O5-(SiO2)-Si MOS 

capacitors prepared with different oxide thicknesses. Finally the third group is Al-

Ta2O5-(SiOxNy)-Si MOS capacitors prepared with a prior nitridation process applied 

before the deposition of oxide layer in N2O and NH3 gas environments an temperature 

ranges between 700 °C and 850 °C. The effect of replacement of native oxide SiO2 with 

high dielectric constant insulator Ta2O5 is studied by using the c-v spectroscopy 

technique and the results are compared in terms of dielectric constant increase, 

enhancement of oxide layer and oxide-si interface due to different deposition 

conditions.    

First of all, the system check is performed by using a reference MOS sample 

with native oxide SiO2. It is clearly seen from the results presented in chapter 4 that 

both low and high frequency measurements for Al-SiO2-Si MOS capacitors were 

successfully obtained. As a result of simultaneous C-V measurement, important device 

parameters such as oxide capacitance, dielectric constant, doping concentration, flat 

band voltage, and non-ideal effects such as effective oxide charge level and density of 

interface trap levels are evaluated. By using the measured value of oxide capacitance, 

oxide thickness and gate area, the dielectric constant of sample is found to be 3.9 which 

is in agreement with the value in literature. The values of Neff and Dit obtained for native 

oxide SiO2 are in the limit of good quality oxide parameters as reported in the literature 

(Manchanda et al. 1998). Neff is around 3x1011 cm-2 and Dit is around 2.5x1011 cm-2 eV -

1. However, these numbers can be decreased further down when oxide layers are 
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prepared in an ultra high vacuum environment. For the reliability check of software 

analysis, these values are also calculated manually by using Terman’s method. Finally, 

it is clearly seen that the results of density of interface trap levels for SiO2 calculated by 

using Terman’s method and evaluated by the software which uses simultaneous C-V 

method are in good agreement. This is a  reliable confirmation, that the measurement 

system and software are working properly. Finally, the results of the reference sample 

with native oxide SiO2 are used as comparison criteria when high dielectric constant 

Ta2O5 insulating layers replace the SiO2 in MOS capacitors.  

As a second group, the samples in the form of Al-Ta2O5-(SiO2)-Si MOS 

capacitors are studied by using C-V spectroscopy technique. It is clearly seen that oxide 

capacitance measured in the accumulation region of high frequency C-V curve 

increased by several factors and scaled by the thickness resulting an effective dielectric 

constant of 12 ± 1 for three different oxide thicknesses. No functional dependence of 

dielectric constant has been obtained for the thickness ranges studied in this thesis. 

However, the value of effective dielectric constant is due to SiO2-Ta2O5 dielectric stack. 

Here, dielectric constant of Ta2O5 is slightly reduced by low dielectric constant and very 

thin (1-2 nm) inevitable SiO2 layer on p-Si. The value of effective dielectric constant at 

this thickness range is consistent with studies reported for Ta2O5 (Atanassova 

1999).Even though there is an improvement in the dielectric constant , more important 

electronic parameters of MOS devices are the effective oxide charges present in Ta2O5 

and interface trap levels present at Ta2O5-Si interface. The level of Neff is around 3x1012 

cm-2 for Ta2O5 layers and this is almost an order of magnitude higher than that of native 

oxide SiO2. Such high Neff value causes a large shift in the flat-band voltage in 

experimental C-V curves. Such high values of Neff for Ta2O5 insulating layers are in 

agreement with the reported results in the literature (Atanassova 1999, Dimitrova and 

Atanassova 1998a).  Furthermore, another important electronic quality criteria of MOS 

devices is the interface trap density, Dit. The level of Dit for Ta2O5-Si interface is found 

to be around (2-3) x1012 cm-2 eV-1, which is substantially, higher than that of Si-SiO2 

interface. These results indicate that Ta2O5-Si interface is very poor in electronic quality 

even though there exists an inevitable interfacial SiO2 layer between Ta2O5 and silicon. 

