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ABSTRACT

Integrable dynamical models of the point magnetic vortex interactions in the

plane are studied. Reformulating the Euler equations for vorticity in the Helmholtz

form, the Hamiltonian and Lax representations are found. Reduction of these equa-

tions for the point vortices to the Kirchhoff equations, and non-integrability of the

system of N ≥ 4 hydrodynamical vortices are discussed. As an integrable model

of planar motion with given vorticity for the stationary flow, the Liouville equation

and its solutions are given. For non-stationary flows, exactly solvable case of point

planar vortex diffusion and exactly solvable Initial Value Problem for the one dimen-

sional Burgers equation are solved. By the complexified Cole-Hopf transformation,

the complex Burgers equation with integrable N vortex dynamics is introduced and

linearization of this equation in terms of the complex Schrödinger equation is found.

This allows us to construct N vortex configurations in terms of the complex Hermite

polynomials, the vortex chain lattices and study their mutual dynamics. Mapping of

our vortex problem to N-particle problem, the complexified Calogero-Moser system,

showing its integrability and Hamiltonian structure is given.

As an application of the general results, we consider the problem of mag-

netic vortices in a magnetic fluid model. The holomorphic reduction of topological

magnetic system to the linear complex Schrodinger equation, allows us to apply

all results on integrable vortex dynamics in the complex Burgers equation to the

magnetic vortex evolution, including magnetic vortex lattices and the bound states

of vortices.
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ÖZET

Tezimde düzlemde noktasal manyetik vorteks etkileşimlerinin integral-

lenebilir dinamik modellerini çalıştık. Vorteks özelliğinin bulunabilmesi için Euler

denklemleri Helmholtz formunda yeniden yazılarak Hamilton ve Lax gösterimlerini

bulduk. Bu denklemlerin noktasal vorteksler için Kirşof denklemlerine indirgenmesi

ve N ≥ 4 hidrodinamik vorteks sisteminin integrallenebilir olmadığını tartıştık.

Sabit akım için verilen vorteks özelliği ile düzlemsel hareketin integrallenebilir bir

modeli olarak Liouville denklemi ve çözümlerini inceleyerek sabit olmayan akımlar

için noktasal vorteks difuzyonunun tam çözümlü durumu ve bir boyutlu Burgers

denkleminin tam çözümlü başlangıç değer problemini çözdük. Karmaşık Cole-Hopf

dönüşümünü kullanarak N-vorteks dinamiği ile Karmaşık Burgers denklemi tanıtıp,

karmaşık Schrödinger denklemi cinsinden linearizasyonunu bulduk. Bunu bulmamız

karmaşık Hermite polinomları ve vorteks zincir latisleri cinsinden N-vorteks kon-

figurasyonunu kurmamıza ve ortak dinamiklerini çalışmamıza izin vermiştir. Prob-

lemimizi N parça problemine çevirerek karmaşık Calogero-Moser sisteminin inte-

grallenebilirliği ve Hamiltonyen yapısını bulduk.

Genel sonuçların bir uygulaması olarak manyetik akışkan modelindeki

manyetik vorteks problemini ele aldık. Topolojik manyetik sistemin doğrusal

karmaşık Schrödinger denklemine indirgenmesi, Karmaşık Burgers’ denklemindeki

integrallenebilir vorteks dinamiği üzerindeki tüm sonuçları manyetik vorteks evrim-

ine, manyetik vorteks kafeslerine ve vortekslerin sınır durumlarına uygulamamıza

izin vermiştir.
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CHAPTER 1

INTRODUCTION

"Strepsiades: But is it not Zeus who forced them to move?

Socrates: Not at all; it’s the aerial Whirlwind.

Strepsiades: The Whirlwind! Ah! I did not know that. So Zeus, it

seems,has no existence, and its the Whirlwind that reigns in his stead?"

Aristophanes "The Clouds" (419 BC)

The concept of vortex motion has a long history starting from ancient

times and includes many famous names (Kozlov 1998). Main ideas of Descartes

vortex theory are represented in ”Discours de la methode” (1637) and in a capital

work ”Principia Philosophiae” (1644). Cartesian cosmology is based on primordial

chaos, which by motion according to fixed laws is ordering to cosmos. According

to Descartes the Universe is filled by thin all-penetrable fluid (similar to the ether)

which is in a permanent rotational motion. The term vortex itself, ”tourbillon”,

is coming from comparison with turbulent motion of a river. The vortex model of

gravity was proposed by Descartes, Bernoulli, Stokes and Huygens. But soon it was

displaced by the Newton’s gravity theory for a long time. Only in the middle of

XIX century the interest to vortex theory revives with works of Helmholtz (1821-

1894) (Helmholtz 1858), Thompson (Lord Kelvin) (Kelvin 1869), Kirchhoff (1824-

1887) (Kirchhoff 1876 ) on the vortex motion of an ideal fluid. The mathematical

description of processes related with the motion of vortex in a liquid is starting

from Helmholtz’s paper ”Uber Integrale der Hydrodynamischen Gleichungen Welche

den Wirbelbewegungen Entsprechen” (1858) in which he formulated his theorem

on conservation of vorticity in the rotational motion of a fluid. He also notices

an analogy between the fluid motion and the magnetic action of electric fields.

General equations of motion for N point vortices (Kirchhoff’s equations) have been

introduced by Kirchhoff in his lectures in mathematical physics (Kirchhoff 1876). He

derived corresponding Hamiltonian form of equations and found all possible integrals

of the motion. In contrast with Newton’s equation for N point masses, having

the second order, the Kirchhoff equations are the first order of vortex coordinates.
1



Walter Gröbli (Gröbli 1877) in his thesis ”Specille Probleme uber die Bewegung

Geradliniger Parallerer Wirbelfaden” in 1877 analyzed the integrable problem of

motion of three vortices in the plane. He obtained the system of three nonlinear

equations possessing two integrals of motion and allowing to get explicit quadrature.

He also considered particular case of the problem of four vortices under condition

of symmetry axis and more general problem of 2N vortices with N symmetry axes.

The interest to vortex theory increases with Kelvin’s vortex theory of atoms

”On Vortex Atoms” , (Kelvin 1867). But soon his model was dismissed by quantum

mechanical model of atoms (Lomonaco 1996). Kelvin also posed the problem of

stability under the stationary rotation of the system of N point vortices located at

N polygon vertices. He noticed that the problem is similar to the problem of stability

for the system of equal magnets floating in external magnetic field. Experiments

with floating magnets performed by Mayer, leaded him to the conclusion that for

number of vortices (magnets) exceeding 5, rotating polygon becomes unstable (in

fact the case N = 6 is stable). The linear stability of polygon has been studied by

J.J. Thompson (who discovered the electron). He found that for n ≤ 6 the linear

stability takes place, while for n > 8 is not. Stability of the case n = 7 needs

nonlinear analysis and after several failed attempts has been proved only recently

(Meleshko and Konstantinov 1993). Non-integrability of the four vortex problem in

plane, indicating on chaotization of the vortex motion, was found recently (Ziglin

1982).

Many problems involving interfacial motion (Lushnikov 2004) can be cast

in the form of vortex sheet dynamics (Saffman 1992). The discovery of coherent

structures in turbulence, increases expectations that the study of vortices will lead

to models and an understanding of turbulent flow, one of the great unsolved problems

of classical physics. Vortex dynamics is a natural paradigm for the field of chaotic

motion and modern dynamical system theory (Poincare 1893). The theory of line

vortices and vortex rings is a part of modern theory of liquid Helium II. Interaction

of vortex structures essentially influences on processes in atmosphere and the ocean.

In techniques complete understanding of friction to the motion, noise generation,

shock waves, is impossible without clear theory of the vortex motion. In a wide and

important class of motions of ideal inviscid fluid (Meleshko and Van Heijst 1994), the

2



vortex dynamics provides physically profound examples of nonlinear Hamiltonian

systems of infinite dimensions, attracting much interest in relation with chaotic

phenomena in dynamical systems (Borisov and Mamaev 2003 ).

Theoretical progress in the study of vortex motions is essentially related

with the development of computational techniques and effective numerical methods

of computation. They allow numerical modelling of vortex interactions in three

dimensions.

Applications of vortices extend from liquid crystals and ferromagnets (Ku-

ratsuji and Yabu 1998, Komineas and Papanicolaou 1998) to superfluids (Ho and

Mermin 1980, Mermin and Ho 1976), and from non-equilibrium patterns to Quan-

tum Hall effect (Ezawa 2000) cosmic strings (Thess et al. 1999, Correa et al. 2001),

(Pismen 1999). A superfluid (4He) is characterized by flow without dissipation. The

order parameter of this flow is represented by a complex scalar field. Vortices are

readily formed in moving superfluids. The idea of superflow dominated by vortex

filaments has been proposed by (Feynman 1955). A superfluid vortex is a topo-

logical defect of a complex scalar field and has quantized circulation. This is the

fundamental distinction between superfluid and classical vortex.

Nano-scale magnets can have, according to their shape and size, ordered

domain structures such as magnetic vortices and single domains. Experimental

and theoretical studies of static and dynamical magnetic properties of nano-scale

magnets as expected allow better understanding of the quantum behavior associated

with domain wall displacement and magnetization reversal.

The goal of the present thesis is to study integrable dynamics of vortices in

the plane and its applications to the planar ferromagnetic fluids.

In Chapter 2 we formulate the Euler equations in two dimensions (Section 2.1)

and relations between incompressible and irrotational flow and analytic functions

theory, Section 2.2. The vortices and sources of the flow are interpreted as the simple

pole singularities of the complex velocity in Section 2.3.

In Chapter 3 we present some integrable models of planar motion in the

fluid. Reformulating the Euler equations for vorticity in the Helmholtz form (Section

3.1), first we discuss the vortex-source reciprocity relations in Section 3.2. The

Hamiltonian and Lax representations of the Euler equation are found in Section 3.3.

3



Reduction of these equations for the point vortices to the Kirchhoff equations, and

non-integrability of the system of N ≥ 4 hydrodynamical vortices are discussed in

Section 3.4. As an integrable model of planar motion with given vorticity for the

stationary flow, Section 3.6, the Liouville equation and its solutions as distributed

finite set of vortices and as the periodic lattice of vortices are given in Section 3.7.

In Chapter 4 we consider non-stationary viscous flow described by the Navier-

Stokes equation Section 4.1 and in vorticity form by the Helmholtz equations ,

Section 4.2. Exactly solvable case of diffusion of point planar vortex is the subject

of Section 4.3. Then we treat in details the one-dimensional Burgers’ equation,

Section 4.4, its linearization, Section 4.5, the Initial Value Problem, Section 4.6,

shock soliton structure and asymptotic shock generation from initial step function,

Sections 4.7 and 4.8 correspondingly.

In Chapter 5, by interpreting the relation between complex velocity and com-

plex potential, as the complexified Cole-Hopf transformation, the complex Burgers

equation, Section 5.1, with integrable N vortex dynamics is introduced. Lineariza-

tion of this equation in terms of the complex Schrödinger equation is given in Section

5.2. The identification of vortices with complex zeroes of this equation allows us

to construct N vortex configurations and represent them in terms of the complex

Hermite polynomials. Solutions in the form of the vortex chain lattices, and their

interaction with vortices are considered in Sections 5.3 and 5.4.

In Chapter 6 we establish relation of N vortex equations with the Calogero-

Moser multiparticle systems, Section 6.1, showing integrability and the Hamiltonian

structure for N vortex, Section 6.2 and N-vortex lattices, Section 6.3.

As an application of the general results, in Chapter 7 we consider the problem

of magnetic vortices in a magnetic fluid model. We formulate the topological magnet

model in Section 7.1 and its stereographic projection representation in Section 7.2.

The anti-holomorphic reduction of topological magnetic system to the linear complex

Schrödinger equation in considered in Section 7.3. In Section 7.4 we study special

form of topological magnet as the Ishimori model. Applying all results on integrable

vortex dynamics in the complex Burgers equation to the magnetic vortex evolution,

we construct N magnetic vortices in Section 7.5, and study their dynamics in Section

7.6. By time dependent Schrödinger problem in harmonic potential, Section 7.7 ,

4



we construct the bound state of N vortices in Section 7.8.

In Conclusions, Chapter 8, we discuss main results obtained in this thesis. In

Appendices we calculate in details some results of the main text. In Appendices A.1

and A.2 we survey Cauchy Integral Representation, Argument principle and Rouche

Theorem. Vorticity form of Euler equation is derived in Appendix B. The Lax repre-

sentation is subject of Appendix B.2. Green Function solution for Laplace Operator,

Appendix B.3, and the point vortex solution in polar coordinates, Appendix B.4, are

found. The integrals of motion for the Kirchhoff equations are studied in Appendix

B.5. In Appendix B6 system of equations describing N vortex system is derived.

We review properties of Hermite polynomials with real and complex arguments in

Appendix C. I.V.P for the Burgers equation and particular solution for the initial

function in the form of the step function is solved in details in Appendix D. Fi-

nally, in Appendices E.1 and E.2 the Euler’s Homogeneous Function Theorem and

Buckingham’s Pi Theorem are introduced.

5



CHAPTER 2

EULER EQUATIONS IN TWO DIMENSIONS

2.1 Mathematical Models of Fluids in Two Dimensions. Eu-

ler Equations.

Definition 2.1.0.1 The Euler Equations of an ideal fluid in R2 are the following

evolution equations on the velocity field ~u(x, y, t) and the density ρ(x, y, t) of the

fluid:

D~u

Dt
=
∂~u

∂t
+ (~u · ~∇)~u = −1

ρ
~∇p+ ~f (2.1)

Dρ

Dt
=
∂ρ

∂t
+ (~u · ~∇)ρ = 0 (2.2)

The first system of equations (2.1) is just the Newton’s Second Law for fluid

particles, where p means pressure in the fluid and ~f is an external field (Chorin and

Marsden 1992, Arnold et al. 1998). The second equation (2.2) is the continuity

equation of the flow. Here the material derivative is defined as

D

Dt
≡ ∂

∂t
+ (~u · ~∇) (2.3)

and ∇ = (∂/∂x, ∂/∂y) is the gradient operator.

These equations describe the special case of parallel layer flow in three dimen-

sions, when exists such a direction ~N that the whole velocity field ~u is orthogonal

to this vector. Moreover, in all planes orthogonal to ~N , the picture of the flow is

identical. Then, such a flow is completely characterized by the flow in one of the

planes orthogonal to ~N . In our consideration we choose a coordinate system with

direction z along the vector ~N , and components of velocity field along other two

directions x and y denote as u1 and u2.

6



2.2 Incompressible and Irrotational Stationary Flow

For the stationary flow (Lavrentiev and Shabat 1973), ∂t~u = 0, the velocity

field is time independent ~u = (u1(x, y), u2(x, y)). If the flow is irrotational

rot ~u = 0 (2.4)

then
∂u1

∂y
− ∂u2

∂x
= 0 (2.5)

implies existence of a real function ϕ(x, y), called the velocity potential, such that

~u = ∇ϕ or in components

u1 =
∂ϕ

∂x
, u2 =

∂ϕ

∂y
. (2.6)

Indeed Eq.(2.5) is integrability condition showing that the differential form

u1dx+ u2dy = dϕ

is exact.

For incompressible flow (g = const.) the continuity Eq. (2.2) is reduced to

div ~u = 0 (2.7)

or
∂u1

∂x
+
∂u2

∂y
= 0. (2.8)

It implies existence of a real function ψ(x, y) called the stream function, such that

u1 =
∂ψ

∂y
, u2 = −∂ψ

∂x
. (2.9)

Indeed, Eq.(2.7) is exactness condition for the differential form

−u2dx+ u1dy = dψ.

The direction of tangent line to the curve ψ(x, y) = const which is determined by

equation

−u2dx+ u1dy = dψ = 0. (2.10)

coincides with direction of the velocity vector dy/dx = u2/u1. This is why the

integral curves ψ(x, y) = const are the stream lines of the flow.
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2.3 Complex Potential and Complex Velocity

Eqs. (2.6) and (2.9) imply Cauchy-Riemann equations

∂ϕ

∂x
=
∂ψ

∂y
,

∂ϕ

∂y
= −∂ψ

∂x
(2.11)

which means that the velocity potential and the stream function are harmonically

conjugate functions (Saff and Snider 2003). In fact Eqs.(2.11) imply that these

functions satisfy the Laplace equation

∆ϕ = 0 and ∆ψ = 0 (2.12)

and determine the real and imaginary parts of analytic function f(z) of complex

variable z = x+ iy,
∂

∂z̄
f(z) = 0 (2.13)

where
∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)

.

This function is called the complex potential

f(z) = ϕ(x, y) + iψ(x, y). (2.14)

From the above consideration we can see that the stationary incompressible

and irrotational flow is described by this analytic function. Conversely, any analytic

function of f(z) represents complex potential for the steady flow of an ideal incom-

pressible and irrotational fluid. The real part of this function <f = ϕ has meaning

of the velocity potential and =f = ψ is the stream function of the flow. The one

parameter families of curves ϕ(x, y) = α and ψ(x, y) = β where α and β are con-

stants, are orthogonal families called the equipotential lines and streamlines of the

flow respectively. In steady motion, streamlines represent the actual paths of fluid

particles in the flow pattern. The velocity vector ~u = (u1, u2) at any point z = x+iy

can be represented by one complex function u, called the complex velocity:

u = u1 + iu2 =
∂ϕ

∂x
− i∂ψ

∂x
= f ′(z) (2.15)

This shows that complex velocity u is an anti-analytic function of z = x+ iy.
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2.3.1 The Complex Electrostatic Potential

Let r be the distance between two point electric charges q1 and q2. Then the

force between them in the vacuum is given in magnitude by Coulomb’s law which

states that

F =
q1q2
r2

(2.16)

and is one of the repulsion or attraction according as the charges are like (both

positive or negative) or unlike (one positive and the other is negative).

Suppose we are given a charge distribution which may be continuous, discrete,

or a combination (Spiegel 1964). This charge distribution sets up an electric field.

If a unit positive charge (small enough so as not to affect the field appreciably) is

placed at any point A not already occupied by charge, the force acting on this charge

is called the electric field intensity at A and is denoted by ~E. For the static field

rot ~E = 0. This implies existence of electrostatic potential ϕ

~E = −gradϕ = −∇ϕ. (2.17)

If the charge distribution is two dimensional,then we have complex function

E = E1 + iE2 = −∂ϕ
∂x
− i∂ϕ

∂y
. (2.18)

where

E1 = −∂ϕ
∂x
, E2 = −∂ϕ

∂y
(2.19)

In such case if Et denotes the component of the electric field intensity tangential to

any simple closed curve C in the z plane,

∮

C

Etds =

∮

C

E1dx+ E2dy = 0 (2.20)

Theorem 2.3.1.1 (Gauss’ Theorem) Let us confine ourselves to charge distri-

butions which can be considered two dimensional. If C is any simple closed curve in

the z plane having a net charge q in its interior (actually an infinite cylinder enclos-

ing a net charge q) and En is the normal component of the electric field intensity ,

then Gauss’ theorem states that

∮

C

Ends = 4πq (2.21)
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If C does not enclose any net charge , this reduces to

∮

C

Ends =

∮

C

E1dy − E2dx = 0 (2.22)

It follows that in any region not occupied by charge,

∂E1

∂x
+
∂E2

∂y
= 0 (2.23)

From (2.19)and (2.23), we have

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 (2.24)

i.e. ϕ is harmonic at all points not occupied by charge.

In addition, Eq.(2.23) means div ~E = 0 and implies the existence of stream function

ψ(x, y) such that From the above Eqs. (2.19) and (2.23) it is evident that a harmonic

function ψ is conjugate to ϕ so that

f(z) = ϕ(x, y) + iψ(x, y) (2.25)

is analytic in any region not occupied by charge. We call f(z) the complex electro-

static potential or , briefly, complex potential. In terms of this, (2.19) becomes

E = −∂ϕ
∂x
− i∂ϕ

∂y
= −∂ψ

∂x
+ i

∂ψ

∂y
= −df

dz
= −f ′(z) (2.26)

and the magnitude of E is given by

E = |E| = |f ′(z)| (2.27)

The curves (cylindrical surfaces in three dimensions)

ϕ(x, y) = α, ψ(x, y) = β (2.28)

are called equipotential lines and flux lines respectively. The analogy of the above

electrostatic picture with fluid flow is quite apparent. The electric field in electro-

static problems corresponds to the velocity field in fluid flow problems, the only

difference being a change of sign in the corresponding complex potentials.

The complex (electrostatic) potential due to a line charge q per unit length

at z0 (in a vacuum) is given by

f(z) = −2q ln(z − z0) (2.29)
10



and represents a source or sink according to q < 0 or q > 0. The idea of sources and

sinks for electrostatics have corresponding analogs for the fluid flow.

2.3.2 Sources and Vortices as Singular Points of Analytic

Function

If the flow takes part not in a disk |z| < R but in annular domain R1 < |z| <
R2, then the complex potential has Laurent series expansion around every singular

point. According to the type of singularities we have next classification of the flow

configurations (Lavrentiev and Shabat 1973).

Definition 2.3.2.1 The logarithmic singularity of complex potential

f(z) =
N

2π
Logz (2.30)

corresponding to

f ′(z) =
N

2π

1

z
(2.31)

and to the pole singularity of the complex velocity

u = f ′(z) =
N

2π

1

z̄
(2.32)

at z̄ = 0 is called a source (N > 0) or sink (N < 0). Parameter N is the strength

of the source/sink.

The velocity field components in this case are:

u1 + iu2 =
N

2π

z

|z|2 =
N

2π

x+ iy

x2 + y2
(2.33)

u1 =
N

2π

x

r2
, u2 =

N

2π

y

r2
(2.34)

~u = (u1, u2) =
N

2π
(
x

r2
,
y

r2
) =

N

2π

~r

r2
(2.35)

and the stream lines are radial rays, while the equipotential lines are concentric

circles.

Definition 2.3.2.2 The logarithmic singularity of complex potential

f(z) = −Γi

2π
Logz (2.36)
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corresponding to

f ′(z) = −Γi

2π

1

z
(2.37)

and to the pole singularity of complex velocity

u = f ′(z) =
Γi

2π

1

z̄
(2.38)

at z̄ = 0 is called a vortex.

The velocity field components in this case are:

u1 + iu2 =
Γi

2π

z

|z|2 =
iΓ

2π

x+ iy

x2 + y2
(2.39)

u1 =
Γ

2π

−y
r2
, u2 =

Γ

2π

x

r2
(2.40)

u = (u1, u2) =
Γ

2π
(
−y
r2
,
x

r2
) (2.41)

It is easy to see that vectors ~u and ~r are orthogonal

~u · ~r = 0 (2.42)

and the stream lines are concentric circles, while the equipotential lines are radial

rays. Parameter Γ has meaning of the vortex strength (circulation) since:
∮

~ud~s =
Γ

2π

∮ −ydx+ xdy

x2 + y2
=

Γ

2π

∫ 2π

0

dφ = Γ (2.43)

Definition 2.3.2.3 For the complex potential and velocity

C = N − iΓ (2.44)

f(z) =
C

2π
Logz (2.45)

f ′(z) =
C

2π

1

z

u = f ′(z) =
C

2π

1

z̄
=
N + iΓ

2π

1

z̄

we have mixed source-vortex configuration.

Definition 2.3.2.4 n-stationary vortices/sources are given by complex potential

and velocity

f(z) =
n∑

k=1

Ck
2π
Log(z − zk) (2.46)

Ck = Nk − iΓk (2.47)

u =
n∑

k=1

Ck
2π

1

z̄ − z̄k
(2.48)
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For n-vortices of the same strength Γ we have

f(z) = −i
n∑

k=1

Γ

2π
Log(z − zk) (2.49)

= − iΓ
2π

n∑

k=1

Log(z − zk)

= − iΓ
2π
Log

n∏

k=1

(z − zk)

For n sources of the same strength N we have

f(z) =
N

2π
Log

n∏

k=1

(z − zk) (2.50)

Points z1, ..., zn correspond to the position of vortices/sources.

Function

φ(z) =
n∏

k=1

(z − zk) (2.51)

for a vortex/source at point zk has simple zero ∼ (z − zk). Thus, the set of vor-

tices/sources on the plane of the same intensity C is characterized by the set of zeros

of function φ(z), such that complex potential is

f(z) =
C

2π
Log φ(z)

and complex velocity is

u(z) = f ′(z) =
C

2π

∂

∂z̄
Logφ(z) =

C

2π
(
φz
φ

) (2.52)

Then, to every zero of φ(z) corresponds to the pole of u(z).

u(z) = −2ν(
φz
φ

) (2.53)

where ν = − C
4π

is constant.

For the real values of z this representation u = −2ν
φx
φ

has form of the Cole-

Hopf transformation (Cole 1951 , Hopf 1950). For u = u(x, t) and φ = φ(x, t) it

relates the nonlinear Burgers’ equation

ut + uux = νuxx, (2.54)

with the linear heat equation:

φt = νφxx. (2.55)
13



Therefore, representation (2.53) for the complex flow can be considered as gen-

eralized complex Cole-Hopf transformation (CCH). If we have Complex Burgers’

Equation for complex velocity u = u(z̄, t):

iut + uuz̄ = νuz̄z̄ (2.56)

then by CCH transformation

u = −2ν
∂

∂z̄
LogΦ(z̄, t) = −2ν

Φz̄

Φ
(2.57)

we have the linear complex Schrödinger (Heat) equation,

iΦt = νΦz̄z̄, (2.58)

where Φ(z̄, t) ≡ φ(z, t). Every solution of (2.58) determines solution of the complex

Burgers’ equation (2.56). Moreover, every simple zero of Schrödinger equation (2.58)

determines simple pole of the complex velocity and the complex Burgers’ equation.

Let z̄k is simple zero of Φ:

Φ(z̄k) = 0 (2.59)

so that

Φ(z̄) = F (z̄)(z̄ − z̄k) (2.60)

where F (z̄k) 6= 0. Then

u(z̄) = (−2ν)

[
1

z̄ − z̄k
+
F ′(z̄)

F (z̄)

]

(2.61)

has simple pole at z̄ = z̄k.

For one simple zero at point z̄0 :

Φ(z̄) = z̄ − z̄0(t) (2.62)

from equation (2.58) follows that Φt = 0, and
dz̄0

dt
⇒ z̄0 = const. and corresponding

velocity u = −2ν
1

z̄ − z̄0

describes the stationary vortex/source located at point z̄0

with the strength N = −4πνR and circulation Γ = −4πνI , where ν = νR + iνI .

Thus, for Burgers Equation one-vortex is always stationary. Situation is different if

we have more then one n > 1 vortices. In this case vortices are moving in the plane

and undergo mutual collisions. In Sec.5 we will describe in details the dynamics of

vortices for complex Burgers equation.
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CHAPTER 3

INTEGRABLE MODELS OF ROTATIONAL

MOTION IN TWO DIMENSIONS

In previous section we discussed incompressible and irrotational flows in terms

of analytic function theory. In the present section we will consider incompressible

but rotational motion of fluid in two space dimensions.

3.1 The Vorticity Form of Euler Equations

If we consider the Euler equations (2.1) for zero pressure and without external

forces, then it reduces to the form (Lavrentiev and Shabat 1973)

∂~u

∂t
+ (~u · ~∇)~u = 0 (3.1)

To characterize rotation properties of a flow one introduces vorticity Ω of the flow

according formula

~Ω = rot ~u (3.2)

For the planar motion ~u = ~u(x, y) = (u1(x, y), u2(x, y), 0) the vorticity vector ~Ω =

(Ω1,Ω2,Ω3) is orthogonal to the plane, ~Ω = (0, 0,Ω3) , so that only one nontrivial

component of this vector Ω3 ≡ Ω is

Ω =
∂u2

∂x
− ∂u1

∂y
(3.3)

Written in terms of the stream function (2.9)

u1 =
∂ψ

∂y
, u2 = −∂ψ

∂x
(3.4)

it has the form

Ω = −(
∂2ψ

∂x2
+
∂2ψ

∂y2
) = −∆ψ (3.5)

As we have seen in Section 2, to analytic function in a disk corresponds irrota-

tional and incompressible flow. This flow can be characterized by complex potential
15



f(z) (2.14). Then the stream function for such flow is given by the imaginary part

of this potential ψ = =f(z), and vorticity function is

Ω = −∆ψ = −∆=f(z) (3.6)

Since imaginary part of any analytic function is harmonic function, then vorticity,

Ω = 0, is vanishing everywhere in the disk. But if the function (complex potential)

has some singular point and is analytic in annular domain around this point, then

it admits Laurent series representation. As we have seen in Section 2.3.2, logarith-

mic singularities of stream function, leading to the pole singularity of the complex

velocity have hydrodynamic interpretation as sources and vortices. This is why in

this case the vorticity function vanishes in the annular domain except the singular

points.

3.2 The Vortex-Source Reciprocity Relations

If we consider the point vortex located at the beginning of coordinates ac-

cording (2.40) we have velocity components

u1 = − Γ

2π

y

x2 + y2
, u2 =

Γ

2π

x

x2 + y2
(3.7)

The corresponding stream function is

ψ = − Γ

2π
ln r (3.8)

where r =
√

x2 + y2. Then vorticity of the point vortex is

Ω =
Γ

2π
∆ ln r = Γδ(~r) (3.9)

where we have used property of the Green’s function for two-dimensional Laplace

equation (Appendix B.3)

∆ ln |~r| = 2πδ(~r). (3.10)

So it shows that vorticity of the point vortex is zero everywhere except position of

the vortex. If we calculate total vorticity in the plane

∫

R2

∫

Ωd2x = Γ

∫ ∫

δ(~r)d2x = Γ (3.11)

then we can see that Γ characterizes the magnitude (circulation) of the vortex.
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If the point source is located at the beginning of coordinates, then according

to (2.34) we have components of the velocity

u1 =
N

2π

x

x2 + y2
, u2 =

N

2π

y

x2 + y2
. (3.12)

The corresponding stream function is

ψ = −N
2π

tan−1 x

y
(3.13)

and vorticity of the source

Ω = −∆ψ =
N

2π
∆ tan−1 x

y
(3.14)

Easy to check that it is zero at every point except x = 0, y = 0.

Proposition 3.2.0.5 Reciprocity Relations: Complex potentials for the point

source with strength Ns and the point vortex with strength Γv, located at the same

point z0 are connected by the relation (Pashaev and Gurkan 2005)

Nsfv(z) = −iΓvfs(z) (3.15)

Corollary 3.2.0.6 Complex velocity us for the point source with strength Ns and

the point vortex uv with strength Γv, at the same point z0 are connected by the

relation

Nsuv = iΓvus (3.16)

Corollary 3.2.0.7 The stream function for the point source and the velocity poten-

tial for the point vortex located at the same position are linearly dependent and vice

versa.

Nsϕv − Γvψs = 0 (3.17)

Nsψv + Γvϕs = 0 (3.18)

Corollary 3.2.0.8 Duality Relations: The stream function and the velocity po-

tential for the point vortex and the point source and vice versa located at the same

position with the equal strength satisfy the duality relations

ϕv(x, y) = +ψs(x, y) (3.19)

ψv(x, y) = −ϕs(x, y) (3.20)
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Corollary 3.2.0.9 Complex velocities for the point vortex and point source with

equal strengths Ns = Γv located at the same position satisfy the duality relation

us(z̄) = iuv(z̄) (3.21)

Due to this relation we can restrict ourselves with the study of vortices only since

for sources we need just multiply results with i which means rotate the picture at

every point on angle π/2.

For the system of n vortices (2.46) of the same strength Γ we have the complex

potential

f(z) =
n∑

k=1

−iΓk
2π

Log(z − zk) (3.22)

The corresponding stream function is

ψ = =f =
−1

2π

n∑

k=1

ΓkLog|z − zk| (3.23)

and the vorticity function (3.6)

Ω =
1

2π

n∑

k=1

Γk∆Log|z − zk| =
n∑

k=1

Γkδ(~r − ~rk) (3.24)

describes the static distribution of point vortices in the plane. The total vorticity

in the plane in this case is

∫

R2

∫

Ωd2x =

∫ ∫

Γk

n∑

k=1

δ(~r − ~rk)d2x = Γ1 + Γ2 + ...+ Γn (3.25)

This example shows that vorticity is not zero for the rotational flow. Now if point

vortices are moving in the plane then vorticity in addition to z becomes a function

of time. For the set of n vortices we have

f(z, t) =
n∑

k=1

−iΓk
2π

Log(z − zk(t)) (3.26)

and

Ω =
n∑

k=1

Γkδ(~r − ~rk(t)) (3.27)

It shows that vorticity in this case becomes also function of time.
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3.3 The Helmholtz form of Euler Equation

Let us now determine evolution equation for vorticity in the rotational fluid.

Using the Euler equations (3.1) supplied with the incompressibility condition

∇ ~u =
∂u1

∂x
+
∂u2

∂y
= 0 (3.28)

we have it in the form
∂Ω

∂t
+ u1

∂Ω

∂x
+ u2

∂Ω

∂y
= 0 (3.29)

and it is called the Euler equation in the Helmholtz form (Appendix B.1). If for

velocity u1, u2 due to (3.28) we substitute expression (3.4) in terms of the stream

function ψ, then we rewrite the last equation as

∂Ω

∂t
+
∂ψ

∂y

∂Ω

∂x
− ∂ψ

∂x

∂Ω

∂y
= 0 (3.30)

This evolution equation for vorticity of the planar flow has the Hamiltonian form.

3.3.1 The Euler Equation in the Hamiltonian form

To represent the Euler equation (3.30) in the Hamiltonian form we first in-

troduce the Poisson brackets (Arnold 1998).

Definition 3.3.1.1 The bilinear form

{ψ,Ω} =
∂ψ

∂x

∂Ω

∂y
− ∂ψ

∂y

∂Ω

∂x
(3.31)

defined on the space of functions of two variables x, y is called the Poisson bracket.

This Poisson bracket satisfies all properties of standard Poisson bracket.

1. Skew-symmetry

{ψ,Ω} = −{Ω, ψ} (3.32)

2. Linearity

{ψ + Ω,Υ} = {ψ,Υ}+ {Ω,Υ} (3.33)

3. Jacobi Identity

{ψ, {Ω,Υ}}+ {Ω, {Υ, ψ}}+ {Υ, {ψ,Ω}} = 0 (3.34)
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4. Leibnitz Rule

{ψ · Ω,Υ} = ψ · {Ω,Υ}+ {ψ,Υ} · Ω (3.35)

Then using this definition it is easy to see that the Euler equation (3.30) has

the next Hamiltonian form
∂Ω

∂t
= {ψ,Ω} (3.36)

where the stream function can be considered as Hamiltonian function of the problem.

It is related with Ω according to Eq. (3.5). so integral operator (Appendix B.3)

inversing Eq. (3.5)

ψ(x1, y1) =
1

2π

∫ ∫

dx2dy2 ln |~r1 − ~r2|Ω(x2, y2) = ∆−1Ω (3.37)

from (3.36) we have equation

∂Ω

∂t
= {∆−1Ω, ω} (3.38)

3.3.2 The Lax Representation

Given eigenvalue problem (Ablowitz and Segur 1981)

Lϕ = λϕ (3.39)

is called isospectral , ∂λ/∂t = 0 , if eigenfunctions evolution

∂ϕ

∂t
= Aϕ (3.40)

implies an operator equation

Lt = [A,L] = AL− LA (3.41)

called the Lax equation. Indeed, differentiating (3.39) according time and using

(3.40) we have identity (Appendix B.2)

(Lt − [A,L])ϕ = λtϕ (3.42)

which gives

λt = 0 ⇔ Lt = [A,L] (3.43)

When the Lax operator L and evolution operator A depend on some function

f(x, t), the Lax operator equation (Lax 1968) is equivalent to a nonlinear evolution
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equation for function f(x, t). In this case one says that the nonlinear evolution equa-

tion is representable in the Lax form. In general, existence of the Lax representation

means that the corresponding nonlinear evolution equation is completely integrable

system and can be solved by the Inverse Scattering or Spectral Transform Method

(Novikov et al. 1984) or by some other direct methods (Hirota 1980).

3.3.3 The Lax Representation of the Euler Equation

Written in the Hamiltonian form the Euler equation for vorticity (3.36) can

be interpreted as the Lax equation (Li 2001)

Lt = [A,L]. (3.44)

We define the following Lax operators by action on function ϕ:

Lϕ = {Ω, ϕ} = Ωxϕy − Ωyϕx (3.45)

Aϕ = {ψ, ϕ} = ψxϕy − ψyϕx (3.46)

where ψ is the stream function with vorticity Ω. Then the linear system (3.39),

(3.40) can be written as

{Ω, ϕ} = λϕ (3.47)

ϕt = {ψ, ϕ} (3.48)

Differentiating the first equation of the system and using the second one we

have:

{Ωt, ϕ}+ {Ω, ϕt} = λtϕ+ λϕt (3.49)

{Ωt, ϕ}+ {Ω, {ψ, ϕ}} = λtϕ+ λ{ψ, ϕ} (3.50)

or

{Ωt, ϕ}+ {{Ω, ψ}, ϕ} = λtϕ (3.51)

where in the second term we have used the Jacobi Identity (3.34). For isospectral

flow we obtain the Euler equation for vorticity

{∂tΩ− {ψ,Ω}, ϕ} = 0 (3.52)

but in a weak sense.
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3.4 The Kirchhoff Equations

In this section we derive the system of dynamical equations describing N point

vortices in the plane. This system was derived first time by Kirchhoff (Kirchhoff

1876) and called by his name. Since vorticity of a point vortex is described by

the Dirac delta function (3.9) which has mathematical meaning of the generalized

function or the distribution (Schwartz 1997), we need to consider the generalized

function solution of the vorticity equation (3.36).

3.4.1 Generalized Function Solution of Vorticity Equation

Let us consider vorticity equation (3.36) in the class of generalized functions

Ω(x, y, t). Then we multiply this equation with sufficiently smooth function f(x, y)

having finite support in R2 and integrate in the whole plane
∫ ∫ (

∂Ω

∂t
− {ψ,Ω}

)

f(x, y)dxdy = 0 (3.53)

or
∫ ∫ (

∂Ω

∂t
− {ψ,Ω}

)

f(x, y)dxdy =

∫ ∫ (
∂Ω

∂t
− ∂ψ

∂x

∂Ω

∂y
+
∂ψ

∂y

∂Ω

∂x

)

f(x, y)dxdy = 0

(3.54)

Using vorticity function for the set of point vortices intensity Γ1,Γ2, ...,ΓN has the

form

Ω =
N∑

k=1

Γkδ(x− xk(t))δ(y − yk(t)) (3.55)

we calculate different terms as
∫ ∫

∂Ω

∂t
f(x, y)dxdy =

∫ ∫

f(x, y)
N∑

k=1

Γkδ
′(x− xk(t))(−ẋk)δ(y − yk)

+

∫ ∫

f(x, y)
N∑

k=1

Γkδ(x− xk(t))(−ẏk)δ′(y − yk)

=
N∑

k=1

Γk

[

ẋk
∂f(x, y)

∂x
+ ẏk

∂f(x, y)

∂y

]∣
∣
∣
∣
x=xk,y=yk

(3.56)

and
∫ ∫

∂ψ

∂x

∂Ω

∂y
f(x, y)dxdy =

∫ ∫
∂ψ

∂x
f(x, y)

N∑

k=1

Γkδ(x− xk)δ′(y − yk)dxdy

= −
N∑

k=1

Γk
∂

∂y

(
∂ψ

∂x
f(x, y)

)∣
∣
∣
∣
x=xk,y=yk

(3.57)
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and
∫ ∫

∂ψ

∂y

∂Ω

∂x
f(x, y)dxdy =

∫ ∫
∂ψ

∂y
f(x, y)

N∑

k=1

Γkδ
′(x− xk)δ(y − yk)dxdy

= −
N∑

k=1

Γk
∂

∂x

(
∂ψ

∂y
f(x, y)

)∣
∣
∣
∣
x=xk,y=yk

(3.58)

Combining together it gives

∫ ∫ (
∂Ω

∂t
− {ψ,Ω}

)

f(x, y)dxdy =
N∑

k=1

Γk

(

ẋk −
∂ψ

∂y

)
∂f(x, y)

∂x

∣
∣
∣
∣
x=xk,y=yk

(3.59)

+
N∑

k=1

Γk

(

ẏk −
∂ψ

∂x

)
∂f(x, y)

∂y

∣
∣
∣
∣
x=xk,y=yk

= 0

Since this equation must be valid for arbitrary smooth function f we have the next

set of 2N ordinary differential equations

ẋk =
∂ψ

∂y

∣
∣
∣
∣
x=xk,y=yk

ẏk = − ∂ψ

∂x

∣
∣
∣
∣
x=xk,y=yk

, (k = 1, ..., N) (3.60)

The stream function for the set of point vortices (3.55) has the form

ψ =
−1

2π

N∑

n=1

Γn ln |z − zn(t)| =
−1

4π

N∑

n=1

Γn ln[(x− xn)2 + (y − yn)2] (3.61)

and corresponding partial derivatives are

∂ψ

∂y
=
−1

2π

N∑

n=1

Γn
y − yn

(x− xn)2 + (y − yn)2
(3.62)

∂ψ

∂x
=
−1

2π

N∑

n=1

Γn
x− xn

(x− xn)2 + (y − yn)2
(3.63)

Substituting to (3.60) we have the system

ẋk =
−1

2π

∑

n=1, n6=k
Γn

yk − yn
(xk − xn)2 + (yk − yn)2

(3.64)

ẏk = − 1

2π

∑

n=1, n6=k
Γn

xk − xn
(xk − xn)2 + (yk − yn)2

(3.65)

or in more symmetrical form

Γkẋk =
−1

2π

∑

n6=k
ΓkΓn

yk − yn
(xk − xn)2 + (yk − yn)2

(3.66)

Γkẏk = − 1

2π

∑

n6=k
ΓkΓn

xk − xn
(xk − xn)2 + (yk − yn)2

(3.67)
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This system can be rewritten in terms of complex coordinates xk + iyk = zk as a

system of N complex ODE

Γkżk =
−1

2π

∑

n6=k
ΓkΓn

(yk − yn)− i(xk − xn)
(xk − xn)2 + (yk − yn)2

(3.68)

=
i

2π

∑

n6=k
ΓkΓn

zk − zn
| zk − zn |2

(3.69)

=
i

2π

∑

n6=k
ΓkΓn

zk − zn
z̄k − z̄n

(3.70)

or in a more compact form

iżk = − 1

2π

∑

n6=k

Γn
z̄k − z̄n

(3.71)

Finally we arrive with the set of 2N ordinary differential equations known as

the Kirchhoff equations (Kirchhoff 1876).

3.4.2 The Kirchhoff Equations for N point Vortices

Consider N vortices with strengths Γi , i = 1, ..., N in the plane R2. Then

the vorticity at any moment will be concentrated at N points , and the circulations

at each of them will remain constant forever. Denote the cartesian coordinates of

the vortices in the plane by zj = xj + iyj j = 1, ..., N . We will write down the

evolution of vortices as a dynamical system in the configuration space for the N

vortex system, the space R2N with coordinates (x1, y1, ..., xN , yN ) (Kirchhoff 1876).

Proposition 3.4.2.1 The vortex evolution is given by the following system of

Hamiltonian canonical equations

Γiẋi =
∂H

∂yi
, Γiẏi = −∂H

∂xi
(3.72)

1 ≤ i ≤ N where the Hamiltonian function is

H = − 1

2π

∑

i<j

ΓiΓj ln |zi − zj| (3.73)

and

|zi − zj| =
√

(xi − xj)2 + (yi − yj)2 (3.74)
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According to Helmholtz (Helmholtz 1858), in the case of N = 2 , the two vor-

tices rotate uniformly in the plane R2 about their common mass center(center of

vorticity)z =
Γ1z1 + Γ2z2

Γ1 + Γ2

. In particular, if the circulations Γ1 and Γ2 are of the

same sign, then the mass center is situated between the vortices, while if they are

of opposite signs , then the mass center lies on the continuation of the line joining

the vortices. If Γ1 = −Γ2, then the point vortices travel with equal velocity in

parallel directions perpendicular to the line joining them. The three-vortex problem

(N = 3) also turns out to be integrable. This has already been pointed out by

(Kirchhoff 1876) and illuminated in the dissertation of (Gröbli 1877), where one can

find equations for evolution of the sides of the vortex triangle and explicit formulas

for several special cases.An elaborate treatment of the history of three vortices can

be found in (Aref et al. 1992).

3.4.3 Poisson Structure and Integrals of Motion

Let us consider R2N space of vortex coordinates

x1, ..., xN , y1, ..., yN as the phase space. Then for arbitrary functions

A(x1, ..., xN , y1, ..., yN ), B(x1, ..., xN , y1, ..., yN ) on this space we introduce the

Poisson bracket

{A,B} =
N∑

n=1

1

Γn

(
∂A

∂xn

∂B

∂yn
− ∂A

∂yn

∂B

∂xn

)

(3.75)

which satisfies all properties for the Poisson brackets (3.31). Then the phase space

equipped with the Poisson bracket becomes a Lie algebra (Perelomov 1990).