Both Neff and Dit levels are higher than minimum acceptable limit of alternative oxide 

layers to replace SiO2 (Manchanda et al. 2001). Therefore, new approaches are 

necessary to improve both oxide and interface properties of MOS devices. 
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A new approach of a prior nitridation process has been recently proposed in the 

literature before oxidation of p-Si substrate (Novkovski et al. 2005). In this thesis, two 

different nitridation processes have been carried out, one is in N2O gas and second one 

is in NH3 gas at temperatures from 700 °C to 850 °C. In both processes, approximately 

1.5 nm of SiOxNy was deposited on p-type polished silicon substrate in Class 10 clean 

room environment. Then, 20 nm thick Ta2O5 was deposited in RF magnetron sputtering 

system. For both group of samples, the highest dielectric constant values are obtained 

for samples nitrided at 800 °C for both N2O and NH3 gas nitridation processes. When 

the two samples are compared, NH3 nitridation gives the highest dielectric constant. The 

level of Dit decreased substantially from that of unnitrided samples to that of reference 

sample with native oxide SiO2. The level is around 2-3x1011 cm-2 eV-1, which is in the 

level of  acceptable limit for the replacement oxides as discussed in detail by 

Manchanda et al. (Manchanda et al. 2001). However, the effective oxide charges, Neff, 

are still higher for nitrided samples. Especially, sample nitrided at 800 °C in NH3 has 

Neff above 1x1012 cm-2, this high density is most probably due to the H incorporation in 

the oxide and formation of H-related defects, although the nitridation conditions were 

chosen so that less H would be incorporated in the films (i.e. lower temperature, shorter 

times).These results are in good agreement with the recent results given in the literature 

(Novkovski et al. 2005). However, for nitrided samples at 800 °C in N2O gas, the Neff 

values as low as 4x1011 cm-2 are obtained. This level is almost equal to that found for 

the reference sample with native oxide SiO2. It can be inferred that samples nitrided in 

N2O gas at 800 °C improves the dielectric constant above the level of SiO2 and 

decreases both Neff and Dit levels to that of native oxide SiO2. These results show that a 

prior nitridation of p-silicon surface is a promising approach to improve both oxide and 

interface properties of Al-Ta2O5-Si MOS devices. However, further investigation is 

necessary to understand the nature of these oxide charges and interface properties of 

MOS devices with high dielectric constant oxide layers before integration into large 

scale fabrication. 

In addition to the results discussed about Al-Ta2O5-Si MOS capacitors, there are 

also important considerations related to the deposition and structural properties of Ta2O5 

insulating layers. It was shown that devices with different gate areas constructed on the 

same silicon wafer resulted in different dielectric constant values. Devices with smaller 

area give higher dielectric constant value than that of larger area device even though 

they are constructed on the same Ta2O5 insulator. This result indicates that Ta2O5 
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insulating layers show structural nonuniformities on the wafer. Larger area devices are 

affected by local micro cracks or grain boundaries which gives an average dielectric 

constant. However, smaller devices are less affected by the nonuniformities. These such 

nonuniformities also cause Ta2O5 insulating layer to conduct substantially that leakage 

current measurements are much higher than expected device limits for the MOS 

capacitors. Due to these high leakage currents, low frequency capacitance-voltage 

measurement becomes impossible to carry out for such high dielectric constant 

insulators. However, conductance versus voltage measurements carried out for all the 

samples at 1 MHz exhibits it expected characteristics that it peaks in the depletion 

region and at the flat band voltage of the MOS device. The values of conductance are 

higher for the devices studied here due to structural nonuniformities of Ta2O5 insulating 

layers. To decrease leakage current and to obtain uniform oxide growth on the polished 

silicon surface (nitrided or unnitrided); a prior detailed research on deposition and 

structural properties should be carried out before making MOS devices. Finally, these 

results of capacitance-voltage spectroscopy established in this thesis provide a better 

feedback to the deposition and structural investigation to improve both Ta2O5 oxide 

layer and Ta O -Si interface. 2 5
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