By this Poisson brackets the Kirchhoff equations (3.66) and (3.67) can be

rewritten as

ẋk = {xk, H}, ẏk = {yk, H}, k = 1, ..., N (3.76)

where the Hamiltonian function has form

H = − 1

4π

∑

k

∑

n

ΓkΓn ln[(xk − xn)2 + (yk − yn)2] (3.77)

Indeed, using the Poisson bracket (3.75) equations (3.76) can be rewritten as

ẋk = {xk, H} =
N∑

n=1

1

Γn

(
∂xk
∂xn

∂H

∂yn
− ∂xk
∂yn

∂H

∂xn

)

(3.78)

=
1

Γk

∂H

∂yk
(3.79)
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ẏk = {yk, H} =
N∑

n=1

1

Γn

(
∂yk
∂xn

∂H

∂yn
− ∂yk
∂yn

∂H

∂xn

)

(3.80)

= − 1

Γk

∂H

∂xk
(3.81)

which coincide with the Kirchhoff system (3.66)and (3.67).

Now for evolution of a smooth function f = (x1(t), ..., xN (t), y1(t), ..., yN (t))

on the phase space we have

df

dt
=

∑

i

(
∂f

∂xi

dxi
dt

+
∂f

∂yi

dyi
dt

)

(3.82)

=
∑

i

1

Γi

∂f

∂xi

∂H

∂yi
− 1

Γi

∂f

∂yi

∂H

∂xi
(3.83)

=
∑

i

1

Γi

(
∂f

∂xi

∂H

∂yi
− ∂f

∂yi

∂H

∂xi

)

(3.84)

or

ḟ = {f,H} (3.85)

Definition 3.4.3.1 A function F (xi(t), yi(t)) is a first integral of Hamiltonian

system with Hamiltonian function H(xi, yi) if and only if the Poisson bracket

{H,F} = 0

Theorem 3.4.3.2 (Poisson’s Theorem) If F and G are two integrals of motion

then their Poisson bracket {F,G} is an integral of the motion.

Definition 3.4.3.3 Two functions F1(xi, yi) and F2(xi, yi) are in involution if their

Poisson bracket is equal zero, {F1, F2} = 0.

Theorem 3.4.3.4 (Liouville) If a system with N degrees of freedom (in 2N di-

mensional phase space) admits N independent first integrals of motion in involution

then the system is integrable by quadratures.

If we consider the Kirchhoff equations as a Hamiltonian system, important

question is if this system is integrable or not. It is known that for a general N , the

Kirchhoff equations of motion have the following four first integrals:

I1 = H I2 =
N∑

i=1

Γixi I3 =
N∑

i=1

Γiyi I4 =
N∑

i=1

Γi(x
2
i + y2

i ) (3.86)
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In fact one can easily check it by direct calculations of the Poisson brackets (Ap-

pendix B.5)

İk = {Ik, H} = 0, k = 1, ..., 4 (3.87)

The calculations can be simplified if we use the Fundamental Poisson brackets

{xi, xj} = 0, {yi, yj} = 0 (3.88)

{xi, yj} =
1

Γi
δij, (i, j = 1, ..., N) (3.89)

Now if we calculate the mutual brackets (Appendix B.5)

{I2, I3} =
N∑

k=1

Γk (3.90)

{I2, I4} = 2I3 (3.91)

{I3, I4} = −2I2 (3.92)

then we can see that these integrals are not in involution; that is , their Poisson

brackets are not zero, and the system with four vortices or more is , generally

speaking, nonintegrable (Ziglin 1982). It is proved that the dynamical system of

four vortices with finite circulations has no analytic independent integral and thus

has to be chaotic. Chaotic behavior of systems with four vortices was already hinted

at by Poincaré (1893). Numerical evidence of it was discussed by E. Novikov (1975).

In spite of the fact that the 4-vortex system is generally nonintegrable, the KAM

theory (Arnold and Khesin 1998) guarantees that for any number of vortices there

is a set of positive measure in the space of initial conditions for which the motion

is quasiperiodic (Khanin 1982). Such vortex configurations are organized in the

following way: The set of all vortices is split into several groups. In this case the

vortex groups interact approximately as single vortices possessing the total circula-

tion. The actual vortex motion is obtained as a superposition of the group motion

and the independent vortex motion within the groups.

As we show in Chapter 7 the system of N vortices for a magnetic fluid model

which is slightly different from the Kirchhoff equations (3.66),(3.67) has N integrals

of motion and is an integrable system.
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3.5 Planar Motion with Given Vorticity

To study planar motion with given vorticity (Lavrentiev and Shabat 1973)

we suppose that the liquid is incompressible and external forces acting on fluid are

derived by potential U : ~f = −∇U . If we introduce the so called Lamb function

H =
u2

2
+
P

ρ
− U (3.93)

where u = |~u|, P - is the pressure and ρ is the density, then applying formula

(~u∇)~u = [~Ω, ~u] + grad
u2

2
(3.94)

to the Euler equation (3.1) we can rewrite it in the form

∂~u

∂t
+ [~Ω, ~u] = −gradH (3.95)

which is called the Euler equation in the Lamb form. For the planar motion when

rot ~u =

(
∂u2

∂x
− ∂u1

∂y

)

~k (3.96)

is orthogonal to the motion plane, the flow is characterized by one scalar vorticity

function,

Ω =
∂u2

∂x
− ∂u1

∂y
(3.97)

If we consider now the steady flow (∂u/∂t = 0) then the Lamb equation

(3.95) can be rewritten as the couple of scalar equations

Ωu2 =
∂H

∂x
, −Ωu1 =

∂H

∂y
(3.98)

By the stream function ψ (3.4) equating the mixed derivatives of H we get identity

∂Ω

∂x

∂ψ

∂y
− ∂Ω

∂y

∂ψ

∂x
= 0 (3.99)

from which follows that vorticity Ω must be constant on the stream lines ψ = const,

which means it depends only on ψ:

Ω = Ω(ψ). (3.100)

In applications form of this dependence usually is known. Introducing the stream

function to Eq. (3.97) we find that it satisfies partial differential equation

∆ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
= −Ω(ψ) (3.101)

This equation is the nonlinear Poisson equation if function Ω(ψ) is nonlinear.
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3.6 The Liouville Model

If dependence of the vorticity is Ω(ψ) = 8e−ψ then Eq.(3.101) has the form of

the Liouville equation

∆ψ = 8e−ψ. (3.102)

This equation is appear in the theory of surfaces (Dubrovin et al. 1984).

When the Riemannian metric of a surface is written in the conformal form, then

conformal factor for the constant curvature surfaces is satisfy the Liouville equation.

As it was shown by Liouville (1853) the equation admits the general solution which

can be written in the form

ψ = − ln
|ζz|2

(1 + |ζ|2)2
(3.103)

where ζ(z) is an arbitrary analytic function. If one chooses it in the form

ζ(z) =
N∏

i=1

(z − zi) (3.104)

with N simple zeroes in the complex plane, then it determines N vortices located in

the plane at position of zeroes of this function. As Stuart found in (Stuart 1967), the

Liouville equation admits solution consisting of an infinite periodic array of vortices

(Fig. 3.1) described by the stream function

ψ = 2 ln(C cosh 2y +
√
C2 − 1 cos 2x) (3.105)

where C is a real parameter satisfying 1 ≤ C <∞

-6 -4 -2 0 2 4 6
-1

-0.5

0

0.5

1

Figure 3.1. Stuart Vortex Lattice

When C = 1 the solution

ψ = 2 ln(cosh 2y) (3.106)
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represents a homogeneous shear layer profile in which all streamlines are parallel

to the x- axis and the horizontal velocity varies like a hyperbolic tangent function

with vertical distance y. In the opposite limit , C →∞, the solution reduces to an

infinite row of identical point vortices separated by distance 2π, each of circulation

−4π. For all intermediate values 1 < C < ∞ , the solution has the structure of an

infinite row of Kelvin cat’s- eyes (Lamb 1932) with a smooth vorticity distribution.

The parameter C governs the steepness of the vorticity profile.

Stuart’s solution is one of a small group of known exact solutions of the

planar Euler equations for distributed vortical equilibria. Several others are known

(Saffman 1992) and (Newton 2001) but the majority of these are weak solutions in

the sense that they involve vortex patches. Examples include the celebrated Kirch-

hoff ellipse (Lamb 1932), the Moore-Saffman vortices (Moore 1975) and the recently

derived equilibria found in (Crowdy 1999, Crowdy 2002). Apart from Stuart’s so-

lution, another famous solution with a smooth vorticity distribution is the Lamb

dipole (Lamb 1932). Meleshko and van Heijst survey a number of related smooth-

vorticity solutions (Meleshko 1994). In Section 7.4.3 we construct infinite periodic

in x lattice of vortices, different from the Stuart’s one, and corresponding to the set

of magnetic vortices.
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CHAPTER 4

INTEGRABLE MODELS OF VISCOUS FLOW

4.1 The Navier- Stokes Equation of Viscous Flow

If we consider the viscous flow then the Euler equations should be modified by

adding the viscosity term which contains the second space derivatives of the velocity

field (Chorin and Marsden 1992). For incompressible viscous flow it gives the system

of equations

∇ · ~u = 0 (4.1)

∂~u

∂t
+ (~u · ∇)~u = −1

ρ
∇P + ν∆~u (4.2)

where coefficient ν has meaning of kinematic viscosity constant of the liquid.

Eq.(4.2)is called the Navier-Stokes equation. The Navier-Stokes equation is much

more complicated for solving than the Euler equation. It describes transition to

the turbulent flow and even numerical approximation for some problems creates

difficulties to solve it.

4.2 The Helmholtz Equation for Vorticity

If we apply rot operation to both sides of the Navier-Stokes equation, we will

have
∂~Ω

∂t
+ rot(~u · ∇)~u = ν∆~Ω (4.3)

where ~Ω = rot ~u. Using vector analysis identity (3.94)

(~u · ∇)~u = [~Ω, ~u] + grad
~u2

2
(4.4)

we have

rot (~u∇)~u = rot[~Ω, ~u]. (4.5)

The right hand side can be expanded according to the double vector product formula

and the Leibnitz’s rule for ∇ acting on the product

[~u, [~Ω, ~u]] = (~u∇)~Ω + ~Ω(∇~u)− ~u (∇~Ω)− (~Ω∇)~u (4.6)
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Now, due to the incompressibility condition (4.1) and the identity div rot ≡ 0, this

formula simplifies to

rot[~Ω, ~u] = (~u∇)~Ω− (~Ω∇)~u. (4.7)

Substituting to Eq.(4.6) and then to Eq.(4.3) we arrive with the Helmholtz

equation

D~Ω

Dt
=
∂~Ω

∂t
+ (~u∇)~Ω = (~Ω∇)~u+ ν∆~Ω. (4.8)

For the planar motion, when vorticity has only one nonzero component ~Ω =

Ω~k the first term in the right hand side is vanishing and equation becomes

∂Ω

∂t
+ u1

∂Ω

∂x
+ u2

∂Ω

∂y
= ν

(
∂2Ω

∂x2
+
∂2Ω

∂y2

)

(4.9)

4.3 Diffusion of Vortex Filament

In this section we consider exactly soluble problem of Navier-Stokes equation

for the planar vorticity (4.9)(Lavrantiev and Shabat 1973). In a viscous liquid at

time t = 0 given velocity distribution in the form of straight line vortex filament,

find distribution of the velocities at any time (The Cauchy Problem or I.V.P.).

Let us choose the vortex filament in x direction and introduce cylindrical

coordinates (x, r, θ); coordinates of velocity vector in this system we denote as

ux, ur, uθ. At initial time in all planes orthogonal to x axis, the velocity field has

the same form (Appendix B.4)

ux = 0, ur = 0, uθ =
Γ

2πr
, (4.10)

where Γ is the constant characterizing intensity of vortex filament. From symmetry

reason it is clear that character of the velocity field will be preserved during the

motion: ur and ux remain equal to zero and uθ would depend on r and t.

It is convenient instead of velocity field to introduce the vorticity field, which

in this problem would be characterized by scalar function Ω(r, t). In fact, according

to Stokes formula applied to the disk of radius r with center on the x-axis, we have
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velocity in terms of this function

uθ =
1

r

∫ r

0

Ω(ρ, t)ρdρ (4.11)

where ρ is integration variable.

Evolution of vorticity is described by the Helmholtz equation (4.9) which in

our case becomes
∂Ω

∂t
= ν

(
∂2Ω

∂r2
+

1

r

∂Ω

∂r

)

(4.12)

and the following initial condition: at t = 0 function Ω(r, 0) is equal 0 everywhere,

except point r = 0, where it is infinite, so that

2π

∫ ∞

0

Ω(r, 0)rdr = Γ (4.13)

Dimensional analysis of the problem shows that in addition to variables r

and t , the vorticity is dependent of another two parameters ν and Γ so that

Ω = Ω(r, t, ν,Γ) (4.14)

The dimensionality of these variables is

[Ω] =
1

T
, [r] = L, [t] = T, [ν] =

L2

T
, [Γ] =

L2

T
. (4.15)

From four variables r, t, ν, and Γ, only two have independent dimensionality, for

example t and ν. With such choice we can construct three dimensionless combina-

tions: π1 = Ω t, π2 =
r√
νt

,π3 =
Γ

ν
. Then, according to the Buckingham π-theorem

(Buckingham 1914, Buckingham 1915)(Appendix E), the physical laws are indepen-

dent of the form of units and as follows, acceptable laws of physics are homogeneous

in all dimensions:

F (π1, π2, π3) = 0 (4.16)

or

F

(

Ωt,
r√
νt
,
Γ

ν

)

= 0. (4.17)

The last equation determines a surface in three dimensional space, which admits the

local form

π1 = ω(π2, π3). (4.18)

This means that we have vorticity dependence (4.14) in the next form

Ω =
1

t
ω

(
r√
νt
,
Γ

ν

)

. (4.19)
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Introducing dimensionless variable ξ =
r√
νt

and writing partial derivatives

∂Ω

∂t
= − 1

t2

[

ω(ξ) +
ξ

2
ω′(ξ)

]

, (4.20)

∂Ω

∂r
=

r

νt2ξ
ω′(ξ), (4.21)

∂2Ω

∂r2
=

1

νt2
ω′′(ξ) (4.22)

where prime means derivative according to variable ξ, after substituting to Eq.(4.12)

we get the ordinary differential equation for function ω

ω′′ +

(
1

ξ
+
ξ

2

)

ω′ + ω = 0. (4.23)

It is easy to check that condition (4.13) is valid at any time t (to show this one

integrates Eq.(4.12)) in the whole plane (r, t), supposing that Ω and corresponding

derivatives decay at infinity sufficient rapidly). Then in variable ξ this condition has

the form

2π

∫ ∞

0

ω(ξ) ξ dξ =
Γ

ν
(4.24)

The solution of Eq.(4.23) satisfying the last condition (4.24) is

ω =
Γ

4πν
exp

[

−ξ
2

4

]

(4.25)

and as follows the solution of our problem is

Ω =
Γ

4πνt
exp

[

− r2

4νt

]

. (4.26)

We note that equation (4.12) is the heat equation and above solution is just the

fundamental solution of this equation. This solution describes diffusive evolution of

vorticity in our problem. The corresponding evolution of the velocity field we can

find according to Eq.(4.11)

uθ =
Γ

2νr

(

1− exp

[
r2

4νt

])

. (4.27)

Presented solution describes exact diffusion of the point vortex in the plane.

4.4 Burgers’ Equation for One Dimensional Flow

In previous section we considered exact solution for the problem of point vortex

diffusion in the plane. But in general, due to nonlinearity of the Navier-Stokes
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equation it is difficult task to solve it exactly. This is why some exactly solvable

models in the form very close to the equations have attracted lot of attention.

Particularly, in one dimension the Navier-Stokes equation (4.2) is reduced to the

equation

ut + uux = νuxx (4.28)

but if we do not restrict our flow to be incompressible (div u 6= 0). This equation is

called the Burgers’ equation (Burgers 1948) and it is exactly solvable by the direct

linearization.

4.5 Cole - Hopf Transformation and Heat Equation

Cole- Hopf transformation (Cole 1951, Hopf 1950)

u = −2ν
φx
φ

= −2ν(lnφ)x (4.29)

reduce the nonlinear Burgers’ equation (4.28) to the linear Diffusion (Heat) equation

φt = νφxx (4.30)

4.6 Initial Value Problem for Burgers’ Equation

IVP for the Burgers’ equation (Whitham 1974)

{ ut + uux = νuxx

u(x, 0) = F (x), −∞ < x <∞

can be transformed to IVP for the Diffusion equation (Appendix D)

{
φt = νφxx

φ(x, 0) = Φ(x) = e−
1
2ν

∫
x F (η)dη

The Direct Problem (Pashaev 2000): u(x, 0)→ φ(x, 0):

F (x) = −2ν
φx
φ

= −2ν(lnφ)x

⇒ lnφ = − 1

2ν

∫ x

F (η)dη

⇒ φ(x, 0) = e−
1
2ν

∫
x F (η)dη
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The Linear evolution for φ (the Heat equation)(Appendix D) : φ(x, 0) →
φ(x, t):

φ(x, t) =
1√

4πνt

∫ +∞

−∞
φ(η, 0) exp(−(x− η)2

4νt
)dη.

The Inverse Problem: φ(x, t)→ u(x, t):

u(x, t) = −2ν
φx
φ

=

∫ +∞
−∞

x−η
t
e−G/2νdη

∫ +∞
−∞ e−G/2νdη

G(η;x, t) =

∫ η

F (η′)dη′ +
(x− η)2

2t

Direct problem

u(x, 0) −→ φ(x, 0)

Nonlinear Linear

↓ ↓
evolution evolution

u(x, t) ←− φ(x, t)

Inverse problem

4.7 Shock Solitons and Their Dynamics

We can integrate Burgers’ equation directly, supposing solution in the form

of the travelling wave ansatz: u(x, t) = u(x − vt) = u(ξ). In the moving frame

coordinate ξ = x− vt
∂t = −v∂ξ, ∂x = ∂ξ.

Substituting to Burgers’ equation

−vuξ + uuξ = νuξξ

⇒ (−vu+
u2

2
)ξ = (νuξ)ξ

and integrating once we get

⇒ −vu+
u2

2
+ C = νuξ

where C - integration constant.
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The Boundary Conditions:

{
u(ξ)→ a1, x→ +∞
u(ξ)→ a2, x→ −∞

completely fix two constants:

v =
a1 + a2

2
, C =

a1a2

2

Indeed:

−va1 +
a2

1

2
+ C = 0,

−va2 +
a2

2

2
+ C = 0,

⇒ 1

2
(a2

1 − a2
2)− v(a1 − a2) = 0 ⇒ v =

a1 + a2

2

⇒ C = va1 −
a2

1

2
=
a1a2

2

Then

2νuξ = (u− a1)(u− a2)

⇒ du

(u− a1)(u− a2)
=
dξ

2ν
.

Suppose a2 > a1

1

a2 − a1

(
du

u− a1

+
du

a2 − u
) = −dξ

2ν

⇒ 1

a2 − a1

ln
u− a1

a2 − u
= −ξ − ξ0

2ν

we get shock (kink soliton) solution:

u = a1 +
a2 − a1

1 + e
(a2−a1)

2ν
(x−vt−x0)

, v =
a1 + a2

2

Particular form:

Let a1 = 0, then

u =
a2

2
[1− tanh

a2

4ν
(x− a2

2
t− x0)]

- the Taylor shock profile,

(velocity) v =
1

2
a2 (amplitude)
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4.8 I.V.P for the Step Function

Consider the initial condition as the step function (Appendix D)

u(x, 0) = F (x) =

{
a1, x > 0,

a2 (> a1) x < 0
at t = 0

Then corresponding initial condition φ(x, 0) determines evolution according to the

heat equation. The Linear evolution for φ (the Heat equation) : φ(x, 0)→ φ(x, t):

φ(x, t) =
1√

4πνt

∫ +∞

−∞
φ(η, 0) exp(−(x− η)2

4νt
)dη

The Inverse Problem: φ(x, t)→ u(x, t):

u(x, t) = −2ν
φx
φ

=

∫ +∞
−∞

x−η
t
e−G/2νdη

∫ +∞
−∞ e−G/2νdη

Then at time t > 0:

u(x, t) = a1 +
a2 − a1

1 + h(x, t)e
(a2−a1)

2ν
(x−vt−x0)

, v =
a1 + a2

2

When x→∞, t→∞, so that x/t is fixed we have

h(x, t) =

∫ ∞

− (x−a1t)
√

4νt

exp(−ξ2)dξ

∫ ∞

(x−a2t)
√

4νt

exp(−ξ2)dξ

→ 1 (4.31)

and it gives one shock soliton solution.
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CHAPTER 5

COMPLEX BURGERS’ EQUATION

5.1 Burgers’ Equation for Complex Velocity in Two Di-

mensions

In Section 3 we have considered the evolution equation for vorticity in the

planar Euler case. Despite of Poisson structure existence and the Lax type repre-

sentation, the vortex dynamics for Euler equation is not known to be integrable for

N > 4 number of point vortices. From another side, in Sections 4.4-4.8 we consid-

ered contribution of viscosity term to the Euler equation in one dimension, when

simplified version of the Navier-Stokes equation in the form of the Burgers equation

is linearizable (Cole- Hopf) in terms of diffusion equation, admitting N shock wave

solitons. Now we consider complex extension of the Burgers equation and show that

it describes integrable evolution of arbitrary N vortices in the plane (Pashaev and

Gurkan 2005). We have the next 2+1 dimensional evolution equation (2.56)

iut + uuz̄ = νuz̄z̄ (5.1)

The complex velocity u(z̄, t) is related to the dual complex velocity U(z̄, t)

by simple rotation on angle π/2:

U(z̄, t) = i u(z̄, t) = F ′(z, t) (5.2)

u(z̄, t) = f ′(z, t) (5.3)

where f(z, t) = ϕ + iψ is the complex potential of a two dimensional flow u(z̄, t),

while F (z, t) is complex potential for the dual flow. Evolution equation for U(z̄, t)

is

Ut − UUz̄ = −iνUz̄z̄ (5.4)

while for the complex potential f(z, t) we have the Complex Potential Burgers Equa-

tion(CPBE)

−ift +
1

2
(fz)

2 = νfzz (5.5)
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5.2 Complex Cole - Hopf Transformation and the Time-

dependent Schrödinger Problem

By complex analog of the Cole-Hopf transformation (2.57)

u = −2ν
∂

∂z̄
LogΦ(z̄) = −2ν

Φz̄

Φ
(5.6)

we can transform our nonlinear equation (5.1) to the linear complex Schrödinger

(Heat) equation

iΦt = νΦz̄z̄. (5.7)

Then, every solution of (5.7) determines solution of the complex Burgers’ equation

(5.1).

5.3 Polynomial Solutions and Planar Vortices

Suppose that function Φ(z̄, t)

Φ(z̄, t) =
n∏

k=1

(z̄ − z̄k(t)) (5.8)

has n - simple zeroes moving in the plane z̄1(t), z̄2(t), ..., z̄n(t). Then substituting

this form to (5.7) we have (Appendix B.6) the system of first order ODEs

dz̄k
dt

= 2νi
n∑

l(6=k)

1

z̄k − z̄l
(5.9)

where k = 1, ..., n. It describes finite dimensional dynamical system of particles

corresponding to our n moving vortices/sources. (We will discuss it in Chapter 6.)

Indeed, from the form of function Φ(z̄, t) (5.8) we have the complex potential of the

flow in the form

f(z, t) = −2ν̄ ln Φ(z̄, t) = −2ν̄ ln
n∏

k=1

(z − zk(t)) (5.10)

For the real ν = ν̄ (in Section 7 for ferromagnetic vortices we will have ν = −2 and

it gives the set of sources while for the dual flow, the set of vortices )

F (z, t) = −if(z, t) = 2iν ln
n∏

k=1

(z − zk(t)) (5.11)

40



The stream function for the last one

ψ = =F = 2ν ln |Φ| = 2ν ln |z − zk(t)| (5.12)

implies vorticity

Ω = −∆ψ = −2ν∆
n∑

k=1

ln |z − zk(t)| (5.13)

as the set of points moving in the plane

Ω = −4νπ
n∑

k=1

δ(~r − ~rk(t)) (5.14)

so that the total vorticity of the full plane is fixed as

∫

R2

∫

Ωd2x = (−4νπ)n (5.15)

The last formula means that we have the set of point vortices with equal strength

Γ = −4νπ.

Now we are going to study in details the system of vortices as zeroes of

Eq.(5.7).

5.3.1 Complex Hermite Polynomial and Vortex Expansion

First we consider anti-analytic solution of

iΦt = νΦz̄z̄ (5.16)

in the form of complex plane wave. It is entire function of z̄ :

Φ(z̄, t) = ekz̄−iνk
2t (5.17)

=
∞∑

n=0

knz̄n

n!

∞∑

m=0

(iνt)mk2m

m!
(5.18)

=
∞∑

N=0

kN
∑

n+2m=N

1

n!m!
z̄n(−iνt)m

If we introduce

ΨN(z̄, t) =
∑

n+2m=N

z̄n
(−iνt)m
n!m!

(5.19)

then

Φ(z̄, t) =
∞∑

n=0

knΨn(z̄, t) (5.20)

41



This expansion can be rewritten in terms of the Hermite Polynomials of complex

argument z̄. Indeed, the Generating Function of Hermite polynomials is defined as

(Appendix C)

g(x, t) = e−t
2+2tx =

∞∑

n=0

Hn(x)
tn

n!
(5.21)

Our solution (5.17)

Φ(z̄, t) = ekz̄−iνk
2t (5.22)

after identification α2 ≡ iν2t and k = α√
iνt

becomes

Φ(z̄, t) = e
α√
iνt
z̄−iν2t

=
∞∑

n=0

αn

n!
Hn(

z̄

2
√
iνt

)

=
∞∑

n=0

kn

n!
(iνt)

n

2Hn(
z̄

2
√
iνt

)

=
∞∑

n=0

kN

N !

N∑

n+2m=N

(n+ 2m)!

n!m!
z̄n(−iνt)m (5.23)

or

Φ(z̄, t) =
∞∑

N=0

kN

N !
(iνt)

N

2 HN(
z̄

2
√
iνt

) (5.24)

where Hermite polynomials of complex argument are defined by the expansion

HN(x) =

[N/2]
∑

s=0

(−1)s(2x)N−2s N !

(N − 2s)!s!
. (5.25)

Due to arbitrariness of parameter k in expansion (5.23), function ΨN

ΨN(z̄, t) = (iνt)N/2HN(
z̄

2
√
iνt

) (5.26)

for every integer N determines a solution of Eq.(5.16).

5.3.2 N-Vortex Dynamics. Basic case

For complex zeroes of this function, by identification

ΨN(z̄, t) =
N∏

k=1

(z̄ − z̄k(t))

= (iνt)N/2HN(
z̄

2
√
iνt

) (5.27)
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we find that z̄ = z̄k(t) implies

(iνt)N/2HN(
z̄k

2
√
iνt

) = 0 (5.28)

It means that for any t 6= 0 , HN(wk) = 0 where wk are complex zeroes of Hermite

polynomials. Then from

wk =
z̄k(t)

2
√
iνt

(5.29)

we have time dependence for vortex positions in terms of these zeros

z̄k(t) = 2wk
√
iνt. (5.30)

First few Hermite Polynomials have the form

H1(w) = 2w

H2(w) = 4w2 − 2

H3(w) = 8w3 − 12w

H4(w) = 16w4 − 48w2 + 12

(5.31)

and provide next solutions for zk(t) = 2wk
√
iνt:

1. N = 1 and H1(w) = 2w = 0 then w1 = 0 implies

z̄1(t) = 0 (5.32)

2. N = 2 and H2(w) = 4w2 − 2 = 0 then w1 =
√

1/2 , w2 = −
√

1/2 imply

z̄1(t) =
√
iνt (5.33)

z̄2(t) = −
√
iνt (5.34)

The position of the center of mass is

z̄1(t) + z̄2(t) = 0 (5.35)

3. N = 3 andH3(w) = 8w3−12w = 0 then w1 = 0 ,w2 = −
√

3/2 and w3 =
√

3/2

imply

z̄1(t) = 0 (5.36)

z̄2(t) =
√

6iνt (5.37)

z̄3(t) = −
√

6iνt (5.38)
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The position of the center of mass is

z̄1(t) + z̄2(t) + z̄3(t) = 0 (5.39)

4. N = 4 and H4(w) = 16w4 − 48w2 + 12 = 0 then w1,2 = ±
√

3+
√

6
2

, w3,4 =

±
√

3−
√

6
2

imply

z̄1,2(t) = ±
√

(6 + 2
√

6)iνt (5.40)

z̄3,4(t) = ±
√

(6− 2
√

6)iνt (5.41)

The position of the center of mass is

z̄1(t) + z̄2(t) + z̄3(t) + z̄4(t) = 0. (5.42)

Due to reality of roots wk, the form of our solution z̄k(t) = 2wk
√
iνt implies that all

vortices are located on diagonal lines of complex plane:

z̄k(t) = |2wk
√
νt|eiπ/4

We note that since the time dependence includes square root of time variable t, then

under time reflection, when t is replaced by −t, position of vortices will rotate z̄k →
eiπ/2z̄k on angle π/2. It means that under collision our vortices change velocity in

orthogonal direction and from one diagonal line would be displaced to the orthogonal

one. Moreover, sum of vortex positions, representing the center of mass of the

system, is integral of motion located at the beginning of coordinates. We illustrate

dynamics of N = 2, 3 and 4 vortices in Fig. 5.1, 5.2, 5.3 correspondingly.
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In Fig.5.1 we showed N = 2 vortex dynamics for three different times t =

−1,t = 0 and t = 1.
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Figure 5.1. N = 2 Vortex Dynamics
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in Fig.5.2 we show N = 3 vortex dynamics for three different times t =

−1,t = 0 and t = 1.
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Figure 5.2. N = 3 Vortex Dynamics
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in Fig.5.3 the case N = 4 vortex dynamics for three different times t =

−1,t = 0 and t = 1.
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Figure 5.3. N = 4 Vortex Dynamics
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5.3.3 N Vortex Dynamics. The General Case

Since function ΨN in (5.26) is solution of linear Eq.(5.16) for any integer N ,

then any linear combination of these functions

ΦN(z̄, t) = aNΨN(z̄, t) + aN−1ΨN−1(z̄, t) + ...+ a0Ψ0(z̄, t) (5.43)

aN 6= 0 is also a solution. This solution is determined by N complex constants

a1, a2, ..., aN , which are integrals of motion of the system. The value of higher order

coefficient aN 6= 0 is not essential and could be put to one. Below we represent

particular cases for N = 3 and N = 4. 1) For N = 3 we have general solution

Φ(z̄, t) = (z̄3 − 6z̄iνt) + a2(z̄
2 − 2iνt) + a1z̄ + a0 (5.44)

or

Φ(z̄, t) = z̄3 + a2z̄
2 + (a1 − 6z̄iνt)z̄ + (a0 − 2a2iνt)

= (z̄ − z̄1(t))(z̄ − z̄2(t))(z̄ − z̄3(t)) (5.45)

This cubic in z̄ polynomial has 3 complex roots z̄1(t), z̄2(t), z̄3(t) moving in plane

according the systems (5.9). Instead of solving that system of differential equations

we will find roots of cubic equation according Cardano formulas.The coefficient

−a2 = z̄1(t) + z̄2(t) + z̄3(t)

is integral of motion having meaning of the center of mass for three vortices. Without

loss of generality we can always choose coordinate system with the beginning at this

center of mass. So we will put a2 = 0. Then our cubic equation has reduced Cardano

form

z̄3 + pz̄ + q = 0 (5.46)

where p = a1 − 6z̄iνt, q = a0 − 2a2iνt. Solution of this equation is

z̄1 = α1 + β1 (5.47)

z̄2 = α1ω1 + β1ω2 (5.48)

z̄3 = α1ω2 + β1ω1 (5.49)

where α1, β1 is one of the couple of roots

α =

(

−q
2

+

√

q2

4
+
p3

27

)1/3

(5.50)
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β =

(

−q
2
−
√

q2

4
+
p3

27

)1/3

(5.51)

and

ω1 = −1/2 + i
√

3/2 = ei2π/3

ω2 = −1/2− i
√

3/2 = e−i2π/3

are cubic roots of 1.

For particular values a0 = a2 = 0 when q = 0 our roots become

z̄1 =
√
−2iνt(1 + eiπ/3) (5.52)

z̄2 =
√
−2iνt(ω1 + ω2e

iπ/3) (5.53)

z̄3 =
√
−2iνt(ω2 + ω1e

iπ/3) (5.54)

and coincide with particular cases (5.36), (5.37), (5.38) when one of the vortices,

z̄2 = 0, is static at the beginning of coordinates.

Analyzing dynamics of three vortices for different values of parameters a1, a0,

we can see that in general case due to nonvanishing orbital momentum no one of

three vortices crosses beginning of coordinates.

2) For N = 4 case we have

Φ(z̄, t) = (z̄4−12z̄2iνt+12(iνt)2)+a3(z̄
3−6z̄iνt)+a2(z̄

2−2iνt)+a1z̄+a0 (5.55)

or like in previous case if we choose the center of mass at the beginning of the

coordinate system, the coefficient

−a3 = z̄1(t) + z̄2(t) + z̄3(t) + z̄4(t) = 0

and we have

Φ(z̄, t) = z̄4 + z̄2(−12iνt+ a2) + a1z̄ + (a0 + 12(iνt)2 − 2a2iνt) (5.56)

Explicit form of the roots in this case can be done in radicals but formulas are long.

This is why we will write them only for special case a1 = 0. Solving bi-quadratic

equation

z̄4 + z̄2[a2 − 12iνt] + [a0 − 2a2iνt+ 12(iνt)2] = 0 (5.57)
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we have four roots:

z̄1,2 = ±

√

−
[a2

2
− 6iνt

]

+

√
(a2

2
− 6iνt

)2

− [a0 − 2a2iνt+ 12(iνt)2] (5.58)

z̄3,4 = ±

√

−
[a2

2
− 6iνt

]

−
√
(a2

2
− 6iνt

)2

− [a0 − 2a2iνt+ 12(iνt)2] (5.59)

From dynamics of 3 and 4 vortices we can see that differences appear for the vortex

motion at finite times. But for large time the behavior of vortices is similar to

the particular case (5.30). Explanation of this fact can be done for general N-

vortex configuration. Indeed, if we consider asymptotic form of the general N-vortex

solution (5.43), when t → ∞ and |z̄| → ∞ such that |z|2/t → const, then we can

see that all terms of the function ΨN for any N have the same order. Moreover,

the dominant role in (5.43) plays the function ΨN with highest order of N. But it

is exactly solution (5.26) which we found before. It shows that asymptotically our

vortices will follow diagonal lines according to the law (5.30): z̄k(t) = 2wk
√
iνt. If

we calculate complex velocity of the to k- vortex center

vk =
dz̄k
dt

= wk

√

iν

t
(5.60)

then we can see that at large times t→∞ the velocity of the vortex asymptotically

vanishes as |vk| ≈ 1√
t
.

5.3.4 Vortex Lattice Dynamics

Now in Eq. (5.16) instead of motion of simple zeroes we consider the periodic

set of zeroes - which represent the periodic chain lattice in the plane. For one chain

lattice in the x direction we can choose

φ = sin z̄ = z̄
∞∏

k=1

(1− z̄

n2π2
) (5.61)

which shows that this function has periodic in x set of simple zeroes. For two chain

lattices we are looking for solution of equation

iΦt − νΦz̄z̄ = 0 (5.62)
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in the form

Φ(z̄, t) = sin(z̄ − z̄1(t)) sin(z̄ − z̄2(t)) (5.63)

Differentiating

Φt = − ˙̄z1 cos(z̄ − z̄1(t)) sin(z̄ − z̄2(t))− ˙̄z2 sin(z̄ − z̄1(t)) cos(z̄ − z̄2(t))

Φz̄ = cos(z̄ − z̄1(t)) sin(z̄ − z̄2(t)) + sin(z̄ − z̄1(t)) cos(z̄ − z̄2(t))

Φz̄z̄ = −2 sin(z̄ − z̄1(t)) sin(z̄ − z̄2(t)) + 2 cos(z̄ − z̄1(t)) cos(z̄ − z̄2(t))

and substituting to the equation we have the system

˙̄z1 = −4i cot(z̄1 − z̄2) (5.64)

˙̄z2 = 4i cot(z̄1 − z̄2) (5.65)

Adding these two equations gives the first integral of motion

z̄1(t) + z̄2(t) = C0 (5.66)

describing the center of mass of the system. Subtracting the second equation from

the first one we have following differential equation

d cos(z̄1 − z̄2)

cos(z̄1 − z̄2)
= −4iνdt (5.67)

solution of which can be represented in the form

cos(z̄1 − z̄2) = re−4iνt (5.68)

where r is the real constant. This constant represents the modulus of complex

integration constant, the phase factor of this constant can always be absorbed to

the beginning of time shifted on a constant value.

Without loss of generality we can choose coordinate system such that the

center of mass of the system would be at the beginning of the coordinate. In this

case C0 = 0 and as follows z̄2 = −z̄1. Then, our solution acquires a simple form

cos 2z̄1(t) = re−4iνt (5.69)

Substituting to (5.63) we have

Φ(z̄, t) = sin(z̄ − z̄1(t)) sin(z̄ + z̄1(t)) (5.70)
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= sin2 z̄ cos2 z̄1 − cos2 z̄ sin2 z̄1 (5.71)

= sin2 z̄(
1 + cos 2z̄1

2
)− cos2 z̄(

1− cos 2z̄1

2
) (5.72)

= sin2 z̄(
1 + re−4iνt

2
)− cos2 z̄(

1 + re−4iνt

2
) (5.73)

= −1

2
cos 2z̄ +

r

2
e−4iνt (5.74)

Using expansion

cos 2z̄ = cos 2(x− iy) (5.75)

= cos(2x− i2y) (5.76)

= cos 2x cosh 2y + i sin 2x sinh 2y (5.77)

finally we get two vortex chain lattice solution in the form

Φ(z̄, t) = (−1

2
cos 2x cosh 2y − r

2
cos 4νt) (5.78)

+ i(−1

2
sin 2x sinh 2y − r

2
sin 4νt) (5.79)

To draw graph corresponding to this solution we notice that a zero of function Φ

relates to the maximum value of function

F =
1

1 + |Φ|2 . (5.80)

As we show in Chapter 7 this function appears in projection of spin vector

S3 =
1− |Φ|2
1 + |Φ|2 (5.81)

=
2

1 + |Φ|2 − 1 (5.82)

and the maximum value S3 = 1 corresponds to the center of magnetic vortex. In

Fig.5.4 interaction of two vortex lattices for function

F =
4

4 + (r cos 8t− cos 2x cosh 2y)2 + (r sin 8t− sin 2x sinh 2y)2
(5.83)

for parameters ν = 2, r = 6 at three different times t = −1, t = 0, t = 1 is given.
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Figure 5.4. N = 2 Vortex Lattice Dynamics

In a similar way we can consider N vortex chain lattices in horizontal x

direction by a solution

Φ(z̄, t) =
N∏

k=1

sin(z̄ − z̄k(t)) (5.84)

Then vortex positions are subject to the system of equations

˙̄zj = −4i
∑

k

cot(z̄j − z̄k) (5.85)

In Section 6 we show that this system allows mapping to the complexified Calogero-

Moser system type III. This is why the N vortex chain lattice dynamics is Hamilto-

nian and integrable. Finally, if instead of sin z̄ function we consider solution in the
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form

Φ(z̄, t) =
N∏

k=1

sinh(z̄ − z̄k(t)) (5.86)

then due to the relation

sinh z̄ = −i sin iz̄ (5.87)

every zero of Φ undergoes a rotation in complex plane on angle π/2. It means we will

have N vortex chain lattice directed in vertical y direction. In this case the system of

equations on vortex positions is mapped to the complexified Calogero-Moser system

type II (6.2).

5.3.5 Vortex Solutions Generating Techniques

In this section we propose a general method allowing us to create an arbitrary

number of vortices on given background solution. In general, N vortex configuration

is described by complex polynomial function degree N

Ψ(z̄, t) = (z̄ − z̄1(t))(z̄ − z̄2(t))...(z̄ − z̄N(t)) = (5.88)

z̄N − (z̄1 + ...+ z̄N)z̄N−1 + ...+ (−1)N z̄1...z̄N (5.89)

where complex roots z̄1(t), ..., z̄N (t), are functions of time subject to the system

(5.9). Eq. (5.89) has form

Ψ(z̄, t) =
∞∑

s=0

(−1)N−sPN−s(t)z̄
s (5.90)

where coefficients are represented according to the Viete theorem in terms of sym-

metric polynomials

P0 = 1 (5.91)

P1 = z̄1 + ...+ z̄N (5.92)

P2 = z̄1z̄2 + ...+ z̄N−1z̄N (5.93)

... (5.94)

PN = z̄1...z̄N . (5.95)

Adding all equations in the system (5.9), it is easy to see that the polynomial P1 is

integral of motion having meaning of the center of mass for N vortices. However, all
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other polynomials are not integrals of motion. Only proper combinations of these

polynomials provide integrals of motion of the system. Moreover, to find solutions

z̄1(t), ..., z̄N (t) in terms of these polynomials means solving algebraic equation degree

N , which as known to be solvable in radicals only for N ≤ 4 (Abel, Galois).

This is why we follow another, so called vortex generation approach (Pashaev

and Gurkan 2005), adding a new zero or a vortex to the system. In Section 5.3.2

we have constructed basic solutions in terms of Hermite polynomials of complex

argument

ΨN(z̄, t) = (iνt)N/2HN(
z̄

2
√
iνt

). (5.96)

Motivated by the following operator representation of the standard Hermite poly-

nomials (Appendix C.3)

HN(x) = (2x− d

dx
)N1 (5.97)

we define operator representation for Hermite polynomials of complex argument

HN(z) = (2z − d

dz
)N1 (5.98)

and will write

HN(
z̄

2
√
iνt

) = (
z̄√
iνt
− 2
√
iνt

d

dz̄
)N1 (5.99)

which implies

ΨN(z̄, t) = (iνt)N/2(
z̄√
iνt
− 2
√
iνt

d

dz̄
)N1 (5.100)

and as a result we have simple operator representation for our basic solution

ΨN(z̄, t) = (z̄ − 2iνt
d

dz̄
)N1. (5.101)

Below we construct few first solutions

1. N=1

Ψ1(z̄, t) = (z̄ − 2iνt
d

dz̄
)1

= z̄ (5.102)

2. N=2

Ψ2(z̄, t) = (z̄ − 2iνt
d

dz̄
)(z̄ − 2iνt

d

dz̄
)1

= (z̄ − 2iνt
d

dz̄
)z̄ (5.103)

= z̄2 − 2iνt (5.104)
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3. N=3

Ψ3(z̄, t) = (z̄ − 2iνt
d

dz̄
)(z̄ − 2iνt

d

dz̄
)(z̄ − 2iνt

d

dz̄
)1

= (z̄ − 2iνt
d

dz̄
)z̄2 − 2iνt (5.105)

= z̄3 − 6z̄iνt (5.106)

This representation suggests the generating operator method for finding solutions

of our equation

iΦt = νΦz̄z̄. (5.107)

We can prove the next, vortex generation lemma .

Lemma 5.3.5.1 If Φ(z̄, t) is a solution of equation (5.107). Then function

Ψ(z̄, t) = (z̄ − 2iνt
d

dz̄
)Φ(z̄, t) (5.108)

is also a solution of equation (5.107).

Proof 5.3.5.2 By direct substitution

iΨt(z̄, t) = i
d

dt
(z̄ − 2iνt

d

dz̄
)Φ(z̄, t) (5.109)

= i(z̄Φt − 2iνtΦz̄ − 2iνtΦz̄t) (5.110)

= z̄νΦz̄z̄ + 2νΦz̄ − 2iν2tΦz̄z̄z̄ (5.111)

νΨz̄z̄(z̄, t) = ν
d

dz̄
(Φ + z̄Φz̄ − 2iνtΦz̄z̄) (5.112)

= 2νΦz̄ + νz̄Φz̄z̄ − 2iν2tΦz̄z̄ (5.113)

⇒ iΨt − νΨz̄z̄ = 0. (5.114)

Equation (5.107) has evident solution Φ = 1. Then according to the Lemma 5.3.5.1

Ψ1(z̄, t) = (z̄ − 2iνt
d

dz̄
)Φ(z̄, t) = (z̄ − 2iνt

d

dz̄
) · 1 (5.115)

is also a solution of equation (5.107). As a next step we can construct the following

solution

Ψ2(z̄, t) = (z̄ − 2iνt
d

dz̄
)Ψ1 = (z̄ − 2iνt

d

dz̄
)21. (5.116)

Continuing this procedure we have solution of (5.107) for an arbitrary positive in-

teger N

ΨN(z̄, t) = (z̄ − 2iνt
d

dz̄
)ΨN−1 = ... = (z̄ − 2iνt

d

dz̄
)N1 (5.117)
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This way we derived operator representation for particular N vortex solution

ΨN(z̄, t) =
N∏

i=1

(z̄ − z̄i(t)) (5.118)

= (z̄ − 2iνt
d

dz̄
)N1. (5.119)

Now let us consider the operator form for the basic solution ΨN (5.117). Represent-

ing complex z̄ = γx where x is real, and γ is complex variable to be determined, we

have

ΨN(z̄, t) = (z̄ − 2iνt
d

dz̄
)N1 = (γx− 2iνt

γ

d

dx
)N1 (5.120)

= (
2iνt

γ
)N(

γ2

2iνt
x− d

dx
)N . (5.121)

If we choose γ = ±2
√
iνt then

ΨN(z̄, t) = (
2iνt

γ
)N(2x− d

dx
)N = (iνt)N/2(2x− d

dx
)N . (5.122)

At a zero z̄k of function Ψ we have equation

Ψ(z̄k, t) = 0 = (iνt)N/2(2xk −
d

dxk
)N1 = (iνt)N/2HN(xk). (5.123)

which implies

HN(xk) = 0 (5.124)

It means that xk = wk is a root of Hermite Polynomial HN(x). Then solution of

vortex equation can be written in terms of this root

z̄k(t) = ±2
√
iνtwk. (5.125)

Using the Lemma 5.3.5.1 and the linearity of Eq.(5.107) we have the next

Corollary 5.3.5.3 If Φ(z̄, t) is a solution of equation (5.107) then function

Ψ(z̄, t) =
N∑

n=0

an(z̄ − 2iνt
d

dz̄
)n Φ(z̄, t) (5.126)

where a0, ..., aN are arbitrary constants, is also a solution of equation (5.107).

As a particular case of this Corollary, when Φ(z̄, t) = 1 and (z̄−2iνt d
dz̄

)k ·1 = Ψk(z̄, t)

we have result (5.43).
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As easy to see from this Corollary, adding to the system a new vortex in a

proper way, we add an additional integral of motion. Let us suppose that we have

solution Ψ(z̄, t) of Eq.(5.107) with N - simple zeroes at points z̄1, ..., z̄N ,

Ψ(z̄n, t) = 0, n = 1, ..., N (5.127)

or

Ψ(z̄, t) =
N∏

n=1

(z̄ − z̄n(t)) (5.128)

which means we have N vortices located at those points. Denoting Ψn(z̄, t) =

(z̄ − 2iνt d
dz̄

)n · 1 we have

Ψ(z̄, t) =
N∏

n=1

(z̄ − z̄n(t)) =
N∑

n=0

anΨn(z̄, t) (5.129)

Using conditions (5.127) we have the system of N linear algebraic equations

N∑

n=0

anΨn(z̄k, t) = 0, k = 1, ..., N. (5.130)

Extracting n = 0 term and dividing on a0 it can be rewritten in the form of inho-

mogeneous system of N algebraic equations

N∑

n=1

bnΨn(z̄k, t) = −1, k = 1, ..., N (5.131)

on N variables bn = an/a0. Then, N integrals of motion in terms of z̄1, ..., z̄N can be

found by Crammers formulas

bk =
∆k

∆
, k = 1, ..., N. (5.132)

From the above Corollary we have another

Corollary 5.3.5.4 If Φ(z̄, t) is a solution of equation (5.107) and F (z̄) is anti-

analytic function in some domain D0 = {|z| < R}, then function

Ψ(z̄, t) = F (z̄ − 2iνt
d

dz̄
) Φ(z̄, t) (5.133)

is also a solution of equation (5.107).

This results from Corollary 5.3.5.3 if we expand

F (z̄) =
∞∑

n=0

F (n)(0)

n!
z̄n

and identify an ≡ F (n)(0)
n!

. Since coefficients an are integrals of motion, the function

F can be considered as the generating function of integrals of motion.
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5.4 Single Vortex Collision with Vortex Lattice

In this section we demonstrate efficiency of Lemma 5.3.5.1 by constructing a

new class of solutions describing single vortex collision with the vortex chain lattices

(Pashaev and Gurkan 2005). If in the Lemma we consider solution Φ in the double

lattice form (5.74 ) then we have another solution of Eq.(5.7) in the form

Ψ(z̄, t) = (z̄ − 2iνt
∂

∂z̄
)
1

2
(re4iνt − cos 2z̄) (5.134)

=
1

2
[re4iνtz̄ − z̄ cos 2z̄ − 4iνt sin 2z̄] (5.135)

Using properties of trigonometric function of complex argument

sin 2z̄ = sin 2x cosh 2y − i cos 2x sinh 2y (5.136)

we have for the real and imaginary parts of Ψ following expressions correspondingly

<Ψ =
r

2
x cos 4νt− r

2
y sin 4νt (5.137)

− 1

2
x cos 2x cosh 2y − 1

2
y sin 2x sinh 2y (5.138)

− 4νt cos 2x sinh 2y (5.139)

=Ψ = −r
2
x sin 4νt− r

2
y cos 4νt (5.140)

+
1

2
y cos 2x cosh 2y − 1

2
x sin 2x sinh 2y (5.141)

− 4νt sin 2x cosh 2y (5.142)

The zeroes of function Ψ are located at maximum points of the real function f :

f =
1

1 + (<Ψ)2 + (=Ψ)2
(5.143)

which provides position of magnetic vortices in Chapter 7. In Fig. 5.5 we illustrate

dynamics of a single vortex with 2 vortex lattices. From these figures we can see that

role of the single vortex is merge two vortex lattices, which propagates in positive

and negative directions of x axis. In this sense single vortex in the rest initiate the

process of fusion of two vortex lattices.

Following the same idea we can consider solution describing interaction of N-

vortices with M- vortex chain lattices in the form

Ψ(z̄, t) = (z̄ − 2iνt
∂

∂z̄
)N

M∏

k=1

sin(z̄ − z̄k(t)) (5.144)

where z̄k(t) is a solution of the system (5.85).
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Figure 5.5. Single Vortex - 2 Vortex Lattice Dynamics
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CHAPTER 6

INTEGRABLE VORTEX DYNAMICS AND

MULTI-PARTICLE PROBLEM

In the present chapter we study the mapping of the point vortex equations to

the integrable multiparticle problem - the complexified Calogero-Moser problem.

6.1 Calogero-Moser System

One dimensional problem of N- interacting particles admits the Lax represen-

tation and is integrable (Calogero 1978) if in the Hamiltonian function

H =
1

2

N∑

j=1

p2
j + g2

∑

j<k

v(qj − qk) (6.1)

the pair interaction potential v(qj − qk) has the one of the next forms

v(ξ) =







ξ−2, I;

a2 sinh−2(aξ), II;

a2 sin−2(aξ), III;

a2P(aξ), IV.

(6.2)

where a is an arbitrary parameter, and P(ξ) = P(ξ, ω1, ω2) is the Weierstrass func-

tion , which is a double periodic function of the complex variable ξ with periods 2ω1

and 2ω2 and with second order poles at the points 2(mω1 +mω2) (Perelomov 1990).

In the limit as one of the periods goes to infinity , the potential of type IV goes

over into the potentials of type II or III. The potential of type I results by letting

both periods go to infinity. Therefore the system of type IV is the most general one.

Nevertheless the systems of type I,II and III have certain specific features that make

it reasonable to treat them separately.

Then the Hamiltonian equations for the above potentials

ṗj = −∂H
∂qj

, q̇j = pj, j = 1, ..., N (6.3)
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are equivalent to the Lax matrix equation (Perelomov 1990)

iL̇ = AL− LA (6.4)

Explicit form of the Lax operators for the Case I is

Ljk = δjkpj + ig(1− δjk)
1

qj − qk
, (6.5)

Ajk = g

[

δjk
∑

l 6=j

1

(qj − ql)2
− (1− δjk)

1

(qj − qk)2

]

. (6.6)

As we discussed before in Section 3.5 (Appendix B.2) the Lax equation (6.4)

is the isospectrality condition (λt = 0) for the next linear problem

LU = λU (6.7)

iUt = AU (6.8)

From this Lax representation follows that under time evolution L(t) undergoes a

similarity transformation

L(t) = U(t)L(0)U−1(t). (6.9)

Due to this similarity transformation the eigenvalues of L(t) are time inde-

pendent and so are integrals of motion. Equivalently we can say that matrix L(t)

is isospectrally deformed with time. Instead of the eigenvalues it is often more

convenient to take their symmetric functions as integrals of motion, for example ,

Ik = trLk+1 (6.10)

If in such a way one can find N functionally independent integrals of motion and

show that they are in involution, then the system is completely integrable in the

Liouville sense (Section 3.4.3). It is the case for the Calogero -Moser model (6.1) of

all four types I, II, II, IV.

6.2 Integrable N-particle Problem for N-Vortex Motion

In this section we show that the problem of N-point vortices in the plane can

be reduced to the complexified version of the Calogero-Moser model (6.1) type I. As

we have seen in Section 5.3 the system of N point vortices is described by function

Φ(z̄, t) =
N∏

j=1

(z̄ − z̄j(t)) (6.11)
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satisfying the complex Schrodinger equation (5.7). Then positions of vortices in the

complex plane, z̄1, ..., z̄N , are subject to the first order system

d

dt
z̄j = 2νi

N∑

k 6=(j)

1

(z̄j − z̄k)
. (6.12)

If we differentiate once and use the system again (Appendix B.6), then we have the

second order Newton’s equations of motion

d2

dt2
z̄j =

N∑

k 6=(j)

4ν2

(z̄j − z̄k)3
(6.13)

These equations have (complex) Hamiltonian form

˙̄zj =
∂H

∂pj
= pj, ṗ = −∂H

∂z̄j
(6.14)

with the Hamiltonian function

H =
1

2

N∑

j=1

p2
j + 2ν2

∑

j<k

1

(z̄j − z̄k)2
. (6.15)

The system (6.13) implies the complex conjugate one

d2

dt2
zj = 4ν2

∑

k

1

(zj − zk)3
(6.16)

with Hamiltonian

H̄ =
1

2

N∑

j=1

p̄2
j + 2ν2

∑

j<k

1

(zj − zk)2
. (6.17)

Then the real Hamiltonian for these systems is given by H + H̄.

As easy to see, the system (6.13) is complexified version of the Calogero-

Moser system discussed in the previous Section 6.1 with the Hamiltonian function

(6.1) type I, where N-particle positions, q1, ..., qN should be replaced by complex

vortex positions z̄1, ..., z̄N , as in Eq.(6.15).

The Lax representation from Section 6.1 can be transformed to the complex

case in a straightforward way. The complexified Hamiltonian equations (6.14) are

equivalent to the Lax matrix equation

iL̇ = AL− LA (6.18)

where

Ljk = δjkpj + ig(1− δjk)
1

z̄j − z̄k
(6.19)
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Ajk = g

[

δjk
∑

l 6=j

1

(z̄j − z̄l)2
− (1− δjk)

1

(z̄j − z̄k)2

]

(6.20)

and the coupling constant g =
√

2ν. Since matrix L(t) is isospectrally deformed

with time, the corresponding (complex) eigenvalues are time independent integrals

of motion. If one takes their symmetric functions as integrals of motion, then they

are given by

Ik = trLk+1 (6.21)

It shows that complexified Calogero-Moser system is an integrable system and as a

consequence, the N-vortex system (6.12), which has been mapped to Calogero-Moser

system, is also integrable.

6.3 Integrable N-particle Problem for N-Vortex Lattices

Similar to the previous case now we consider mapping of the N-vortex chain

lattices to the complexified Calogero-Moser system of type II and III . For simplicity

first we consider the system of two vortex chain lattices described by function (5.63)

Φ(z̄, t) = sin(z̄ − z̄1(t)) sin(z̄ − z̄2(t)) (6.22)

so that position of lattices is subject to the first order system

˙̄z1 = 2νi cot(z̄1 − z̄2) (6.23)

˙̄z2 = −2νi cot(z̄1 − z̄2) (6.24)

Differentiating this system once in time we get the second order equations of motion

in the Newton’s form

¨̄z1 = 2iν

(

− 1

sin2(z̄1 − z̄2)

)

( ˙̄z1 − ˙̄z2) (6.25)

= −8ν2 cot(z̄1 − z̄2)

sin2(z̄1 − z̄2)
(6.26)

¨̄z2 = 2iν

(
1

sin2(z̄1 − z̄2)

)

( ˙̄z1 − ˙̄z2) (6.27)

= 8ν2 cot(z̄1 − z̄2)

sin3(z̄1 − z̄2)
(6.28)
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These equations are Hamiltonian

˙̄z1 =
∂H

∂p1

= p1 (6.29)

ṗ1 = −∂H
∂z̄1

= 8ν2 cot(z̄1 − z̄2)

sin3(z̄1 − z̄2)
(6.30)

˙̄z2 =
∂H

∂p2

= p2 (6.31)

ṗ2 = −∂H
∂z̄2

= 8ν2 cot(z̄2 − z̄1)

sin3(z̄2 − z̄1)
(6.32)

with the Hamiltonian function

H =
p2

1

2
+
p2

2

2
+

4ν2

sin2(z̄1 − z̄2)
(6.33)

Comparing this Hamiltonian of two vortex lattices with the Calogero-Moser system,

we realize that it corresponds to complexified version of the model type III.

We can generalize this result considering N vortex chain lattices periodic in

the horizontal direction x. Positions of lattices are subject to the first order system

˙̄zj = 2νi
N∑

k 6=j
cot(z̄j − z̄k) (6.34)

Differentiating once we get

¨̄zj = −8ν2

N∑

k 6=j

cot(z̄j − z̄k)
sin2(z̄j − z̄k)

(6.35)

which is complexified Calogero-Moser system type III with Hamiltonian

H =
1

2

N∑

j=1

p2
j +

∑

j<k

4ν2

sin2(z̄j − z̄k)
(6.36)

If instead of horizontal x direction, we consider N chain lattices periodic in the

vertical y direction then as we have shown in Section 5.3.4, Eq.(5.87), it results in

rotation of every zero of Φ (6.22) on angle π/2, which means replacement of complex

function sin z̄ by sinh z̄. As a result, the corresponding Calagero-Moser system would

be of type II. This consideration shows equivalence of complexified Calogero-Moser

systems of type II and III.
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CHAPTER 7

CLASSICAL FERROMAGNETIC MODELS IN

CONTINUOUS MEDIA

7.1 Topological Magnet Models

The classical Heisenberg spin model (Makhankov and Pashaev 1992) deter-

mines evolution of the classical spin vector

~S = (S1(x, y, t), S2(x, y, t), S3(x, y, t)) (7.1)

valued on two dimensional sphere S2,

S2
1 + S2

2 + S2
3 = 1 (7.2)

according to the Landau-Lifshitz equation

~St = ~S ×∆~S. (7.3)

In the spin liquid (ferromagnetic fluid) one have in addition to magnetic variables

~S = ~S(x, y, t) the hydrodynamic variable ~v(x, y, t) (Volovik 1987) and time deriva-

tive ∂/∂t would be replaced by the material derivative (Martina et al. 1994a)

D

Dt
=

∂

∂t
+ (~v∇). (7.4)

Between hydrodynamic and spin variables exists relation called the Mermin-Ho re-

lation (Ho and Mermin 1980, Mermin and Ho 1976). It relates vorticity of the flow

with the topological charge density (or winding number),

rot~v = ~S(∂x~S × ∂y ~S). (7.5)

Then we have simple model of ferromagnetic fluid - the so called Topological Magnet

model (Martina et al. 1994b),

~St + υa∂a~S = ~S × ∂a∂a~S (7.6)

∂aυb − ∂bυa = 2~S(∂a~S × ∂b~S) (7.7)
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where the scalar product AaBa = AagabB
b , a = 1, 2is determined by the metric

tensor gab = diag(1, α2), α2 = ±1. For particular case of the metric gab = (1,−1)

we have the system

~St + υ1∂1
~S − υ2∂2

~S = ~S × (∂2
1 − ∂2

2)~S (7.8)

∂1υ2 − ∂2υ1 = 2~S(∂1
~S × ∂2

~S). (7.9)

For this system we have the next

Lemma 7.1.0.5 The following identities hold

−v1∂
2
1
~S · ∂1

~S = −1

2
∂1[v1(∂1

~S)2] +
1

2
(∂1v1)(∂1

~S)2 (7.10)

v2∂
2
2
~S · ∂2

~S = +
1

2
∂2[v2(∂2

~S)2]− 1

2
(∂2v2)(∂2

~S)2 (7.11)

Proof 7.1.0.6

−v1∂
2
1
~S · ∂1

~S = −∂1[v1(∂1
~S)2] + ∂1

~S · (v1∂1
~S) (7.12)

= −∂1[v1(∂1
~S)2] + (∂1

~S)2∂1v1 + v1∂1
~S · ∂2

1
~S (7.13)

= −∂1[v1(∂1
~S)2] + (∂1

~S)2∂1v1 (7.14)

−v2∂
2
2
~S · ∂2

~S = −∂2[v2(∂2
~S)2] + ∂2

~S · (v2∂2
~S) (7.15)

= −∂2[v2(∂1
~S)2] + (∂2

~S)2∂2v2 + v2∂2
~S · ∂2

2
~S (7.16)

= −∂2[v2(∂2
~S)2] + (∂2

~S)2∂2v2 ♠ (7.17)

Lemma 7.1.0.7 The following identities hold

−v1∂2
~S · ∂1∂2

~S =
1

2
∂1[v1(∂2

~S)2]− 1

2
∂1v1(∂2

~S)2 (7.18)

−v2∂1
~S · ∂1∂2

~S = −1

2
∂2[v2(∂1

~S)2] +
1

2
∂2v2(∂1

~S)2 (7.19)

Proof 7.1.0.8

−v1∂2
~S · ∂1∂2

~S = ∂1[v1(∂2
~S)2]− ∂1v1(∂2

~S)2 − v1∂1∂2
~S · ∂2

~S (7.20)

=
1

2
∂1[v1(∂2

~S)2]− 1

2
∂1v1(∂2

~S)2 (7.21)

−v2∂1
~S · ∂1∂2

~S = −∂2[v2(∂1
~S)2] + ∂2v2(∂1

~S)2 + v2∂1∂2
~S · ∂1

~S (7.22)

= −1

2
∂2[v2(∂1

~S)2] +
1

2
∂2v2(∂1

~S)2 ♠ (7.23)

70



Theorem 7.1.0.9 For the system (7.8)(7.9) with the flow constrained by the in-

compressibility condition

∂1υ1 + ∂2υ2 = 0, (7.24)

the conservation law

∂tJ0 + ∂2J2 − ∂1J1 = 0 (7.25)

holds, where

J0 = (∂1
~S)2 + (∂2

~S)2, (7.26)

J1 = −2∂1
~S · ~S × (∂2

1 − ∂2
2)~S + v1J0 + 2~S · (∂1

~S × ∂2
2
~S − ∂1∂2

~S × ∂2
~S)

J2 = 2∂2
~S · ~S × (∂2

1 − ∂2
2)~S + v2J0 − 2~S · (∂2

1
~S × ∂1∂2

~S − ∂1
~S × ∂2

~S).,

Proof 7.1.0.10

∂tJ0 = ∂t[(∂1
~S)2 − α2(∂2

~S)2]

= 2[∂1
~S · ∂1∂t~S + ∂2

~S · ∂2∂t~S]

= 2[∂1(∂1
~S · ∂t~S)− ∂2

1
~S · ∂t~S + ∂2

2
~S · ∂t~S − ∂2(∂2

~S · ∂t~S)] (7.27)

∂tJ0 − 2∂1(∂1
~S · ∂t~S)− 2∂2(∂2

~S · ∂t~S) = −2[∂2
1
~S · ∂t~S + ∂2

2
~S · ∂t~S] (7.28)

Using equations of motion (7.8) we estimate expression in the r.h.s.

∂2
1
~S · ∂t~S + ∂2

2
~S · ∂t~S = (∂2

1
~S + ∂2

2
~S)[−v1∂1

~S + v2∂2
~S]

+ (∂2
1
~S + ∂2

2
~S)[~S × (∂2

1 − ∂2
2)~S] (7.29)

= −v1∂
2
1
~S · ∂1

~S − v1∂
2
2
~S · ∂1

~S + v2∂
2
1
~S · ∂2

~S

+ v2∂
2
2
~S · ∂2

~S − (∂2
1
~S + ∂2

2
~S) · (~S × (∂2

1 − ∂2
2)
~S)

= −1

2
∂1[v1(∂1

~S)2]− 1

2
(∂1v1)(∂1

~S)2 +
1

2
∂2[v2(∂2

~S)2]

+
1

2
(∂2v2)(∂2

~S)2 + ∂1[v2∂1
~S∂2

~S]− ∂2[v1∂1
~S∂2

~S]

− 2~S(∂1
~S × ∂2

~S)(∂1
~S · ∂2

~S)

+
1

2
∂1(v1(∂2

~S)2)− 1

2
∂2(v2(∂1

~S)2)− 1

2
∂1v1((∂2

~S)2)

+
1

2
∂2v2((∂1

~S)2)− (∂2
1
~S + ∂2

2
~S) · (~S × (∂2

1 − ∂2
2)~S)(7.30)

∂tJ0 = 2∂1(∂1
~S · ∂t~S) + 2∂2(∂2

~S · ∂t~S)

− 2∂1[−
1

2
v1[(∂1

~S)2 − (∂2
~S)2] + v2∂1

~S · ∂2
~S + (∂2

~S)2 · (~S × ∂1
~S)
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+ ∂1∂2
~S · (~S × ∂2

~S)]

− 2∂2[
1

2
v2[(∂1

~S)2 − (∂2
~S)2]− v1∂1

~S · ∂2
~S + (∂1

~S)2 · (~S × ∂2
~S)]

− ∂1∂2
~S · (~S × ∂1

~S)] ♠ (7.31)

Due to the above Theorem the functional

E =

∫ ∫

J0d
2x

(the energy functional), or

E =

∫ ∫

{(∂1
~S)2 + (∂2

~S)2}d2x (7.32)

is conserved quantity. From another side there exist another integral of motion, the

topological charge of a spin configuration, defined as

Q =
1

4π

∫ ∫

~S · (∂1
~S × ∂2

~S)d2x. (7.33)

These two conserved quantities are related by the Bogomolnyi type Inequality

E ≥ |Q|

- which means that the energy is bounded below by topological charge (Makhankov

and Pashaev 1992).

Proof: We do several transformations of the evident inequality
∫ ∫

(∂i~S ± εij ~S × ∂j ~S)2d2x ≥ 0 (7.34)

∫ ∫

(∂i~S ± εij(~S × ∂j ~S) · (∂i~S ± εik ~S × ∂k ~S)d2x ≥ 0 (7.35)
∫ ∫

[(∂i~S)2 + εijεik(~S × ∂j ~S) · (~S × ∂k ~S)

±εij(~S × ∂j ~S)∂i~S ± εik∂i(~S~S × ∂k ~S)]d2x ≥ 0 (7.36)
∫ ∫

[(∂i~S)2 + δjk∂j ~S · ∂k ~S ± εij∂i~S(~S × ∂j ~S)± εik∂i~S(~S × ∂k ~S)]d2x ≥ 0 (7.37)

where εijεik = δjk
∫ ∫

[(∂i~S)2 + (∂j ~S)2 ± εij∂i~S(~S × ∂j ~S)± εik∂i~S(~S × ∂k ~S)]d2x ≥ 0. (7.38)

By cyclic permutation
∫ ∫

[(∂i~S)2 + (∂j ~S)2 ± εij ~S(∂j ~S × ∂i~S)± εik ~S(∂k ~S × ∂i~S)]d2x ≥ 0 (7.39)

72



∫ ∫

2[(∂1
~S)2 + (∂2

~S)2 ∓ 4~S · (∂1
~S × ∂2

~S)]d2x ≥ 0 (7.40)

E ∓ 8πQ ≥ 0 =⇒ E ≥ ±8πQ (7.41)

For Q > 0

E ≥ 8πQ = 8π|Q| (7.42)

while for Q < 0

E ≥ −8πQ = 8π|Q| (7.43)

Combining together we have

E ≥ 8π|Q| (7.44)

This inequality is saturated for spin configurations satisfying the first order system

∂i~S ± εij ~S × ∂j ~S = 0 (7.45)

called the self-duality equations (Martina et al. 1994c).

7.2 Stereographic Projection Representation

If we consider the spin phase space, the 2-dimensional sphere, we consider as a

Riemann sphere for a complex plane, we can project points on this sphere to that

plane. The stereographic projections are given by formulas

S1 + iS2 =
2ζ

1 + |ζ|2 (7.46)

S3 =
1− |ζ|2
1 + |ζ|2 (7.47)

where ζ is complex valued function. Now we will rewrite the self-duality equations

(7.45) in the stereographic projection form:

∂i~S ± εij ~S × ∂j ~S = 0 (7.48)

∂1
~S ± ~S × ∂2

~S = 0 (7.49)

∂2
~S ∓ ~S × ∂1

~S = 0 (7.50)

∂z =
1

2
(∂1 − i∂2) ∂z̄ =

1

2
(∂1 + i∂2) (7.51)
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Multiplying (7.50) by i and then adding to (7.49) we have

∂z̄ ~S ∓ i~S × ∂z̄ ~S = 0 (7.52)

∂z ~S ± i~S × ∂z ~S = 0 (7.53)

1) ∂z̄ ~S − i~S × ∂z̄ ~S = 0 (7.54)

∂z̄S1 − i(~S × ∂z̄ ~S)1 = 0 (7.55)

∂z̄S2 − i(~S × ∂z̄ ~S)2 = 0 (7.56)

∂z̄S1 − i(S2∂z̄S3 − S3∂z̄S2) = 0 (7.57)

∂z̄S2 − i(S3∂z̄S1 − S1∂z̄S3) = 0 (7.58)

Multiplying (7.58) by i and then adding to (7.57) we have

∂z̄S+ + [S3∂z̄S+ − ∂z̄S3S+] = 0 (7.59)

S+ = S1 + iS2, S3 =
1− |ζ|2
1 + |ζ|2 = −1 +

2

1 + |ζ|2 (7.60)

Substituting S3 and S+ in (7.60) we have the analyticity condition:

ζz̄ = 0 (7.61)

2) ∂z ~S − i~S × ∂z ~S = 0 (7.62)

∂zS1 − i(~S × ∂z ~S)1 = 0 (7.63)

∂zS2 − i(~S × ∂z ~S)2 = 0 (7.64)

∂zS1 − i(S2∂zS3 − S3∂zS2) = 0 (7.65)

∂zS2 − i(S3∂zS1 − S1∂zS3) = 0 (7.66)

Multiplying (7.66) by i and then adding to (7.65) we have

∂zS+ + [S3∂zS+ − ∂zS3S+] = 0 (7.67)

Substituting S3 and S+ in (7.67)we have the anti-analyticity condition:

ζz = 0 (7.68)

The above consideration shows that the self- duality equations in the stereographic

projection form are just the analyticity conditions while for the anti-self-duality

equations they are anti-analyticity conditions. In both cases the energy (7.32)

reaches its minima.
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7.3 Anti-Holomorphic Reduction

As we have seen analytic/anti-analytic configurations saturate Bogomolny

inequality and have minimal energy. This suggest to search solutions of topological

magnet (7.9) with holomorphic/anti-holomorphic stereographic projections. For this

reason we first rewrite equations in the stereographic form

i(ζt + v1∂1ζ − v2∂2ζ) + ∂2
1ζ − ∂2

2ζ − 2
(∂1ζ)

2 − (∂2ζ)
2

1 + |ζ|2 ζ̄ = 0 (7.69)

∂1v2 − ∂2v1 = −4i
∂1ζ̄∂2ζ − ∂2ζ̄∂1ζ

(1 + |ζ|2)2
. (7.70)

In complex coordinates we have

iζt + iv1(ζz + ζz̄) + v2(ζz − ζz̄) + (∂z + ∂z̄)
2ζ + (∂z − ∂z̄)2ζ

− 2
(ζz + ζz̄)

2 − (ζz − ζz̄)2

1 + |ζ|2 ζ̄ = 0 (7.71)

For v+ = v1 + iv2 and v− = v1 − iv2 (7.71) becomes

i(ζt + v−ζz + v+ζz̄) + 2(∂2
zζ + ∂2

z̄ζ)− 4
ζ̄

1 + |ζ|2 (ζ2
z + ζ2

z̄ ) = 0 (7.72)

∂1v2 − ∂2v1 = (∂z + ∂z̄)v2 − i(∂z − ∂z̄)v1

= ∂z(v2 − iv1) + ∂z̄(v2 + iv1)

= i[−∂z(v1 + iv2) + ∂z̄(v1 − iv2)]

= i[∂z̄v− − ∂zv+] (7.73)

or in complex coordinates

i[∂z̄v− − ∂zv+] =
−4i

(1 + |ζ|2)2
(∂1ζ̄∂2ζ − ∂2ζ̄∂1ζ)

=
8

(1 + |ζ|2)2
[ζz ζ̄z̄ − ζ̄zζz̄] (7.74)

If ζ is anti-holomorphic ζz = 0, then the system (7.72)(7.74) is reduced to

iζt + iv+ζz̄ + 2ζz̄z̄ − 4
ζ2
z̄

1 + |ζ|2 ζ̄ = 0 (7.75)

∂zv+ − ∂z̄v− =
−8i

(1 + |ζ|2)2
ζ̄zζz̄. (7.76)

To be consistent, the anti-holomorphicity constraint must be compatible with

the time evolution. So that

∂ζ(z̄, t)

∂z
= 0 =⇒ ∀t′ ∂ζ(z̄, t′)

∂z
= 0 (7.77)
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∂ζ(z̄, t+ dt)

∂z
=

∂

∂z
[ζ(z̄, t+ dt)]

=
∂

∂z
[ζ(z̄, t) +

∂ζ

∂t
dt]

=
∂ζ(z̄, t)

∂z
+

∂

∂z

∂ζ

∂t
dt

=
∂

∂z

∂ζ

∂t

= 0 (7.78)

Proposition 7.3.0.11 For incompressible flow

v1x + v2y = 0 =⇒ div ~v = 0 (7.79)

the anti-holomorphic constraint ζz = 0 is compatible with the time evolution

∂

∂t
ζz = 0. (7.80)

Proof 7.3.0.12 Differentiating (7.75) with respect to z

∂

∂z

(

iζt + iv+ζz̄ + 2ζz̄z̄ − 4
ζ2
z̄

1 + |ζ|2 ζ̄
)

= 0 (7.81)

we get

v+z
= −4i

ζ̄zζz̄
(1 + |ζ|2)2

(7.82)

and complex conjugate of it

v−z̄
= 4i

ζ̄zζz̄
(1 + |ζ|2)2

. (7.83)

Adding (7.82) to (7.83) implies incompressibility condition

v+z
+ v−z̄

= 0 (7.84)

and subtracting implies

v+z
− v−z̄

= −8i
ζ̄zζz̄

(1 + |ζ|2)2
(7.85)

which coincides with the second equation (7.76) ♠

Under the above constraint we have the reduced system

iζt + iv+ζz̄ + 2ζz̄z̄ − 4
ζ2
z̄

1 + |ζ|2 ζ̄ = 0 (7.86)

iζt + ζz̄

[

iv+ + 2

(

ln
ζz̄

(1 + |ζ|2)2

)

z̄

]

= 0 (7.87)
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For function

F ≡ v+ − 2i

[

ln
ζz̄

(1 + |ζ|2)2

]

z̄

(7.88)

Eq. (7.87) becomes

ζt + Fζz̄ = 0 (7.89)

where Fz = 0, due to Eq. (7.82).

7.4 Ishimori Model

Now we consider the topological magnet model (7.8)(7.9)

~St + v1∂1
~S − v2∂2

~S = ~S × (∂2
1 − ∂2

2)~S (7.90)

∂1v2 − ∂2v1 = 2~S(∂1
~S × ∂2

~S) (7.91)

with incompressibility condition (7.24), which allows simplification of the equations.

Equation ~∇ · ~v = 0 can be solved in terms of a real function ψ, the stream function

of the flow,

v1 = ∂2ψ, v2 = −∂1ψ.

If we replace v1 and v2 in equations (7.90)and(7.91) respectively, we get the so called

Ishimori Model (Ishimori 1984).

~St + ∂2ψ∂1
~S + ∂1ψ∂2

~S = ~S × (∂2
1
~S − ∂2

2
~S) (7.92)

(∂2
1 + ∂2

2)ψ = −2~S · (∂1
~S × ∂2

~S) (7.93)

where we have used

∂1v2 − ∂2v1 = −∆ψ. (7.94)

The Ishimori model is the first example of integrable classical spin model in 2+1

dimensions (Konopelchenko 1987). It was shown to be gauge equivalent to the

Davey-Stewartson equation, representing the 2+1 dimensional generalization of the

Nonlinear Schrodinger equation (Makhankov and Pashaev 1992, Lepovskiy and Shi-

rokov 1989 , Pashaev 1996).

In terms of complex variables

v+ = v1 + iv2 = −2iψz̄ (7.95)

v− = v1 − iv2 = 2iψz (7.96)
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and the stereographic projection (7.46) (7.47) we have it in the form

iζt − 2ψzζz + 2ψz̄ζz̄ + 2(ζzz + ζz̄z̄)− 4
ζ̄

1 + |ζ|2 (ζ2
z + ζ2

z̄ ) = 0 (7.97)

ψzz̄ = −2
ζz ζ̄z − ζ̄zζz̄
(1 + |ζ|2)2

(7.98)

7.4.1 Anti-holomorphic Reduction of Ishimori Model

The Ishimori model appears from the topological magnet model for the incom-

pressible flow. But according to Proposition we have seen that such flow preserves

anti(holomorphicity) constraint. This is why we consider now anti(holomorphicity)

constrained Ishimori model. Under constraint ζz = 0 we have dependence ζ = ζ(z̄, t)

and the model reduces to

iζt + 2ψz̄ζz̄ + 2ζz̄z̄ − 4
ζ̄

1 + |ζ|2 ζ
2
z̄ = 0 (7.99)

ψzz̄ = 2
ζ̄zζz̄

(1 + |ζ|2)2
(7.100)

We can rearrange the first equation as follows

iζt + 2ζz̄

[

ψz̄ +
ζz̄z̄
ζz̄
− 4

ζ̄ζz̄
1 + |ζ|2

]

= 0 (7.101)

iζt + 2ζz̄

(

ψ + ln
ζz̄

(1 + |ζ|2)2

)

z̄

= 0 (7.102)

iζt + 2ζz̄
[
ψ − 2 ln(1 + |ζ|2) + ln ζz̄

]

z̄
= 0 (7.103)

7.4.2 Static N-Vortex Configuration

If we choose

ψ = 2 ln(1 + |ζ|2)− ln ζz̄ − ln ζ̄z (7.104)

then from Eq. (7.103)

ζt = 0 (7.105)

which means that our configurations are static. Differentiating (7.104) we find that

Eq. (7.100) is satisfied automatically

ψzz̄ = [2 ln(1 + |ζ|2)]zz̄ = 2
ζ̄zζz̄

(1 + |ζ|2)2
(7.106)
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Then from (7.100)

eψ = e2 ln(1+|ζ|2)e− ln ζz̄e− ln ζ̄z (7.107)

=
(1 + |ζ|2)2

ζz̄ ζ̄z
(7.108)

e−ψ =
ζz̄ ζ̄z

(1 + |ζ|2)2
(7.109)

Using Eq. (7.100) we see that function ψ (7.108) is the general solution of the

Liouville equation

ψzz̄ = 2e−ψ (7.110)

It means that any solution of the Liouville equation is a static solution of the Ishimori

Model. In chapter 3.6 we discussed N-vortex solution of Liouville model and the

Stuart periodic array of vortices. Now we consider solution of model (7.110) in the

form (7.108) where function

ζ = sin(z̄ − z̄1) (7.111)

ζz̄ = cos(z̄ − z̄1) (7.112)

ζ̄z = cos(z − z1) (7.113)

Then the corresponding stream fuction

ψ = 2 ln(1 + | sin(z̄ − z̄1)|2)− ln cos(z̄ − z̄1)− ln cos(z̄ − z̄1) (7.114)

= 2 ln(1 + | sin(z̄ − z̄1)|2)− ln | cos(z̄ − z̄1)|2 (7.115)

= ln
(1 + | sin z̄|2)2

| cos z̄|2 (7.116)

= ln
[1 + (sinx cosh y)2 + (cos x sinh y)2]2

(cosx cosh y)2 + (sinx sinh y)2
(7.117)

describes periodic in x lattice of vortices .
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7.4.3 Single Vortex and Vortex Lattice

Now if in Eq. (7.108) for function ζ we choose

ζ = z̄ sin z̄ (7.118)

ζz̄ = sin z̄ + z̄ cos z̄ (7.119)

then we find the stream function descriptive of the single vortex and the vortex

lattice.

ψ = 2 ln(1 + |z̄|2| sin z̄|2)− ln(sin z̄ + z̄ cos z̄)− ln(sin z + z cos z) (7.120)

= ln
[1 + |z̄|2| sin z̄|2]2
| sin z̄ + z̄ cos z̄|2 (7.121)

= ln
1 + (x2 + y2)[(sinx cosh y)2 + (cosx sinh y)2]

2

| sin z|2 + |z|2| cos z|2 + z cos z sin z̄ + z̄ cos z̄ sin z
(7.122)

7.4.4 Complex Time Dependent Schrödinger Equation

If we choose

ψ = 2 ln(1 + |ζ|2) (7.123)

then

ψzz̄ = 2[
ζ̄zζ

1 + |ζ|2 ]z̄ (7.124)

= 2
ζ̄zζz̄

(1 + |ζ|2)2
(7.125)

and Eq.(7.100) is satisfied automatically. Then from equation (7.103) for function

ζ we have complex time dependent Schrödinger equation (5.7) with ν = −2

iζt + 2ζz̄z̄ = 0 (7.126)

In Chapter 5 we have studied a motion of zeroes of this equation and there relations

with vortices of the complex Burgers equation. All these results can be interpreted

now in terms of the magnetic vortices. Particularly, to find generating function of

the basic vortex solutions of this equation we consider solution in the form

ζ(z̄, t) = ekz̄+ωt (7.127)

where dispersion ω = 2ik2 . Then

ζ(z̄, t) = ekz̄+2ik2t (7.128)
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Let x ≡ k
√

2t
i
, then we rewrite it as the Generating Function for the Hermite

Polynomials of complex argument

ekz̄+2ik2t = e−x
2+2(z̄
√

i

8t
)x

=
∞∑

n=0

Hn(z̄

√

i

8t
)
xn

n!
(7.129)

or

ζ(z̄, t) =
∞∑

n=0

kn

n!
(−2it)n/2Hn(z̄

√

i

8t
)

=
∞∑

n=0

kn

n!
Ψn(z̄, t) (7.130)

where at every power kn we have a polynomial solution of order n:

Ψn(z̄, t) =

(
2t

i

)n/2

Hn(z̄

√

i

8t
) (7.131)

This polynomial has n complex roots z̄1(t), ..., z̄n(t) describing positions of vortices

which we have studied in Section 5.3.2.

7.5 N Vortex System

As we have seen in Chapter 5 for N vortex system in general, we can choose

ζ(z̄, t) =
N∏

j=1

(z̄ − z̄j(t)). (7.132)

Then positions of vortices are subject to the system

d

dt
z̄j =

4

i

∑

k 6=(j)

1

(z̄j − z̄k)
. (7.133)

This system admits 2N integrals of motion. The first 5 integrals are of the form

N∑

j=1

z̄j = I1 − iI2 (7.134)

N∑

j=1

z2
j + z̄2

j = I3 (7.135)

N∑

j=1

z̄3
j + 3

∑

j<k<l

z̄j z̄kz̄l = I4 − iI5 (7.136)
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This is why in contrast with Kirchhoff equations the dynamics of vortices in Ishimori

model is integrable. In fact as we have shown in Chapter 6, the system (7.133) admits

mapping to the complexified Calogero-Moser N particle problem. We differentiate

it once and use the system again (Appendix B.6) to have Newton’s equations

d2

dt2
z̄j =

∑

k

16

(z̄j − z̄k)3
(7.137)

These equations have the Hamiltonian form

˙̄zj =
∂H

∂pj
= pj, ṗ = −∂H

∂ ˙̄zj
(7.138)

with the Hamiltonian function

H =
1

2

n∑

j=1

p2
j + 8

∑

j<k

1

(z̄j − z̄k)
(7.139)

As we discussed before, the Calogero-Moser model is finite-dimensional integrable

system admitting the Lax representation, from which follows the hierarchy of con-

stants of motion in involution.

7.6 Dynamics of Magnetic Vortices in the Plane

In Chapter 5 we already have discussed in details dynamics of N vortices and

vortex lattices in the plane. All these results are valid also for the magnetic system,

under restriction of constant ν = −2. By stereographic projection formulas

S1 + iS2 =
2ζ

1 + |ζ|2 (7.140)

S3 =
1− |ζ|2
1 + |ζ|2 (7.141)

we can see that at every zero of function ζ(z̄k, t) = 0

(S1 + iS2)(z̄k, t) = 0, , S3(z̄k, t) = 1 (7.142)

From another site for N degree polynomial ζN at infinity |z| → ∞

(S1 + iS2)(z̄k, t) = 0, S3(z̄k, t) = −1 (7.143)

It shows that our zeroes correspond to the magnetic vortices located at that zeroes

with the spin vector ~S directed up, while at infinity it is directed down (ferromagnetic
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type order). If we calculate the topological charge

Q =
1

4π

∫ ∫

~S · (∂1
~S × ∂2

~S)d2x (7.144)

= − 1

8π

∫ ∫

(∆ψ)d2x (7.145)

where

ψ = 2 ln(1 + |ζ|2) (7.146)

Q = − 1

4π

∫ ∫

(∆ ln(1 + |ζ|2))d2x (7.147)

By Green’s theorem then integral transforms

∫ ∫







∂

∂x







∂

∂x
ln(1 + |ζ|2)

︸ ︷︷ ︸

Q







+
∂

∂y







∂

∂y
ln(1 + |ζ|2)

︸ ︷︷ ︸

P













=

∮

Pdx+Qdy (7.148)

=

∮ [

− ∂

∂y
ln(1 + |ζ|2)

]

dx+

[
∂

∂x
ln(1 + |ζ|2)

]

dy (7.149)

=

∮

− (|ζ|2)y
1 + |ζ|2dx+

(|ζ|2)x
1 + |ζ|2dy (7.150)

=

∮

R→∞

−(|ζ|2)ydx+ (|ζ|2)xdy
1 + |ζ|2 (7.151)

For N zeroes solution

ζ(z̄, t) =
N∏

k=1

(z̄ − z̄k(t)) (7.152)

asymptotically |z| → ∞, z = Reiθ, R→∞, |ζ|2 →∞, ζ ' z̄N , |ζ|2 = |z|2N

|ζ|2x = [(x2 + y2)N ]x = N(x2 + y2)N−12x (7.153)

|ζ|2y = N(x2 + y2)N−12y (7.154)

(7.155)

and integral is equal
∮

R→∞

−N(x2 + y2)N−12ydx+N(x2 + y2)N−12xdy

(x2 + y2)N
= 2N

∮ −ydx+ xdy

x2 + y2

= 2N · 2π

= 4πN (7.156)

Then we find that topological charge is integer valued and equal to the number of

vortices

Q = −N (7.157)
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Figure 7.1. N = 1 Static Magnetic Vortex

In Fig. 7.1 and Fig. 7.2 we reproduce S3 component for N = 1 and N = 2 vortices.
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Figure 7.2. N = 2 Magnetic Vortex Dynamics
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If we consider solution

ζ(z̄, t) =
N∏

k=1

sin(z̄ − z̄k(t)) (7.158)

then it describes N magnetic vortex chain lattices periodic in the x direction. In

Fig. 7.3 we reproduce S3 component of these lattices for N = 2. Applying results of

Chapter 5 on vortex generating techniques we can also generate arbitrary number

of magnetic vortices interacting with the vortex lattices.

Figure 7.3. Two Magnetic Vortex Lattice Dynamics

7.7 Time Dependent Schrodinger problem in Harmonic Po-

tential

The vorticity equation (7.100) is invariant under substitution

ψ → ψ + U (7.159)

where U is an arbitrary harmonic function:

∆U = 0
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If we choose

ψ = 2 ln(1 + |ζ|2) + U(z̄, t) + Ū(z̄, t) (7.160)

then substituting to Eq.(7.103) we have complex Schrödinger equation with addi-

tional potential term

iζt + ζz̄z̄ + ζz̄Uz̄ = 0 (7.161)

7.8 Bound State of Vortices

Here we choose particular form

U(z̄, t) =
1

2
z̄2 (7.162)

so that

ψ = 2 ln(1 + |ζ|2) +
1

2
(z̄2 + z2). (7.163)

Then we have the time evolution subject to the equation

iζt + 2ζz̄z̄ + z̄ζz̄ = 0. (7.164)

Looking for solution in the form

ζ =
∑

n

eintun(z̄) (7.165)

we find that functions un(z̄) satisfy the complex Hermite equation

2u′′n + z̄u′n − nun = 0. (7.166)

It gives time dependent vortex solution in the form

ζ =
∑

n

eintHn(z̄). (7.167)

For particular value N = 2 we have solution

ζ = H0(z̄) + eitH1(z̄) + e2itH2(z̄) (7.168)

or

ζ = <ζ + i=ζ

where

<ζ = 1 + 2x cos t+ 2y sin t+ [4(x2 − y2)− 2] cos 2t+ 8xy sin 2t (7.169)
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=ζ = −2y cos t+ 2x sin t− 8xy cos 2t+ [4(x2 − y2)− 2] sin 2t (7.170)

This solution is periodic in time with period T = 2π and it describes the bound

state of two magnetic vortices. In Fig. 7.4 we demonstrate oscillation of vortices in

this bound state for function

f =
1

1 + (<ζ)2 + (=ζ)2

which characterizes projection of spin vector S3.
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Figure 7.4. Bound State of Two Magnetic Vortices
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CHAPTER 8

CONCLUSIONS

In the present thesis we have studied integrable dynamical models of the point

magnetic vortex interactions in the plane. We started from general formulation of

incompressible and irrotational hydrodynamical flow in terms of analytic function

theory. Then, the simple pole singularities of the complex velocity we interpreted

as the vortices and sources of the flow. The problem of vortex motion in this

language corresponds to the motion of zeroes or poles of some complex functions.

Reformulating the Euler equations for vorticity function in the Helmholz form, we

found the Hamiltonian structure, where the stream function plays the role of the

Hamiltonian function. We showed formal equivalence of this Hamiltonian equations

with the Lax equations, which suggest that the equations are integrable in the

Liouville sense. But, by reducing these equations for the point vortices to the

Kirchhoff equations, we obtained that the system of N ≥ 4 vortices has no sufficient

number of integrals of motion and this is why it can’t be integrable.

As an integrable model of planar motion with given vorticity for the station-

ary flow, we considered the Liouville equation and its solutions as distributed finite

set of vortices and as the periodic lattice of vortices.

For non-stationary flows we studied exactly solvable case of point planar

vortex diffusion and exactly solvable Initial Value Problem for the one dimensional

Burgers equation. In the last case we found that the initial step function, asymptot-

ically creates shock soliton for the Burgers equation. Linearizability of the Burgers

equation in one dimension and analogy of the linearization formulae, the Cole-Hopf

transformation, with the relation between complex velocity and complex potential,

leaded us to formulation of the complex Burgers equation with integrable N vortex

dynamics. We found that the complex Burgers equation is linearizable in terms of

the complex Schrödinger equation and vortices correspond to zeroes of the last equa-

tion. This allowed us to construct N vortex configurations in terms of the complex

Hermite polynomials, vortex chain lattices and their mutual dynamics. By mapping

our vortex problem to N-particle problem, the complexified Calogero-Moser system,
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we showed its integrability and Hamiltonian structure.

Then we applied our general results to the problem of magnetic vortices in

a magnetic fluid. First we found holomorphic reductions of topological magnetic

system and showed that the evolution equation at this reduction becomes the lin-

ear complex Schrödinger equation, which we found by linearization of the complex

Burgers equation. This allowed us apply all results on integrable vortex dynamics in

the complex Burgers equation to the magnetic vortex evolution, including magnetic

vortex lattices and the bound states of vortices.

The richness and beauty of the integrable structure of Hamiltonian systems

suggests that our results can clarify extension of integrability property for 2+1 di-

mensional systems, which is an actual problem in mathematics. From another site,

wide variety of vortex phenomena in nature, from nano-structures to hydrodynam-

ics and cosmology, gives us hope that our results could have applications in such

phenomena.
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APPENDIX A

Complex Analysis

A.1 Cauchy Integral Representation.

Let f be analytic everywhere within and on a simple closed contour C, taken

in the positive sense.If z0 is any point interior to C, then

f(z0) =
1

2πi

∫

C

f(z)dz

z − z0

(A.1)

is called the Cauchy integral Formula. It says that if a function f is to be analytic

within and on on a simple closed contour C, then the values of f on C. Any change

in the value of f at a point within C must, therefore, be accompanied by a change

in its values on the boundary C.

A.2 Argument Principle and Rouche’s Theorem.

A function f is said to be meromorphic in a domain D if at every point of D it

is either analytic or has a pole. Suppose now that we are given a function f that is

analytic and nonzero at each point of a simple closed contour C and is meromorphic

inside C. Under these conditions it can be shown that f has at most a finite number

of poles inside C. Then the number of poles of f inside C is to be interpreted as

Np(f) :=
∑

poles inside C

(order of each pole) (A.2)

while the number of its zeros inside C is

N0(f) := (order of the zero at z = 0) (A.3)

Theorem A.2.0.1 Argument Principle

If f is analytic and nonzero at each point of a simple closed positively oriented

contour C and is meromorphic inside C, then

1

2πi

∫

C

f ′(z)

f(z)
dz = N0(f)−Np(f) (A.4)

where N0(f) and Np(f) are , respectively, the number of zeros and poles of f inside

C.
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If f is analytic inside and on a simple closed positively oriented contour C and if

f is nonzero on C, then
1

2πi

∫

C

f ′(z)

f(z)
dz = N0(f) (A.5)

where N0(f) is the number of zeros of f inside C.

Theorem A.2.0.2 Rouche’s Theorem

If f and h are each functions that are analytic inside and on a simple closed contour

C and if the strict inequality

|h(z)| < |f(z)| (A.6)

holds at each point on C, then f and f + h must have the same total number of

zeros inside C.
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APPENDIX B

Vortices in Euler Equations

B.1 Vorticity form of Euler Equations

∂~u

∂t
+ (~u · ~∇)~u = 0 (B.1)

∂u1

∂t
+ (u1∂x + u2∂y)u1 = 0 (B.2)

∂u2

∂t
+ (u1∂x + u2∂y)u2 = 0 (B.3)

Taking derivative of (B.2) according to y and (B.3) according to x we get

∂2u1

∂t∂y
+ ∂yu1∂xu1 + u1∂y∂xu1 + ∂yu2∂yu1 + u2∂

2
yu1 = 0 (B.4)

∂2u2

∂t∂x
+ ∂xu1∂xu2 + u1∂

2
xu2 + ∂xu2∂yu2 + u2∂x∂yu2 = 0 (B.5)

Subtracting (B.5) from (B.4) we get

∂

∂t
[∂xu2 − ∂yu1] + u1[∂

2
xu2 − ∂x∂yu1] + u2[∂x∂yu2 − ∂2

yu1]

+∂xu1∂xu2 + ∂xu2∂yu2 − ∂yu1∂xu1 − ∂yu2∂yu1 = 0 (B.6)

div~u = 0 implies the existence of the real function ψ(x, y) such that

u1 = ∂yψ, u2 = −∂xψ (B.7)

Vorticity Ω is in the form:

Ω = ∂xu2 − ∂yu1 (B.8)

= −(∂2
xψ + ∂2

yψ) (B.9)

= −∆ψ (B.10)

Substituting (B.7) and (B.10) in the equation (B.6) we have

∂Ω

∂t
− ∂xψ∂yΩ + ∂yψ∂xΩ = 0 (B.11)
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B.2 Lax Representation

LΨ = λΨ (B.12)

Ψt = AΨ (B.13)

Differentiating (B.12) according to t and using (B.13)gives:

LtΨ + LΨt = λtΨ + λΨt (B.14)

LtΨ + LAΨ = λtΨ + λAΨ (B.15)

= λtΨ + AλΨ (B.16)

= λtΨ + ALΨ (B.17)

(B.18)

LtΨ + LAΨt − ALΨ = λtΨ (B.19)

LtΨ + (LA− AL)Ψ = λtΨ (B.20)

LtΨ− [A,L]Ψ = λtΨ (B.21)

(Lt − [A,L])Ψ = λtΨ (B.22)

λt = 0 ⇔ Lt = [A,L] (B.23)

B.3 Green Function Solution for Laplace Operator

G(~r1, ~r2) = − 1

2π
ln |~r1 − ~r2| (B.24)

∆1G(~r1, ~r2) = −δ(~r1 − ~r2) (B.25)

Substituting (B.24) to (B.25) we have:

∆1(−
1

2π
ln |~r1 − ~r2|) = −δ(~r1 − ~r2) (B.26)

∆1 ln |~r1 − ~r2| = 2πδ(~r1 − ~r2) (B.27)
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For r2 = 0

∆ ln |~r| = 2πδ(~r) (B.28)

1. r 6= 0 ∆ ln r = 0

∆ ln r =

(
∂2

∂x2
+

∂2

∂y2

)

ln
√

x2 + y2 = 0 (B.29)

=
∂2

∂x2
ln
√

x2 + y2 +
∂2

∂y2
ln
√

x2 + y2 (B.30)

=
y2 − x2

(x2 + y2)2
+

x2 − y2

(x2 + y2)2
(B.31)

= 0 (B.32)

2. ∆ ln r = 2πδ(r)

∫

δ(r)dr = 1

∫ ∫

∆ ln rd2x = 2π (B.33)

Green’s Theorem

∫

A

∫ (
∂Q

∂x
− ∂P

∂y

)

dxdy =

∮

C

(Pdx+Qdy) (B.34)

∫ ∫

∆ ln rd2x =

∫ ∫ (
∂2

∂x2
ln r +

∂2

∂y2
ln r

)

dxdy (B.35)

=

∫ ∫ [
∂

∂x

( x

r2

)

+
∂

∂y

( y

r2

)]

dxdy (B.36)

=

∮

R

( −y
x2 + y2

dx+
x

x2 + y2
dy

)

(B.37)

=

∫ 2π

0

(sin2 θ + cos2 θ)dθ (B.38)

= 2π (B.39)

where x = R cos θ and y = R sin θ.

Eq. (B.25) determines integral operator ∆−1 :

∆−1 =
1

2π

∫ ∫

dx2dx2 ln |~r1 − ~r2| (B.40)

such that

∆∆−1 = 1 (B.41)
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B.4 Point Vortex in Polar Coordinates

In this part we will find point vortex solution in polar coordinate form. Let

us consider xy- plane and polar coordinate representation

x = cos θ (B.42)

y = sin θ (B.43)

then arbitrary vector field ~r in the plane is

~r(t) = x(t)~e1 + y(t)~e2 (B.44)

= r(t) cos θ~e1 + r(t) sin θ~e2 (B.45)

Taking derivatives according to t we have velocity field

∂~r

∂t
= ~u = (ṙ cos θ − r sin θθ̇)~e1 + (ṙ sin θ − r cos θθ̇)~e2 (B.46)

The polar coordinate basis determined by vectors ~er,~eθ is related with basis ~e1,~e2

by simple rotation




~e1

~e2



 =




cos θ − sin θ

sin θ cos θ



 =




~er

~eθ



 (B.47)

Substituting to expression (B.46) we have velocity vector in polar coordinates as

~u = u1~e1 + u2~e2 = ur~er + uθ~eθ (B.48)

where

~ur = ṙ (B.49)

~uθ = rθ̇ (B.50)

Let us consider point vortex solution with velocity components

u1 = − Γ

2π

y

x2 + y2
, u2 =

Γ

2π

x

x2 + y2
(B.51)

then using formulas relating with u1 , u2 and solving linear equations we have ṙ and

θ̇ for our point vortex in the form
103



ṙ = 0, θ̇ =
Γ

2πr2
(B.52)

u1 = − Γ

2π

sin θ

r
= ṙ cos θ − r sin θθ̇ (B.53)

u2 =
Γ

2π

cos θ

r
= ṙ sin θ + r cos θθ̇ (B.54)

Applying Cramer’s rule for the linear algebraic system

a1x+ b1y = c1 x =
∆1

∆
(B.55)

a2x+ b2y = c2 y =
∆2

∆
(B.56)

(B.57)

we have

∆ =

∣
∣
∣
∣
∣
∣

cos θ −r sin θ

sin θ r cos θ

∣
∣
∣
∣
∣
∣

= r (B.58)

∆1 =

∣
∣
∣
∣
∣
∣
∣

− Γ

2π

sin θ

r
−r sin θ

Γ

2π

cos θ

r
r cos θ

∣
∣
∣
∣
∣
∣
∣

= 0 (B.59)

∆2 =

∣
∣
∣
∣
∣
∣
∣

cos θ − Γ

2π

sin θ

r

sin θ
Γ

2π

cos θ

r

∣
∣
∣
∣
∣
∣
∣

=
Γ

2πr
(B.60)

and

ṙ =
∆1

∆
= 0 (B.61)

θ̇ =
∆2

∆
=

Γ

2πr2
(B.62)

It implies

ur = ṙ = 0 (B.63)

uθ = rθ̇ =
Γ

2πr
(B.64)

As we found in Eq. (3.9) vorticity for the point vortex is Ω = Γδ(~r). It means that

the total vorticity in the plane is fixed by equations (3.11)
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∫

R2

∫

Ωd2x = Γ

∫ ∫

δ(~r)d2x = Γ (B.65)

Let us rewrite this vorticity condition in polar coordinate representation

∫

R2

∫

Ω(x, y)d2x =

∫ 2π

0

dθ

∫ ∞

0

Ω(r, θ)rdr = Γ (B.66)

Since for the point vortex function Ω(r, θ) is independent of θ we have

2π

∫ ∞

0

Ω(r)rdr = Γ (B.67)

From

Ω =
∂u2

∂x
− ∂u1

∂y
(B.68)

u1 = ur cos θ − sin θuθ (B.69)

u2 = ur sin θ + cos θuθ (B.70)






∂

∂r
∂

∂θ




 =




cos θ sin θ

−r sin θ r cos θ










∂

∂x
∂

∂y




 (B.71)






∂

∂x
∂

∂y




 =

1

r




r cos θ − sin θ

r sin θ cos θ










∂

∂r
∂

∂θ




 (B.72)

we obtain vorticity

Ω =
1

r

(
∂

∂r
(ruθ)−

∂

∂θ
ur

)

(B.73)

Velocity for point vortex is

uθ =
1

r

∫ r

0

(rΩ)dr + c (B.74)

B.5 Kirchhoff Equations

In this Appendix we study integrals of motion for the Kirchhoff equations

(3.66),(3.67). As it is well known the equations admit four integrals of motion

written below

I1 = H I2 =
N∑

i=1

kixi I3 =
N∑

i=1

kiyi I4 =
N∑

i=1

ki(x
2
i + y2

i ) (B.75)
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It is easy to check by direct calculations using Poisson bracket definition (3.31) and

the Kirchhoff equations (3.66) , (3.67). The first one is evident from the skew-

symmetry

İ1 = {I1, H} = {H,H} = 0 (B.76)

For the second, the third and the fourth one we have respectively

İ2 = {I2, H} =
N∑

i=1

Γi{xi, H} =
N∑

i=1

∂H

∂yi
(B.77)

=
1

2π

N∑

i=1

N∑

n6=i
ΓiΓn

yi − yn
(xi − xn)2 + (yi − yn)2

= 0 (B.78)

⇒ I2 = const (B.79)

and

İ3 = {I3, H} =
N∑

i=1

Γi{yi, H} =
N∑

i=1

−∂H
∂xi

(B.80)

= − 1

2π

N∑

i=1

N∑

n6=i
ΓiΓn

xi − xn
(xi − xn)2 + (yi − yn)2

= 0 (B.81)

⇒ I3 = const. (B.82)

and

İ4 = {I4, H} =
N∑

i=1

Γi{x2
i + y2

i , H} (B.83)

=
N∑

i=1

Γi
(
{x2

i , H}+ {y2
i , H}

)
(B.84)

= 2
N∑

i=1

Γi (xi{xi, H}+ yi{yi, H}) (B.85)

=
1

π

N∑

i=1

N∑

n6=i
ΓiΓn

−xiyn + xnyi
(xi − xn)2 + (yi − yn)2

= 0 (B.86)

⇒ I4 = const. (B.87)

The sums in above equations are vanishing due to symmetry properties: for every

(ij) term exists term (ji) with opposite sign. Below we illustrate this property for

N = 2

İ2 =
1

2π
Γ1Γ2

y1 − y2

(x1 − x2)2 + (y1 − y2)2
(B.88)

+
1

2π
Γ2Γ1

y2 − y1

(x2 − x1)2 + (y2 − y1)2
(B.89)

= 0 (B.90)
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İ3 = − 1

2π
Γ1Γ2

x1 − x2

(x1 − x2)2 + (y1 − y2)2
(B.91)

− 1

2π
Γ2Γ1

x2 − x1

(x2 − x1)2 + (y2 − y1)2
(B.92)

= 0 (B.93)

İ4 =
1

π
Γ1Γ2

−x1y2 + x2y1

(x1 − x2)2 + (y1 − y2)2
(B.94)

+
1

π
Γ2Γ1

−x2y1 + x1y2

(x2 − x1)2 + (y2 − y1)2
(B.95)

= 0 (B.96)

For N = 3 we have

İ2 =
1

2π
Γ1Γ2

y1 − y2

(x1 − x2)2 + (y1 − y2)2
(B.97)

+
1

2π
Γ2Γ1

y2 − y1

(x2 − x1)2 + (y2 − y1)2
(B.98)

+
1

2π
Γ2Γ3

y2 − y3

(x2 − x3)2 + (y2 − y3)2
(B.99)

+
1

2π
Γ3Γ2

y3 − y2

(x3 − x2)2 + (y3 − y2)2
(B.100)

+
1

2π
Γ1Γ3

y1 − y3

(x1 − x3)2 + (y1 − y3)2
(B.101)

+
1

2π
Γ3Γ1

y3 − y1

(x3 − x1)2 + (y3 − y1)2
(B.102)

= 0 (B.103)

İ3 = − 1

2π
Γ1Γ2

x1 − x2

(x1 − x2)2 + (y1 − y2)2
(B.104)

− 1

2π
Γ2Γ1

x2 − x1

(x2 − x1)2 + (y2 − y1)2
(B.105)

− 1

2π
Γ2Γ3

x2 − x3

(x2 − x3)2 + (y2 − y3)2
(B.106)

− 1

2π
Γ3Γ2

x3 − x2

(x3 − x2)2 + (y3 − y2)2
(B.107)

− 1

2π
Γ1Γ3

x1 − x3

(x1 − x3)2 + (y1 − y3)2
(B.108)

− 1

2π
Γ3Γ1

x3 − x1

(x3 − x1)2 + (y3 − y1)2
(B.109)

= 0 (B.110)
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İ4 =
1

π
Γ1Γ2

−x1y2 + x2y1

(x1 − x2)2 + (y1 − y2)2
(B.111)

+
1

π
Γ2Γ1

−x2y1 + x1y2

(x2 − x1)2 + (y2 − y1)2
(B.112)

+
1

π
Γ1Γ3

−x1y3 + x3y1

(x1 − x3)2 + (y1 − y3)2
(B.113)

+
1

π
Γ2Γ1

−x3y1 + x1y3

(x3 − x1)2 + (y3 − y1)2
(B.114)

+
1

π
Γ2Γ3

−x2y3 + x3y2

(x2 − x3)2 + (y2 − y3)2
(B.115)

+
1

π
Γ2Γ1

−x3y2 + x2y3

(x3 − x2)2 + (y3 − y2)2
(B.116)

= 0 (B.117)

...

Then for ∀N we can rewrite our sums in the form

İ2 =
1

2π

N∑

i=1

N∑

n6=i
ΓiΓn

yi − yn
(xi − xn)2 + (yi − yn)2

(B.118)

+
1

2π

N∑

i=1

N∑

n6=i
ΓnΓi

yn − yi
(xn − xi)2 + (yn − yi)2

= 0 (B.119)

İ3 =
1

2π

N∑

i=1

N∑

n6=i
ΓiΓn

xi − xn
(xi − xn)2 + (yi − yn)2

(B.120)

+
1

2π

N∑

i=1

N∑

n6=i
ΓnΓi

xn − xi
(xn − xi)2 + (yn − yi)2

= 0 (B.121)

İ4 =
1

π

N∑

i=1

N∑

n6=i
ΓiΓn

−xiyn + xnyi
(xi − xn)2 + (yi − yn)2

(B.122)

+
1

π

N∑

i=1

N∑

n6=i
ΓnΓi

−xnyi + xiyn
(xn − xi)2 + (yn − yi)2

(B.123)

According to the Poisson Theorem (Thm 3.4.3.2) the Posson bracket of two inte-

grals of motion is also integral of motion. This is why we need to find all possible

Poisson brackets between above integrals. All calculations could be done in a pure

algebraic way if we find first the fundamental Poisson brackets

{xi, xj} =
N∑

k=1

1

Γk

(
∂xi
∂xk

∂xj
∂yk
− ∂xi
∂yk

∂xj
∂xk

)

= 0 (B.124)
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{yi, yj} =
N∑

k=1

1

Γk

(
∂yi
∂xk

∂yj
∂yk
− ∂yi
∂yk

∂yj
∂xk

)

= 0 (B.125)

{xi, yj} =
N∑

k=1

1

Γk

(
∂xi
∂xk

∂yj
∂yk
− ∂xi
∂yk

∂yj
∂xk

)

(B.126)

=
N∑

k=1

1

Γk
δikδjk =

1

Γi
δij (B.127)

or combining together

{xi, xj} = 0 = {yi, yj}, {xi, yj} =
1

Γi
δij (B.128)

Then using properties of Poisson brackets we have

{I2, I3} = {
N∑

i=1

Γixi,
N∑

j=1

Γjyj} (B.129)

=
N∑

i=1

N∑

j=1

ΓiΓj{xi, xj} (B.130)

=
N∑

i=1

Γi (B.131)

{I2, I4} = {
N∑

i=1

Γixi,
N∑

j=1

Γj(x
2
j + y2

j )} (B.132)

=
N∑

i=1

N∑

j=1

ΓiΓj{xi, x2
j + y2

j} (B.133)

= 2
N∑

i=1

Γiyi = 2I3 (B.134)

{I3, I4} =
N∑

i=1

N∑

j=1

ΓiΓj{yi, x2
j + y2

j} (B.135)

= −2
N∑

i=1

Γixi = −2I2 (B.136)

This allows us to write all commutation relations between four integrals of motion

{I2, I3} =
N∑

i=1

Γi, {I2, I4} = 2I3, {I3, I4} = −2I2 (B.137)

As we can see these integrals are not in involution thus they are linearly dependent.
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B.6 N Vortex System

In this Appendix we derived system of equations describing evolution of N

vortices. Let us consider solution of complex Schrödinger equation (5.7)

iΦt = νΦz̄z̄ (B.138)

having N simple roots

Φ(z̄, t) =
N∏

k=1

(z̄ − z̄k(t)). (B.139)

For simplicity we start with N = 2 case

Φ(z̄, t) = (z̄ − z̄1(t))(z̄ − z̄2(t)). (B.140)

Substituting to the equation we have

−i ˙̄z1(z̄ − z̄2)− i ˙̄z2(z̄ − z̄1) = 2ν. (B.141)

This equation considered at points z̄ = z̄1 and z̄ = z̄2 gives the system

˙̄z1 =
2νi

(z̄1 − z̄2)
, ˙̄z2 =

−2νi

(z̄1 − z̄2)
. (B.142)

For N = 3 case

Φ(z̄, t) = (z̄ − z̄1(t))(z̄ − z̄2(t))(z̄ − z̄3(t)) (B.143)

Substituting to the equation we have

−i ˙̄z1(z̄− z̄2)(z̄− z̄3)− i ˙̄z2(z̄− z̄1)(z̄− z̄3)− i ˙̄z3(z̄− z̄1)(z̄− z̄2) = 2ν[3z̄− (z̄1 + z̄2 + z̄3)]

This equation considered at points z̄ = z̄1 , z̄ = z̄2 and z̄ = z̄3 gives the system

˙̄z1 = 2νi

[
1

(z̄1 − z̄2)
+

1

(z̄1 − z̄3)

]

(B.144)

˙̄z2 = 2νi

[
1

(z̄2 − z̄1)
+

1

(z̄2 − z̄3)

]

(B.145)

˙̄z3 = 2νi

[
1

(z̄3 − z̄1)
+

1

(z̄3 − z̄2)

]

(B.146)

Following the same procedure, in general case of arbitrary N zeroes (B.139) we

obtain the system of first order equations

˙̄zj = 2νi
N∑

k 6=j

1

(z̄j − z̄k)
(B.147)
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Differentiating this system once more in time we get the system of Newton’s equa-

tions:

¨̄zj = 2νi
n∑

k 6=j

−( ˙̄zj − ˙̄zk)

(z̄j − z̄k)2
= 8ν2

n∑

j<k

1

(z̄j − z̄k)3
(B.148)

For N = 2 case we have two equations

¨̄z1 = 8ν2

n∑

k 6=j

1

(z̄1 − z̄2)3
, z̈2 = −8ν2

n∑

k 6=j

1

(z̄1 − z̄2)3
(B.149)

For N = 3 case we have the following equations

¨̄z1 = 2νi

[−( ˙̄z1 − ˙̄z2)

(z̄1 − z̄2)2
+
−( ˙̄z1 − ˙̄z3)

(z̄1 − z̄3)2

]

(B.150)

= 8ν2

[
1

(z̄1 − z̄2)3
+

1

(z̄1 − z̄3)3

]

(B.151)

¨̄z2 = 2νi

[−( ˙̄z2 − ˙̄z1)

(z̄2 − z̄1)2
+
−( ˙̄z2 − ˙̄z3)

(z̄2 − z̄3)2

]

(B.152)

= 8ν2

[
1

(z̄2 − z̄1)3
+

1

(z̄2 − z̄3)3

]

(B.153)

(B.154)

¨̄z3 = 2νi

[−( ˙̄z3 − ˙̄z1)

(z̄3 − z̄2)2
+
−( ˙̄z3 − ˙̄z2)

(z̄3 − z̄2)2

]

(B.155)

= 8ν2

[
1

(z̄3 − z̄1)3
+

1

(z̄3 − z̄2)3

]

(B.156)

(B.157)
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APPENDIX C

Hermite Polynomials of Complex Argument

C.1 Generating Function

The Hermite polynomials, Hn(x), may be defined by the generating function

(Arfken 1995)

g(x, t) = e−t
2+2tx =

∞∑

n=0

Hn(x)
tn

n!
(C.1)

C.2 Recurrence Relations

From the generating function (C.1) we find that the Hermite polynomials sat-

isfy the recurrence relations

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (C.2)

and

H ′
n(x) = 2nHn−1(x) (C.3)

Equation (C.2) may be obtained by differentiating the generating function with

respect to t; differentiation with respect to x leads to Eq.(C.3). From above two

relations follow differential equation for Hermite Polynomials

H ′′
n(x)− 2xH ′

n(x) + 2nHn(x) = 0 (C.4)

Direct expansion of the generating function (C.1) in t easily gives first two terms

H0(x) = 1 and H1(x) = 2x. Then Eq.(C.2) allows us the construction Hn(x) for

∀N . The first five Hermite polynomials are

H0(x) = 1 (C.5)

H1(x) = 2x (C.6)

H2(x) = 4x2 − 2 (C.7)

H3(x) = 8x3 − 12x (C.8)

H4(x) = 16x4 − 48x2 + 12 (C.9)
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Special values of the Hermite polynomials follow from the generating function; that

is,

H2n(0) = (−1)n
(2n)!

n!
(C.10)

H2n+1(0) = 0 (C.11)

We also obtain from the generating function the important parity relation

Hn(x) = (−1)nHn(−x) (C.12)

C.3 Alternate Representations

Differentiation of the generating function (C.1) n times with respect to t and

then setting t = 0 yields

Hn(x) = (−1)nex
2 dn

dxn
(e−x

2

). (C.13)

This gives us a Rodrigues representation of Hn(x). Hermite polynomial Hn(x) in

series form is

Hn(x) =

[n/2]
∑

s=0

(−1)s(2x)n−2s n!

(n− 2s)!s!
(C.14)

Another operator representation of Hermite polynomial is

Hn(x) = ex
2/2

(

x− d

dx

)n

e−x
2/2 (C.15)

=

(

2x− d

dx

)n

1 (C.16)

The last relation is easy to prove by mathematical induction.

C.4 Hermite Polynomials of Complex Argument

If in generating function (C.1) we consider analytic continuation of real vari-

able x to complex variable z = x+ iy then we have analytic function

g(z, t) = e−t
2+2tz =

∞∑

n=0

Hn(z)
tn

n!
(C.17)

which determines Hermite polynomials of complex argument z. Recursion formulas

Hn+1(z) = 2zHn(z)− 2nHn−1(z) (C.18)
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and

H ′
n(z) = 2nHn−1(z) (C.19)

are the same as in the real case, where complex derivative is defined as

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)

(C.20)

As alternative representations we have

Hn(z) = (−1)nez
2 ∂n

∂zn
(e−z

2

). (C.21)

Hn(z) =

[n/2]
∑

s=0

(−1)s(2z)n−2s n!

(n− 2s)!s!
(C.22)

and

Hn(z) = ez
2/2

(

z − ∂

∂z

)n

e−z
2/2 (C.23)

=

(

2z − ∂

∂z

)n

1 (C.24)

It shows that our Hermite polynomials of complex argument z are analytic func-

tions
∂

∂z̄
Hn(z) = 0. Moreover according to the main theorem of algebra the poly-

nomial Hn(z) has N complex roots z1, ..., zn:

Hn(zi) = 0, i = 1, ..., n (C.25)

From Rodrigues formula follows symmetry property of Hermite polynomials

Hn(−z) = (−1)nH(z) (C.26)

or

H2n(−z) = H2n(z), H2n+1(−z) = −H2n+1(z) (C.27)
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APPENDIX D

I. V. P. for the Burgers’ Equation

Here we solve the Initial Value Problem for the Burgers Equation (Pashaev

2000).
{ ut + uux = νuxx

u(x, 0) = F (x), −∞ < x <∞
Using the Cole- Hopf transformation

u = −2ν
φx
φ

(D.1)

and corresponding partial derivatives

ut = −2ν(lnφ)xt (D.2)

ux = −2ν(lnφ)xx = −2ν
φxxφ− φ2

x

φ2
(D.3)

uxx = −2ν(lnφ)xxx (D.4)

the nonlinear Burgers’ equation (4.28)

ut + uux = νuxx (D.5)

can be reduced to the form

(
−φt + νφxx

φ
)x = 0 (D.6)

or integrating once
−φt + νφxx

φ
= α(t) (D.7)

For the simplest case α(t) = 0 this is the linear heat(diffusion) equation

φt = νφxx. (D.8)

So any solution of this equation determines a solution of the Burgers equation (4.28)

according formula (D.1). Due to linearity the IVP for the heat equation

{
φt = νφxx

φ(x, 0) = Φ(x) = e−
1
2ν

∫
x F (η)dη

can be solved exactly.
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Let φ(x, t) is solution of the heat equation (D.8) such that at initial time

φ(x, 0) = f(x), ∞ < x <∞ t > 0 (D.9)

By the Fourier Transform

φ(x, t) =
1

2π

∫ ∞

−∞
dkF (k, t)eikx (D.10)

and the corresponding derivatives

φx =
1

2π

∫ ∞

−∞
dk(ik)F (k, t)eikx (D.11)

φxx =
1

2π

∫ ∞

−∞
dk (ik)2F (k, t)eikx (D.12)

φt =
1

2π

∫ ∞

−∞
dk (ik)

∂F (k, t)

∂t
eikx (D.13)

we have

φt − νφxx =
1

2π

∫ ∞

−∞
dk eikx

(
∂F (k, t)

∂t
− ν(ik)2F (k, t)

)

= 0 (D.14)

By the inverse Fourier transform it implies equation

∂F (k, t)

∂t
= −νk2F (k, t) (D.15)

Integrating once we have

∫

d lnF (k, t) = −
∫

νk2dt (D.16)

lnF (k, t) = −νk2t+ lnC (D.17)

F (k, t) = C(k)e−νk
2t. (D.18)

It allows us to write the general solution of the heat equation (D.8) in the form

φ(x, t) =
1

2π

∫ ∞

−∞
dk eikxC(k)e−νk

2t. (D.19)

The arbitrary function C(k) is fixed by the initial value for t = 0

f(x) = φ(x, 0) =
1

2π

∫ ∞

−∞
dk eikxC(k). (D.20)

By the inverse transform

C(k) =

∫ ∞

−∞
dx e−ikxf(x) (D.21)
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It implies

F (k, t) =

∫ ∞

−∞
dx′ e−ikx

′−νk2tf(x′) (D.22)

and

φ(x, t) =
1

2π

∫ ∞

−∞
dk eikx

∫ ∞

−∞
dx′ e−ikx

′−νk2tf(x′) (D.23)

=

∫ ∞

−∞
dx′f(x′)

1

2π

∫ ∞

−∞
dk eik(x−x

′)−νk2t. (D.24)

The integral in k is the Gaussian form which can be integrated explicitly. By rear-

ranging quadratic form

ik(x− x′)− νk2t = −νt
(

k2 − 2

2

ik(x− x′)
νt

)

(D.25)

= −νt









k −

i(x− x′)
νt

︸ ︷︷ ︸

k′






2

+
(x− x′)2

4ν2t2




 (D.26)

and using

dk = dk′ (D.27)

integration in k′ gives

φ(x, t) =

∫ ∞

−∞
dx′f(x′)

1

2π

∫ ∞

−∞
dk′e−νt(k

′)2
exp

[−(x− x′)2

4νt

]

(D.28)

=

∫ ∞

−∞
dx′f(x′)

1√
4πνt

exp

[−(x− x′)2

4νt

]

(D.29)

where we have used the Gaussian formula

∫

e−ax
2

dx =

√
π

a
(D.30)

By substitution x′ → η and dx′ → dη, φ(x, 0) = f(x) φ(x′, 0) = f(x′) = f(η) it

gives us solution of the IVP for the heat equation

φ(x, t) =
1√

4πνt

∫ ∞

−∞
φ(η, 0) exp

[−(x− η)2

4νt

]

dη. (D.31)

Using this solution now we construct solution of IVP for the Burgers equation.

First we have the initial value function u(x, 0) = F (x) or in terms of f(x)

F (x) = u(x, 0) = −2ν
φx(x, 0)

φ(x, 0)
= −2ν(lnφ)x = −2ν

fx(x)

f(x)
(D.32)
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Integrating once we have f(x) in terms of F (x)

(ln f(x))x = − 1

2ν
F (x) (D.33)

ln f(x) = − 1

2ν

∫ x

F (η)dη (D.34)

f(x) = e
− 1

2ν

∫ x

F (η)dη
= φ(x, 0) (D.35)

Let us substitute solution (D.35) in the Cole-Hopf transform. First differentiating

in x

φ(x, t) =
1√

4πνt

∫ ∞

−∞
φ(η, 0) exp

[−(x− η)2

4νt

]

dη (D.36)

φx(x, t) =
1√

4πνt

∫ ∞

−∞
φ(η, 0)

−2(x− η)
4νt

exp

[−(x− η)2

4νt

]

dη

we have solution of Burgers equation

u(x, t) = −2ν
φx(x, t)

φ(x, t)
(D.37)

= −2ν

1√
4πνt

∫ ∞

−∞
φ(η, 0)

−2(x− η)
4νt

exp

[−(x− η)2

4νt

]

dη

1√
4πνt

∫ ∞

−∞
φ(η, 0) exp

[−(x− η)2

4νt

]

dη

(D.38)

Using φ(η, 0) = f(ξ) = exp

[−1

2ν

∫ η

F (ξ)dξ

]

we rewrite it as

u(x, t) =

∫ ∞

∞

(x− η)
t

exp

[−(x− η)2

4νt
− 1

2ν

∫ η

F (ξ)dξ

]

dη

∫ ∞

∞
exp

[−(x− η)2

4νt
− 1

2ν

∫ η

F (ξ)dξ

]

dη

. (D.39)

This formula solves the IVP for the Burgers equation.

Now we consider particular solution of IVP for Burgers equation with the initial

condition as the step function (a2 > a1):

F (x) =







a1, x > 0;

a2, x < 0.
(D.40)
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Substituting this form to Eq.(D.39) we have

u(x, t) =

I
︷ ︸︸ ︷

∫ 0

−∞

(x− η)
t

e

−(x− η)2

4νt
− 1

2ν
a2η

dη+

II
︷ ︸︸ ︷

∫ ∞

0

(x− η)
t

e

−(x− η)2

4νt
− 1

2ν
a1η

dη

∫ 0

−∞
e

−(x− η)2

4νt
− 1

2ν
a2η

dη

︸ ︷︷ ︸

III

+

∫ ∞

0

e

−(x− η)2

4νt
− 1

2ν
a1η

dη

︸ ︷︷ ︸

IV

(D.41)

If we replace η → −η , dη → −dη in integrals (I) and (III) then we obtain

u(x, t) =

1
︷ ︸︸ ︷

∫ ∞

0

(x+ η)

t
e

−(x+ η)2

4νt
+

1

2ν
a2η

dη+

2
︷ ︸︸ ︷

∫ ∞

0

(x− η)
t

e

−(x− η)2

4νt
− 1

2ν
a1η

dη

∫ ∞

0

e

−(x+ η)2

4νt
+

1

2ν
a2η

dη

︸ ︷︷ ︸

3

+

∫ ∞

0

e

−(x− η)2

4νt
− 1

2ν
a1η

dη

︸ ︷︷ ︸

4

(D.42)

We rearrange quadratic forms in the exponentials

exp

[−(x+ η)2

4νt
+

1

2ν
a2η

]

= exp

[
x2 + 2ηx+ η2 − 2a2tη

−4νt

]

(D.43)

= exp

[
x2 + 2(x− a2t)η + η2 ∓ (x− a2t)

2

−4νt

]

= exp
−1

4νt
[η + (x− a2t)]

2 +
1

4νt

[
(x− a2t)

2 − x2
]

exp

(−(x+ η)2

4νt
− 1

2ν
a1η

)

= exp
−1

4νt

[
x2 − 2ηx+ η2 + 2a1tη

]
(D.44)

= exp

(−1

4νt

[
x2 + 2(x− a1t)η + η2 ∓ (x− a1t)

2
]
)

= exp

(−1

4νt
[η − (x− a1t)]

2 +
1

4νt

[
(x− a1t)

2 − x2
]
)

then we substitute (D.43) in the first and third integrals of (D.42) and (D.44) in the

second and fourth integrals of (D.42). As a result we have

u(x, t) =
A(x, t)

B(x, t)
(D.45)
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where

A(x, t) =

∫ ∞

0

x+ η

t
exp

(−[η + (x− a2t)]
2

4νt

)

exp

(
[(x− a2t)− x2]2

4νt

)

dη

+

∫ ∞

0

x− η
t

exp

(−[η − (x− a1t)]
2

4νt

)

exp

(
[(x− a1t)− x2]2

4νt

)

dη

and

B(x, t) =

∫ ∞

0

exp

(−[η + (x− a2t)]
2

4νt

)

exp

(
[(x− a2t)− x2]2

4νt

)

dη

+

∫ ∞

0

exp

(−[η − (x− a1t)]
2

4νt

)

exp

(
[(x− a1t)− x2]2

4νt

)

dη

To simplify expressions in integrals we introduce new variables:

ξ1 ≡ η + (x− a2t)√
4νt

, dξ1 =
dη√
4νt

(D.46)

η =
√

4νtξ1 − (x− a2t), dη =
√

4νtdξ1 (D.47)

η → 0⇒ ξ1 →
(x− a2t)√

4νt
(D.48)

η → ∞⇒ ξ1 →∞ (D.49)

and

ξ2 ≡ η − (x− a1t)√
4νt

, dξ2 =
dη√
4νt

(D.50)

η =
√

4νtξ2 − (x− a1t), dη =
√

4νtdξ2 (D.51)

η → 0⇒ ξ1 →
−(x− a1t)√

4νt
(D.52)

η → ∞⇒ ξ1 →∞ (D.53)

and rewriting the u(x, t)

u(x, t) =
C

D
(D.54)

C = exp

[
(x− a2t)

2 − x2

4νt

] ∫ ∞

x−a2t
√

4νt

[4νξ1 + a2

√
4νt exp(−ξ2

1)]dξ1

+ exp

[
(x− a1t)

2 − x2

4νt

] ∫ ∞

−(x−a1t)
√

4νt

[−4νξ1 + a1

√
4νt exp(−ξ2

2)]dξ2

and

D = exp

[
(x− a2t)

2 − x2

4νt

] ∫ ∞

(x−a2t)2
√

4νt

exp(−ξ2
1)dξ1

+ exp

[
(x− a1t)

2 − x2

4νt

] ∫ ∞

−(x−a1t)2
√

4νt

exp(−ξ2
2)dξ2
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Using substitutions

−ξ2
1 = u, −2ξ1 dξ1 = du (D.55)

−ξ2
2 = w, −2ξ2 dξ2 = dw (D.56)

C = 2ν exp

[−x
4νt

]

+ a2

√
4νt exp

[
(x− a2t)

2 − x2

4νt

] ∫ ∞

x−a2t
√

4νt

exp(−ξ2
1)dξ1

− 2ν exp

[−x
4νt

]

+ a1

√
4νt exp

[
(x− a1t)

2 − x2

4νt

] ∫ ∞

−(x−a1t)
√

4νt

exp(−ξ2
2)dξ2

we have

u(x, t) =
E

F
(D.57)

E = a2 exp

[
(x− a2t)

2

4νt

] ∫ ∞

x−a2t
√

4νt

exp(−ξ2)dξ

+ a1 exp

[
(x− a1t)

2

4νt

] ∫ ∞

−(x−a1t)
√

4νt

exp(−ξ2)dξ

= a2 exp

[
(x− a2t)

2

4νt

] ∫ ∞

x−a2t
√

4νt

exp(−ξ2)dξ

+ a1 exp

[
(x− a1t)

2

4νt

] ∫ ∞

−(x−a2t)2
√

4νt

exp(−ξ2)dξ

(D.58)

and

F =

∫ ∞

x−a2t
√

4νt

exp(−ξ2) exp

[
(x− a2t)

2

4νt

]

dξ

+

∫ ∞

−(x−a1t)
√

4νt

exp(−ξ2) exp

[
(x− a1t)

2

4νt

]

dξ

= exp

[
(x− a2t)

2

4νt

] ∫ ∞

x−a2t
√

4νt

exp(−ξ2)dξ

+ exp

[
(x− a1t)

2

4νt

] ∫ ∞

−(x−a2t)2
√

4νt

exp(−ξ2)dξ

121



Dividing denominator and numerator with the same expression we have

u(x, t) =

a1 exp

[
(x− a1t)

2

4νt
− (x− a2t)

2

4νt

]

∫ ∞

−(x−a1t)
√

4νt

exp(−ξ2)dξ

∫ ∞

x−a2t
√

4νt

exp(−ξ2)dξ
+ a2 + a1 − a1

1 + exp

[
(x− a1t)

2

4νt
− (x− a2t)

2

4νt

]

∫ ∞

−(x−a1t)
√

4νt

exp(−ξ2)dξ

∫ ∞

x−a2t
√

4νt

exp(−ξ2)dξ

(D.59)

or

u(x, t) = a1 +
a2 − a1

1 + h(x, t) exp

(
a2 − a1

2ν

[

x−
(
a2 + a1

2

)

t

]) (D.60)

where

h(x, t) =

∫ ∞

− (x−a1t)
√

4νt

exp(−ξ2)dξ

∫ ∞

(x−a2t)
√

4νt

exp(−ξ2)dξ

(D.61)

In asymptotic region when x→ +∞, t→ +∞ in such a way that x/t→ v where

v =
a1 + a2

2
x− a1t√

4νt
=
a2 − a1

4

√

t

ν
(D.62)

x− a2t√
4νt

=
a1 + a2

4

√

t

ν
(D.63)

So that h(x, t) → 1. It shows that initial profile in the form of the step function

(D.40) creates shock soliton

u(x, t) = a1 +
a2 − a1

1 + exp

(
a2 − a1

2ν

[

x−
(
a2 + a1

2

)

t

]) (D.64)

moving with velocity v =
a1 + a2

2
in the right direction.
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APPENDIX E

Buckingham’s Pi Theorem

E.1 Eulers’ Homogeneous Function Theorem

Let f(x,y) be a homogeneous function of order n so that

f(λx, λy) = λnf(x, y) (E.1)

Then define x′ ≡ λx and y′ ≡ λy. Differentiating once according to λ

nλn−1f(x, y) =
∂f

∂x′
∂x′

∂λ
+
∂f

∂y′
∂y′

∂λ
(E.2)

= x
∂f

∂(λx)
+ y

∂f

∂(λy)
(E.3)

for λ = 1, then we get

x
∂f

∂x
+ y

∂f

∂y
= nf(x, y) (E.4)

This can be generalized to an arbitrary number N of variables x1, ..., xN . Let

f(λa1x1, ..., λ
aNxN) = λnf(x1, ..., xN ) (E.5)

then
N∑

i=1

aixi
∂f

∂xi
= nf(x1, ..., xN ) (E.6)

E.2 Buckingham’s Pi Theorem

Buckingham’s pi theorem (Buckingham 1914, Buckingham 1915) states that if

we have a physically meaningful equation involving a certain number (n) of physical

variables, and these variables are expressible in terms of k independent fundamen-

tal physical quantities, then the original expression is equivalent to an equation

involving a set of p = n − k dimensionless variables constructed from the original

variables.

In mathematical terms, if we have a physically meaningful equation such as

f(x1, x2, ..., xn) = 0
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where the xi are the n physical variables and they are expressed in terms of k

independent physical units, then the above equation can be restated as

F (π1, ..., πp) = 0

where the πi are dimensionless parameters constructed from the xi by p = n − k

equations of the form

πi = x
m1i

1 x
m2i

2 ...x
mni

n

If the units for each variable are

[xi] = [length]ai,L[time]ai,T [mass]ai,M ... (E.7)

Changing units by a factor of λL cannot affect the answer, so

f(λ
a1,Lx1
L , λ

a2,Lx2
L , ..., λ

an,Lxn

L ) (E.8)

Applying Euler’s homogeneous function theorem (differentiation with respect to λL

and setting λL = 1 ),

a1,L
∂f

∂x1

+ a2,L
∂f

∂x2

+ ...+ an,L
∂f

∂xn
= 0 (E.9)

or

a1,L
∂f

∂ ln x1

+ a2,L
∂f

∂ ln x2

+ ...+ an,L
∂f

∂ lnxn
= 0 (E.10)

Similarly, for changing units of [time] by λT and [mass] by λM gives

a1,T
∂f

∂ ln x1

+ a2,T
∂f

∂ lnx2

+ ...+ an,T
∂f

∂ lnxn
= 0 (E.11)

a1,M
∂f

∂ ln x1

+ a2,M
∂f

∂ ln x2

+ ...+ an,M
∂f

∂ lnxn
= 0 (E.12)

If xi has k independent units, there are therefore k independent equations of this

type. These equations can be considered as k constraints on n variables xi. There-

fore, number of independent variables is n− k and function f must be a function of

n− k dimensionless variables, π1, ..., πp.
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